The Metric Dimension and Metric Independence of a Graph

James Currie* and Ortrud R. Oellermann ${ }^{\dagger}$
The University of Winnipeg, 515 Portage Avenue
Winnipeg, MB R3B 2E9, CANADA

September 26, 2011

Abstract

A vertex x of a graph G resolves two vertices u and v of G if the distance from x to u does not equal the distance from x to v. A set S of vertices of G is a resolving set for G if every two distinct vertices of G are resolved by some vertex of S. The minimum cardinality of a resolving set for G is called the metric dimension of G. The problem of finding the metric dimension of a graph is formulated as an integer programming problem. It is shown how a relaxation of this problem leads to a linear programming problem and hence to a fractional version of the metric dimension of a graph. The linear programming dual of this problem is considered and the solution to the corresponding integer programming problem is called the metric independence of the graph. It is shown that the problem of deciding whether, for a given graph G, the metric dimension of G equals its metric independence is NPcomplete. Trees with equal metric dimension and metric independence are characterized. The metric independence number is established for various classes of graphs.

Key words: metric dimension, metric independence, NP-completeness, integer programming, linear programming.
AMS Subject Classification Codes: 05C12, 05C85, 05C90, 68R10

[^0]
1 Introduction

Let G be a graph. A vertex x of G is said to resolve two vertices u and v of G if the distance $d(x, u)$ from x to u does not equal the distance $d(x, v)$ from x to v. A set S of vertices of G is said to be a resolving set for G if for every two distinct vertices u and v, there is a vertex x of S that resolves u and v. The minimum cardinality of a resolving set for G is called the metric dimension of G and is denoted by $\operatorname{dim}(G)$. A minimum resolving set is called a metric basis for G. Harary and Melter [3] and independently Slater in [6] and [7] introduced this concept. Slater referred to the metric dimension of a graph as its location number and motivated the study of this invariant by its application to the placement of a minimum number of sonar/loran detecting devices in a network so that the position of every vertex in the network can be uniquely described in terms of its distances to the devices in the set. It was noted in [2] that the problem of finding the metric dimension of a graph is NP-hard. Khuller, Raghavachari and Rosenfeld [4] gave another construction that shows that the metric dimension of a graph is NP-hard. Their interest in this invariant was motivated by navigation of robots in a graph space. A resolving set for a graph corresponds to the presence of distinctively labeled "landmark" nodes in the graph. It is assumed that a robot navigating a graph can sense the distance to each of the landmarks and hence uniquely determine its location in the graph. They also gave approximation algorithms for this invariant and established properties of graphs with metric dimension 2. Motivated by a problem from Pharmaceutical Chemistry, this problem received renewed attention in [1]. In the same paper this problem was formulated as an integer programming problem.

We give another integer programming formulation of the problem, consider its linear programming relaxation and the corresponding duals. A large collection of graph problems can be formulated as integer programming problems. Their corresponding linear programming versions can be solved (efficiently) using linear programming methods and are often useful for establishing bounds for classical invariants and may lead to meaningful fractional versions of the problem. Their duals lead to other potentially interesting invariants. A considerable amount of work has been done on fractional graph theory and indeed an entire text has recently been devoted to the topic [5].

2 A Fractional Version of the Metric Dimension Problem and its Dual

This section is devoted to the formulation of a fractional version of the metric dimension of a graph and both its fractional and integer dual.

Let G be a connected graph of order n. Suppose V is the vertex set of G and V_{p} the collection of all $\binom{n}{2}$ pairs of vertices of G. Let $R(G)$ denote the bipartite graph with partite sets V and V_{p} such that x in V is joined to a pair $\{u, v\}$ in V_{p} if and only if x resolves u and v in G. We call $R(G)$ the resolving graph of G. Figure 1 illustrates this construction for the graph obtained from a 3-cycle by joining a pendant vertex to one of its vertices.

Figure 1: A Graph and its Resolving Graph
The smallest cardinality of a subset S of V such that the neighbourhood $N(S)$ of S in $R(G)$ is V_{p} is thus the metric dimension of G. Suppose $V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and $V_{p}=\left\{s_{1}, s_{2}, \ldots, s_{\binom{n}{2}}\right\}$. Let $A=\left(a_{i j}\right)$ be the $\binom{n}{2} \times n$ matrix with

$$
a_{i j}= \begin{cases}1 & \text { if } s_{i} v_{j} \in E(R(G)) \\ 0 & \text { otherwise }\end{cases}
$$

for $1 \leq i \leq\binom{ n}{2}$ and $1 \leq j \leq n$.
The integer programming formulation of the metric dimension is given by: minimize $\quad f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=x_{1}+x_{2}+\ldots+x_{n}$
subject to the constraints

$$
A x \geq[1]_{\binom{n}{2}}
$$

and

$$
x \geq[0]_{n}
$$

where $x=\left[x_{1}, x_{2}, \ldots, x_{n}\right]^{T},[1]_{k}$ is the $k \times 1$ matrix all of whose entries are $1,[0]_{n}$ is the $n \times 1$ matrix all of whose entries are 0 and $x_{i} \in\{0,1\}$ for $1 \leq i \leq n$.

If we relax the condition that $x_{i} \in\{0,1\}$ for every i and require only that $x_{i} \geq 0$ for all i, then we obtain the following linear programming problem:
$\operatorname{minimize} \quad f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=x_{1}+x_{2}+\ldots+x_{n}$
subject to the constraints

$$
A x \geq[1]_{\binom{n}{2}}
$$

and

$$
x \geq[0]_{n}
$$

In terms of the resolving graph $R(G)$ of G, solving this linear programming problem amounts to assigning nonnegative weights to the vertices in V so that for each vertex in V_{p} the sum of the weights in its neighbourhood is at least 1 and such that the sum of the weights of the vertices in V is as small as possible. The smallest value for f is called the fractional dimension of G and is denoted by $\operatorname{frdim}(G)$.

The dual of this linear programming problem is given by:
$\operatorname{maximize} \quad f\left(y_{1}, y_{2}, \ldots, y_{\binom{n}{2}}\right)=y_{1}+y_{2}+\ldots+y_{\binom{n}{2}}$
subject to the constraints

$$
A^{T} y \leq[1]_{n}
$$

and

$$
y \geq[0]_{\binom{n}{2}}
$$

where $y=\left[y_{1}, y_{2}, \ldots, y_{\binom{n}{2}}\right]^{T}$.
For the resolving graph $R(G)$ of G this amounts to assigning nonnegative weights to the vertices of V_{p} so that for each vertex in V the sum of the weights in its neighbourhood is at most 1 and subject to this such that the sum of the weights of the vertices in V_{p} is as large as possible.

The corresponding integer programming problem asks for an assignment of 0's and 1's to the vertices in V_{p} such that the sum of the weights of the neighbours of every vertex in V is at most 1 and such that the sum of the weights of the vertices in V_{p} is as large as possible. This integer programming problem, which corresponds to the dual of the fractional form of the metric dimension problem, is equivalent to finding the largest collection of pairs of vertices of G no two of which are resolved by the same vertex. We call this maximum the metric independence number of G, denoted by $m i(G)$. A collection of pairs of vertices of G, no two of which are resolved by the same vertex is called an independently resolved collection of pairs. The fractional metric independence number of G is defined in the expected manner
and is denoted by $\operatorname{frmi}(G)$. Clearly $\operatorname{dim}(G) \geq \operatorname{frdim}(G)$ and $\operatorname{frmi}(G) \geq m i(G)$. It follows from the Duality Theorem for linear programming that $\operatorname{frdim}(G)=$ frmi (G). We thus obtain the following string of inequalities:

$$
\operatorname{dim}(G) \geq \operatorname{frdim}(G)=\operatorname{frmi}(G) \geq \operatorname{mi}(G)
$$

In the next section we focus on the problem of determining for which graphs G the metric dimension equals the metric independence.

3 Graphs with Equal Metric Dimension and Metric Independence Number

We begin by showing that the problem of deciding whether the metric dimension of a graph equals its metric independence number is NP-complete. Consider the following decision problem:

Metric Independence Equals Metric Dimension (MIMD)
Instance: A connected graph G.
Question: Is $\operatorname{dim}(G)=m i(G)$?

Theorem 3.1 MIMD is NP-complete.

Proof. We begin by showing that MIMD is in NP. Let G be a graph of order n. Construct the resolving graph $R(G)$ of G. A nondeterministic algorithm need only guess an ordered pair (S_{V}, S_{p}) where $S_{V} \subseteq V, S_{p} \subseteq V_{p},\left|S_{V}\right|=\left|S_{p}\right| \leq p / 2$ and check whether the neighbourhood $N\left(S_{V}\right)$ of S_{V} in $R(G)$ is V_{p} and if the elements of S_{p} are pairwise independently resolved, i.e., whether no two of them have a common neighbour in $R(G)$. If G is a yes-instance of MIMD, then there is an ordered pair (S_{V}, S_{p}) where $S_{V} \subseteq V, S_{p} \subseteq V_{p},\left|S_{V}\right|=\left|S_{p}\right| \leq p / 2$ and such that in $R(G), N\left(S_{V}\right)=V_{p}$ and $N(x) \cap N(y)=\emptyset$ for all $x, y \in S_{p}$ with $x \neq y$. If G is a noinstance of MIMD, then $\operatorname{dim}(G)>\operatorname{mi}(G)$ and consequently no such pair $\left(S_{V}, S_{p}\right)$ exists. Note $R(G)$ can be constructed in $O\left(n^{3}\right)$ time. Checking if $N\left(S_{V}\right)=V_{p}$ and if $N(x) \cap N(y)=\emptyset$ for all $x, y \in S_{p}$ with $x \neq y$ can be done in $O\left(n^{2}\right)$ time. Hence MIMD is in NP.

To show that MIMD is NP-complete, we show that 3-SAT can be polynomially transformed to MIMD. The ideas employed here are similar to those used in [4]. Consider an instance I of 3-SAT with n variables and m clauses. Let the variables be $x_{1}, x_{2}, \ldots, x_{n}$ and the clauses $C_{1}, C_{2}, \ldots, C_{m}$. For each variable x_{i} construct a 6 -cycle $T_{i}, a_{i}^{1}, b_{i}^{1}, F_{i}, b_{i}^{2}, a_{i}^{2}, T_{i}$ as shown in Figure 2 . This is called the gadget for x_{i}.

Figure 2: A 6-cycle Corresponding to a Variable

The only vertices in this gadget that will be joined to other vertices in the graph are T_{i} and F_{i}.

For a clause C_{j}, consisting of the literals y_{j}^{1}, y_{j}^{2} and y_{j}^{3}, construct a gadget isomorphic to the star $K_{1,4}$ and labelled as in Figure 3.

Figure 3: A $K_{1,4}$ corresponding to a Clause
The edges between the gadgets for the clauses and the gadgets for the variables are now added as follows: If x_{i} appears in C_{j} we add the edges $T_{i} c_{j}^{1}, F_{i} c_{j}^{1}$ and $F_{i} c_{j}^{3}$. If \bar{x}_{i} appears in C_{j} we add the edges $T_{i} c_{j}^{1}, F_{i} c_{j}^{1}$ and $T_{i} c_{j}^{3}$. For all k such that neither x_{k} nor \bar{x}_{k} appears in C_{j} join T_{k} and F_{k} both to each of c_{j}^{1} and c_{j}^{3}. The resulting graph G_{I} has $6 n+5 m$ vertices.

We will show that I is satisfiable if and only if $\operatorname{dim}\left(G_{I}\right) \geq m+n$. Observe that for each variable x_{i}, the pair $\left\{a_{i}^{1}, a_{i}^{2}\right\}$ is not resolved by a vertex of G_{I} that does not also belong to the gadget for x_{i}. Moreover, for each clause C_{j}, the pair $\left\{c_{j}^{4}, c_{j}^{5}\right\}$ is not resolved by a vertex of G_{I} other than c_{j}^{4} and c_{j}^{5}. Hence $\left\{\left\{a_{i}^{1}, a_{i}^{2}\right\} \mid 1 \leq i \leq\right.$
$n\} \cup\left\{\left\{c_{j}^{4}, c_{j}^{5}\right\} \mid 1 \leq j \leq m\right\}$ is a collection of $m+n$ pairwise independently resolved pairs of vertices. So $m i\left(G_{I}\right) \geq n+m$. Since $\operatorname{dim}\left(G_{I}\right) \geq m i\left(G_{I}\right), \operatorname{dim}\left(G_{I}\right) \geq m+n$.

We now show that if I is satisfiable, then $\operatorname{dim}\left(G_{I}\right)=m+n$. Consider an assignment of truth-values to the $x_{i}^{\prime} s$ such that each clause of I is satisfied. Let B be the collection of $m+n$ vertices of G_{I} obtained by placing c_{j}^{4} into B for $1 \leq j \leq m$ and for each variable x_{i} we place a_{i}^{1} into B if x_{i} has value true and b_{i}^{1} otherwise. We now show that B is a resolving set for G_{I}.

Let $\{u, v\}$ be a pair of vertices of G_{I}. We consider four cases.
Case 1 One of u and v, say u belongs to the gadget for C_{j} for some j and v does not belongs to the same gadget. Then c_{j}^{4} resolves $\{u, v\}$ as $d\left(u, c_{j}^{4}\right)<d\left(v, c_{j}^{4}\right)$.
Case $2 u$ belongs to the gadget for x_{i} and v belongs to the gadget for x_{i} for $i \neq j$. Then if the element of B in $\left\{a_{i}^{1}, b_{i}^{1}\right\}$ does not resolve $\{u, v\}$, necessarily the element of B in $\left\{a_{j}^{1}, b_{j}^{1}\right\}$ resolves $\{u, v\}$.
Case $3 u$ and v both belong to the gadget for x_{i} for some i. We may assume $a_{i}^{1} \in B$. (If $b_{i}^{1} \in B$ the argument is similar.) Since $a_{i}^{1} \in B, a_{i}^{1}$ resolves $\{u, v\}$ or one of u and v is closer to c_{j}^{4} than the other for any j. So c_{j}^{4} resolves $\{u, v\}$ in this case.
Case $4 u$ and v both belong to a gadget for C_{j} for some j. Any such pair containing c_{j}^{4} or c_{j}^{2} is resolved by c_{j}^{4}. If the pair contains c_{j}^{5} and one of c_{j}^{1} or c_{j}^{3}, then it is resolved by a_{i}^{1} or b_{i}^{1} for any $i(1 \leq i \leq n)$. So it remains to show that the pair $\left\{c_{j}^{1}, c_{j}^{3}\right\}$ is resolved by some vertex in B. Since some literal of C_{j} is assigned value true, we may assume x_{i} or \bar{x}_{i} belongs to C_{j} for some i and has value true. Suppose $x_{i} \in C_{j}$ and has truth value true (if \bar{x}_{i} is in C_{j} with truth value true, the argument is similar). Since x_{i} has been assigned value true, a_{i}^{1} belongs to B. In this case $d\left(c_{j}^{1}, a_{i}^{1}\right)<d\left(c_{j}^{3}, a_{i}^{1}\right)$. So a_{i}^{1} resolves the pair $\left\{c_{j}^{1}, c_{j}^{3}\right\}$.

From these four cases we see that $\operatorname{dim}\left(G_{I}\right) \leq m+n$. So $\operatorname{dim}\left(G_{I}\right)=m+n$.
Suppose now that $\operatorname{dim}\left(G_{I}\right)=m+n$. We show that I is satisfiable. Let B be any basis for G_{I}. Note that a basis for G_{I} must contain at least one of c_{j}^{4} and c_{j}^{5} for every $j(1 \leq j \leq m)$ and at least one vertex from $\left\{a_{i}^{1}, a_{i}^{2}, b_{i}^{1}, b_{i}^{2}\right\}$. Since $\operatorname{dim}\left(G_{I}\right)=m+n$, it follows that B contains exactly one vertex from each gadget for each clause and one from the gadget for each variable. We now assign truthvalues to the variables of I as follows: If a_{i}^{1} or a_{i}^{2} is in B set x_{i} to be true; otherwise x_{i} is false. We now show that each clause C_{j} contains a literal that is true. Note that c_{j}^{1} and c_{j}^{3} are the same distance from c_{j}^{4} and c_{j}^{5}, neither of these two vertices resolves the pair $\left\{c_{j}^{1}, c_{j}^{3}\right\}$. Moreover, for $j \neq k$, both c_{k}^{4} and c_{k}^{5} are at distance 4 from both c_{j}^{1} and c_{j}^{3}. So $\left\{c_{j}^{1}, c_{j}^{3}\right\}$ is resolved by a vertex in a gadget for x_{l} for some l.

If x_{p} is a variable that does not occur in C_{j}, none of the vertices $\left\{a_{p}^{1}, a_{p}^{2}, b_{p}^{1}, b_{p}^{2}\right\}$ resolves $\left\{c_{j}^{1}, c_{j}^{3}\right\}$. Thus the only vertices that can resolve the pair $\left\{c_{j}^{1}, c_{j}^{3}\right\}$ belong to a gadget for x_{q} where x_{q} is a variable that occurs in C_{j}. By the way G_{I} was
constructed, a vertex in a gadget for x_{q} will resolve the vertices in the pair $\left\{c_{j}^{1}, c_{j}^{3}\right\}$ only if one of the following occurs.

1. x_{q} occurs as a positive literal in C_{j} and either a_{q}^{1} or a_{q}^{2} is in B; in this case x_{q} is set to true.
2. x_{q} occurs as a negative literal in C_{j} and either b_{q}^{1} or b_{q}^{2} is in B; in this case x_{q} is set to false.

In either case, x_{q} is assigned a truth value so that C_{j} contains a literal with truth value true. This completes the proof.

Since the problem of deciding, for a given graph G, whether its metric dimension equals its metric independence is NP-complete it is natural to search for classes of graphs for which these two parameters are equal for every graph in the class. In particular we wish to determine which trees have equal metric dimension and metric independence. Before answering this question we define a few useful terms, state a formula for the metric dimension of a tree and derive an expression for the metric independence of a tree.

A vertex of degree at least 3 in a graph G will be called a major vertex of G. Any leaf u of G is said to be a terminal vertex of a major vertex v of G if $d(u, v)<d(u, w)$ for every other major vertex w of G. The terminal degree ter (v) of a major vertex v is the number of terminal vertices of v. A major vertex v of G is an bounding major vertex of G if it has positive terminal degree. Let $\sigma(G)$ denote the sum of the terminal degrees of the major vertices of G and let $b m(G)$ denote the number of bounding major vertices of G. The following was established in [1].

Theorem 3.2 If G is a graph, then $\operatorname{dim}(G) \geq \sigma(G)-b m(G)$, and if G is a tree that is not a path, then this inequality becomes an equality. $\operatorname{Moreover,~} \operatorname{dim}\left(P_{n}\right)=1$.

Let w be a bounding major vertex of G and suppose v is a terminal vertex of w. Then every vertex of degree 1 or 2 on the $v-w$ path is called an exterior vertex of w. A vertex is called exterior if it is an exterior vertex of some bounding major vertex of G. All other vertices are called interior vertices of G. It is useful to observe that if $\{u, v\}$ is a pair of vertices in a graph, then both u and v resolve this pair. Let v be a vertex of a tree T. Suppose $T_{1}, T_{2}, \ldots, T_{k}$ are the components of $T-v$. Then the k subgraphs induced by the vertices in $V\left(T_{i}\right) \cup\{v\}$ are called the branches of T at v. We now establish a formula for finding the metric dimension of a tree.

Theorem 3.3 Let T be a tree that is not a path and \mathcal{T} the collection of bounding major vertices of T. Then

$$
m i(T)=\sum_{v \in \mathcal{T}}\left\lfloor\frac{\operatorname{ter}(v)}{2}\right\rfloor
$$

Moreover, $\operatorname{mi}\left(P_{n}\right)=1$.
Proof. It is not difficult to see that $m i\left(P_{n}\right)=1$. Suppose then that T is a tree with at least one bounding major vertex. We first show that $m i(T) \leq \sum_{v \in \mathcal{T}}\left\lfloor\frac{\operatorname{ter}(v)}{2}\right\rfloor$. Let $v_{1}, v_{2}, \ldots, v_{k}$ be the bounding major vertices of T. For each i, let $v_{i, 1}, v_{i, 2}, \ldots, v_{i, j_{i}}$ be the exterior neighbours of v_{i}. If j_{i} is even let

$$
\mathcal{C}_{i}=\left\{\left\{v_{i, 1}, v_{i, 2}\right\},\left\{v_{i, 3}, v_{i, 4}\right\}, \ldots,\left\{v_{i, j_{i}-1}, v_{i, j_{i}}\right\}\right\}
$$

and if j_{i} is odd let

$$
\mathcal{C}_{i}=\left\{\left\{v_{i, 1}, v_{i, 2}\right\},\left\{v_{i, 3}, v_{i, 4}\right\}, \ldots,\left\{v_{i, j_{i}-2}, v_{i, j_{i}-1}\right\}\right\}
$$

Then $\left|\mathcal{C}_{i}\right|=\left\lfloor\frac{\operatorname{ter}\left(v_{i}\right)}{2}\right\rfloor$. (If $j_{i}=1$, then $\mathcal{C}_{i}=\emptyset$.) A vertex v resolves a pair $\left\{v_{i, k}, v_{i, k+1}\right\}$ if and only if v belongs to the component of $T-v_{i}$ containing $v_{i, k}$ or $v_{i, k+1}$. Hence $\bigcup_{i=1}^{k} \mathcal{C}_{i}$ is a collection of independently resolved pairs of vertices of T. So $\operatorname{mi}(T) \geq \sum_{v \in \mathcal{T}}\left\lfloor\frac{\operatorname{ter}(v)}{2}\right\rfloor$.

We now show that $m i(T) \leq \sum_{v \in \mathcal{T}}\left\lfloor\frac{\operatorname{ter}(v)}{2}\right\rfloor$. Among all collections of $m i(T)$ pairwise independently resolved pairs of vertices of T, let \mathcal{C} be one that minimizes the number of pairs of vertices that contain an interior vertex of T. We show that no element of \mathcal{C} contains an interior vertex of T. Suppose that some pair $\{x, y\} \in \mathcal{C}$ is such that x or y is an interior vertex, say x. Then either there exists a branch of T at x that does not contain y but contains a vertex of degree at least 3 or every branch of T at x that does not contain y is a path. Since x is an interior vertex, there are, in the latter case, at least two branches of T at x not containing y that are paths.

Consider the first case. In this case, no vertex of a branch of T at x that does not contain y belongs to any element of \mathcal{C}, otherwise such a vertex would simultaneously resolve the pair to which it belongs and the pair $\{x, y\}$, which is not possible. Let w be a bounding major vertex with terminal degree at least 3 in a branch of T at x that does not contain y. Let u and v be two exterior vertices adjacent with w. Let $\mathcal{C}^{\prime}=(\mathcal{C}-\{\{x, y\}\}) \cup\{\{u, v\}\}$. Then \mathcal{C}^{\prime} is a collection of $m i(T)$ independently resolved pairs of vertices of T with fewer pairs of vertices containing an interior vertex of T, contrary to our choice of \mathcal{C}.

In the second case, x has degree at least 3 and every branch of T at x that does not contain y is a path. Again no vertex from a branch of T at x that
does not contain y belongs to any element of \mathcal{C} otherwise such a vertex would simultaneously resolve the pair to which it belongs as well as the pair $\{x, y\}$, which is not possible. Let u and v be two exterior vertices adjacent with x. Then $\mathcal{C}^{\prime}=$ $(\mathcal{C}-\{\{x, y\}\}) \cup\{\{u, v\}\}$ is a collection of $m i(T)$ independently resolved pairs of vertices with fewer pairs of vertices that contain an interior vertex of T, contrary to our choice of \mathcal{C}.

Hence we may assume that every pair $\{x, y\} \in \mathcal{C}$ is such that x and y are both exterior vertices of T. We now show that \mathcal{C} can be chosen in such a way that every pair $\{x, y\}$ in \mathcal{C} has the property that x and y are exterior vertices of the same bounding major vertex. Among all collections of $m i(T)$ independently resolved pairs of vertices of T, such that each pair in the collection consists of exterior vertices, let \mathcal{C} be one for which the number of pairs for which both vertices in the pair are exterior vertices of the same bounding major vertex is maximized. Suppose there is a pair $\{x, y\}$ such that x is an exterior vertex of a bounding major vertex w and y is an exterior vertex of a bounding major vertex v where $v \neq w$. Since v and w are both bounding major vertices, they have degree at least 3. Suppose first that there is a branch of T at w not containing x or y that contains no vertex belonging to a pair of \mathcal{C}. If such a branch contains a vertex of degree at least 3, then there is a bounding major vertex u in this branch whose terminal degree is at least 2. Let $\left\{x^{\prime}, y^{\prime}\right\}$ be two exterior vertices adjacent with u. Set $\mathcal{C}^{\prime}=(\mathcal{C}-\{\{x, y\}\}) \cup\left\{\left\{x^{\prime}, y^{\prime}\right\}\right\}$. If such a branch is a path, let x^{\prime} be the vertex adjacent with w and on a $w-x$ path (possibly $x^{\prime}=x$) and let y^{\prime} be a vertex adjacent with w in a branch of T at w that is a path and does not contain a vertex belonging to a pair of \mathcal{C}. Set $\mathcal{C}^{\prime}=(\mathcal{C}-\{\{x, y\}\}) \cup\left\{\left\{x^{\prime}, y^{\prime}\right\}\right\}$. In either case \mathcal{C}^{\prime} is a collection of $m i(T)$ independently resolved pairs of exterior vertices of T with more pairs that are exterior vertices of the same bounding major vertex than \mathcal{C}. This contradicts our choice of \mathcal{C}. Similarly we may assume that every branch of T at v that does not contain x or y must contain a vertex that belongs to the some element of \mathcal{C}.

Let $u \neq x, y$ be a vertex in a branch of T at w that belongs to a pair of \mathcal{C}. Then u is not in the same branch of T at v as y or the same branch of T at w as x. As u resolves the pair of vertices to which it belongs but not the pair $\{x, y\}$, $d(u, x)=d(u, y)$. Since both the $u-x$ path and $u-y$ path in T contain w, $d(w, x)=d(w, y)$. Since v is on the $w-y$ path, $d(v, y)<d(w, y)$. Let $u^{\prime} \neq x, y$ be a vertex in a branch of T at v that belongs to a pair of vertices of \mathcal{C} Again, as u^{\prime} resolves the pair to which it belongs but not the pair $\{x, y\}, d\left(u^{\prime}, x\right)=d\left(u^{\prime}, y\right)$. As in the previous case, $d(v, x)=d(v, y)$. But then $d(v, x)=d(v, w)+d(w, x)>$ $d(w, x)=d(w, y)>d(v, y)=d(v, x)$, which is not possible. Hence every pair of \mathcal{C} is a pair of exterior vertices of the same bounding major vertex. Therefore, $m i(T) \leq \sum_{v \in \mathcal{T}}\left\lfloor\frac{\operatorname{ter}(v)}{2}\right\rfloor$.

Corollary 3.4 Let T be a tree. Then $\operatorname{dim}(T)=m i(T)$ if and only if the terminal degree of every major vertex of T is at most 2 .

Proof This follows immediately from the previous two theorems.

4 The Metric Independence Number of Special Classes of Graphs

In the previous section we determined the metric independence number of trees. It is not difficult to see that the metric independence number of the complete graph K_{n} is $\lfloor n / 2\rfloor$. For the complete bipartite graph $K_{n, m}$ with $n \geq 2$ or $m \geq 2$ it is $\left\lfloor\frac{n}{2}\right\rfloor+\left\lfloor\frac{m}{2}\right\rfloor$. More generally, if $G=K_{n_{1}, n_{2}, \ldots, n_{k}}$ is a complete k-partite graph where $n_{1} \leq n_{2} \leq \ldots \leq n_{k}$, then $\operatorname{mi}(G)=\sum_{i=1}^{k}\left\lfloor\frac{n_{i}}{2}\right\rfloor$ if $n_{1} \geq 2$ and $\operatorname{mi}(G)=$ $\left\lfloor\frac{l}{2}\right\rfloor+\sum_{i=l+1}^{k}\left\lfloor\frac{n_{i}}{2}\right\rfloor$ if $n_{1}=n_{2}=\ldots=n_{l}=1$ and $n_{l+1} \geq 2$. For the cycle C_{n} where $n \geq 3$ it is 2 if $n=4$ and is 1 otherwise.

It was shown in [1] that $\operatorname{dim}\left(Q_{n}\right) \leq n$. In [4] it is claimed (without proof) that the metric dimension of the n-cube is at least n. The next result shows that the metric independence number of the n-cube is always 2 .

Theorem 4.1 For all $n \geq 2$,

$$
m i\left(Q_{n}\right)=2
$$

Proof It is not difficult to see that $m i\left(Q_{n}\right) \geq 2$. Take for example the two pairs of vertices that are diametrically opposite on any 4-cycle in Q_{n}. Then these pairs of vertices are not resolved by the same vertex and are thus metrically independent.

To see that $\operatorname{mi}\left(Q_{n}\right) \leq 2$ we use a geometric argument. Recall that Q_{n} can be described as the graph whose vertex set consists of all $2^{n} n$-tuples of 0's and 1's and its edges consist of those pairs of n-tuples that differ in exactly one position. The distance between two vertices in Q_{n} therefore equals the number of positions in which their n-tuples differ. This is also called the Hamming distance between the two points. The vertices of Q_{n} also describe a collection of points in \mathbb{R}^{n}. Since the Euclidean distance between two vertices of Q_{n} is just the squareroot of the Hamming distance between the two points, it follows that $d_{Q_{n}}(u, v)=d_{Q_{n}}(u, w)$ if and only if $d_{\mathbb{R}^{n}}(u, v)=d_{\mathbb{R}^{n}}(u, w)$.

Suppose now that $\operatorname{mi}\left(Q_{n}\right) \geq 3$. Let $\{a, b\},\{u, v\}$ and $\{x, y\}$ be three independently resolved pairs of vertices of Q_{n}. Since a resolves the pair $\{a, b\}$ and not the pair $\{u, v\}, d(a, u)=d(a, v)$. Similarly $d(b, u)=d(b, v)$ and $d(u, a)=d(u, b)$. Hence, $d(a, u)=d(a, v)=d(b, u)=d(b, v)$. By the same argument $d(a, x)=$ $d(a, y)=d(b, x)=d(b, y)$ and $d(x, u)=d(x, v)=d(y, u)=d(y, v)$. The set of all
points in \mathbb{R}^{n} that are the same distance from two points forms an $n-1$ dimensional hyperplane. Let $A(B$ and $C)$ be the set of points in \mathbb{R}^{n} that are the same distance from the vertices in $\{a, b\}$ ($\{u, v\}$ and $\{x, y\}$, respectively). If P is a point in \mathbb{R}^{n}, then either P is in A or P resolves $\{a, b\}$ in which case P necessarily does not resolve $\{u, v\}$ and hence P belongs to B. Similarly every point of \mathbb{R}^{n} is either in A or C. So $A \cup B=A \cup C=\mathbb{R}^{n}$. Hence $\mathbb{R}^{n}=(A \cup B) \cap(A \cup C)=A \cup(B \cap C)$. However, $B \cap C$ is only a $n-2$ dimensional hyperplane in \mathbb{R}^{n} and A is an $n-1$ dimensional hyperplane. As it is not possible for the union of an $n-1$ dimensional hyperplane and an $n-2$ dimensional hyperplane to equal \mathbb{R}^{n} we have a contradiction. Hence $m i\left(Q_{n}\right) \leq 2$.

It remains an open problem to determine whether the metric independence number of a graph can be found in polynomial time.

References

[1] G. Chartrand, L. Eroh, M. Johnson and O.R. Oellermann, Resolvability in graphs and the metric dimension of a graph. Discr. Appl. Math. 105 (2000) 99-113.
[2] M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the Theorey of NP-Completeness. Freeman, New York (1979)
[3] F. Harary and R.A. Melter, On the metric dimension of a graph. Ars Combin. 2 (1976) 191-195.
[4] S. Khuller, B. Raghavachari and A. Rosenfeld, Localization in graphs. Technical Report (1994)
[5] E.R. Scheinerman and D.H. Ullman, Fractional Graph Theory. John Wiley and Sons, New York (1997)
[6] P.J. Slater, Leaves of trees. Congress. Numer. 14 (1975) 549-559.
[7] P.J. Slater, Dominating and reference sets in a graph. J. Math. Phys. Sci. 22 (1988) 445-455.

[^0]: *Supported by an NSERC grant Canada.
 ${ }^{\dagger}$ Supported by an NSERC grant Canada.

