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Abstract

A vertex x of a graph G resolves two vertices u and v of G if the
distance from x to u does not equal the distance from x to v. A set
S of vertices of G is a resolving set for G if every two distinct vertices
of G are resolved by some vertex of S. The minimum cardinality of a
resolving set for G is called the metric dimension of G. The problem of
�nding the metric dimension of a graph is formulated as an integer pro-
gramming problem. It is shown how a relaxation of this problem leads
to a linear programming problem and hence to a fractional version of
the metric dimension of a graph. The linear programming dual of this
problem is considered and the solution to the corresponding integer
programming problem is called the metric independence of the graph.
It is shown that the problem of deciding whether, for a given graph
G, the metric dimension of G equals its metric independence is NP-
complete. Trees with equal metric dimension and metric independence
are characterized. The metric independence number is established for
various classes of graphs.
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1 Introduction

Let G be a graph. A vertex x of G is said to resolve two vertices u and v of G if the
distance d(x, u) from x to u does not equal the distance d(x, v) from x to v. A set
S of vertices of G is said to be a resolving set for G if for every two distinct vertices
u and v, there is a vertex x of S that resolves u and v. The minimum cardinality of
a resolving set for G is called the metric dimension of G and is denoted by dim(G).
A minimum resolving set is called a metric basis for G. Harary and Melter [3] and
independently Slater in [6] and [7] introduced this concept. Slater referred to the
metric dimension of a graph as its location number and motivated the study of this
invariant by its application to the placement of a minimum number of sonar/loran
detecting devices in a network so that the position of every vertex in the network
can be uniquely described in terms of its distances to the devices in the set. It was
noted in [2] that the problem of �nding the metric dimension of a graph is NP-hard.
Khuller, Raghavachari and Rosenfeld [4] gave another construction that shows that
the metric dimension of a graph is NP-hard. Their interest in this invariant was
motivated by navigation of robots in a graph space. A resolving set for a graph
corresponds to the presence of distinctively labeled "landmark" nodes in the graph.
It is assumed that a robot navigating a graph can sense the distance to each of the
landmarks and hence uniquely determine its location in the graph. They also gave
approximation algorithms for this invariant and established properties of graphs
with metric dimension 2. Motivated by a problem from Pharmaceutical Chemistry,
this problem received renewed attention in [1]. In the same paper this problem was
formulated as an integer programming problem.

We give another integer programming formulation of the problem, consider its
linear programming relaxation and the corresponding duals. A large collection
of graph problems can be formulated as integer programming problems. Their
corresponding linear programming versions can be solved (e�ciently) using linear
programming methods and are often useful for establishing bounds for classical
invariants and may lead to meaningful fractional versions of the problem. Their
duals lead to other potentially interesting invariants. A considerable amount of
work has been done on fractional graph theory and indeed an entire text has
recently been devoted to the topic [5].

2 A Fractional Version of the Metric Dimen-

sion Problem and its Dual

This section is devoted to the formulation of a fractional version of the metric
dimension of a graph and both its fractional and integer dual.
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Let G be a connected graph of order n. Suppose V is the vertex set of G and
Vp the collection of all

(
n
2

)
pairs of vertices of G. Let R(G) denote the bipartite

graph with partite sets V and Vp such that x in V is joined to a pair {u, v} in Vp if
and only if x resolves u and v in G. We call R(G) the resolving graph of G. Figure
1 illustrates this construction for the graph obtained from a 3-cycle by joining a
pendant vertex to one of its vertices.

a b c d

ab ac ad bc bd cd

R(G):

G:
a

b

c d

Figure 1: A Graph and its Resolving Graph

The smallest cardinality of a subset S of V such that the neighbourhood N(S)
of S in R(G) is Vp is thus the metric dimension of G. Suppose V = {v1, v2, . . . , vn}
and Vp = {s1, s2, . . . , s(n2)}. Let A = (aij) be the

(
n
2

)
× n matrix with

aij =

{
1 if sivj ∈ E(R(G))
0 otherwise

for 1 ≤ i ≤
(
n
2

)
and 1 ≤ j ≤ n.

The integer programming formulation of the metric dimension is given by:
minimize f(x1, x2, . . . , xn) = x1 + x2 + . . .+ xn
subject to the constraints

Ax ≥ [1](n2)

and
x ≥ [0]n
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where x = [x1, x2, . . . , xn]
T , [1]k is the k × 1 matrix all of whose entries are 1, [0]n

is the n× 1 matrix all of whose entries are 0 and xi ∈ {0, 1} for 1 ≤ i ≤ n.
If we relax the condition that xi ∈ {0, 1} for every i and require only that

xi ≥ 0 for all i, then we obtain the following linear programming problem:
minimize f(x1, x2, . . . , xn) = x1 + x2 + . . .+ xn
subject to the constraints

Ax ≥ [1](n2)

and
x ≥ [0]n.

In terms of the resolving graph R(G) of G, solving this linear programming
problem amounts to assigning nonnegative weights to the vertices in V so that for
each vertex in Vp the sum of the weights in its neighbourhood is at least 1 and such
that the sum of the weights of the vertices in V is as small as possible. The smallest
value for f is called the fractional dimension of G and is denoted by frdim(G).

The dual of this linear programming problem is given by:
maximize f(y1, y2, . . . , y(n2)

) = y1 + y2 + . . .+ y(n2)
subject to the constraints

AT y ≤ [1]n

and
y ≥ [0](n2)

where y = [y1, y2, . . . , y(n2)
]T .

For the resolving graph R(G) of G this amounts to assigning nonnegative
weights to the vertices of Vp so that for each vertex in V the sum of the weights in
its neighbourhood is at most 1 and subject to this such that the sum of the weights
of the vertices in Vp is as large as possible.

The corresponding integer programming problem asks for an assignment of 0's
and 1's to the vertices in Vp such that the sum of the weights of the neighbours of
every vertex in V is at most 1 and such that the sum of the weights of the vertices
in Vp is as large as possible. This integer programming problem, which corresponds
to the dual of the fractional form of the metric dimension problem, is equivalent to
�nding the largest collection of pairs of vertices of G no two of which are resolved
by the same vertex. We call this maximum the metric independence number of
G, denoted by mi(G). A collection of pairs of vertices of G, no two of which are
resolved by the same vertex is called an independently resolved collection of pairs.
The fractional metric independence number of G is de�ned in the expected manner
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and is denoted by frmi(G). Clearly dim(G) ≥ frdim(G) and frmi(G) ≥ mi(G).
It follows from the Duality Theorem for linear programming that frdim(G) =
frmi(G). We thus obtain the following string of inequalities:

dim(G) ≥ frdim(G) = frmi(G) ≥ mi(G).

In the next section we focus on the problem of determining for which graphs
G the metric dimension equals the metric independence.

3 Graphs with Equal Metric Dimension and

Metric Independence Number

We begin by showing that the problem of deciding whether the metric dimension
of a graph equals its metric independence number is NP-complete. Consider the
following decision problem:

Metric Independence Equals Metric Dimension (MIMD)

Instance: A connected graph G.
Question: Is dim(G) = mi(G)?

Theorem 3.1 MIMD is NP-complete.

Proof. We begin by showing that MIMD is in NP. Let G be a graph of order n.
Construct the resolving graph R(G) of G. A nondeterministic algorithm need only
guess an ordered pair (SV , Sp) where SV ⊆ V , Sp ⊆ Vp, |SV | = |Sp| ≤ p/2 and
check whether the neighbourhood N(SV ) of SV in R(G) is Vp and if the elements
of Sp are pairwise independently resolved, i.e., whether no two of them have a
common neighbour in R(G). If G is a yes-instance of MIMD, then there is an
ordered pair (SV , Sp) where SV ⊆ V , Sp ⊆ Vp, |SV | = |Sp| ≤ p/2 and such that in
R(G), N(SV ) = Vp and N(x)∩N(y) = ∅ for all x, y ∈ Sp with x ̸= y. If G is a no-
instance of MIMD, then dim(G) > mi(G) and consequently no such pair (SV , Sp)
exists. Note R(G) can be constructed in O(n3) time. Checking if N(SV ) = Vp and
if N(x) ∩N(y) = ∅ for all x, y ∈ Sp with x ̸= y can be done in O(n2) time. Hence
MIMD is in NP.

To show that MIMD is NP-complete, we show that 3-SAT can be polynomially
transformed to MIMD. The ideas employed here are similar to those used in [4].
Consider an instance I of 3-SAT with n variables and m clauses. Let the variables
be x1, x2, . . . , xn and the clauses C1, C2, . . . , Cm. For each variable xi construct a
6-cycle Ti, a

1
i , b

1
i , Fi, b

2
i , a

2
i , Ti as shown in Figure 2. This is called the gadget for xi.
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Figure 2: A 6-cycle Corresponding to a Variable

The only vertices in this gadget that will be joined to other vertices in the graph
are Ti and Fi.

For a clause Cj , consisting of the literals y1j , y
2
j and y3j , construct a gadget

isomorphic to the star K1,4 and labelled as in Figure 3.

c
i
1 c

2

i
c

i

3

c
i

5

c
4

i

Figure 3: A K1,4 corresponding to a Clause

The edges between the gadgets for the clauses and the gadgets for the variables
are now added as follows: If xi appears in Cj we add the edges Tic

1
j , Fic

1
j and Fic

3
j .

If x̄i appears in Cj we add the edges Tic
1
j , Fic

1
j and Tic

3
j . For all k such that neither

xk nor x̄k appears in Cj join Tk and Fk both to each of c1j and c3j . The resulting
graph GI has 6n+ 5m vertices.

We will show that I is satis�able if and only if dim(GI) ≥ m+n. Observe that
for each variable xi, the pair {a1i , a2i } is not resolved by a vertex of GI that does
not also belong to the gadget for xi. Moreover, for each clause Cj , the pair {c4j , c5j}
is not resolved by a vertex of GI other than c4j and c5j . Hence {{a1i , a2i }|1 ≤ i ≤

6



n} ∪ {{c4j , c5j}|1 ≤ j ≤ m} is a collection of m+ n pairwise independently resolved
pairs of vertices. So mi(GI) ≥ n+m. Since dim(GI) ≥ mi(GI), dim(GI) ≥ m+n.

We now show that if I is satis�able, then dim(GI) = m + n. Consider an
assignment of truth-values to the x′is such that each clause of I is satis�ed. Let B
be the collection ofm+n vertices of GI obtained by placing c

4
j into B for 1 ≤ j ≤ m

and for each variable xi we place a1i into B if xi has value true and b1i otherwise.
We now show that B is a resolving set for GI .

Let {u, v} be a pair of vertices of GI . We consider four cases.
Case 1 One of u and v, say u belongs to the gadget for Cj for some j and v does

not belongs to the same gadget. Then c4j resolves {u, v} as d(u, c4j ) < d(v, c4j ).
Case 2 u belongs to the gadget for xi and v belongs to the gadget for xi for i ̸= j .

Then if the element of B in {a1i , b1i } does not resolve {u, v}, necessarily the element
of B in {a1j , b1j} resolves {u, v}.
Case 3 u and v both belong to the gadget for xi for some i. We may assume a1i ∈ B.
(If b1i ∈ B the argument is similar.) Since a1i ∈ B, a1i resolves {u, v} or one of u
and v is closer to c4j than the other for any j. So c4j resolves {u, v} in this case.
Case 4 u and v both belong to a gadget for Cj for some j. Any such pair containing
c4j or c2j is resolved by c4j . If the pair contains c5j and one of c1j or c3j , then it is

resolved by a1i or b1i for any i(1 ≤ i ≤ n). So it remains to show that the pair
{c1j , c3j} is resolved by some vertex in B. Since some literal of Cj is assigned value
true, we may assume xi or x̄i belongs to Cj for some i and has value true. Suppose
xi ∈ Cj and has truth value true (if x̄i is in Cj with truth value true, the argument
is similar). Since xi has been assigned value true, a1i belongs to B. In this case
d(c1j , a

1
i ) < d(c3j , a

1
i ). So a1i resolves the pair {c1j , c3j}.

From these four cases we see that dim(GI) ≤ m+ n. So dim(GI) = m+ n.
Suppose now that dim(GI) = m + n. We show that I is satis�able. Let B

be any basis for GI . Note that a basis for GI must contain at least one of c4j and

c5j for every j (1 ≤ j ≤ m) and at least one vertex from {a1i , a2i , b1i , b2i }. Since
dim(GI) = m+ n, it follows that B contains exactly one vertex from each gadget
for each clause and one from the gadget for each variable. We now assign truth-
values to the variables of I as follows: If a1i or a

2
i is in B set xi to be true; otherwise

xi is false. We now show that each clause Cj contains a literal that is true. Note
that c1j and c3j are the same distance from c4j and c5j , neither of these two vertices

resolves the pair {c1j , c3j}. Moreover, for j ̸= k, both c4k and c5k are at distance 4

from both c1j and c3j . So {c1j , c3j} is resolved by a vertex in a gadget for xl for some
l.

If xp is a variable that does not occur in Cj , none of the vertices {a1p, a2p, b1p, b2p}
resolves {c1j , c3j}. Thus the only vertices that can resolve the pair {c1j , c3j} belong
to a gadget for xq where xq is a variable that occurs in Cj . By the way GI was
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constructed, a vertex in a gadget for xq will resolve the vertices in the pair{c1j , c3j}
only if one of the following occurs.

1. xq occurs as a positive literal in Cj and either a1q or a2q is in B; in this case
xq is set to true.

2. xq occurs as a negative literal in Cj and either b1q or b2q is in B; in this case
xq is set to false.

In either case, xq is assigned a truth value so that Cj contains a literal with truth
value true. This completes the proof. 2

Since the problem of deciding, for a given graphG, whether its metric dimension
equals its metric independence is NP-complete it is natural to search for classes
of graphs for which these two parameters are equal for every graph in the class.
In particular we wish to determine which trees have equal metric dimension and
metric independence. Before answering this question we de�ne a few useful terms,
state a formula for the metric dimension of a tree and derive an expression for the
metric independence of a tree.

A vertex of degree at least 3 in a graph G will be called a major vertex of
G. Any leaf u of G is said to be a terminal vertex of a major vertex v of G if
d(u, v) < d(u,w) for every other major vertex w of G. The terminal degree ter(v)
of a major vertex v is the number of terminal vertices of v. A major vertex v of
G is an bounding major vertex of G if it has positive terminal degree. Let σ(G)
denote the sum of the terminal degrees of the major vertices of G and let bm(G)
denote the number of bounding major vertices of G. The following was established
in [1].

Theorem 3.2 If G is a graph, then dim(G) ≥ σ(G) − bm(G), and if G is a tree

that is not a path, then this inequality becomes an equality. Moreover, dim(Pn) = 1.

Let w be a bounding major vertex of G and suppose v is a terminal vertex of
w. Then every vertex of degree 1 or 2 on the v−w path is called an exterior vertex

of w. A vertex is called exterior if it is an exterior vertex of some bounding major
vertex of G. All other vertices are called interior vertices of G. It is useful to
observe that if {u, v} is a pair of vertices in a graph, then both u and v resolve this
pair. Let v be a vertex of a tree T . Suppose T1, T2, . . . , Tk are the components of
T − v. Then the k subgraphs induced by the vertices in V (Ti)∪ {v} are called the
branches of T at v. We now establish a formula for �nding the metric dimension
of a tree.
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Theorem 3.3 Let T be a tree that is not a path and T the collection of bounding

major vertices of T . Then

mi(T ) =
∑
v∈T

⌊ ter(v)
2

⌋.

Moreover, mi(Pn) = 1.

Proof. It is not di�cult to see thatmi(Pn) = 1. Suppose then that T is a tree with

at least one bounding major vertex. We �rst show thatmi(T ) ≤
∑

v∈T ⌊
ter(v)

2 ⌋. Let
v1, v2, . . . , vk be the bounding major vertices of T . For each i, let vi,1, vi,2, . . . , vi,ji
be the exterior neighbours of vi. If ji is even let

Ci = {{vi,1, vi,2}, {vi,3, vi,4}, . . . , {vi,ji−1, vi,ji}}

and if ji is odd let

Ci = {{vi,1, vi,2}, {vi,3, vi,4}, . . . , {vi,ji−2, vi,ji−1}}.

Then |Ci| = ⌊ ter(vi)2 ⌋. (If ji = 1, then Ci = ∅.) A vertex v resolves a pair
{vi,k, vi,k+1} if and only if v belongs to the component of T − vi containing vi,k or

vi,k+1. Hence
∪k

i=1 Ci is a collection of independently resolved pairs of vertices of

T . So mi(T ) ≥
∑

v∈T ⌊
ter(v)

2 ⌋.
We now show that mi(T ) ≤

∑
v∈T ⌊

ter(v)
2 ⌋. Among all collections of mi(T )

pairwise independently resolved pairs of vertices of T , let C be one that minimizes
the number of pairs of vertices that contain an interior vertex of T . We show that
no element of C contains an interior vertex of T . Suppose that some pair {x, y} ∈ C
is such that x or y is an interior vertex, say x. Then either there exists a branch of
T at x that does not contain y but contains a vertex of degree at least 3 or every
branch of T at x that does not contain y is a path. Since x is an interior vertex,
there are, in the latter case, at least two branches of T at x not containing y that
are paths.

Consider the �rst case. In this case, no vertex of a branch of T at x that
does not contain y belongs to any element of C, otherwise such a vertex would
simultaneously resolve the pair to which it belongs and the pair {x, y}, which is
not possible. Let w be a bounding major vertex with terminal degree at least 3 in
a branch of T at x that does not contain y. Let u and v be two exterior vertices
adjacent with w. Let C′ = (C − {{x, y}}) ∪ {{u, v}}. Then C′ is a collection of
mi(T ) independently resolved pairs of vertices of T with fewer pairs of vertices
containing an interior vertex of T , contrary to our choice of C.

In the second case, x has degree at least 3 and every branch of T at x that
does not contain y is a path. Again no vertex from a branch of T at x that
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does not contain y belongs to any element of C otherwise such a vertex would
simultaneously resolve the pair to which it belongs as well as the pair {x, y}, which
is not possible. Let u and v be two exterior vertices adjacent with x. Then C′ =
(C − {{x, y}}) ∪ {{u, v}} is a collection of mi(T ) independently resolved pairs of
vertices with fewer pairs of vertices that contain an interior vertex of T , contrary
to our choice of C.

Hence we may assume that every pair {x, y} ∈ C is such that x and y are
both exterior vertices of T . We now show that C can be chosen in such a way
that every pair {x, y} in C has the property that x and y are exterior vertices of
the same bounding major vertex. Among all collections of mi(T ) independently
resolved pairs of vertices of T , such that each pair in the collection consists of
exterior vertices, let C be one for which the number of pairs for which both vertices
in the pair are exterior vertices of the same bounding major vertex is maximized.
Suppose there is a pair {x, y} such that x is an exterior vertex of a bounding
major vertex w and y is an exterior vertex of a bounding major vertex v where
v ̸= w. Since v and w are both bounding major vertices, they have degree at
least 3. Suppose �rst that there is a branch of T at w not containing x or y that
contains no vertex belonging to a pair of C. If such a branch contains a vertex of
degree at least 3, then there is a bounding major vertex u in this branch whose
terminal degree is at least 2. Let {x′, y′} be two exterior vertices adjacent with
u. Set C′ = (C − {{x, y}}) ∪ {{x′, y′}} . If such a branch is a path, let x′ be the
vertex adjacent with w and on a w−x path (possibly x′ = x) and let y′ be a vertex
adjacent with w in a branch of T at w that is a path and does not contain a vertex
belonging to a pair of C. Set C′ = (C − {{x, y}}) ∪ {{x′, y′}}. In either case C′

is a collection of mi(T ) independently resolved pairs of exterior vertices of T with
more pairs that are exterior vertices of the same bounding major vertex than C.
This contradicts our choice of C. Similarly we may assume that every branch of T
at v that does not contain x or y must contain a vertex that belongs to the some
element of C.

Let u ̸= x, y be a vertex in a branch of T at w that belongs to a pair of C.
Then u is not in the same branch of T at v as y or the same branch of T at w as
x. As u resolves the pair of vertices to which it belongs but not the pair {x, y},
d(u, x) = d(u, y). Since both the u − x path and u − y path in T contain w,
d(w, x) = d(w, y). Since v is on the w − y path, d(v, y) < d(w, y). Let u′ ̸= x, y
be a vertex in a branch of T at v that belongs to a pair of vertices of C Again, as
u′ resolves the pair to which it belongs but not the pair {x, y}, d(u′, x) = d(u′, y).
As in the previous case, d(v, x) = d(v, y). But then d(v, x) = d(v, w) + d(w, x) >
d(w, x) = d(w, y) > d(v, y) = d(v, x), which is not possible. Hence every pair
of C is a pair of exterior vertices of the same bounding major vertex. Therefore,
mi(T ) ≤

∑
v∈T ⌊

ter(v)
2 ⌋. 2.
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Corollary 3.4 Let T be a tree. Then dim(T ) = mi(T ) if and only if the terminal

degree of every major vertex of T is at most 2.

Proof This follows immediately from the previous two theorems. 2

4 The Metric Independence Number of Special

Classes of Graphs

In the previous section we determined the metric independence number of trees. It
is not di�cult to see that the metric independence number of the complete graph
Kn is ⌊n/2⌋. For the complete bipartite graph Kn,m with n ≥ 2 or m ≥ 2 it
is ⌊n2 ⌋ + ⌊m2 ⌋. More generally, if G = Kn1,n2,...,nk

is a complete k-partite graph

where n1 ≤ n2 ≤ . . . ≤ nk, then mi(G) =
∑k

i=1⌊
ni
2 ⌋ if n1 ≥ 2 and mi(G) =

⌊ l
2⌋+

∑k
i=l+1⌊

ni
2 ⌋ if n1 = n2 = . . . = nl = 1 and nl+1 ≥ 2. For the cycle Cn where

n ≥ 3 it is 2 if n = 4 and is 1 otherwise.
It was shown in [1] that dim(Qn) ≤ n. In [4] it is claimed (without proof) that

the metric dimension of the n-cube is at least n. The next result shows that the
metric independence number of the n-cube is always 2.

Theorem 4.1 For all n ≥ 2,
mi(Qn) = 2.

Proof It is not di�cult to see that mi(Qn) ≥ 2. Take for example the two pairs of
vertices that are diametrically opposite on any 4-cycle in Qn. Then these pairs of
vertices are not resolved by the same vertex and are thus metrically independent.

To see that mi(Qn) ≤ 2 we use a geometric argument. Recall that Qn can be
described as the graph whose vertex set consists of all 2n n-tuples of 0's and 1's
and its edges consist of those pairs of n-tuples that di�er in exactly one position.
The distance between two vertices in Qn therefore equals the number of positions
in which their n-tuples di�er. This is also called the Hamming distance between
the two points. The vertices of Qn also describe a collection of points in Rn. Since
the Euclidean distance between two vertices of Qn is just the squareroot of the
Hamming distance between the two points, it follows that dQn(u, v) = dQn(u,w) if
and only if dRn(u, v) = dRn(u,w).

Suppose now that mi(Qn) ≥ 3. Let {a, b}, {u, v} and {x, y} be three indepen-
dently resolved pairs of vertices of Qn. Since a resolves the pair {a, b} and not
the pair {u, v}, d(a, u) = d(a, v). Similarly d(b, u) = d(b, v) and d(u, a) = d(u, b).
Hence, d(a, u) = d(a, v) = d(b, u) = d(b, v). By the same argument d(a, x) =
d(a, y) = d(b, x) = d(b, y) and d(x, u) = d(x, v) = d(y, u) = d(y, v). The set of all
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points in Rn that are the same distance from two points forms an n−1 dimensional
hyperplane. Let A (B and C) be the set of points in Rn that are the same distance
from the vertices in {a, b} ({u, v} and {x, y}, respectively). If P is a point in Rn,
then either P is in A or P resolves {a, b} in which case P necessarily does not re-
solve {u, v} and hence P belongs to B. Similarly every point of Rn is either in A or
C. So A∪B = A∪C = Rn. Hence Rn = (A∪B)∩(A∪C) = A∪(B∩C). However,
B ∩C is only a n− 2 dimensional hyperplane in Rn and A is an n− 1 dimensional
hyperplane. As it is not possible for the union of an n− 1 dimensional hyperplane
and an n− 2 dimensional hyperplane to equal Rn we have a contradiction. Hence
mi(Qn) ≤ 2. 2

It remains an open problem to determine whether the metric independence
number of a graph can be found in polynomial time.
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