
Kent Academic Repository
Full text document (pdf)

Copyright & reuse
Content in the Kent Academic Repository is made available for research purposes. Unless otherwise stated all
content is protected by copyright and in the absence of an open licence (eg Creative Commons), permissions 
for further reuse of content should be sought from the publisher, author or other copyright holder. 

Versions of research
The version in the Kent Academic Repository may differ from the final published version. 
Users are advised to check http://kar.kent.ac.uk for the status of the paper. Users should always cite the 
published version of record.

Enquiries
For any further enquiries regarding the licence status of this document, please contact: 
researchsupport@kent.ac.uk

If you believe this document infringes copyright then please contact the KAR admin team with the take-down 
information provided at http://kar.kent.ac.uk/contact.html

Citation for published version

Yang, Lei and Zhu, Qian and Wang, Chao and Chen, Hui and Li, Jincheng and Xie, Hongbo 
(2020) Temporal and spatial resolutions of optical time stretch imaging with dispersive grating
pair.   Physics Letters A, 384  (3).   p. 126083.  ISSN 0375-9601.

DOI

https://doi.org/10.1016/j.physleta.2019.126083

Link to record in KAR

https://kar.kent.ac.uk/79136/

Document Version

Author's Accepted Manuscript



ARTICLE TEMPLATE

Temporal and spatial resolutions of optical time stretch imaging

with dispersive grating pair

Lei Yanga and Qian Zhua and Chao Wangb and Hui Chena and Jincheng Li a and
Hongbo Xiea,∗

a School of Precision Instruments and Optoelectronics Engineering, Tianjin University
Key Laboratory of Optoelectronics Information Technology, Ministry of Education, Tianjin,
300072, China
b School of Engineering and Digital Arts, University of Kent, Canterbury CT2 7NT, UK

ARTICLE HISTORY

Compiled October 2, 2019

ABSTRACT
Optical time stretch imaging (OTSI), providing the capability of capturing the dy-
namics of fast single-shot or random events, overcomes the fundamental trade-off be-
tween imaging speed and sensitivity in ultrafast imaging regions. Lying at the heart
of the OTSI is dispersive Fourier transformation, being capable of using large chro-
matic dispersion to map the spectrum of a broadband ultrashort optical pulse into
a stretched time-domain waveform. Dispersive grating pair (DGP) is an alternative
solution to generate large chromatic dispersion for dispersive Fourier transformation
at the wavebands, in which dispersion compensation fibers commonly suffer from
high dispersion-to-loss ratio. Here we characterize the performances of DGP-based
OTSI modality and analyze the crucial parameters that strongly impact on the tem-
poral as well as spatial resolutions, and further discuss its merits and challenges. Our
results demonstrate DGP-based OTSI, allowing creation of high resolution images,
is an effective modality compared to fiber-based OTSI.

KEYWORDS
Ultrafast optical imaging; Time stretch imaging; Dispersive Fourier
transformation; Dispersive grating pair; Temporal and spatial resolution

1. Introduction

Ultrafast imaging is becoming increasingly significant in observing transient phe-
nomenon for diverse scientific and technological applications. Nowadays, pump-probe
technique is one of the most prevalent strategies in fast-speed imaging regime which
allows capturing repetitive dynamic events (1 , 2 ). However, this method is inappli-
cable for vast non-repeatable and random events because it is not operated in real-
time (3 ). An alternative approach for measurement of the dynamic behaviour luminous
events is using ultrafast framing streak camera, which has unique attributes of excel-
lent time resolution and superior sensitivity (4 , 5 ). But high-cost of this instrument
greatly limits its wide range of practical applications (6 ). To overcome the limitation-
s in the existed methods, various fast optical imaging techniques have been rapidly
developed in recent years.
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Optical time stretch imaging (OTSI), also defined as serial time-encoded amplified
microscopy (STEAM), is an impressive imaging approach that enables continuous cap-
ture of non-repetitive events at an unprecedented speed of tens of million frames per
second (7 , 8 ). By adopting an all-optical imaging encoding concept, it captures the
information of target with a single-pixel detector and offers great potentials to form
images in various scenes that demand for both speed and throughput (9 , 10 ). The en-
coding procedure is normally divided into two steps: (i) wavelength-time mapping and
(ii) space-wavelength mapping (11 ). The fist step, namely dispersive Fourier transfor-
mation, maps the broadband spectrum of an optical pulse into a temporal waveform
using group velocity. In the second step, the spatial information of the specimen is
encoded into the wavelength of the illuminating light. This novel imaging technique
continuously captures a real-time frame of a rapid dynamic process because it slows
the time scale before the image is detected by the digitizer (12 ).

In particular, temporal and spatial resolutions are two essential and equally im-
portant factors that are typically used to evaluate the performance of the OTSI sys-
tem, which mainly rely on the procedure of time-stretch dispersive Fourier transform
(TS-DFT) (13 , 14 ). The working principle of TS-DFT is employing group veloci-
ty dispersion (GVD) to map the frequency spectrum of a pulse to a time-stretched
temporal waveform (15 ). Conventionally, the TS-DFT is carried out by utilization
of dispersive elements to generate the quadratic phase modulation, and the image
resolution is determined by the maximum amount of dispersion that is additionally
introduced (9 , 16 ). Therefore, a dispersive optical element with large GVD and high
dispersion-to-loss ratio is highly needed to achieve satisfactory imaging.

Dispersion compensating fibers (DCFs), the most used and commercially avail-
able technique for dispersion compensation, have successfully been employed for TS-
DFTs (7 , 15 ). Nevertheless, DCF-based TS-DFTs were restricted at preferred trans-
mission band (e.g. 1550 nm) where optical fiber has small loss (∼ 0.5 dB/km) (17 ). For
shorter near-infrared regimes (18 ) and 2.0 µm wavelength window (19 ), there remains
huge challenge for implementing TS-DFT through DCFs, owing to the extremely high
fiber transmission attenuation (∼ 30 dB/km). TS-DFT could also be achieved by using
a parallel pair of identical diffraction gratings, which offers distinct features of tunable
temporal dispersion, low intrinsic loss as well as wavelength-insensitivity (20 , 21 ).

The purpose of this article is to give a quantitative analysis on the temporal and
spatial resolutions for OTSI system with dispersive grating pair (DGP), which has not
been discussed previously. The remainder of this article is organized as follows. Sec.
2 explains the theory and concept of dispersive Fourier transformation that maps the
spectrum of an optical pulse into a temporal waveform using DGP. In Sec. 3, we present
a detailed analysis on the temporal pulse stretching of the DGP system with second-
order and third-order dispersion coefficients. The calculated and simulated results of
temporal and spatial resolutions for OTSI system are demonstrated and reported in
Sec. 4. Discussions on OTSI with higher-order dispersive Fourier transformation is
presented in Sec. 5. Finally, we summarize and conclude our work in Sec. 6.

2. Time-stretch dispersive Fourier transform

The layout of DS-DFT with grating pair under consideration is schematically shown in
Fig. 1. Considering the optical pulse propagates along with a homogeneous dispersive
medium in z direction, electric field U(z, T ) satisfies the following equation (22 )
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Figure 1. Principle of TS-DFT using a pair of parallel gratings. P , normal separation between two identical
gratings; L, slant distance between two gratings; G, grating; θD, diffracted angle measured with respect to the

grating normal.

∂U(z, T )

∂z
= i

∞∑
m=1

βm
m!

∂mU(z, T )

∂tm
(1)

z represents the propagation distance. T is measured in a frame of reference moving
with the pulse at the group velocity, which is in the form

T = β1z − t (2)

The wave number β(ω) can be expanded in a Taylor series with the carrier frequency
ω0

βm = (
dmβ

dωm
)ω=ω0

(m = 0, 1, 2, 3...) (3)

Optical pulse propagation in Eq. (1) can be solved by using the Fourier-transform
method

U(z, T ) =
1

2π

∫ ∞

−∞
Ũ(z, ω) exp(−iωT )dω (4)

where

Ũ(z, ω − ω0) = Ũ(0, ω − ω0) exp[i

∞∑
m=2

βm
m!

(ω − ω0)
mz] (5)
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Taking into account the GVD coefficients with up to the third-order, the optical pulse
in time-domain after propagating distance z can be expressed as

U(z, T ) =
1

2π

∫ ∞

−∞
Ũ(0, ω−ω0) exp(

i

2
β2(ω−ω0)

2z+
i

6
β3(ω−ω0)

3z−i(ω−ω0t))dω (6)

We apply the stationary phase approximation to solve the integral in Eq. (6). Assuming
z is relatively large, even a small difference (ω − ω0) could produce rapid oscillations
with the integral, which will cause cancellation (23–25 ). In Eq. (6), the phase term

i(β2(ω−ω0)
2 + β3(ω−ω0)3z

6 − (ω − ω0)T ) is stationary if it satisfies

ω0 =

√
(
β2
β3

)2 +
2T

β3z
− β2
β3

(7)

Moreover, when Tβ3

zβ2
2
≪ 1 is satisfied, Eq. (6) can be approximated by

ω0 ≈
T

β2z
(8)

Spectral resolution ∆ω is given by setting the phase in the integral (23 )

β2(ω − ω0 ± ∆ω
2 )

2
+
β3(ω − ω0 ± ∆ω

2 )3z

6
− (ω − ω0 ±

∆ω

2
)T =

π

2
(9)

From which ∆ω is found to be

∆ω ≃ 2

√
π

β2z + β3zω0
(10)

Ultimately, we find that

|U(z, T )| =

√
2

π[β2z + β3zω0]
|Ũ(0, ω0)| (11)

which implies the mapping of the spectrum of the input optical pulse into the time-
domain waveform.

3. Optical pulse stretching with grating pair

DGP is valuable for optical time stretch because grating dispersion performs the de-
sired temporal function for optical pulse with large spectral bandwidth, which is ca-
pable of leading wavelength-dependent optical delays to initial optical pulse (26–29 ).
Specifically, the wavelength-dependent delay, also referring to frequency chirp, means
temporal arrangement of the frequency components for the optical pulse. The tempo-
ral optical pulse is enormously stretched through DGP so that it is slow enough to be
captured by a broadband detector and real-time oscilloscope.
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Referring to the Fig. 1, the dispersive optical pulse stretcher is mainly comprised of
two identical phase gratings with parallel configuration. When incoming on the first
grating (G1), the incident optical pulse is split into component wavelengths. The opti-
cal beams with different wavelengths propagate along the different directions between
two gratings. After diffracted by the second grating (G2), the optical beams with var-
ious propagating directions become parallel again, but they have traveled different
distances. Therefore, the optical pulses with various wavelengths arrive different times
in this DGP configuration.

When the optical pulse passes between grating pair, the frequency-dependent phase
difference ψ(ω) between points A1 and A2 can be expressed as (30 )

ψ(ω) = −2πP (ω)

λ
= −ωP (ω)

c
(12)

The path length P (ω) is defined as

P (ω) = Ln(ω) cos θD(ω) (13)

where L and θD represent the slant distance between two gratings and diffracted
angle, respectively. n(ω)=1 when the light beam propagates in the air. In view of the
relationship of ω = 2πc

λ , the first-order phase dispersion is found to be

∂ψ(ω)

∂ω
= −P

c
+
λ

c

∂P

∂λ
(14)

The second-order and third-order phase dispersions are given by

∂2ψ(ω)

∂ω2
= − λ3

2πc2
∂2P

∂λ2
(15)

∂3ψ(ω)

∂ω3
=

λ4

4π2c3
(3
∂2P

∂λ2
+ λ

∂3P

∂λ3
) (16)

According to the basic theory of phase grating, we derive

sin θD = sin θi +
mλ

d
m = 0,± 1,± 2, ... (17)

where θi, d and m stand for the incident angle, grating constant and diffraction order,
respectively. The differentiating result of Eq. (17) is

dθD
dλ

=
m

d cos θD
(18)

which yields

∂2P

∂λ2
= − m2L

d2 cos3 θD
(19)

∂3P

∂λ3
= −3m3L sin θD

d3 cos5 θD
(20)
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The resulting dispersions in terms of phase are

∂2ψ(ω)

∂ω2
=

m2λ3L

2πc2d2cos3θD
(21)

∂3ψ(ω)

∂ω3
= − 3m2λ4L

4π2c3d2cos3θD
[1 +

mλ

d

sinθD
cos2θD

] (22)

where ψ(ω) and β are commonly in the relationship

ψ(ω) = −βL (23)

For second-order and third-order dispersion coefficients, we have (28 , 30 )

β2 = −∂
2ψ(ω)

∂2ω
· 1
L

= − m2λ3

2πc2d2cos3θD
(24)

β3 = −∂
3ψ(ω)

∂ω3
· 1
L

=
3m2λ4

4π2c3d2cos3θD
[1 +

mλ

d

sinθD
cos2θD

] (25)

The GVD in DGP is conveniently depicted in terms of the dispersion parameter D,
which is

D =

∫
(
4πc

λ3
β2 +

4π2c2

λ4
β3)dλ (26)

Substituting the Eqs. (24) and (25) into Eq. (26), one finds that

D =
m2λ

cd2 cos3 θD
+

3m3 sin θDλ
2

2cd3 cos5 θD
(27)

After traveling through the DGP, the time-wavelength transformation is manipu-
lated by the GVD. The group delay is given by

τ(λ) =

∫
DLdλ = (

m2λ2

cd2 cos3 θD
+
m3 sin θDλ

3

2cd3 cos5 θD
)L (28)

where ∆λ is the bandwidth of the laser beam. Therefore, the time duration into which
the laser spectrum is mapped can be calculated as

∆τ = |D|L∆λ (29)

In order to avoid the overlaps between consecutive pulses that are stretched in time-
domain, the temporal duration ∆τ is limited by the repetition rate R of laser (∆τ <
R−1). Moreover, stretched duration ∆τ is also requested to meet the response time of
broadband photodiode.

On the basis of Eqs. (24) and (25), we first evaluate the second-order dispersion
coefficient β2 and third-order dispersion coefficient β3 that vary with different ex-
perimental parameters, as shown in Fig. 2. More specifically, Fig. 2(a) exhibits the
absolute value of β2 rapidly decreases along with a greater diffraction constant while
the β3 also cuts down in the same case. Meanwhile, β2 and β3 have the completely
opposite changing trends under different diffracted angles (see Fig. 2(b)). On account

6



Figure 2. Second-order and third-order dispersion coefficients of DGP. (a) Varying with grating constant

d. λ = 800 nm, θD = 22.50 and m = 1. (b) Varying with diffracted angle θD. λ = 800 nm, d = 1/1200 mm
and m = 1.

Figure 3. Dispersion parameter with and without third-order dispersion β3. (a) Varying with diffraction

constant d. λ = 800 nm, θD = 360 and m = 1. (b) Varying with diffracted angle θD. The green solid line and
red dotted line represent the calculated dispersion parameter D with and without β3. λ = 800 nm, d = 1/1200

mm and m = 1. The expression of D without β3 is − 2m2λ
cd2 cos3 θD

.

of the expression of dispersion parameter D (Eq. (27)), we compare the value of D that
is calculated with and without β3, respectively, which is shown in Fig. 3. Simulation
results further verify β3 is a remarkably significant factor that is able to determine the
value of D. Under the effect of β3, the calculated dispersion parameter D always has
the opposite value compared to the case if β3 is omitted in calculation. Moreover, the
results of stretched optical pulse with Eq. (29) are depicted in Fig.4, which indicate
big diffracted angle and high-density grating are beneficial to acquire desired pulse
with wide duration.

4. Temporal and spatial resolutions of OTSI

A typical setup of OTSI is composed of a frequency-to-time mapping module, a time-
to-space mapping module, an ultrafast photodiode and a real-time oscilloscope. In
frequency-to-time mapping part, the optical pulse propagates and reflects M times in
the optical cavity between two parallel gratings (G1 and G2). This optical cavity con-
sists of a pair of sliver-coated high reflective mirrors (HRMs) with separation distance
q, which aims at largely improving the optical light path for sufficient dispersion and
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Figure 4. Width of optical pulse after propagating through DGP. (a) With different diffracted angles. The
red dotted line, green thick line, yellow dotted-dashed line, purple dashed line and cyan thin line represent
the diffracted angle θD of 8o, 18o, 26o, 36o and 45o, respectively. λ = 800 nm, ∆λ = 40 nm, d = 1/1200 mm

and m = 1. (b) With different grating constants. The blue dashed line, green dotted-dashed line, cyan dotted
line, purple thin line and red thick line represent the grating constant d of 1/300 mm, 1/600 mm, 1/1200 mm,
1/1800 mm and 1/2400 mm, respectively. λ = 800 nm, ∆λ = 40 nm, θD = 22.50 and m = 1.

Figure 5. Conceptual configuration of OTSI system. G, grating; OC, optical cavity; HRM, high reflective
mirror; L, lens; PD, photodiode; OSC, Oscilloscope. The total propagating distance for time stretched pulse
in the cavity can be calculated as L = M · q, where M is reflective times of optical pulse and q is the distance

between two highly reflective mirrors. The information of employed laser includes ∆λ = 40 nm, wavelength
range of 780 nm to 820 nm and initial pulse duration of 0.023 ps.
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Figure 6. Physical description of wavelength-to-time mapping. (a) Optical pulse in time-domain when prop-

agates in DGP. The temporal profile of optical pulse is plotted by A = exp(− τ2

2(∆τ/(2
√
2In2))2

). In addition,

the original pulse width of input laser is 0.023 ps. (b) Time-to-wavelength mapping. The red dotted line, blue
dotted-dashed line, cyan dashed line, purple solid line represent the propagation distance L of 5 m, 10 m, 15
m and 20 m, respectively. The plots are drawn by θD = 22.5o, d = 1/1200 mm, m = 1 and other essential

parameters provided in the caption of Fig. 5.

compacting the practical configuration for time stretching in free-space (31 ). The used
HRM could provide high reflectivity of 99.8% and wide bandwidth ranging from 0.4
to 10 µm. In contrast to the fiber-based devices, the proposed configuration however
suffers from severe beam divergence in a long-distance propagation along two paral-
lel gratings. Therefore, a tiny angle between two HRM surfaces (∼ 0.2 to 3 mrad)
is set to compress the intrinsic beam divergence induced by light propagation in the
optical cavity. The time-to-space system operates in transmission mode, in which the
spectrum of incident beam is spatially dispersed by the diffraction grating (G3) and
focused by the lens (L2) onto the sample in the image plane. After the light passes
through the sample and is focused by a convex lens (L3), the temporal and spatial
encoded beam is detected by a single pixel photodiode and captured by a real-time
oscilloscope.

The straightforward way to understand the photonic time stretch procedure is
through the wavelength-to-time mapping, which is conceptually depicted in Fig. 6.
We assume the input optical pulse has a standard Gaussian shape, whose evolution
process is depicted in Fig. 6(a) as the pulse travels in DGP with different distances.
The relationship between group delay and wavelength in Eq. (28) results in a nonlin-
ear time-to-wavelength mapping, as shown in Fig. 6(b). In addition, the properties of
time-to-wavelength mapping also depend on distance between two gratings, diffract-
ed angle as well as grating constant. The OTSI system, requiring high temporal and
spatial resolutions, is close tied with this time-to-wavelength mapping procedure.

The temporal resolution regarding the spectral resolution ∆ω is found to be (13 )

∆T =
dT

dω
∆ω = 2

√
π[β2L+ β3Lω0] (30)

where L =M ·q. In view of the relationship between angular frequency and wavelength,
we can find

∆ω =
2πc

λ2
∆λ (31)
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Figure 7. Comparison of temporal resolutions with and without third-order dispersion β3. (a) Varying with

slant distance L. θD = 22.5o, d = 1/1200 mm and m = 1. (b) Varying with diffracted angle θD. L = 10
m, d = 1/1200 mm and m = 1. The green solid line and red dotted line represent the calculated dispersion
parameter D with and without β3.

Consequently, the spectral resolution is written as

∆λ =
λ2

c

√
1

π(β2L+ β3Lω0)
(32)

The spatial resolution can be found

∆X =
λ2f

cd3 cos(θg)

1√
π[β2L+ β3Lω0]

(33)

where d3 and θg represent the grating constant and diffracted angle of G3. In addition,
f is the focal length of L2.

Temporal resolution ∆T is obviously affected by the dispersion coefficient β3 with
longer propagation distance, which is shown in Fig. 7(a). Similarly, the curves of
∆T with and without β3 appear tremendous difference when the diffracted angle θD
increases (see Fig. 7(b)). As can be seen from Fig. 8(a) and (b), the plots ∆T varying
with diffracted angles θD are quite different, and the simulated ∆T is also remarkable
sensitive to the grating constant d. Accordingly, the attainable minimized value of
time resolution ∆T , requires a high-density grating with a big diffracted angle. By
contrast, the spatial resolution ∆X has an inversely proportional relationship with
the temporal resolution ∆T , and its detailed descriptions related with experimental
parameters are shown in Fig. 9 and 10, respectively. Therefore, it is not difficult to
draw the conclusion that the performance of temporal and spatial resolutions are very
often comprised in the implementation of a practical OTSI system.

The bandwidth of the detection system, including photodiode and oscilloscope, is
also a limiting factor to determine the best achievable temporal and spatial resolutions.
The inner relationships between DS-DFT through stationary phase approximation,
spectral resolution of the spatial disperser and bandwidth of the detection system
that all imposes on the system resolution have been comprehensively discussed in
Ref. (13 ). Our work places great emphasis on investigating the principle of dispersive
grating time stretch and its dramatic influence on the resolution of OTSI system.
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Figure 8. Temporal resolutions of OTSI system. (a) With different diffracted angles. The red dotted line,
green thick line, yellow dotted-dashed line, purple dashed line and cyan thin line represent the diffracted angle

θD of 8o, 18o, 26o, 36o and 45o, respectively. d = 1/1200 mm and m = 1. (b) With different grating constants.
The blue dashed line, green dotted-dashed line, cyan dotted line, purple thin line and red thick line represent the
grating constant d of 1/300 mm, 1/600 mm, 1/1200 mm, 1/1800 mm and 1/2400 mm, respectively. θD = 22.5o

and m = 1. The plots are derived from Eq. (30).

Figure 9. Comparison of spatial resolutions with and without third-order dispersion β3. (a) Varying with

slant distance L. θD = 22.5o, d = 1/1200 mm and m = 1. (b) Varying with diffracted angle θD. The green
solid line and red dotted line represent the calculated dispersion parameter D with and without β3. L = 10 m,
d = 1/1200 mm and m = 1.

Figure 10. Spatial resolutions of OTSI system. (a) With different diffracted angles. The red dotted line, green
thick line, yellow dotted-dashed line, purple dashed line and cyan thin line represent the diffracted angle θD of
8o, 18o, 26o, 36o and 45o, respectively. d = 1/1200 mm and m = 1. (b) With different grating constants. The
blue dashed line, green dotted-dashed line, cyan dotted line, purple thin line and red thick line represent the

grating constant d of 1/300 mm, 1/600 mm, 1/1200 mm, 1/1800 mm and 1/2400 mm, respectively. θD = 22.5o

and m = 1. The plots are derived from Eq. (33).
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5. OTSI system with higher-order dispersion coefficients

In this section, we now turn our attention to the higher-order dispersive effects of DGP.
We add the higher-order dispersion coefficients in Eq. (1), the generalized spectral
width is given by

∆ω ≃ 2

√
π

Σ∞
m=0

βm+2

m! zω
m
0

(34)

Mapping the spectrum of the input pulse |U(0, ω)| into the time-domain waveform
|U(z, t)| with all GVD coefficients included is expressed as

|U(z, T )| =
√

2

π[Σ∞
m=0

βm+2

m! zω
m
0 ]

|Ũ(0, ω0)| (35)

When the fourth-order term in expansion of Eq. (3) is not negligible, we firstly find
the expression of fourth-order phase dispersion

∂4ψ(ω)

∂ω4
= − λ5

2π3c4
(3
∂2P

∂λ2
+

7λ

4

∂3P

∂λ3
+
λ2

4

∂4P

∂λ4
) (36)

where

∂4P

∂λ4
= −3m4L

d4
· 1 + 4 sin2 θD

cos7 θD
(37)

Therefore, Eq. (36) becomes

∂4ψ(ω)

∂ω4
=

3m2λ5L

2π3c4d2 cos3 θD
(1 +

7mλ sin θD
4d cos2 θD

+
m2λ2(1 + 4 sin2 θD)

4d2 cos4 θD
) (38)

The four-order dispersion coefficient is in the form

β4 = − 3m2λ5

2π3c4d2 cos3 θD
(1 +

7mλ sin θD
4d cos2 θD

+
m2λ2(1 + 4 sin2 θD)

4d2 cos4 θD
) (39)

In analogy with Eq. (30), the generalized temporal resolution with fourth-order
dispersion, originated from spectral resolution, can be written as

∆T =
dT

dw
∆ω = 2

√
π(β2z + β3zω0 +

β4
2
zω2

0) (40)

Finally, the spatial resolution including fourth-order dispersion is found to be

∆X =
λ2f

cd3 cos(θg)

1√
π[β2z + β3zω0 +

β4

2 zω
2
0]

(41)
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6. Conclusion and outlook

Ultrafast optical imaging with the temporal resolution, being capable of achieving
picosecond range, is a indispensable tool to study on rapid dynamic phenomena in
biology, chemistry and physics. The photonic time-stretch technology has been found
to be very valuable to address the intrinsic speed limitations on conventional imaging
system, which uses TS-DFT procedure to slow down the temporal signal and in turn
compress its bandwidth. However, the utilities of fiber-based TS-DFT imaging have
been generally restrained at telecommunication band attributing to larger dispersion
coming at the expense of higher loss in other spectral band, in particular the near
infrared window for biological tissues.

DGP is a promising realization of group delay dispersions used to implement TS-
DFT with a flexible operating spectrum, which converts the large angular dispersion
into useful chromatic dispersion. In this article, we present the characterization for
OTSI system building on DGP, a technique that leads to the ultrafast imaging in
the extended optical band, and describe how these experimental parameters affect the
properties of OTSI. The temporal and spatial resolutions, being relevant to second-
order and third-order dispersion coefficients of DGP, are analyzed and discussed to es-
timate the performance of the proposed system. In summary, this work offers valuable
insight to operation of OTSI system with DGP modality, which has unique features
of high tunability, broadband and low substantial optical loss. Moving forward, high
resolution DGP-based OTSI scheme, all-optical laser beam scanning system, also par-
ticularly enables ultrafast flow imaging and fluorescence imaging in modern biological
fields.
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