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A HIERARCHICAL DEPENDENT DIRICHLET PROCESS PRIOR FOR
MODELLING BIRD MIGRATION PATTERNS IN THE UK

By Alex Diana∗, Eleni Matechou∗, Jim Griffin†, and Alison Johnston‡

University of Kent ∗, University College London † and Cornell University‡

Environmental changes in recent years have been linked to phe-
nological shifts, which in turn are linked to the survival of species.
The work in this paper is motivated by capture-recapture data on
blackcaps collected by the British Trust for Ornithology as part of
the Constant Effort Sites monitoring scheme. Blackcaps overwinter
abroad and migrate to the UK annually for breeding purposes. We
propose a novel Bayesian nonparametric approach for expressing the
bivariate density of individual arrival and departure times at different
sites across a number of years as a mixture model. The new model
combines the ideas of the hierarchical and the dependent Dirichlet
process, allowing the estimation of site-specific weights and year-
specific mixture locations, which are modelled as functions of envi-
ronmental covariates using a multivariate extension of the Gaussian
process. The proposed modelling framework is extremely general and
can be used in any context where multivariate density estimation is
performed jointly across different groups and in the presence of a
continuous covariate.

1. Introduction. Describing abundance, distribution and phenology of wild animals is key to
understanding the drivers of populations and therefore to designing effective conservation strategies.
During this period of rapid environmental change and degradation of the natural world, it is important
to develop statistical methods that utilise currently available data to provide increased understanding
of species dynamics and the impact of climate change on species. The annual cycle of migratory species
makes them particularly sensitive to impacts of climate change, but also makes them challenging to
study. In this paper we study the phenology and abundance of migratory birds in Great Britain, in
order to better understand their populations and the impacts of climate. Phenology has been linked
to the survival of species, with populations that did not show a phenological response to climate
change declining, as birds fail to breed at the time of maximal food abundance (Both et al., 2006;
Møller et al., 2008).

Capture-recapture (CR) is one of the most commonly employed protocols in ecology to estimate
the main demographic parameters of a wildlife population. CR is performed by visiting a site several
times and capturing and marking a subset of the individuals before releasing them back into the
population. The work in this paper is motivated by CR data on birds, collected by the British
Trust for Ornithology (BTO) at different sites since 1983 as part of the Constant Effort Sites (CES)
monitoring scheme, described in Peach et al. (1996). Specifically, we consider data on blackcaps, that
are known to breed in the UK but overwinter in Africa. The CES scheme has been already adopted
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across Europe. For instance, Eglington et al. (2015) used data from constant effort ringing protocols
in Western Europe to assess the productivity of several bird species, while Johnston et al. (2016)
estimated annual survival from similar data.

Individuals of the same species are expected to share many of their migratory behaviours even
if breeding at different sites. This led us to adopt a joint modelling approach for their migration
pattern across different sites. Such a modelling approach is also motivated from the fact that fewer
than 15 birds were captured at least once and fewer than 5 were captured more than once in 80%
of the sites. Such small sample sizes prohibit us from studying phenology or estimating population
sizes at these sites when modelling data at each site separately, as for example using the approach of
Matechou et al. (2017) (MC17). Instead, a joint modelling approach enables us to study migration
patterns across the UK without being limited to only using sites where large numbers of individuals
are caught. There is also considerable interest in determining the effect of changes in environmental
conditions due to climate change on the migration patterns of animals, including birds. In order to
link phenological changes to environmental conditions, we introduce a year-specific weather covariate,
specifically the average North-Atlantic Oscillation (NAO), in modelling phenology, expressed through
the arrival and departure density of individuals at the different sites.

In ecological applications, parametric models often entail assumptions on the population studied
that are difficult to assess in practice. In particular, as wildlife populations typically present consid-
erable heterogeneity, the use of parametric models in ecology can be prone to model misspecification.
As a result, Bayesian nonparametric models have recently been more frequently adopted. The most
popular nonparametric prior employed in these applications is the Dirichlet Process (DP) prior of
Ferguson (1973). The DP is a prior for densities that can be centered around any continuous distri-
bution. However, as samples from the DP are always discrete distributions, the DP is often convolved
with a continuous kernel when used as a prior for continuous distributions. The result of this convolu-
tion is called a DP mixture and gives rise to a mixture distribution with an a-priori infinite number
of mixture components. Thanks to this flexibility, this prior has been adopted in several ecological
applications. First, Dorazio et al. (2008) extended the N-mixture model of Royle (2004a) with the DP
mixture of normals to allow for a variable number of mixture components in the prior distribution
of population sizes. Ford et al. (2015) used a DP mixture to model heterogeneity in capture and
survival probabilities in a closed population of whales. Manrique-Vallier (2016) used a DP mixture
of product-Bernoulli distributions to estimate the size of a closed population in multiple CR data.
Finally, MC17 used the Gamma process (Kingman, 1993), which can be expressed in terms of the
DP, to model the arrival intensity of a population given a CR dataset.

Our model extends MC17 by borrowing ideas from two other popular nonparametric priors, the
Hierarchical Dirichlet process (HDP) of Teh et al. (2006) and the single-p Dependent Dirichlet process
(DDP) of MacEachern (1999). The former is an extension of the DP for data collected in several
groups, while the latter is an extension of the DP that allows the introduction of covariates. Combining
these two models, we define the Hierarchical Dependent Dirichlet process (HDDP), which can be used
as the mixing measure of a continuous kernel to estimate densities as functions of continuous and
categorical covariates.
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As a result, our model is completely flexible in the sense that it assumes a mixture distribution
with an a-priori infinite number of mixture components for the arrival and departure distribution at
each specific site and in each year. Moreover, as a result of the clustering properties of the model,
these mixture components can be shared across different sites. The ecological interpretation is that
birds at different sites can belong to the same cohort, sharing similar migration behaviour, which in
the model equates to one of the mixture components. Thus, even if there is no information available
on the number of cohorts of birds with similar migratory behaviour, the model can naturally adapt
to any number of cohorts, by varying the number of mixture components in each site-specific density.

The paper is organized as follows. In Section 2 we describe the existing model of MC17. In Section
3 we introduce the mathematical concepts necessary to define the model presented in this paper.
In Section 4 we define the new model proposed. The results of fitting the model to simulated data
and to the BTO data are presented in Section 5. Section 6 concludes the paper and introduces some
potential future directions. The details of the sampler are presented in the appendix.

2. The existing model. The model of MC17 performs inference from a single CR dataset. As
mentioned in the introduction, CR data are collected by capturing individuals present at the site
during K repeated sampling occasions. The data can be summarised in the form of a matrix H,
with individual capture histories of the D caught individuals represented in the rows and the K
capture occasions represented in the columns of the matrix. The capture history of individual i, Hi,
corresponding to the i-th row of H, has k-th element equal to 1 if the individual was caught at the
k-th sampling occasion, and equal to 0 otherwise.

The probability of capturing an individual that is present, p, is assumed to be constant across
sampling occasions and common between individuals. The population size, which corresponds to the
overall number of individuals that visited the site, is denoted by N .

Moreover, the model assumes that birds can enter the site at any continuous time, ζ, called the
arrival time, and stay for a time δ, referred to as length of stay. The arrival time of each individual
is sampled from a Poisson process with intensity ν(ζ), which is taken to be a mixture of normal
distributions ν(ζ) =

∫∞
−∞

∫∞
0 N(ζ|µ, σ2) G(dµ, dσ2), where G is a Gamma process with shape αG0 and

scale τ , where α, τ > 0 and G0 is a distribution function. The Gamma process is a completely random
measure (Kingman, 1967), whose Levy intensity is given by ν(ds, dx) = exp (− s

τ )s−1ds αG0(dx). It
is closely related to the more popular DP, as the latter arises as normalisation of the Gamma process
(Ferguson, 1973; Kingman, 1993), since the normalised random measure P (·) = G(·)

G(Ω) , where Ω is the
sample space, is distributed as a DP. Thanks to this property, the Gamma process can be decomposed
as G = ωP , where P is distributed as a DP with concentration parameter α and corresponds to the
normalized density of the process and ω ∼ Gamma(α, τ) is the overall intensity of the process. The
intensity ν(ζ) can be expressed as

(2.1) ν(ζ) = ω

∫ ∞
−∞

∫ ∞
0

N(ζ|µ, σ2) P (dµ, dσ2)︸ ︷︷ ︸
fX
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Given G, the sample size N is distributed as a Poisson(ω) and the arrival times ζ1, . . . , ζN are i.i.d.
from fX . The previous representation motivates the use of the intensity function, as it allows us to
sample the population size and the arrival times conditionally independent on each other, as used for
example in Wolpert and Ickstadt (1998).

The length of stay is modelled by a survival function with piecewise constant hazard rate fY . The
model can be expressed through latent variables in a hierarchical form as

(2.2)



Hik|ζi, δi, p ∼ Bernoulli(pzik) i = 1, . . . , N k = 1, . . . ,K

ζi
i.i.d.∼ fX i = 1, . . . , N

δi
i.i.d.∼ fY i = 1, . . . , N

N |ω ∼ Poisson(ω)

ω|α, τ ∼ Gamma(α, τ)

where zik is 1 if individual i is available at sampling occasion k (if ζi < tk < ζi + δi) and 0 otherwise.

In this paper, we jointly model arrival and lengths of stay non-parametrically and extend the work
of MC17 by defining the Hierarchical Dependent Dirichlet process, which allows us to jointly model
data collected

• at different sites, while sharing information between sites, using the properties of the HDP, and
• across different years, accounting for the effect of a continuous covariate on migration patterns,

with correlation over time modelled using a multivariate Gaussian process.

3. Theory.

3.1. Hierarchical Dependent Dirichlet Process mixtures. Before introducing the Hierarchical De-
pendent Dirichlet Process (HDDP) we present some standard models from the Bayesian nonparamet-
rics literature.

The Dirichlet Process (DP), already mentioned in the introduction, is a random measure F with
two parameters: a distribution G0, called the base measure, and a positive real number α, called the
concentration parameter, which tunes the variability of F around the base measure. It is denoted by
DP(α,G0) and it can be represented as

∑∞
i=1 φiδθi , with θi ∼ G0 and the φis generated according

to the stick-breaking process (Sethuraman, 1994). According to this process, given a sequence of

variables vi ∼ Beta(1, α), the weights are generated as φi =
(∏i−1

j=1 vj

)
vi. The θi are often referred

to as cluster locations, while the φi are called weights.
A popular extension of the DP, designed to work with data collected in different groups, is the

Hierarchical Dirichlet process of Teh et al. (2006). In order to model data from different groups, the
HDP assumes a random measure, Fj , for the j-th group, and a global random probability measure F0.
The global measure is assumed to have a DP prior F0 ∼ DP(γ,G0), while the group-specific random
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measures have independent DP prior Fj ∼ DP(α, F0). Parameter γ tunes the variability of F0 around
G0 and α tunes the variability of Fj around F0. According to the stick-breaking representation,
F0 =

∑∞
i=1 φiδθi and Fj =

∑∞
i=1 πijδθi , and the distribution of the weights π.j can be obtained

in closed form as πkj =
(∏k−1

i=1 vij

)
vkj where vkj | (α, φ1, . . . , φk) ∼ Beta

(
αφk, α

(
1−

∑k
l=1 φl

))
.

Hence, every Fj is essentially obtained by keeping the same atoms of F0 but redistributing the weights.
No variation is induced in the cluster locations of the group-specific DPs.

The HDP is often conveniently described via the Chinese restaurant franchise (CRF) representa-
tion. According to the CRF representation, every observation in a group corresponds to a customer

in a restaurant. In addition, the cluster locations of F0 θ1, . . . , θK
i.i.d.∼ G0, represent the dishes that

can be served in the restaurant. To link the customers to the dishes, customer i in restaurant j is
assigned to a table tij , while table t in restaurant j is assigned to dish kjt. As a consequence, the dish
served to customer i in restaurant j is kjtij , which we define as cij . In addition, following the notation
established in the literature, njt denotes the number of customers sitting at table t in restaurant j,
mk the number of tables serving dish k and M the total number of tables.

Thanks to the CRF representation, we can express the distribution of the allocations cij of cus-
tomers to dishes by first defining the distribution of allocations tij of customers to tables and then
the distribution of the allocations kjt of tables to dishes. We can generate a sample from the CRF by
sampling iteratively according to the following scheme. A new customer is assigned to an

existing table t with probability
njt

njt+α

new table t? serving existing dish θk with probability α
njt+α

mk
M+γ

new table t? with new dish θk? ∼ G0 with probability α
njt+α

γ
M+γ

Likewise, a table is assigned to an{
existing dish θk with probability mk

M+γ

new dish θk? ∼ G0 with probability γ
M+γ

The implied distribution on the cij is defined as CRF(α, γ).
In the application to the BTO dataset, the birds are represented by the customers and the dishes

correspond to the same migratory behaviour. Thanks to the CRF, groups of birds belonging to
different sites can still share the same migratory behaviour if they are assigned to tables serving the
same dish.

Another extension of the DP, designed to work with general covariates, is the Dependent Dirichlet
Process (DDP) of MacEachern (1999). The DDP is a random measure Fx that can be written as

Fx =
∞∑
k=1

φkδθi(x)

where the cluster locations θi(x) are drawn independently from a stochastic process Gx, allowing Fx
to depend on continuous covariates, if a continuous process, such as a GP, is assumed for Gx. The
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weights φi are drawn from the stick-breaking process as in the standard DP. More information on
other nonparametric priors can be found in Hjort et al. (2010).

In this paper, we perform density estimation conditionally on general covariates in a context where
we have several groups. To achieve this, we combine the idea of the HDP and the DDP defining the
Hierarchical Dependent Dirichlet Process (HDDP) as a HDP where the DP F0 in the top level is
replaced by a DDP.

Definition 3.0.1. Let Gx be a stochastic process. The measures Fjx are said to follow a HDDP
prior if, for each group j and each value x of the covariate

(3.1)

{
Fx =

∑∞
k=1 φkδθk(x) θk(x) ∼ Gx

Fjx =
∑∞

k=1 πkjδθk(x)

where the weights φk and πkj follow the same distribution as the weights of the HDP.

As we can see, the covariate, x, is introduced in the top-level and not in the group-specific DPs,
which implies that the effect of the covariate is assumed to be the same across groups. However, as
the DDP is assumed as a prior distribution for the group-specific measures, the weights are constant
for each value of the covariate.

As opposed to a standard dataset analysed in Teh et al. (2006), our data have an additional third
dimension, given by the covariate x. However, as mentioned above, the covariate only affects the
cluster locations. As a result, the CRF representation of the HDP can be used to describe the HDDP,
since the covariate does not play a role when assigning the observations to clusters.

To conclude, we term as Hierarchical Dependent Dirichlet process mixtures the process obtained
when the HDDP is used as the mixing measure of the parameters of a continuous kernel.

3.2. Multivariate Gaussian Process (MGP). Before introducing the MGP we start by describing
the univariate version. A GP is a prior distribution on a function f : Rq → R, defined by the
distribution of f evaluated on any finite collection of points (x1, . . . , xn). Specifically, we write f ∼
GP(0, k) if, for any (x1, . . . , xn) : xi ∈ Rq

(f(x1), . . . , f(xn)) ∼ N(0,K((x1, . . . , xn), (x1, . . . , xn))

where {K((x1, . . . , xn), (x1, . . . , xn))}ij = σ2k(xi, xj) and k is a correlation function. In our case,

we consider the Gaussian radial basis function k(x, x′) = exp
(
− |x−x

′|2
l2

)
, with l > 0. For more

information on Gaussian processes, see Rasmussen (2006).
In the case of multivariate data, that is, if f is a function from Rq to Rp, the MGP prior is defined

based on the matrix normal distribution. A variable X is said to follow a matrix normal distribution
MN(M,U, V ) if vec(X) ∼ N(vec(M), V ⊗U), where U is called the among row covariance matrix, V
is called the among column covariance matrix and ⊗ is the Kronecker product.

The MPG prior on f is defined in the following way.
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Definition 3.0.2. Let Σ be a p× p positive definite matrix and µ an n× p matrix. We say that
f = (f1, . . . , fp) ∼ MGP(µ,K,Σ) if

((f1(x1), . . . , fp(x1)), . . . , (f1(xn), . . . , fp(xn))) ∼ MN(µ,K((x1, . . . , xn), (x1, . . . , xn)),Σ).

This construction of the multivariate Gaussian process is also presented in Chen et al. (2017). By
defining the MGP in terms of the matrix normal distribution, we have implicitly assumed that the
cross-covariance matrix of the vector ((f1(x1), . . . , fp(x1)), . . . , (f1(xn), . . . , fp(xn))) is separable, that
is, it can be factorised as Σ⊗K((x1, . . . , xn), (x1, . . . , xn)).

The advantage of this construction is that if we assume that the observations yi = (yi1, . . . , yip)
are generated according to

yi ∼ N((f1(xi), . . . , fp(xi))
T ,Σ)

the posterior predictive distribution of new observations is available in closed form. Assuming we have
available observations (x,y), the posterior predictive distribution for new observations with covariates
x? is:

y? ∼ N(vec(µ2) + (K?(K + I)−1 ⊗ I)(y − vec(µ1), ((K(x?, x?) + I)−K?(K + I)−1K?
T ),Σ)

where K := K(x, x), K? := K(x, x?).
In addition, we can account for the effect of covariates on the mean. If we have R covariates

arranged in an n×R matrix X and coefficients β =

β
1
1 . . . βp1
...

...
β1
R . . . βpR

, we define the MGP as:

((f1(x1), . . . , fp(x1)), . . . , (f1(xn), . . . , fp(xn))) ∼ MN(Xβ,K((x1, . . . , xn), (x1, . . . , xn)),Σ)

A useful property of this construction is that, if a prior distribution MN(b, B,Σ) is assumed for
β, the marginal distribution of f is still a MGP prior of the form MGP(K?(K−1XB?)B−1b,K?,Σ),
with K? = (K +XBXT )−1 and B? = K−1X(XTK−1X +B−1)−1. The calculations can be found in
the supplementary material (Diana et al., 2018).

4. Bayesian nonparametric model for CR data collected at multiple sites and multiple
years. The data can be expressed in the form Hijy, where Hijy is the capture history, defined in
Section 2, of individual i at site j in year y, and we perform sampling at J sites in Y different years.
At site j and year y, captures take place on Cjy sampling occasions at times tjy1 , . . . , t

jy
Cjy

. Sampling
times and the number of sampling occasions may differ across sites and years. We denote by xy the
value of the year-specific environmental covariate associated with year y. The site and year specific
covariate associated with capture probability at site j and year y is denoted by λjy.
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4.1. Sampling scheme. Capture probabilities are modelled using a logistic mixed effects model,
where the site-specific intercept is assumed to be constant across years in the same group and all
intercepts share a common prior distribution. The model for capture probability at site j in year y
can be written as 

logit(pjy) = αpj + λjyβ
p

βp ∼ N(0, Bp)

αpj ∼ N(ap0, A
p
0)

where Bp is the prior variance of βp and ap0, Ap0 are chosen according to expert knowledge.
The choice of a mixed effects model is motivated by the study design of the CES scheme, according

to which, sampling at the different sites is performed with the same effort. However, additional site
characteristics, such as habitat and structure of the site, present an additional source of variation
affecting capture probability that is not explained by the covariate, but instead modelled by the
site-varying intercepts.

4.2. Arrival and Departure Process. We denote by ζijy and δijy respectively the arrival time and
length of stay of individual i at site j in year y. We do not work directly with arrival and departure
times because these two quantities do not lie in R2 (departure is obviously always later than arrival)
and this would imply the need to work with a bivariate truncated normal, for which conjugate schemes
are not available, resulting in computationally intensive inference. Instead, we choose to work with
arrival times and a transformation of the length of stay, η := h(δ), in order to make the latter lie
in R. Although the logarithm is the common choice, it would lead to a lognormal behaviour in the
right tail once we assign a normal prior distribution to h(δ), as the tails of the DP mixture behave
approximately as the tails of the kernel. In order to have a normal behaviour also in the right tail,

we choose h(x) =

{
log(x) x ≤ 1

x− 1 x > 1
.

Borrowing ideas from MC17, we assume that for each site, arrival times and transformed lengths
of stay are drawn from a Poisson process with non-homogeneous intensity νjy, modelled as

(4.1) νjy(ζ, η) = ωj

∫
N(ζ, η|µxy ,Σ)dPjy(µxy ,Σ)

where Pjy is the year and site-specific mixing measure of the parameters µxy and Σ of the normal
distribution, and ωj is the site-specific intensity. The link with MC17 is clear if we compare (4.1)
with (2.1). The bivariate density νjy of arrival times and lengths of stay is allowed to be site and year
dependent, by replacing the DP with a HDDP, unlike MC17, who use a univariate DP mixture.

To achieve this, we define θ = (µ,Σ, β), where µ is the Y × 2 matrix of all the means µxy of
arrival and departure times for each covariate value, Σ is the 2× 2 covariance matrix, β is an R × 2
matrix expressing the trend of the means across the years and R is the dimension of the year-specific
covariate (including the intercept). The prior distributions for these quantities are
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(4.2)


µ ∼ MGP(Xβ,K(y,y),Σ)

Σ ∼ IW(ν0,Σ0)

β ∼ MN(b, B,Σ)

where IW is the inverse-Wishart distribution, ν0 is the number of degrees of freedom, E[IW(ν0,Σ0)] =

1
ν0−3Σ0, X =

[
1 . . . 1
x1 . . . xY

]T
, y = (1, . . . , Y ), b is an R× 2 matrix and B is an R×R matrix.

The measure Pjy(θ) is allowed to be year and site dependent by assuming the HDDP prior defined
in (3.1), where Pjy has the same prior as the Fjx. As shown in the appendix, the choice of such prior
distribution for θ will allow us to make straightforward posterior inference when the measure Fjx is
convolved with a bivariate Gaussian kernel, as in our case. Keeping in mind the explicit expression
of the DP, the resulting model for a specific year and site can be written as

fjy(ζ, η) =
∞∑
k=1

πkjN(ζ, η|(µk)y,Σk)

where the (µk,Σk) are shared between groups.
Every cluster has its own regression coefficient β with a common prior distribution MN(b, B,Σ).

However, in order to estimate the overall trend across all clusters, we assign an additional hyperprior
distribution b ∼ MN(b0, B0,Σb). The posterior distribution for b will give the overall trend of arrival
and length of stay for all groups across the years.

For the overall intensity of the process, ωj , we keep the same prior distribution as in the Gamma
process case but in order to share information between sites and years, we assume that intensities
now have a prior distribution ωj |α, τj ∼ Gamma(α, ατj ) where α is the standard shape and τj is the

mean of the Gamma distribution. The parameters τj , α and γ are assumed to have Gamma prior
distributions, which is a standard choice.

The model can be summarised with the introduction of latent variables.
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Hijyl | ζijy, ηijy, pij ∼ Bernoulli(pijzijyl) i = 1, . . . , Njy j = 1, . . . , J y = 1, . . . , Y l = 1, . . . , Cjy

zijyl =

{
1 if ζijy < tjyl < ζijy + δijy

0 otherwise
i = 1, . . . , Njy j = 1, . . . , J y = 1, . . . , Y l = 1, . . . , Cjy

(ζijy, ηijy) | cijy, {µk}, {Σk} ∼ N((µcijy)xy ,Σcijy) i = 1, . . . , Njy j = 1, . . . , J y = 1, . . . , Y

µk ∼ MGP(Xβk,K(x, x),Σk) k = 1, . . . ,K

Σk ∼ IW(ν0,Σ0) k = 1, . . . ,K

βk ∼ MN(b, B,Σk) k = 1, . . . ,K

b ∼ MN(b0, B0,Σb)

cijy ∼ CRF(α, γ) i = 1, . . . ,
∑Y

y=1Njy j = 1, . . . , J y = 1, . . . , Y

Njy|ωj ∼ Poisson(ωj) j = 1, . . . , J y = 1, . . . , Y

ωj |α, τj ∼ Gamma
(
α, ατj

)
j = 1, . . . , J

where K is the total number of clusters and in the CRF assignments of cijy the variable j indexes
the groups and i and y index the observations.

5. Application.

5.1. Simulations. In order to assess the performance of the model, we have simulated several sets
of data and compared the posterior distributions of the main quantities of interest with the true
values used to simulate the data. The simulated data consist of 2 sites and 16 years, with 10 sampling
occasions in each year. In order to have population sizes similar to the ones in the CES data, the
site-specific intensities ωj of the prior distribution of the population sizes are sampled from a Gamma
distribution with mean 60 and variance 200, population sizes for each year are then sampled from a
Poisson with the intensity ωj sampled above. Arrival times and lengths of stay are sampled keeping
in mind the CES data, which consist of a mixture of individuals with different patterns of arrival and
stay. In particular, it is known (Johnston et al., 2016) that there are two groups of birds that use the
sites; “residents” that breed at the sites and may return in subsequent years, and “transients” that
pass through the site on the way to breeding grounds further north, or wintering grounds further
south. To model this behaviour, we sample from the following mixture distribution[

ζijy
δijy

]
∼ 0.8

[
N(6 + 1 xy, 1.5)
Gamma(25, 10)

]
+ 0.2

[
N(1 + 1 xy, .5)

Gamma(210, 30)

]
where y indexes the year. The values xy of the covariate are sampled from a N(0, 1).
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Simulation 1: p = 0.73 Simulation 2: p = 0.5 Simulation 3: p = 0.26

Fig 1: Arrival times - Posterior densities for the three sets of simulations, shown for 2 sites (columns)
and a subset of 4 years (rows). The solid line represents the posterior mean, the dashed line represents
the true distribution used to simulate the data and the grey area represents the 95% posterior credible
interval (PCI).
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Simulation 1: p = 0.73 Simulation 2: p = 0.5 Simulation 3: p = 0.26

Fig 2: Lengths of stay - Posterior densities for the three sets of simulations, shown for 2 sites (columns)
and a subset of 4 years (rows). The solid line represents the posterior mean, the dashed line represents
the true distribution used to simulate the data and the grey area represents the 95% PCI.

We performed three sets of simulations, each of them with different values of the capture probabil-
ities. We sample values from a logistic-normal with scale 0.1 and location equal to, respectively 1, 0
and −1 for the three sets of simulations, which corresponds to capture probabilities centred around,
respectively, 0.73, 0.5 and 0.26.

In order to choose the value of the length scale parameter l of the MGP, we have performed
a sensitivity analysis considering the values 0.1, 0.3 and 0.5, obtaining practically identical results.
Thus we fixed the value to 0.3, as values outside the range considered would give a correlation between
close points which is either too large or too small for our application.

The posterior distributions of the arrival densities and lengths of stay for the three sets of simu-
lations are shown (for a subset of 4 years), respectively, in Fig. 1 and 2. In the case of the arrival
densities, the posterior mean densities closely resemble the true densities. As capture probability
decreases, the estimates present, as expected, more variance and the model splits one of the modes
in two separate clusters. In the case of the lengths of stay, for all simulated data the posterior mean
density is smoother than the true distribution, a fact that becomes progressively more evident as
capture probability decreases.

The posterior distributions of the regression coefficients b21 and b22 are shown in Fig. 3. The esti-
mates of the posterior means are similar and close to the true values, but the cases with lower capture
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Fig 3: Posterior distributions of the regression coefficients of arrival times, b21, and length of stay, b22,
for the three sets of simulations, with the solid line representing the posterior mean. The true value
is fixed at 1.5 for the arrival times and 0 for the lengths of stay.
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Simulation 1: p = 0.73 Simulation 2: p = 0.5 Simulation 3: p = 0.26

Fig 4: Population sizes - Posterior densities for the three sets of simulations, shown for 2 sites (columns)
and a subset of 4 years (rows). The solid line represents the posterior mean, the dashed line represents
the true population size.

Simulation 1: p = 0.73 Simulation 2: p = 0.5 Simulation 3: p = 0.26

Fig 5: Capture probabilities - Posterior densities for the three sets of simulations. The solid line
represents the posterior mean, the dashed line represents the true capture probability.
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Fig 6: Map of the CES sites used in the analysis, with site ID shown above the sites.

probabilities exhibit more variance in the estimates. The posterior distributions of the population sizes
are shown in Fig. 4, where it can be seen that, aside from the case with lowest capture probability,
the posterior mean is generally close to the true value, which is always included in the corresponding
95% PCI. Clearly, population size is consistently either over-estimated or under-estimated at some
site. This is due to the model assuming that mean population size at each site is constant over time.
The posterior distributions of the capture probabilities are shown in Fig. 5. As was the case when
inferring population size, the posterior variance increases as capture probability decreases.

5.2. BTO’s Constant Effort Sampling Scheme Data. We apply the model to CR data of blackcaps
collected by the BTO at several breeding and stopover sites across the UK. We discarded all the
juvenile birds as, being born at the site in the same year they are captured, they do not provide any
information on the arrival density. Even though the complete data consist of more than 100 sites for
more than 20 years, we work on a subset of 10 sites across 16 consecutive years, from 1998 to 2013,
with a total of 3401 birds caught, as working with the entire data would not be feasible in terms
of computational time. We selected these 10 sites by choosing the subset where sampling occurred
for the highest number of consecutive years, because we are interested in estimating the regression
coefficient for the year-continuous covariate. The locations of the sites are indicated on the map shown
in Fig. 6.

The prior specification is based on previous studies (Peach et al., 1996; Johnston et al., 2016).
Arrival times and lengths of stay are modelled in weeks, and their prior distribution is chosen to have
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95% of the mass of the arrival distribution from three weeks before the start of the sampling period
up to the end of it, and 95% of the mass of the departure distribution from the start of the sampling
period, up to three weeks after the end. The prior on the capture probability and the prior on the
mean τj of the intensity of the population size are shown in the supplementary material (Diana et al.,
2018).

SE3 SW2 C2 C1 N1

Fig 7: Arrival times - Posterior distribution for a subset of 5 sites, with site names given on top of
each column, and 5 years. The black line shows the posterior mean density and the grey area shows
the 95% PCI. The sampling occasions are shown in bold on the x-axis and the black line shows the
first sampling occasion.

As a year-specific covariate, we use the average North-Atlantic Oscillation (NAO) in the months
from January to April, as these are the months preceding the sampling period. This choice is motivated
by the fact that the NAO is thought to represent the overall trend of global temperatures. The
covariate λjy used to model the capture probability is the length of the net placed at each site.

We present results for 5 sites, out of the 10 shown in Fig. 6, for years 2003, 2005, 2007, 2009 and
2011. Additional plots can be found in the supplementary material (Diana et al., 2018). Between these



A HDDP PRIOR FOR MODELLING BIRD MIGRATION PATTERNS 17

SE3 SW2 C2 C1 N1

Fig 8: Lengths of stay - Posterior distribution for a subset of 5 sites, with site names given on top of
each column, and 5 years. The black line shows the posterior mean density and the grey area shows
the 95% PCI.
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sites, we chose two sites in the South, two in the center and one in the North, in order to highlight
differences in the densities for sites at several latitudes. We first focus on the arrival distributions,
shown in Fig. 7. All of the distributions present a mode before the first sampling occasion, which can
be interpreted as the result of the many individuals arriving before sampling has begun. In fact, all of
the data show a high number of captures in the first and second sampling occasions, while the number
decreases in the middle of the sampling period. The remainder of the peaks are likely to correspond
to the transient birds arriving at the sites later in the season only for feeding. It can also be noticed
that northern sites (e.g. N1 and N2) present a higher number of birds arriving later in the season,
suggesting that the birds arriving in the UK stop first at the southern sites before reaching the sites
in the north. The length of stay densities, presented in Fig. 8, also exhibit several peaks because of
the presence of the breeding birds and transient birds. However, due to the lack of data in some of
the sites, the two modes are likely to merge in some cases.

Population sizes for the same sites and years as those considered in Fig. 7 are presented in Fig. 9.
Comparison with the posterior densities of capture probabilities in Fig. 10 shows that, as expected,
smaller estimates of the capture probability are generally associated with greater variance in popu-
lation size estimates. Moreover, northern sites present overall lower population sizes than southern
sites.

The posterior distributions of the coefficients are shown in Fig. 11. The 95% PCIs of the arrival
time and length of stay components of the regression coefficient b include 0, suggesting that the NAO
has no effect on the patterns of arrival and length of stay, which agrees with previous findings (Robson
and Barriocanal, 2011; Gienapp et al., 2007). However, this does not necessarily imply that the arrival
and length of stay distributions in the clusters do not exhibit trends across the years, but it might
be that some clusters have positive shifting trends while others have negative shifting trends, which
would imply an overall posterior close to 0.

6. Discussion. In this paper we have developed a model to estimate arrival and departure distri-
butions in a multi-site and multi-year capture-recapture data set with annual environmental covariates
and site-specific variation, and applied this model to real data. Moreover, we have performed a sim-
ulation study to assess the validity of the model on simulated data with similar features, obtaining
encouraging results even when capture probability is low.

The dataset used in our application consists of a mixture of breeding and transient birds. Although
breeding birds tend to return to the same site in different years, transient birds change the site they
visit from year to year. As a result, changes in population sizes at each given site across the years do
not reflect an actual change in the number of birds of the population. For this reason, in section 4.2,
we chose not to adopt a model for the evolution of population sizes over time but we only assume that
population sizes are sampled from the same common distribution. Because of the lack of site-fidelity
of blackcaps, changes in the populations’ behaviour are not evaluated by analyzing the evolution of
population sizes but instead by observing the changes in phenology, summarised in the arrival and
departure distribution for each site and year, in relation to an indicator of global temperature, as the
NAO in our case.
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Fig 9: Posterior densities of the population sizes for a subset of 5 sites, with site names given on top
of each plot. The bars show the 95% credible intervals, while the dots show the posterior means.

SE3 SW2 C2 C1 N1

Fig 10: Posterior densities of the capture probabilities for a subset of 5 sites, with site names given
on top of each column. The black vertical line shows the posterior mean.
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Fig 11: Posterior distribution of the arrival time and length of stay components of the regression
coefficient b. The black line represents the posterior mean.

In this model, we did not track the same individuals across the years. The choice is motivated
by the fact that the number of recaptures of the same individuals in different years is too low to
motivate such a modelling approach. However, the model could be further extended in the cases of
species exhibiting higher longevity and site-fidelity than the blackcaps.

We have followed the approach of MC17, using a Bayesian nonparametric approach to estimate
the arrival and departure densities. However, MC17 only allow the estimation of the arrival density
for a single site and year. In our work, we first added an additional level of complexity modelling
nonparametrically both the arrival and departure density. Then, as our goal was to perform density
estimation in several sites conditional on year-specific covariates, we extended their model to account
for these additional effects. The starting point to achieve a joint modelling of data collected at
different sites is the use of the Hierarchical Dirichlet Process (HDP) of Teh et al. (2006) in place
of the DP. However, since this model does not allow the introduction of continuous covariates, we
further extend the HDP defining the Hierarchical Dependent Dirichet Process. Lastly, to introduce a
correlation structure over time, we started from the idea of the Gaussian process (GP) and, as we are
modelling arrival and length of stay jointly and the GP can only give univariate outputs, we adopted
an extension of the GP to the case of p-dimensional outputs. Another interesting definition of the
GP with multiple outputs can be found in Álvarez and Lawrence (2011). However, the advantage of
our construction is that we still maintain the useful conjugacy properties of the GP, which allows us
to straightforwardly use the sampling schemes available for the HDP.

The Bayesian nonparametric model defined here is extremely general and can be used in a generic
context where multivariate density estimation is to be performed jointly across different groups and
in the presence of a continuous covariate, which extends the model presented in De Iorio et al. (2004).

As it is clear from equation (3.1), the model can account for covariates only in the cluster locations,
however Griffin and Leisen (2017) have defined a nonparametric model, known as compound random
measures, which can account for covariates in the cluster weights. However, in the case of compound
random measures, inference is more difficult as the sampling scheme based on the CRF cannot be
used anymore. Moreover, our model allows the introduction of covariates only across time, while in
some scenarios it could be useful to adopt spatial covariates, for example the latitude of the site,
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in order to account for differences in arrival patterns according to site-specific covariates. Even if
our model accounts for additional random effects from site to site, explaining the variation through
covariates would require a change to the structure of the model.

In Section 5.2, we mention that we choose a subset of the data in order to be able to run the
algorithm in a feasible computational time. In fact, given the large number of observations, one of
the challenges of the model is the computational complexity, which scales linearly with the number of
observations. This is a common drawback of all algorithms based on the Chinese Restaurant represen-
tation, as the sampler requires to update the cluster allocations of each individual by computing the
probability of belonging to each cluster, which is a computationally expensive operation. Sampling
from the posterior of DP mixtures without having to update the cluster allocations as in Escobar and
West (1995) is still an open problem, and it goes beyond the scope of this paper. A potentially faster
algorithm to sample from a DP mixture model, based on parallel computation, has been proposed by
Ge et al. (2015). Moreover, inference for the HDDP mixtures is performed on the space of the latent
arrival times and lengths of stay, which further slows down the mixing, making necessary to run the
MCMC for more iterations. An alternative algorithm to speed up the mixing has been proposed by
Jain and Neal (2004).

We note that we have not used any spatial information on the sites and, as a result, sites are assumed
to be exchangeable, in the sense that permuting the site labels has no effect on our inference. This
is generally the case when data are collected at a number of sites but the models employed are not
spatially-explicit. See for example the occupancy model by MacKenzie et al. (2002) and extensions as
well as the N-mixture model by Royle (2004b) and extensions. Since there is only a small number of
sites, which are not in close proximity to one another, any spatial autocorrelation in our application
is expected to be low.

The code used to generate results has been written in R (R Core Team, 2014), while the most
computationally expensive part of the algorithm, such as the Gibbs sampler for the clusters allocation,
has been written integrating C++ and R using the Rcpp package of Eddelbuettel et al. (2011). The
code is available upon request.

SUPPLEMENTARY MATERIAL

Supplementary material
(doi: COMPLETED BY THE TYPESETTER; .pdf). We provide the complete expressions of the
posterior distributions and additional plots of the prior and posterior distributions.
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APPENDIX

MCMC Algorithm. The vector of unknown parameters is:

({ζijy}, {δijy}, {cijy}, µk,Σk, b, {Njy}, {pjy}, α, γ, {τj}, {ωj}) .

Clearly the posterior distribution is intractable and we obtain samples from it using the following
steps in a Gibbs sampler: cluster allocations {cijy} are sampled using the update in Teh et al. (2006)
that makes use of the CRF representation, while cluster locations {µk,Σk} are updated conditional
on the allocations. The population sizes Njy are updated using the rejection algorithm employed in
MC17. The arrival times and lengths of stay (ζijy, δijy) are sampled jointly using a simple MH update.
To update b, first we sample the βk and then we sample b from its full conditional. Finally, capture
probabilities are updated using a MH step. For the remaining hyperparameters α, γ, τj and ωj , we
can sample directly from the full conditional.

A detailed description of each Gibbs sampler can be found below.

1. Sample the cluster means and covariance matrices (µj ,Σj):
For each cluster k = 1, . . . ,K, we sample (µk,Σk) from the posterior distribution:

p (µk,Σk|{ζijy}, {δijy}, {cijy}, b, B, ν0,Σ0) ∝

p (µk|{ζijy}, {δijy}, {cijy},Σk, b, B) p(Σj |{ζijy}, {δijy}, {cijy}, B, ν0,Σ0)

As shown in the supplementary material (Diana et al., 2018), the posterior distribution for µk
is still a MN distribution, while the posterior distribution for Σk is still an inverse-Wishart.
In our application, to efficiently compute the posterior distributions, we rely on the fact that
the covariate, being year-specific, takes only as many values as the number of years, Y . Thus,
instead of building the covariance matrix of the MGP using all the individuals in the cluster,
we calculate the covariance computed using only the value of the covariates at the observed
points. Moreover, as these points are fixed in the model, the inverse of the covariance matrix of
the GP can be precomputed.

2. Sample the allocation {cijy} of individuals to the different clusters:
Following Teh et al. (2006) and the notation of section 3.1, the variables cijy are updated
using the CRF representation defined in Section 3.1, by first sampling the allocations tij of the
customers to the tables and then the allocations kjt of the tables to the dishes.
We use the superscript −ij to indicate that the quantities are computed removing customer i
from restaurant j and −jt when removing table t from restaurant j.
At each step of the Gibbs sampler, individual i in group j having covariate y is assigned to
either an existing table in the current restaurant, a new table serving an existing dish or a new
table serving a new dish
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existing table t with probability

n−ijjt

n−ijjt +α
p((ζijy, δijy)|xy, µkjt ,Σkjt)

new table t? with existing dish k with probability α

n−ijjt +α

m−ijk

M−ij+γ
p((ζijy, δijy)|xy, µk,Σk)

new table t? with new dish k? with probability α

n−ijjt +α

γ
M−ij+γ

p((ζijy, δijy)|xy, b,Σ0, ν0)

Similarly, tables are allocated toexisting dish k with probability
m−jtk

M−jt+γ
p({(ζijy, δijy)}tij=t|{xy}, µkjt ,Σkjt)

new dish k? with probability γ
M−jt+γ

p({(ζijy, δijy)}tij=t|xy, b,Σ0, ν0)

As opposed to the original algorithm of Teh et al. (2006), instead of computing the posterior
distribution of (ζijy, δijy) conditional on the current elements in the cluster, which would exces-
sively slow down the algorithm if repeated for each point, we compute the update conditional
on the cluster locations (µk,Σk) computed in the previous step.

3. Sample the population sizes {Njy}:
Following MC17, for each site j and year y, conditional on the measure Pjy, the arrival times
and length of stay
ζ(Djy+1):Njy ,j,y, δ(Djy+1):Njy ,j,y of the uncaptured birds are distributed from a non-homogeneous
Poisson process with intensity

ν0(ζ, δ) = ν(ζ, δ) P(H = (0, . . . , 0)|ζ, δ, p)

It follows that samples from the posterior distribution of(
Njy, c(Djy+1):Njy ,j,y, ζ(Djy+1):Njy ,j,y, δ(Djy+1):Njy ,j,y

)
can be obtained with a rejection algorithm in the following way. First, sample N0 ∼ Poisson(ωj),
then, for i = 1, . . . , N0 sample:

{cijy}i=1,...,N0 | CRF(α, γ)

(ζijy, ηijy) ∼ N(µcijy ,Σcijy)

Hijy ∼ Pr(ζijy, ηijy, pjy)

and accept the individual if capture history Hijy has no non-zero entries. The new population
size is given by Djy + Ñ0 where Djy is the number of captured individuals at site j in year y
and Ñ0 is the number of accepted individuals.
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4. Sample the hyperparameters (α, γ, {τj}, {ωj}):
τj and ωj are updated as

ωj ∼ Gamma

(
α+

Y∑
i=1

Nji,
α

τj
+ Y

)

p(τj |α, ωj) ∝ p(τj)p(ωj |α, τj) ∝ Gamma(ατ , βτ )τ−αj e
−α

ωj
τj

The posterior distributions for α and γ are found by adapting the update for the concentra-
tion parameter of the DP presented in Escobar and West (1995). Details are presented in the
supplementary material (Diana et al., 2018). An exact expression of the likelihood of α and γ
given an allocation of individuals to the cluster can be found in Camerlenghi et al. (2018).

5. Sample the mean b of the prior distribution of the cluster-specific regression coef-
ficients:
In order to improve the mixing for the posterior distribution of b, we introduce the variables
δk := βk − b. After sampling the δk from their posterior distribution (which can be found in
the supplementary material (Diana et al., 2018)), the posterior distribution of b given δk can
be computed as

p(b|{βk}k=1,...,K , B, b0, B0, {Σk}k=1,...,J) ∝

p({βk}k=1,...,K |b, B)p(b|b0, B0) ∝
K∏
k=1

MN(βk|b, B,Σk)MN(b|b0, B0,Σ0) ∝

The complete formulas can be found in the supplementary material.
6. Sample the latent arrival times and length of stay {ζijy}, {δijy}:

Given the continuous arrival time and length of stay of each individual, if we consider the
partition defined by the sampling occasions tjy1 , . . . , t

jy
Cjy

, we can define as bijy and dijy the in-
tervals where individual ijy respectively arrives and departs. Given these intervals, the posterior
distribution for (ζijy, δijy) is:

p(ζijy, δijy|µcijy ,Σcijy , Hjy, pjy) ∝ p(ζijy, δijy|µcijy ,Σcijy)p(Hjy|pjy, ζijy, δijy) =

N(ζijy, ηijy|µcijy ,Σcijy) p
∑Cjy
k=1Hijyk

jy (1− pjy)dijy−bijy−
∑Cjy
k=1Hijyk

7. Sample the coefficient {αpjy} and βp of the capture probabilities {pjy}:
Although not available in analytic form, the posterior distribution can be computed as

p({αpj}, β
p|{ζijy}, {δijy}, {xjy}) ∝ p(βp|bp0, B)p({αpj}|a

p
0, A

p
0)p({Hjy}|{ζijy}, {δijy}, pjy) =

N(βp|bp0, B)
∏
j

N(αpj |a
p
0, A

p
0)
∏
j,y

Njy∏
i=1

p
∑Cjy
k=1Hijyk

jy (1− pjy)dijy−bijy−
∑Cjy
k=1Hijyk
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