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UNIVERSITY OF THE WESTERN CAPE

Abstract

Faculty of Natural Science

Department of Physics and Astronomy

Master of Science

by William Matthewson

Next-generation surveys of the large-scale structure of the Universe will be of great

importance in allowing us to extract invaluable information about the nature of the

Universe and the physical laws that govern it, at a higher precision than previously pos-

sible. In particular, they will allow us to more closely study primordial non-Gaussianity,

a feature which leaves an imprint on the power spectrum of galaxies on the ultra-large

scales and which acts as a powerful probe of the physics of the early Universe. To in-

vestigate the extent to which upcoming surveys will be able to improve our knowledge

of primordial non-Gaussianity, we perform a forecast to predict the observational con-

straints on local-type primordial non-Gaussianity, as well as an extension that includes

a scale dependence. We study the constraining power of a multi-tracer approach, where

information from different surveys is combined to help suppress cosmic variance and

break parameter degeneracies. More specifically, we consider the combination of a 21cm

intensity mapping survey with each of two different photometric galaxy surveys, and

also examine the effect of including CMB lensing as an additional probe. The forecast

constraint from a combination of SKA1, a Euclid-like (LSST-like) survey and a CMB

Stage 4 lensing experiment is σ(fNL) ' 0.9 (1.4) which displays a factor of 2 improve-

ment over the case without CMB lensing, indicating that the surveys considered are

indeed complementary. The constraints on the running index of the scale-dependent

model are forecast as σ(nNL) ' 0.12 (0.22) from the same combination of surveys.
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Chapter 1

Overview

The current widely-accepted description of the origin and evolution of our Universe is

known as the Λ-Cold Dark Matter (ΛCDM) model. It is the purpose of this chapter to

explain a series of simpler models, building up incrementally to a full description of the

ΛCDM. The goal is a model that describes an expanding Universe comprising various

fluid components, each governed by an equation of state. The model begins with a “Big

Bang” where the Universe starts expanding from a singularity of infinite density and

the evolution of the physical size of the Universe is controlled by the relative energy

densities of these fluid components. There is a relativistic component which consists

of photons and relativistic particles, a matter component which comprises both visible,

baryonic matter and non-interacting (cold) dark matter, which is not directly observable,

and finally a cosmological constant component Λ which acts like a fluid with negative

pressure.

Shortly after the Big Bang a brief period of extreme expansion known as inflation occurs,

bringing primordial quantum fluctuations to a macroscopic scale and providing the seeds

for the formation of structure that follows. The model assumes that the Universe is

statistically isotropic and homogeneous on large scales, and has flat curvature. There

are 6 independent parameters on which the model depends. Together with their values

from 2018 Planck observations, these are: the cold dark matter density parameter Ωc0 =

0.120 ± 0.001, the baryon density parameter Ωb0 = 0.0224 ± 0.0001, the scalar spectral

index ns = 0.965±0.004, the curvature fluctuation amplitude ln(1010As) = 3.044±0.014,

1
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Chapter 1. Overview 2

the Hubble parameter H0 = 67.4± 0.5kms−1Mpc−1 and the reionization optical depth

τ = 0.054± 0.007 [29].

1.1 A brief history

Before we introduce the mathematical model for the Universe, we begin by presenting a

summary of the evolution of the Universe according to the ΛCDM model (see Fig. 1.1

for a graphic depiction).

The Universe began expanding from an infinitely dense singularity in what is known as

the Big Bang. During the earliest times, the length-scale of the observable Universe was

comparable to the Planck scale and would have been dominated by quantum effects. The

exact nature of the physical laws governing the Universe during this time is unknown, but

it is expected that the fundamental forces were unified through a Grand Unified Theory

(GUT) during this high energy regime. The ΛCDM model also includes a period known

as inflation which was a brief, extremely rapid expansion and is motivated by various

observations. [1, 2]

As the Universe quickly expanded and cooled, the forces began to “freeze out”, becoming

the distinct gravitational, strong, weak and electromagnetic forces. Elementary particles

such as quarks also started to form and, by approximately 3 minutes after the Big

Bang, nuclei had formed. During this time, the energy density of radiation was the

dominant component and the Universe was filled with a hot plasma of tightly-coupled

photons, protons and electrons. Unlike the energy density of matter, which scales like

the inverse power of 3 with the size of the universe, the energy density of radiation scales

like the inverse power of 4 and thus decreases proportionately quicker as the Universe

expands. So, as the Universe ages, the radiation component decreases with respect to the

matter component until the matter component is dominant, allowing for the formation

of structure. [1, 2]

Approximately 300 000 years after the big bang, the Universe had cooled sufficiently

that matter and radiation could decouple: Hydrogen atoms began to form and photons

were free to stream through the Universe. This period is known as recombination and

is responsible for the photons that form the surface of last scattering that we observe

http://etd.uwc.ac.za/



Chapter 1. Overview 3

as the Cosmic Microwave Background, a remnant of this early stage of the Universe’s

evolution. [1, 2, 9–12]

The atomic matter (mostly Hydrogen) that began to form at this stage would, through

the complex process of structure formation, eventually go on to become the galaxies

that we observe in the Universe today. However, it was only after a long period called

the cosmic Dark Ages that the first stars and galaxies were able to form [13].

Figure 1.1: A summary of the evolution of the Universe (from [14]).

1.2 The Big Bang model

According to observations, we inhabit an expanding Universe. In order to quantify this

expansion, we define the scale factor a such that [1]:

d(t) = a(t)χ , (1.1)

http://etd.uwc.ac.za/



Chapter 1. Overview 4

where d is the physical distance measured between two points and must increase with the

expansion, whereas χ is the comoving distance, which is the spatial coordinate distance

between two points in a reference frame that expands with the Universe. If the points

maintain their coordinates, then the comoving distance must remain constant in time.

Thus a must grow with time, controlling the growth of d. The time t introduced here

is the cosmic time or coordinate time, which is measured from an observer’s reference

frame. It is also useful to define the proper time τ , which is equivalent to the time

measured in the instantaneous rest-frame of an event, so that the proper time interval

between two events is an invariant quantity.

Observations show that galaxies are moving away from us according to Hubble’s law,

where for small d the recessional velocity of each galaxy is dependent on the distance

from the observer to the galaxy [2]:

v = Hd , (1.2)

where H is known as the Hubble parameter and can be related to the scale factor by

H =
1

a

da

dt
. (1.3)

If we follow the evolution of the Universe backwards into the past, a must decrease.

This suggests that our expanding Universe began from a singularity of infinite density.

Other observations, such as the Cosmic Microwave Background (CMB) indicate that

the Universe is not expanding in a steady state, but evolving as it expands [2]. The

standard model to describe this kind of Universe is known as the “Hot Big Bang”

model and has been successful in explaining such observations as Hubble’s law, the

CMB, the formation of the large-scale structure and the proportional abundance of the

light elements. However, in the absence of any matter beyond that which we directly

observe around us, such a model is only able to predict a Universe with a decelerating

expansion. This raises some problems, due to other observations that have been made.

These include, chiefly:

• The Horizon problem: The radiation of the CMB that we observe today is statis-

tically homogeneous and isotropic [3]. This is true even when we compare patches

on the sky sufficiently far apart, according to the model of the Big Bang we have

http://etd.uwc.ac.za/



Chapter 1. Overview 5

described so far, as to be outside of causal contact for all times up to the point

in the early Universe when the CMB signal was created. What our observation

implies is that somehow these different regions must have been in causal contact

for a sufficiently long period before the time of last scattering for the photons to

reach equilibrium before being emitted.

• The Flatness problem: The Universe that we observe today is spatially flat [4].

That means that it is geometrically Euclidean. The curvature of the Universe can

be specified (see (1.31)) by [3]

1− Ω(t) ∝ r2
H(t) , (1.4)

where Ω(t) is the total energy density (including matter, radiation and dark energy)

of the Universe at a particular time, and rH is the comoving Hubble radius, i.e.

rH =
1

aH
, (1.5)

where we have set the speed of light to 1. According to the Big Bang model, the

Hubble radius must grow with time and thus, so must the curvature. In order that

we measure such a flat Universe as is observed today, a very finely-tuned curvature

parameter is required [2]. This high degree of tuning is not predicted by the Big

Bang model and the critical value required (Ω = 1) is an unstable point [5].

Although it is not immediately obvious, both of these problems share one common

feature. In the case of the horizon problem we require that particles be brought back

into causal contact with each other as we move backwards in time. From the definition

of the comoving Hubble radius, it can be said that particles which are within the radius

will be in causal contact with one another. Thus, we would require the Hubble radius

to grow as we move backwards in time, to incorporate patches on completely opposite

sides of the sky. This means that we would require a period in the early Universe when

rH shrinks as time progresses forwards. Similarly, in the case of the flatness problem,

a shrinking rH would result in a decrease in the curvature towards flatness, even if

it was not initially tuned [2]. Therefore, a solution to both of these problems lies in

incorporating a period with decreasing rH into the evolution of the Universe at early

times. Cosmic inflation is one such approach [6].

http://etd.uwc.ac.za/



Chapter 1. Overview 6

1.3 Inflation

Since we require a period where the comoving Hubble radius is decreasing in time, we

have the following restriction:
drH
dt

< 0 , (1.6)

which leads to
d2a

dt2
> 0 , (1.7)

from the definition (1.5) as well as the restrictions that a > 0 and that the Universe is

constantly expanding da/dt > 0.

Thus, we can include in the model for the Big Bang a brief period of accelerated ex-

pansion at early times, called inflation. This will solve both the horizon and flatness

problems at once. During inflation the Universe expansion accelerates extremely rapidly.

Subsequently, measurable physical length scales are much smaller than the resultant scale

of the observable Universe, meaning that all patches of the CMB sky have been in prior

causal contact and that the measured curvature is reduced to very nearly flat.

The simplest and most commonly adopted model of inflation is known as slow-roll infla-

tion [7]. In this type of model, the scalar (inflaton) field responsible for inflation varies

slowly, resulting in a slowly decreasing Hubble rate [1, 2]. Inflation proceeds while the

potential energy of the scalar field exceeds its kinetic energy [8].

Not only does the incorporation of an inflationary period help to resolve the horizon and

flatness problems, but it also provides a mechanism by which primordial quantum fluc-

tuations can be frozen out into the fluctuations that eventually lead to the anisotropies

in the CMB and the formation of structure on large scales [1].

Thus, we can set the initial conditions for these anisotropies from the primordial curva-

ture fluctuations that are enlarged during inflation [16]. With this in mind, it is conve-

nient to define the power spectrum associated with the primordial fluctuations. In most

cases, single-field models of inflation are Gaussian random with almost scale-invariant

dimensionless power spectra of the form [18, 19]

Pζ(k) = As

(
k

k∗

)ns−1

, (1.8)

http://etd.uwc.ac.za/



Chapter 1. Overview 7

where ζ is the primordial curvature perturbation, ns ∼ 1 is the spectral index, As is the

scalar amplitude, k is the wavenumber and k∗ is the pivot scale. The assumption that

the perturbations are Gaussian can be relaxed, and indeed we define a parameter later

that controls the primordial non-Gaussianity (see Chapter 4).

After inflation had amplified the primordial fluctuations, and once radiation and matter

had decoupled, the initial conditions for structure formation were set. The anisotropies

visible in the CMB were also present in the form of perturbations in the density field of

matter, creating gravitational instabilities essential for the formation of structure.

1.4 Structure formation

Structures in the Universe exist over a very wide range of scales, from stars to galaxy

clusters, and are formed from matter. In particular, they are formed from overdensities

in the matter density field which are seeded by primordial fluctuations, passed on to the

matter via the coupling with photons and amplified by the action of gravity [16, 17]. This

leads to a particularly characteristic pattern, known as the cosmic web, that is visible

in the large-scale structure (LSS) which Figure 1.2 displays using the distribution of

galaxies in the Universe.

The perturbations present in the dark matter density result in gravitational instabili-

ties. In order for structures to form, matter must come together in dense clumps that

eventually form stars and galaxies. Gravitational forces assist in this regard, attracting

matter together to enhance the overdensities in the matter field. However, the entire

process is more complex than the individual action of gravity, since there are various

mechanisms that oppose the gravitational collapse of matter overdensities: namely, the

expansion of the Universe and the outwards pressure of photons when the radiation

energy density is sufficiently high. These factors work against gravity to decrease the

strength of the overdensities above the background and thereby prevent or slow the for-

mation of structure. Thus, it is only over time, through a complex interplay between

the attraction of gravitational forces and the repulsion of radiation pressure set against

the expanding background, that the perturbations lead to the formation of small dark

matter halos. Once formed, these are able to gravitationally attract baryonic matter,

which clumps together, eventually merging to form galaxies [1, 17]. These too attract

http://etd.uwc.ac.za/



Chapter 1. Overview 8

Figure 1.2: The cosmic web visible in the galaxy distribution of real data from spec-
troscopic redshift surveys (blue and purple) and of synthetic data from cosmological

simulations (red) (from [15]).

each other to form galaxy clusters, which form part of the cosmic web we see in the

large-scale structure.

In order to describe the formation of structure due to gravitational interactions on large

scales, we must use the framework of General Relativity. First, we must choose a suitable

metric and then apply the Einstein field equations so that we can determine the evolution

of the scale factor and matter density field.

http://etd.uwc.ac.za/



Chapter 1. Overview 9

1.5 The FLRW universe

The standard metric used in a cosmological description is known as the Friedmann-

Lemâıtre-Robertson-Walker (or FLRW) metric and is given by [22, 23]

ds̄2 = −dt2 + a2(t)

(
dχ̄2

1−Kχ̄2
+ χ̄2dθ2 + χ̄2 sin2 θdφ2

)
, (1.9)

where t is the cosmic time, a is the scale factor as defined previously and (χ̄, θ , φ)

are the comoving radial and angular coordinates for a sphere centred at an arbitrarily

chosen observer. The curvature parameter K can take a positive, zero or negative value

corresponding to a closed (spherical), flat or open (hyperbolic) universe, respectively.

There are two fundamental constraining assumptions about the nature of the Universe,

constituting the Cosmological Principle, which states that on sufficiently large scales

(& 100 Mpc), we have [2]:

• Statistical Isotropy: This means that the characteristics of the Universe don’t

change as a function of the direction in which the observer is looking. Hence,

measured observables must be rotation-invariant on large scales.

• Statistical Homogeneity: This means that the properties of the Universe do not

change if measured at different points in space. Hence, every observable must be

translation-invariant on large scales.

The FLRW metric has exactly isotropic and homogeneous t = const spatial surfaces

and so it is the correct background metric to describe perturbations in radiation and

matter. The assumptions of the Cosmological Principle are also well-supported by our

observations. Observations of the CMB display evidence of statistical isotropy: The

averaged temperature of CMB photons from different patches in the sky is almost the

same (TCMB = 2.73 K, with relative fluctuations of the order 10−5) independent of the

direction of observation [21]. An FLRW background with linear perturbations leads to

a good description of the CMB physics on small angular scales.

http://etd.uwc.ac.za/



Chapter 1. Overview 10

1.5.1 The background solution

Initially, we consider a universe conforming to the assumptions we have made and char-

acterised by the average background quantities, which are without perturbations. We

then solve the associated Einstein field equations to determine the dynamics and evolu-

tion. Note that the background quantities will be denoted in general with an overbar,

e.g. χ̄.

1.5.1.1 Einstein’s field equations

Since the scale factor controls the physical size of the Universe, once we determine the

dependence of a on t, we have a description of how the Universe evolves over time. This

solution comes from solving the Einstein field equations, given by

Ḡµν + Λḡµν = 8πGT̄µν , (1.10)

where ḡµν is the background metric, Λ is called the cosmological constant and the Ein-

stein tensor Ḡµν is defined as

Ḡµν = R̄µν −
1

2
ḡµνR̄ , (1.11)

where R̄µν and R̄ are the Ricci tensor and Ricci scalar, respectively. The Ricci tensor is

obtained from the Christoffel symbols Γ̄λµν as follows: [1]

R̄µν = ∂λΓ̄λµν − ∂νΓ̄λλµ + Γ̄λλσΓ̄σµν − Γ̄λσνΓ̄σλµ , (1.12)

where the Christoffel symbols are related to the metric tensor ḡµν by [1, 21]

Γ̄λµν =
1

2
ḡλσ (∂µḡνσ + ∂ν ḡµσ − ∂σ ḡµν) . (1.13)

The term containing Λ in the Einstein field equations arises as an integration constant

and, depending on which side of the equation it is added to, can be thought of as a geo-

metrical effect or as another component of the energy density, known as “dark energy”.

In the case of the latter, this component can be used to explain particular observations

concerning the expansion of the Universe. Measurements of the luminosity distances of
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Chapter 1. Overview 11

type Ia supernovae (SNIa) show that the Universe is accelerating in its expansion [24].

However, as will be seen, ordinary matter causes the expansion of the Universe to slow

with time, since the attractive action of gravity opposes the expansion. Thus, there is

a concerted effort underway to try understand and describe this acceleration, including

surveys such as the Baryon Acoustic Oscillation Spectroscopic Survey (BOSS) [25] and

Dark Energy Survey (DES) [26].

Returning to the field equations, the non-zero Christoffel symbols for the particular

metric given in (1.9) are [23]:

Γ̄0
11 =

aȧ

1−Kχ̄2
, Γ̄0

22 = aȧχ̄2 ,

Γ̄0
33 = aȧχ̄2 sin2 θ , Γ̄1

01 = Γ̄2
02 = Γ̄3

03 =
ȧ

a
,

Γ̄1
11 =

Kχ̄

1−Kχ̄2
, Γ̄1

22 = −χ̄
(
1−Kχ̄2

)
,

Γ̄1
33 = −χ̄

(
1−Kχ̄2

)
sin2 θ , Γ̄2

33 = − sin θ cos θ ,

Γ̄2
12 = Γ̄3

13 =
1

χ̄
, Γ̄3

23 = cot θ . (1.14)

The non-zero elements of the Ricci tensor, calculated from (1.12), are [23]:

R̄00 = −3
(
Ḣ +H2

)
, R̄11 =

a2

1−Kχ̄2

(
Ḣ + 3H2 +

2K

a2

)
,

R̄22 = a2χ̄2

(
Ḣ + 3H2 +

2K

a2

)
, R̄33 = a2χ̄2 sin2 θ

(
Ḣ + 3H2 +

2K

a2

)
, (1.15)

where H = ȧ
a is the Hubble parameter and ȧ = da

dt
1. Hence, the Ricci scalar is given by

[23]

R̄ = 6

(
Ḣ + 2H2 +

K

a2

)
. (1.16)

T̄µν in (1.9) is the energy momentum tensor of a perfect fluid and is given by [1]

T̄µν = (ρ̄tot + p̄tot) ūµūν + p̄totḡµν , (1.17)

where ρ̄tot and p̄tot are respectively the total energy density and pressure of the fluid

components contained in the Universe and ūµ = dxµ

dτ is the 4-velocity of the fluid. We

1Once the conformal time is introduced, derivatives denoted with primes will be taken to mean
derivatives with respect to the conformal time

http://etd.uwc.ac.za/



Chapter 1. Overview 12

may approximate the components as perfect fluids for most periods in the evolution

of the Universe, since the anisotropic dissipative terms such as heat flux, viscosity or

anisotropic pressure are negligible [2]. The physical interpretations of the components

of Tµν are as follows:

• T 00 is the energy density

• T 0i and T 0i are both equivalent to the mass flux across the surface of a volume

element with normal vector n = x̂i

• T ij is the flux across the surface, with normal n = x̂j , of the ith component of the

momentum. If i 6= j this is known as a shear and if i = j this is the pressure.

As discussed, we may treat the cosmological constant term Λḡµν of (1.10) as another

component of the energy density and thus we absorb it into T̄µν : the energy density and

pressure ρ̄tot and p̄tot are redefined as ρ̄tot + ρ̄Λ → ρ̄tot and p̄tot − p̄Λ → p̄tot, where

p̄Λ =
Λ

8πG
= −ρ̄Λ (1.18)

follows from the equation of state for the Λ component. In the following we suppress

the subscript tot for brevity and, unless otherwise stated, take ρ̄ and p̄ to mean the total

background energy density and pressure. The field equations now read:

Ḡµν = 8πGT̄µν . (1.19)

For a comoving observer, ūµ = (−1,0), which gives:

T̄00 = ρ̄ , T̄11 =
p̄a2

1−Kχ̄2
,

T̄22 = p̄a2χ̄2 , T̄33 = p̄a2χ̄2 sin2 θ . (1.20)

It is then possible to write the Einstein field equations, using (1.14), (1.15) and (1.20)

to obtain the following system of equations for the evolution of the scale factor [23]:

H2 =
8πGρ̄

3
− K

a2
, (1.21)

H2 + Ḣ = −4πG

3
(ρ̄+ 3p̄) . (1.22)
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Chapter 1. Overview 13

The first equation (1.21) is known as the Friedmann equation and (1.22) is known

as the Raychaudhuri equation, and together these equations form the basis for the

description of the evolution of the background. If we assume a barotropic model for each

component in the Universe, with an equation of state (EoS) for component X given by

[1, 21]:

p̄X = wX ρ̄X , (1.23)

then the EoS parameter w will have the following values for different kinds of components

• wm = 0 for non-relativistic matter,

• wr = 1/3 for thermal radiation or a gas of relativistic particles, and

• wΛ = −1 for a cosmological constant.

Therefore, incorporating the EoS parameter in (1.22) for component X, we obtain

H2 + Ḣ = −4πG

3
(1 + 3wX) ρ̄X . (1.24)

We can use the Raychaudhuri equation (1.24) to determine that the requirement for the

observed accelerating expansion is w < −1/3 which, using the EoS, corresponds to a

negative pressure:

p̄ < −1

3
ρ̄ . (1.25)

Thus, in the case of the cosmological constant, wΛ = −1 implies a negative pressure,

which aids the expansion. We explain this physical effect as a kind of vacuum energy,

proportional to spatial volume. This description has not been wholly successful thus

far, since the prediction from quantum field theory is many orders of magnitude higher

than the vacuum energy density we infer from observations.

We now introduce the conformal time η, defined as

dt = adη , (1.26)

so that the spatial scale factor becomes a conformal factor of the spacetime metric.

Hereafter all derivatives denoted with a prime, e.g. a′, are taken to be derivatives with
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respect to the conformal time. We can also define the conformal Hubble parameter:

H =
1

a

da

dη
= aH . (1.27)

The Friedmann equation ((1.21)) and Raychaudhuri equation ((1.22)) then become:

H2 =
8πGρ̄

3
a2 −K , (1.28)

H2 +H′ = −4πG

3
(ρ̄+ 3p̄) a2 . (1.29)

For convenience we define the dimensionless density parameter for component X as

ΩX(a) =
8πGρ̄X(a)

3H2
a2 , (1.30)

where ρ̄X denotes the corresponding energy density, so that the Friedmann equation

becomes

1 =
∑
X

ΩX − ΩK , (1.31)

where we have defined ΩK = K/H2.

1.5.1.2 Conservation equations

From the Friedmann equation (1.21) and Raychaudhuri equation (1.24) we wish to

extract a time evolution for the density ρ of each component and for the scale factor a.

These are coupled non-linear differential equations and are not straightforward to solve.

However, we can recover conservation equations and use them to solve for the relation

between ρ and a before obtaining the time-dependence of a. The conservation of energy

and momentum is ensured by the Bianchi identity, which requires that the covariant

divergence of the Einstein tensor must vanish:

∇̄νḠνµ = 0 . (1.32)
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From the Einstein field equations (1.10), we then obtain the following for the energy-

momentum tensor:

∇̄ν T̄ νµ = 0 , (1.33)

which we interpret as the conservation condition.

Using the metric to raise one of the indices and the EoS (1.23) for a single component

X, (1.17) becomes

ūµū
ν∇̄ν [(1 + wX)ρ̄X ] + (1 + wX) ρ̄X (ūν∇ν ūµ + ūµ∇ν ūν) + ∇̄µp̄X = 0 . (1.34)

If we contract (1.34) with the 4-velocity ūµ, this yields

˙̄ρX + Θ̄ (1 + wX) ρ̄X = 0 , (1.35)

where we have used ˙̄ρX = ūν∇ν ρ̄X and defined the volume expansion rate as [2]

Θ̄ = ∇̄ν ūν . (1.36)

The comoving velocity and the Christoffel symbols for an isotropic, homogeneous uni-

verse give Θ̄ = 3H [23]. This leads to the equation for the conservation of energy:

ρ̄′X + 3H (1 + wX) ρ̄X = 0 , (1.37)

which is known as the Continuity equation and where we have made the change to

conformal time variables.

We can also contract (1.34) with (ūαū
µ + δµα). This yields the other conservation equa-

tion, known as the Euler equation:

(1 + wX) ρ̄X ˙̄uα + (ūαū
µ + δµα) ∇̄µp̄X = 0 , (1.38)

where ˙̄uα is the 4-acceleration vector, given by ˙̄uα = ūν∇ν ūα. This is a statement of the

conservation of momentum and is trivially satisfied in a FLRW background: since the

FLRW universe is homogeneous and isotropic, the spatial vectors ˙̄uα and (ūαū
µ+δµα)∇̄µp̄i

must vanish, making the left-hand side of (1.38) identically 0.
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Table 1.1: Evolution of energy density and scale factor in a flat FLRW universe for
each case where a different component dominates the energy budget.

w ρ̄(a) a(t)

Radiation 1/3 a−4 t1/2

Matter 0 a−3 t2/3

Λ -1 a0 eHt

The evolution of the scale factor and the energy density can be determined by simulta-

neously solving (1.24) and (1.37) in various cases where different components dominate.

For a flat Universe with a dominant component X, we obtain:

ρ̄X(a) = ρ̄X0a
−3(1+wX) ,

a(t) = t
2

3(1+wX ) , (1.39)

where ρ̄X0 = ρ̄X(a0) and the scale factor is normalized to the present time a0 = a(t0) = 1.

The results for each of the components discussed earlier are displayed in Table 1.1. In

reality, there may not always be a single dominant component, but the single-component

solutions are useful during periods where one component is dominant. In Figure 1.3,

we see that the Universe begins with a radiation-dominated era, followed by matter

domination and at late times the Λ component begins to dominate.

1.5.1.3 The full ΛCDM model

The model of the Universe with zero spatial curvature, containing various fluid compo-

nents, each specified by their own equations of states and with dark energy parametrized

by Λ, is called the Lambda Cold Dark Matter (ΛCDM) model.

Thus the Friedmann equation (1.21) can be written in conformal variables as

H2 =
8πG

3

(
ρ̄m + ρ̄r + ρ̄Λ

)
a2 , (1.40)

where we have set K = 0 and ρ̄m, ρ̄r and ρ̄Λ are the respective energy densities of cold

matter (cold dark matter and baryons), radiation (photons and neutrinos) and dark

energy.
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Figure 1.3: The evolution of the dimensionless energy (see (1.30)) densities in uni-
verses with different dominant components, normalized so that Ωtot = 1 today.

Using the definition of the density parameter (1.30), the Friedmann equation becomes

1 = Ωm + Ωr + ΩΛ . (1.41)

In terms of the current values of the density parameters (ΩX0), the Friedmann equation

becomes

H(a) = aH0

√
Ωm0a−3 + Ωr0a−4 + ΩΛ0 , (1.42)

Once again, Planck 2018 data give: Ωm0 = 0.308, Ωr0 = 9.24 × 10−5, ΩΛ0 = 0.692

and H0 = 100h km s−1 Mpc−1 with h = 0.6732 [29]. For convenience this is sometimes

written using ωX ≡ ΩXh
2

1.5.1.4 Distance measures in an expanding universe

The description of the scale factor in the first section of this chapter hints that the

concept of distances in Cosmology is a subtle one. In addition to the expansion of the
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Universe, we must also consider the constant, finite speed of light and the implications

this has for the differences between various definitions of distance.

The comoving spatial coordinates in (1.9) are characterised as being constant for freely-

falling points or particles, so that the coordinate grid expands with the expansion of the

Universe. The comoving distance between two such points is the spatial coordinate at

some fixed time, usually chosen as the present time t0. If we choose a(t0) = 1, then the

comoving distance is equal to the physical distance at t0. If we choose the origin of the

coordinate system so that the two points are radially separated, then the physical and

comoving distances between them are related by (1.1)

d(t) = a(t)χ̄ , (1.43)

where the bar indicates that we are still working in the background case.

Now consider the case of an observation where a distant galaxy recedes from an observer

on Earth. If a ray of light is emitted at time te from the galaxy, then in an infinitesimal

time increment dt, it will travel a distance of a(t)dχ̄ towards the Earth. Taking the

speed of light as 1, this gives

− adχ̄ = dt . (1.44)

Hence,

χ̄ =

∫ to

te

dt

a(t)
(1.45)

is the comoving distance that the light travels to reach the observer on Earth at to.

By virtue of its motion, the receding galaxy induces a change in the wavelength of the

light ray measured by the observer. This change can be described using the redshift z̄

which is related to the scale factor by [1]

1 + z̄ =
a0

a(t)
, (1.46)

where a0 is the scale factor at the present time, conventionally taken to be 1. Thus, in

terms of redshift, (1.45) becomes

χ̄(z̄) =

∫ z̄

0

dz′

H(z′)
=

∫ z̄

0

dz′

H0

√
Ωm0(1 + z′)3 + Ωr0(1 + z′)4 + ΩΛ0

, (1.47)
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where we have used cosmological time to save including an extra factor of a.

Another measure of distance is the angular diameter distance d̄A, which is defined as

the square root of the ratio between the intrinsic area of a source and the solid angle it

subtends at the observer. In terms of the comoving distance, this is given by [30, 31]

d̄A =
χ̄

1 + z̄
. (1.48)

Figure 1.4: Upper panel: The comoving distance χ̄ plotted as a function of the
background redshift z̄. Lower panel: The angular diameter distance d̄A plotted as a

function of the background redshift, with maximum value at z̄ ∼ 1.6.

Figure 1.4 shows results of numerical calculations of these two distances in the ΛCDM
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model. From the figure we see that the comoving distance increases rapidly at low red-

shifts and at high redshifts asymptotically approaches a maximum, whereas the angular

diameter distance has a maximum at a particular redshift in an FLRW background,

tapering off on either side and thus making it possible for objects to have the same d̄A

while being at two different redshifts.

1.5.2 The perturbed FLRW universe

We now move to the derivation of the evolution equations in a flat FLRW universe,

where first-order linear perturbations have been added on top of the background. This

is the simplest model necessary to be able to discuss the fluctuations observed in the

Universe, but is nonetheless an effective tool for doing so.

If we consider the full metric tensor gµν that contains all the information about the

observed Universe, then we can make a Taylor expansion about the FLRW background:

gµν = ḡµν + δg(1)
µν +

1

2
δg(2)
µν + ... (1.49)

Thus, to first order in perturbation, we have

gµν = ḡµν + δgµν , (1.50)

where δgµν ≡ δg(1)
µν is taken as the first-order perturbation hereafter.

The most general perturbed FLRW metric is given (in Poisson gauge) by [32, 33]

ds2 = a2
[
−(1 + 2Φ)dη2 + (1− 2Ψ)δijdx

idxj︸ ︷︷ ︸
scalar part

+ 2widx
idη︸ ︷︷ ︸

vector part

+
1

2
hijdx

idxj︸ ︷︷ ︸
tensor part

]
, (1.51)

which allows for scalar, vector and tensor (gravitational waves) perturbations. In the

following analysis we consider only scalar perturbations.

The next step is to re-derive the evolution equations by applying the Einstein field

equations with the perturbed metric (1.50), using the background equations to isolate

equations in the perturbations of variables and neglecting terms of second order or higher

in perturbation.
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1.5.2.1 Perturbed Einstein field equations

We consider a perturbed metric that assumes the following form:2

ds2 = a2
[
− (1 + 2Φ)dη2 + (1− 2Ψ)δijdx

idxj
]
, (1.52)

where the first-order variables Φ and Ψ are known as the Bardeen potentials and in our

case we assume that there is no anisotropic stress, which means Ψ = Φ [2]. Hence, the

non-zero Christoffel symbols from (1.13) are:

Γ0
00 = H+ Φ′ , Γ0

0i = ∂iΦ ,

Γi 00 = δij∂jΦ , Γ0
ij =

[
H− Φ′ − 4HΦ

]
δij ,

Γi j0 = (H− Φ′)δi j , Γi jk = −2δi j∂kΦ + δjkδ
il∂lΦ , (1.53)

where we have already made the change to conformal time variables: Φ′ denotes the

derivative of Φ with respect to η and H is the conformal Hubble parameter. Then, the

background Friedmann equation (from (1.28)) is

H2 =
8πGa2

3
(ρ̄m + ρ̄r) +

a2Λ

3
. (1.54)

Recall Λ = 8πGρ̄Λ. Similarly, in conformal variables, the Raychaudhuri equation (1.24)

becomes

H′ = −4πGa2

3

(
ρ̄m +

2

3
ρ̄r

)
+
a2Λ

3
. (1.55)

With the perturbed Christoffel symbols from (1.53), the non-zero elements of the Ricci

tensor are calculated from (1.12) as:

R00 = −3H′ +∇2Φ + 6HΦ′ + 3Φ′′ , (1.56)

R0i = 2(1 +H)∂iΦ , (1.57)

Rij =
[
H′ + 2H2 − Φ′′ +∇2Φ− 4(H′ + 2H2)Φ− 6HΦ′

]
δij ,

which yields the following for the Ricci scalar:

R =
1

a2

[
6(H′ +H2) + 2∇2Φ− 12(H′ +H2)Φ− 6Φ′′ − 24HΦ′

]
. (1.58)

2This metric is different to the one used in [115] and as a result some of the definitions in this work
are different.
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The perturbed 4-velocity is given by [1, 2]

uµ =
1

a
(1− Φ, vi) , (1.59)

using the normalization gµνu
µuν = −1. Here vi is the peculiar velocity and is curl-free,

meaning that

vi = ∂iV , (1.60)

where V is the velocity potential.

The energy density and pressure are also perturbed and we write:

ρ = ρ̄+ δρ , p = p̄+ δp , (1.61)

so that, using (1.17), we can calculate the components of the perturbed energy-momentum

tensor Tµν :

T00 = a2(ρ̄+ 2Φρ̄+ δρ) , (1.62)

T0i = −a2(ρ̄+ p̄)vi , (1.63)

Tij = a2(p̄+ δp− 2Φp̄)δij . (1.64)

We then substitute the expressions for the Ricci tensor, Ricci scalar, 4-velocity and

the energy-momentum tensor into the Einstein field equation (1.19), the components of

which yield the following equations in the perturbations:

∇2Φ− 3H(Φ′ +HΦ) = 4πGa2δρ , (1.65)

Φ′ +HΦ = −4πGa2(ρ̄+ p̄)V , (1.66)

Φ′′ + 2HΦ′ + (H+ 2H′ +H2)Φ = 4πGa2δp . (1.67)

1.5.2.2 Perturbed conservation equations

To derive the conservation equations in the perturbed case, we follow a similar procedure

to the background case in Section 1.5. The energy-momentum conservation equation is,

as before, given by

∇µTµν = ∂µT
µ
ν + ΓµµαT

α
ν − ΓβµνT

µ
β = 0 , (1.68)
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where we must once again raise one index of the energy-momentum tensor. In this case,

the perturbed metric (1.52) must be used for this, in order that all the first-order terms

in the components of the energy-momentum tensor (1.62) - (1.64) are captured. Thus,

the non-zero components of Tµν are:

T 0
0 = −(ρ̄+ δρ) , T 0

i = (ρ̄+ p̄)∂iV , T ij = (p̄+ δp)δi j . (1.69)

We substitute (1.69) into (1.68) and contract the equation as before. The background

variables are removed using the background conservation equations, changing to confor-

mal time where necessary. The perturbed version of the Continuity equation is given

by

δρ′ + 3H(δρ+ δp) = (ρ̄+ p̄)
[
3Φ′ −∇2V

]
, (1.70)

where V is the velocity potential and the Laplacian is defined as ∇2 = ∂i∂
i. This

equation is similar to the one in the background case, but now the potential Φ and

peculiar velocity on the right-hand side act as source terms for the perturbations in

energy density and pressure. The perturbed Euler equation is given by

[
(ρ̄+ p̄)V

]′
+ 4H(ρ̄+ p̄)V = −[δp+ (ρ̄+ p̄)Φ] , (1.71)

or, in terms of the peculiar velocity, by

[
(ρ̄+ p̄)vi

]′
+ 4H(ρ̄+ p̄)vi = −[∂i(δp) + (ρ̄+ p̄)∂iΦ] , (1.72)

which is an evolution equation for the peculiar velocity, dependent on the potential Φ

and the perturbations in pressure.

Next, we define the density contrast in Poisson gauge:

δ =
δρ

ρ̄
. , (1.73)

as well as the sound speed cs for adiabatic pressure perturbations [34, 35]:

c2
s =

δp

δρ
=
p̄′

ρ̄′
. (1.74)
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Using the definitions of the EoS parameter, the density contrast and the sound speed (see

(1.23), (1.73) and (1.74) respectively) we can rewrite the set of perturbation equations

to yield:

∇2Φ− 3H(Φ′ +HΦ) = 4πGa2ρ̄δ , (1.75)

Φ′ +HΦ = −4πGa2ρ̄(1 + w)V , (1.76)

Φ′′ + 3HΦ′ + (2H′ +H2)Φ = 4πGa2c2
sρ̄δ , (1.77)

and similarly for the perturbed conservation equations:

δ′ + 3H(c2
s − w)δ = (1 + w)

[
3Φ′ −∇2V

]
, (1.78)[

ρ̄(1 + w)V
]′

+ c2
sρ̄δ = −ρ̄(1 + w)

[
Φ + 4HV

]
. (1.79)

The equation (1.75) relates the density contrast δ to the potential Φ in a similar way

to the Poisson equation in Newtonian mechanics. We may use this to rewrite (1.77) in

terms of only the potential Φ:

Φ′′ + 3(1 + c2
s)HΦ′ +

[
2H′ + (1 + 3c2

s)H2
]

Φ = c2
s∇2Φ , (1.80)

Neglecting radiation, the Friedmann and Raychaudhuri equations, from (1.54) and (1.55)

respectively, read:

H2 =
8πG

3
ρ̄+

a2Λ

3
, (1.81)

H′ = −4πG

3
ρ̄+

a2Λ

3
, (1.82)

which gives

H′ = −1

2
H2 +

a2Λ

2
. (1.83)

Using this result in (1.80) yields

Φ′′ + 3(1 + c2
s)HΦ′ + 3c2

sH2Φ + a2ΛΦ = c2
s∇2Φ . (1.84)

This equation describes the evolution of the Bardeen potential Φ and is known as the

Bardeen equation.
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1.5.2.3 Growth of structure in a ΛCDM universe

We focus here on observations of the Universe at relatively low redshift, so in the fol-

lowing we restrict our description to the Universe at late times, when the dominant

contributions to the energy are from dark matter and dark energy, and the contribution

from radiation has become negligible (see Figure 1.3). Thus, we may neglect the radi-

ation component: ρ̄r = 0, δρr = 0. On scales where linear perturbations are accurate,

the baryonic matter is cold and shares the same velocity as CDM: Vb = Vc = V . We

also take δρΛ = 0, since the cosmological constant is not perturbed.

Thus, on linear scales, the perturbations reduce to perturbations in cold matter only and

hereafter we use δ without subscript to refer to the matter density contrast in Poisson

gauge:

δ =
δρm
ρ̄m

. (1.85)

The “cold” matter particles of the ΛCDM model are non-interacting and do not exert

or experience pressure. Thus we have, for matter: wm = 0, p̄m = 0, δpm = 0 and, using

(1.74), cs = 0. Substituting these results into (1.75) - (1.79) yields:

∇2Φ− 3H(Φ′ +HΦ) = 4πGa2ρ̄mδ , (1.86)

Φ′ +HΦ = −4πGa2ρ̄mV , (1.87)

Φ′′ + 3HΦ′ + a2ΛΦ = 0 , (1.88)

δ′ = 3Φ′ −∇2V , (1.89)

V ′ = −Φ−HV , (1.90)

where we have also used (1.84) to obtain (1.88).

Using (1.87) and the definition of Ωm (1.30), we can rewrite (1.86) as

∇2Φ =
3

2
ΩmH2

[
δ − 3HV

]
=

3

2
ΩmH2δC . (1.91)

As will be shown in Chapter 3, the term in the square brackets is in fact the comov-

ing matter density contrast δC and so we recognize in (1.91) the form of the Poisson

equation.
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We now wish to determine the evolution of Φ using (1.88). Recall the definition of the

dimensionless density parameter for Λ:

ΩΛ =
Λa2

3H2
= 1− Ωm (1.92)

where the second equality follows from (1.41) at late times. Together with (1.83), this

yields

H′ =
(

1− 3

2
Ωm

)
H2 . (1.93)

We can also rewrite the conformal time derivatives in terms of derivatives with respect

to the scale factor:

d

dη
= aH d

da
,

d2

dη2
= a2H2 d2

da2
+ aH2

(
1 +
H′

H2

)
d

da
. (1.94)

Using (1.92) - (1.94) we may rewrite the Bardeen equation (1.88) as

a2 d2Φ

da2
+ a

(
5− 3

2
Ωm

)
dΦ

da
+ 3(1− Ωm)Φ = 0 . (1.95)

To describe the time evolution of the perturbative potential Φ, we define the linear

growth function D(z) as [42, 43]
D

a
=

Φ

Φd
, (1.96)

which is normalized to Dd = ad at the time of the decoupling between matter and

radiation (ad ∼ 10−3). In Fourier space, the Poisson equation is

− k2Φ =
3

2
ΩmH2δC =

3

2
Ωm0H

2
0

δC

a
. (1.97)

Hence, we may re-write the potentials in terms of the density contrast, and the linear

growth factor becomes

D = ad
δC

δCd
, (1.98)

which describes the growth in the amplitude of the density perturbations above the

background, normalized to the matter-dominated era.

In terms of the growth factor, the Bardeen equation (1.94) becomes

d2D

da2
+

3

a

(
1− Ωm

2

)
dD

da
− 3

2a2
ΩmD = 0 , (1.99)
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which can be solved numerically, using as the initial condition a matter-dominated uni-

verse (see Figure 1.5).

Figure 1.5: The evolution of the matter growth factor as a function of the scale factor
for an EdS universe (dashed black) and a ΛCDM universe (solid red). The addition
of a cosmological constant Λ to the EdS model results in a slower growth rate in the

ΛCDM model at late times, when the scale factor approaches its present value.

In the case of an Einstein-de Sitter (EdS) Universe containing matter only (Ωm = 1 and

Ωr = ΩΛ = 0), (1.99) reduces to a second order Cauchy-Euler equation and the solution

may be found analytically to show that the growth factor evolves with the scale factor

as

D(EdS)(a) = a , (1.100)

and hence
dD(EdS)

da
= 1 . (1.101)

Therefore, from (1.98), the gravitational potential Φ is constant in time: Φ = Φd, and

the EdS results (1.100) and (1.101) are suitable matter-dominant initial conditions.
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The numerical result including the cosmological constant is shown in Figure 1.5. At later

times we see that the growth of structure in a ΛCDM Universe is suppressed with respect

to the EdS Universe, since it contains dark energy which works against the gravitational

collapse of density perturbations.

It is useful to define the linear growth rate, f [1, 36]:

f =
d lnD

d ln a
=

d ln δC

d ln a
, (1.102)

where the second equality follows from the proportionality between the growth and the

comoving density contrast (1.98).

With this definition, the evolution equation (1.99) becomes a first-order equation for f :

a
df

da
+ f2 +

1

2
(4− 3Ωm) f − 3

2
Ωm = 0 , (1.103)

where we have used
df

da
=
f

a
+
a

D

d2D

da2
− f2

a
. (1.104)

Once again we can also consider the EdS Universe and from the growth function solution

(1.100), using the definition of the growth rate (1.102), we obtain

f (EdS) = 1 . (1.105)

There is an analytical approximation in the ΛCDM case, which can be parametrized

by [36, 37, 41]

f(a) =
[
Ωm(a)

]γ
, (1.106)

as shown in Figure 1.6, where γ is called the growth index and fits the numerical solution

of (1.103) well at a value γ ∼ 0.55 [37, 38].
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Figure 1.6: The evolution of the linear growth rate for an EdS Universe (dashed
black) and a ΛCDM Universe (solid red). The parametrization with γ = 0.55 is shown
in solid black. The addition of a cosmological constant Λ to the EdS model decreases

the growth rate as a approaches its present-day value: a0 = 1.
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Chapter 2

Angular Power Spectra

So far we have discussed the nature of the Universe in which we live and built up

the framework of the ΛCDM model which describes it. We now turn to explaining

the framework with which we can treat observations of the Universe. In this chapter we

present the theoretical derivations of expressions for the angular power spectra of galaxy

number counts, HI intensity mapping and CMB lensing. We begin by defining the two-

point correlation function in general and relating this to the angular power spectrum on

a 2D spherical shell. Following this, we relate the angular power spectrum to the power

spectrum of primordial curvature fluctuations, before finally describing the calculation

which allows us to take account of an observational window function.

2.1 Two-point correlation function

Recall that the matter density contrast is defined in the Poisson gauge at a particular

position x as

δ(n, z) = δ(x, η) =
ρ(x, η)− ρ̄(η̄)

ρ̄(η̄)
, (2.1)

where n is the observation direction, z is the redshift corresponding to the position and

ρ̄ is the background density of matter. The density field δ(x, η) is a Gaussian random

field which satisfies the following statistical properties:

0 = 〈δ(x)〉 , (2.2)

ξm(r) = 〈δ(x)δ(x′)〉 , (2.3)

30
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where we have suppressed the dependence on conformal time for brevity and r is the

displacement between the points x and x′: r = |x′ − x| (see Fig. 2.1).

The statistical properties above mean that δ is zero on average and that its two-point

correlation function ξm(x,x′) actually only depends on the distance r between the two

points. This is a consequence of assuming statistical isotropy and homogeneity (since

ξm is independent of x′) in the density field of the Universe.

The ensemble average 〈X〉 of a variable X has some subtlety in its definition and bears

discussion in more detail. The ensemble average is defined as the average value of a

random variable, taken over many realizations of its associated random functions. In

a cosmological context this is like measuring the average value from an ensemble of

universe realisations. However, it is only possible for us to observe one realization of our

Universe. This places a fundamental limit, known as cosmic variance, on the accuracy

of our measurements and prevents us from directly measuring the ensemble average.

Instead, we must rely on a kind of ergodic hypothesis, where we measure the spatially-

averaged values as a substitute for the ensemble average [2].

2.1.1 Relationship to the power spectrum

Throughout this work we make use of the Fourier transform defined according to the

following convention:

δk(η) =

∫
d3x δ(x, η) e−ik·x , (2.4)

δ(x, η) =
1

(2π)3

∫
d3k δk(η) eik·x . (2.5)

We now consider the two-point correlation function of δ in Fourier space. Dropping the

η dependence for brevity, we can use (2.4) and the statistical properties (2.2), (2.3) to
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show that:

〈δk δk′〉 =

∫
d3x′ d3x 〈δ(x)δ

(
x′
)
〉 e−ik·x e−ik′·x′

=

∫
d3x′ d3r ξm(r) e−ik·x e−ik

′·x′(eik·x
′
e−ik·x

′
)

=

∫
d3x′ d3r ξm(r)e−i(k+k′)·x′ eik·(x

′−x)

=

∫
d3x′ e−i(k+k′)·x′

∫
d3r ξm(r)e−ik·r

= (2π)3δD(k + k′)

∫
d3r ξm(r)e−ik·r , (2.6)

where the definition of r at constant x′ has been used to change the integration variable

in the second line. The subscript m indicates that ξm is the two-point correlation

function of matter fluctuations. The above expression can be rewritten as

〈δk(η) δk′(η)〉 ≡ (2π)3δD(k + k′)Pm(k, η) , (2.7)

where we define the 3D matter power spectrum Pm(k, η) of the matter density fluctua-

tions δ as1

Pm(k, η) =

∫
d3r ξm(r, η)e−ik·r , (2.8)

which means that the power spectrum and two-point correlation function are related via

Fourier transform. Once again, statistical isotropy is evident in the fact that the power

spectrum depends only on the modulus of k. The Dirac delta δD(k+k′) in (2.7) implies

that only modes with wave vector k of the same length, but of opposite direction will

be correlated, and is a result of statistical homogeneity. This expression can be further

simplified if we choose our coordinate system so that the spatial axis from which θ is

measured is aligned with k, which gives k · r = kr cos θ and thus

Pm(k) =

∫
r2dr sin θ dθ dφ ξm(r)e−ikr cos θ

= 4π

∫
r2dr ξm(r)j0(kr) . (2.9)

1Hereafter we suppress the conformal time dependence of δk and Pm for brevity.
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where j0(kr) is the zeroth order spherical Bessel function. Similarly, using the inverse

Fourier transform, we find that

ξm(r) =
1

2π2

∫
k2dk Pm(k)j0(kr) . (2.10)

For some of the derivations that follow, it is useful to examine the quantity 〈δk δ∗k′〉 and

its relation to the power spectrum. In a similar way to before, we can show that

〈δk δ∗k′〉 = (2π)3δD(k − k′)
∫

d3r ξm(r)e−ik·r . (2.11)

Hence, using (2.8), the above expression can be rewritten as

〈δk δ∗k′〉 ≡ (2π)3δD(k − k′)Pm(k) . (2.12)

2.1.2 Expansion in Legendre multipoles

We may also consider the power spectrum of galaxies, related to the galaxy number

density contrast, defined analogously to the matter density contrast:

δg(x) = δg(n, z) =
ρg(n, z)− ρ̄g(z̄)

ρ̄g(z̄)
, (2.13)

with the associated correlation function defined as

ξg(r) = 〈δg(x)δg(x
′)〉 . (2.14)

There is a dependence on the direction n, which is the unit vector along the line of sight

in the direction of observation. In reality, the correlation function is associated with

pairs of galaxies and thus pairs of directions, one for each galaxy. However, under the

flat-sky approximation we assume that correlated galaxies are sufficiently far away that

they have similar redshifts z and approximately the same direction of observation n

[39, 40]. The directional dependence enters into the anisotropic galaxy power spectrum

which can hence be decomposed in Legendre polynomials L(µ) [39, 40]:

Pg(k, k̂ · n) =

∞∑
`=0

P `g (k)L`(k̂ · n) , (2.15)
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where k̂ · n is the cosine of the angle between the line of sight n and wavenumber k.

The coefficients P `g can be determined from the power spectrum using the orthogonality

of the Legendre polynomials (A.3). Multiplying (2.15) by L`′ and integrating, we obtain

∫ 1

−1
d(k̂ · n) Pg(k, k̂ · n)L`′(k̂ · n) =

∫ 1

−1
d(k̂ · n)

∞∑
`=0

P `g (k)L`(k̂ · n)L`′(k̂ · n)

=

∞∑
`=0

P `g (k)
2

2`+ 1
δ``′

=
2

2`′ + 1
P `
′
g (k) . (2.16)

Re-labelling indices, we obtain

P `g (k) =

(
`+

1

2

)∫ 1

−1
d(k̂ · n) Pg(k, k̂ · n)L`(k̂ · n) . (2.17)

In a similar way, we can expand the two-point correlation function for galaxies in the

flat-sky approximation in Legendre polynomials [39, 40]:

ξg(r, r̂ · n) =
∞∑
`=0

ξ`g(r)L`(r̂ · n) , (2.18)

where

ξ`g(r) =

(
`+

1

2

)∫ 1

−1
d(r̂ · n) ξg(r, r̂ · n)L`(r̂ · n) . (2.19)

This expression can also be written in terms of the coefficients P `g , using the inverse

Fourier transform of ξg(r, r̂ · n) [39, 40]:

ξ`g(r) =

(
`+

1

2

)∫ 1

−1
d(r̂ · n)

(∫
d3k

(2π)3
Pg(k, k̂ · n)eik·r

)
L`(r̂ · n)

=
2`+ 1

2(2π)3

∫
d3k

∞∑
`′=0

P `
′
g (k)

∫ 1

−1
d(r̂ · n) L`′(k̂ · n) L`(r̂ · n)

×

( ∞∑
`′′=0

(2`′′ + 1)i`
′′L`′′(k̂ · r̂) j`′′(kr)

)

=
2`+ 1

2(2π)3

∫
k2dk

∞∑
`′=0

∞∑
`′′=0

(2`′′ + 1)i`
′′
j`′′(kr) P

`′
g (k)

×
∫ 1

−1
d(r̂ · n) L`(r̂ · n)

∫
dΩk̂ L`′(k̂ · n)L`′′(k̂ · r̂) , (2.20)

where the exponential term is rewritten using a plane wave expansion (A.6) in the second

line and the integral over k is split as d3k = k2dkdΩk.
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The integral over dΩk̂ in (2.20) may be rewritten by expanding the Legendre polynomials

in spherical harmonics (A.4) to yield

∫
dΩk̂L`′(k̂ · n) L`′′(k̂ · r̂) =

∫
dΩk̂

(
4π

2`′ + 1

`′∑
m′=−`′

Y`′m′(n)Y ∗`′m′(k̂)

)

×

(
4π

2`′′ + 1

`′′∑
m′′=−`′′

Y`′′m′′(k̂)Y ∗`′′m′′(r̂)

)

=
(4π)2

(2`′ + 1)(2`′′ + 1)

`′∑
m′=−`′

`′′∑
m′′=−`′′

Y`′m′(n)Y ∗`′′m′′(r̂)

×
∫

dΩk̂Y`′′m′′(k̂)Y ∗`′m′(k̂)

=
(4π)2

(2`′ + 1)(2`′′ + 1)

`′∑
m′=−`′

Y`′m′(n)Y ∗`′′m′(r̂)δ`′`′′ , (2.21)

where the elimination of the inner sum in the third line uses the orthonormality of the

spherical harmonics (A.5). Thus, substituting (2.21) back into (2.20) and taking the

sum over `′′, we can use the fact that the sum over the spherical harmonics is simply an

expansion of a Legendre polynomial (A.4):

`′∑
m′=−`′

Y`′m′(n)Y ∗`′m′(r̂) =
2`′ + 1

4π
L`′(r̂ · n) (2.22)

Thus the expression for ξ`g becomes

ξ`g(r) =
2`+ 1

4π2

∫
k2dk

∞∑
`′=0

i`
′
j`′(kr) P

`′
g (k)

∫ 1

−1
d(r̂ · n) L`(r̂ · n)L`′(r̂ · n)

=
2`+ 1

4π2

∫
k2dk

∞∑
`′=0

i`
′
j`′(kr) P

`′
g (k)

2

2`+ 1
δ``′

=

∫
k2dk

2π2
i` j`(kr) P

`
g (k) , (2.23)

where (A.3) is used in the second line.

2.1.3 Projection onto a 2D spherical shell

Actual observations are made on a spherical shell of radius χ(z), centered at our position.

Thus, each point we observe in the sky has a position described by x(n, z) = χ(z)n,

where n is the unit vector along the line from the centre of the shell to the point under
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n1

x1 = χ(z1)n1

x2 = χ(z2)n2
n2

A2, z2

A1, z1

Observer

r

Figure 2.1: This figure is a geometrical representation of the arguments found in
(2.42), with respect to the observer and two arbitrary galaxies A1 and A2 at redshifts

z1 and z2 and in observed directions n1 and n2, respectively.

consideration on the shell: (θ, φ). The galaxy number density contrast may then be

decomposed into spherical harmonics on the shell:

δg(x) = δg(n, z) =

∞∑
`=0

∑̀
m=−`

a`m(χ(z))Y`m(n) . (2.24)

Note that only the projection coefficients a`m are dependent on the distance (redshift). In

the following derivations this dependence is suppressed for convenience. The coefficients

a`m may be related back to the original function using the orthonormality of the spherical

harmonic functions (A.5). Multiplying (2.24) by the complex conjugate Y ∗`′m′(n) and

integrating over solid angles, we obtain

∫
dΩn δg(n, z)Y

∗
`′m′(n) =

∫
dΩn

∞∑
`=0

∑̀
m=−`

a`m(χ(z))Y`m(n)Y ∗`′m′(n)

=
∞∑
`=0

∑̀
m=−`

a`m

∫
dΩn Y`m(n)Y ∗`′m′(n)

= a`′m′ . (2.25)

Re-labelling indices, we obtain

a`m(z) =

∫
dΩn δg(n, z)Y

∗
`m(n) . (2.26)

The above equation relates the coefficients a`m to the real-space δg, but it is also possible

to rewrite these coefficients in terms of their Fourier modes, using the inverse Fourier

transform:

a`m =
1

(2π)3

∫
dΩn d3k δgk Y

∗
`m(n) eikχ cos θ (2.27)
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where k · x = kχ cos θ follows from our choice of coordinate system. The exponential

term may be rewritten using (A.6). When substituted back into (2.27), this gives

a`m =
1

(2π)3

∫
d3k δgk

∫
dΩn Y ∗`m(n)

∞∑
`′=0

(2`′ + 1)i`
′L`′(cos θ)j`′(kχ)

=
1

(2π)3

∫
d3k δgk

∞∑
`′=0

(2`′ + 1)i`
′
j`′(kχ)

(∫
dΩn L`′(cos θ)Y ∗`m(n)

)
. (2.28)

The simplification of the integral term in brackets requires some manipulation. If we

expand a Legendre polynomial into spherical harmonics, we have (by (A.4)):

L`′(k̂ · n) =
4π

2`′ + 1

`′∑
m′=−`′

Y`′m′(n)Y ∗`′m′(k̂) (2.29)

where our choice of coordinates implies that k · n = cos θ. Thus the integral term

becomes

∫
dΩn L`′(cos θ)Y ∗`m(n) =

∫
dΩn

4π

2`′ + 1

`′∑
m′=−`′

Y`′m′(n)Y ∗`′m′(k̂)Y ∗`m(n)

=
4π

2`′ + 1

`′∑
m′=−`′

Y ∗`′m′(k̂)

∫
dΩn Y`′m′(n)Y ∗`m(n)

=
4π

2`′ + 1
Y ∗`′m(k̂)δ``′ , (2.30)

where the result follows from the orthonormality relation (A.5). Substituting this back

into (2.28), we obtain

a`m =
1

(2π)3

∫
d3k δgk

∞∑
`′=0

(2`′ + 1)i`
′
j`′(kχ)

4π

2`′ + 1
Y ∗`′m(k̂)δ``′

=
i`

2π2

∫
d3k δgk j`(kχ)Y ∗`m(k̂) (2.31)

The complex conjugate is then given by

a∗`m =
(−i)`

2π2

∫
d3k δ∗gk j`(kχ)Y`m(k̂) . (2.32)

The integral in k is over all scales. However, since the Bessel functions are strongly

peaked around kχ ∼ `, they act as weighting functions, with each multipole gaining a

dominant contribution from only one wave number (or equivalently, a particular scale)
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to first approximation. It is also important to note that since δ is a Gaussian random

variable, so are the a`m.

2.1.4 The statistical properties of the a`m and relation to the 3D power

spectrum

The statistical properties of the a`m are thus:

〈a`m〉 = 0 , (2.33)

〈a`ma∗`′m′〉 = C`δ``′δmm′ , (2.34)

where the primed and unprimed indices indicate that the coefficients are not necessarily

both evaluated at the same redshift. These properties indicate that the a`m have zero

mean and a variance described by the C`. The C` are referred to as the angular power

spectrum (APS) and are defined in a model-independent fashion as

〈a`m(kχ1)a∗`′m′(kχ2)〉 =
i`(−i)`′

4π4

∫
d3k

∫
d3k′ j`(kχ1) j`′(k

′χ2)Y ∗`m(k̂) Y`′m′(k̂
′)

×〈δgk(z1) δ∗gk′(z2)〉 . (2.35)

It is also possible to relate the angular power spectrum to the 3D power spectrum Pg

defined earlier, using the definitions of a`m and its complex conjugate (see (2.31) and

(2.32)):

〈a`m(kχ1)a∗`′m′(kχ2)〉 = i`(−i)`′ 2
π

∫
d3k

∫
d3k′ j`(kχ1) j`′(k

′χ2)Y ∗`m(k̂) Y`′m′(k̂
′)

×δD(k − k′)Pg(k, z1, z2)

=
2

π

∫
k2dk j`(kχ1) j`′(kχ2)Pg(k, z1, z2)δ``′δmm′ , (2.36)

where χi = χ(zi) and the last step uses the orthonormality relation, (A.5). Here the a`m

are represented in terms of the galaxy power spectrum Pg(k, z1, z2), which is formally

defined by

Pg(k, z1, z2) = 〈δgk(z1)δgk(z2)〉 . (2.37)

The C` of the APS also provides another possible basis for the expansion of the two-point

correlation function. Consider the situation depicted in Fig. 2.1. From the definition of
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the two-point correlation function, we have:

ξg(r) = 〈δg(x1)δg(x2)〉 (2.38)

Recall from (2.24) that the density contrast δ(x) may be expanded in terms of spherical

harmonics a`m(χ(z)):

δg(xi) = δg(ni, zi) =

∞∑
`=0

∑̀
m=−`

a`m(χ(zi))Y`m(ni) , (2.39)

so that the angular spectrum is defined (as in (2.34)) by

〈a`m(z1)a∗`′m′(z2)〉 = C`(z1, z2)δ``′δmm′ . (2.40)

Hence, we may rewrite ξ:2

ξg(r) =

〈 ∞∑
`=0

∑̀
m=−`

a`m(χ(z1))Y`m(n1)

∞∑
`′=0

`′∑
m′=−`′

a∗`′m′(χ(z2))Y`′m′(n2)

〉
=

∑
`,m

∑
`′,m′

〈a`ma∗`′m′〉Y`m(n1)Y ∗`′m′(n2)

=
∑
`,m

∑
`′,m′

(C`δ``′δmm′)Y`m(n1)Y ∗`′m′(n2)

=
∑
`

C`

(
2`+ 1

4π
L`(n1 · n2)

)
, (2.41)

where some of the arguments and sums are suppressed after the first line for the sake

of brevity, and the final step uses (A.4). Thus, the expression for the expansion of ξg,

reintroducing the correct dependences, is:

ξg(z1, z2,n1,n2) =

∞∑
`=0

(2`+ 1)

4π
C`(z1, z2)L`(n1 · n2) , (2.42)

where the various arguments are described in Fig. 2.1.

2When defined for the density, the conjugate δ∗(x2) is the same as δ(x2) since the density contrast
is purely real.
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2.1.5 Relation to the power spectrum of primordial curvature fluctu-

ations

Conventionally the C`’s are written in terms of the primordial curvature perturbations.

Using the Fourier transform of the Poisson equation (see (1.91)), we find that

3

2

Ωm0H
2
0

a
δCk(z) = −k2Φ(k, z) . (2.43)

However, the potential Φ can be related to the primordial curvature perturbations. First,

we re-express Φ in terms of useful ratios, following the approach in [1]:

Φ(k, a) = ΦLS(k, ad)
Φ(k, ad)

ΦLS(k, ad)

Φ(k, a)

Φ(k, ad)
, (2.44)

where ad refers to scale factors corresponding to times sufficiently later than equality

that matter dominates and growth becomes scale-independent (i.e. decoupling) and

ΦLS(k, ad) corresponds to the potential on large scales in the matter-dominated case [1]:

ΦLS(k, ad) =
9

10
Φp(k) . (2.45)

This can be re-written using the following definitions for the transfer function T (k) and

growth function g(z) (see Chapter 1):

T (k) ≡ Φ(k, ad)

ΦLS(k, ad)
, (2.46)

g(a)

gd
≡ Φ(k, a)

Φ(k, ad)
≡ D(a)

a
. (2.47)

In this way, T (k) controls the scale-dependent changes in amplitude and is normalized

to unity on large scales, while g(a) is normalized to unity at the time of matter-radiation

decoupling and describes the late-time scale-independent growth of the perturbations.

Thus, our expression for Φ is now

Φ(k, a) = ΦLS(k, ad) T (k)
D(a)

a
, for a > ad . (2.48)
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On large scales, during matter domination, the relationship between Φ and the field of

primordial curvature fluctuations ζ is given by

ΦLS(k, ad) = −3

5
ζ(k) . (2.49)

The relation between Φ and ζ is then

Φ(k, a) = −3

5
T (k)

D(a)

a
ζ(k) , for a > ad . (2.50)

Thus, (2.43) becomes

δCk(z) =
2

5

D(a) T (k) k2

Ωm0H2
0 gd

ζ(k) , (2.51)

where gd may be determined from the following fitting formula [114]:

g(z) =
5

2
gdΩm(z)

[
Ωm(z)4/7 − ΩΛ(z) +

(
1 +

1

2
Ωm(z)

)(
1 +

1

70
ΩΛ(z)

)]−1

, (2.52)

where g is normalized so that g(z = zd) = 1.

Thus, the conventional definition of C` is

C`(z1, z2) = A

∫
d ln k ∆`(k, z1) ∆`(k, z2)Pζ(k) , (2.53)

where Pζ(k) is the dimensionless power spectrum of the primordial curvature fluctuations(
Pζ(k) ≡ k3Pζ(k)/2π2

)
and we have:

A =
16π

(5Ωm0H2
0 gd)2

, (2.54)

∆`(k, z) = b(z)D(z) T (k) j`(kχ(z)) k2 , (2.55)

where b is the galaxy bias (see 3). The ∆` are the angular transfer functions which store

information about the changes in amplitude of the fluctuations in galaxy number density

relative to ζ, while the information about their stochasticity is confined to Pζ(k). The

same result is found in [18], including extra terms which take into account the fact that

the Dg considered therein is not comoving.

http://etd.uwc.ac.za/



Chapter 2. Angular Power Spectra 42

2.2 Correction for window function

Until now, all the derivations have been for the special case that the spherical shell we

consider is infinitesimally thin. This means that observations are assumed to occur at

only one value of redshift. In mathematical terms, this amounts to assuming a galaxy

distribution in redshift that is a delta function. However, when actual observations are

made, there is a spread in the redshifts of the observed galaxies, characterized by a

window function. These window functions effectively determine bins or redshift ranges

within which galaxies are counted, with a mean redshift ẑ that is used to calculate noise

and other characteristics. In the case that the window function is not a Dirac delta,

(2.53) no longer holds and must be generalized to

CW` (z1, z2) = A

∫
d ln k ∆W

` (k, z1) ∆W
` (k, z2)Pζ(k) , (2.56)

where ∆W
` is the angular transfer function for the galaxy number density contrast, taking

into account their window function W (ẑ) (a galaxy redshift distribution) and is given

by

∆W
` (k, ẑ) =

∫
dz W (ẑ, z)∆`(k, z) , (2.57)

following [45] and [18], where the integration is over the redshift bin containing ẑ. The

effect of a window function is included in the a`m by integrating over redshift:

aW`m(ẑ) =

∫
dz W (ẑ, z) a`m(z) , (2.58)

where the superscript W indicates the inclusion of the effect of a window function. In

particular, for the density contrast we have:

aW`m(ẑ) =
i`

2π2

∫
d3k dz W (ẑ, z) δ(k, z) j`(kχ)Y ∗`m(k̂) , (2.59)

and

CW` (z1, z2) = A

∫
d3k dz ∆W

` (k, z1)∆W
` (k, z2)Pζ(k) , (2.60)

where

∆W
` (k, ẑ) =

∫
dz W (ẑ, z) D(z) T (k) k2 j`(kχ(z)) . (2.61)

http://etd.uwc.ac.za/



Chapter 3

Lightcone Effects

Up until this point, we have derived expressions for the theoretical angular power spec-

trum of the galaxy number density contrast, but this is not what is directly observed. In

this chapter we consider the observed galaxy number counts, following closely the argu-

ments set out in [18]. In making this transition, there is a subtlety that must be taken

into account. The quantity measured in observations is the number of galaxies, but the

fluctuations in number measured by the observer are not the same as the fluctuations in

the number density measured at the source. Thus, the definition of the density contrast

used so far is slightly different to what is actually observed. This is because we make

observations on the past lightcone where various relativistic effects lead to additional

corrections.

Therefore, we carefully examine the definitions of the theoretical and observed quanti-

ties in order that we may relate them. We note that, in the definition of the galaxy

number density contrast (2.13), the background density ρ̄ is taken to be measured at

the background redshift z̄. However, the actual measured redshift is itself perturbed

and this must be taken into account before we can relate the expressions of the previous

chapter to observations. This leads to additional terms which are naturally grouped

as redshift corrections and volume corrections. We then consider the implications for

the calculation of the angular power spectrum and perform a detailed derivation of the

corresponding C` components of two standard terms (density and redshift-space distor-

tions). Following this, we consider deviations in a photon geodesic along the line of sight

as the photon passes through space from the source to the observer, describing these

43
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as deviations in the luminosity distance. Using the resultant description we are able

to derive detailed expressions for the additional redshift and volume correction terms,

following closely the arguments and formalism set out in [18] and [49] with aid from [50].

3.1 Perturbations in the number density of galaxies

In the case of actual observations, the quantity of interest is not directly the galaxy

density contrast, but rather the perturbation in the observed number counts of galaxies

∆, which is defined in [18] as

∆(n, z) =
N(n, z)− N̄(z)

N̄(z)
. (3.1)

The number of sources counted by the observer in a solid angle dΩn and redshift interval

dz is given by (see Fig. 3.1)

dN = N dz dΩn = ρgdV . (3.2)

Here N is the number of galaxies counted by the observer per redshift, per solid angle.

By contrast, ρg is the proper number density, which is not measured by the observer,

but is the quantity that would be measured in the source rest-frame. The observed

volume element is dz dΩn, whereas dV is not the observed volume element, rather the

proper volume element as measured by the source. Hence, the observed number density

contrast is related to the proper number density contrast at the source by

∆ ≡ δN = δg + lightcone effects , (3.3)

where δg ≡ δρg/ρ̄g, as in (2.13).

In (3.1), N̄ refers to the background value ofN - its average over all observable directions.

It is important to note that the definition specifies N̄ taken at observed z and not z̄ in

the background. The latter would be analogous to the definition of the density contrast

in (2.1) or (2.13) and would not account for the perturbations in redshift. In this chapter

we will be explicit with the nature of the redshift, specifically whether it is a background

or perturbed variable.
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dL

Observer

dΩn
n

z
z + dz

dA

Figure 3.1: This figure shows an observation of sources within a particular redshift
range (z,z + dz) and solid angle dΩn with labels for various quantities that will be

useful in defining different measures of volume and number counts.

The galaxy number density contrast measured at the source is

δg(n, z) =
ρg(n, z)− ρ̄g(z̄)

ρ̄g(z̄)
. (3.4)

Because of the subtleties in this and related definitions, we spend some time here to

make sure that all of the relevant quantities are unambiguously defined, following the

work of [60]. First, we consider the observed number density and its relation to the

observed volume and number counts.

The observed volume element (shaded in Fig. 3.1) of thickness dz in a solid angle dΩn

about the unit direction of observation n, has proper volume at the source given (in the

background) by

dV̄ (z̄,n) = dĀ(z̄,n) dL̄(z̄,n) =
[
d2

A(z̄) dΩ̄
][
a(z̄)dχ

]
=

d2
A(z̄)

(1 + z̄)H(z̄)
dΩ̄ dz̄ . (3.5)

where dA is the angular diameter distance along the line of sight. The comoving volume

element is thus

dV̄com =
dV̄

a3
=
d2

A(z̄)(1 + z̄)2

H(z̄)
dΩ̄ dz̄ =

χ2

H(z̄)
dΩ̄ dz̄ , (3.6)

where χ = (1 + z)dA is the comoving distance along the line of sight.

The background number of sources dN̄ observed in the volume element is given by (3.2)

dN̄ (z̄,n) = N̄(z̄) dz̄ dΩ̄ , (3.7)
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where N̄ is the observed background redshift distribution. A typical model for galaxy

surveys is of the form

N̄ =
dN̄

dz̄ dΩ̄
∝ z̄2 exp

[
−
(
z̄

z̄m

)3/2
]
. (3.8)

We can also write the background number counts in terms of the volume element at the

source, as in (3.2). The observed background number per z̄ per Ω are therefore related

to the proper number density at the source by

N̄(z̄) = ρ̄g
d̄2
A(z̄)

(1 + z̄)H(z̄)
, (3.9)

which we can rewrite as

N̄(z̄) = ρ̄ga
3 × χ2

H(z̄)
(3.10)

to make it clear that N̄ is the product of the comoving background number density

(ρ̄ga
3) and the comoving volume element per redshift per solid angle. Note that this

is not the quantity that appears in the definition of the perturbation in galaxy number

counts (3.1), because the redshift and volume are perturbed and so we cannot rely on

the background alone. In order to relate δg and ∆ we must first examine the relation of

N̄(z) to N̄(z̄).

3.1.1 Relating ∆ to δg

Following the arguments set out in [18], ∆ may be related to the perturbation variable

δg,z which is the source number density contrast at fixed observed redshift:

δg,z(n, z) =
ρg(n, z)− ρ̄g(z)

ρ̄g(z)
=

N(n, z)

V (n, z)
− N̄(z)

V̄ (z)

N̄(z)

V̄ (z)

=

(
N(n, z)

V̄ (z) + δV (n, z)
− N̄(z)

V̄ (z)

)
V̄ (z)

N̄(z)

=
N(n, z)V̄ (z)− N̄(z)[V̄ (z) + δV (n, z)]

N̄(z)
[
V̄ (z) + δV (n, z)

]
=

(
N(n, z)− N̄(z)

N̄(z)
− δV (n, z)

V̄ (z)

)
V̄ (z)

V̄ (z) + δV (n, z)
, (3.11)
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where ρg is the number density of galaxies and in the second line we have assumed

that the volume can be written as the sum of a background term and a perturbation:

V (n, z) = V̄ (z) + δV (n, z). This expression may be further simplified as follows:

δg,z(n, z) ≈
(
N(n, z)− N̄(z)

N̄(z)
− δV (n, z)

V̄ (z)

)(
1− δV (n, z)

V̄ (z)

)
≈ N(n, z)− N̄(z)

N̄(z)
− δV (n, z)

V̄ (z)
, (3.12)

up to first order. Hence

∆(n, z) = δg,z(n, z) +
δV (n, z)

V̄ (z)
. (3.13)

Note the difference between the above definition of δg,z(n, z) and the δg(n, z) defined in

(3.4). The subtle distinctions are described in [18] and the following derivation follows

closely from the arguments laid out therein. The important subtlety here is the difference

between perturbed and background redshifts. Comparing the definition of δg,z(n, z)

(3.11) with (3.4), we notice that δg,z(n, z) does not assume that the average galaxy

number density ρ̄g is measured at the background value of the redshift, but also allows

for the redshift itself to be perturbed. Hence, δg,z (and thus ∆(n, z), by (3.13)) may be

related to δg(n, z) as follows:

δg,z(n, z) =
ρg(n, z)− ρ̄g(z)

ρ̄g(z)
=

(δg(n, z)ρ̄g(z̄) + ρ̄g(z̄))− ρ̄g(z)
ρ̄g(z)

= δg(n, z)−
∂ρ̄g
∂z̄

δz(n, z)

ρ̄g(z̄)
, (3.14)

where the final step uses a first-order Taylor expansion of ρ̄g:

ρ̄g(z) = ρ̄g(z̄) +
∂ρ̄g
∂z̄

δz(n, z) . (3.15)

In this way, the measured ∆ and δg are related by

∆(n, z) = δg(n, z)−
∂ρ̄g
∂z̄

δz(n, z)

ρ̄g(z̄)
+
δV (n, z)

V̄ (z)
. (3.16)

There are two corrective terms to the galaxy number density contrast which we will refer

to hereafter as the redshift correction:
dρ̄g
dz̄

δz(n,z)
ρ̄g(z̄) and the volume correction: δV (n,z)

V̄ (z)
.
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3.1.2 Relating δg and δm

A bias factor can be introduced to relate the matter density perturbations and the

fluctuations in galaxy number counts. On scales where linear perturbations are accurate,

it is assumed to be scale independent. It must be defined in the matter rest-frame,

which coincides with the comoving gauge (C) [45, 61]. It is defined between the density

perturbations in this gauge as follows:

δgC(x, η) = b(η)δmC(x, η) , (3.17)

where the subscripts g and m indicate perturbations in galaxy number density and

matter density, respectively. The transformation between the Poisson gauge and the

comoving gauge is given by [44]

δβC = δβ − β̄′V , (3.18)

for the perturbation δβ in some quantity β and where V is the velocity potential. Hence,

for δg, we have

δg = δgC +
ρ̄′g
ρ̄g
V . (3.19)

If we define a quantity be as the dimensionless measure of the extent to which comoving

galaxy number density is not conserved, i.e.

be =
1

H
(a3ρ̄g)

′

a3ρ̄g
, (3.20)

then [45]

δg = δgC + (be − 3)HV ,

= bδmC + (be − 3)HV . (3.21)

be is called the evolution bias and it will be described in more detail later (see Section

3.4.1). The expression for the observed perturbations in number counts is thus given by

∆(n, z) = b(z)δmC(n, z) + (be(z)− 3)H(z)V (n, z)− ∂ρ̄g
∂z̄

δz(n, z)

ρ̄g(z̄)
+
δV (n, z)

V̄ (z)
. (3.22)
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3.1.3 Redefining a`m

Since ∆ is the variable that is actually measured, it makes sense to redefine the a`m and

C` using the decomposition of ∆ in spherical harmonics. Thus, similarly to before, we

have

∆(n, z) =
∞∑
`=0

∑̀
m=−`

a`m(z)Y`m(n) , (3.23)

with

a`m(z) =

∫
dΩn ∆(n, z)Y ∗`m(n) =

i`

2π2

∫
d3k ∆(k, z)j`(kχ)Y ∗`m(k) , (3.24)

and

C`(z1, z2) = A

∫
d ln k ∆`(k, z1) ∆`(k, z2)Pζ(k) , (3.25)

where the ∆` now store information about the amplitudes of the fluctuations in observed

galaxy number density as opposed to source number density. As shown in (3.16) above,

∆(n, z) is separable into additive terms. In the following derivations, the contributions

of each term named X will be written with a superscript label:

aX`m(z) =

∫
dΩn ∆X(n, z)(n, z)(n, z)Y ∗`m(n) =

i`

2π2

∫
d3k ∆X(k, z)j`(kχ)Y ∗`m(k) .

(3.26)

For example, the first term of ∆(n, z) in (3.22) will be referred to as aδ`m:

aδ`m(z) =
i`

2π2

∫
d3k δg(k, z)j`(kχ)Y ∗`m(k) , (3.27)

with a`m reserved for the full expression of the projection coefficients including all con-

tributions, as defined in (3.24). The expression for the C` corresponding to (3.27) is

then

Cδ` (z1, z2) = A

∫
d ln k ∆δ

`(k, z1) ∆δ
`(k, z2)Pζ(k) , (3.28)

where

∆δ
`(k, z) = b(z) D(z) T (k) j`(kχ(z)) k2 , (3.29)

as in (2.55).

In the following sections we will examine the redshift and volume corrections in greater

detail, deriving full expressions for their components.
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3.2 Redshift-space distortions

The peculiar velocities that galaxies possess affect their apparent location, causing a

perturbation in the volume used to compute densities. Redshift-space distortion (RSD)

refers to the component of this effect along the line of sight and in real space this gives

a correction to ∆(n, z) of

∆RSD(n, z) = − 1

H(z)

∂

∂χ
(v(n, z) · n) = − 1

H(z)
n · ∇(v(n, z) · n) . (3.30)

This is commonly referred to as the Kaiser formula, originally derived in [47]. This

correction arises from the redshift correction term in (3.16), as will be shown in a later

section (see 3.4). For the moment, we take the correction in (3.30) as given and use it

to illustrate the calculation of a C` component other than density. According to (3.26),

the contribution to the a`m is thus

aRSD`m (z) =

∫
dΩn ∆RSD(n, z)Y ∗`m(n) . (3.31)

We can use the Fourier transform of the peculiar velocity field to rewrite the above

expression as

aRSD`m = −
∫

dΩn
1

H
∂

∂χ

[
1

(2π)3

∫
d3k vk · n eiχk·n

]
Y ∗`m(n)

= −
∫

dΩn
1

H
∂

∂χ

[
1

(2π)3

∫
d3k (iVkk) · n eiχk·n

]
Y ∗`m(n)

= −
∫

dΩn
1

H
∂

∂χ

[
1

(2π)3

∫
d3k

iVk
k
k · n eiχk·n

]
Y ∗`m(n)

= −
∫

dΩn
1

H
∂

∂χ

[
1

(2π)3

∫
d3k Vk

∂

∂χ
eiχk·n

]
Y ∗`m(n)

=
−1

(2π)3H

∫
d3k Vkk

2 ∂2

∂(kχ)2

[∫
dΩn eiχk cos θY ∗`m(n)

]
=
−i`

2π2

∫
d3k

k2Vk
H

Y ∗`m(n) j′′` (kχ) , (3.32)

where we have used x = χn, v = ∇V and k · n = k cos θ and where the derivative of

j` is taken with respect to kχ.1 The final step in (3.32) follows from a result proved

1Note that this differs from (37) of [18], since there the magnitude of the velocity vector in Fourier
space vk is used, whereas we use the velovity potential Vk.
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previously (see (2.27) to (2.31)), i.e.

∫
dΩne

ikχ cos θY ∗`m(n) = 4πi`j`(kχ)Y ∗`m(k). (3.33)

From first-order perturbation theory, the continuity equation gives

δ′m +∇ · v = 0 . (3.34)

The growth rate f is defined by

δ′m = fHδm (3.35)

Combining (3.34) and (3.35) and taking the Fourier transform gives

k2Vk = −fHδm,k , (3.36)

which yields

aRSD`m =
i`

2π2

∫
d3k fδm,kY

∗
`m(k) j′′` (kχ) . (3.37)

The corresponding expression for the C` is then

CRSD` (z1, z2)δ``′δmm′ =
i`(−i)`′

4π4

∫
d3k

∫
d3k′f(z1)f(z2) j′′` (kχ1) j′′`′(k

′χ2)

×Y ∗`m(k) Y`′m′(k
′)〈δk δ∗k′〉

=
2

π

∫
d3k

∫
d3k′ f(z1)f(z2) j′′` (kχ1) j′′`′(k

′χ2)Y ∗`m(k) Y`′m′(k
′)

×δD(k − k′)
(

2D(z) T (k) k2

5Ωm0H2
0g∞

)2

Pζ(k, z)

=

(
2

5Ωm0H2
0g∞

)2 2

π

∫
k2dk dΩk f(z1)f(z2)D(z1)D(z2)(T (k) k2)2

×j′′` (kχ1) j′′`′(kχ2)Y ∗`m(k) Y`′m′(k)Pζ(k, z)

= A

∫
dk

k
f(z1)f(z2)D(z1)D(z2)(T (k) k2)2

×j′′` (kχ1) j′′`′(kχ2)Pζ(k)δ``′δmm′ , (3.38)

where χi = χ(zi). The last step uses the orthonormality relation (A.5) and introduces

the dimensionless power spectrum of ζ. Thus CRSD` may be written as

CRSD` (z1, z2) = A

∫
d ln k ∆RSD

` (k, z1) ∆RSD
` (k, z2)Pζ(k) , (3.39)
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where

∆RSD
` (k, z) = f(z) D(z) T (k) k2 j′′` (kχ(z)) . (3.40)

Finally, the effect of a window function may be included, giving

aRSD,W`m (ẑ) =
i`

2π2

∫
d3k dz W (ẑ, z) f(z) δm(k, z)Y ∗`m(k) j′′` (kχ(z)) , (3.41)

and

CRSD,W` (z1, z2) = A

∫
d3k ∆RSD,W

` (k, z1) ∆RSD,W
` (k, z2) Pζ(k) , (3.42)

where

∆RSD,W
` (k, ẑ) =

∫
dz W (ẑ, z) f(z) D(z) T (k) k2 j′′` (kχ(z)) . (3.43)

3.3 Distortions in the luminosity distance

In order to derive the expressions for the redshift and volume corrections in (3.16), we

can consider the perturbations in the geodesics of photons received from a source, which

leads naturally to a description of fluctuations in the measured luminosity distance.

Investigating these effects allows us develop a framework for expanding the expression

for ∆ into calculable terms.

3.3.1 Definitions

Suppose we have a source with known luminosity L, emitting a beam of photons at a

point S in space-time. If we consider an observer who measures a flux F at an event

O (see Figure 3.2), then the luminosity distance between the source and the observer is

defined as

dL(S,O) =

√
L

4πF
. (3.44)

We consider a source and observer which have four-velocities uS and uO respectively

and exist in an inhomogeneous, anisotropic Universe with metric ds2 = gµνdxµdxν . If
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dAO

kµ

xµ

x′µ

δxµ

uµO

uµS

Observer (O)γ

γ′

Source (S)

dΩS

Figure 3.2: This figure shows the path taken by a photon (along geodesic γ) as
it travels from a source to an observer. Definitions for various quantities are shown
geometrically as is another geodesic (γ′) which is distorted infinitesimally from the

original.

the infinitesimal solid angle within which photons are emitted by the source is dΩS , and

dAO is the infinitesimal area element on the screen space of O, i.e. the surface normal

to the photon beam, then we have the following:

d2
L(S,O) =

L

4πF
=

dES
dτS

1

dΩS

dτO
dEO

dAO

=
dES
dEO

dτO
dτS

dAO
dΩS

= (1 + z)2 dAO
dΩS

, (3.45)

where the subscripts S and O indicate measurements made at the source and observer

respectively and 1 + z = ωS
ωO

is the redshift of the source as measured by the observer.

As the grouping of terms in the second line above is meant to illustrate, one factor of

(1+z) arises due to the redshifting of the emitted energy along the photon’s path, while

the other is from the effect of time dilation due to the relative motion of observer and

source.

Next, as done in [49], we parametrize the photon trajectories in the beam by a family

of one-parameter curves: xµ = fµ(λ,y), where λ now acts as an affine parameter along

each light ray and the 3-vector y selects a particular ray.2 The tangent vector to the

2 y does not have a geometric definition in space time, and isn’t included in Figure 3.2.
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curve fµ is

kµ(λ,y) =
∂fµ(λ,y)

∂λ
. (3.46)

This vector is the wave-vector (4-momentum) of the photon moving along the particular

geodesic, at the point in space-time determined by λ. Following [49], in the rest-frame

of an observer field with a 4-velocity uµ (where uµ(S) = uµS and uµ(O) = uµO), the mea-

sured direction of a photon, with affine parameter λ along a geodesic corresponding

to y, is given by

− nµ =
1

ω
(kµ + kνuνu

µ) =
kµ

ω
− uµ , (3.47)

where the minus sign on the left of the first equality arises since we adopt a convention

opposite to [49] for the direction of observation n and where ω is the angular frequency

of the photon:

ω(λ,y) = −gµν(λ,y)kµ(λ,y)uν(λ,y) . (3.48)

In particular, we consider the central photon beam γ, which is described by fµ(λ,0),

and an infinitesimally nearby geodesic γ′ described by fµ(λ, δy). We now examine the

deviation in coordinates between these two geodesics, as measured in the rest-frame of

an observer at xµ = fµ(λ,0):

δxµ ≡ x′µ − xµ =
∂fµ

∂yi
δyi . (3.49)

A useful result of this definition is that δxµ and kµ are orthogonal. The rays are generated

simultaneously by event S and thus they will all have the same phase for equal values

of λ, i.e. phase S is constant along the vectors in the field δxµ, with kµ = −∇µS. Thus

orthogonality is ensured:

δxµkµ = −δxµ∇µS = −∇δxS = 0 . (3.50)

Next, following [49] and [50], we define a vector δθµ which is a measure of the angular

separation between the two geodesics γ and γ′ (see Fig. 3.3):

δθµ =
δxµ(λ+ δλ)− δxµ(λ)

δ`

=
[fµ(λ+ δλ, δy)− fµ(λ+ δλ,0)]− [fµ(λ, δy)− fµ(λ,0)]

δ`
, (3.51)
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xµ(λ)

x′µ(λ)

δxµ(λ)

δxµ(λ)

δxµ(λ+ δλ)− δxµ(λ)

γ′

γ

xµ(λ+ δλ)

x′µ(λ+ δλ)

Figure 3.3: This figure may be used to aid in the visualisation of the definition of
δθµ.

where δ` is the infinitesimal distance along the geodesic in the rest-frame of the observer

field:

δ` = |uµdxµ| = |uµ[fµ(λ+ δλ)− fµ(λ)]δλ|

= |uµ
∂fµ

∂λ
δλ| = |uµkµ|δλ = ωδλ . (3.52)

Using this to further simplify the expression for the angular deviation, we obtain

δθµ =
δxµ(λ+ δλ)− δxµ(λ)

ωδλ
=

1

ω

Dδxµ

dλ
=

1

ω
∇kδx

µ , (3.53)

where D
dλ = kν∇ν is the covariant derivative which takes into account the fact that the

vector bases of γ and γ′ change as one moves along the geodesics.

The vectors kµ and δxµ (see Fig. 3.3) form a 2-surface and in the resulting 2-surface

elements we can choose coordinates (λ, y) such that k = ∂/∂λ and δx = ∂/∂y. Then

we have

δxµ,νk
ν − kµ,νδxν =

∂δxµ

∂λ
− ∂kµ

∂y

=
∂2fµ

∂λ∂y
− ∂2fµ

∂y∂λ
= 0 . (3.54)
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We can show that the partial derivatives in (3.54) may be replaced with covariant deriva-

tives:

δxµ;νk
ν − kµ;νδxν =

(
∂δxµ

∂λ
+ Γµανδx

αkν
)
−
(
∂kµ

∂y
+ Γµναk

αδxν
)

= 0 , (3.55)

where we have used the result from (3.54).

Since this is a covariant tensor equation, it is independent of the choice of coordinate

system and we have

(∇δxk)µ = (∇kδx)µ , (3.56)

which recovers the result in [50].

3.3.2 Reparametrization

The rays that are emitted simultaneously in an infinitesimal beam would be observed

simultaneously, i.e. in the rest-frame of the observer. Thus δxµ must sweep out a surface

normal to uµO. This is not necessarily true given the current definitions. However, as

shown in [49] and [50], it is possible to choose a parametrization where this is true. We

rewrite the variables parametrizing the geodesics as follows:

λ̂→ λ+ h(y) , ŷ → g(y) , (3.57)

where the circumflex denotes the variables in the original parametrization. If we now

consider the deviation vector δx̂µ in the original parametrization, we may expand its

definition in terms of derivatives with respect to the variables in the new parametrization:

δx̂µ =
∂fα

∂ŷi
δŷi =

[
∂fα

∂λ

∂λ

∂ŷi
+
∂fα

∂yj
∂yj

∂ŷi

]
∂ŷi

∂yk
δyk

=

[
kα

∂λ

∂yj
∂yj

∂ŷi
+
∂fα

∂yj
∂yj

∂ŷi

]
∂ŷi

∂yk
δyk

=

[
kα

∂h

∂yj
+
∂fα

∂yj

]
δjkδy

k . (3.58)
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Thus, using the definition of the deviation vector for the new parametrization, we have

δx̂µ → δxµ + kµδh , (3.59)

where δh = ∂h
∂yj

δyj .

In addition, for the metric we obtain

gµνδx̂
µδx̂ν → gµν(δxµ + kµδh)(δxν + kνδh) = gµνδx

µδxν , (3.60)

where the invariance of the metric in the second equation above follows from (3.50)

and the fact that kµ is the tangent field of a null geodesic (kµkµ = 0). Now, since an

observer’s four velocity uµ must be time-like, we have (kµuµ)(λ) 6= 0, so it is possible to

choose a parametrization with δh such that

δxµuµ → (δxµ + kµδh)uµ = 0 (3.61)

holds at a general point along the geodesic. In particular, this is true at the observer

under the new parametrization:

δxµOuµ(λO) = 0 . (3.62)

The same is true at the source, but for another reason: δxµ(λS) = 0 for rays originating

from a single event. As for the angular deviation, uαk
α = −ω gives

(∇δxu)αk
α + uα(∇δxk)α = δxµ(∇µu)αk

α + uα(∇δxk)α = 0 . (3.63)

Thus, at the source, δxµ = 0 and we have

[uα(∇δxk)α](λS) = 0 , (3.64)

so that

δθαSuα(λS) = 0 . (3.65)
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Furthermore, since kα is null, we have

kα(∇δxk)α =
1

2
∇δx(kαk

α) = 0 , (3.66)

so that

kαδθ
α = 0 . (3.67)

Thus, according to (3.50), (3.62), (3.65) and (3.67), the quantities δxµO and δθµS are

normal, at the observer and the source respectively, to the 4-vectors kµ, uµ and (by

(3.47)) to nµ, the corresponding photon direction. The quantities δxµO and δθµS are thus

defined in a 2-space (the “screen space”), which is normal to both the four-velocity and

the photon direction.

We can project vectors onto the screen space defined at a point xµ = fµ(λ,y) along a

ray, using the projector as defined in [49]:

Pµν = δµν + uµuν − nµnν . (3.68)

3.3.3 Transport equation

Using the Ricci identity and following [49] and [50], we have

kµδxνRαβµνk
β = kµδxν(∇µ∇ν −∇ν∇µ)kα = δxν∇k∇νkα − kµ∇δx(∇µkα)

= ∇k(δxν∇νkα)− (∇kδx
ν)(∇νkα)−∇δx(kµ∇νkα) + (∇δxkµ)(∇µkα)

= ∇k(δxν∇νkα)− (∇kδx
ν)(∇νkα)−∇δx(∇kk

α) + (∇kδx
µ)(∇µkα)

= ∇k(δxν∇νkα) = ∇k(ωδθα) , (3.69)

where in the third equality the product rule has been used and in the fourth and fifth

equalities the result from (3.56) was used, along with the fact that k is tangent to the

geodesic (i.e. ∇kk
α = 0). The final equality uses the definition of δθµ, (3.53). Thus, we

have a system of linear equations:

∇kδx
α = ωδθα , (3.70)

∇kω(δθα) = Rαβµνk
βkµδxν , (3.71)
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or, more explicitly:

d(δxα)

dλ
= −Γαµνk

µδxν + ωδθα (3.72)

≡ Cαν δx
ν + ωδθα , (3.73)

d(ωδθα)

dλ
= Rαβµνk

βkµδxν − Γαµνk
µωδθν (3.74)

≡ Aαν δx
ν + Cαν ωδθ

ν , (3.75)

where, as in [49], we have defined:

Cαβ = −Γαµβk
µ , (3.76)

Aαβ = Rαµνβk
µkν . (3.77)

We can rewrite the system of equations in vector notation, following [49]:

Z =

 δx

ωδθ

 , (3.78)

to summarise the equations as

dZ(λ)

dλ
= B(λ)Z(λ) , (3.79)

where

B(λ) =

Cαβ (λ) δαβ

Aαβ(λ) Cαβ (λ)

 . (3.80)

The initial conditions of this system of equations are as follows:

• The coordinate deviation between rays is initially zero, since they originate from

the same event:

δxα(λS) = 0 . (3.81)

• The angular deviation at the source is normal to the source velocity, [see (3.65)]

(δθαuα)(λS) = 0 . (3.82)
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Since (3.79) is linear, it implies that there exists a linear mapping between the initial

values (at the source) and the general solution, which we call the Jacobi mapping.

Thus,

δxµ(λ) = J µα (λ)δθαS , (3.83)

where we have used δxαS = 0.

In particular, we are interested in the value of δxµ at the observer, so we consider

δxµO = J µα (λO)δθαS . (3.84)

Since δxµ and δθµ are both in the screen space, they are equal to their projections.

Thus, multiplying on both sides by (PO)νµ and expanding δθαS as a projection of itself,

we obtain

δxνO = Jνβ (O,S)δθβS , (3.85)

where

Jνβ (O,S) = (PO)νµJ µα (λO)(PS)αβ (3.86)

is the true, two dimensional Jacobi mapping in the screen space.

Now, if we examine the geometry of Fig. 3.2, we see that the infinitesimal beam area

at the observer may be computed as the product of two deviation vectors that span the

screen space:

dAO = εABδx
A
1 (λO)δxB2 (λO) , (3.87)

where ε is the Levi-Civita symbol.

Thus

dAO = εABJ
A
C J

B
Dδθ

C
1 δθ

D
2 = |det J | εCD δθC1 δθD2

= |det J | dΩS . (3.88)

This recovers the result of [49] and [50]:

dAO
dΩS

= |det J | . (3.89)
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which means that the luminosity distance, given by (3.45), is related to the Jacobi map

as follows:

d2
L(S,O) = (1 + z)2|det J | . (3.90)

3.3.4 Introducing a conformal factor

When applying the above formalism to a FLRW universe, it is useful to rewrite the

metric in such a way that the scale factor is removed as a conformal factor, i.e. using the

conformal definition of time. In this section, we derive the relations between important

quantities in the original and modified metrics, following the derivations set out in [49].

Consider a new metric gµν defined by

dŝ2 = ĝµνdxµdxν = a2gµνdxµdxν = a2ds2 . (3.91)

For a light-like geodesic in dŝ2 with affine parameter λ̂ and tangent vector k̂, we have

dλ̂

dλ
= a2 . (3.92)

and

k̂µ =
dxµ

dλ̂
=
kµ

a2
. (3.93)

Then, suppose ûµ = dxµ

dτ̂ is the 4-velocity (such that ĝµν û
µûν = −1) for an observer and

with respect to the metric dŝ, with proper time τ̂ . The corresponding 4-velocity of the

observer with respect to the metric ds2 is then uµ = dxµ

dτ , where the new proper time τ

is related to the original by dτ̂
dτ = a, since

dτ̂2 = −dŝ2|flow line = a2ds2|flow line = a2dτ2 . (3.94)

So, the 4-velocities are related by

ûµ =
dxµ

dτ̂
=

1

a
uµ . (3.95)

The redshifts may also be related:

1 + ẑ =
ω̂S
ω̂O

=
(ĝµν k̂

µûν)S

(ĝµν k̂µûν)O
=
aO(gµνk

µuν)S
aS(gµνkµuν)O

=
aO
aS

(1 + z) . (3.96)
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Under conformal transformations, only distances (and not angles) are affected, picking

up the conformal factor. Hence, the Jacobi maps in the two metrics and their determi-

nants may be related by

Ĵαβ (O,S) =
δx̂αO

δθβS
= aO

δxαO

δθβS
= aOJ

α
β (O,S) , (3.97)

detĴ(O,S) = a2
OdetJ(O,S) . (3.98)

Finally, the relationship between luminosity distances is given by

d̂L = (1 + ẑ)

√
|detĴ(O,S)| =

a2
O

aS
dL . (3.99)

3.3.5 Application to perturbed FLRW universe

We now apply the definition of the luminosity distance to a perturbed Friedmann uni-

verse. As before, we consider only scalar perturbations and in the Newtonian gauge the

metric is

g̃µνdx
µdxν = a2[−(1 + 2Φ)dη2 + (1− 2Ψ)γijdx

idxj ] . (3.100)

Further, we include our assumptions of no anisotropic stress (i.e. Ψ = Φ), and a spatially

flat universe (K = 0⇒ γij = δij). Thus the conformal metric becomes

ds2 = −(1 + 2Φ)dη2 + (1− 2Φ)δijdx
idxj , (3.101)

by (3.91). We will eventually use (3.99) to relate the calculated luminosity distance to

the one in the full, expanding Friedmann universe.

By (1.59) with a=1, the 4-velocity of the observer and source in the spacetime (3.101)

are both given by

uµ = (1− Φ, vi) , (3.102)

assuming that they are both moving with the cosmic fluid, where vi is the peculiar

velocity field.

We also require the 4-vector kµ for the photon. This can be obtained by integrating the

null geodesic equation for (3.101), which has a Minkowski background. In the Minkowski

background H = 0 and we can choose the normalization of the affine parameter in such a
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way that k̄0 = 1 and k̄i = −ni, with nin
i = 1. Thus, k̄α = (1,−ni). We assume that the

perturbed value of the photon four-velocity at the observer is equal to the background

(k0
O = 1). In addition to our definition of n, this is another difference to the convention

adopted in [49], where it is assumed that the perturbed value of the photon four-velocity

at the source is equal to the background.

The geodesic equation gives

dkµ

dλ
= −Γµαβk

αkβ = −δΓµαβ k̄
αk̄β , (3.103)

where the second equality follows since H = 0⇒ Γ̄µαβ = 0.

Thus, using (1.53) with H = 0, we find that

dk0

dλ
= 2ni∂iΦ , (3.104)

and
dki

dλ
= −2∂iΦ− 2ni(Φ′ − ni∂iΦ) . (3.105)

By (3.47), we have

ni∂iΦ = Φ′ − dΦ

dλ
. (3.106)

Thus, integrating (3.104) and (3.105) and using (3.106), we obtain:

k0(λS)− k0(λO) = 2

∫ λS

λO

dλ(ni∂iΦ)

= −2(ΦS − ΦO) + 2

∫ λS

λO

dλΦ′ , (3.107)

ki(λS)− ki(λO) = −2ni(ΦS − ΦO)− 2

∫ λS

λO

dλ∂iΦ , (3.108)

which recovers the result stated in [49] (apart from the difference in definition of n and

assumptions about the source/observer 4-velocity).

We may consider the perturbation of the background 4-vector:

kµX = k̄µX + δkµX , (3.109)
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where (δ)kµX = (δ)kµ(λX) and δk0
O = 0 if we assume that the photon four-velocity at

the observer is equal to the background. This leads to:

δk0
S ≡ δk0 = −2(ΦS − ΦO) + 2

∫ λS

λO

dλΦ′ , (3.110)

kiS − kiO = δkiS − δkiO ≡ δki = −2ni(ΦS − ΦO)− 2

∫ λS

λO

dλ∂iΦ , (3.111)

3.4 Redshift perturbation

The redshift in perturbed Minkowski space may then be determined:

1 + z =
ωS
ωO

=
(gµνk

µuν)S
(gµνkµuν)O

(3.112)

=
−(1 + 2ΦS)

[
1− 2Φ|SO + 2

∫ λS
λO

dλΦ′
]

(1− ΦS) + (1− 2ΦS)k̄iSviS

−(1 + 2ΦO)(1− ΦO) + (1− 2ΦO)k̄iOviO
,

using the zeroth component of the geodesic equation (3.107). Together with the ith

component (3.108) this gives, to first order:

1 + z = 1 + ΦS − ΦO − 2(ΦS − ΦO) + 2

∫ λS

λO

dλΦ′ − vik̄i|SO

= 1− [Φ− v · n]SO + 2

∫ λS

λO

dλΦ′(λ) , (3.113)

consistent with [18, 49] (apart from the difference in convention for n). In a Friedmann

universe we have (from (3.96), dropping the tilde on z)

1 + z =
1

a

[
1− [Φ− v · n]SO + 2

∫ λS

λO

dλΦ′(λ)

]
. (3.114)

We can take ΦO = 0 = vO, since these quantities cannot be predicted by perturbation

theory [18].

Hence, the perturbation in redshift is

δz = z − z̄ = −1

a
(Φ− v · n) +

2

a

∫ λ

0
dλ̃Φ′(λ̃) , (3.115)

where 1 + z̄ = 1/a is the usual background redshift and where λS = λ and λO = 0

are the values of the affine parameter corresponding to the initial photon position and
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observer position respectively, according to our definition with n pointing towards the

photon’s initial position.

Thus, the redshift correction in (3.16) becomes

∂ρ̄g
∂z̄

δz(n, z)

ρ̄g(z̄)
=

1

ρ̄g(z̄)

∂ρ̄g
∂z̄

[
−1

a
(Φ− v · n) +

2

a

∫ λ

0
dλ̃Φ′(λ̃)

]
. (3.116)

3.4.1 Evolution bias

The number of sources is not a conserved quantity. Galaxies are able to form and merge

and as a result their number density must be allowed to change. The evolution bias is

a quantity which describes the intrinsic change in the number of sources with time (or

redshift). Hence the proper number density obeys a modified continuity equation:

ρ̄′g + 3Hρ̄g = beHρ̄g , (3.117)

where the evolution bias be vanishes if the source number is conserved, i.e. if (a3ρ̄g)
′ = 0 .

As stated, the number of sources will evolve with redshift, in general. The evolution

bias is determined if we know ρ̄g(z):

be =
1

H

(
a3ρ̄g

)′(
a3ρ̄g

) =
∂ ln

(
a3ρ̄g

)
∂ ln a

= −1

a

∂
(
a3ρ̄g

)
∂a

1

a3ρ̄g
= − 1

aρ̄g

∂ρ̄g
∂z̄

+ 3 . (3.118)

Hence, the redshift correction (3.116) is

∂ρ̄g
∂z̄

δz(n, z)

ρ̄g(z̄)
= −(be − 3)

[
−Φ + v · n+ 2

∫ λ

0
dλ̃Φ′(λ̃)

]
. (3.119)

3.5 Volume perturbation

Recall the perturbed FLRW metric:

g̃µνdx
µdxν = a2[−(1 + 2Φ)dη2 + (1− 2Φ)γijdx

idxj ] , (3.120)

and the four-velocity of a source (dropping the tilde on u):

uµ =
1

a
(1− Φ, vi) . (3.121)
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Consider a small element of volume dV as measured in the rest-frame of the source

[18, 62]:

dV =
√
−gεµαβγuµdxαdxβdxγ , (3.122)

where εµαβγ is the Levi-Civita symbol [2] and g is the determinant of the metric. To

first order we have
√
−g = a4(1− 2Φ) . (3.123)

Measurements are made from the rest-frame of the observer, so we must perform a coor-

dinate transformation between the coordinates at the source and those at the observer

[18, 62]:

dV =
√
−gεµαβγuµ

∂xα

∂z

∂xβ

∂θO

∂xγ

∂φO
J dzdθOdφO , (3.124)

where z is the observed redshift and the Jacobian of the mapping is

J =

∣∣∣∣ ∂ (θS, φS)

∂ (θO, φO)

∣∣∣∣ . (3.125)

Here the spherical polar angles (θS, φS) and (θO, φO) are the angular coordinates mea-

sured from the respective positions of the source and observer. If χ is the radial comoving

distance to dV , then in spherical coordinates the infinitesimal length element is given

as dxµ = (−dη,dχ, χdθS, χ sin θSdφS). In a perturbed universe, both the radial and an-

gular coordinates are perturbed with respect to the background observer and therefore

we have, at first order:

θS = θO + δθ , φS = φO + δφ , χ = χ̄+ δχ . (3.126)

Thus, to first order, the Jacobian (3.125) is given by

J = 1 +
∂δθ

∂θ
+
∂δφ

∂φ
. (3.127)

We can define a density V such that [18]:

dV = V dzdθOdφO , (3.128)

and thus
δV

V̄
=
V − V̄
V̄

. (3.129)
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In the background limit, this quantity simplifies to

a4

H
χ̄2sinθO , (3.130)

which follows from (3.5), using dΩ = sin θdθdφ. Hereafter we suppress the overbars on

χ and take it to mean the background comoving distance.

A lengthy calculation (see Appendix B and [18]) leads to

δV (z,n)

V̄ (z)
= −4Φ + 4v · n+

1

H

[
∂

∂λ
(v · n) + Φ′ + ni∂iΦ

]
+

(
H′

H2
+

2

χ̄H

)[
Φ− v · n− 2

∫ λ

0
dλ̃Φ′

]
− 4

χ̄

∫ λ

0
dλ̃Φ + 6

∫ λ

0
dλ̃Φ′ − 2

∫ λ

0
dλ̃

χ− χ̃
χχ̃

∇̃2
ΩΦ , (3.131)

where ∇̃2
Ω = cot θO∂θO + ∂2

θO
+
(
1/ sin2 θO

)
∂2
φO

is the angular part of the Laplacian

operator. We can substitute (3.131) in (3.22) to show that the fluctuation in the observed

galaxy number count at first order is given by,

∆(n, z) = bδC︸︷︷︸
Density term

+ H(be − 3)V︸ ︷︷ ︸
GR bias correction

+
1

H
∂

∂λ
(v · n)− 1

H
v′ · n+

(
be −

H′

H2
− 2

χH

)
(v · n)︸ ︷︷ ︸

Doppler

−
(
be −

H′

H2
− 2

χH

)
Φ− Φ +

1

H
Φ′︸ ︷︷ ︸

Sachs−Wolfe

+ 2

(
be −

H′

H2
− 2

χH

)∫ λ

0

dλ̃Φ′︸ ︷︷ ︸
Integrated Sachs−Wolfe

− 4

χ

∫ λ

0

dλ̃Φ︸ ︷︷ ︸
Time−delay(Shapiro)

+ 2

∫ λ

0

dλ̃
χ− χ̃
χχ̃

∇̃2
ΩΦ︸ ︷︷ ︸

Lensing

, (3.132)

where we have made use of the Euler equation (see (1.72)) for pressureless matter:

v′ · n+Hv · n+ ni∂iΦ = 0 . (3.133)

The result of (3.132) shows the observed fluctuation in galaxy number counts, with con-

tributions from redshift and volume perturbations. However, it is not yet representative

of actual observations. Every survey has a limit to its flux sensitivity and so there will

be a threshold flux below which objects will be not detected by the telescope. Thus

the number of observed sources also depends on their apparent fluxes [63]. This effect,
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called a magnification bias (mb), leads to an additional correction of the form [62]:

∆mb = 5sκGR (3.134)

where κ is the lensing convergence and s is the effective slope of the number counts

at the flux limit. This correction is based on the magnification or demagnification

of the observed sources due of lensing by overdense or underdense regions between the

observer and sources, which changes their apparent size and luminosity [62]. The lensing

convergence takes into account the amplification or de-amplification of their fluxes and

takes the form:

κGR = κ+ relativistic corrections , (3.135)

with

κ =

∫ λ

0
dλ̃

χ− χ̃
χχ̃

∇̃2
ΩΦ , (3.136)

where κ is the standard lensing term and the lensing term of (3.132) is −2κ. The

relativistic corrections are other terms which contribute to corrections in the Doppler,

Sachs-Wolfe, integrated Sachs-Wolfe and time-delay (Shapiro effect) terms [62]. They

may be determined by solving the Sachs equation (see Section 3.3.3 for the equivalent

transport equation) in a perturbed Friedmann universe, and the full relativistic expres-

sion for the correction due to the magnification bias is [62]

∆mb(z,n) = −5s

∫ λ

0
dλ̃

χ− χ̃
χχ̃

∇̃2
ΩΦ + 5s

(
1

χH
− 1

)
(v · n)

+
10s

χ

∫ λ

0
dλ̃Φ− 10s

(
1− 1

χH

)∫ λ

0
dλ̃Φ′

+ 5s

(
2− 1

χH

)
Φ , (3.137)

where s is the magnification bias

s =
∂a3ρ̄g
∂m

∣∣∣
m=m∗

, (3.138)

where m∗ is the threshold magnitude.
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Adding the result of (3.137) to (3.132) we obtain

∆(n, z) = b1δC︸︷︷︸
Density term

+ H(be − 3)V︸ ︷︷ ︸
GR bias correction

+
1

H

(
∂

∂λ
(v · n)− v′ · n

)
+

[
be −

H′

H2
− 5s+

(5s− 2)

χH

]
(v · n)︸ ︷︷ ︸

Doppler

−
[
be −

H′

H2
− 5s+

(5s− 2)

χH

]
Φ− (1− 5s)Φ +

1

H
Φ′︸ ︷︷ ︸

Sachs−Wolfe

− 2

[
be −

H′

H2
− 5s+

(5s− 2)

χH

] ∫ λ

0

dλ̃Φ′︸ ︷︷ ︸
Integrated Sachs−Wolfe

− 2
(5s− 2)

χ

∫ λ

0

dλ̃Φ︸ ︷︷ ︸
Time−delay(Shapiro)

− (5s− 2)

∫ λ

0

dλ̃
χ− χ̃
χχ̃

∇̃2
Ω (Φ)︸ ︷︷ ︸

Lensing

. (3.139)

The third term on the right-hand side is simplified to the contribution from RSD using

the following relation (see (3.47)):

∂

∂λ
(v · n) =

∂

∂η
(v · n)− ∂

∂χ
(v · n) = v′ · n− ∂

∂χ
(v · n) , (3.140)

where ∂
∂χ = ni∂

i.

Therefore (3.139) becomes [32]

∆(n, z) = bδC︸︷︷︸
Density term

+ H(be − 3)V︸ ︷︷ ︸
GR bias correction

− 1

H
∂

∂χ
(v · n)︸ ︷︷ ︸

Redshift space distortion

−
[
be −

H′

H2
− 5s+

(5s− 2)

χH

]
(v · n)︸ ︷︷ ︸

Doppler

−
[
be −

H′

H2
− 5s+

(5s− 2)

χH

]
Φ− (1− 5s)Φ +

1

H
Φ′︸ ︷︷ ︸

Sachs−Wolfe

− 2

[
be −

H′

H2
− 5s+

(5s− 2)

χH

] ∫ λ

0
dλ̃Φ′︸ ︷︷ ︸

Integrated Sachs−Wolfe

− 2
(5s− 2)

χ

∫ λ

0
dλ̃Φ︸ ︷︷ ︸

Time−delay(Shapiro)

− (5s− 2)

∫ λ

0
dλ̃

χ− χ̃
χχ̃

∇̃2
Ω (Φ)︸ ︷︷ ︸

Lensing

. (3.141)
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For brevity we can write (3.141) as follows:

∆(n, z) = ∆δ + ∆GRbias + ∆RSD + ∆Dop. + ∆pot. + ∆κ , (3.142)

where ∆δ + ∆GRbias is the galaxy density term with the gauge transformation, ∆RSD is

the redshift space distortion term, ∆Dop. is the Doppler term, ∆pot. are the potential

terms (non-integrated and integrated terms) and ∆κ is the lensing term. Each of these

terms may be expanded in spherical harmonics similarly to the density and redshift-space

distortion terms dealt with earlier. These contributions are determined numerically using

the code CAMB [45], taking into account the redshift distributions, window functions and

other specifics for different kinds of survey. Until now we have only discussed surveys

counting galaxies. There are other means by which we can gain information about the

distribution of dark matter and some of these are discussed in the following sections.

3.6 HI intensity mapping

Emission of the 21cm line from neutral Hydrogen (HI) may also be used as a tracer

of the underlying dark matter distribution. The overall approach is similar to that of

galaxy number counts, but there are some important differences. Firstly, HI intensity

mapping detects the total signal in each pixel, without detecting individual HI galaxies.

In this case the quantity of interest is the number density of neutral Hydrogen atoms

nHI . Once again, a bias may be introduced to relate this to the underlying δm, using

δnC(x, η) = bHI(η)δmC(x, η) , (3.143)

where δnC is the perturbation in the number density of neutral Hydrogen (HI) atoms in

the comoving gauge (C). In the Poisson gauge, similarly to galaxy number counts, the

HI number density is

δn = bHIδmC + (bHI
e − 3)HV . (3.144)

The expression for the evolution bias of a general tracer A is given by

bAe (z) = − ∂ln(a3ρ̄A)

∂ln(1 + z)
, (3.145)
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where a3ρ̄A is the comoving background source number density for tracer A. The rela-

tionship between the background comoving number density of neutral Hydrogen atoms

and the background brightness temperature, measured in an intensity mapping survey

THI, is [59]

a3ρ̄HI ∝
T̄HI(z)H(z)

(1 + z)2
, (3.146)

which gives

(be)
HI
IM =

∂ ln
(
T̄HIH

)
∂ ln a

− 3 . (3.147)

If we define the perturbation in brightness temperature ∆T analogous to the galaxy

number count perturbation ∆g, then it takes a similar form, related to the latter by [59]

∆T (n, z) = ∆g(n, z)− 2
δdL(n, z)

d̄L(z)
, (3.148)

where d̄L is the background luminosity distance between the observer and the source,

along with its perturbation δdL at first order. This enters into the expression because

the relation between the perturbed brightness temperature and the comoving number

density contains the determinant of the Jacobi map in the observer’s frame [59, 64].

The effective result of this additional term is to remove the contribution of the lensing,

since the luminosity fluctuations also contain a lensing convergence term which exactly

cancels the one in ∆g [59]. Thus, the HI brightness temperature fluctuations (and

associated angular power spectrum) may be treated like those of the galaxy number

counts, provided that the effective magnification is set to

(
sHI

IM

)
eff

=
2

5
. (3.149)

Hence, we have

∆T = ∆N

(
be =

∂ ln
(
T̄HIH

)
∂ ln a

− 3, s =
2

5
) . (3.150)

3.7 CMB lensing power spectrum

Another source of information regarding the perturbations in the dark matter density

distribution is found in the weak lensing of CMB photons by dark matter along the line

of sight. This deflection causes a shift in the apparent position of hot and cold spots in
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Source

Observer

Apparent angular
position of source

n

Υ

α
χ

χ∗

Figure 3.4: This figure shows the geometry of the weak lensing phenomenon. Photons
from the source travel towards the observer, passing a dark matter potential Υ which

changes their direction and thus the perceived direction of the source.

the CMB, which in turn affects the power spectra of CMB temperature and polarization.

In this section, following [48], the lensing potential is defined and an expression is derived

for the associated power spectrum.

Consider the geometry described in Fig. 3.4, where the deviation of a photon from a

source is shown. Assuming a universe with flat curvature, the weak lensing deflection

angle α of a source with comoving distance χ∗ is given by

α(χ∗) = −2

∫ χ∗

0
dχ
χ∗ − χ
χ∗χ

∇nΥ(χn, η0 − χ) , (3.151)

where Υ is the potential of the matter responsible for the lensing, and η0 is the present

conformal time so that η = η0 − χ is the conformal time at which the photon was at

position χn. ∇n is the covariant derivative on the sphere with surface normal n.

The lensing potential is φ defined as

φ(n) = −2

∫ χ∗

0
dχ
χ∗ − χ
χ∗χ

Υ(χn, η0 − χ) , (3.152)

so that the deflection angle is given by

α = ∇nφ . (3.153)
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In a similar way to the dark matter density contrast, we can define the power spectrum

of the potential Υ:

〈Υ(k, η)Υ∗(k′, η′)〉 =
2π2

k3
PΥ(k, η, η′)δ(k − k′) , (3.154)

where the conformal time η plays the role of redshift and Υ(k, η) denotes the Fourier

transform of Υ(x, η), defined according to (2.5). In terms of this power spectrum, the

power spectrum of the lensing potential is then given by

〈φ(n)φ(n′)〉 = 4

∫ χ∗

0
dχ

∫ χ∗

0
dχ′

(
χ∗ − χ
χ∗χ

)(
χ∗ − χ′

χ∗χ′

)∫
d3k

(2π)6

2π2

k3
PΥ(k, η, η′)eik·xe−ik·x

′
.

(3.155)

Using the plane wave expansion (A.6) and the expansion of Legendre polynomials in

spherical harmonics (A.4) we have

eik·x = 4π

∞∑
`=0

∑̀
m=−`

i`Y`m(k̂)Y ∗`m(n)j`(kχ) , (3.156)

taking x = χn. Substituting this into (3.155) and using the orthonormality of the

spherical harmonics (A.5) we obtain

〈φ(n)φ(n′)〉 =
2

π

∞∑
`=0

∑̀
m=−`

∫ χ∗

0
dχ

∫ χ∗

0
dχ′

(
χ∗ − χ
χ∗χ

)(
χ∗ − χ′

χ∗χ′

)
×
∫

dk

k
PΥ(k, η, η′)Y`m(n)Y ∗`m(n′)j`(kχ)j`(kχ

′) . (3.157)

As in the case of the dark matter density contrast, we may now expand the lensing

potential in spherical harmonics:

φ(n, z) =
∞∑
`=0

∑̀
m=−`

φ`mY`m(n) . (3.158)

and define the angular power spectrum as

〈φ`mφ∗`′m′〉 = Cφ` δ``′δmm′ . (3.159)
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Comparison with (3.157) yields

φ`m =
2

π

∫ χ∗

0
dχ

∫ χ∗

0
dχ′

(
χ∗ − χ
χ∗χ

)(
χ∗ − χ′

χ∗χ′

)∫
dk

k
PΥ(k, η0−χ, η0−χ′)j`(kχ)j`(kχ

′) .

(3.160)

Using a transfer function TΥ, defined by

Υ(k, η) = TΥ(k, η)ζ(k) , (3.161)

we may rewrite the angular power spectrum of the lensing potential in terms of the

power spectrum of the primordial curvature perturbation ζ:

Cφ` (χ1, χ2) =
2

π

∫
dk

k
Pζ(k)∆φ

` (χ1)∆φ
` (χ2) , (3.162)

where

∆φ
` (χ) =

∫ χ∗

0
dχTΥ(k, η0 − χ, η0 − χ′)j`(kχ)

(
χ∗ − χ
χ∗χ

)
. (3.163)
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Chapter 4

Primordial Non-Gaussianity

We have obtained expressions for the information that observational surveys will provide.

Using these, we will be able to forecast the constraints that will be possible with these

surveys, according to the formalism that will be introduced in the next chapter (see

Chapter 5). In this chapter we consider which variables we aim to constrain and the

motivation for doing so.

The primary parameter on which we wish to place constraints is the primordial non-

Gaussianity parameter fNL, because it acts as a powerful probe of the physics of the

early Universe [84, 85]. According to the consistency relation applied to single field

slow-roll (SFSR) models, the fNL parameter is first order in slow-roll parameters: fNL '

−5(ns − 1)/12 [86, 87, 89]. In comparison, for many multi-field inflation models it

is expected to obey fNL & 1 [88]. Thus, if it can be sufficiently well-constrained by

observation, it may be possible to rule out some inflationary models. This chapter

describes the primordial non-Gaussianity (PNG), the motivation to constrain it and the

forecasts of the constraints possible using the multi-tracer approach.

4.1 Tracers to constrain PNG

The current tightest constraints on the primordial non-Gaussianity (PNG) are calculated

using the bispectrum from Planck measurements of the three-point correlation function

75
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of the anisotropies in the CMB temperature and polarization maps:

fNL = −0.9± 5.1 , (4.1)

at 68% CL [91]. However, the large-scale structure (LSS) is becoming increasingly useful

as an alternate choice of observable: −51 < fNL < 21 at 95% CL from eBOSS DR14

data [104]. It is for this reason that galaxy number counts and HI intensity mapping

are chosen as complementary tracers in this work.

The power spectrum of an LSS tracer is able to constrain fNL because the PNG produces

a scale dependence in the bias, via the long-wavelength primordial gravitational potential

Φ. In turn, this modulates the local short-scale power spectrum of galaxy clustering,

producing a measurable signal which can be used to constrain the PNG [92, 93]. The

specific form of scale-dependence which results when Φ is present in the halo bias cannot

be created by late time processes, which makes the halo bias a robust probe of non-

Gaussianity in the primordial Universe. In the case of a local model of PNG, a k−2

scaling arises, making the signal most prominent on the largest scales of the matter

power spectrum [98–102] (see Fig. 4.1). At these scales, larger than the equality scale,

cosmic variance has a strong effect, placing a fundamental limit on the possible precision

in measurements of fNL from a single LSS tracer [103].

The cross-correlation between CMB lensing and clustering of galaxies has also recently

been shown to be particularly effective in constraining local PNG [96, 97]. So, by

combining these tracers using the multi-tracer approach, we will be able to constrain

the PNG below the cosmic variance limit, conceivably to a sufficiently high degree to

discriminate between possible inflationary models.

4.2 Defining fNL

As shown before, the primordial gravitational potential is given by Φp(k) = −3
5ζ(k).

The primordial non-Gaussianity parameter fNL is then defined by

− Φp = ϕG + fNL

(
ϕ2
G − 〈ϕ2

G〉
)
, (4.2)
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Figure 4.1: Angular power spectra from a bin of a Euclid-like survey (see Section 5.2)
in three different cases. In green we see the fiducial model with no PNG. In orange the
case where fNL = 50 and in blue the angular power spectrum when fNL = 100. We
see that the presence of PNG results in an increased amplitude at only the very largest

scales.

where the Gaussian field ϕG = 3
5ζG is the potential related to the Gaussian limit of

the curvature perturbation. In this definition, the parameter fNL is assumed to be

independent of scale. In this work we also consider a generalization of this model where

fNL becomes a function of scale: [105–107]

fNL(k) = fNL

(
k

kpiv

)nNL

, (4.3)

where kpiv is a pivot scale fixed here to 0.035h/Mpc and nNL is known as the running

index. Currently, the tightest observational constraint on nNL comes from the bispectra

of the CMB anisotropies: −0.6 < nNL < 1.4 at 68% CL from WMAP9 data, in the case

of a single-field curvaton [108, 109].
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4.3 Scale-dependent halo bias

In order to show how PNG results in a scale-dependence in the halo bias, we can describe

the large-scale halo bias in the context of the peak-background split (PBS) [110–113].

Within this formalism, the Gaussian field is split into respective long- and short-scale

modes ϕ = ϕ` + ϕs, where the long scales correspond to the clustering scale of halos,

or the large-scale power spectrum, and the short scales are comparable to the extent of

the halos themselves.

In the convention used here, the perturbed metric is given by

a−2ds2 = −(1 + 2Φ)dη2 + (1− 2Ψ)dxidx
i . (4.4)

In the same convention, the Poisson equation at late times is given by

∇2Φ =
3

2
Ωm0H

2
0

δmC
a

(4.5)

with δmC the comoving dark matter density contrast. This allows us to connect the

density contrast to the gravitational potential Φ.

Now, at late times, we can also connect the gravitational potential Φ to the primordial

potential Φp using (see (2.50))

Φ(k, z) =
T (k)Φp(k)D(z)

a(z)
, (4.6)

where D is normalized so that the definition of fNL is consistent with the definition of

fNL for local PNG in the CMB temperature, i.e. it is normalized with respect to the

matter-dominated era: D(z = 0) ≈ 0.8, since in the matter-dominated era

D(a) = a (4.7)

This is the same normalization as in (2.48). However, there are two conventions used

in the literature to define fNL in (4.2): the LSS convention where Φ is normalized

at z = 0, and the CMB convention where Φ is instead the primordial potential. The
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relation between the two normalizations is

fLSS
NL =

D(z = zd)(1 + z)

D(z = 0)
fCMB

NL . (4.8)

In the analysis that follows we have chosen to adopt the CMB convention. If we wish to

make use of the alternate LSS normalization for the growth factor (i.e. D(z = 0) = 1),

for example in the CAMB code, we need to rewrite the potential as follows:

Φ(k, z) =
T (k)Φp(k)D(z)

a(z)gd
, (4.9)

where gd may be determined from (2.52), in order to ensure a consistent normalization

with the CMB.

From the Poisson equation (4.5), we can write the matter density contrast as

δmC(k, z) = −α(k, z)Φp(k) , (4.10)

with

α(k, z) ≡ 2k2T (k)D(z)

3Ωm0H2
0

. (4.11)

Then, using (4.2) and (4.10), we obtain

δmC(k, z) = δmC,G(k, z)[1 + fNLϕG(k)] , (4.12)

where

δmC,G(k, z) = α(k, z)ϕG(k) , (4.13)

is the Gaussian comoving density contrast.

The comoving galaxy density contrast is given in the Gaussian case by

δgC,G(k, z) = bG(z)δmC,G(k, z) . (4.14)

From (4.12) we see that the non-Gaussian bias will no longer be scale-independent, but

will correct bG by a factor ∝ fNL.

http://etd.uwc.ac.za/



Chapter 4. Primordial Non-Gaussianity 80

In presence of local PNG defined as in (4.2), the Laplacian of the primordial potential

is

∇2Φp ' ∇2ϕG + 2fNL

(
ϕG∇2ϕG + |∇ϕG|2

)
. (4.15)

We split the potential into long and short wavelength modes at leading order:

Φ` ≈ ϕ` , (4.16)

Φs ≈ ϕs (1 + 2fNLϕ`) , (4.17)

where we reiterate that the long and short wavelength modes are associated respectively

with the large-scale clustering characteristics of the matter distribution and the small-

scale clustering of halo formation.

The long-wavelength overdensity δ` is unaffected by the presence of PNG, retaining the

Gaussian form:

δ`(k, z) = α(k, z)ϕ`(k) . (4.18)

These long-wavelength modes effectively control fluctuations in the background density

of the local cosmology. However, the short-wavelength fluctuations become coupled

to the long-wavelength modes, which results in an excess or deficit in halo formation,

depending on the large-scale density fluctuations. At lowest order, neglecting white-noise

contributions, we have

δs(k, z) = α(k, z)ϕs(k) (1 + 2fNLϕ`(k)) . (4.19)

Hence, if PNG is present, the local number of halos is affected not only by the large-

scale matter perturbations, but also by the coupling between long- and short-wavelength

modes. The coupling results in an effective local rescaling of the amplitude of the small-

scale matter fluctuations.

In Lagrangian space the local halo number density is given by [110, 111]

nh = n̄h (1 + bLδ`) , (4.20)

where bL is the Lagrangian-space bias. Thus we have

bL =
d lnnh

dδ`
, (4.21)
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and, in terms of the Eulerian-space convention used implicitly up to this point, the bias

is given by b = 1 + bL. Taylor expanding at first order in these parameters yields

bL =
∂ lnnh
∂δ`

+
∂ lnnh

∂ (1 + 2fNLϕ`)

∂ (1 + 2fNLϕ`)

∂ϕ`

∂ϕ`
∂δ`

=
∂ lnnh
∂δ`

+
2fNL

α

∂ lnnh

∂ lnσloc
8

= bGL + ∆b , (4.22)

where we have parametrized the local amplitude of small-scale fluctuations with σloc
8 =

σ8 (1 + 2fNLϕ`), scaled by (1 + 2fNLϕ`) as implied by (4.19), and we have introduced

the scale-dependent contribution to the large-scale bias:

∆b(k, z) = fNL
βf

α(k, z)
, (4.23)

where we take βf = 2δc(b − 1), which assumes a barrier-crossing model with barrier

height δc and is in good agreement (∼ 10% error) with N-body simulations [98]. Finally,

on large scales we can relate the halo density contrast to the linear density field as

δh(k, z) = [b(z) + ∆b(k, z)] δm(k, z) , (4.24)

where b = 1 + bGL is the familiar Eulerian-space bias, in the Gaussian case. Notice

that the non-Gaussian linear bias is no longer scale-independent, rather correcting the

Gaussian linear bias b by a factor ∝ fNL/k
2.
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Chapter 5

Calculating Constraints

5.1 The Fisher forecasting formalism

Fisher Forecasting is a Bayesian method which can be used in general to calculate

the constraints on parameters, given data and a corresponding model [51]. In this

case, the data are simulated observations of the angular power spectrum, while the

model consists of cosmological parameters that specify the theoretical angular power

spectrum. The expressions that follow are specific to an application of this method to

cosmological observations and assume the special case that the probability distributions

of the parameters are Gaussian.

5.1.1 The Fisher information matrix

In the case of cosmological observations on the sky, the Fisher matrix may be calculated

according to the following [52, 53]:

Fαβ = fsky

`max∑
`=2

(
2`+ 1

2

)
Tr

[
C−1
`,obs

∂C`,obs
∂θα

C−1
`,obs

∂C`,obs
∂θβ

+ C`,obsM`,αβ

]
, (5.1)

where θα are the parameters in question (see Section 5.3) andM`,αβ =
(
∂Z`
∂θα

∂ZT`
∂θβ

+ ∂Z`
∂θβ

∂ZT`
∂θα

)
,

where the matrix Z` corresponds to some fiducial model. In a realistic treatment, the

observed angular power spectrum C`,obs must be used. This contains information re-

lating to the limitations of the instruments used for observation, since what is actually

82
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observed is not the theoretical power spectrum derived previously (see (3.25)). Instead,

we observe the signal of the theoretical power spectrum C` (calculated numerically using

CAMB1 [45, 52, 94, 95]) with additional noise terms (see (5.4) and (5.5)). These terms are

dependent on the survey type and will be discussed in more detail later in this chapter,

together with the survey specifications used in this work. The sky fraction fsky, which

takes into account the portion of the sky covered by an observation, is also included

here. The expression also takes into account the maximum multipole limit `max, which

is related to smallest scale that a particular survey is able to resolve. Depending on the

survey, the minimum multipole included in the sum may also be adjusted to account for

the removal of lower multipoles during foreground cleaning and for the fact that the sky

coverage (and thus the number of available large-scale modes) may be limited.

5.1.2 Marginalized and fixed parameters

The constraints on parameters may be extracted from the Fisher matrix as conditional

or marginalized errors. Conditional errors are the constraints possible in the most opti-

mistic case where the values of all the other parameters under consideration are known

with complete certainty, i.e. the other parameters are fixed at their fiducial values. In

this case the conditional error on the parameter θα is given by

σαα =
1√
Fαα

. (5.2)

The marginalized error is a less optimistic, though a more realistic measure of the error

on a particular parameter, which takes into account the errors on the other parameters

by marginalizing over all possible values which they can assume. The marginalized error

on parameter θα may be calculated from the Fisher matrix using the following:

σαα =
√

(F−1)αα . (5.3)

1https://github.com/cmbant/CAMB
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5.2 Survey specifications

There are three survey types considered in this work, namely CMB lensing, HI intensity

mapping (HI IM) and photometric galaxy clustering surveys. Each has its own spec-

ifications and systematic effects to take into account (see Table 5.1 for a summary of

the survey specifications). In this section we describe each of the surveys as well as

the observational effects particular to each and how these are included in the Fisher

formalism in a combined “multi-tracer” approach.

As mentioned, the measurement of observed power spectrum does not equate to measur-

ing the theoretical power spectrum as derived in Chapter 4, even once all the relativistic

light-cone effects are included. There are additional systematic effects from experimental

limitations which must be taken into account to obtain more realistic constraints.

5.2.1 Noise

The cases of CMB and HI intensity mapping may be treated analogously to each other,

taking care of the instrumental effects of noise and the beam (the effect of limited angular

resolution). As in [55] and [54], the form that the observed signal takes for both of these

kinds of surveys is

Cij`,obs = Cij` +
N ij
instr,`

Bi`B
j
`

. (5.4)

Here Ninstr is thermal noise and Bi` is the contribution of the beam in harmonic space.

In the case of galaxy number counts, the dominant contribution to noise is the Poisson

shot noise NPoiss, and the observed power spectrum is

Cij`,obs = Cij` +N ij
Poiss . (5.5)

The particular noise characteristics for each of these surveys will be discussed later in

this section.
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5.2.2 CMB lensing specifications

The CMB provides data in the form of the CMB temperature, polarization and lensing

angular power spectra. In this work we consider a possible ground-based CMB Stage 4

(CMB-S4) configuration. For temperature and polarization CMB angular power spectra,

the instrumental noise is defined by [66]

NT,P
` = σT,P . (5.6)

We assume noise of σT = σP/
√

2 = 1µK-arcmin [65] and a Gaussian beam with the

following form in angular space [66]:

Bi` = e
−`(`+1)(θiB)

2

2 , (5.7)

with

θiB =
θiFWHM

2
√

2 ln 2
, (5.8)

where θiFWHM = 3 arcmin [65]. We also implement a low multipole cut of `min = 30

in each spectrum [65] and different cuts at high-` of `Tmax = 3000 in temperature and

`Pmax = 5000 in polarization, with the sky fraction taken as fsky = 0.4.

For the case of CMB lensing, we assume that lensing reconstruction can be performed

iteratively, using the minimum variance quadratic estimator on the full sky. This involves

the combining of the TT, EE, BB, TE, TB and EB CMB estimators, calculated according

to [67], with quicklens2, followed by iterative lensing reconstruction [68, 69]. The

lensing spectrum multipole cuts are the same as those for the temperature spectrum.

Hereafter “CMB” will refer to the full set of angular power spectra of the CMB anisotropies,

i.e. temperature, E-mode polarization, CMB lensing, and their cross-correlations.

5.2.3 HI intensity mapping specifications

An intensity mapping survey measures the total intensity of emission in each pixel for

a given set of atomic line(s), which leads to the measurement of very accurate redshifts

2https://github.com/dhanson/quicklens
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[70–75]. The surveys do not allow us to count individual galaxies, since these aren’t

resolved themselves. However, the galaxies can host atoms emitting in the chosen lines

and the fluctuations in the measured brightness temperature are expected to be a biased

tracer of the underlying cold dark matter distribution.

In this work we consider the particular line associated with HI emission and make use

of the fitting formulae from [76] for the SKA1-MID HI linear bias:

bHI(z) =
bHI(0)

0.677105

[
0.66655 + 0.17765 z + 0.050223 z2

]
, (5.9)

as well as for the background HI brightness temperature:

T̄HI(z) = 0.055919 + 0.23242 z − 0.024136 z2 mK , (5.10)

where ΩHI(0)bHI(0) = 4.3× 10−4 and ΩHI(0) = 4.86× 10−4.

An IM survey consisting of Ndish dishes, each in single dish mode (i.e. not interferometer

mode) will have a noise variance in the i-frequency channel given by [66, 73]

NHI
instr,`(νi) ≡ σHI(νi) =

4πfskyT
2
sys(νi)

2Ndishttot∆ν
, (5.11)

(5.12)

assuming scale-independence and no correlation between the noise in different frequency

channels, where ttot is the total observing time and the system temperature is given by

Tsys(ν) = Tinstr + Tsky , (5.13)

where the instrument and sky temperatures are given by Tinstr = 25 K and Tsky =

60
(

300 MHz
ν

)2.55
K respectively.

We assume a Gaussian beam for HI IM with the same form as for the CMB [54, 55]:

Bi` = e
−`(`+1)(θiFWHM)

2

16 ln 2 , (5.14)

with

θiFWHM ≈
c

νiDdish
. (5.15)
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Figure 5.1: HI intensity mapping redshift distribution. In black: The brightness
temperature (effective redshift distribution) function used for HI IM. In colours: The
distribution integrated over smoothed top-hat window functions (see (5.24)) in each

one of the 27 bins of width 0.1 in redshift.

For SKA1-MID, we assume Ndish = 197 dishes of diameter Ddish = 15 m, observing for

ttot = 104 hr over 20 000 deg2 of sky. The redshift range assumed is 0.35 ≤ z ≤ 3.05

(1050 ≥ ν ≥ 350 MHz, Band 1) [77], divided in 27 tomographic bins, each with width

δz = 0.1. The cleaning of foregrounds from HI IM effectively removes the largest scales,

`min . 5 [56, 57] and so we implement a minimum a multipole cut at `min = 5.

5.2.4 Photometric galaxy survey specifications

In this work we consider two planned future photometric galaxy surveys. Each survey

requires the specification of the total redshift distribution of sources N̄ , which has the

following general form:

N̄(z) ∝ zα exp

[
−
(
z

z0

)β]
gal/arcmin2 , (5.16)
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as well as the linear bias. Provision is made to account for uncertainties in the redshift,

and thus the distribution of sources in the ith redshift bin is modified according to [78],

which gives

N̄ i(z) =

∫ zi+1
ph

ziph

dzphN̄(z)p(zph|z) , (5.17)

where the ith observed photometric bin occupies the range ziph, z
i+1
ph and we adopt a

Gaussian distribution for the probability distribution of photometric redshift estimates

zph, given true redshifts z:

p(zph|z) =
1√

2πσz
exp

[
−

(z − zph)2

2σ2
z

]
. (5.18)

N̄ i is the redshift distribution (number density per redshift per solid angle) of sources

that was defined previously (see (3.2)), but now takes into account the uncertainty in

redshift measurements.

The Poisson noise contribution is calculated for the ith bin as the inverse of the number

density per solid angle in the ith bin [54, 58]:

N jk
Poiss,i =

δjk

n̄i
, (5.19)

where n̄i is calculated by integrating over redshift:

n̄i =

∫
dz N̄ i(z) . (5.20)

For both galaxy surveys we impose a multipole cut on small-scales, assuming that ob-

servations will be able to probe non-linear scales up to kmax = 0.3 h/Mpc which relates

to a redshift-dependent maximum multipole `max ' χ(z)kmax - 1/2.

5.2.4.1 Euclid-like survey

Euclid is a space-based experiment of the ESA Cosmic Vision program, with the satellite

set to be launched in 2022 [79]. It is scheduled to perform both a photometric and a

spectroscopic galaxy survey. Here, we focus on a survey with specifications similar to

the Euclid photometric survey. In particular, such a survey would observe a sky area of

Ωsky = 15 000 deg2, with an average source count of N̄ = 30 sources per arcmin2. The
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Figure 5.2: In black: The redshift distribution function for galaxies in a Euclid-like
survey spanning the redshift range 0 < z < 3. In colours: The redshift distribution for
each of the 10 bins containing equal numbers of sources, accounting for the Gaussian

spread due to uncertainties in the measured photometric redshift: σz = 0.05(1 + z).

redshift distribution of sources for a Euclid-like photometric survey follows (5.16) with

α = 2, β = 1.5, and z0 = 0.636.

Measurements are taken in the redshift range from z = 0 to z = 2.5 [80], which we

divide into 10 bins, each containing equal numbers of galaxies [80]. The uncertainty in

the photometric redshift estimate is assumed to be σz = 0.05(1 + z) with respect to the

true redshift value, and the linear galaxy bias is taken to evolve with redshift according

to a fiducial model given by [80]

bg(z) =
√

1 + z . (5.21)

A large-scale multipole cut of `min = 10 is assumed for this survey.
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Figure 5.3: In black: The redshift distribution function for galaxies in an LSST-like
survey spanning the redshift range 0.2 < z < 1.2. In colours: The redshift distribution
for each of the 10 bins of width 0.1 in redshift, accounting for the Gaussian spread due

to uncertainties in the measured photometric redshift: σz = 0.03(1 + z).

5.2.4.2 LSST-like survey

The other survey we consider is a photometric survey with specifications similar to

the one planned by the LSST Dark Energy Science Collaboration for the ground-based

Large Synoptic Survey Telescope. We assume an observation over a patch of the sky

with fsky equivalent Ωsky = 13 800 deg2, detecting an average of n̄g = 48 sources per

arcmin2 distributed in redshift following (5.16) with α = 2, β = 0.9, and z0 = 0.28 [81].

We divide the observed redshift range into 10 tomographic bins with widths of 0.1 in

photo-z between z = 0.2 and z = 1.2. We assume a photometric redshift uncertainty of

σz = 0.03(1 + z) with respect to the true redshift z, and a fiducial model for the linear

bias given by [81]

bg(z) = 0.95/D(z) , (5.22)

where D(z) is the matter growth factor (see Section 1.5.2.3). We assume a slightly larger

scale multipole cut of `min = 20 than for Euclid, because of the comparatively smaller
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Parameter CMB-S4 (T ,E,φ) SKA1-MID Euclid-like LSST-like

Noise σT , σE , σφ
4πfskyT

2
sys(νi)

2Ndishttot∆ν
1
n̄i

1
n̄i

Redshift Distribution - T̄HI(z) (5.10) z2 exp
[
−
(

z
0.636

)1.5]
z2 exp

[
−
(

z
0.28

)0.9]
Beam θiFWHM 3 arcmin c

νiDdish
- -

σz - - 0.05(1 + z) 0.03(1 + z)

b(z) - bHI(z) (5.9) bg(z) =
√

1 + z bg(z) = 0.95/D(z)
Redshift range - 0.35− 3.05 0− 2.5 0.2− 1.2
Number of Bins - 27 10 10

fsky 0.40 0.48 0.36 0.33
`max 3000,5000,3000 500 b0.3χ− 1/2c b0.3χ− 1/2c
`min 30 5 10 20

Table 5.1: Technical specifications for different surveys.

sky area.

5.3 The multi-tracer approach

We describe in this section further details of the Fisher methodology used to determine

constraints, specifically the procedure to be followed when multiple tracers are involved,

and the full set of parameters used in the analysis.

5.3.1 Multiple tracers

A crucial component of this work is the cross-correlation of multiple tracers of the

underlying dark matter distribution. In order to obtain constraints within this paradigm,

we must be able to combine different data sets within the Fisher analysis. As before,

according to (5.1), the Fisher Matrix is calculated at each multipole ` from the angular

power spectra. From Chapter 2 and Chapter 3, these all share a similar general form

given by (see (3.25))

CXY
` (zi, zj) = 4π

∫
d ln kPζ(k)∆X,W

` (k, zi)∆
Y,W
` (k, zj) , (5.23)

where the redshift dependence is suppressed, X, Y = T, E, φ for the CMB, and X, Y

= g, HI for the galaxy number counts or HI IM brightness temperature perturbations,
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respectively. Here, Pζ is the dimensionless primordial power spectrum and the kernels

∆W,X
` are described in the previous chapters (see (2.57) and (3.142)) where both ∆g,W

`

and ∆HI,W
` include the window function and observational corrections from [45, 82]. As

stated, the effective window function for the galaxy counts is the Gaussian probability

distribution of photometric redshift. For the HI intensity mapping, the window function

used is a smoothed top-hat window function of the form

W (z) = A

(
1 + tanh

(
zi+1 − z

s

))(
1 + tanh

(
z − zi
s

))
(5.24)

for the ith bin [zi, zi+1], where A is a normalization constant and s is a parameter

controlling the smoothness and is set to 0.01. The details of the CMB temperature and

polarization window functions can be found in [90].

For multiple tracers the full covariance matrix takes the form:

C` =



CTT
` CTE

` CTφ
` CTHI1

` ... CTg1
` ...

CET
` CEE

` CEφ
` CEHI1

` ... CEg1
` ...

CφT
` CφE

` Cφφ` CφHI1
` ... Cφg1

` ...

· · ·

· · ·

CHI1T
` CHI1E

` CHI1φ
` CHI1HI1

` ... CHI1g1
` ...

· · ·

· · ·

Cg1T
` Cg1E

` Cg1φ
` Cg1HI1

` ... Cg1g1
` ...



, (5.25)

constructed from the auto- and cross-correlation components of the observed angular

power spectra (including noise), and where the superscript gi and Hi denote the com-

ponents of the galaxy number count and HI IM power spectra in the ith bin.

In the case of multipoles above or below the cut thresholds, this matrix becomes trun-

cated to include only the spectra which are relevant at those multipoles. The different

tracers also have different sky fractions, and so the expression in (5.1) generalizes to

have a matrix coefficient fsky,ij . This fsky,ij is defined so that CMB-CMB auto- and

cross-correlation spectra are multiplied by the corresponding fsky,CMB, and analogously

for HI-HI and g-g spectra. In the case of cross-survey correlations CXY` (e.g. HI-CMB),

then the coefficient is determined by fsky,XY = min [fsky,X , fsky,Y ].
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Parameter Fiducial Value

ωb 0.022383
ωc 0.12011
H0 67.32
τ 0.0543

ln
(
1010As

)
3.0448

ns 0.96605
Bg,i, BHI,i 1.0

Table 5.2: Fiducial parameter values [29]

5.3.2 Parameter vector

The parameter vector θ contains the 6 standard ΛCDM cosmological parameters: θ ={
ωb, ωc, H0, τ, ln

(
1010As

)
, ns
}

, as well as nuisance parameters Bg,i and BHI,i that mul-

tiply the bias in the ith bin: bg(z) → Bg,ibg(z) and T̄HI(z)bHI(z) → BHI,iT̄HI(z)bHI(z),

in the respective cases of galaxy number counts and HI IM brightness temperature per-

turbations for z ∈ [zi, zi+1]. This allows for the free redshift evolution of the linear bias

of each survey. Finally, θ also contains the parameters associated with the primordial

non-Gaussianity: fNL, nNL which are defined in a previous section of this chapter (see

Section 4.2).

To obtain the final constraints on the primordial non-Gaussianity parameters, we marginalise

over the cosmological and nuisance parameters. The assumed fiducial values of the cos-

mological parameters and nuisance parameters are displayed in Table 5.2, following

Planck 2018 [29]. The analysis is split into two parts: the first assumes a scale indepen-

dent fNL which has fiducial value 0, and the second includes the scale-dependence from

the running nNL using fiducial values fNL = −0.9 and nNL = 0.

5.4 Results

In this section we report the findings of the analysis, and the constraints in the cases of a

scale-independent PNG parameter fNL and for one including the running nNL. First we

present a summary of the results of this work, and then a comparison with the results

currently in the literature. This section is based on the recently-published work [115].
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Figure 5.4: Triangle plot showing uncertainties on fNL and the cosmological param-
eters for the case of multiple tracers. In red: CMB-S4 × SKA1-MID IM × LSST-like
with respective `min = [30, 5, 20] and in green: CMB-S4 × SKA1-MID × Euclid-like

with respective `min = [30, 5, 10].

5.4.1 fNL model of PNG

The uncertainties for this model from single surveys, with the assumed minimum monopole,

are:

σ (fNL) '


2.1 SKA1 (`min = 5) ,

2.3 Euclid-like (`min = 10) ,

16.2 LSST-like (`min = 20) .

(5.26)

Once CMB lensing from CMB-S4 with `min = 30 is included with each of the other

surveys, taking the smaller of the sky areas as the overlap area, the errors decrease to:

σ (fNL) '


1.6 SKA1× CMB-S4 ,

1.8 Euclid-like× CMB-S4 ,

10.5 LSST-like× CMB-S4 .

(5.27)

For the combination between only intensity mapping and number counts, the uncertain-

ties obtained using the same `min values as above, taking the smaller sky area as the
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overlap area, are:

σ (fNL) '


0.96 SKA1× Euclid-like ,

1.6 SKA1× LSST-like .

(5.28)

Once all three tracers are included, the tightest constraints obtained are:

σ (fNL) '


0.90 SKA1× Euclid-like× CMB-S4 ,

1.4 SKA1× LSST-like× CMB-S4 .

(5.29)

Recall that these results are marginalised over the uncertainties in the standard cosmo-

logical parameters. A full triangle plot of the uncertainties on the cosmological param-

eters and fNL is shown in Fig. 5.4 for the cases including 3 tracers.

In addition to the different feasible minimum multipoles of the different experimental

configurations described in Section 5.2, we consider the uncertainties in fNL by changing

the `min for all of the experiments. These results are presented in figure 5.5.

In particular, if we consider the optimistic case where the minimum multipoles extend

to 2 for all three tracers, this yields the following constraints for the multi-tracer cases:

σ (fNL) '


0.47 SKA1× Euclid-like× CMB-S4 ,

1.0 SKA1× LSST-like× CMB-S4 .

(5.30)

5.4.2 fNL, nNL model of PNG

We now consider the constraints for the two-parameter model (4.3) with a running

of fNL, using the same specifications as in (5.26)–(5.29). In figure 5.6, we show the

marginalized uncertainties on the 2-dimensional fNL-nNL parameter space.

σ (nNL) '


2.7 SKA1 (`min = 5) ,

0.35 Euclid-like (`min = 10) ,

0.37 LSST-like (`min = 20) .

(5.31)
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10-1
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σ
(f
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L
)

SKA1-MID IM
Euclid
LSST

SKA1-MID IM x Euclid
SKA1-MID IM x LSST

Figure 5.5: Marginalized uncertainties on fNL as function of the minimum multipole
`min of the LSS tracer. Solid curves correspond to LSS experiment without CMB: SKA1-
MID IM (blue), Euclid-like (yellow), and LSST-like (grey), and the combinations SKA1
IM × Euclid-like (green) and LSST-like (red). Dashed lines correspond to the inclusion

of CMB-S4 lensing (`min = 30).

For the case of two tracers, where we have now included with the above surveys the

CMB lensing from CMB-S4 with `min = 30, the errors decrease to:

σ (nNL) '


1.4 SKA1× CMB-S4 ,

0.24 Euclid-like× CMB-S4 ,

0.32 LSST-like× CMB-S4 .

(5.32)

For the combination between intensity and number counts, the uncertainties obtained

are:

σ (nNL) '


0.13 SKA1× Euclid-like ,

0.24 SKA1× LSST-like .

(5.33)
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Figure 5.6: Marginalized 2-dimensional constraint plots for fNL versus nNL in the
case of `min = 5, 10, 30 for HI IM, galaxy number counts, and CMB respectively. The
multi-tracer combinations are: SKA1 × Euclid-like (yellow), SKA1 × LSST-like (grey),

CMB × SKA1 × Euclid-like (green), and CMB × SKA1 × LSST-like (red).

Once all three tracers are included, the tightest constraints obtained are:

σ (nNL) '


0.12 SKA1× Euclid-like× CMB-S4 ,

0.22 SKA1× LSST-like× CMB-S4 .

(5.34)

The results from this model show that the uncertainties on fNL degrade by ∼ 20%

on average, compared to the case without running, which indicates a weak degeneracy

between the two parameters.

5.4.3 Comparison with other results on σ(fNL)

In this subsection we investigate the differences between our findings and uncertainties

on fNL derived in the literature. As stated before, in this work we consistently make

use of the CMB convention to define fNL. In the few cases where other works make use
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of the alternate LSS convention, we quote here the relevant constraints modified to be

consistent with the CMB convention (4.8) which we use.

In [54] and [55] the case of LSST-like and SKAI-MID IM is examined (without using

CMB-S4), giving uncertainties down to ∼ 0.31 for the multi-tracer case. They use a

greater number of bins with smaller width for the SKAI-MID IM survey: 100 bins with

equal co-moving width, while we use 27 such bins. In addition, 9 bins are used for LSST-

like, with widths chosen to ensure equal source density, as opposed to our 10 fixed-width

bins. They use a multipole range 2 & ` & 500 for both tracers and assume larger sky

fractions: 0.5 for LSST-like and 0.75 for SKA1, with the overlap taken as 0.4, which

also exceeds ours. Their LSST-like redshift distribution is normalized to a slightly more

pessimistic 40 sources/arcmin2, versus our 48 sources/arcmin2 (according to [81]) which

results in a slightly lower shot noise. In summary, their greater sky area and smaller

`min are the main reasons for their more optimistic constraints.

In [58] there is a multi-tracer analysis for Euclid-like and SKA1-MID IM surveys. Their

results give 0.72 ≤ σ (fNL) ≤ 1.05, depending on (a) the maximum multipole chosen

(`max = 60 or `max = 300), and (b) the sky overlap (50% or 100%). Their multipole

range for all tracers extends down to `min = 2. They also consider a LSST-like survey

with a survey area equal to that of the entire SKA1-MID IM survey. They obtain the

multi-tracer result σ (fNL) ' 0.61 for `max = 300, which is lower than ours. Considering

that the effect of fNL is captured only on larger scales, the difference in `max should

have a negligible effect on the final uncertainties. There are 20 bins for both surveys,

chosen so that there are equal number counts of Euclid-like sources in each. The sky

fraction in case (i) of 50% overlap (corresponding to an overlapping sky fraction 0.18) is

smaller than our shared sky fraction of 0.36 for SKA1-MID IM and Euclid-like surveys.

However, the SKA1 sky fraction used in the three cases is 0.72, which is larger than

our 0.48 (according to [77]). In case (iii) the LSST-like sky fraction is also chosen as

0.72, larger than our sky fraction for LSST-like of ∼ 0.33 (according to [81]). The bias

fitting functions used are the same as ours, and the same kind of nuisance parameters

are introduced. The main cause of the difference in results from ours is again the greater

sky area and smaller `min that they assumed.

In [96] the case of LSST-like clustering and CMB-S4 lensing in cross correlation is

investigated. The uncertainties found are σ (fNL) ' 0.4 or σ (fNL) ' 1.0 for the cases
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where the minimum multipole for both tracers is either 2 or 20, respectively. The galaxy

redshift distribution is split into 6 bins, extending over a larger redshift range (0 < z < 7)

than ours and assuming a redshift distribution normalized to 50 sources/arcmin2 over

the part of the redshift range that is the same as ours. The sky fractions used to obtain

these results are 0.5 for CMB and LSST, assuming 100% overlap. Their bias for LSST

is calculated according to the fiducial model b(z) = 1 + z as opposed to the one we

use: b(z) = 0.95/D(z). Once again, the greater sky area and smaller `min that they

assumed produce more optimistic constraints than ours. The larger redshift range that

they considered is not as important.

Note that the fact that our results for LSST-like are weaker than the uncertainties for

Euclid-like and also weaker than the uncertainties in the literature is mainly due to the

sky fraction assumed according to [81] and not for the smaller redshift range considered.

In light of the differences in assumptions made in the literature compared to this work, it

is not unexpected that our constraints are not consistently tighter than those from pre-

vious investigations. However, it must be stressed that our constraints use conservative

estimates and the most up-to-date specifications for the surveys involved.
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Chapter 6

Conclusion and future work

6.1 Summary of main results and derivations

In Chapter 2 we introduce the two-point correlation function and angular power spec-

trum. We then rederive expressions for the angular harmonic coefficients, as well as a

series of useful relations between the two-point correlation function, angular power spec-

trum and 3D power spectrum. Following this, we relate the density perturbation to the

primordial curvature perturbation by defining various transfer functions and describing

their normalizations. This allows us to relate the C` of the angular power spectrum to

the primordial curvature power spectrum Pζ , using angular transfer functions ∆`. Fi-

nally, we take into account the effect of an observational window function on the angular

power spectrum.

In Chapter 3 we continue to include observational effects to make the expression for

the angular power spectrum more realistic. We begin by carefully defining the mea-

sured fluctuations in galaxy number counts and redefining the angular power spectrum

accordingly. Using these definitions, we derive expressions for the angular transfer func-

tions of two components of the newly-defined angular power spectrum, namely those

associated with the comoving density and redshift space distortions. We then examine

the distortions to the luminosity distance, rederiving the photon transport equation and

establishing the framework which allows us to describe the effect from making observa-

tions on the past light cone. Then we rederive the relationship between the measured
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galaxy fluctuations at the observer and those at the source, as well as the resulting ex-

pressions for these observational effects which are used by CAMB to numerically calculate

the observed angular power spectrum. In addition, we describe the particular angular

power spectra associated with HI intensity mapping and CMB lensing observations.

In Chapter 4 we introduce the primordial non-Gaussianity parameter fNL and the as-

sociated running index nNL and we discuss the motivation for the choice of surveys

to constrain them. In particular, using the formalism of the peak-background split,

we describe the scale-dependent halo bias that arises in the angular power spectra of

large-scale structure due to the presence of primordial non-Gaussianity.

In Chapter 5 we describe the details of the surveys used to calculate constraints and

outline the associated methodology, namely the Fisher formalism, and how it can be

used in the case of multiple tracers. Finally, we present the results from single- and

multi-tracer approaches, and discuss the findings in the context of the existing results

concerning σ(fNL) in the literature.

6.2 Major findings and future work

We have investigated the measurement of the effect of local primordial non-Gaussianity

on ultra large-scale perturbations and shown the effectiveness of the use of up to three

tracers of the cosmic matter density field in this regard. In particular, our forecast pre-

dicts that the combination of an SKA1-MID HI intensity mapping survey, a photometric

galaxy survey (Euclid- or LSST-like) and CMB lensing from CMB-S4, could reach un-

certainties for primordial non-Gaussianity parameters of σ(fNL) . 0.9 and σ(nNL) . 0.2

in the conservative case. We also note the particular importance that the inclusion of

CMB lensing information has in further improving the constraints on fNL, through the

cross-correlation with intensity or number counts. Although the constraints forecast here

are not conclusively better than similar results in the existing literature, in the context

of the assumptions made, the results presented here are more robust and realistic.

Because the effect of the PNG parameters is most prominent on the very large scales, the

constraints depend strongly on the `min and fsky considered in the analysis. We assumed

the following minimum multipoles and sky areas for each experiment, according to the

latest specifications for each survey:
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• `min = 5, Ω = 20 000 deg2 – SKA1 [77]

• `min = 10, Ω = 15 000 deg2 – Euclid-like [80]

• `min = 20, Ω = 13 800 deg2 – LSST-like [81]

• `min = 30, Ω = 16 500 deg2 – CMB-S4 [65]

The uncertainties obtained for local type PNG in the single-tracer cases are σ(fNL) ' 2.1

for SKA1-MID IM with `min = 5, σ(fNL) ' 2.3 for Euclid-like with `min = 10, and

σ(fNL) ' 16.2 for LSST-like with `min = 20. The constraints on the running index of

fNL in the extended local PNG model, were found to be σ(nNL) ' 2.7, 0.35, 0.37 from

the respective surveys.

From the combination of two different large-scale structure surveys via the multi-tracer

approach, we forecast σ(fNL) ' 0.96 (1.6) for SKA1-MID IM with Euclid-like (LSST-

like) and σ(nNL) ' 0.13 (0.24).

When we include CMB lensing information (with `min = 30) from a possible CMB-S4

ground-based experiment with a single LSS survey via the multi-tracer approach, we

found that the single-tracer errors decrease to σ(fNL) ' 1.6, 1.8, 10.5 for SKA1-HI IM,

Euclid-like, and LSST-like, respectively.

The tightest uncertainties, from the combination of all three tracers in a multi-tracer

analysis, are predicted to be

σ(fNL) ' 0.90 and σ(nNL) ' 0.12 , for SKA1× Euclid-like× CMB-S4. (6.1)

Replacing Euclid-like with LSST-like, degrades these to σ(fNL) ' 1.4 and σ(nNL) ' 0.22.

Since constraints calculated here use the most up-to-date specifications for the surveys

involved and more conservative estimates of the minimum multipoles than in the existing

literature, it is not unexpected that our constraints are comparatively weaker. We also

studied the effect of the chosen minimum multipole on the PNG uncertainties, as shown

in Fig. 5.5. In the cases of multiple tracers, the sky overlap area was assumed to be

smallest of the sky fractions of the tracers used. In the case of smaller overlaps, the

uncertainties will only be mildly negatively affected.
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In addition to CMB-S4, we also considered using simulated Planck-like data as rep-

resentative of current CMB measurements. Although a forecast of the corresponding

constraints lead to uncertainties on the cosmological parameters compatible with the

latest results in [27–29], the improvement in constraints by adding Planck to the single-

tracer cases was very small. In addition, we tested the possibility of completing the

missing first multipoles 2 ≤ `min < 30 in the CMB spectra, but found no further im-

provement, indicating that the improvements Planck made to the single-tracer cases

were mainly due to parameter degeneracy with the standard cosmological parameters,

rather than the imprint of fNL on the cross-correlation between intensity/number counts

and CMB lensing.

In future analyses it may be interesting to consider constraints on different models of

primordial non-Gaussianity. For instance, extending the definition of fNL given in (4.2),

it is possible to define a higher order gNL parameter such that

− Φp = ϕG + fNL

(
ϕ2
G − 〈ϕ2

G〉
)

+ gNL

(
ϕ3
G − 3〈ϕ2

G〉ϕG
)
. (6.2)

Another possibility is to include the bispectrum in the analysis and perform a combined

forecast using both the bispectrum and power spectrum of the tracers [123–126]. This

approach has recently been shown to be effective in constraining the PNG using upcom-

ing radio continuum and optical surveys by up to a factor of ∼ 5 better than forecasts

from the power spectrum alone [125].

In addition to the three used here, there are many other tracers that have been identified

as good candidates to obtain competitive constraints on fNL. Examples include:

• galaxy clustering [116–118],

• cosmic infrared background [119],

• cosmic voids [120]

• different IM lines, such as Hα, CO and [CII] [121, 122].

In future analyses these could be included to attain tighter constraints on primordial

non-Gaussianity parameters.
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Appendix A

Special Functions

This appendix contains definitions of special function relations used in the derivations.

Fourier Convention

δk =

∫
d3x δ(x) e−ik·x (A.1)

δ(x) =
1

(2π)3

∫
d3k δk e

ik·x (A.2)

Legendre polynomials orthogonality

∫ 1

−1
d(k̂ · n) L`(k̂ · n)L`′(k̂ · n) =

2

2`+ 1
δ``′ (A.3)

Spherical Harmonic expansion of Legendre Polynomials

L`(k̂ · n) =
4π

2`+ 1

∑̀
m=−`

Y`m(n)Y ∗`m(k̂) (A.4)

Spherical harmonics orthonormality

∫
dΩn Y`m(n)Y ∗`′m′(n) = δ``′δmm′ (A.5)

Plane wave expansion of the exponential function

eik·r =

∞∑
`=0

(2`+ 1)i`L`(k̂ · r̂)j`(kr) , (A.6)

where L` are the Legendre polynomials, and j` the spherical Bessel functions.
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Appendix B

Volume perturbation calculation

This appendix, based on the work of [18], provides details of the calculation used to

obtain the terms of the volume perturbation in Chapter 3.

First, we expand the right-hand side of (3.124), using (3.121), (3.123) and (3.127) to

obtain

dV = a3(1− 2Φ)χ2 sin θS

[
(1− Φ)

dχ

dz
− vn

dη

dz

] [
1 +

∂δθ

∂θ
+
∂δφ

∂φ

]
dzdθOdφO , (B.1)

which, to first order, gives [18, 62]

dV = a3(1−2Φ)

[
dχ

dz
χ2 sin θS

(
1 +

∂δθ

∂θ
+
∂δφ

∂φ

)
−
(

Φ
dχ̄

dz̄
+ vn

dη

dz

)
χ̄2 sin θO

]
dzdθOdφO ,

(B.2)

where vn is the radial component of the velocity, dχ/dz is the measurement of the

change in the comoving distance with redshift along the perturbed photon geodesic and

we reserve overbars for background quantities.

Hence

dχ

dz
=

dχ̄

dz̄
+

dδχ

dz̄
− dδz

dz̄

χ̄

z̄

=
a

H
+

dη

dz̄

(
dδχ

dλ
− dδz

dλ

a

H

)
=

a

H

(
1− dδχ

dλ
+

dδz

dλ

a

H

)
, (B.3)
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where dλ is equivalent to dη for derivatives along the photon geodesic and the derivatives

dχ̄/dz̄ = −dη/dz̄ = a/H, valid at first order, have been used.

Thus, keeping the calculation at first order, we can multiply out the expression for V

(see (3.128)), using (B.2) to obtain

V =
a4

H

[
χ2 sin θS

(
1 +

∂δθ

∂θ
+
∂δφ

∂φ

)
+ χ̄2 sin θO

(
a

H
dδz

dλ
− dδχ

dλ

)
− H
a

(
Φ

dχ̄

dz̄
+ vn

dη

dz

)
χ̄2 sin θO − 2Φχ̄2 sin θO

]
=

a4

H
χ̄2 sin θO

[
χ̄2 + 2χ̄δχ

χ̄2

sin θO + cos θOδθ

sinθO

(
1 +

∂δθ

∂θ
+
∂δφ

∂φ

)
+

(
a

H
dδz

dλ
− dδχ

dλ

)
− Φ + vn − 2Φ

]
=

a4

H
χ̄2 sin θO

[
1 + 2

δχ

χ̄
+

(
cot θO +

∂

∂θ

)
δθ +

∂δφ

∂φ

+
a

H
dδz

dλ
− dδχ

dλ
− 3Φ + v · n

]
, (B.4)

which (by (3.129)) gives [18, 62]

δV (n, z)

V̄ (z)
= −3Φ +

(
cot θO +

∂

∂θO

)
δθ +

∂δφ

∂φ
+ v · n+ 2

δχ

χ̄
− ∂δχ

∂λ

+
1

H(1 + z̄)

∂δz

∂λ
−
(
− 4 +

2

χ̄H
+
H′

H2

)
δz

(1 + z̄)
. (B.5)

The δθ, δφ and δχ can now be calculated by solving the geodesic equation for a perturbed

Friedmann universe. The deviation vector defined earlier (see (3.49)) is useful here,

because in spherical coordinates its components determine δθ, δφ and δχ. In order to

relate the space-time coordinates and the affine parameter, we make use of

dxµ

dη
=

dxµ

dλ

dλ

dη
=
kµ

k0
, (B.6)

where we have used the wave vector kµ tangent to the geodesic from (3.46). In the case

of the conformal time component, this leads to

x0 =

∫ ηO

ηS

dη = ηO − ηS . (B.7)

For the spatial components, writing kµ using a first-order perturbation, we obtain

dxi

dη
=
k̄i + δki

k̄0 + δk0
= −ni + niδk0 + δki . (B.8)
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Integrating, we obtain

xi =

∫ ηO

ηS

dη(−ni + δki + niδk0) . (B.9)

At first order dη = dλ, and thus

xi = −ni(ηO − ηS) +

∫ λO

λS

dλ(δki + niδk0) . (B.10)

We subtract the background from (B.10) to obtain

xi − x̄i = δxiO − δxiS =

∫ λO

λS

dλ(δki + niδk0) , (B.11)

where we have δxiO = 0. Thus, at first order and taking δxiS ≡ δxi, we can write

δxi =

∫ λS

λO

dλ̃
(
δki + niδk0

)
, (B.12)

where the background components of k̄µ are described in Section 3.3.5.

We may then use the components (3.110) and (3.111) of the geodesic equation, with the

corresponding affine parameter bounds λO = 0 and λS = λ, to show that

δk0 = −2Φ + 2

∫ λ

0
dλ̃Φ′ , (B.13)

and

δki = −2niΦ− 2

∫ λ

0
dλ̃∂iΦ . (B.14)

We may simplify the latter further using ∂i = ni(nj∂j) + ∇i⊥ and ∂
∂λ = ∂

∂η − nj∂j

(compare (3.140)). Thus we have:

δki = −2niΦ− 2

∫ λ

0
dλ̃

[
ni
(
∂

∂η
− ∂

∂λ

)
Φ +∇i⊥Φ

]
, (B.15)

and so we obtain

δki = −2ni
∫ λ

0
dλ̃Φ′ − 2

∫ λ

0
dλ̃ ∇̃ i

⊥Φ . (B.16)

By substituting (B.16) in (B.12) we obtain

δxi = −2ni
∫ λ

0
dλ̃Φ− 2

∫ λ

0
dλ̃′
∫ λ̃′

0
dλ̃∇̃ i

⊥Φ , (B.17)

where we can reverse the order of integration in the second term (as described in general
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in [1]) while preserving the area covered in the λ̃-λ̃′ plane, to make the integral over λ̃

trivial, finally obtaining

δxi = −2ni
∫ λ

0
dλ̃Φ− 2

∫ λ

0
dλ̃
(
λ− λ̃

)
∇̃ i
⊥Φ . (B.18)

We can also separate (B.18) into parallel and perpendicular components as

δxi = δx i
‖ + δx i

⊥ , (B.19)

where

δx i
‖ = −2ni

∫ λ

0
dλ̃Φ, δx i

⊥ = −2

∫ λ

0
dλ̃
(
λ− λ̃

)
∇̃ i
⊥Φ . (B.20)

We can now obtain δθ, δφ and δχ by projecting δx i
⊥ and δx i

‖ onto each of the unit

vectors eθi, eφi and eχi, respectively. These unit vectors have the following properties

[18]:

nieθi = 0 , nieφi = 0 , nieχi = 1 , (B.21)

and

eθi∇̃ i
⊥ =

1

χ̃
∂̃θO , eφi∇̃ i

⊥ =
1

χ̃ sin θO
∂̃φO . (B.22)

Therefore, to first order we have:

δχ = δx i
‖ eχi = −2

∫ λ

0
dλ̃Φ ,

δθ =
1

χ̄
δx i
⊥eθi = −2

∫ λ

0
dλ̃

χ− χ̃
χ̄χ̃

∂̃θOΦ ,

δφ =
1

χ̄ sin θO
δx i
⊥eφi = − 2

sin2 θO

∫ λ

0
dλ̃

χ− χ̃
χ̄χ̃

∂̃φOΦ . (B.23)

The redshift contribution ∂δz/∂λ can be obtained by taking the derivative of (3.115)

with respect to the affine parameter λ to give:

a

H
∂δz

∂λ
= Φ− v · n− 2

∫ λ

0
dλ̂Φ′(λ̂)− 1

H

(
∂Φ

∂λ
− ∂v · n

∂λ
− 2Φ′

)
(B.24)

Then, by substituting this result and (B.23) into (B.5), we can show that the volume

fluctuation becomes (3.131), which agrees with [18, 45, 62] (once the difference in conven-

tion are included). The sign of the eventual lensing term from this calculation disagrees,

but the correct sign is adopted from (3.131) on.
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