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Abstract: The control of geographic origin is one of a highest priority issue regarding traceability and
wine authenticity. The current study aimed to examine whether elemental composition can be used
for the discrimination of wines according to geographical origin, taking into account the effects of
soil, winemaking process, and year of production. The elemental composition of soils, grapes, musts,
and wines from three DO (Designations of Origin) and for two vintage years was determined by using
the ICP-MS semi-quantitative method, followed by multivariate statistical analysis. The elemental
composition of soils varied according to geological formations, and for some elements, the variation
due to soil provenance was also observed in musts and wines. Li, Mn, Sr and rare-earth elements (REE)
allowed wine discrimination according to vineyard. Results evidenced the influence of winemaking
processes and of vintage year on the wine’s elemental composition. The mineral composition pattern
is transferred through the soil-wine system, and differences observed for soils are reflected in grape
musts and wines, but not for all elements. Results suggest that winemaking processes and vintage
year should be taken into account for the use of elemental composition as a tool for wine traceability.
Therefore, understanding the evolution of mineral pattern composition from soil to wine, and how it
is influenced by the climatic year, is indispensable for traceability purposes.

Keywords: geographic origin; geological material; multi-element composition; rare earth elements;
vinification

1. Introduction

Closely linked to the perception that terroir determines the quality and character of wines,
the control of geographic origin is one of the most challenging and highest priority issues regarding
traceability and wine authenticity [1]. Regional differences in sensory characteristics of wines have
commonly been attributed to, among others things, (e.g., grape variety, technological processes,
and vintage), local variations in soil composition [2]. Over the past two decades, many efforts have
been made to identify potential fingerprints and develop reliable analytical methods to determine
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the authenticity of wine [3–9]. Soil-related fingerprints justify special attention, given that there is a
relationship between the chemical composition of wine and the composition of the provenance soil.

The most explored fingerprinting techniques combine chemical analysis, namely elemental and
isotope ratio analysis, and multivariate statistical analysis of the chemical data to classify wines
according to their geographical origin. The successful application of the techniques based on the
multi-element composition of a wine strongly depends on the selection of suitable elements that would
reflect the relationship with soil geochemistry, and therefore, have discriminating potential. Thus,
the data on mineral elements in wine as a probe for origin determination has to be carefully interpreted,
since there are many environmental, agricultural, and oenological factors that can easily mask vital
elemental information [10,11]. Otherwise, wine classification will reflect not only the geographical
provenance, but also anthropogenic factors.

An important source of metal content in wine comes from the vineyard soil via grapevine roots,
being influenced by soil geochemistry and vine rootstock, among other factors. Other potential
sources, introduced during the processing stages, from vine culture to aged wine, are atmospheric
pollution, soil amendments, fertilizers, pesticides, irrigation water, contact materials during transport,
vinification, and aging processes, enological processing aids, and additives [5,12–14]. Also, depletion
of some elements occurs over time, especially during alcoholic fermentation. Precipitation of K and
Ca as tartrate salts begins during alcoholic fermentation and continues during the aging period.
The precipitation of heavy metals as insoluble salts, namely as sulfides, is favoured by sulfur dioxide
addition during winemaking [2]. All these factors may markedly change the multi-element composition
of the wine, affecting the relationship between wine and soil compositions, thus precluding their use
for authentication purposes.

Alkaline elements, Li, Rb, and Cs, are good indicators of geographical origin, as they are not
included in the group of contaminant elements of wines [10]. Mn, Mg, Sr, Ba, and rare earth elements
(REE) are also listed as useful elements, although the first two should be considered carefully, as they
can be introduced through viticultural practices such as the use of fertilizers and pesticides, while REE
content in wines can increase due to treatment with bentonites [11].

Studies on this subject have been pursued in most wine producing-countries, such as
Argentina [15], Australia [7,16], Brazil [17], Canada [3,18], Germany [5], Italy [19,20], Portugal [4,21],
Romania [22,23], South Africa [8,24,25], and Spain [26,27], indicating that the multi-elemental
determination of wines can enable their successful discrimination. Most of the aforementioned
studies are exclusively focused on wines produced under controlled conditions in order to guarantee
their authenticity. Studies, involving wines and the provenance soils, are scarce [3,4,22].

The simultaneous use of a greater number of variables can provide increasingly robust results
for the identification of wine geographical origin. Some studies based on this approach are described,
with the most chosen variables being multi-element composition, strontium isotopic ratio (87Sr/86Sr),
and stable isotope ratios of light elements [6,28]. Within a research program regarding strategies for
wine fingerprinting, REE and 87Sr/86Sr were identified as viable tools for traceability of Portuguese
DO in wines, where soils are developed on different geological formations [6,9], and studies on their
robustness are underway [29,30].

Portugal is the eleventh largest producer of wine and the nine largest exporter in the world,
with over six hundred millions of liters produced in 2016 [31]. Nevertheless, there is little information
on multi-elemental analysis of Portuguese wines for their classification according to geographical
origin. In this context, a study was developed to investigate whether inter-regional variation in
multi-element composition could be used as a tool for the traceability of three Portuguese Designations
of Origin (DO), where soils are developed on different geological formations. Having in mind the
natural heterogeneity of some wine regions in terms of geological materials and soils, intra-regional
variability was also studied by involving different vineyards from the same DO. Also, the evolution
of mineral composition during vinification and inter-year variability were considered. Results will
enlarge global databanks on wine composition and support comparisons with other world regions.
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2. Materials and Methods

2.1. Vineyards

Four vineyards from three Portuguese DO (Dão, Óbidos and Palmela) were studied. In the
Palmela DO (Southern Portugal), one vineyard of José Maria da Fonseca was considered: Vinha de
Algeruz (AL; 38◦34′ N, 8◦49′ W), established on Haplic Eutric Arenosols, and Regosols, developed on
Pliocene sedimentary formations (sands with clay beds), the most representative geological formation
of Palmela DO. In the Óbidos DO (Centre of Portugal), two vineyards belonging to Companhia
Agrícola do Sanguinhal were considered: Quinta de S. Francisco (SF; 39◦11′ N, 9◦10′ W) and Quinta do
Sanguinhal (SA; 39◦15′ N, 9◦09′ W); the former is established on Eutric Regosols which developed on
Lower Cretaceous sandstones, and the latter on Dystric Regosols, developed on Upper Jurassic clayey
sandstones. In the Dão DO (Central Portugal), one vineyard of Sogrape Vinhos was considered: Quinta
dos Carvalhais (QC; 40◦33′ N, 7◦47′ W), established on Dystric Cambisols, and Dystric Regosols,
developed on monzonitic granites (310–350 MY), the most representative geological formation of
Dão DO. The area of each vineyard, year of planting, rootstock, vine spacing, row orientation,
and training system are indicated in the Table 1. All the vineyards had the same red variety in
production (Vitis vinifera L., cv Aragonez).

The study areas have a Mediterranean-type climate. The QC, SA, and SF vineyards have a
climate with dry summers and cold nights (Csb, Köppen classification), whereas the AL vineyard has a
climate with dry hot summers and temperate nights (Csa, Köppen classification) [32]. Annual rainfall
is variable, and in 2010, was much higher than in 2009 (for example 1598 versus 953 mm and
760 versus 1006 mm in Óbidos and Palmela DOs, respectively [33]. Soils of each vineyard show specific
particle-size distribution which is associated with the respective geological formations, and their main
characteristics are uniform. In the five years prior to this study, several treatment products (namely
pesticides and fertilizers) were used, and may have contributed to B, Mg, Al, K, Ca, Cu, and Zn
soil enrichments.

Table 1. Vineyards characteristics. (AL) Vinha de Algeruz; (SF) Quinta de S. Francisco; (SA) Quinta do
Sanguinhal; (QC) Quinta dos Carvalhais.

Vineyard/
Portuguese DO

Area of the
Vineyard (ha)

Year of
Planting Rootstock Vine

Spacing (m)
Row

Orientation Training System

AL vineyard/Palmela 3.0 1990 1103P 2.8 × 1.2 N-S bi-lateral cordon
SF vineyard/Óbidos 5.0 2001 R110 2.7 × 1.0 N-S and E-W bi-lateral cordon
SA vineyard/Óbidos 2.6 2000 R110 2.7 × 1.0 N-S bi-lateral cordon

QC vineyard/Dão 2.5 1995 1103P 2.0 × 1.2 NE-SW bi-lateral cordon

2.2. Soil and Grape Berries Sampling

Soil sampling took place in December 2007 (AL, SF, SA) and May 2009 (QC). Soil samples were
collected with an auger from nine sampling sites distributed along three non-contiguous vine rows
(representative of the entire vineyard area), considering both row and inter-row. For evaluation of
soil composition heterogeneity with depth, samples were taken from five depth layers (0–20, 20–40,
40–60, 60–80 and 80–100 cm), and sealed in plastic bags (Figure 1). The samples used in the present
study were those collected at the 0–20, 40–60 and 60–80 cm layers after mixing the respective row and
inter-row samples.

Grape berries were sampled two weeks before the 2009 harvest. A total of 500 grape berries were
collected, using plastic gloves, from the four grapevines around each soil sampling point, stored in
plastic bags, and kept at cool temperatures until their processing.
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Figure 1. Schematics of the sampling strategy and analytical procedures used in this study. 
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(corresponding to the wine companies participating in this study), at an industrial scale, following the 
traditional red winemaking process (Figure 2), with slight technological differences between wineries.  

In the 2009 vintage, samples were collected in decontaminated polyethylene tubes, in triplicate, at 
five different steps of the winemaking process (2009 vintage): (1) after crushing and vatting; (2) after 
must corrections and yeast inoculation; (3) during the alcoholic fermentation (density approximately of 
1030 g/L); (4) after running off; (5) after malolactic fermentation and first racking, before any blending to 
preserve the trace to the vineyard of origin. Sampling 5 was repeated for the 2010 vintage. 

Immediately after sampling, a volume of 5 mL of ultrapure HNO3 was added to a sample volume 
of 45 mL, in order to stop the alcoholic fermentation and to start organic matter decomposition. 

 
Figure 2. Schematics of the winemaking processes with indication of the points where samples were 
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Figure 1. Schematics of the sampling strategy and analytical procedures used in this study.

2.3. Winemaking and Wine Sampling

For each vineyard, wine was prepared using all the grapes grown in the respective selected area
in two consecutive harvests, 2009 and 2010. The wines were produced at three different wineries
(corresponding to the wine companies participating in this study), at an industrial scale, following the
traditional red winemaking process (Figure 2), with slight technological differences between wineries.
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Figure 2. Schematics of the winemaking processes with indication of the points where samples were
collected. (AL) Vinha de Algeruz; (SF) Quinta de S. Francisco; (SA) Quinta do Sanguinhal; (QC) Quinta
dos Carvalhais.

In the 2009 vintage, samples were collected in decontaminated polyethylene tubes, in triplicate,
at five different steps of the winemaking process (2009 vintage): (1) after crushing and vatting; (2) after
must corrections and yeast inoculation; (3) during the alcoholic fermentation (density approximately of
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1030 g/L); (4) after running off; (5) after malolactic fermentation and first racking, before any blending
to preserve the trace to the vineyard of origin. Sampling 5 was repeated for the 2010 vintage.

Immediately after sampling, a volume of 5 mL of ultrapure HNO3 was added to a sample volume
of 45 mL, in order to stop the alcoholic fermentation and to start organic matter decomposition.

2.4. Sample Processing

For ICP-MS analysis, soils, grape musts and wines were treated by high pressure microwave
digestion (HPMW). Soil samples were dried at room temperature, ground, and forced to pass through
a sieve of 2 mm. A subsample of 0.20 g of dried soil (fraction < 0.053 mm) was acid digested using
a microwave system as described by Martins et al. [9]. A certified reference material (Geo PT 25,
Basalt HTB-1, International Association of Geoanalysts) was used as a reference for quality control of
the analytical results.

Grape must was prepared in the laboratory by smashing the berries in plastic cups and then
transferring the juice into polyethylene flasks. Immediately thereafter, a volume of 5 mL of ultrapure
HNO3 was added to a sample volume of 100 mL. Both grape musts and wines were acid digested
following a digestion program previously optimized by Catarino et al. [34]. A Milestone ETHOS
Plus Microwave Labstation (Milestone, Sorisole, Italy), equipped with a Milestone HPR-1000/6m
monoblock high pressure rotor and TFM Teflon vessels, was used.

To avoid contamination, all polyethylene material (volumetric flasks, micropipette tips,
and autosampler vessels) was immersed at least for 24 h in 20% (v/v) HNO3, and rinsed thoroughly
with purified water before use. For decontamination solution preparation, reagent grade HNO3

was double-distilled using an infra-red subboiling distillatory system (model BSB-939-IR, Berghof,
Germany). Purified water (conductivity < 0.1 µS cm−1) was produced using a Seralpur Pro 90CN
apparatus (Seral, Ransbach-Baumbach, Germany).

2.5. Multi-Elemental Analysis

Multi-elemental analysis was carried out with anElan 9000 ICP-MS (Perkin-Elmer SCIEX, Norwalk,
CT, USA) equipped with a cross-flow nebulizer, a Ryton Scott-type spray chamber, and nickel
cones. A four-channel peristaltic sample delivery pump (Gilson model) and a Perkin-Elmer AS-93
Plus autosampler (Perkin-Elmer SCIEX, Norwalk, CT, USA) protected by a laminar-flow-chamber
clean room class 100 (Max Petek Reinraumtechnik, Radolfzell am Bodensee, Germany) were used.
The ICP-MS instrument was controlled by Elan 6100 Windows NT software (Version 2.4, Perkin-Elmer
SCIEX, Norwalk, CT, USA). The operating conditions of the ICP-MS equipment were as follows:
radio-frequency (RF) power of 1200 W; Ar gas flow rates of 15 L/min for cooling, between 0.94 and
0.98 L/min for nebulizer and 1.5 L/min for auxiliary; and solution uptake rate of 1.0 mL/min.

Element concentrations were determined in mineralized soil samples (after 100-fold dilution)
and in mineralized musts and wines (after 10-fold dilution), in duplicate, by adapting the ICP-MS
semi-quantitative method previously described by Catarino et al. [35]. A full mass spectrum (m/z = 6–240,
omitting the mass ranges 16–18; 40, 41, 211–229) was obtained by full mass range scanning. Rh and Re
(10 µg/L) were used as internal standards.

The reference response table (Perkin-Elmer TotalQuant III, Perkin-Elmer SCIEX, Norwalk, CT,
USA) was updated with different multi-elemental standard solutions with appropriate concentrations
for soil analyses, and for must and wine analyses. A certified reference material (GeoPT 25, Basalt
HTB-1) was periodically analysed for quality control. Also, for quality control purposes, wines from
an intercomparison OIV (International Organisation of Vine and Wine) trial were analysed periodically.
Between determinations, the equipment sampling system was rinsed with a 2% HNO3 (v/v) for 75 s.

2.6. Statistical Analysis

Statistical analysis of the multi-element data was carried out to evaluate: (1) the effect of the
vineyard of origin (Vineyard) on soil mineral composition; (2) the effect of soil depth level on soil
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mineral composition; (3) the effect of Vineyard on mineral composition of grape musts (prepared
at laboratory from the grape berries sampled in the vineyards); (4) the effect of winemaking stage
(Vinification) on mineral composition of wines; (5) the effect of the Vineyard on the mineral composition
of wines. The statistical analysis was firstly performed by one-way analysis of variance and comparison
of means (Fisher LSD, 95% level) using Statistica 7.0 software (StatSoft Inc., Tulsa, OK, USA). Normal
distribution and homogeneity of variance were verified by Normal p-p (distribution of within-cell
residuals) and Cochran C tests (p < 0.05), respectively. Whenever the parametric test assumptions
were not verified, a non-parametric test (Kruskal-Wallis test) was applied. In these cases, comparison
of means was not carried out. Multivariate statistical analysis, principal component analysis (PCA),
and discriminant analysis (DA), was then performed using NTSYS-pc package software (Version 2.1q,
Exeter Software, Setauket, NY, USA) [36] and Statistica 7.0 software (TIBCO Software Inc., Palo Alto,
CA, USA), respectively. For each matrix type (soils, grape musts and wines), the results were submitted
to aggregation analysis and PCA. Finally, DA was applied to the data, considering Li, Mn, Sr, and REE
as variables, and the vineyards as groups.

3. Results and Discussion

3.1. Mineral Composition of Vineyard Soils

Results of the multi-element analysis and variance analysis (one-way ANOVA) of the soils of the
different vineyards are listed in Table 2. It is worth mentioning that the total concentrations of the
elements observed in the soils of the four vineyards are compatible with the contents of uncontaminated
soils [37]. A significant effect of Vineyard on soil composition was observed for all the studied elements.
As a general trend, the soil from QC (Dão DO), developed on granites, showed higher concentrations
than soils from the other vineyards developed on geological sedimentary formations. This trend was
especially noticeable for Li, Be, Al, Fe, Ga, Ge, As, Rb, Sn, Cs, and REE. The soil from the vineyard of
Palmela DO, developed on Pliocenic sandy materials, showed the lowest concentrations for most of
the elements, with Na being an exception. Data for some elements (e.g., Li, Be, Rb, Cs) in the studied
vineyards are different from those reported by Almeida and Vasconcelos [4] for two vineyards from
DO Douro region, installed in soils developed on schists.

Despite differences in age of the geological formations, the two vineyards from Óbidos DO
showed similar concentrations for some elements, which may be explained by similar characteristics
of their soils (Table S1).

Different patterns were observed in the studied vineyards (Table S2) concerning the effect of
soil depth on element concentration. In fact, in soils from Palmela DO, for most of the elements,
a decrease in concentration was observed with increasing depth. In contrast, for QC soil (Dão DO),
no significant effect of soil depth was observed. Such a difference may be associated with the degree of
soil disturbance for vineyard installation, with stronger and deeper soil disturbance occurring when a
bulldozer has homogenized the different soil layers up to 100 cm depth.

Content patterns observed for Li, Be, Mn, As, Rb, Sr, and Cs suggest that these elements might be
potential discriminant elements, allowing soil differentiation between the studied DOs. Indeed, similar
concentrations for these elements were observed in the soils from Óbidos DO vineyards, while different
concentrations were found in those from other DOs, in particular in the soil from Dão DO.

It should be emphasized that only a small proportion of total metal concentration is potentially
extractable by plants, as elements are mostly strongly bonded within mineral structures. In addition,
the ecotoxicology and mobility of metals in the soil depend strongly on specific chemical forms in
which they are present [38].
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Table 2. Multi-elemental composition (µg/g) of soils of the different vineyards. Average concentration
(mean ± standard deviation). (AL) Vinha de Algeruz; (SF) Quinta de S. Francisco; (SA) Quinta do
Sanguinhal; (CQ) Quinta dos Carvalhais.

Element Vineyard
Effect

AL Vineyard
/Palmela

SF Vineyard
/Óbidos

SA Vineyard
/Óbidos

QC Vineyard
/Dão

Li ** 23 ± 6 33 ± 7 39 ± 7 224 ± 50
Be ** 1.1 ± 0.3 2 ± 1 2.0 ± 0.4 31 ± 10
Na ** 4043 ± 1134 1555 ± 317 2561 ± 471 2570 ± 1081
Mg ** 737 ± 214 3226 ± 1839 1612 ± 430 5690 ± 898
Al ** 41,987 ± 9113 76,330 ± 19,270 49,982 ± 6832 149,501 ± 14,233
Ca ** 1759 ± 427 1775 ± 970 1046 ± 513 1850 ± 1126
Ti ** 5 ± 2 10 ± 3 8 ± 2 9 ± 1
V ** 20 ± 6 75 ± 29 40 ± 9 69 ± 12
Cr ** 17 ± 4 63 ± 27 29 ± 7 52 ± 12
Mn ** 87 ± 24 1147 ± 662 1166 ± 477 514 ± 105
Fe ** 6530 ± 2060 27,390 ± 11,737 12,580 ± 2877 40,450 ± 5543
Co ** 2 ± 1 15 ± 7 8 ± 2 9 ± 2
Cu * 82 ± 39 87 ± 29 117 ± 61 79 ± 30
Ga ** 9 ± 2 19 ± 5 13 ± 2 38 ± 4
Ge ** 0.26 ± 0.06 0.31 ± 0.05 0.29 ± 0.05 0.52 ± 0.07
As ** 6 ± 3 11 ± 4 9 ± 3 46 ± 12
Rb ** 165 ± 43 190 ± 23 188 ± 27 333 ± 52
Sr ** 59 ± 15 57 ± 6 57 ± 17 34 ± 4
Sn ** 7 ± 3 6 ± 1 6 ± 2 25 ± 3
Sb ** 1.4 ± 0.9 0.8 ± 0.2 0.8 ± 0.3 0.38 ± 0.07
I ** 0.2 ± 0.1 0.6 ± 0.4 0.5 ± 0.4 0.5 ± 0.2

Cs ** 5 ± 1 9 ± 2 8 ± 1 55 ± 10
Ba ** 663 ± 316 591 ± 375 501 ± 57 305 ± 41
La * 19 ± 5 22 ± 8 16 ± 7 23 ± 11
Ce ** 44 ± 11 49 ± 19 38 ± 15 59 ± 26
Pr * 5 ± 1 6 ± 2 5 ± 2 7 ± 3
Nd ** 20 ± 4 22 ± 8 19 ± 7 28 ± 13
Sm ** 3.7 ± 0.9 5 ± 1 4 ± 1 6 ± 2
Eu ** 0.6 ± 0.1 1.0 ± 0.3 0.7 ± 0.1 1.0 ± 0.3
Gd ** 3 ± 1 4 ± 1 4 ± 1 6 ± 2
Tb ** 0.36 ± 0.08 0.6 ± 0.2 0.5 ± 0.1 0.9 ± 0.3
Dy ** 1.8 ± 0.4 3 ± 1 2.6 ± 0.6 5 ± 2
Ho ** 0.31 ± 0.08 0.6 ± 0.2 0.5 ± 0.1 0.9 ± 0.3
Er ** 0.9 ± 0.2 1.9 ± 0.6 1.4 ± 0.3 2.5 ± 0.8
Tm ** 0.13 ± 0.04 0.27 ± 0.08 0.21 ± 0.04 0.4 ± 0.1
Yb ** 1.0 ± 0.3 1.8 ± 0.6 1.5 ± 0.3 2.4 ± 0.6
Lu ** 0.14 ± 0.04 0.27 ± 0.08 0.23 ± 0.04 0.35 ± 0.08
W ** 0.004 ± 0.001 0.007 ± 0.002 0.006 ± 0.001 0.045 ± 0.015
Tl ** 0.9 ± 0.3 1.1 ± 0.1 1.3 ± 0.2 2.4 ± 0.3

* Significant effect (p < 0.05); ** significant effect (p < 0.01). For each vineyard and element, the results are based
on average values of nine sampling sites and three depth levels (0–20 cm, 40–60 cm and 60–80 cm), in a total of
27 samples, analysed in duplicate.

For those elements significantly that were affected by Vineyard, a PCA was performed (Figure 3).
The first two principal components explained 85% of the total variance. The variables which most
influence the first component (C1, 70%) were Li, Be, Mg, Al, Fe, Ga, Ge, Rb, Cs, and several REE,
and the variables which most influence the second component (C2, 15%) were Na and Mn. Using the
first two principal components, the soils seems to separate according to the DO. The QC soils samples
are well separated from the other, as well as the AL soils. Regarding the SA and SF soils, they presented
a strong variability.
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Figure 3. Principal Component Analysis performed on soils from the vineyards/DO: (AL) Vinha de
Algeruz/Palmela, (SF) Quinta de S. Francisco/Óbidos, (SA) Quinta do Sanguinhal/Óbidos, and (QC)
Quinta dos Carvalhais/Dão, collected at nine sampling sites and three depth levels (0–20 cm, 40–60 cm,
and 60–80 cm), in a total of 27 samples, analysed in duplicate The soils are represented in the plane of
the two first components which express, respectively, 70% and 15% of the total variance.

3.2. Mineral Elements Concentration during Vinification Processes

A Vineyard effect was also observed on grape must composition (data not shown, see Table S3).
In fact, for most of the elements, significant differences were found between musts from different
vineyards. As observed for soils, the grape must from QC showed the highest concentrations of Rb
and Cs. This trend is consistent with the relationship between soil and must composition, and agrees
with results reported for vineyards of Douro DO, installed in soils developed on schists [4]. However,
an inverse position was observed between Óbidos and Palmela DOs, as must from AL vineyard
contained higher element concentrations than those from Óbidos DO, which does not follow the trend
found for the respective soils.

Several factors can modify the multi-elemental composition of grapes and wines, such as
winemaking practices [10,11,13,29,30,39,40], which influence the extraction extent of mineral elements
from the different parts of grape berry, element depletion by precipitation and co-precipitation
phenomena, and incorporations by enological additives, among other factors. The evolution of
the concentrations of elements during vinification (2009 vintage) is displayed for each vineyard
(Figures 4–6), considering the following sampling steps: (1) after crushing and vatting; (2) after must
corrections and inoculation; (3) during alcoholic fermentation; (4) after running off; and (5) after
malolactic fermentation and first racking.

3.2.1. Alkaline and Alkaline Earth Elements

Regarding alkaline and alkaline earth elements (Figure 4), namely Li, Na, Mg, Ca, Rb, Sr, and Cs,
a significant effect of Vinification was observed for all the vineyards with the exceptions of Mg, Rb, Cs,
and Ba (QC). Different trends and distinct magnitudes of change were observed, depending on the
element, its initial concentration, products applied and moment of application, and most probably on
must-wine characteristics (pH and alcoholic strength).

With respect to Li, significant decreases occurred after corrections of the grape musts from all
studied vineyards, with the greatest change (about 60%) occurring in the must/wine from the AL
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vineyard. These results do not agree with those from a study involving red wines, obtained by
maceration of solid parts of berries where Li enrichments were likewise observed [40]. Nevertheless,
the trend loss of Li during winemaking was reported by Gómez et al. [39] for white wines.

Different trends were observed between vineyards regarding Na, but without technological
relevance. The increase of Na that was verified after must corrections might be explained by the
addition of sodium metabisulfite.

Despite the significant effect of Vinification on Mg concentration, the small differences observed
suggest its stability over time, as Mg salts are soluble, following trends reported by [39].

Concentrations of Ca tended to decrease during vinification (with exception of SF vineyard),
which is associated with the low solubility of calcium tartrate, as a natural phenomenon of
physical-chemical stability. The decrease (from 99 to 72 mg/L) was more evident in the must/wine
from the AL vineyard, where the highest initial Ca concentration was found. The correction of pH
to 3.60 with tartaric acid, performed when alcoholic fermentation was running, might be affected by
Ca concentration, as the insolubility of tartaric acid salts (potassium hydrogen tartrate and calcium
tartrate) is enhanced by the presence of ethanol [2].

Concentrations of Rb slightly increased during the initial phases of vinification for SF, SA, and QC
musts, probably due to extraction from solid parts of the berries, favoured by maceration during
alcoholic fermentation [39]. Enrichments of Sr were noticed during alcoholic fermentation as a result
of its extraction from solid parts of grape berries, mostly from seeds, for musts of the SF, SA, and QC
vineyards, agreeing with observations of Catarino et al. [40]. A steady concentration was observed for
Cs throughout the vinification period, while Ba and especially Sr showed increasing concentrations
(with the exception of AL vineyard).

Our results indicate that for most of the elements, the evolution from must to wine regarding the
AL vineyard diverged from the other grape musts. In fact, strong losses were observed for Na, Mg,
Rb, Sr, and Ba during the first half of alcoholic fermentation. Possibly, the increasing concentration of
ethanol promotes the precipitation or co-precipitation of these metals in wine [10]. During the second
phase of the alcoholic fermentation, after acid addition for pH correction, enrichments were perceived,
possibly due to metal extraction from solid parts and diffusion to the must, which are favoured by the
pH decrease and by the increase of ethanol content.
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Figure 4. Evolution of alkaline and alkaline earth metals concentrations over vinification, by 
vineyard of origin. (AL) Vinha de Algeruz; (SF) Quinta de S. Francisco; (SA) Quinta do Sanguinhal; 
(QC) Quinta dos Carvalhais. Vinification step: (1) after crushing and vatting; (2) after must 
corrections and inoculation; (3) during the alcoholic fermentation (density approximately of 1030 
g/L); (4) after running off; (5) after malolactic fermentation and first racking, before any blending to 
preserve the trace to the vineyard of origin. For each element and vineyard, results correspond to 
mean values (and corresponding standard deviations) of three replicates and corresponding 
analytical duplicates (n = 6). Means followed by the same letter are not significantly different at 0.05 
level of significance. Whenever values are not followed by significance letters it means that a 
non-parametric parametric test (Kruskal-Wallis test) was applied and comparison of means was not 
carried out. 
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soil. Although Mg should be considered with caution as a fingerprint, because it can be associated 
with correctives and soil fertilizers, it should be emphasized that wines produced in southern 
Portuguese soils that are rich in Mg and Na [42] showed higher concentrations of these elements as 
compared to other wines [21]. The higher concentrations of Li and especially of Rb and Cs in 
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Figure 4. Evolution of alkaline and alkaline earth metals concentrations over vinification, by vineyard
of origin. (AL) Vinha de Algeruz; (SF) Quinta de S. Francisco; (SA) Quinta do Sanguinhal; (QC)
Quinta dos Carvalhais. Vinification step: (1) after crushing and vatting; (2) after must corrections
and inoculation; (3) during the alcoholic fermentation (density approximately of 1030 g/L); (4) after
running off; (5) after malolactic fermentation and first racking, before any blending to preserve the
trace to the vineyard of origin. For each element and vineyard, results correspond to mean values
(and corresponding standard deviations) of three replicates and corresponding analytical duplicates
(n = 6). Means followed by the same letter are not significantly different at 0.05 level of significance.
Whenever values are not followed by significance letters it means that a non-parametric parametric
test (Kruskal-Wallis test) was applied and comparison of means was not carried out.

Element concentrations throughout vinification suggest the importance of their distribution in
grape berries, which may be strongly influenced by technology promoting the maceration of skins and
seeds. In a study focusing on the Chardonnay variety, it was observed that Ca, Sr, and Ba elements
accumulate mainly in the seeds, while Li, Mg, Na, Rb, and Cs accumulate mainly in the flesh [41].
Analysing our results, the late enrichments in Sr and Ba seem consistent with kinetics extraction
from seeds.

Alkaline and alkaline earth metals, namely Li, Rb, and Cs, and to a low extent Mg, Sr, and Ba,
are promisor indicators of geographic origin, because they can easily be absorbed by plants in the soil.
Although Mg should be considered with caution as a fingerprint, because it can be associated with
correctives and soil fertilizers, it should be emphasized that wines produced in southern Portuguese
soils that are rich in Mg and Na [42] showed higher concentrations of these elements as compared to
other wines [21]. The higher concentrations of Li and especially of Rb and Cs in must/wine from the
Dão DO compared with the other DOs suggest that these elements could be promisor fingerprints for
separate Portuguese DOs.

3.2.2. Contaminant Elements

Concentrations of contaminant metals, specifically Be, Al, Mn, Fe, Ni, Cu, Zn, Ga, Mo, Sn, Sb
and Tl, most of them heavy metals, are shown in Figure 5. A significant effect of Vinification was
observed for all these elements and vineyards, with Zn (SF and QC), Be, Mn, and Ni (QC) being
exceptions. With the exception of Mn, the concentration of contaminant elements strongly decreased
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during alcoholic fermentation, favoured by sulfur dioxide addition to the must, in accordance with the
precipitation phenomena of heavy metals as insoluble salts, namely as sulfides, over time, as previously
reported in [4,5,40].

The grape must from the vineyard AL showed for several contaminant metals, namely Al, Fe,
Ni, Zn, Ga, Mo, Sb, and Tl, at the highest concentrations at step 1 of vinification, which is consistent
with the results for the musts prepared at laboratory. However, no direct correspondence between
must contents and final wine contents was observed, as impressive losses occurred after sulfur dioxide
addition and until the moment of acidification, corroborating the important role played by sulfur
dioxide as a purifying agent. In this must, depletions from step 1 to step 3 were as follows: Be-78%,
Al-90%; Fe-82%; Ni-61%; Zn-75%; Ga-69%; Mo-47%; Sn-61%; Sb-78%, and Tl-71%. The depletion
of these metals is positive from the wine quality perspective, given their potential participation in
physical-chemical instability phenomena and potential toxicity, as excessive concentrations of Fe and
Cu can cause turbidity known as ferric casse and cupric casse, respectively [2].

In contrast, slight enrichments of Be occurred during the second phase of vinification in all
the musts. Surprising increases in Mn concentrations were verified in both musts from Óbidos DO
after the initial corrections, suggesting contamination, which is not in agreement with a study where
important losses of this metal from must to wine (red winemaking) were reported [40]. A final increase
of Zn concentration in the must from AL is noteworthy; this may be of exogenous origin. In these
circumstances, it is clear that contaminant elements should not be included in the group of potential
markers for geographical origin fingerprints.
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Figure 5. Evolution of heavy metals (contaminant elements) concentrations over vinification, by 
vineyard of origin. (AL) Vinha de Algeruz; (SF) Quinta de S. Francisco; (SA) Quinta do Sanguinhal; 
(QC) Quinta dos Carvalhais. Vinification step: (1) after crushing and vatting; (2) after must 
corrections and inoculation; (3) during the alcoholic fermentation (density approximately of 1030 
g/L); (4) after running off; (5) after malolactic fermentation and first racking, before any blending to 
preserve the trace to the vineyard of origin. For each element and vineyard, results correspond to 
mean values (and corresponding standard deviations) of three replicates and corresponding 
analytical duplicates (n = 6). Means followed by the same letter are not significantly different at 0.05 
level of significance. Values are not followed by significance letters indicate that a non-parametric 
parametric test (Kruskal-Wallis test) was applied and comparison of means was not carried out. 

3.2.3. Rare Earth Elements 

REE present particular interest for wine fingerprinting because, owing to their chemical 
similarity, the problem of selective changes of their concentration distribution is avoided. It seems 
that plants generally absorb REE from soil without any selectivity [43]. Furthermore, due to their 
chemical similarity, all the REE are expected to be affected to the same extent by insolubility and 
precipitation phenomena.  

The present study allowed the understanding of the evolution of rare earth elements along 
several steps of vinification. Significant effect of Vinification on REE concentrations of the musts 
from the four vineyards was verified (Figure 6). As expected, for each must, a common trend was 
observed for all REE. In musts from the vineyards SF, SA, and QC, slight decreases occurred during 
vinification. In some cases, negligible increases during alcoholic fermentation could be related to 
REE preferential accumulation in the skin of berry [41]. 

Figure 5. Evolution of heavy metals (contaminant elements) concentrations over vinification, by
vineyard of origin. (AL) Vinha de Algeruz; (SF) Quinta de S. Francisco; (SA) Quinta do Sanguinhal;
(QC) Quinta dos Carvalhais. Vinification step: (1) after crushing and vatting; (2) after must corrections
and inoculation; (3) during the alcoholic fermentation (density approximately of 1030 g/L); (4) after
running off; (5) after malolactic fermentation and first racking, before any blending to preserve the
trace to the vineyard of origin. For each element and vineyard, results correspond to mean values (and
corresponding standard deviations) of three replicates and corresponding analytical duplicates (n = 6).
Means followed by the same letter are not significantly different at 0.05 level of significance. Values are
not followed by significance letters indicate that a non-parametric parametric test (Kruskal-Wallis test)
was applied and comparison of means was not carried out.

3.2.3. Rare Earth Elements

REE present particular interest for wine fingerprinting because, owing to their chemical similarity,
the problem of selective changes of their concentration distribution is avoided. It seems that plants
generally absorb REE from soil without any selectivity [43]. Furthermore, due to their chemical similarity,
all the REE are expected to be affected to the same extent by insolubility and precipitation phenomena.

The present study allowed the understanding of the evolution of rare earth elements along several
steps of vinification. Significant effect of Vinification on REE concentrations of the musts from the
four vineyards was verified (Figure 6). As expected, for each must, a common trend was observed for
all REE. In musts from the vineyards SF, SA, and QC, slight decreases occurred during vinification.
In some cases, negligible increases during alcoholic fermentation could be related to REE preferential
accumulation in the skin of berry [41].
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The very high concentrations of REE in the must from the vineyard AL are notable in comparison
with the others. In fact, the REE concentrations observed in the grape must, immediately after
crushing and vatting, are in accordance with the concentrations found in grape berries (data not shown,
see Table S3). Impressive decreases from step 1 to step 2 of vinification, in general higher than 70%,
are most probably due to precipitation phenomena, favoured by high pH value of the musts.

It should be pointed out that no close relationship was observed between mineral content of soils
and mineral content of grape berries and must at the beginning of vinification. In general, the highest
concentrations were measured in the must from vineyard AL, despite the low concentrations in the
corresponding soil. These results suggest that absorption of mineral elements in vineyard AL was
easier than in the other vineyards, which may be facilitated by the low contents of clay and iron and
aluminium compounds in the respective soil leading to lower interaction with the soil solution and
facilitate element absorption.

Although the REE have been used mostly combined with other trace elements for wine
fingerprinting, an excellent way to compare the REEs concentration ratios for soils, musts, and wines
is by plotting REE concentrations on a chondrite-normalised diagram [6,44].
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Figure 6. Evolution of rare earth elements concentrations over vinification, by vineyard of origin. 
(AL) Vinha de Algeruz; (SF) Quinta de S. Francisco; (SA) Quinta do Sanguinhal; (QC) Quinta dos 
Carvalhais. Vinification step: (1) after crushing and vatting; (2) after must corrections and 
inoculation; (3) during the alcoholic fermentation (density approximately of 1030 g/L); (4) after 
running off; (5) after malolactic fermentation and first racking, before any blending to preserve the 
trace to the vineyard of origin. For each element and vineyard, results correspond to mean values 
(and corresponding standard deviations) of three replicates and corresponding analytical duplicates 
(n = 6). Means followed by the same letter are not significantly different at 0.05 level of significance. 
Values not followed by significance letters indicate that a non-parametric parametric test 
(Kruskal-Wallis test) was applied and comparison of means was not carried out.  
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Figure 6. Evolution of rare earth elements concentrations over vinification, by vineyard of origin. (AL)
Vinha de Algeruz; (SF) Quinta de S. Francisco; (SA) Quinta do Sanguinhal; (QC) Quinta dos Carvalhais.
Vinification step: (1) after crushing and vatting; (2) after must corrections and inoculation; (3) during
the alcoholic fermentation (density approximately of 1030 g/L); (4) after running off; (5) after malolactic
fermentation and first racking, before any blending to preserve the trace to the vineyard of origin. For
each element and vineyard, results correspond to mean values (and corresponding standard deviations)
of three replicates and corresponding analytical duplicates (n = 6). Means followed by the same letter
are not significantly different at 0.05 level of significance. Values not followed by significance letters
indicate that a non-parametric parametric test (Kruskal-Wallis test) was applied and comparison of
means was not carried out.
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3.3. Mineral Composition of Wines

The mineral composition of wines is of relevant interest due to its influence on physical-chemical
stability, sensory characteristics, wine safety, legal limits, and as a discriminating tool for
classification [2,10].

For most of the elements, significant differences were observed between wines from different
DOs (Table 3). The wine from Dão DO showed significantly higher concentrations of Li, Be, Rb, Sn, Cs,
and REE than the wines from the other DOs, which is consistent with elemental contents of soils.

Table 3. Multi-elemental composition of wines (2009 vintage) from the different vineyards. (AL) Vinha
de Algeruz; (SF) Quinta de S. Francisco; (SA) Quinta do Sanguinhal; (CQ) Quinta dos Carvalhais.

Element Vineyard
Effect AL Vineyard/Palmela SF Vineyard/Óbidos SA Vineyard/Óbidos QC Vineyard/Dão

Li ** 3049 ± 345 a 6323 ± 241 b 8084 ± 230 c 10,550 ± 1017 d
Be * 251 ± 7 358 ± 17 222 ± 18 539 ± 139
Na ** 14,633 ± 639 c 15,640 ± 1166 c 10,706 ± 200 b 6480 ± 724 a
Mg ** 91,990 ± 5101 b 100,454 ± 6075 b 76,962 ± 1268 a 99,038 ± 10,380 b
Al ** 597 ± 51 c 198 ± 25 b 112 ± 6 a 129 ± 18 a
Ca ** 45,368 ± 3069 ab 56,819 ± 4786 c 41,245 ± 472 a 50,980 ± 4935 bc
Cr * 24,997 ± 3286 18,189 ± 120 114,734 ± 1530 20,166 ± 2344
Mn ** 407 ± 21 a 1356 ± 94 d 1184 ± 14 c 1008 ± 98 b
Fe * 1043 ± 65 1689 ± 111 1095 ± 8 186 ± 30
Ni ** 11,841 ± 1442 b 16,100 ± 3393 c 9177 ± 1085 ab 6838 ± 1563 a
Cu * 16 ± 1 78 ± 3 92 ± 1 78 ± 16
Zn ** 940 ± 17 d 414 ± 33 c 259 ± 24 b 320 ± 32 a
Ga * 841 ± 9 704 ± 16 984 ± 14 870 ± 100
Rb * 4037 ± 320 2694 ± 209 2638 ± 46 7228 ± 761
Sr ** 309 ± 18 b 322 ± 22 b 222 ± 9 a 219 ± 24 a

Mo ** 1039 ± 75 b 317 ± 45 a 329 ± 80 a 1073 ± 73 b
Sn * 137 ± 39 205 ± 27 934 ± 336 1032 ± 43
Sb ** 442 ± 54 b 250 ± 32 a 410 ± 74 b 161 ± 48 a
Cs * 3543 ± 294 2344 ± 158 2686 ± 15 64,716 ± 6609
Ba ** 194 ± 23 bc 222 ± 21 c 167 ± 4 ab 138 ± 26 a
La * 209 ± 79 193 ± 18 186 ± 9 634 ± 84
Ce * 177 ± 144 a 207 ± 20 ab 123 ± 26 a 347 ± 73 b
Pr ** 20 ± 14 a 40 ± 8 b 31 ± 6 ab 85 ± 10 c
Nd * 58 ± 57 161 ± 5 111 ± 9 347 ± 65
Sm ** 7 ± 9 a 26 ± 4 b 12 ± 6 a 46 ± 6 c
Eu * 40 ± 6 a 50 ± 2 b 49 ± 2 ab 44 ± 8 ab
Gd ** 16 ± 12 a 34 ± 5 a 23 ± 3 a 85 ± 14 b
Tb ** 2 ± 3 a 9 ± 3 b 3 ± 1 a 11 ± 1 b
Dy ** 17 ± 15 a 43 ± 3 b 20 ± 3 a 65 ± 16 b
Ho ** 5 ± 2 a 13 ± 1 b 6 ± 2 a 16 ± 0 c
Er ** 16 ± 4 a 44 ± 7 b 23 ± 6 a 47 ± 2 b
Tm * 3 ± 2 a 9 ± 4 b 6 ± 1 ab 9 ± 2 b
Yb ** 33 ± 4 a 59 ± 5 c 31 ± 3 a 47 ± 7 b
Lu * 7 ± 3 a 13 ± 4 b 8 ± 1 a 9 ± 1 a
W * 2 ± 1 ab 0.3 ± 0.2 a 1 ± 1 a 3 ± 2 b
Tl * 1174 ± 56 206 ± 14 659 ± 6 1173 ± 109

* Significant effect (p < 0.05); ** significant effect (p < 0.01). For each vineyard and element, the average of the three
replicates (considering the final winemaking step: after alcoholic fermentation and first racking) was calculated.
The results are expressed as ng/L, with exception of Na, Mg, Al, Ca, Mn, Fe, Cu, Zn, Rb, Sr, and Ba, expressed as
µg/L. Means followed by the same letter are not different at p < 0.05.

Wines from Óbidos vineyards showed similar concentrations of Rb and Cs, reflecting the soil
composition. Despite the apparent higher transference of mineral elements from soil to grapes and
must from Palmela vineyard, the resulting wine tends to present lower concentrations in comparison
with the wines from the other vineyards. A reasonable explanation for these results can be the more
intense precipitation through time favoured by the wine physical-chemical composition.

In comparison with other Portuguese DOs, wine Li concentrations in the study DOs were lower
than those reported for the Douro DO (about 30 µg/L), where soils are developed on schists [4],
while Mg and Mn concentrations were lower than those shown by Alentejo DO wines (close to
140 mg/L and 3 mg/L, respectively; [21]) from vineyards grown in soils rich in Mg [41]. Also,
the concentrations of Li, Mg, Ca, Mn, Rb, Sr, and Cs were much higher than those reported for
wines reflecting the complex of soil types in the Stellenbosch wine region [8]: 0.12–0.24 µg/L (Li),
9711–14,024 µg/L (Mg), 3789–10,343 µg/L (Ca), 94–228 µg/L (Mn), 199–630 µg/L (Rb), 41–102 µg/L
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(Sr) and 0.30–6.71 µg/L (Cs). The Be and Rb may be useful to discriminate Portuguese from Romanian
wines as the concentrations reported were, respectively, much higher and much lower [22] than those
measured in the present study. Moreover, Rb concentrations are higher compared with those of
German wines (160 to 970 µg/L), from Baden, Rheingau, Rheinhessen, and Pfalz wine regions [5].

Concentrations of Cu and Zn were very low in all the wines, and much lower than the OIV
maximum acceptable limits of 1 and 5 mg/L respectively [45]. In fact, for all elements, concentrations
are in accordance with the respective normal variation range, considering the grape variety and
winemaking technology [2,10].

For those elements where a significant effect of Vineyard was found, PCA was performed,
the results being displayed in Figure 7. The projection of the wines concerning the two vintages
(2009 and 2010) in the C1-C2 plane was consistent with the projection of soils. The first two
principal components, generated from PCA analysis of the data, explained 69.5% of the total variance.
The variables which influence most the first component (C1, 47.5%) were Mn and REE, and the
variables which influence most the second component (C2, 22.0%) Li, Be, Rb, and Cs. The projection of
the wines in the C1-C2 plane presents some similarities with the projection of soils (Figure 3).
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Figure 7. Principal Component Analysis performed on elemental wine composition (2009 and 2010
vintages) from the vineyards/DO: (AL) Vinha de Algeruz/Palmela, (SF) Quinta de S. Francisco/Óbidos,
(SA) Quinta do Sanguinhal/Óbidos, and (QC) Quinta dos Carvalhais/Dão, collected at the final step of
the vinification processes (5), in triplicate (1, 2, 3). Wines are represented in the plane of the two first
components which express, respectively, 47.5% and 22.0% of the total variance.

3.4. Vineyards and Vintage Year

Results concerning the two vintages, 2009 (Table 3) and 2010 (Table S4) suggest the influence of
the vintage year on wine elemental composition, as different hydrological conditions occurred during
the study period; for instance, the annual rainfall in 2009 (especially during spring) was lower than the
climatological normal, whereas in 2010 was much higher. Yet, with regards to DA results, considering
both the wines from 2009 and 2010 vintages (six samples from each vineyard), Li, Mn, Sr, and REE
allowed wine discrimination according to vineyard/geographical origin, suggesting their robustness
to vintage effect (Figure 8). These results agree with findings of a study involving Australian wines
from 19 vintages, which indicated that the multi-element composition is essentially independent of
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their vintage [7]. Also, they follow the trend observed for REE in wines from different vintages and
from the same vineyard over a period of several years [44].
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Despite the controversy associated with their potential contamination [11,46], it is worthwhile to
emphasize the role played by REE as discriminant elements [6,20]. This role can be better explored by
the chondrite-normalisation approach, which allowed strong correlation to be observed between the
REE patterns of grape musts and those of the provenance soils from Portuguese DOs [6]. Also, the REE
patterns of wines from different vineyards in France, California, and Australia revealed inter-regional
variations [44].

Despite the elemental concentration variations observed throughout vinification, the elemental
composition of the wines reflected the elemental composition of the provenance soils for some
elements. Differences were observed between the multi-elemental compositions of wines from different
Portuguese vineyards/geographical origins, which enabled their successful discrimination through
the application of multivariate statistics. Furthermore, the potential applicability of this strategy
for intra-regional classification of wines was demonstrated. The results of this study obtained by
application of a geochemical approach represent a valuable contribution both for viticultural zoning
and for the building a database concerning Portuguese wines. Nevertheless, further research should
be performed involving all the representative lithological formations of the studied DOs in order to
characterize each region, as well as other Portuguese DOs. Moreover, the influence of the vintage year,
in direct relationship especially with climate changes, requires further research.

Supplementary Materials: The following are available online at http://www.mdpi.com/2306-5710/4/4/85/s1,
Table S1: Mean (±1 SD, n = 9) values of coarse fragments >2 mm (CF), sand (SD), silt (SI), clay (CL), pH,
organic carbon (orgC), base cations and sum of bases (SB), phosphorus by Olsen test (POL), iron and aluminium
determined by the dithionite-sodium citrate method in the samples from the vineyards of Algezuz (AL), Quinta de
São Francisco (SF), Quinta do Sanguinhal (SA), and Quinta de Carvalhais (QC) at 0–20, 40–60 and 60–80 cm depth;
Table S2: Effect of depth level on soil multi-element composition (µg/g): (a) Algeruz (AL) vineyard; (b) Quinta de
S. Francisco (SF) vineyard; (c) Quinta do Sanguinhal (SA) vineyard; (d) Quinta dos Carvalhais (QC) vineyard;
Table S3: Vineyard effect on multi-elemental composition of grape berries (corresponding musts) collected in the
vineyards of Algezuz (AL), Quinta de São Francisco (SF), Quinta do Sanguinhal (SA), and Quinta de Carvalhais
(QC); Table S4: Multi-elemental composition of wines (2010 vintage) from the different vineyards. (AL) Vinha de
Algeruz; (SF) Quinta de S. Francisco; (SA) Quinta do Sanguinhal; (CQ) Quinta dos Carvalhais.
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