
Building a Framework for
High-performance In-memory

Message-Oriented Middleware

by

Huy Hoang

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Mathematics
in

Computer Science

Waterloo, Ontario, Canada, 2019

c© Huy Hoang 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Waterloo's Institutional Repository

https://core.ac.uk/display/250588307?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

AUTHOR’S DECLARATION

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

Message-Oriented Middleware (MOM) is a popular class of software used in many dis-
tributed applications, ranging from business systems and social networks to gaming and
streaming media services. As workloads continue to grow both in terms of the number
of users and the amount of content, modern MOM systems face increasing demands in
terms of performance and scalability. Recent advances in networking such as Remote Di-
rect Memory Access (RDMA) offer a more efficient data transfer mechanism compared
to traditional kernel-level socket networking used by existing widely-used MOM systems.
Unfortunately, RDMA’s complex interface has made it difficult for MOM systems to utilize
its capabilities.

In this thesis we introduce a framework called RocketBufs, which provides abstrac-
tions and interfaces for constructing high-performance MOM systems. Applications im-
plemented using RocketBufs produce and consume data using regions of memory called
buffers while the framework is responsible for transmitting, receiving and synchronizing
buffer access. RocketBufs’ buffer abstraction is designed to work efficiently with different
transport protocols, allowing messages to be distributed using RDMA or TCP using the
same APIs (i.e., by simply changing a configuration file).

We demonstrate the utility and evaluate the performance of RocketBufs by using it to
implement a publish/subscribe system called RBMQ. We compare it against two widely-
used, industry-grade MOM systems, namely RabbitMQ and Redis. Our evaluations show
that when using TCP, RBMQ achieves up to 1.9 times higher messaging throughput than
RabbitMQ, a message queuing system with an equivalent flow control scheme. When
RDMA is used, RBMQ shows significant gains in messaging throughput (up to 3.7 times
higher than RabbitMQ and up to 1.7 times higher than Redis), as well as reductions in
median delivery latency (up to 81% lower than RabbitMQ and 47% lower than Redis). In
addition, on RBMQ subscriber hosts configured to use RDMA, data transfers occur with
negligible CPU overhead regardless of the amount of data being transferred. This allows
CPU resources to be used for other purposes like processing data.

To further demonstrate the flexibility of RocketBufs, we use it to build a live streaming
video application by integrating RocketBufs into a web server to receive disseminated video
data. When compared with the same application built with Redis, the RocketBufs-based
dissemination host achieves live streaming throughput up to 73% higher while disseminat-
ing data, and the RocketBufs-based web server shows a reduction of up to 95% in CPU
utilization, allowing for up to 55% more concurrent viewers to be serviced.

iii

Acknowledgements

I would first like to thank my supervisor, Professor Tim Brecht, for his guidance and
support throughout my degree. His supervision and inspiration enabled me to overcome
the challenges that I encountered during the course of this project. I would also like
to thank my colleague Benjamin Cassell, who worked with me on this project, for his
friendship and collaboration.

I would like to thank Professor Khuzaima Daudjee and Professor Samer Al-Kiswany,
for reading and providing suggestions to improve this thesis.

I want to dedicate this thesis to my parents and sister, who have always supported me
my entire life. I could not have made it without them.

Last but not least, I appreciate the financial support provided by the David R. Cheriton
School of Computer Science, Professor Tim Brecht and the University of Waterloo.

iv

Table of Contents

List of Figures viii

List of Tables x

List of Code Listings xi

1 Introduction 1
1.1 Background, Motivation and Goals . 1
1.2 Contributions . 4
1.3 Thesis Outline . 5

2 Background and Related Work 6
2.1 Background . 6

2.1.1 Message Oriented Middleware . 6
2.1.2 Kernel-based Networking . 9
2.1.3 RDMA . 10
2.1.4 Live Streaming Video . 11

2.2 Related Work . 13
2.2.1 Networking Frameworks . 13
2.2.2 RDMA . 14
2.2.3 Message-Oriented Middleware . 16
2.2.4 Live Streaming Video . 18

v

3 Design and Implementation 19
3.1 Overview . 19
3.2 Buffers . 21
3.3 rIn and rOut . 22
3.4 Buffer Flow Control . 26
3.5 Buffer Splicing . 27
3.6 RocketNet . 29
3.7 Sending Control Messages . 31
3.8 Configurations and Optimizations . 31
3.9 Chapter Summary . 32

4 RBMQ: A Message-Oriented Publish/Subscribe System 33
4.1 Overview . 33
4.2 Publisher Implementation . 34
4.3 Broker Implementation . 34
4.4 Subscriber Implementation . 37
4.5 Evaluation . 38

4.5.1 Methodology . 38
4.5.2 Broker Message Throughput . 39
4.5.3 Subscriber CPU Utilization . 47
4.5.4 Delivery Latencies . 49

4.6 Chapter Summary . 52

5 Live Streaming Video Application 53
5.1 Design . 53
5.2 Evaluation . 57

5.2.1 Microbenchmarks . 57
5.2.2 Live Streaming Video Delivery Benchmarks 60

5.3 Chapter Summary . 62

vi

6 Conclusions and Future Work 63

6.1 Thesis Summary . 63
6.2 Future Work . 65

6.2.1 Buffer Delivery Policies . 65
6.2.2 Support for Data Persistence . 65
6.2.3 Support for Pull-based Delivery . 66
6.2.4 Extending Networking Capabilities 66
6.2.5 Support for Security and Fault Tolerance 67

6.3 Concluding Remarks . 67

References 69

vii

List of Figures

2.1 Message-Oriented Middleware. 7
2.2 Overview of RDMA communication. 10

3.1 Use of rIn and rOut objects in an MOM system. 20
3.2 Circular buffer. 22
3.3 Segment representation using iovec. 23
3.4 Overview of rOut buffer management and data transfer. 25

4.1 Overview of RBMQ implementation using RocketBufs. 34
4.2 Throughput with zero subscribers. 41
4.3 Goodput with zero subscribers. 41
4.4 Throughput with 1 subscriber. 42
4.5 Goodput with 1 subscriber. 42
4.6 Throughput with 2 subscribers. 43
4.7 Goodput with 2 subscribers. 43
4.8 Throughput with 4 subscribers. 44
4.9 Goodput with 4 subscribers. 44
4.10 Normalized throughput with zero-subscribers (32-byte messages). 46
4.11 Subscriber CPU utilization (50,000 mps). 48
4.12 Full round-trip latency at 100,000 mps. 51
4.13 Full round-trip latency at 200,000 mps. 51

viii

5.1 Design overview of a live streaming video application using RocketBufs. . . 54
5.2 Maximum ingest throughput. 58
5.3 Delivery server CPU utilization as total stream throughput increases. . . . 59
5.4 Maximum error-free web server delivery throughput. 61

ix

List of Tables

4.1 CPU utilization statistics from the broker under a load of 50,000 mps with
8 KB messages and four subscribers. For example, the CPU utilization of
RB-rdma-rdma is 9.6%, of which 73.7% is spent in the Linux kernel. 47

4.2 Profiling statistics of a subscriber (50,000 mps, 32 KB messages). 49

5.1 Top three delivery server functions with most CPU time at 32 Gbps. . . . 60
5.2 Akamai reported and emulated viewers access speeds. 60

x

List of Code Listings

3.1 Definition of buf segment . 22
3.2 Key rIn/rOut methods . 23
3.3 Pseudocode for a copy-based broker implementation. 28
3.4 Pseudocode for a broker demonstrating the use of splice. 28
3.5 Pseudocode for connecting to message brokers. 30
4.1 Pseudocode for key components of an RBMQ publisher. 35
4.2 Pseudocode for key components of an RBMQ broker. 36
4.3 Pseudocode for key components of an RBMQ subscriber. 37
5.1 Pseudocode for a dissemination process. 55

xi

Chapter 1

Introduction

1.1 Background, Motivation and Goals

In order to handle increasingly complex workloads and meet growing scalability require-
ments, many modern applications and services are designed as distributed, event-based
systems, which consist of smaller components, each with a separate responsibility. These
components work together by exchanging and reacting to data from other components.
Message-Oriented Middleware (MOM) systems are a popular class of software used by
many distributed applications to facilitate this type of data exchange in a loosely-coupled
manner. Applications using MOM systems follow a produce-disseminate-consume (PDC)
design pattern, where one or more producers send data as messages to an MOM sub-
strate (often comprised of message brokers) for scalable dissemination to a possibly large
number of consumers. Examples of applications and services that utilize MOM systems
include IBM’s cloud functions [49], the Apache OpenWhisk serverless framework [96], the
Hyperledger blockchain framework [12], Facebook’s event propagation system [16], and
video streaming applications [89]. The emergence of new types of workloads and the rising
popularity of MOM systems have led to the continued design and implementation of new
systems. Over the past five years alone, many new open-source MOM systems have been
developed [34, 100, 14, 90, 16, 58], and cloud providers have continued to introduce new
MOM services as part of their infrastructure [45, 5, 6, 44].

Many modern applications have high performance and scalability demands with regard
to message delivery. Facebook’s pub/sub system, for example, delivers over 35 Gigabytes
per second within their event processing pipeline [92], while Twitch, a live streaming video
service, handles hundreds of billions of minutes worth of video content a year [40], and

1

this amount is expected to continue to grow. Other classes of applications, such as on-
line gaming [41] and stock trading [98] require messages to be delivered with extremely
low latency. As a result, constructing high-performance and scalable MOM systems is a
problem that has received much attention in both industry and academia. In this thesis,
we are interested in building in-memory MOM systems to support high-throughput and
low-latency message delivery.

Often in MOM deployments, data is moved between hosts that reside within a data
center [59, 91]. One approach to building high-performance MOM systems is to leverage
data center networking capabilities, especially those that offer kernel-bypass features to
enable high-throughput and/or low-latency communication [67, 37, 94]. For example, Re-
mote Direct Memory Access (RDMA) is one example of a technology that provides such
features. RDMA allows applications to bypass the operating system and offload the trans-
port layer processing to the Network Interface Card (NIC), resulting in faster and more
efficient data transfers. With the introduction of RDMA over Converged Ethernet (RoCE)
NICs, data centers can support RDMA over classical Ethernet networks for little or no in-
cremental cost over NICs that do not support RDMA [69]. Unfortunately, commonly-used
MOM systems currently do not take advantage of this capability and instead typically use
kernel-based TCP, which in many cases incurs protocol processing and copying overhead
(even for communication within a data center [47]), limiting throughput and resulting in
higher latency.

We identify two issues that we believe have prevented current MOM systems from
adopting RDMA. First, it is well known that RDMA is difficult to use [1]. A simple ap-
plication using RDMA to transfer data must go through the process of establishing device
contexts, registering memory regions, exchanging keys and implementing code to monitor
and handle events. Past studies have proposed both hardware primitives [2] and software
abstractions [1] to address this difficulty and to simplify working with RDMA. However,
in most cases these abstractions are designed for other types of applications (e.g., remote
memory or key-value store systems), and are not suitable for building MOM systems. Sec-
ondly, the native RDMA verb interface has abstractions and APIs fundamentally different
from the socket abstraction which is conventionally used with protocols like TCP. With
RDMA, applications transfer data by posting work requests onto queue pairs, which re-
quire direct access to application-level memory, instead of calling send/recv on sockets
which typically involves moving data between kernel-space and user-space buffers. Because
of this difference, a lot of engineering effort would be required for both new and existing
MOM systems to support RDMA, since two separate data transfer implementations would
be required (since traditional protocols such as TCP are still necessary for non-RDMA
NICs and for communication over a wide area network).

2

A solution that provides compatibility between RDMA and the socket abstraction is
rsocket [62], an API wrapper on top of native RDMA. The rsocket APIs (e.g., rsend,
rrecv) are intended to match the behavior of the corresponding socket function calls. The
rsocket library internally allocates and registers buffers for RDMA “sockets”, which are
used to store incoming and outgoing data. It translates socket-like APIs to RDMA verbs
by copying data between these internal buffers and application-defined memory. While
this approach provides a familiar abstraction, it sacrifices performance due to copying
overhead [57, 107]. This overhead is especially noticeable when transferring large amounts
of data. For example, we have conducted some simple experiments and found that a
host (with an eight-core 2.0 GHz Intel Xeon D-1540 CPU) using rsocket utilizes 18% of
the CPU while receiving data at 32 Gbps. In contrast, as will be demonstrated later in
Chapter 5, our RDMA implementation utilizes only 3% of the CPU while receiving the
same amount of data.

We believe that MOM systems should be able to utilize RDMA (and other techniques
designed for high-throughput and/or low-latency data center communication) for high-
performance in-data center messaging, while not being forced to choose between suboptimal
performance (i.e., rsocket) and a complex implementation (using the native RDMA APIs).
To this end, we propose RocketBufs, a framework to facilitate the easy construction of high-
performance in-memory Message-Oriented Middleware systems. The goals of this thesis
are to:

• Provide a framework with natural abstractions and easy-to-use APIs, tailored for
building a variety of MOM systems. As will be discussed in Chapter 2, a key prop-
erty of MOM systems is the independence between data producers and consumers.
RocketBufs’ APIs therefore must satisfy this property. The framework should also
provide support for the efficient implementation of flexible MOM topologies.

• Enable MOM applications built with RocketBufs to utilize different transport proto-
cols (including TCP and RDMA) using the same abstraction. Changing the transport
protocol should require only changes to the system’s configuration and should not
require any modifications to application code.

• Provide abstractions and APIs that enable efficient and scalable implementations for
both RDMA and TCP-based networking.

Given the continuous development of new MOM systems, we believe that such a frame-
work would greatly simplify the construction of new systems while allowing them to achieve
high performance. Furthermore, by designing abstractions and APIs that work well with

3

both RDMA and TCP, two protocols with vastly different programming interfaces, we
believe that other transport layer APIs and technologies (e.g., QUIC [53], F-Stack [37],
TCPDirect [94]) could also be efficiently supported by the framework, providing benefits
to all systems built using RocketBufs.

1.2 Contributions

In this thesis, we make the following contributions:

• We propose and implement RocketBufs, a framework that facilitates the construction
of high-performance Message-Oriented Middleware systems. RocketBufs provides a
natural memory-based buffer abstraction. Application developers control the trans-
mission and reception of data using input (rIn) and output (rOut) objects that are
associated with buffers. The framework transfers buffered data between communi-
cating processes and provides mechanisms for flow control. RocketBufs’ abstractions
and APIs are designed to efficiently support different transport protocols, including
RDMA and TCP.

• We describe a prototype implementation of RBMQ, a publish/subscribe messaging
system built on top of RocketBufs. To demonstrate that such a system can be built
with relatively little effort, we provide pseudocode for the key components of the
message broker, publisher and subscriber.

• We evaluate the performance of RBMQ by comparing it against RabbitMQ and
Redis, two widely-used, industry-grade MOM systems that support publish/sub-
scribe messaging. Our evaluations show that, when disseminating to four subscribers,
both Redis and RBMQ using TCP achieve significantly higher messaging throughput
than RabbitMQ (which has a flow control scheme equivalent to RocketBufs). When
RDMA is used, RBMQ shows substantial gains in performance and outperforms
Redis in both messaging throughput and average delivery latency. Additionally, an
RBMQ subscriber using RDMA incurs negligible CPU overhead while receiving data,
allowing CPU resources to be used for other purposes like data processing.

• To further demonstrate the flexibility of RocketBufs, we use it to build a live stream-
ing video application consisting of a dissemination host and multiple delivery hosts.
The dissemination host acts as a message broker, which ingests video streams from
video sources and disseminates them using the rOut class to web servers for delivery

4

to viewers. The web servers use the rIn class to subscribe to and receive dissemi-
nated video data, either using TCP or RDMA, and serve video content to viewers over
HTTPS. We also build a version of this application that uses Redis to disseminate
video streams. Our empirical evaluation shows that RocketBufs is able to support up
to 55% more simultaneous viewers when compared with the Redis-based application.

1.3 Thesis Outline

The rest of this thesis is organized as follows. Chapter 2 presents background information
and related research. Chapter 3 describes the design, implementation and optimizations
used in RocketBufs. In Chapter 4, we describe the implementation of RBMQ, a publish/-
subscribe messaging system built using the RocketBufs framework. We then compare its
performance against that of RabbitMQ and Redis. In Chapter 5, we describe how we use
RocketBufs to disseminate live streaming video data between hosts to allow delivery to
scale to a much larger number of viewers. We then compare the performance of our live
streaming application against the same application built using Redis for data dissemina-
tion. Chapter 6 contains our conclusions and ideas for future work.

5

Chapter 2

Background and Related Work

2.1 Background

2.1.1 Message Oriented Middleware

To handle increasingly complex workloads and meet growing scalability requirements, many
modern applications and services are designed as distributed, event-based systems, which
consist of small and responsibility-separate components. These components work together
by exchanging and reacting to data from one another. Often data produced by a compo-
nent needs to be accessed by one or more other components. Message-Oriented Middleware
(MOM) refers to software infrastructure supporting this type of data exchange in an in-
dependent and loosely-coupled manner. Applications that use MOM systems follow a
produce-disseminate-consume (PDC) design pattern, depicted in Figure 2.1 (where the ar-
rows represent the movements of data between nodes). In this design pattern, publishers
(or producers) send data as messages to an MOM substrate instead of sending them di-
rectly to consumers. The MOM substrate, often composed of multiple message brokers to
form a broker overlay, is responsible for routing messages to consumers (or subscribers).
The routing of messages is based on subscriptions, registered by subscribers to express
their interests in specific data (sometimes expressed as topics). This design pattern allows
for the decoupling (or independence) of communicating parties (i.e., the publishers and
subscribers). Specifically, Eugster et al. [36] list three independence properties of MOM
systems:

• Space independence: The communicating parties do need to know the identity of one
another. The publishers send data to the brokers and the subscribers obtain data

6

directly from the brokers. This mechanism allows the publishers and the subscribers
to exchange data without having to hold any references to one another (only refer-
ences to the brokers are required). Publishers and subscribers also do not need to
know how many other publishers or subscribers are present in the system.

• Time independence: The interaction with the same data may take place on partic-
ipating nodes at different points in time. In particular, a message published by a
producer might get queued in the brokers and delivered to different subscribers at
different times, depending on their processing rates and possibly other factors such
as message priorities.

• Synchronization independence: Publishers are not necessarily blocked by slow con-
sumers when producing data, since data can be queued and, in some cases, saved to
secondary storage on the brokers. Similarly, subscribers can be notified that data is
available while performing concurrent activities.

In Chapter 3, we discuss how these properties help inform our design of RocketBufs’
APIs. The emergence of new types of workloads and the rising popularity of MOM systems
have led to the continued development of new systems. We have conducted an informal
search and found many popular open-source MOM systems (Github projects with a rating
of at least 1000 stars, which indicates high popularity) being newly developed in the past
five years alone [34, 100, 14, 90, 16, 58]. In the same period, cloud providers have continued
to introduce new MOM services as part of their infrastructure [45, 5, 6, 44].

Broker overlay

Producers
(Publishers)

Consumers
(Subscribers)

Broker

Broker

Broker

Figure 2.1: Message-Oriented Middleware.

7

The scale at which MOM systems operate has also become larger over time, both in
terms of the number of users and the amount of data. Facebook, for example, reports
in 2015 that their pub/sub system delivered over 35 Gigabytes of data per second [92].
Another report by LinkedIn shows that their MOM deployment handles over two Petabytes
of data every week [59]. In order to scale to handle increasing workloads, MOM systems
often contain multiple message brokers that form a broker cluster (or overlay). Data can
be moved from one broker to another for scalable delivery to subscribers of that data.
Broker overlays can have different topologies, depending on their specific workloads. In
RocketBufs, we provide classes that allow flexible topologies to be easily constructed.

MOM systems typically operate using one of two main types of workflows: message-
queuing or publish/subscribe (pub/sub). In the message-queuing workflow, processes con-
sume messages from queues, and each message in a queue is delivered to a single consumer.
This workflow is designed for scenarios such as a load balancer, where messages in the queue
represent tasks to be carried out by the consumer processes. In the pub/sub workflow,
messages produced by the publishers are delivered to all interested subscribers. Pub/sub
systems can be further categorized into topic-based and content-based. In topic-based pub-
/sub systems, messages are associated with different topics (or subjects) and are delivered
to subscribers of corresponding topics. On the other hand, content-based pub/sub systems
deliver a message to a subscriber only if the message content matches the constraints de-
fined with the subscription. For example, a subscriber can define pattern-matching rules
with the subscription so that the brokers only deliver to the subscriber the messages that
match those rules. An example of such a system is an intrusion detection system which
detects and notifies control applications of abnormal traffic. RocketBufs’ abstractions and
APIs (described in Chapter 3) are designed to allow for the implementation of MOM sys-
tems using both the topic-based and the content-based pub/sub workflows, as well as the
message-queuing workflow.

The delivery of messages from brokers to subscribers in MOM systems can be catego-
rized as push-based and pull-based, depending on the party initiating the data transfer. A
subscriber in a pull-based system sends pull requests to fetch messages from the brokers
before consuming them. This mechanism allows the subscribers to control the rate at which
messages are received, however this approach can lead to higher delivery latencies, since
there is a delay between the pull request and the delivery of the message. The pull-based
model is typically used by client-driven MOM systems such as Kafka [31] and Amazon
SQS [9]. On the other hand, in pushed-based systems (e.g., RabbitMQ [80], Amazon No-
tification Service [8]) brokers proactively send published messages to subscribers as soon
as possible. Our work with RocketBufs in this thesis uses a push-based model to allow us
to focus on the framework’s delivery latency. We discuss ideas for supporting pull-based

8

delivery in Chapter 6.

2.1.2 Kernel-based Networking

The primary function of MOM systems is to deliver data from producers to consumers.
Implementing efficient data transfers is therefore a key to developing high performance
MOM systems. In real deployments, MOM systems can be geo-distributed, however in
many cases, data is also moved between hosts that reside within a data center [91]. For
example, LinkedIn deploys several clusters of Kafka brokers in each of their data centers to
handle data from other system components [59]. Another example is Bitnami, a VMWare
service that offers cloud deployment automation. Bitnami deploys RabbitMQ clusters in
their data center to allow their system to scale to handle large numbers of messages [43]. We
believe that such systems would benefit from leveraging networking capabilities available in
modern data centers, such as RDMA-enabled NICs or other specialized hardware [23, 93].

Most current and commonly-used MOM systems, including RabbitMQ [79], Redis [84]
and Kafka [60], rely on TCP/IP for data transfers, even within a data center. Some sys-
tems, such as ActiveMQ [39] also provide support for messaging over UDP (although at the
cost of sacrificing reliability). The conventional method of working with these protocols
involves using the socket APIs, provided by most modern operating systems. These APIs
are implemented in the system kernel’s networking stack, and are responsible for packet
processing (e.g., forming packets and ensuring reliability). To send data, application de-
velopers call send (or write) system calls, which copy data to kernel-space socket buffers,
from which data is transferred over the network. Similarly, receiving data requires call-
ing recv (or read) system calls, which eventually copy data from the kernel-space socket
buffers into the application-defined user-space buffer.

Despite being a mature and familiar technology, kernel-based socket networking suffers
from a number of inefficiencies. First, CPU resources are required for processing packets
and copying data between user-space memory and kernel-space socket buffers. Secondly,
context switching overhead from networking-related system calls results in extra latency.
Guo et al. [47] show that, for example, kernel-based TCP uses 12% of a 32-core Intel Xeon
CPU while receiving data at 40 Gbps, and latencies of networking-related system calls can
be as high as tens of milliseconds. These limitations are undesirable in many modern ap-
plications, such as CPU-intensive data analysis [38] or latency-sensitive applications [110].

To address these limitations, recent work has focused on developing user-space network-
ing stacks that bypass the kernel and in many cases, offload parts of the transport protocol
to hardware. Some examples are U-Net [105], TCPDirect [94], and F-Stack [37]. In the

9

next section, we provide details of one such technology, Remote Direct Memory Access
(RDMA), which is supported by the current RocketBufs prototype. We discuss other work
related to user-space networking in Section 2.2

2.1.3 RDMA

Remote Direct Memory Access (RDMA) is a modern efficient networking alternative to tra-
ditional networking protocols like TCP or UDP. RDMA is enabled on specialized Network
Interface Cards (referred to as RNICs) which carry out data transfer operations without
involving the host’s main CPU. RDMA also bypasses the kernel and provides applica-
tions with user-level access to the NIC’s resources. This section summarizes the aspects
of the protocol used in this thesis. Note that the research in this thesis uses RDMA over
Converged Ethernet [68] and Mellanox’s RDMA implementation [67].

RDMA works by interacting directly with user-space memory. To use RDMA, appli-
cations first allocate and register memory regions with the RNIC on both the sending and
receiving host. These memory regions are then pinned (locked) into memory to prevent
them from being paged out by the operating system. Data transfers can then be executed
using the RDMA verb interface. The RNIC moves data from one host’s registered memory
regions to another’s, bypassing both hosts’ kernels and CPUs. This mechanism is depicted
in Figure 2.2.

Node 1

Registered memory

Kernel
socket
layer

Verb
APIs

RNIC Network

Node 2

Registered memory

Kernel
socket
layer

Verb
APIs

RNIC

Figure 2.2: Overview of RDMA communication.

From the programmer’s perspective, RDMA’s verbs are executed by posting work re-
quests onto a queue pair (QP). RDMA QPs are asynchronous in nature: work requests
posted to a QP are queued for execution and when an operation completes, a comple-
tion event is posted to the QP’s completion queue, which is a data structure that can be

10

monitored by the application. RDMA supports several types of transport mechanisms for
QPs: reliable connection (RC), unreliable connection (UC) and unreliable datagram (UD).
As suggested by their names, RC and UC are connection-oriented. The main difference
between them is that with RC, the RNICs guarantee reliable data transfers using ACK
and NACK packets [70], while UC does not provide this guarantee. On the other hand, the
Unreliable Datagram transport type (UD) does not require connections to be established
between hosts and also provides multicast functionality (similar to UDP and UDP-based
multicast). However, the delivery of UD datagrams are not reliable and the datagram size
is limited to the network’s Maximum Transmission Unit (MTU). In this thesis, we use RC
as the transport type for our RDMA implementation because of its reliability guarantees.
This approach has also been advocated for in recent literature [72].

RDMA verbs can be categorized as one-sided and two-sided, based on which systems
are involved in the operation. Two-sided verbs include send and recv, which require both
communication endpoints to post work requests onto their corresponding queue pairs. The
sender posts a send request indicating which data is to be transferred and the receiver must
post a recv request to indicate where incoming data should be placed. One-sided verbs,
on the other hand, only require one host to initiate the operation. For example, the read
verb allows reading data from remote memory, and the write verb allows writing data to
remote memory without generating completion events on the remote end. When remote
completion events are desired (to notify the receiving node of incoming data), applications
can make use of hybrid verbs such as write-with-imm. This verb sends an additional
32-bit piece of immediate data following the write operation, which can be consumed from
the receiving node’s queue pair. Additionally, RDMA also supports 64-bit fetch-and-add
and compare-and-swap atomic operations.

The cost of RDMA-enabled NICs has become more competitive over the years. For
example, a 40 Gbps Mellanox ConnectX-4 NIC [51] with RDMA support has an almost
identical price to a non-RDMA 40 Gbps Intel Ethernet NIC [66]. With the introduction
of RDMA over Converged Ethernet (RoCE) [68], RDMA can be deployed in data centers
using a classical Ethernet network and switches. We expect that the decreasing costs
and increasing accessibility of RDMA NICs will lead to their deployment in more data
centers and their adoption in more types of applications, which is one of our motivations
for developing RocketBufs.

2.1.4 Live Streaming Video

In Chapter 5, we show how RocketBufs can be used to implement an HTTP live streaming
video application. Live streaming services such as Twitch [104] and YouTube Live [108]

11

are growing rapidly in popularity, with Twitch being the fourth largest consumer of peak
Internet traffic in the United States in 2015 [103]. It is also estimated that live streaming
video traffic will account for 17% of all Internet video traffic by 2022 [28]. This rapid growth
requires streaming services to develop scalable infrastructure, capable of handling large
amounts of live stream video data at a global scale. Efficiently disseminating live streaming
video traffic is another motivation for our design and implementation of RocketBufs.

We now use Twitch as an example to describe how a live streaming service operates.
Twitch streamers broadcast video content by sending video data (usually encrypted) to
a transcoding endpoint using the Real-Time Messaging Protocol (RTMP) [95], which op-
erates over TCP/IP. Video data is then transcoded into multiple HTTP live streaming
(HLS) streams. Each stream uses a different video resolution resulting in streams with
different bitrates. The most common video resolutions offered by Twitch are 360p, 480p,
720p and 1080p. To reduce video bandwidth and the cost of transcoding streams that
are not popular, Twitch only selects certain streams to transcode to multiple resolutions,
based on the popularity of the stream and Twitch’s partnership with certain streamers. In
order to meet global demands for content and to make content available on servers close
to viewers, Twitch geo-replicates video data to multiple data centers containing clusters of
servers around the world. From there video traffic is sent to nearby viewers. Work by Deng
et al. in 2017 [30] identified at least 875 video servers distributed across 21 data centers in
four continents. Their study also shows that Twitch dynamically replicates video streams
across servers depending on the stream’s popularity (number of current viewers). Streams
with higher view counts are replicated to a larger number of servers. For example, a stream
with approximately 20,000 simultaneous viewers was replicated to more than 50 servers in
North America alone.

Viewers of HTTP streaming video services consume content by making HTTP requests
to delivery servers for data and appending that data to the client device’s playback buffer.
Delivering video content can require significant amounts of CPU resources, which are re-
quired for ingesting data from video sources (either the transcoding service or other deliv-
ery servers) and sending them to requesting viewers over HTTP. Furthermore, in recent
years, streaming services have adopted TLS encryption for HTTP video traffic [109], which
also increases CPU resource consumption. This workload poses a challenge for building
large-scale live streaming services to meet increasing demands, especially regarding latency
requirements. Compared to video-on-demand (VOD) viewers, live streaming video viewers
are more sensitive to latency. VOD playback devices can deal with changes in network
latency by requesting large amounts of video data to pre-fill their playback buffers. This
can not be done for live streaming, because the playback buffer can only be filled as fast
as the content is generated. Viewers of live streaming content in general also have higher

12

expectations for service quality. Dobrian et al. [32] showed that, for example, a 1% in-
crease in the buffering ratio (the percentage of time spent waiting for data to be available
to play) for a 90-minute soccer game translated to viewers watching 3 fewer minutes of
the game, impacting viewer retention and revenue. Our work with live streaming video
leverages RocketBufs’ networking capabilities to improve the CPU efficiency of video data
dissemination. These savings in CPU utilization allow delivery servers to service more
viewers in a timely manner.

2.2 Related Work

In this section, we look at past studies related to RocketBufs. We divide related research
into several categories: networking systems and libraries, research on RDMA-based sys-
tems, research that focuses on improving the performance of MOM systems, and research
on live streaming video.

2.2.1 Networking Frameworks

Our main goal with RocketBufs is to enable high-performance networking in MOM systems.
One line of previous work has focused on developing techniques to improve the performance
of traditional protocols like TCP by bypassing the kernel and moving the protocol process-
ing into user space. This approach avoids the overhead incurred by network-related system
calls and results in improved throughput and latencies. Examples of systems that use this
approach include U-Net [105], F-Stack [37] and TCPDirect [94]. Unlike RocketBufs, these
systems focus on the transport layer and are not tailored to a specific type of applica-
tions (i.e., MOM systems). Some of them (like U-Net [105]) require modifications to the
Operating System or specialized hardware (TCPDirect [94]). Our work with RocketBufs
focuses on designing abstractions and APIs for MOM systems that allow different trans-
port protocols to be efficiently supported. In future work, RocketBufs could incorporate
these other kernel-bypass techniques to further improve its messaging performance using
protocols other than RDMA. We believe that our proof-of-concept RDMA implementation
demonstrates that other kernel-bypass systems would also see significant benefits (e.g., due
to reduced system call overhead and eliminating data copying).

Another goal of RocketBufs is to facilitate the efficient access to networking resources
through an easy-to-use interface. There are several networking libraries that share this
objective. For example, the libfabric library [46] provides abstractions for access to

13

networking hardware, enabling applications to discover and utilize available communication
mechanisms (including RDMA). Their abstractions however operate at a lower level than
RocketBufs. They do not provide MOM-tailored features that RocketBufs does, such as
buffer management and flow control. Additionally, libfabric does not make as much
effort to hide the complexity of RDMA programming (e.g., it still requires the application
to perform memory registration for use with RDMA). Technically, libfabric could be
used to implement parts of RocketBufs’ networking components. However, due to our
familiarity with the code base, we chose to implement the prototype for RocketBufs using
our existing infrastructure which has been used to develop Nessie [22] - a high performance
key value store.

Another library, ZeroMQ [111], provides a socket-based abstraction for building mes-
saging systems. Each ZeroMQ socket has a type that indicates the messaging pattern it
supports. For example, ZMQ REQ and ZMQ REP sockets are used to implement appli-
cations with RPC-style communication (using requests and replies), while ZMQ PUB and
ZMQ SUB sockets are used to implement the pub/sub design pattern, in which data sent
to a ZMQ PUB socket is delivered to all connected ZMQ SUB sockets. In a fashion similar
to RocketBufs, ZeroMQ provides a messaging abstraction that allows for communication
over different transport protocols (e.g., TCP and UDP). However ZeroMQ’s abstraction is
lower-level than RocketBufs’, and is designed for simple direct messaging between nodes
without the notion of brokers or other middleware. ZeroMQ also does not support RDMA,
and adding RDMA support to ZeroMQ using a socket abstraction would also be difficult
without sacrificing performance (as is the case with rsocket, explained in Section 2.2.2).
RocketBufs is designed specifically for building new MOM systems (e.g., to allow con-
sumers to subscribe to specific buffers and to support buffer splicing on message brokers).
RocketBufs also provides a memory-based interface which is designed to avoid unneces-
sary data copies and to allow for efficient implementations of MOM systems, whether they
choose to use RDMA or TCP. While ZeroMQ could be used to implement RocketBufs’
TCP-based networking component, we chose to provide our own TCP implementation to
avoid ZeroMQ protocol overhead [112] and to optimize TCP performance.

2.2.2 RDMA

As mentioned previously, despite showing significant benefits, directly using RDMA is com-
plicated [1]. Some work has been conducted on building systems and designing abstractions
to improve RDMA usability. For example, rsocket [62] provides an API wrapper on top of
native RDMA functions to enable RDMA access using a socket abstraction. The rsocket
APIs (e.g., rsend, rrecv) are intended to match the behavior of their corresponding socket

14

function calls. To translate these APIs to RDMA verbs, rsocket internally allocates and
registers buffers for RDMA “sockets”, which are used to store incoming and outgoing data
(since RDMA requires access to pre-registered memory). Networking operations involve
copying data between these internal buffers and application buffers. This copying overhead
introduces inefficiencies during data transfers [57, 107]. We have conducted some simple
experiments and found that a host using rsocket utilizes 18% of the CPU while receiving
data at 32 Gbps, compared to only 3% when using RDMA. In RocketBufs, we provide a
memory-based interface which is designed to avoid unnecessary data copying and to take
full advantage of RDMA.

Recent research has explored ways to use RDMA in the context of remote memory and
distributed key-value store systems, including FaRM [33], Remote Regions [1], LITE [102]
and many others [55, 69, 106, 22, 72]. FaRM, for example, exposes the cluster’s memory
as a shared address space, and provides transactional read/write APIs to interact with
objects within that address space. LITE is similar to FaRM with regards to the function-
alities it provides, however LITE is implemented in the kernel and its APIs are exposed as
system calls. This model enables LITE to hide RDMA’s complex management from user
applications, making it easier to access LITE’s functionalities. For example, LITE allows
different processes on a host to safely share RDMA resources (e.g., memory regions and
CPU required for monitoring RNIC events). However, this comes at the cost of giving
up RDMA’s kernel bypass feature. Remote Regions expose the cluster’s memory regions
as files, which are represented as file descriptors. These file descriptors support read,
write and mmap operations, providing RDMA access via familiar APIs. While these sys-
tems provide interfaces that simplify access to RDMA, they are not designed for the same
use cases as RocketBufs (which is tailored to MOM systems). For example, they do not
provide APIs for subscribing to and continuously receiving specific data, or for efficiently
forwarding data on message brokers. Some of these systems also require operating system
modifications (as is the case with FaRM).

In addition to having a complicated application interface, RDMA also requires careful
tuning and optimizations in order to achieve high performance. Many studies have docu-
mented experiences with and guidelines for building efficient RDMA-based systems, some
of which have been incorporated into RocketBufs’ RDMA implementation. For example,
the use of the one-sided write-with-imm verb has been advocated for by Novakovic et
al. [72]. This verb allows the sender to communicate additional information (an extra 32-
bit piece of immediate data following the write operation) while at the same time enabling
notifications of incoming data on the receiver. RocketBufs leverages this verb to transfer
application data by writing the message data to the receiver’s memory location, and using
the immediate data field to store the buffer’s identifier. Another example of incorporating

15

ideas from other research into optimizing RDMA is using the advice from Kalia et al. [56],
which describes the benefits from reducing the number of registered memory regions to
avoid contention on the RNIC cache resources. RocketBufs minimizes these registrations
by assigning memory space for buffers from pre-allocated memory pools.

Finally, by separating the application interface from the networking layer, RocketBufs
allows for independent improvements of the networking layer which would benefit all ap-
plications built using our framework. This is especially important because RDMA-enabled
hardware and best practices are continuing to evolve [72] and new kernel bypass systems
and products are being developed.

2.2.3 Message-Oriented Middleware

RocketBufs’ main goal is to enable the construction of high-performance MOM systems.
Prior to our work, many studies have explored techniques for improving the performance
of MOM systems.

Jokela et al. introduce LIPSIN [54], a multicast forwarding fabric for topic-based pub-
lish/subscribe systems. Instead of using a broker overlay to route messages, LIPSIN embeds
the pub/sub view into the network layer (layer 3), making the network fabric pub/sub-
aware. Additionally, instead of using endpoint IP addresses, LIPSIN routes packets by
identifying links. Each unidirectional point-to-point link in the network is given a unique
Link ID and a bitmap is used to determine which packets to forward over a link. When
a message is published, LIPSIN uses the topic ID and the network graph to figure out
which nodes are interested in the message and creates a conceptual forwarding tree. The
publisher then encodes all Link IDs of the tree into a Bloom filter (referred to as zFilter)
and places it into the packet header. To forward packets, each forwarding node (including
the publisher) matches its outgoing links’ IDs against the zFilter and sends the matched
packets along the corresponding links. LIPSIN operates at a lower level than RocketBufs
and does not support RDMA. However, it does provide interesting ideas for how MOM
systems can be improved with a tailored network fabric. We hope to consider these ideas
when making future improvements to RocketBufs’ networking layer.

Much research effort has focused on designing MOM topologies to better utilize re-
sources and improve the efficiency of message delivery [101, 27, 42, 73, 25, 26, 24, 18]. For
example, Chockler et al. [26] introduce the concept of a Topic-Connected Overlay (TCO)
for topic-based pub/sub systems. The idea of TCO is to group all nodes interested in a
topic into a connected sub-overlay, so that messages published on a topic can be delivered
to all interested nodes without being forwarded by non-interested nodes, thereby reducing

16

relaying overhead. Building upon this idea in 2016, Chen et al. [24] proposed several prac-
tical optimizations, allowing systems to form a TCO more quickly. Other work has also
focused on improving content-based pub/sub systems. For instance in 2013, Barazzutti
et al. introduced StreamHub [18], a content-based pub/sub system with a multi-tiered
architecture. Instead of using message brokers, StreamHub consists of tiers (referred to as
operators), each of which implements a subset of the content-based pub/sub service. When
a message is published, each operator performs the appropriate message processing before
passing the processed message to the next operator in the pipeline. This design focuses
on improving resource utilization by avoiding repeated processing of messages by multiple
message brokers. The aforementioned studies (some as recent as 2018) show that MOM
systems are continuing to be studied and evolve. With RocketBufs, we focus on providing
an efficient and easy-to-use interface, upon which a wide variety of MOM systems and
flexible topologies can be implemented. In this thesis, we design and evaluate RocketBufs
in the context of a topic-based pub/sub system. We plan to implement more targeted
support for content-based pub/sub systems in future work.

Because of the growing popularity of MOM systems, there have been many open-source
message-queuing systems developed to provide developers with ready-to-deploy building
blocks [79, 39, 50, 15, 60]. In this thesis, we compare the performance of some example
applications we build using RocketBufs against RabbitMQ [79] and Redis [84], two widely
used systems that support in-memory publish/subscribe workflows. RabbitMQ is a pop-
ular, flexible message queuing system used by many Internet applications and companies,
including Reddit [35], VMWare, AT&T and Mozilla [11]. RabbitMQ offers a variety of
configurable options that allows trading off performance with reliability. We choose Rab-
bitMQ as a point of comparison against the pub/sub system we build using RocketBufs
(RBMQ) because of its popularity and flexibility. Redis, on the other hand, is primar-
ily an in-memory key-value store system, but also provides support for publish/subscribe
workflows. Redis’ users include popular Internet services such as Twitter, Github and
StackOverflow [88]. One key difference between Redis’ and RabbitMQ’s pub/sub imple-
mentations is how they deal with the discrepancy between the rate of data production and
consumption. When data is produced faster than it is consumed by the subscribers, Rab-
bitMQ uses a credit-based flow control mechanism (similar to RocketBufs), which slows
down the production rate of the producers [82]. Redis, on the other hand, does not im-
plement such a mechanism. Instead, if a subscriber can not keep up with the rate of
data production, the Redis broker simply closes the connection to that subscriber [85].
This mechanism allows Redis to avoid the overhead that would be incurred to implement
flow control, however it results in possible data losses (when a subscriber connection is
dropped). In Chapter 4, we show how the difference in the support or lack of support for

17

flow control impacts the performance of these systems as well as our pub/sub system built
using RocketBufs (RBMQ).

2.2.4 Live Streaming Video

A number of studies have looked at improving the performance and efficiency of live stream-
ing video services. As discussed in Section 2.1.4, Twitch selects certain video streams for
transcoding in order to reduce deployment costs. Pires et al. [77] examine strategies for
selecting video streams to be bitrate-transcoded, in order to reduce video data bandwidth
and minimize overall resource consumption. While the proposed strategies focus on band-
width reduction rather than networking efficiency, they would also result in reduced CPU
utilization on delivery servers thanks to reduced dissemination traffic. Similarly, work by
He et al. [48] presents a technique for the efficient allocation of video transcoding servers
in the cloud. Their work attempts to maximize viewer satisfaction while minimizing the
costs associated with deploying transcoding servers.

Netflix, a video-on-demand streaming service, has introduced TLS encryption into the
FreeBSD kernel [97] to help reduce the CPU utilization of TLS-encrypted HTTP connec-
tions (HTTPS). While this is done in the context of a video-on-demand service, similar
benefits could also be obtained for live streaming. We believe that the approaches pro-
posed by previous work are valuable and are complimentary to our goal of achieving better
CPU efficiency. A live streaming video system built using RocketBufs could leverage these
techniques to further reduce resource consumption and deployment costs.

In this thesis, we build and examine a live streaming video application. We also im-
plement a similar system that uses Redis for video data dissemination to use as a point of
comparison. We use Redis because we found (as described in Chapter 4) that it has good
performance and provides significantly higher throughput than RabbitMQ. Additionally,
Redis is used by the WILSP platform [89] to disseminate live streaming video data recorded
by producer nodes to delivery hosts running web servers. WILSP is designed primarily for
interactive video, and WILSP web servers have been shown to support up to 50 users,
delivering a total video throughput of about 230 Mbps [89]. Our live streaming system
is designed for larger scale both in terms of video throughput and number of users. For
example, we conduct live streaming video experiments with a total viewer throughput of
up to 22 Gbps.

18

Chapter 3

Design and Implementation

3.1 Overview

As discussed in Chapter 1, there are two main issues that have made it difficult for ex-
isting MOM systems to utilize RDMA for high-performance messaging: the complexity
of the RDMA programming interface and the differences between the RDMA and the
socket application programming interfaces. While the rsocket APIs provide a socket-like
interface for RDMA networking, using them for MOM systems would result in reduced
performance when compared with an application built to take full advantage of the native
RDMA APIs. To address these issues, we have designed RocketBufs, a software framework
for the construction of MOM systems with the following goals:

• The framework should provide natural abstractions and easy-to-use APIs, suited for
developing a variety of MOM systems. As discussed in Chapter 2, the independence
between data producers and consumers is a key property of the MOM systems’ work-
flows, and this property therefore must be enabled by the framework. Specifically,
publishers in the system should be able to continuously produce data to the mes-
sage brokers, and under normal operating circumstances (i.e., without back-pressure)
they should not be blocked while previously produced data is being delivered. Anal-
ogously, subscribers in the system should be able to subscribe to and continuously
receive new data.

• The framework’s abstractions and APIs should be agnostic to the transport proto-
col. Changing the transport protocol should require only changes to the system’s
configuration and should not require any modifications to application code.

19

• The framework should also enable efficient and scalable MOM system implementa-
tions using either TCP or RDMA networking.

To achieve these goals, RocketBufs uses an event-driven, memory-based interface that
is strongly influenced by the requirement to work well with the RDMA-based transport
layer, but also allows the TCP-based transport layer to be efficiently implemented. Rock-
etBufs is a user-space C++ library with an object-oriented programming model. A typical
RocketBufs application initializes framework objects and uses them to communicate with
other processes using communication units called buffers. In designing the APIs, we rec-
ognize that data movement from publishers to brokers and from brokers to subscribers is
analogous to a producer-consumer pattern (where brokers “consume” data from publishers
while they also “produce” data to subscribers). RocketBufs provides two main classes: rIn
and rOut. The rOut class is used by producers to create buffers and disseminate buffer
data, while rIn class is used by consumers to subscribe to and receive buffer data. In
MOM systems, publishers (which predominantly send data) use rOut objects into which
data is placed and sent to brokers, while subscribers (which predominantly receive data)
use rIn objects to receive and process messages. Message brokers use both rIn and rOut
objects for data ingestion and dissemination. The framework also provides support for
buffer splicing (discussed in detail in Section 3.5) to allow message brokers to efficiently
forward data. Figure 3.1 shows an example overview of how these objects could be used
in an MOM system. Using rIn and rOut objects, applications can implement flexible
topologies and partitioning logic for scaling out the MOM system.

Subscriber	

	Publisher rOut
Broker	1

rIn

rIn

rIn

rOut	Publisher rOut

	Publisher rOut

Subscriber	rIn

Subscriber	rIn

Broker	2					rIn

splice

rOut rIn

Figure 3.1: Use of rIn and rOut objects in an MOM system.

As discussed in Chapter 2, MOM systems typically operate using one of two main types
of workflows: message-queuing or publish/subscribe. RocketBufs is designed to support
both workflows. In this thesis, we focus on and implement RocketBufs within the context
of a publish/subscribe system, and discuss work required in the future to support message-
queuing in Chapter 6. Note that, some MOM systems such as Wormhole [92] distinguish

20

the roles of producers and publishers, referring to entities where data originates from and
those that broadcast the data update events, respectively. For RocketBufs, we use the
terms producers or publishers interchangeably to refer to entities that send data to the
brokers, and subscribers or consumers to refer to nodes that receive data from the brokers
(either within a message-queuing or publish/subscribe context).

3.2 Buffers

A buffer is a region of memory provided by RocketBufs for transmitting and receiving data.
Buffers are encapsulated in rIn/rOut objects. Each buffer has a 32-bit identifier (defined
using the bid t data type) and is implemented as an in-memory circular buffer, which
stores input or output data. Buffers have memory semantics and applications interact
directly with buffers through byte ranges. While this abstraction is lower-level than a
message-based abstraction, it gives the application complete control over how messages
are formed in the buffer. This design is also tailored to enable efficient data transfer with
both RDMA (where direct access to memory is required) and socket-based communication
(such as TCP). Data in a buffer represents messages in a FIFO message queue. The circular
buffer provides a bounded space for communication between rIn and rOut objects, which
is not only necessary for utilizing RDMA, but also useful for implementing flow control
between buffers (discussed in Section 3.4).

Figure 3.2 depicts the structure of a buffer. When a buffer is created, its memory is
allocated from framework-managed memory pools. This is done in order to reduce the
consumption of RDMA-enabled NIC (RNIC) cache resources when RDMA is used [33].
Each buffer has a free region and a busy region. For an rOut buffer (which we refer to
as an output buffer), the free region represents the space to which the application can
produce data, while the busy region stores the data that has been produced and is waiting
to be transferred. To produce data an application requests a segment of the buffer, places
the message in the segment, and signals the framework to deliver it. At that point the
segment is marked busy and queued for delivery by the framework. Analogously, for an
rIn buffer (input buffer) incoming data is received into the free region, and received data
in the busy region is consumed and processed by the application. We describe the details
of the interface for producing and consuming data in Section 3.3.

The boundaries of a segment are defined using an iovec structure which includes a
pointer to the starting address of the segment and its size. Because a memory segment
could begin near the end of the buffer and wrap around to the beginning of the buffer,
applications are required to work with memory segments that may not be contiguous. For

21

Tail (rIn
consumes here)

head (rOut
produces here)

Buffer
direction

free

 segment
1

 (busy)

segment
2 (busy)

Figure 3.2: Circular buffer.

this reason RocketBufs defines a structure buf segment, which utilizes either one iovec
(if the entire segment is contiguous) or two iovecs (if the segment is split in the buffer
due to wrap around). The definition of a buf segment can be seen in Listing 3.1. The
vecs field is an array of iovecs that contains either one or two iovecs, indicated in the
vec count field. Examples of these two types of segments are shown in Figure 3.3, where
the shaded areas in each example represent the segment.

Listing 3.1: Definition of buf segment
1struct buf segment {
2struct iovec∗ vecs; // array of iovecs
3int vec count; // number of iovecs (at most 2)
4};

3.3 rIn and rOut

RocketBufs provides two classes, rIn and rOut, for manipulating and accessing buffer
data. One rOut object can be connected to one or more rIn object(s), however, one
rIn object can only be connected to a single rOut object. This relationship is modelled
after the publish/subscribe pattern, where a publisher broadcasts data to one or more

22

vecs[1]

vecs[0]

vecs[0]

vec_count=1

vec_count=2

Figure 3.3: Segment representation using iovec.

subscriber(s). If a subscriber application needs to subscribe to data from multiple sources,
it can do so by using multiple rIn instances. Connections between rIn and rOut objects
can be established by using the Listener and Connection classes, which are also provided
by the framework (we describe how connections are created, used and managed in more
detail in Section 3.6). After initializing rIn and rOut instances, applications can use the
methods exposed by these classes (shown in Listing 3.2) to manipulate buffers and manage
data transfers. RocketBufs’ key APIs are asynchronous and completion events related to
buffers are handled by registering callback functions. The asynchronous API design serves
two purposes. First, it allows for continuous data production and consumption by the
application. Secondly, it allows for natural and efficient implementations for both RDMA
and TCP.

Listing 3.2: Key rIn/rOut methods
1// rOut
2void create buffer(bid t bid, size t size);
3buf segment get output segment(bid t bid, size t size, bool blocking);
4void deliver(buf segment &segs, size t size, void ∗ctx);
5void set data delivered cb(void (∗cb)(void ∗));
6void splice(rIn &in, bid t buf id);
7...
8
9// rIn
10void subscribe(bid t bid, size t size);
11void set data arrived cb(void (∗cb)(bid t, buf segment));
12void data consumed(bid t buf id, size t size);
13...

Before being able to send and receive messages, applications need to create and sub-

23

scribe to buffers. An rOut object creates a buffer by calling rOut::create buffer and
providing the buffer identifier and the buffer size. An rIn object calls rIn::subscribe with
a specified buffer identifier to register for data updates from that buffer. We refer to such
registrations as subscriptions. Buffer identifiers are required to be unique per rIn/rOut ob-
ject, and the framework performs checks for identifier uniqueness when a buffer is created.
RocketBufs assumes that buffer identifiers are chosen and managed by the application. In
a real deployment, these identifiers could be mapped to higher-level communication units
(such as topics in a topic-based MOM system) using other software (e.g., a name service),
if required. When rIn::subscribe is called, the framework implicitly allocates memory
for the buffer and shares the local buffer’s metadata with the connected rOut object. The
metadata of a buffer includes the buffer’s address and size, and when RDMA is used, it also
includes the remote key of the buffer’s RDMA-registered memory region. For each sub-
scription, the rOut object maintains the remote buffer’s metadata, along with a queue data
structure that keeps track of pending data to be delivered to that buffer. This allows the
application to continue producing data into the output buffer while previously-produced
data is being transferred.

An application that is transmitting adds data to an output buffer in two steps. First,
the rOut::get output segment method is called. This requests an available memory
segment from the specified output buffer. The application provides the buffer identifier
and a size as arguments, and this call returns a buf segment structure which represents
the next available (free) memory segment into which the application can place output
data. If the call succeeds, the total size of the returned segment equals the requested
amount, and the application then assumes ownership of and control over the segment.
When appropriate, the application informs the framework that the segments are ready-for-
delivery by calling rOut::deliver, providing the buf segment and the size as arguments.
Optionally, an application-defined context can also be provided, which is used with the
callback function executed upon completion of the delivery. The size argument specifies
the amount of data to be transferred, which could be less than or equal to the amount
requested in rOut::get output segment. Upon calling rOut::deliver, the framework
places the reference to the segment in the appropriate subscription queues and notifies the
framework worker threads that there is data to transfer. The worker threads then transfer
the data. This workflow is depicted in Figure 3.4.

Once the segment has reached all subscribers, the framework notes that the corre-
sponding buffer segment is free and will reuse the space to produce more data. The
rOut::deliver method is asynchronous and may return before the segment is delivered
to all subscribers. If an application needs to be notified upon completion of a trans-
fer operation (e.g., for monitoring delivery), it can register a callback function using

24

						rOut framework	threads

ID

Segments

Subscription	queue	1

iovec iovec iovec

Subscription	queue	2

iovec iovec iovec

rIn

ID

output	buffer

input	buffer

rIn

ID input	buffer

segment references

segment references

Figure 3.4: Overview of rOut buffer management and data transfer.

rOut::set data delivered cb.
RocketBufs does not provide any batching mechanisms by default but rather allows

applications to implement and control batching. An application can implement message
batching by requesting large memory segments that can hold multiple messages and delay-
ing the call to rOut::deliver until the point at which enough messages have been placed
in the segment.

Applications using an rIn object can use rIn::set data arrived cb to register a call-
back function that executes when new data arrives. The framework executes this callback
with two arguments: the identifier of the buffer to which new data is delivered, and a ref-
erence (buf segment) to the data itself. The rIn class also provides an rIn::get buf ref
method which returns a reference (buf segment) to all the received data of a buffer. This
allows the application to access the data in the buffer without copying.

By default, an rOut object disseminates data segments to all subscribed rIn objects.
This behaviour is natural for implementing the publish/subscribe workflow, which we in-
clude in our implementation and evaluation for this thesis. In future work, to support
the message-queuing workflow, the RocketBufs’ API can be expanded to allow setting a
delivery policy for buffers. Policies would indicate how memory segments are distributed
among subscribed rIn objects, for example, in a round-robin, first-available, or priority-
based fashion.

25

3.4 Buffer Flow Control

An important consideration for RocketBufs is how to make buffer space available for use
and re-use for disseminated data. In MOM systems, messages are typically delivered to
subscribers using a FIFO message queue, and subscribers consume messages in the order
they are delivered. Therefore with RocketBufs, we allow the subscriber application to
signal to the framework that it can reclaim the oldest segment of a specific buffer when it
has consumed the data (i.e., when it no longer needs that data and the buffer space can
be reused by the framework). The rIn class provides the rIn::data consumed method for
this purpose. It takes the buffer identifier and the size of the consumed data as arguments.
When this method is called, flow control messages are also implicitly sent by the rIn object
to the corresponding rOut object to update the local buffer metadata (the free and busy
portion). Typically, the rIn::data consumed method is called when the application has
finished processing a message in the FIFO message queue. However, in certain scenarios
where the application requires access to old messages, calls to rIn::data consumed could
be delayed until access to the oldest message(s) is no longer needed. In future work, we
plan to expand this functionality to enable applications to selectively discard messages in
the message queue (by specifying the buf segment), allowing the buffer space to be reused
while still keeping older messages for application access.

In real deployments, subscribers might process messages at a slower rate than they are
produced, resulting in a large amount of data being queued in the message brokers. This
scenario is commonly referred to as the creation of back-pressure. There are different ways
that MOM systems handle back-pressure. RabbitMQ, for example, implements a credit-
based flow control mechanism that slows down the rate of data production [82]. Redis,
on the other hand, does not have such a mechanism and simply closes the connection to
a slow subscriber if it can not keep up [85]. While Redis’ approach is simple and avoids
flow control overhead, it results in possible data losses when back-pressure occurs. Note
that, as will be seen later in our evaluation in Chapter 4, when there is no back-pressure,
Redis’ approach makes it more efficient because it does not need to implement the message
exchange required for flow control.

With RocketBufs, we choose to implement flow control within the framework at the
buffer level using a credit-based scheme (similar to RabbitMQ). In our scheme, when a
remote buffer does not have enough free space, the rOut object pauses the transfer of
data from the subscription queue to that buffer. Note that data can be continuously
added to the output buffer even when data transfer is suspended (as long as the output
buffer has enough free space). If the discrepancy between the rate of data production
and consumption continues, eventually the output buffer will become full and a call to

26

rOut::get output segment will fail (vec count is set to -1 in the returned value). In
this case, the application using the rOut object is expected to suspend the production of
data and retry later. Alternatively, applications can explicitly set the blocking flag when
calling rOut::get output segment, which will block the calling thread until the requested
amount of memory is available and can be returned.

While flow control is required for most types of MOM systems, RocketBufs also provides
an option for disabling flow control for certain types of applications (on a per-buffer basis).
When flow control is disabled, the framework does not block data transfer and simply
overwrites the old segments in the circular buffer. In applications where data most often
needs to be produced and consumed at the same rate (such as live streaming video), this
option can be useful because it can avoid the overhead required for buffer synchronization
and flow control. In Chapter 4, we utilize this option to evaluate and understand the
overhead of flow control, and to compare against Redis (which does not have a flow control
mechanism). In Chapter 5, we describe how our live streaming application deals with data
validity when flow control is disabled.

3.5 Buffer Splicing

RocketBufs’s rIn and rOut classes allow for the construction of flexible MOM topologies.
With RocketBufs, a message broker uses the rIn class to ingest data, either from publishers
or other message brokers. It then uses the rOut class to transfer ingested data to other
nodes (which could be subscribers or other message brokers). To enable the efficient
forwarding of data, RocketBufs implements buffer splicing using an rOut::splice method
(described later). To help motivate the need for and explain the design of rOut::splice,
we first provide an example implementation of a message broker using rIn and rOut
classes without using the support for buffer splicing (in Listing 3.3). When in the callback
function for incoming data (in data callback), the broker application requests a segment
from the output buffer. The copy data function then copies data from the input segment
to the output segment. After that, rOut::deliver is called to transfer the data to the
subscribers. While this approach is straightforward, it incurs the overhead of copying data
between the input and output buffers.

To avoid the copying overhead, the rOut class provides an rOut::splice method.
This method takes a buffer identifier and a reference to an rIn object as arguments. An
implementation of a message broker using rOut::splice can be seen in Listing 3.4, where
message forwarding is initialized by iterating over the buffers of the rIn object (line 6)
and calling rOut::splice (line 8). When rOut::splice is used, the rIn object shares the

27

Listing 3.3: Pseudocode for a copy-based broker implementation.
1// established rIn and rOut object
2rOut out;
3rIn in;
4
5// register the data arrived callback
6in.set data arrived cb(in data callback);
7
8void in data callback(bid t bid, buf segment in seg){
9size t data size = in seg.vecs[0].iov len + in seg.vecs[1].iov len;
10// request an output buffer segment, block until one is available
11buf segment out seg = out.get output segment(bid, data size, BLOCK);
12// copy the data to the output segment
13copy data(in seg, out seg);
14// delivery the output segment (no delivery callback is required here)
15out.deliver(out seg, data size);
16}

Listing 3.4: Pseudocode for a broker demonstrating the use of splice.
1// established rIn and rOut object
2rOut out;
3rIn in;
4
5// iterate over rIn’s buffers to initialize data forwarding
6for(bid t buf id: in.buffers()){
7// call rOut::splice once for each buffer
8out.splice(in, buf id);
9}

input buffer memory with the rOut object. When data is received, the corresponding buffer
segment is added to the appropriate subscription managed by the rOut object, allowing
the data to be disseminated without additional copying. The rOut::splice method is
useful when no modification of ingest data is required. This is especially efficient when
both ingestion and dissemination can be done within a data center using RDMA. Note
that, when a buffer is spliced, the framework executes the application-registered callback
function (if one is registered) before queuing the data for dissemination. This allows the

28

broker application to optionally process ingested messages (e.g., to monitor messages or
make messages persistent) in addition to forwarding messages.

3.6 RocketNet

RocketNet is RocketBufs’s networking layer, which includes framework-managed worker
threads responsible for carrying out networking operations (e.g., data transfers) and ex-
ecuting application callbacks. RocketNet threads are subcomponents of rIn and rOut
objects, and are created by the framework when these objects are initialized. Specifically
how these threads are configured and implemented depends on the object type (rIn or
rOut) and the transport protocol being used. In this section we describe our TCP and
RDMA implementations, however the RocketBufs abstraction allows adding other types
of transport protocols to RocketNet in future work.

Our TCP implementation uses an event-driven model. Worker threads manage non-
blocking I/O on TCP connections to remote nodes and react to I/O events using epoll.
In the current prototype, application data is sent from rOut to rIn objects using 64 bits
of metadata: 32 bits for the buffer identifier and 32 bits for the data size. This implies
that a single transfer operation is limited to 4 GB in size, however this is larger than the
typical upper limit for RDMA operations [67], and is in line with many common messaging
protocols [10, 19, 81]. If needed, this limit could be easily changed in the future.

RocketNet provides RDMA support to achieve better performance when RNICs are
available. Our RDMA implementation uses Reliable Connections (RC) for communication,
a choice strongly advocated for in recent research [72]. The framework’s worker threads
are used for posting work requests to RDMA queues and handling completion events.
RocketNet maintains a completion queue for each RNIC and uses a thread to monitor
each queue. When a completion event occurs, the blocked monitoring thread is unblocked
which then passes the event to one of the worker threads, which in turn handles that
event and executes any necessary callbacks. RDMA data transfers are performed using
zero-copy write-with-immediate verbs directly from rOut output buffers into rIn input
buffers, bypassing both nodes’ operating systems and CPUs. An rOut object uses the
metadata of the remote buffer to calculate the remote addresses for these operations. The
framework stores the buffer identifier in the verbs’ immediate data field. This is used to
trigger completion events on the receiving end, as RDMA verbs are otherwise invisible
to the CPU. To receive data, an rIn object posts work requests onto the receive queue
and waits on the completion queue for notifications of incoming data. For small messages,
RocketNet utilizes RDMA inlining for reduced latency [65, 56].

29

To connect rIn and rOut objects, RocketNet provides infrastructure to allow for the
establishment of network connections (which could be either TCP or RDMA connections).
In MOM systems, since a message broker is usually the main point of contact for commu-
nicating parties (as publishers and subscribers are not necessarily aware of one another), a
broker typically plays the role of a server that passively listens for connections. Publishers
and subscribers typically play the role of clients, which actively connect to the brokers in
order to produce or consume data. RocketNet uses the Connection class to represent a
network link between an rIn and an rOut object. The Listener class can be used by a
message broker to listen for and handle incoming connection requests. When a new con-
nection request arrives, the Listener object creates a Connection object and notifies the
broker application of the new connection. From the client side (publisher or subscriber), a
connection to a broker is established by constructing a Connection object and providing
the broker’s listening address and the desired protocol (RDMA or TCP) as parameters.
Once created, Connection objects can be used to initialize rIn and rOut objects. List-
ing 3.5 shows some examples of how connections can be established to message brokers.
Since an rOut object can have connections to multiple rIn objects, connections are added
using the rOut::add conn method. In Listing 3.5, we show a publisher connecting to
multiple message brokers (line 5 and line 6). On the other hand, each rIn object has a
single connection, and therefore the connection is provided in the constructor (line 9 and
line 10 show an example of how a subscriber would connect to a broker). In Chapter 4,
we provide a more detailed example of connection establishment and management in an
MOM system.

Listing 3.5: Pseudocode for connecting to message brokers.
1// this is example code used by a publisher to initialize rOut
2rOut out;
3Connection conn1(broker1 address, protocol);
4Connection conn2(broker2 address, protocol);
5out.add conn(conn1);
6out.add conn(conn2);
7
8// this is example code used by a subscriber to initialize rIn
9Connection conn(broker address, protocol);
10rIn in(conn);

30

3.7 Sending Control Messages

The rIn and rOut classes provide methods for sending messages unrelated to applica-
tion data (referred to as control messages). These messages may include heartbeats, ac-
knowledgements and status updates. Both rIn and rOut classes provide two methods:
send control msg, used for sending control messages; and set control msg cb, used for
registering a call back function to handle incoming control messages. Framework-specific
messages such as those used for flow-control and subscription messages are also communi-
cated using this mechanism, however these are invisible to the application.

The implementation of sending and receiving control messages depends on the net-
working protocol being used. The main challenge here is to separate these messages from
application data. The RDMA implementation addresses this by leveraging the RDMA
send and recv verbs (application data is sent using the write-with-imm verb). Each
communicating node posts a number of RDMA recv work requests onto their work queues.
Whenever a control message is received, the receiving node gets a notification from the
RDMA completion queue, executes the registered callback, and immediately posts another
work request to receive future messages. For TCP, RocketNet simply uses a separate TCP
connection between rOut and rIn objects to send and receive control messages.

3.8 Configurations and Optimizations

RocketBufs exposes a set of configuration parameters that can be used to configure the
framework (e.g., TCP/RDMA) and for performance tuning. These parameters can be
expressed in several forms: as arguments when creating rIn and rOut objects, as part of a
configuration file, or as arguments to various RocketBufs methods. We now discuss several
parameters that may impact messaging performance.

Buffer sizes control how much data can be placed in buffers for dissemination and
consumption. The size of a buffer is set when it is created (either by using the
rOut::create buffer or the rIn::subscribe method). Typically, a larger buffer al-
lows for more messages to be queued and delivered without blocking the application (while
waiting for buffer space to be freed), resulting in higher message throughput. However,
this comes at the cost of higher memory consumption. Therefore, buffer sizes should be
carefully configured on systems with memory constraints. Additionally, for applications
where subscribers require disseminated data to be maintained for a period of time (e.g.,
a streaming video application which needs to maintain video data in memory for serving

31

viewers), the buffer size should be set large enough to hold this data while allowing new
data to arrive.

A key challenge when optimizing RocketBufs’ performance is to fully utilize the
CPUs when deployed on multi-core systems. When using TCP, applications can set the
tcp num threads parameter to control the number of threads that handle TCP socket com-
munication. Setting this to the number of CPU cores in the system allows CPU resources
to be fully utilized. Additionally, the tcp thread pinning option signals the framework
to set the affinity of each TCP worker thread to a specific CPU core. This ensures that
these threads are load-balanced across CPU cores, as otherwise the Linux kernel tends to
schedule more than one active thread on the same core [64].

When RDMA is used, RocketBufs maintains multiple threads to monitor the RDMA
completion queues (one per RNIC). However, if those same threads were used to handle
completion events, they could become a bottleneck when handling a high rate of mes-
sages (and therefore a high rate of completion events). As a result, in our implemen-
tation, the monitoring threads distribute the completion events among a configurable
number of framework-managed worker threads, which then handle these events. The
rdma num threads parameter controls the number of RDMA worker threads created by
the framework per RNIC. This parameter should be tuned based on the number of RNICs
and CPU cores being used on the host. For example, on a system with two RNICs and
eight CPU cores, setting rdma num threads to four would allow all CPU cores to be uti-
lized for event handling. When this parameter is set to zero, no worker thread is created
and RDMA completion events are handled by the monitoring threads.

3.9 Chapter Summary

In this chapter we describe the design, implementation and some optimization strategies
used in RocketBufs. We show examples of how RocketBufs’ asynchronous API can be
used to produce and consume data. We also explain how the framework manages buffers
and implements a credit-based flow control scheme. Additionally, we describe RocketBufs’
support for TCP and RDMA networking, and ways to configure and optimize RocketBufs
for performance. In the following chapters, we describe the implementation and evaluation
of two applications that we built using RocketBufs: a message-oriented publish/subscribe
system and a live streaming video application.

32

Chapter 4

RBMQ: A Message-Oriented
Publish/Subscribe System

4.1 Overview

To demonstrate RocketBufs’ utility and measure its messaging performance, we use it to
build an in-memory, topic-based publish/subscribe system which we call RBMQ (Rock-
etBufs Message Queue). In this chapter, we show how the components of the system,
including the message publishers, brokers and subscribers can be implemented with rel-
atively little effort. We also evaluate RBMQ’s messaging performance under different
transport protocol configurations and compare it to RabbitMQ and Redis, two popular,
industry-grade message queuing systems.

An overview of RBMQ is depicted in Figure 4.1. In RBMQ, publishers use rOut objects
to send messages belonging to specified topics to the message broker. Subscribers obtain
messages belonging to a topic by connecting to the broker and using an rIn object to
subscribe to that topic. Each topic is mapped to a separate buffer. In our prototype, the
topic-to-buffer mapping is implemented using a hash table, although a more sophisticated
deployment (for example, in a commercial setting) could choose to coordinate this mapping
using a distributed key-value store, or other equivalent control schemes. The message
broker uses multiple rIn objects to ingest messages from publishers and one rOut object
to disseminate messages to subscribers. It also maintains a Listener instance, which
listens for connection requests from publishers and subscribers and uses the connections to
initialize rIn/rOut instances. RBMQ messages use a wire format with a 24-byte header
which includes the topic name, similar to the frame structure of RabbitMQ messages [81].

33

Subscriber	

Broker

Listener rOut

rIn

rIn

Subscriber	

Subscriber	

	Publisher rOut

	Publisher rOut

Co
nn
ec
tio
n

Connection

Connection

Connection

Connection

rIn

rIn

rIn

Figure 4.1: Overview of RBMQ implementation using RocketBufs.

4.2 Publisher Implementation

Listing 4.1 shows the pseudocode for key components of an RBMQ publisher. First an rOut
instance is initialized and connected to the message broker using the Connection class,
as described in Chapter 3. Before a publisher can start publishing messages belonging to
a topic, it must first initialize the topic using the create topic function (line 6). This
function creates a local buffer and sends a control message to the broker. This control
message contains the topic name and the corresponding buffer identifier. When the broker
receives the control message, it calls rIn::subscribe to allow it to consume data from the
that buffer. The buffer size is controlled by the application and should be tuned depending
on the specific workload, as discussed in Chapter 3. The publish function (line 16) is
used to send messages to the broker. This function calls topic to buf to obtain the buffer
identifier for the topic, requests a memory segment for the output buffer, then places the
message in the segment and asks the framework to deliver it (line 21). Placing the message
in the buffer can be done in any manner preferred by the publisher application, such as
copying from other memory locations or reading the data from a device.

4.3 Broker Implementation

The message broker is the centerpiece of RBMQ, because it is responsible for routing mes-
sages from publishers to subscribers. It also acts as the main contact point in the system.
Listing 4.2 shows the pseudocode for key components of an RBMQ broker. A Listener
instance is maintained to listen for and manage connection requests from publishers and
subscribers. When connection requests arrive (line 15), the broker uses them to initial-
ize the appropriate rIn/rOut objects. If a connection request arrives from a publisher

34

Listing 4.1: Pseudocode for key components of an RBMQ publisher.
1// connect rOut with the broker
2rOut out;
3Connection conn(broker address, protocol);
4out.add conn(conn);
5
6void create topic (string &topic) {
7bid t bid = topic to buf(topic);
8// create a buffer for the topic
9out.create buffer(bid, buffer size);
10// form the payload of a topic creation message
11iovec topic msg = create topic message(bid, topic);
12// send the topic creation message to broker
13out.send control msg(topic msg);
14}
15
16void publish (string &topic, size t msg size) {
17bid t bid = topic to buf(topic);
18// request an output buffer segment, block until a segment is returned
19buf segment seg = out.get output segment(bid, msg size, BLOCK);
20// copy the message to the memory segment
21place msg(seg, msg size, topic);
22// signal the framework to transfer the message data
23out.deliver(seg, msg size, NO CTX);
24}

(line 16), the broker creates an rIn instance and sets up callback functions to handle ap-
plication data and control messages. Note that the on ctrl msg function is bound to the
rIn instance (line 20), so that the broker can identify the source of the control messages
when they arrive. If the connection request comes from a subscriber, it is added to the
rOut instance so that the subscriber can receive published messages (line 26).

When the broker receives a topic-creation control message from a publisher (line 31),
it calls rIn::subscribe to receive messages from the corresponding buffer. The
rOut::splice method is also called to forward the messages from that buffer to the sub-
scribers. Additionally, when a message arrives, the broker verifies that it has the correct
buffer-to-topic mapping. This is done by in the publisher data cb function, which is
registered as the rIn’s callback function.

35

Listing 4.2: Pseudocode for key components of an RBMQ broker.
1// listen for connections from publishers and subscribers
2Listener listener(broker address, protocol);
3listener.set conn cb(on conn);
4
5// rOut object to disseminate to subscribers
6rOut out;
7
8// callback function to handle ingest data
9void publisher data cb (bid t bid, buf segment data) {
10if (!verify topic mapping(bid, data))
11throw exception(‘‘invalid mapping’’);
12// because rOut::splice is used, nothing else needs to be done
13}
14
15void on conn (Conn &conn) {
16if (from publisher(conn)) {
17// create the rIn instance for this publisher connection
18rIn ∗in = new rIn(conn);
19// set callback function to handle control messages from the publisher
20in.set control msg cb(std::bind(on ctrl msg, in));
21// set callback function to handle application data from the publisher
22in.set data arrived cb(publisher data cb);
23}
24// add the subscriber connection to the rOut object
25if (from subscriber(conn))
26out.add conn(conn);
27}
28
29void on ctrl msg (rIn ∗in, iovec msg) {
30// check if the message is for creating a new topic
31if (is topic creation(msg)) {
32// retrieve the buffer id
33bid t bid = bid from msg(msg);
34// subscribe to receive data from the publisher
35in.subscribe(bid, buffer size);
36// deliver data to subscribers
37out.splice(∗in, bid);
38}
39}

36

4.4 Subscriber Implementation

Listing 4.3 shows the pseudocode for key components of an RBMQ subscriber. The rIn
instance of the subscriber is initialized by establishing a connection to the broker. The
subscribe topic function is used to subscribe to a topic, which is done by obtaining the
corresponding buffer identifier and calling rIn::subscribe with that buffer (line 7). The
data cb function is registered as the callback function to handle incoming data (line 11).
When new data arrives, the subscriber processes the data (line 15) and informs the frame-
work of the amount of data consumed. In our current prototype, we assume messages are
consumed in the same order they are published. This assumption fits the FIFO message
queue design described in Chapter 3. We plan to implement and evaluate more sophisti-
cated consumption schemes in future work.

Listing 4.3: Pseudocode for key components of an RBMQ subscriber.
1// connect to the broker
2Connection conn(broker address, protocol);
3rIn in(conn);
4
5void subscribe topic (string &topic) {
6bid t buf id = topic to buf(topic);
7in.subscribe(buf id, buffer size);
8}
9
10// set callback function to handle incoming data
11in.set data arrived cb(data cb);
12
13void data cb (bid t bid, buf segment data) {
14// process the data and return the amount of processed data
15size t consumed = process data(data);
16// signal the framework to free the buffer space
17in.data consumed(data, consumed);
18}

37

4.5 Evaluation

We conduct a series of experiments to evaluate the performance of RBMQ in terms of
throughput, latency, and CPU utilization. We compare different configurations of RBMQ
with two open-source MOM systems, namely RabbitMQ and Redis. These systems are
used by many large-scale Internet applications and services, including Reddit [35], Twitter,
Github and StackOverflow [88].

4.5.1 Methodology

In this section, we describe the general setup and hardware used in our experiments. The
specific benchmarks and their results are described in the following sections. In our exper-
iments, we use one host to run the message broker processes, and separate hosts to run
the publisher and subscriber processes. Each publisher process contains several publisher
threads, which publish messages belonging to different topics. Each subscriber process
subscribes to all topics and the message brokers disseminate messages to all subscribers.
To better understand the networking performance of the pub/sub systems, in our bench-
marks, the subscribers do not perform any processing on disseminated data. For RBMQ,
buffer sizes and threading parameters are tuned for individual experiments (as discussed
in Chapter 3). Generally, the buffer size is set to be at least 10 times as large as the size
of a message (including message headers), which allows for continuous message produc-
tion. We also set the TCP NODELAY option for TCP sockets, where they are used (i.e., for
RabbitMQ, Redis and the RBMQ configurations that use TCP). We measure the perfor-
mance of several different RBMQ transport protocol configurations: publisher-to-broker
and broker-to-subscribers over TCP (denoted as RB-tcp-tcp); publisher-to-broker over TCP
and broker-to-subscribers over RDMA (denoted as RB-tcp-rdma); and publisher-to-broker
and broker-to-subscribers over RDMA (RB-rdma-rdma).

For RabbitMQ, we use the rabbitmq-c client library [13] to implement the publishers
and subscribers. RabbitMQ offers an option where subscribers send an acknowledgement
message to the broker upon receiving a message. This option allows the broker to inform
the publisher about the completion of message delivery, however it incurs extra commu-
nication costs compared to Redis and RBMQ which do not implement this feature. We
therefore disable it in all of our experiments for a fair comparison. Our Redis publishers
and subscribers are implemented using the Redis-provided client library hiredis [83]. We
run multiple Redis broker processes on the broker host in order to utilize all CPU cores,
since each Redis broker process is single-threaded. For both Redis and RabbitMQ, we

38

disable data persistence and event logging features to ensure that messages are handled
in-memory only. We also tune both systems based on recommended best practices [78, 86]
to optimize their messaging performance in our experiments.

The message broker processes run on a host containing a 2.6 GHz Intel Xeon E5-2660v3
CPU with 10 cores, 512 GB of RAM, and four 40 Gbps NICs for a total of 160 Gbps
bidirectional bandwidth (we refer to this hardware as a “big host”). Subscribers and
publishers run on separate hosts which contain a single 2.0 GHz Intel Xeon D-1540 CPU
with eight cores, 64 GB of RAM, and a single 40 Gbps NIC (we refer to this hardware as a
“regular host”). We benchmarked our NICs using iPerf [52] and found that the maximum
throughput they can achieve is 38 Gbps. All nodes run Ubuntu 18.04.2 with a version
4.18.0 Linux kernel. To avoid network contention, each subscriber connects to a separate
NIC on the host running the broker. Each experiment is run for 150 seconds, with data
being collected during the 120 second steady-state period following a 30 second warmup
period. The experimental results are reported with 95% confidence intervals, except for the
latency experiments where the data points are reported as CDFs. Note that, the confidence
intervals are typically small relative to the sizes of the data points, and therefore in most
cases they are not visible on the graphs.

When running experiments on a system using multiple CPU cores and NICs, we find
that tuning the interrupt request queues (IRQ) of network devices is also important for
performance. Our IRQ tuning includes: disabling the Linux irqbalance daemon (which
is enabled by default in most current Linux distributions); and binding each device queue
to a single CPU core, while distributing the number of device queues evenly among cores
(note that a network interface can have multiple queues). This ensures that interrupts
generated by a queue are handled by the same CPU core, while also allowing all cores to
be used for interrupt handling.

4.5.2 Broker Message Throughput

In this experiment, we measure the maximum message throughput that can be achieved
by a message broker host in terms of number of messages delivered per second (mps).
We configure the publishers to constantly send messages to the broker by calling the
publish function in a tight loop. To find the maximum throughput values, we increase
the number of publisher threads (and therefore the number of topics) until the throughput
stops increasing. This corresponds to the point at which, depending on the experiment,
either the broker node’s CPU is close to 100% utilization or the NIC is saturated. In our
experiments, we find that using up to 20 publisher threads (running on one or more hosts

39

depending on the experiment) allows all target systems to reach these points. Additionally,
for this experiment, we also benchmark RBMQ using TCP (for all communication) with
flow control disabled (denoted as RB-tcp-no-fc). Note that, this configuration may not
be useful for delivering messages in real-world pub/sub systems, because it could result in
buffer data being overwritten by the framework. We include it as a theoretical point of
comparison in order to understand the overhead of flow control.

We run a series of benchmarks and record the results for varying message sizes and
numbers of subscribers. The message rate for each subscriber is measured by counting the
number of received messages within a period of time. Figures 4.2, 4.4, 4.6, and 4.8 show the
average message throughput (in messages per second) when disseminating to zero, one, two
and four subscribers respectively. These graphs include 95% confidence intervals (obtained
from throughput samples obtained during the experiments). Figures 4.3, 4.5, 4.7, and 4.9
show the application-level goodput (in Gbps) for the same benchmarks.

In the zero-subscriber benchmarks (Figure 4.2 and 4.3), messages published to the bro-
ker are not forwarded to any subscriber and are discarded immediately. These benchmarks
allow us to obtain insights about the ingest capacity of the broker as well as the cost of
disseminating data to subscribers. In these results, among TCP-based system, Redis per-
forms better than RB-tcp-tcp and RabbitMQ (ingest throughput is up to 23% and 36%
higher, respectively). This can be explained by the fact that Redis does not implement
a flow control scheme (as discussed in Chapter 3 and detailed later in our profiling re-
sults). This allows Redis to avoid flow control overhead and provide higher throughput.
The throughput values for RB-tcp-tcp and RB-tcp-rdma are the same, because in both
cases the broker host ingests messages using TCP and there is no subscriber. The RB-
rdma-rdma configuration achieves the highest ingest throughput, which is up to 1.7 times
higher than Redis, up to 2.0 times higher than RB-tcp-tcp and up to 2.3 times higher than
RabbitMQ. It also saturates the NIC with the smallest message size (4 KB), compared
to all other systems (8 KB for Redis, 8 KB for RB-tcp-tcp and 32 KB for RabbitMQ).
Additionally, because RDMA does not involve the main CPU in data transfers, the ingest
throughput for RB-rdma-rdma remains relatively consistent for all message sizes before the
bandwidth-saturation point (up to 2 KB). The throughput when ingesting 2 KB messages
is only 5% lower than when ingesting 8-byte messages. In contrast, before saturating the
NIC bandwidth, the ingest throughput drops 27% for Redis, 27% for RB-tcp-tcp and 76%
for RabbitMQ.

When subscribers are present, we make several observations from the experimental
results. First, among TCP-based systems, Redis and RBMQ perform significantly better
than RabbitMQ. In the one-subscriber case, RabbitMQ is the only system that is not
able to saturate the NICs’ bandwidth (due to CPU saturation). When disseminating

40

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800
 2000

8 32 128 512 2K 8K 32K 128K 512K

T
pu

t (
m

sg
s/

s
x

10
3)

Message size (bytes)

RabbitMQ
Redis

RB-tcp-tcp
RB-tcp-no-fc
RB-tcp-rdma

RB-rdma-rdma

Figure 4.2: Throughput with zero subscribers.

 0

 5

 10

 15

 20

 25

 30

 35

 40

8 32 128 512 2K 8K 32K 128K 512K

G
oo

dp
ut

 (
G

bp
s)

Message size (bytes)

RabbitMQ
Redis

RB-tcp-tcp
RB-tcp-no-fc
RB-tcp-rdma

RB-rdma-rdma

Figure 4.3: Goodput with zero subscribers.

41

 0

 200

 400

 600

 800

 1000

 1200

8 32 128 512 2K 8K 32K 128K 512K

T
pu

t (
m

sg
s/

s
x

10
3)

Message size (bytes)

RabbitMQ
Redis

RB-tcp-tcp
RB-tcp-no-fc
RB-tcp-rdma

RB-rdma-rdma

Figure 4.4: Throughput with 1 subscriber.

 0

 5

 10

 15

 20

 25

 30

 35

 40

8 32 128 512 2K 8K 32K 128K 512K

G
oo

dp
ut

 (
G

bp
s)

Message size (bytes)

RabbitMQ
Redis

RB-tcp-tcp
RB-tcp-no-fc
RB-tcp-rdma

RB-rdma-rdma

Figure 4.5: Goodput with 1 subscriber.

42

 0

 100

 200

 300

 400

 500

 600

 700

 800

8 32 128 512 2K 8K 32K 128K 512K

T
pu

t (
m

sg
s/

s
x

10
3)

Message size (bytes)

RabbitMQ
Redis

RB-tcp-tcp
RB-tcp-no-fc
RB-tcp-rdma

RB-rdma-rdma

Figure 4.6: Throughput with 2 subscribers.

 0

 5

 10

 15

 20

 25

 30

 35

 40

8 32 128 512 2K 8K 32K 128K 512K

G
oo

dp
ut

 (
G

bp
s)

Message size (bytes)

RabbitMQ
Redis

RB-tcp-tcp
RB-tcp-no-fc
RB-tcp-rdma

RB-rdma-rdma

Figure 4.7: Goodput with 2 subscribers.

43

 0

 50

 100

 150

 200

 250

 300

 350

 400

8 32 128 512 2K 8K 32K 128K 512K

T
pu

t (
m

sg
s/

s
x

10
3)

Message size (bytes)

RabbitMQ
Redis

RB-tcp-tcp
RB-tcp-no-fc
RB-tcp-rdma

RB-rdma-rdma

Figure 4.8: Throughput with 4 subscribers.

 0

 5

 10

 15

 20

 25

 30

 35

 40

8 32 128 512 2K 8K 32K 128K 512K

G
oo

dp
ut

 (
G

bp
s)

Message size (bytes)

RabbitMQ
Redis

RB-tcp-tcp
RB-tcp-no-fc
RB-tcp-rdma

RB-rdma-rdma

Figure 4.9: Goodput with 4 subscribers.

44

messages to four subscribers, the messaging throughput of RB-tcp-tcp and Redis is up to
1.9 times and 2.2 times higher than RabbitMQ, respectively. Secondly, Redis performs
better than RB-tcp-tcp. With two subscribers, the Redis broker host is able to saturate
the NICs’ bandwidth (for message sizes of 64 KB and larger), while RB-tcp-tcp is not, due
to CPU saturation. In the four-subscriber case, Redis’s throughput is up to 18% higher
than RB-tcp-tcp. Finally, leveraging RDMA with RBMQ yields substantial throughput
improvements for all numbers of subscribers evaluated. Even when RDMA is only used for
broker-to-subscriber communication (RB-tcp-rdma), throughput with four subscribers can
be up to 2.8 times higher than RabbitMQ and up to 1.3 times higher than Redis. When
RDMA is used for all communication (RB-rdma-rdma), messaging throughput with four
subscribers is up to 3.7 times that of RabbitMQ, 2.0 times higher than RB-tcp-tcp and 1.7
times higher than Redis. The RB-rdma-rdma configuration is also the only system that is
able to fully saturate all 40 Gbps NICs.

The main responsibility of a broker is to disseminate copies of published data to other
nodes (e.g., subscribers or other brokers) to allow the data to be processed on several
hosts. Therefore, we are interested in evaluating the RBMQ broker’s ability to scale as
the number of subscribers increases. Figure 4.10 shows the average messaging throughput
of the systems when transferring 32-byte messages (which is close to the average size of
a Tweet [76]) with varying numbers of subscribers. The average throughput values are
normalized with the zero-subscribers case. We observe that, as the number of subscribers
increases, RB-tcp-rdma shows the lowest rate of decline while RabbitMQ shows the highest
rate of decline in terms of messaging throughput. With four subscribers, the normalized
throughput of RB-tcp-rdma is 31%, whereas it is 12% for RabbitMQ. Redis and RB-
tcp-tcp have relatively similar rates of decline. Their normalized throughput with four
subscribers are 20% and 21%, respectively. The RB-rdma-rdma configuration scales better
from zero subscribers to one subscriber when compared with Redis and RB-tcp-tcp: the
normalized throughput with one subscriber is 61% of that with zero-subscribers, compared
to 48% for Redis and 44% for RB-tcp-tcp. However, as the number of subscribers increases
from one to four, RB-tcp-tcp and Redis show slightly better scalability. For example,
Redis’ normalized throughput with four subscriber drops by 58% compared to the one-
subscriber case, while RB-rdma-rdma’s throughput drops by 67%. With four subscribers,
RB-rdma-rdma’s normalized throughput is 20% of that with zero-subscribers, which is
similar to Redis and RB-tcp-tcp. In future work, we plan to explore techniques to improve
RocketBufs’s ability to scale to a larger number of subscribers. However, it is important
to note that, even with four subscribers, RB-rdma-rdma’s throughput is still higher than
Redis’ throughput with two subscribers, demonstrating the benefits of leveraging RDMA
with RocketBufs.

45

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Number of Subscribers

RabbitMQ
Redis

RB-tcp-tcp
RB-tcp-no-fc
RB-tcp-rdma

RB-rdma-rdma

Figure 4.10: Normalized throughput with zero-subscribers (32-byte messages).

In order to understand the reasons for the differences in performance among the sys-
tems evaluated, we use perf [63] to profile the message broker host. Each pub/sub system
is subjected to a load of 50,000 messages per second with 8 KB messages and four sub-
scribers. This rate and message size are chosen to be close to the peak performance of
RabbitMQ, which allows us to examine the systems operating under a relatively high load
while handling the same amount of data. The profiling data is analyzed and summarized
in Table 4.1. The rows in the table show the percentages of CPU time each system spends
in various parts of the system, which includes the Linux kernel (vmlinux), the NIC driver
(mlx4), the threading library (libpthread), and the user-level application functions (ap-
plication). All remaining functions fall into the “others” category. The “utilization” row
shows the average system-wide CPU utilization of each system obtained from vmstat.

Overall, RabbitMQ has the highest CPU utilization (94.0%) among all systems, fol-
lowed by RB-tcp-tcp (63.0%), Redis (55.3%), RB-tcp-no-fc (52.3%), RB-tcp-rdma (29.2%),
and RB-rdma-rdma (9.6%). These statistics show the amount of CPU required by the
evaluated systems to service the same load. Clearly, systems requiring less CPU for this
load are able to obtain higher peak loads. For example, RB-rdma-rdma requires the least
amount of CPU (9.6%) while handling the load of 50,000 mps, due to the fact that RDMA
does not require the main CPUs to be involved in data transfers. As a result, RB-rdma-
rdma achieves the highest maximum throughput with higher loads. The profiling results
also show that RabbitMQ spends much more CPU time executing application-level code

46

(71.5%) compared to Redis and all RBMQ configurations, which in all cases is less than
10%. This high application-level overhead reduces the CPU time available for transferring
data, and is likely due to the overhead from the Erlang implementation (e.g., from just-in-
time compilation). In contrast, RBMQ and Redis spend the majority of their CPU time
(more than 70%) in the Linux kernel, indicating that a larger portion of CPU time is used
to transfer data, allowing these systems to scale to provide higher messaging throughput.

To explain RB-tcp-tcp’s higher CPU utilization compared to Redis’ (63.0% versus
55.3%), we perform further profiling and find that roughly 10% of RB-tcp-tcp’s CPU
time is spent on functions that send and handle flow control messages (send control msg
and control msg cb). This overhead does not exist for Redis, since it does not implement
a flow control scheme. Redis’ lower CPU utilization however comes at the cost of lacking
a mechanism to deal with back-pressure (as discussed in Chapter 3). When flow control is
disabled, RBMQ using TCP (RB-tcp-no-fc) produces similar to significantly higher mes-
saging throughput than Redis (Figures 4.2, 4.4, 4.6, 4.8). In Chapter 5, we show how our
live streaming application takes advantage of RocketBufs’ flexibility regarding flow control
to reduce CPU utilization.

System RabbitMQ Redis RB- RB- RB- RB-
tcp-tcp tcp-no-fc tcp-rdma rdma-rdma

utilization 94.0 55.3 63.0 52.3 29.2 9.6
vmlinux 23.6 74.2 85.2 84.9 78.2 73.7
mlx4 2.1 10.6 7.4 4.8 5.4 4.9
libpthread 0.7 1.0 2.9 4.3 6.7 9.9
application 71.5 8.7 3.3 4.0 6.2 6.5
others 2.2 5.5 1.3 2.1 3.4 5.0

Table 4.1: CPU utilization statistics from the broker under a load of 50,000 mps with 8
KB messages and four subscribers. For example, the CPU utilization of RB-rdma-rdma is
9.6%, of which 73.7% is spent in the Linux kernel.

4.5.3 Subscriber CPU Utilization

In most MOM deployments, subscribers are responsible for processing received messages.
For example, they may serve the messages through a web server to clients in video streaming
applications [89], process the data in data analytics applications [7], or perform verifications
(such as in a Hyperledger blockchain [12]). Minimizing the CPU overhead associated with
receiving and managing messages is therefore critical.

47

We run a series of microbenchmarks to measure the CPU overhead on a subscriber host
while receiving large volumes of data. To do this, we use 10 publishers to send messages
to the broker host. Each publisher sends messages at a rate of 5,000 mps for a total
of 50,000 mps. This rate is chosen to ensure that all compared systems can send and
receive large messages (up to 32 KB in size) at the same rate. We compare the Redis and
RabbitMQ subscribers with three different configurations for the RBMQ subscriber: using
rIn with TCP (RB-tcp); using rIn with RDMA (RB-rdma); and using rIn with TCP but
with flow control disabled (RB-tcp-no-fc).

We measure CPU utilization on a subscriber host receiving messages of various sizes.
Figure 4.11 shows the average subscriber CPU utilization with 95% confidence intervals,
obtained from vmstat samples collected every second. Two important trends can be ob-
served here. First, the CPU utilization of TCP-based MOM systems increases noticeably
with larger messages (due to the copying overhead associated with TCP). We can see that
overall, the Redis subscriber has the highest CPU utilization. For 32 KB messages (which
corresponds to a message throughput of 13.1 Gbps), Redis utilizes 26% of the CPU, whereas
the utilization with RabbitMQ is 22% and utilization with RB-tcp-tcp is 17%. On the other
hand, the RBMQ subscriber using RDMA yields negligible CPU overhead regardless of the
message size.

 0

 5

 10

 15

 20

 25

 30

4K 8K 16K 32K

1.6 3.3 6.5 13.1

C
P

U
 u

ti
li

za
ti

on
 (

%
)

Message size (bytes)

Message throughput (Gbps)

RabbitMQ
Redis

RB-tcp
RB-tcp-no-fc

RB-rdma

Figure 4.11: Subscriber CPU utilization (50,000 mps).

To understand where CPU resources are spent, we perform profiling on the subscriber
host while receiving 32 KB messages (corresponding to a throughput of 13.1 Gbps). Ta-

48

ble 4.2 shows the three functions requiring the most CPU time in each system. We can see
that, for TCP-based systems, the CPU is busy copying bytes from socket buffers to user-
space (using libc recv or libc read), monitoring sockets for events (using epoll wait
or poll), and handling message data. Redis spends a significant portion of its CPU time
copying data between user-space buffers (using mem cpy). Examining the source code of
the hiredis client library reveals that it internally copies message data to another buffer
before passing that buffer to the application. This copying overhead explains Redis’ higher
CPU utilization compared to RabbitMQ and RB-tcp. We also see that, when flow control
is enabled, a noticeable amount of CPU time is spent on sending flow control messages in
RBMQ configurations (12.4% for RB-tcp and 10.2% for RB-rdma). However, their overall
CPU utilization is still lower than Redis and RabbitMQ. When flow control is not required
(as will be shown Chapter 5), disabling it further reduces CPU utilization (RB-tcp-no-fc).

Finally, for RB-rdma, most of the CPU time is spent handling RDMA completion events
since the CPU is not involved in data transfers. Note that for RB-rdma, epoll wait and
libc read are used for monitoring and reading completion event data from the RDMA
completion channel’s file descriptor, and not application data from sockets. As a result,
the CPU utilization of RB-rdma remains negligible regardless of the message size.

RabbitMQ Redis
libc recv(50.0%) libc read(36.4%)

amqp handle input(15.5%) epoll ctl(18.4%)
poll(11.7%) mem cpy(17.1%)

RB-tcp RB-tcp-no-fc RB-rdma
libc recv(77.9%) libc recv(88.0%) epoll wait(42.0%)

send control message(12.4%) epoll wait(8.8%) libc read(19.5%)
epoll wait(6.5%) rIn::do cb(0.7%) send control message(10.2%)

Table 4.2: Profiling statistics of a subscriber (50,000 mps, 32 KB messages).

4.5.4 Delivery Latencies

We also conduct experiments to measure delivery latency (i.e., how long it takes for a
message to travel from the publisher to a subscriber). To avoid comparing timestamps
generated on different machines, we use an ECHO-based method (also used in previous
work [55]). With this method, a sending node reads the local clock, puts the timestamp
in a message, and sends the message to the topic “ping” on the broker. An echo node

49

subscribes to “ping” and, upon receiving a message, relays the received message to topic
“pong” on the same broker. The sending node subscribes to the topic “pong” and, upon
receiving a “pong” message, calculates the difference between the current time and the
time in the pong message. This calculated value represents the time required for a full
round-trip, roughly twice the delivery latency. For simplicity and accuracy we report the
actual full round-trip numbers. Publisher-to-subscriber numbers would be roughly half of
these values. Note that we do not include the RBMQ configuration without flow control
in these experiments, to ensure that the timestamps in the buffer are protected and not
overwritten by the framework.

The average latency of an MOM system will vary depending on the load it encounters.
We compare the latency of systems handling 100,000 mps and 200,000 mps (these values
were chosen because a fair comparison requires all systems to have the same message rates
and RabbitMQ is not able to support higher rates with 1 subscriber). Because the messages
are essentially bi-directional we configure the sending node to send messages at half the
target rate (since the echo node replies at the same rate) and record the round-trip latency
of individual messages. To ensure that all systems can achieve the target message rates, we
use 10 “ping” topics and 10 corresponding “pong” topics. The size of ping-pong messages
is chosen to be 34 bytes (excluding the message header size), which is the average size of
a Tweet [76].

The CDFs of the round-trip latencies are shown in Figure 4.12 and 4.13. The x-
axis represents log-scaled round-trip latency in microseconds. There are three important
takeaways from the latency results. First, Redis and both RBMQ configurations are able to
achieve lower latency than RabbitMQ. For the 100,000 mps workload, the median round-
trip latency is 422 microseconds for RabbitMQ, 187 microseconds for RB-tcp-tcp, and
149 microseconds for Redis. For the 200,000 mps workload, the median latencies are
519 microseconds, 241 microseconds and 225 microseconds for RabbitMQ, RB-tcp-tcp and
Redis, respectively. Secondly, RB-rdma-rdma achieves significantly lower latency compared
to TCP-based systems, since RDMA can avoid kernel overhead on data transfers. The
median round-trip latency for RB-rdma-rdma at 100,000 mps is 79 microseconds, which is
47% faster than Redis and 81% faster than RabbitMQ. At 200,000 mps, the median round-
trip latency for RB-rdma-rdma at 200,000 mps is 159 microseconds, 30% faster than Redis
and 70% faster than RabbitMQ. Finally, we observe high tail latencies in all measured
systems due to the queuing of messages. For example, RB-rdma-rdma yields a maximum
round-trip latency of 4,640 microseconds for the 200,000 mps workload, despite having very
low overall latencies (the 90th percentile latency is 299 microseconds). Similarly, for the
200,000 mps workload Redis yields a maximum round-trip latency of 17,844 microseconds,
while its 90th percentile latency is 366 microseconds.

50

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 100 1000 10000

C
D

F

Roundtrip latency (microseconds)

RabbitMQ
Redis

RB-tcp-tcp
RB-rdma-rdma

Figure 4.12: Full round-trip latency at 100,000 mps.

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 100 1000 10000

C
D

F

Roundtrip latency (microseconds)

RabbitMQ
Redis

RB-tcp-tcp
RB-rdma-rdma

Figure 4.13: Full round-trip latency at 200,000 mps.

As described in Chapter 3, when using RDMA, RocketBufs detects incoming data by
monitoring events on the RDMA completion channel’s file descriptor using epoll. Since
epoll puts the calling thread to sleep while awaiting events, it allows the system’s CPU
to idle when no event is being handled. However, because epoll is a system call, it
incurs extra latency when events arrive due to context switching. With RocketBufs, we
have experimented with a technique that does not use epoll and instead uses dedicated
threads to actively poll the RDMA completion queues. This technique is used by several
in-memory key-value store systems [61, 69, 22]. Using this approach allows RBMQ to
further reduce delivery latencies. For example, the median latency at 200,000 mps using
a polling approach is only 47 microseconds, which is 70% faster than RB-rdma-rdma and

51

80% faster than Redis. This low latency however comes at the cost of fully utilizing a
CPU core per RNIC to poll the RDMA completion queues, even when no data is being
transferred. For higher loads, more than one CPU core per RNIC may be required for
polling RDMA completion queues. Thus, tuning for the best combination of throughput
and latency would require determining the right number of CPUs devoted to polling for
RDMA completion events and the number of CPUs to dedicate to the application. In
future work, we plan to further explore the best approaches regarding these trade-offs,
allowing applications to configure RocketBufs to suit their specific workloads.

4.6 Chapter Summary

In this chapter we describe how we use RocketBufs to implement RBMQ, a message-
oriented publish/subscribe system. We compare RBMQ’s performance in terms of messag-
ing throughput, delivery latency and CPU utilization against RabbitMQ and Redis, two
popular, industry-grade message queuing systems. Our evaluations show that RBMQ using
TCP performs well when compared with these two systems. When RBMQ is configured to
use RDMA, it achieves significant gains in performance, demonstrating RocketBufs’ ability
to leverage hardware features to construct high-performance MOM systems. In the next
chapter, we further demonstrate the flexibility of the framework by using it to implement
a live streaming video application.

52

Chapter 5

Live Streaming Video Application

In order to further demonstrate the general utility of the RocketBufs framework, in this
chapter we present an application that we have designed and implemented to manage
the dissemination and delivery of live streaming video. In Chapter 2, we discuss how
live streaming services like Twitch handle large amounts of video traffic and disseminate
them to many delivery servers within and across data centers in order to meet global
demands. Deploying software to efficiently deal with such a workload is a challenging task.
Streaming services must either implement custom software solutions, which is difficult
and time-consuming, or make use of existing software systems which are not necessarily
optimized for live streaming workload (as will be shown later in our evaluation). In this
chapter, we show that by utilizing RocketBufs’ networking capabilities, services can easily
implement efficient video data dissemination within a data center. Here, we focus on video
dissemination within a data center in order to highlight the benefits of leveraging RDMA,
however RocketBufs can also be used for cross-data center dissemination using the TCP
layer. We show that, within a data center, even when using TCP, our RocketBufs-based
live streaming application uses fewer CPU resources when handling the same amount of
video data compared to an equivalent solution using Redis. Using RDMA with RocketBufs
further reduces CPU utilization, allowing the delivery web servers to support up to 55%
more concurrent viewers than when using Redis.

5.1 Design

The general design of the system is depicted in Figure 5.1. Producers represent video
stream sources which generate video data, each associated with a unique live stream.

53

They send this video data in chunks over TLS-encrypted TCP connections (which is done
to emulate real services [29]) to a dissemination host. We emulate streaming sources using
a purpose-written application. The dissemination host acts as a broker, which ingests video
data from streamers and replicates the streams to multiple delivery web server processes
(subscribers) on separate hosts. In our prototype, the dissemination and delivery processes
run on separate hosts, but in a real deployment they might also reside on the same host,
in which case network communication is avoided. The web server processes run a modified
version of the userver, an open-source web server that has been shown to provide good
performance [21, 75]. They act as subscribers which integrate with RocketBufs to subscribe
to and receive video streams from the dissemination host. In a real-world deployment, dis-
semination corresponds to the inter-host replication required by entities like Twitch [104],
and YouTube Live [108] to meet the scalability and latency demands of their services.
Some delivery servers would be geo-distributed, but in many cases they also reside within
the same data center or IXP when demand for popular content requires it [30]. Finally,
viewers request video data they want to watch from the delivery servers. These viewers
are emulated using httperf [71], and make requests to the userver over TLS-encrypted
HTTP (HTTPS), as is the case with popular services such as YouTube Live [109].

ViewersViewers

D
at

a
ce

nt
er Dissemination

Producers

Delivery Delivery

Ingest

Figure 5.1: Design overview of a live streaming video application using RocketBufs.

Listing 5.1 shows the pseudocode for the dissemination process. This process uses one
rOut instance to disseminate all live streams to the delivery servers. When a stream-
ing session starts (i.e., a streamer connects to the dissemination host), the dissemina-
tion process creates a buffer and uses a thread to handle video data ingestion from the

54

stream’s producer. When video data from the producer arrives, the dissemination process
requests an output buffer segment using rOut::get output segment (line 9). It then calls
producer place data (line 11), which in turn calls the SSL read function of the OpenSSL
library [74] which decrypts the ingested data and places it into the segment. After that,
rOut::deliver is called to transfer this data to the delivery servers. Note that in this
case, unlike RBMQ’s implementation described in Chapter 4, we do not use rOut::splice
because TLS decryption is required for ingested data and our current RocketBufs proto-
type does not provide support for encrypted communication. In future work, we plan to
add support for encrypted communication to RocketBufs, allowing rOut::splice to be
used to simplify the construction of the dissemination process.

Listing 5.1: Pseudocode for a dissemination process.
1// initialized rOut object
2rOut out;
3
4// the thread that handle the stream
5while(stream online(stream id)){
6// block and wait for notification of incoming data from producer
7producer await notification(stream id);
8// request a buffer segment to store the video chunk
9buf segment chunk = out.get output segment(stream id, chunk size, NON BLOCK);
10// place the video chunk into the buffer segment
11producer place data(stream id, chunk);
12// deliver the video chunk, no callback needed
13out.deliver(chunk, chunk size, NO CTX);
14}

Each delivery host contains one rIn instance to subscribe to and receive all live video
streams. Data structures are also maintained to manage the disseminated video chunks in
the input buffer. In our prototype, each buffer is sized to hold five video chunks. When
a new viewer starts watching a video stream, the delivery server sends the video content
to that user starting from the middle of the buffer, which allows the viewer’s device to
pre-fill its playback buffer. Given the nature of live streaming, data is not retained in
the delivery server’s input buffer for long (as it would become too stale to deliver to
viewers). Therefore, we disable flow control and allow the framework to overwrite the
oldest segment in the circular buffer when new data arrives. This design avoids overhead
due to buffer synchronization, however it makes it possible for data to be overwritten

55

asynchronously while being delivered to viewers. To address this, we wrap the video
chunks with consistency markers, which are checked by the server to see if data has been
modified before or during the course of sending it to viewers. When the systems are not
overloaded, the delivery servers send video data at the same rate at which it is generated
and disseminated, and since only the oldest chunk can be overwritten with new data at
any point in time, no viewer data is overwritten. However, if the system is overloaded
(e.g., due to hardware under-provisioning), buffer data can be overwritten while being sent
to viewers. When such a scenario is detected, we record it as an error and terminate the
viewing session. A real-world deployment would implement a load balancing mechanism
to direct the viewer to a more lightly loaded server.

As a point of comparison, we implement a version of our live streaming application
using Redis [84] for data dissemination. We choose Redis because it is a high-performance
in-memory data store used by many web services (e.g., Pinterest [20], Twitter, Github and
StackOverflow [88]), and because it has also been used in a live streaming video platform
in previous work [89]. We utilize Redis’ publish/subscribe features to disseminate video
from producers to delivery web servers. Our evaluation in Chapter 4 shows that Redis
significantly outperforms RabbitMQ, in part due to its lack of a flow control scheme. In a
live streaming workload, flow control is not necessary since ideally video data is produced
and consumed at the same rate. This makes Redis a suitable system for live streaming
video dissemination.

Our Redis-based live streaming video system has a similar design to the RocketBufs-
based system. Producers send video data to the Redis dissemination host, which in turn
disseminates this data to delivery hosts. The delivery hosts act as subscribers and use a
modified version of the userver to deliver video to emulated viewers. Our Redis-based dis-
semination host runs multiple Redis broker processes and we load-balance streams between
those processes to fully utilize available CPUs (since Redis processes are single-threaded).
Connections between producers and the dissemination host are secured by using stunnel,
per Redis’ recommendation [87]. Recall that this is done to simulate real-world services [29]
where streamers broadcast their live video content over TLS-encrypted connections. We
integrate Redis with the userver using the Redis-provided client library hiredis [83] to
subscribe to and receive video streams from the dissemination host. The hiredis library
allows the application to handle disseminated data by registering callback functions, sim-
ilar to RocketBufs. However, unlike RocketBufs, the memory used by hiredis to store
data is deallocated after the callback function returns. Because the callback function is
executed in a event loop, this memory can not be maintained for long since the callback
function needs to return in order for new data to be received. Therefore, our userver
implementation must copy this data to another managed buffer, which is necessary for

56

maintaining the data for delivery. We show in our evaluation how RocketBufs API design
helps reduce CPU utilization on the delivery servers compared to hiredis by avoiding this
type of data copy.

5.2 Evaluation

We run a series of experiments to measure each system’s ability to disseminate and deliver
live streaming video. In our setup, the dissemination process resides on a big host (de-
scribed in Section 4.5), and the web server-integrated subscribers reside on regular hosts.
We use a special host with an Intel Xeon E5-2697v3 CPU (with 14 real cores and hyper-
threading disabled), 128 GB of RAM and two 40 Gbps NICs to run multiple producers
that send video data to the dissemination host. Data is continually published and moved
between nodes in 500 KB chunks, each representing 2 seconds worth of video data, and the
buffer size is set to store 10 seconds worth of video data (5 chunks). In each experiment,
we vary the number of producers to examine the performance of the systems as the load
from producers increases. These experiments are repeated using RocketBufs with both
TCP-based and RDMA-based dissemination (denoted as RB-tcp and RB-rdma), as well as
the Redis-based system. Each experiment consists of a 60 second warmup period, followed
by a 120 second measurement period. For each experiment, we report the mean of the
results along with 95% confidence intervals. Note that in the graphs below, the confidence
intervals are typically small relative to the sizes of the data points, and therefore in most
cases they are not visible.

5.2.1 Microbenchmarks

We first perform a number of microbenchmarks to determine the maximum number of
streams that the system can handle for a varying number of delivery servers that receive
disseminated video data. We also observe the impact handling this data has on the CPUs
of the delivery web servers. These microbenchmarks do not include emulated viewers,
thus allowing us to isolate the impact of the dissemination process. Emulated viewers are
included later in our delivery server benchmarks (Section 5.2.2).
Dissemination host throughput: Figure 5.2 shows the maximum achievable ingest
throughput of the dissemination host while disseminating to varying numbers of delivery
servers. The results and confidence intervals are obtained from five repetitions of the
benchmarks. To determine the maximum throughput, we gradually increase the number

57

of producing streams until the dissemination host fails to keep pace with the rate at which
data is produced. This corresponds to the point at which the dissemination host’s CPU
is close to 100% utilization, which is mainly due to overhead from decrypting ingest data
and disseminating it to delivery servers. Figure 5.2 shows that as the number of delivery
servers changes, RB-tcp achieves throughput values largely comparable to Redis. The
throughput of both systems decreases with the increasing number of delivery servers at
largely the same rate. Using RDMA yields a significant boost in maximum throughput,
which remains relatively consistent even when disseminating to an increasing number of
delivery servers, since RDMA incurs little CPU overhead regardless of the amount of data
transferred. With 8 delivery servers, Redis and RB-tcp achieve 10.0 Gbps and 10.4 Gbps
of video throughput respectively, while RB-rdma can handle up to 18.0 Gbps, representing
a 73% improvement versus Redis. The throughput of RB-rdma is limited mostly by the
overhead required to decrypt ingested data.

 0

 5

 10

 15

 20

 1 2 3 4 5 6 7 8

M
ax

 I
ng

es
t T

pu
t (

G
bp

s)

Number of Delivery Nodes

RB-tcp
RB-rdma

Redis

Figure 5.2: Maximum ingest throughput.

Delivery server CPU utilization: As discussed in Section 2.1.4, video delivery servers
consume CPU to deliver video data to viewers. Therefore, we are interested in efficiently
receiving video data from the dissemination host so that CPU resources can be conserved
for delivery (where outgoing viewer data needs to be encrypted). Figure 5.3 shows the
average CPU utilization with 95% confidence intervals (obtained from vmstat samples
collected every second) on a delivery server as the amount of disseminated data increases.
The results show that all RocketBufs-based systems require significantly less CPU on the
delivery hosts when compared to Redis. For example, at 32 Gbps of incoming data, the

58

CPU utilization of Redis is approximately 50%, whereas it is 23% for RB-tcp and 3% for
RB-rdma, amounting to relative reductions of 54% and 95% respectively. We also observe
that while the CPU utilization of the TCP-based systems (RB-tcp and Redis) rises with
increasing throughput, the utilization of RB-rdma remains negligible (3% or less) regardless
of the amount of disseminated data.

 0

 20

 40

 60

 80

 100

 2 4 8 16 24 32

1,000 2,000 4,000 8,000 12,000 16,000

8
C

or
e

A
vg

 U
ti

l %

Total Throughput (Gbps)

Streams

RB-tcp
RB-rdma

Redis

Figure 5.3: Delivery server CPU utilization as total stream throughput increases.

To understand where CPU resources are spent, we profile the delivery server running
with these three configurations. Table 5.1 shows the three functions requiring the most
CPU time for a delivery server receiving video data at 32 Gbps. We observe that the TCP-
based systems (Redis and RB-tcp) spend a significant portion of time reading data from
the socket buffer (libc read and libc recv). The Redis-based delivery server also spends
about 34.7% of CPU time copying data between different memory locations (mem cpy).
This include hiredis’ internal copying (as discussed in Chapter 4) and the copying of
data to the web server managed buffer for delivery. RocketBufs’ APIs do not require such
copying, since they allow direct access to the input buffer, thus consuming fewer CPU re-
sources. For RB-rdma, the main CPU is not involved in data transfers except for detecting
and managing the RDMA completion events, which includes monitoring and reading data
from the completion channel’s file descriptor (epoll wait and libc read). As a result,
RB-rdma incurs negligible CPU overhead, regardless of the amount of disseminated data.
In the next section, we show how the CPU savings achieved with RocketBufs allow the
delivery servers to support significantly more concurrent viewers.

59

Redis RB-tcp RB-rdma
1st mem cpy (34.7%) libc recv (92.4%) epoll wait (51.6%)
2nd libc read (34.3%) epoll wait (5.8%) libc read (15.5%)
3rd epoll ctl (16.9%) rIn::do cb (0.5%) pthread spin lock (1.8%)
total 85.9% 98.7% 68.9%

Table 5.1: Top three delivery server functions with most CPU time at 32 Gbps.

5.2.2 Live Streaming Video Delivery Benchmarks

We now run a set of benchmarks to measure a delivery host’s capacity to deliver live
streaming video using the userver. For these experiments, we use httperf [71] to simu-
late large numbers of viewers and to generate load on the web servers over secure (TLS)
connections. Each simulated viewer connects to a server and requests video content from
a specific stream at the same rate as it is produced (2 Mbps).

To simulate WAN effects for connections between viewers and delivery servers, we use
tc [4] on the hosts running emulated viewers to add bandwidth limits and network delays
to the in-lab local area network. This approach is similar to that used in existing work [99].
Each connection is subject to a simulated delay of 50 ms (for both ingress and egress traffic),
which is approximately the coast-to-coast transmission delay in the United States [17]. We
assign bandwidth limits to viewer connections following the distribution shown in Table 5.2.
This distribution approximates the connection speeds of client computers in the United
States to Akamai servers, according to the Akamai Connectivity Report [3]. We use a
minimum bandwidth limit of 3 Mbps, which is higher than the streams’ bitrate (2 Mbps)
to ensure that all emulated clients can keep up with the video streams. Eight regular hosts
are used to run emulated viewers to ensure that they do not become the bottlenecks. We
also modify httperf to include checks for data timeliness (timeout) and validity.

Reported Rate Reported Share Used Rate Used Share
Above 25 Mbps 21.0% 50.0 Mbps 25.0%
15 - 25 Mbps 31.0% 20.0 Mbps 25.0%
10 - 15 Mbps 15.0% 12.5 Mbps 12.5%
4 - 10 Mbps 23.0% 6.0 Mbps 25.0%
Below 4 Mbps 10.0% 3.0 Mbps 12.5%

Table 5.2: Akamai reported and emulated viewers access speeds.

We increase the number of emulated viewers until the delivery server’s capacity is

60

exceeded, which corresponds to the point at which the CPUs are saturated. When this
occurs, video data is not delivered to viewers in a timely manner and client requests time
out. We record this as an error and terminate the viewer session. For varying numbers
of produced streams (measured in terms of total throughput), we conduct a sequence
of benchmarks to determine the maximum number of viewers that a delivery server can
support without errors, which is reported using the total amount of viewer throughput. The
benchmarks are repeated five times and we report their means along with 95% confidence
intervals.

Figure 5.4 shows the results of these benchmarks. As discussed in Section 5.2.1, both
RB-tcp and RB-rdma systems incur less CPU overhead when compared with the Redis-
based system, allowing more viewers to be supported. This difference grows as the amount
of disseminated data (number of video streams) increases. For 20 Gbps of incoming dis-
seminated data, while the Redis-based web server is only able to serve 13.5 Gbps of video
to viewers, RB-tcp achieves over 17 Gbps of viewer throughput, a relative increase of 27%.
When RDMA is used (RB-rdma), the CPU overhead associated with receiving video data
is negligible, regardless of the dissemination throughput. As a result, RB-rdma’s viewer
throughput remains relatively consistent and only drops from 21.7 Gbps (with 2 Gbps of
incoming disseminated data) to 21.0 Gbps (with 20 Gbps of incoming disseminated data).
This amounts to an improvement of up to 55% when compared with Redis.

 0

 5

 10

 15

 20

 25

 2 4 8 12 16 20

1,000 2,000 4,000 6,000 8,000 10,000

To
ta

l V
ie

w
er

 T
pu

t (
G

bp
s)

Incoming Stream Throughput (Gbps)

Streams

RB-tcp
RB-rdma

Redis

Figure 5.4: Maximum error-free web server delivery throughput.

61

5.3 Chapter Summary

In this chapter we further demonstrate the flexibility of RocketBufs by using it to implement
a live streaming video application. We describe how the dissemination process integrates
with and utilizes the framework’s networking capabilities to manage live streaming video
dissemination. We also modify a web server to obtain and deliver disseminated live stream-
ing video to viewers. Our benchmarks show that when using TCP, RocketBufs provides
similar to better performance than Redis, an equivalent industry-grade messaging system.
However, when RDMA is utilized, RocketBufs is able to support up to 73% higher ingest
traffic on the dissemination host and up to 55% more concurrent viewers on the delivery
server. These performance improvements demonstrate RocketBufs’ ability to make more
efficient use of hardware to help scale live streaming video distribution and delivery in
order to meet increasing demands.

62

Chapter 6

Conclusions and Future Work

6.1 Thesis Summary

Message-Oriented Middleware systems are a class of software that facilitates independent
and loosely-coupled messaging in distributed and event-based systems. In recent years, as
new types of applications emerge, many new MOM systems have been developed, both as
open-source projects and as services offered by cloud providers. In many cases, applications
using MOM systems are deployed in data centers and have strict performance requirements
regarding throughput and latency. Modern kernel-bypass technologies such as Remote
Direct Memory Access (RDMA) offer a solution for achieving high-throughput, low-latency
and CPU-efficient data transfers. Unfortunately, existing commonly-used MOM systems
do not utilize RDMA for high-performance data center communication. We identify two
challenges with implementing RDMA support in MOM systems: the complexity of the
RDMA programming interface and the difference between the RDMA abstraction and the
socket abstraction. The rsocket APIs provide a socket-like interface for RDMA, however
they are less efficient than native RDMA APIs due to protocol translation overhead.

These issues have motivated us to design and implement RocketBufs, a framework
to facilitate the construction of future high-performance MOM systems. Our goals with
RocketBufs in this thesis are: to provide natural abstractions and easy-to-use APIs suited
for developing a variety of MOM systems; to enable access to RDMA and TCP (and
potentially other transport layer technologies) without requiring code changes to the ap-
plication; and to provide implementations for both RDMA and TCP-based networking
that enable the construction of efficient and scalable MOM systems. To achieve these
goals, we have designed memory-based buffer abstractions and APIs that are both suit-

63

able for building MOM systems and allow for efficient implementations with TCP and
RDMA transport protocols. Our framework provides two main classes, rIn and rOut, for
data dissemination between nodes, allowing the construction of flexible MOM topologies.
Using RocketBufs’ APIs, applications can produce and consume data continuously, while
the framework manages buffers and provides mechanisms for flow control. RocketBufs
also implements support for buffer splicing, which allows message brokers to forward data
efficiently by avoiding unnecessary data copying.

We demonstrate the utility and evaluate the performance of RocketBufs using two
applications while executing with RDMA and TCP protocols. The evaluation of our
message-oriented publish/subscribe system (RBMQ) shows significant performance gains
when compared with Redis and RabbitMQ, two production-quality MOM systems. In
comparison with RabbitMQ (a system with a flow control scheme equivalent to RBMQ),
both Redis and RBMQ using TCP show significantly higher messaging throughput. Using
RDMA with RBMQ yields significant performance gains, allowing RBMQ to achieve up
to 1.7 times higher messaging throughput and 47% lower median delivery latency versus
Redis. On subscriber hosts, when using RDMA to receive data, RBMQ incurs negligible
CPU overhead regardless of the amount of disseminated data tested. This allows CPU re-
sources to be conserved for other purposes like processing data. These results demonstrate
RocketBufs’ ability to provide abstractions and APIs that are transport-layer agnostic, yet
allow for the construction of high-performance MOM systems.

To further demonstrate the flexibility of RocketBufs, we use it to implement a live
streaming video application consisting of a dissemination host and multiple delivery hosts.
The dissemination host uses the rOut class to disseminate video data from video sources to
web servers for delivery to viewers. The web servers use the rIn class to subscribe to and
receive disseminated video data, either using TCP or RDMA, and service video content to
viewers over HTTPS. We compare our application to a similar application implemented
using Redis and find that a RocketBufs-based dissemination host can disseminate up to
73% higher live streaming throughput, while a RocketBufs-based delivery server is able to
support up to 55% more concurrent viewers.

The results of implementing and evaluating RocketBufs suggest that our previously
stated goals are met. The framework’s rIn, rOut classes and their APIs allow applications
to produce and consume data continuously, and enable the construction of flexible MOM
topologies. In Chapter 4 and 5, we have demonstrated the flexibility of RocketBufs by using
it to successfully build two applications: a publish/subscribe system and a live streaming
video application. We believe that RocketBufs achieves our first goal of facilitating the
easy construction of a variety of MOM systems. The second goal of enabling access to
RDMA and TCP-based networking using the same interface is also met. Changing the

64

transport protocol in RocketBufs only requires changes to the system configuration and
does not require modifications to application code. Finally, RocketBufs’ memory-based
abstractions and APIs allow for the implementation of both TCP and RDMA using their
native APIs without any protocol translation overhead. The results of our evaluation show
that, RocketBufs using TCP performs well when compared with industry-grade systems,
while RocketBufs using RDMA achieves significant gains in performance, allowing applica-
tions to handle substantially higher loads. For example, when RDMA is used, RocketBufs
achieves a higher messaging throughput with four subscribers than Redis’ throughput with
two subscribers. We therefore conclude that our third goal of enabling efficient and scalable
implementations for RDMA and TCP-based networking is also achieved.

6.2 Future Work

In this section, we present ideas for future work to improve RocketBufs’ performance and
ability to support a wider variety of MOM systems.

6.2.1 Buffer Delivery Policies

While in this thesis we have focused on our implementation and evaluation of RocketBufs
within the context of a publish/subscribe workflow (where subscribers receive all messages
from a buffer), the framework is also designed to support a message-queuing workflow
(where messages are selectively distributed among subscribers). In future work, this sup-
port could be realized by implementing delivery policies for buffers. These policies would
be used to control how buffer segments are distributed among subscribers. A simple ex-
ample of a delivery policy is round-robin, where messages (represented as buffer segments)
are distributed evenly among subscribed rIn objects in a round-robin manner. In other
systems, a first-available policy might be more suitable. In this case, data would be trans-
ferred from the rOut object to the first rIn object with enough free buffer space to receive
the data. In future work, we plan to implement and evaluate the performance of different
delivery policies when handling different types of MOM workloads.

6.2.2 Support for Data Persistence

In this thesis, we have focused on supporting in-memory MOM systems, where messages
reside in memory only and thus have a limited lifetime. However in many MOM systems,

65

it is desirable to make messages persistent. For example, a system with fault-tolerance
requirements needs to survive crashes and restarts without losing message data. There-
fore, such systems require messages to be kept on persistent storage so that they can be
recovered. In another class of MOM systems, often referred to as log-processing systems
(e.g., Kafka [31], Amazon Kinesis [6]), messages published by producers are kept in log-
like data structures on message brokers, which can be queried and processed by consumers.
Because consumers can join the system at any point in time and request messages at ar-
bitrary locations in the log, these messages also need to be kept on persistent storage on
the brokers.

A possibility for future research is to expand RocketBufs’ APIs to support data per-
sistence. The new APIs should allow applications to specify that data needs to be kept
on persistent storage and to provide access to persistent data. These APIs should also
follow RocketBufs’ key design principles to continue to enable easy and efficient access to
different types of storage technologies (e.g., hard disk drive, solid-state drive, or persistent
memory) using the same interface.

6.2.3 Support for Pull-based Delivery

As discussed in Chapter 2 and Section 6.2.2, in some MOM systems messages are delivered
using a pull-based scheme. Examples of such systems are log-processing systems, where
messages are kept in persistent storage on the brokers and requested by consumers at a
later point in time. In future work, RocketBufs’ APIs could be expanded to support pull-
based delivery, which would allow subscribers to control the rate of receiving messages.
However, as discussed in Chapter 2, pull-based delivery tends to produce higher latencies,
and therefore its applicability to different workloads should be carefully examined.

6.2.4 Extending Networking Capabilities

Our current implementation of RocketBufs supports TCP and RDMA as transport pro-
tocols. An avenue for future research would be to extend the networking capabilities of
the framework. For example, UDP and RDMA multicast could be implemented to reduce
outgoing dissemination bandwidth, which would benefit hosts that disseminate data to a
large number of brokers and/or subscribers. However, these multicast protocols have their
own drawbacks (e.g., they are unreliable and have a limit on the size of a datagram).

Another extension to the framework’s networking capabilities could be support for TLS-
encrypted TCP communication. This feature would simplify the construction of systems

66

such as live streaming video (as presented in Chapter 5) where data needs to be transferred
securely over a wide area network. Additionally, as discussed in Chapter 2, kernel-bypass
techniques have been explored in previous work to improve the performance of traditional
protocols like TCP/IP. We believe that RocketBufs could incorporate such techniques into
the framework to further improve the performance of its TCP layer. Furthermore, we
believe that these features should be implemented in a manner that is invisible to the
application, enabling the application to take advantage of the benefits provided by simply
changing the system configurations.

Finally, we plan to improve the current RocketBufs prototype to better handle cases
where the limits of an RDMA device are exceeded. For example, when the creation of
buffers results in a higher number of registered memory regions than supported by the
RNIC, the framework currently treats this case as an error and notifies the application
of the error. A future improvement to RocketBufs would be to implement a technique
that dynamically un-registers/re-registers memory regions to support a higher number of
buffers.

6.2.5 Support for Security and Fault Tolerance

Fault tolerance is a common requirement in real-world MOM deployments to deal with
scenarios such as a system failure or power outage. In this thesis, we have not designed
RocketBufs with fault tolerance in mind. We plan to build upon our current design to add
support for this feature in future work. Additionally, the current RocketBufs prototype
does not have built-in support for security, but rather leaves security to be implemented
by the application. We plan to explore common security mechanisms used by production
MOM systems and to consider adding support for such mechanisms to future versions of
RocketBufs.

6.3 Concluding Remarks

We believe that, given the continuous development of new MOM systems, there is signif-
icant potential to improve their performance by utilizing modern data center networking
technologies that offer kernel-bypass features (e.g., RDMA, TCPDirect). In this thesis,
we have proposed a framework with intuitive abstractions and APIs to simplify the de-
velopment of future MOM systems, allowing them to utilize such technologies for high-
performance in-data center messaging. Our prototype implementation, which currently

67

supports TCP and RDMA, demonstrates the benefits of our framework. We envision that
RocketBufs and the ongoing innovations in the transport layer will help pave way for the
future development of better and more efficient MOM systems.

68

References

[1] Marcos K. Aguilera, Nadav Amit, Irina Calciu, Xavier Deguillard, Jayneel Gandhi,
Stanko Novakovic, Arun Ramanathan, Pratap Subrahmanyam, Lalith Suresh, Kiran
Tati, et al. Remote regions: A simple abstraction for remote memory. In Proc.
USENIX Annual Technical Conference (ATC), pages 775–787. USENIX, 2018.

[2] Marcos K. Aguilera, Kimberly Keeton, Stanko Novakovic, and Sharad Singhal. De-
signing far memory data structures: Think outside the box. In Proceedings of the
Workshop on Hot Topics in Operating Systems, HotOS ’19, pages 120–126, New York,
NY, USA, 2019. ACM.

[3] Akamai. Q1 2017 state of the Internet connectivity report. https://content.
akamai.com/gl-en-pg9135-q1-soti-connectivity.html, 2017. Accessed April
12, 2019.

[4] Werner Almesberger. Linux network traffic control – implementation overview. 1999.

[5] Amazon. Amazon Kinesis Data Firehose. https://aws.amazon.com/kinesis/
data-firehose/. Accessed October 8, 2019.

[6] Amazon. Amazon Kinesis Data Streams. https://aws.amazon.com/kinesis/data-
streams/. Accessed August 29, 2019.

[7] Amazon. Amazon Serverless Data Processing. https://aws.amazon.com/lambda/
data-processing/. Accessed June 23, 2019.

[8] Amazon. Amazon Simple Notification Service. https://aws.amazon.com/sqs/.
Accessed August 29, 2019.

[9] Amazon. Amazon Simple Queue Service, ReceiveMessage. https:
//docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_
ReceiveMessage.html. Accessed August 29, 2019.

69

https://content.akamai.com/gl-en-pg9135-q1-soti-connectivity.html
https://content.akamai.com/gl-en-pg9135-q1-soti-connectivity.html
https://aws.amazon.com/kinesis/data-firehose/
https://aws.amazon.com/kinesis/data-firehose/
https://aws.amazon.com/kinesis/data-streams/
https://aws.amazon.com/kinesis/data-streams/
https://aws.amazon.com/lambda/data-processing/
https://aws.amazon.com/lambda/data-processing/
https://aws.amazon.com/sqs/
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_ReceiveMessage.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_ReceiveMessage.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_ReceiveMessage.html

[10] AMQP. OASIS AMQP 1.0 specification. http://www.amqp.org/specification/
1.0/amqp-org-download/. Accessed June 24, 2019.

[11] AMQP. Products and success stories. https://www.amqp.org/about/examples.
Accessed August 23, 2019.

[12] Elli Androulaki, Artem Barger, Vita Bortnikov, Christian Cachin, Konstantinos
Christidis, Angelo De Caro, David Enyeart, Christopher Ferris, Gennady Lavent-
man, Yacov Manevich, Srinivasan Muralidharan, Chet Murthy, Binh Nguyen, Man-
ish Sethi, Gari Singh, Keith Smith, Alessandro Sorniotti, Chrysoula Stathakopoulou,
Marko Vukolić, Sharon Weed Cocco, and Jason Yellick. Hyperledger fabric: A dis-
tributed operating system for permissioned blockchains. In Proceedings of the Thir-
teenth EuroSys Conference, EuroSys ’18, pages 30:1–30:15, New York, NY, USA,
2018. ACM.

[13] Alan Antonuk. rabbitmq-c client library. https://github.com/alanxz/rabbitmq-
c/. Accessed June 24, 2019.

[14] Apache. ActiveMQ Artemis. https://activemq.apache.org/components/
artemis/. Accessed October 8, 2019.

[15] Apache. Apache RocketMQ. http://rocketmq.apache.org/. Accessed June 25,
2019.

[16] Apache. Pulsar: distributed pub-sub messaging system. https://pulsar.apache.
org/. Accessed June 23, 2019.

[17] AT&T. AT&T Global IP Network. https://ipnetwork.bgtmo.ip.att.net/pws/
network_delay.html, 2019. Accessed April 12, 2019.

[18] Raphaël Barazzutti, Pascal Felber, Christof Fetzer, Emanuel Onica, Jean-François
Pineau, Marcelo Pasin, Etienne Rivière, and Stefan Weigert. Streamhub: A mas-
sively parallel architecture for high-performance content-based publish/subscribe. In
Proceedings of the 7th ACM International Conference on Distributed Event-based
Systems, DEBS ’13, pages 63–74. ACM, 2013.

[19] Mike Belshe, Roberto Peon, and Martin Thomson. Hypertext Transfer Protocol
Version 2 (HTTP/2). RFC 7540, 2015.

[20] Adam Bloom. Using Redis at Pinterest for billions of relationships. https:
//blog.pivotal.io/pivotal/case-studies/using-redis-at-pinterest-for-
billions-of-relationships, 2013. Accessed April 12, 2019.

70

http://www.amqp.org/specification/1.0/amqp-org-download/
http://www.amqp.org/specification/1.0/amqp-org-download/
https://www.amqp.org/about/examples
https://github.com/alanxz/rabbitmq-c/
https://github.com/alanxz/rabbitmq-c/
https://activemq.apache.org/components/artemis/
https://activemq.apache.org/components/artemis/
http://rocketmq.apache.org/
https://pulsar.apache.org/
https://pulsar.apache.org/
https://ipnetwork.bgtmo.ip.att.net/pws/network_delay.html
https://ipnetwork.bgtmo.ip.att.net/pws/network_delay.html
https://blog.pivotal.io/pivotal/case-studies/using-redis-at-pinterest-for-billions-of-relationships
https://blog.pivotal.io/pivotal/case-studies/using-redis-at-pinterest-for-billions-of-relationships
https://blog.pivotal.io/pivotal/case-studies/using-redis-at-pinterest-for-billions-of-relationships

[21] Tim Brecht, David Pariag, and Louay Gammo. accept()able strategies for improving
web server performance. In Proc. USENIX Annual Technical Conference (ATC),
pages 227–240. USENIX, 2004.

[22] Benjamin Cassell, Tyler Szepesi, Bernard Wong, Tim Brecht, Jonathan Ma, and
Xiaoyi Liu. Nessie: A decoupled, client-driven, key-value store using RDMA. IEEE
Transactions on Parallel and Distributed Systems (TPDS), 28(12):3537–3552, 2017.

[23] Chelsio. Ultra-Low Latency with User-Mode Kernel-Bypass using WireDirect and
TOE Solution Overview. https://www.chelsio.com/high-frequency-trading/.
Accessed October 18, 2019.

[24] C. Chen, H. Jacobsen, and R. Vitenberg. Algorithms based on divide and conquer
for topic-based publish/subscribe overlay design. IEEE/ACM Transactions on Net-
working, 24(1):422–436, Feb 2016.

[25] Chen Chen, Yoav Tock, and Sarunas Girdzijauskas. BeaConvey: Co-design of over-
lay and routing for topic-based publish/subscribe on small-world networks. In Pro-
ceedings of the 12th ACM International Conference on Distributed and Event-Based
Systems (DEBS 2018), 2018.

[26] Gregory Chockler, Roie Melamed, Yoav Tock, and Roman Vitenberg. Constructing
scalable overlays for pub-sub with many topics. In Proceedings of the Twenty-sixth
Annual ACM Symposium on Principles of Distributed Computing, PODC ’07. ACM.

[27] Gregory Chockler, Roie Melamed, Yoav Tock, and Roman Vitenberg. Spidercast:
A scalable interest-aware overlay for topic-based pub/sub communication. In Pro-
ceedings of the 2007 Inaugural International Conference on Distributed Event-based
Systems, DEBS ’07, pages 14–25. ACM, 2007.

[28] Cisco. Cisco visual networking index: Forecast and trends, 2017–2022 white paper,
2018.

[29] Colin Creitz. Deadline approaching: All live video uploads required to use
RTMPS. https://developers.facebook.com/blog/post/v2/2019/04/16/live-
video-uploads-rtmps/. Accessed September 11, 2019.

[30] Jie Deng, Gareth Tyson, Felix Cuadrado, and Steve Uhlig. Internet scale user-
generated live video streaming: The Twitch case. In Proc. Passive and Active Mea-
surement Conference (PAM), pages 60–71. Springer, 2017.

71

https://www.chelsio.com/high-frequency-trading/
https://developers.facebook.com/blog/post/v2/2019/04/16/live-video-uploads-rtmps/
https://developers.facebook.com/blog/post/v2/2019/04/16/live-video-uploads-rtmps/

[31] Philippe Dobbelaere and Kyumars Sheykh Esmaili. Kafka versus RabbitMQ: A
comparative study of two industry reference publish/subscribe implementations. In
Proc. International Conference on Distributed and Event-based Systems (DEBS),
pages 227–238. ACM, 2017.

[32] Florin Dobrian, Vyas Sekar, Asad Awan, Ion Stoica, Dilip Joseph, Aditya Ganjam,
Jibin Zhan, and Hui Zhang. Understanding the impact of video quality on user
engagement. In Proc. Conference on SIGCOMM, pages 362–373. ACM SIGCOMM,
2011.

[33] Aleksandar Dragojevic, Dushyanth Narayanan, and Miguel Castro. FaRM: Fast
remote memory. In Proc. Symposium on Networked Systems Design and Implemen-
tation (NSDI), pages 401–414. USENIX, 2014.

[34] Eclipse. Vert.x. https://vertx.io/. Accessed October 8, 2019.

[35] Jeremy Edberg. Reddit: Lessons learned from mistakes made scaling to 1 bil-
lion pageviews a month. http://highscalability.com/blog/2013/8/26/reddit-
lessons-learned-from-mistakes-made-scaling-to-1-billi.html. Accessed
August 12, 2019.

[36] Patrick Th. Eugster, Pascal A. Felber, Rachid Guerraoui, and Anne-Marie Kermar-
rec. The many faces of publish/subscribe. ACM Computing Surveys, 35(2):114–131,
June 2003.

[37] F-Stack. F-Stack. http://www.f-stack.org/. Accessed October 18, 2019.

[38] Z. Fadika and M. Govindaraju. Delma: Dynamically elastic map-reduce framework
for CPU-intensive applications. In 2011 11th IEEE/ACM International Symposium
on Cluster, Cloud and Grid Computing, pages 454–463, May 2011.

[39] Apache Software Foundtaion. Apache ActiveMQ. https://activemq.apache.org.
Accessed April 12, 2019.

[40] Evan Freitas. Presenting the Twitch 2016 year in review. https://blog.twitch.tv/
presenting-the-twitch-2016-year-in-review-b2e0cdc72f18, 2017. Accessed
April 12, 2019.

[41] J. Gascon-Samson, F. Garcia, B. Kemme, and J. Kienzle. Dynamoth: A scalable
pub/sub middleware for latency-constrained applications in the cloud. In 2015 IEEE
35th International Conference on Distributed Computing Systems, pages 486–496,
June 2015.

72

https://vertx.io/
http://highscalability.com/blog/2013/8/26/reddit-lessons-learned-from-mistakes-made-scaling-to-1-billi.html
http://highscalability.com/blog/2013/8/26/reddit-lessons-learned-from-mistakes-made-scaling-to-1-billi.html
http://www.f-stack.org/
https://activemq.apache.org
https://blog.twitch.tv/presenting-the-twitch-2016-year-in-review-b2e0cdc72f18
https://blog.twitch.tv/presenting-the-twitch-2016-year-in-review-b2e0cdc72f18

[42] J. Gascon-Samson, J. Kienzle, and B. Kemme. Multipub: Latency and cost-aware
global-scale cloud publish/subscribe. In 2017 IEEE 37th International Conference
on Distributed Computing Systems (ICDCS), pages 2075–2082, June 2017.

[43] Raquel Campuzano Godoy. Bitnami RabbitMQ cluster: searching for the maximum
performance. https://engineering.bitnami.com/articles/bitnami-rabbitmq-
cluster-searching-for-the-maximum-performance.html. Accessed October 12,
2019.

[44] Google. Google Cloud Pub/Sub. https://cloud.google.com/pubsub/. Accessed
June 23, 2019.

[45] Google. Google Cloud Tasks. https://cloud.google.com/tasks/. Accessed Octo-
ber 8, 2019.

[46] Paul Grun, Sean Hefty, Sayantan Sur, David Goodell, Robert D. Russell, Howard
Pritchard, and Jeffrey M. Squyres. A brief introduction to the OpenFabrics interfaces
— a new network API for maximizing high performance application efficiency. In
Proc. Symposium on High-Performance Interconnects (HOTI), pages 34–39. IEEE,
2015.

[47] Chuanxiong Guo, Haitao Wu, Zhong Deng, Gaurav Soni, Jianxi Ye, Jitu Padhye,
and Marina Lipshteyn. Rdma over commodity Ethernet at scale. In Proceedings of
the 2016 ACM SIGCOMM Conference, SIGCOMM ’16, pages 202–215, New York,
NY, USA, 2016. ACM.

[48] Qiyun He, Jiangchuan Liu, Chonggang Wang, and Bo Li. Coping with heteroge-
neous video contributors and viewers in crowdsourced live streaming: A cloud-based
approach. IEEE Transactions on Multimedia, 18(5):916–928, 2016.

[49] IBM. IBM Cloud Functions. https://www.ibm.com/cloud/functions. Accessed
June 23, 2019.

[50] IBM. IBM message queue. http://ibm.com/products/mq/.

[51] Intel. Intel Ethernet converged network adapter XL710-QDA2. https:
//ark.intel.com/content/www/us/en/ark/products/83967/intel-ethernet-
converged-network-adapter-xl710-qda2.html. Accessed November 4, 2019.

[52] Iperf. Iperf. https://iperf.fr/. Accessed September 11, 2019.

73

https://engineering.bitnami.com/articles/bitnami-rabbitmq-cluster-searching-for-the-maximum-performance.html
https://engineering.bitnami.com/articles/bitnami-rabbitmq-cluster-searching-for-the-maximum-performance.html
https://cloud.google.com/pubsub/
https://cloud.google.com/tasks/
https://www.ibm.com/cloud/functions
http://ibm.com/products/mq/
https://ark.intel.com/content/www/us/en/ark/products/83967/intel-ethernet-converged-network-adapter-xl710-qda2.html
https://ark.intel.com/content/www/us/en/ark/products/83967/intel-ethernet-converged-network-adapter-xl710-qda2.html
https://ark.intel.com/content/www/us/en/ark/products/83967/intel-ethernet-converged-network-adapter-xl710-qda2.html
https://iperf.fr/

[53] M. Thomson J. Iyengar. QUIC: A UDP-based multiplexed and secure transport. In
draft-ietf-quic-transport-19, Internet Engineering Task Force draft, 2019.

[54] Petri Jokela, András Zahemszky, Christian Esteve Rothenberg, Somaya Arianfar, and
Pekka Nikander. LIPSIN: Line speed publish/subscribe inter-networking. SIGCOMM
Comput. Commun. Rev., 39(4):195–206, August 2009.

[55] Anuj Kalia, Michael Kaminsky, and David G. Andersen. Using RDMA efficiently
for key-value services. In Proc. Conference on SIGCOMM, pages 295–306. ACM
SIGCOMM, 2014.

[56] Anuj Kalia, Michael Kaminsky, and David G. Andersen. Design guidelines for high
performance RDMA systems. In Proc. USENIX Annual Technical Conference (ATC),
pages 437–450. USENIX, 2016.

[57] Daehyeok Kim, Tianlong Yu, Hongqiang Harry Liu, Yibo Zhu, Jitu Padhye, Shachar
Raindel, Chuanxiong Guo, Vyas Sekar, and Srinivasan Seshan. Freeflow: Software-
based virtual RDMA networking for containerized clouds. In Proceedings of the 16th
USENIX Conference on Networked Systems Design and Implementation, NSDI’19,
pages 113–125, Berkeley, CA, USA, 2019. USENIX Association.

[58] Richard Knop. Machinery. https://github.com/RichardKnop/machinery. Ac-
cessed October 8, 2019.

[59] Joel Koshy. Kafka ecosystem at LinkedIn. https://engineering.linkedin.com/
blog/2016/04/kafka-ecosystem-at-linkedin. Accessed October 12, 2019.

[60] Jay Kreps, Neha Narkhede, and Jun Rao. Kafka: A distributed messaging system
for log processing. In Proc. International Workshop on Networking Meets Databases
(NetDB), pages 1–7. ACM, 2011.

[61] Bojie Li, Zhenyuan Ruan, Wencong Xiao, Yuanwei Lu, Yongqiang Xiong, Andrew
Putnam, Enhong Chen, and Lintao Zhang. KV-Direct: High-performance in-memory
key-value store with programmable NIC. In Proc. Symposium on Operating Systems
Principles (SOSP), pages 137–152. ACM, 2017.

[62] LibRDMACM. rsocket. https://github.com/ofiwg/librdmacm/blob/master/
docs/rsocket. Accessed September 12, 2019.

[63] Linux. Perf. https://github.com/torvalds/linux/tree/master/tools/perf.
Accessed September 12, 2019.

74

https://github.com/RichardKnop/machinery
https://engineering.linkedin.com/blog/2016/04/kafka-ecosystem-at-linkedin
https://engineering.linkedin.com/blog/2016/04/kafka-ecosystem-at-linkedin
https://github.com/ofiwg/librdmacm/blob/master/docs/rsocket
https://github.com/ofiwg/librdmacm/blob/master/docs/rsocket
https://github.com/torvalds/linux/tree/master/tools/perf

[64] Jean-Pierre Lozi, Baptiste Lepers, Justin Funston, Fabien Gaud, Vivien Quéma, and
Alexandra Fedorova. The linux scheduler: A decade of wasted cores. In Proceedings
of the Eleventh European Conference on Computer Systems, EuroSys ’16, pages 1:1–
1:16, New York, NY, USA, 2016. ACM.

[65] P. MacArthur and R. D. Russell. A performance study to guide RDMA programming
decisions. In Proc. International Conference on High Performance Computing and
Communications (HPCC) and International Conference on Embedded Software and
Systems (ICESS), pages 778–785. IEEE, 2012.

[66] Mellanox. Mellanox MCX4131A-BCAT ConnectX-4 Network Interface Card.
https://store.mellanox.com/products/mellanox-mcx4131a-bcat-connectx-
4-lx-en-network-interface-card-40gbe-single-port-qsfp28-pcie3-0-x8-
rohs-r6.html. Accessed November 4, 2019.

[67] Mellanox. RDMA aware networks programming user manual rev 1.7.
https://www.mellanox.com/related-docs/prod_software/RDMA_Aware_
Programming_user_manual.pdf. Accessed April 12, 2019.

[68] Mellanox. RoCEv2 considerations. https://community.mellanox.com/s/
article/roce-v2-considerations. Accessed April 12, 2019.

[69] Christopher Mitchell, Yifeng Geng, and Jinyang Li. Using one-sided RDMA reads
to build a fast, CPU-efficient key-value store. In Proc. USENIX Annual Technical
Conference (ATC), pages 103–114. USENIX, 2013.

[70] Radhika Mittal, Alexander Shpiner, Aurojit Panda, Eitan Zahavi, Arvind Krishna-
murthy, Sylvia Ratnasamy, and Scott Shenker. Revisiting network support for rdma.
In Proceedings of the 2018 Conference of the ACM Special Interest Group on Data
Communication, SIGCOMM ’18, pages 313–326, New York, NY, USA, 2018. ACM.

[71] David Mosberger and Tai Jin. httperf — a tool for measuring web server performance.
ACM SIGMETRICS Performance Evaluation Review (PER), 26(3):31–37, 1998.

[72] Stanko Novakovic, Yizhou Shan, Aasheesh Kolli, Michael Cui, Yiying Zhang, Haggai
Eran, Liran Liss, Michael Wei, Dan Tsafrir, and Marcos K. Aguilera. Storm: A fast
transactional dataplane for remote data structures. In Proc. International Conference
on Systems and Storage (SYSTOR), pages 97–108. ACM, 2019.

[73] Melih Onus and Andréa W. Richa. Minimum maximum-degree publish-subscribe
overlay network design. IEEE/ACM Trans. Netw., 19(5):1331–1343, October 2011.

75

https://store.mellanox.com/products/mellanox-mcx4131a-bcat-connectx-4-lx-en-network-interface-card-40gbe-single-port-qsfp28-pcie3-0-x8-rohs-r6.html
https://store.mellanox.com/products/mellanox-mcx4131a-bcat-connectx-4-lx-en-network-interface-card-40gbe-single-port-qsfp28-pcie3-0-x8-rohs-r6.html
https://store.mellanox.com/products/mellanox-mcx4131a-bcat-connectx-4-lx-en-network-interface-card-40gbe-single-port-qsfp28-pcie3-0-x8-rohs-r6.html
https://www.mellanox.com/related-docs/prod_software/RDMA_Aware_Programming_user_manual.pdf
https://www.mellanox.com/related-docs/prod_software/RDMA_Aware_Programming_user_manual.pdf
https://community.mellanox.com/s/article/roce-v2-considerations
https://community.mellanox.com/s/article/roce-v2-considerations

[74] OpenSSL. Openssl. https://www.openssl.org/. Accessed September 20, 2019.

[75] David Pariag, Tim Brecht, Ashif Harji, Peter Buhr, Amol Shukla, and David R.
Cheriton. Comparing the performance of web server architectures. In Proc. European
Conference on Computer Systems (EuroSys), pages 231–243. ACM, 2007.

[76] Sarah Perez. Twitter’s doubling of character count from 140 to 280 had little
impact on length of tweets. https://techcrunch.com/2018/10/30/twitters-doubling-
of-character-count-from-140-to-280-had-little-impact-on-length-of-tweets/, 2018.
Techcrunch. Accessed June 25, 2019.

[77] Karine Pires and Gwendal Simon. DASH in Twitch: Adaptive bitrate streaming in
live game streaming platforms. In Proc. Workshop on Design, Quality and Deploy-
ment of Adaptive Video Streaming (VideoNext), pages 13–18. ACM, 2014.

[78] Pivotal. Networking and RabbitMQ. https://www.rabbitmq.com/networking.
html. Accessed June 6, 2019.

[79] Pivotal. RabbitMQ. https://www.rabbitmq.com/. Accessed April 12, 2019.

[80] Pivotal. RabbitMQ consumers. https://www.rabbitmq.com/consumers.html/.
Accessed August 29, 2019.

[81] RabbitMQ. Advanced message queuing protocol specification. https://rabbitmq.
com/resources/specs/amqp0-9-1.pdf. Accessed June 25, 2019.

[82] RabbitMQ. Flow control. https://www.rabbitmq.com/flow-control.html. Ac-
cessed August 23, 2019.

[83] Redis. hiredis. https://github.com/redis/hiredis. Accessed April 12, 2019.

[84] Redis. Redis. https://redis.io. Accessed April 12, 2019.

[85] Redis. Redis client handling. https://redis.io/topics/clients. Accessed August
23, 2019.

[86] Redis. Redis documentation. https://redis.io/documentation. Accessed October
6, 2019.

[87] Redis. Securing connections with SSL/TLS. https://docs.redislabs.com/
latest/rc/securing-redis-cloud-connections. Accessed July 8, 2019.

76

https://www.openssl.org/
https://www.rabbitmq.com/networking.html
https://www.rabbitmq.com/networking.html
https://www.rabbitmq.com/
https://www.rabbitmq.com/consumers.html/
https://rabbitmq.com/resources/specs/amqp0-9-1.pdf
https://rabbitmq.com/resources/specs/amqp0-9-1.pdf
https://www.rabbitmq.com/flow-control.html
https://github.com/redis/hiredis
https://redis.io
https://redis.io/topics/clients
https://redis.io/documentation
https://docs.redislabs.com/latest/rc/securing-redis-cloud-connections
https://docs.redislabs.com/latest/rc/securing-redis-cloud-connections

[88] Redis. Who’s using Redis. https://redis.io/topics/whos-using-redis. Ac-
cessed August 23, 2019.

[89] Luis Rodŕıguez-Gil, Javier Garćıa-Zubia, Pablo Orduña, and Diego López-de Ipiña.
An open and scalable web-based interactive live-streaming architecture: The WILSP
platform. IEEE Access, 5:9842–9856, 2017.

[90] Salvatore Sanfilippo. Disque. https://github.com/antirez/disque. Accessed
October 8, 2019.

[91] V. Setty, R. Vitenberg, G. Kreitz, G. Urdaneta, and M. v. Steen. Cost-effective
resource allocation for deploying pub/sub on cloud. In 2014 IEEE 34th International
Conference on Distributed Computing Systems, pages 555–566, June 2014.

[92] Yogeshwer Sharma, Philippe Ajoux, Petchean Ang, David Callies, Abhishek Choud-
hary, Laurent Demailly, Thomas Fersch, Liat Atsmon Guz, Andrzej Kotulski, Sachin
Kulkarni, Sanjeev Kumar, Harry Li, Jun Li, Evgeniy Makeev, Kowshik Prakasam,
Robbert Van Renesse, Sabyasachi Roy, Pratyush Seth, Yee Jiun Song, Benjamin
Wester, Kaushik Veeraraghavan, and Peter Xie. Wormhole: Reliable pub-sub to
support geo-replicated internet services. In 12th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 15), pages 351–366, Oakland, CA, 2015.
USENIX Association.

[93] Solarflare. Solarflare. https://solarflare.com/. Accessed October 18, 2019.

[94] Solarflare. TCPDirect delivers lowest possible latency between the application
and the network. https://solarflare.com/wp-content/uploads/2019/02/SF-
117079-AN-Solarflare-TCPDirect-White-Paper-Issue-5.pdf. Accessed Octo-
ber 18, 2019.

[95] Douglas Soo. Twitch engineering: An introduction and overview. https:
//blog.twitch.tv/twitch-engineering-an-introduction-and-overview-
a23917b71a25, 2015. Accessed April 12, 2019.

[96] Spache. Apache OpenWhisk: Open source serverless cloud platform. https://
openwhisk.apache.org/. Accessed June 23, 2019.

[97] Randall Stewart, John-Mark Gurney, and Scott Long. Optimizing TLS for high-
bandwidth applications in FreeBSD. Technical report, Netflix, 2015.

77

https://redis.io/topics/whos-using-redis
https://github.com/antirez/disque
https://solarflare.com/
https://solarflare.com/wp-content/uploads/2019/02/SF-117079-AN-Solarflare-TCPDirect-White-Paper-Issue-5.pdf
https://solarflare.com/wp-content/uploads/2019/02/SF-117079-AN-Solarflare-TCPDirect-White-Paper-Issue-5.pdf
https://blog.twitch.tv/twitch-engineering-an-introduction-and-overview-a23917b71a25
https://blog.twitch.tv/twitch-engineering-an-introduction-and-overview-a23917b71a25
https://blog.twitch.tv/twitch-engineering-an-introduction-and-overview-a23917b71a25
https://openwhisk.apache.org/
https://openwhisk.apache.org/

[98] H. Subramoni, G. Marsh, S. Narravula, Ping Lai, and D. K. Panda. Design and
evaluation of benchmarks for financial applications using advanced message queuing
protocol (AMQP) over infiniband. In 2008 Workshop on High Performance Compu-
tational Finance, pages 1–8, Nov 2008.

[99] Jim Summers, Tim Brecht, Derek Eager, and Bernard Wong. Methodologies for
generating HTTP streaming video workloads to evaluate web server performance. In
Proc. International Conference on Systems and Storage (SYSTOR), pages 2:1–2:12.
ACM, 2012.

[100] Contributed Systems. Faktory. http://contribsys.com/faktory/. Accessed Oc-
tober 8, 2019.

[101] Y. Teranishi, R. Banno, and T. Akiyama. Scalable and locality-aware distributed
topic-based pub/sub messaging for IoT. In 2015 IEEE Global Communications Con-
ference (GLOBECOM), pages 1–7, Dec 2015.

[102] Shin-Yeh Tsai and Yiying Zhang. LITE: kernel RDMA support for data center
applications. In Proc. Symposium on Operating Systems Principles (SOSP), pages
306–324. ACM, 2017.

[103] Hayley Tsukayama. More than 21 million people watched gaming’s biggest
annual show on Twitch. https://www.washingtonpost.com/news/the-
switch/wp/2015/06/29/more-than-21-million-people-watched-gamings-
biggest-annual-show-on-twitch/, 2015. Washington Post. Accessed April 12,
2019.

[104] Twitch. Twitch. https://www.twitch.tv/. Accessed April 12, 2019.

[105] T. von Eicken, A. Basu, V. Buch, and W. Vogels. U-Net: A user-level network
interface for parallel and distributed computing. In Proceedings of the Fifteenth
ACM Symposium on Operating Systems Principles, SOSP ’95, pages 40–53, New
York, NY, USA, 1995. ACM.

[106] Xingda Wei, Jiaxin Shi, Yanzhe Chen, Rong Chen, and Haibo Chen. Fast in-memory
transaction processing using RDMA and HTM. In Proc. Symposium on Operating
Systems Principles (SOSP), pages 87–104. ACM, 2015.

[107] Bairen Yi, Jiacheng Xia, Li Chen, and Kai Chen. Towards zero copy dataflows using
RDMA. In Proceedings of the SIGCOMM Posters and Demos, SIGCOMM Posters
and Demos ’17, pages 28–30, New York, NY, USA, 2017. ACM.

78

http://contribsys.com/faktory/
https://www.washingtonpost.com/news/the-switch/wp/2015/06/29/more-than-21-million-people-watched-gamings-biggest-annual-show-on-twitch/
https://www.washingtonpost.com/news/the-switch/wp/2015/06/29/more-than-21-million-people-watched-gamings-biggest-annual-show-on-twitch/
https://www.washingtonpost.com/news/the-switch/wp/2015/06/29/more-than-21-million-people-watched-gamings-biggest-annual-show-on-twitch/
https://www.twitch.tv/

[108] YouTube. YouTube Live. https://www.youtube.com/live. Accessed April 12,
2019.

[109] Youtube. YouTube’s road to HTTPS. https://youtube-eng.googleblog.com/
2016/08/youtubes-road-to-https.html. Accessed July 26, 2019.

[110] David Zats, Tathagata Das, Prashanth Mohan, Dhruba Borthakur, and Randy Katz.
Detail: Reducing the flow completion time tail in datacenter networks. In Proceedings
of the ACM SIGCOMM 2012 Conference on Applications, Technologies, Architec-
tures, and Protocols for Computer Communication, SIGCOMM ’12, pages 139–150,
New York, NY, USA, 2012. ACM.

[111] ZeroMQ. ZeroMQ, an open-source universal messaging library. http://zeromq.
org/. Accessed June 23, 2019.

[112] ZeroMQ. ZeroMQ message transport protocol. https://rfc.zeromq.org/spec:
23/ZMTP/. Accessed October 13, 2019.

79

https://www.youtube.com/live
https://youtube-eng.googleblog.com/2016/08/youtubes-road-to-https.html
https://youtube-eng.googleblog.com/2016/08/youtubes-road-to-https.html
http://zeromq.org/
http://zeromq.org/
https://rfc.zeromq.org/spec:23/ZMTP/
https://rfc.zeromq.org/spec:23/ZMTP/

	List of Figures
	List of Tables
	List of Code Listings
	Introduction
	Background, Motivation and Goals
	Contributions
	Thesis Outline

	Background and Related Work
	Background
	Message Oriented Middleware
	Kernel-based Networking
	RDMA
	Live Streaming Video

	Related Work
	Networking Frameworks
	RDMA
	Message-Oriented Middleware
	Live Streaming Video

	Design and Implementation
	Overview
	Buffers
	rIn and rOut
	Buffer Flow Control
	Buffer Splicing
	RocketNet
	Sending Control Messages
	Configurations and Optimizations
	Chapter Summary

	RBMQ: A Message-Oriented Publish/Subscribe System
	Overview
	Publisher Implementation
	Broker Implementation
	Subscriber Implementation
	Evaluation
	Methodology
	Broker Message Throughput
	Subscriber CPU Utilization
	Delivery Latencies

	Chapter Summary

	Live Streaming Video Application
	Design
	Evaluation
	Microbenchmarks
	Live Streaming Video Delivery Benchmarks

	Chapter Summary

	Conclusions and Future Work
	Thesis Summary
	Future Work
	Buffer Delivery Policies
	Support for Data Persistence
	Support for Pull-based Delivery
	Extending Networking Capabilities
	Support for Security and Fault Tolerance

	Concluding Remarks

	References

