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Abstract 
 

As material requirements for particular applications become more specific and strict, using a 

targeted approach to design polymeric materials becomes a necessity. Following a general design 

framework prevents researchers from using trial-and-error approaches or shoehorning materials 

into applications for which they are non-optimal. To obtain polymer products with desirable 

properties (both fundamental characteristics and for a specific application), one must always begin 

with an awareness of existing materials and methods. This background knowledge informs 

preliminary design of experiments, which in turn provides insight for additional experiments to 

synthesize (and characterize) optimally designed materials. 

 

A general framework for the design of polymeric materials has been developed in this thesis, and 

the specific aspects are grounded in two independent case studies. These two distinct (yet related) 

case studies have been selected to demonstrate that the framework is not limited to a particular 

industry or application, nor to a specific type of polymeric material. In Case Study #1, water-

soluble terpolymers (and related polymerization kinetics) are investigated for use in polymer 

flooding during enhanced oil recovery (EOR). In contrast, Case Study #2 examines a variety of 

polymeric materials that have the potential to be used for acetone gas sensing (for diabetic 

applications). Both case studies use the same general design framework in a sequential, iterative 

manner to move towards optimally designed materials for each target application. 

 

Polymers are already used in EOR; the most common synthetic material used for polymer flooding 

is partially hydrolyzed polyacrylamide (HPAM). In many cases, polymers for EOR are exposed to 

high temperatures, high shear rates, and high concentrations of salt in the reservoir. The 

shortcomings of HPAM include poor thermal stability, poor shear stability, and poor brine 

compatibility. As a result, HPAM can degrade during EOR, thus lowering molecular weight 

averages and reducing oil recovery efficiency. Therefore, the target for Case Study #1 is to build 

on existing knowledge to improve acrylamide-based polymers for enhanced oil recovery. 

 

Important characteristics of polymeric materials for EOR include good viscosity modification 

(achieved through water solubility, high molecular weight averages and the incorporation of 

carboxylate ions), reasonable chemical stability (achieved by incorporating high levels of amide 

groups into the polymer), and a good distribution of ions along the polymer backbone (that is, a 

targeted sequence length distribution). HPAM (a copolymer of acrylamide (AAm) and acrylic acid 

(AAc)) meets these requirements, but the thermal and shear stability concerns described above 

have not been considered. Therefore, a third comonomer, 2-acrylamido-2-methylpropane sulfonic 

acid (AMPS) can be added to the polymer formulation, as the bulky sulfonic acid groups are 

expected to improve thermal stability and protect the main chain from shear degradation. When a 

multi-component polymer like AMPS/AAm/AAc is being considered for any application, 
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understanding and manipulating ternary reactivity ratios (which are related to both the cumulative 

terpolymer composition and the sequence length distribution) is essential. 

 

Therefore, once the AMPS/AAm/AAc terpolymer is selected for enhanced oil recovery, 

relationships between (experimental) synthesis conditions and polymer properties can be 

researched, verified and exploited. First, a comprehensive study (involving both an examination 

of the literature and a series of designed screening experiments) is performed to establish the effect 

of synthesis conditions (like pH, ionic strength, monomer concentration and feed composition) on 

the terpolymerization kinetics and product terpolymer properties. Deliberate design of screening 

experiments (designed considering the ‘rule-of-thumb’ for ternary reactivity ratio estimation) 

makes it possible to establish that the key factors within the experimental range studied are ionic 

strength (which affects cumulative terpolymer composition and sequence length distribution), 

monomer concentration (which affects molecular weight averages) and feed composition (which, 

of course, impacts the cumulative composition of the terpolymer product).  

 

Given the results of the screening experiments, two optimal terpolymers of AMPS/AAm/AAc are 

designed, synthesized, characterized and tested. The designed terpolymers have polymer 

properties that agree with model predictions, but (more importantly) show excellent EOR 

performance. In a series of sand-pack flooding experiments (simulating enhanced oil recovery in 

a reservoir), the designed terpolymers perform much better than reference materials.  The newly 

synthesized terpolymers achieve an overall oil recovery of (on average) 78.0% for one optimal 

material and 88.7% for the second optimal material. In contrast, the commercially available 

reference material allows for an overall oil recovery of 59.8%. Therefore, the design framework 

has allowed us to converge upon optimal terpolymer formulations with excellent EOR application 

performance. 

 

The same general framework is applied to inform the design, synthesis and characterization of 

polymeric sensing materials for acetone detection. Highly concentrated breath acetone 

measurements are correlated with high levels of blood glucose, so detecting acetone gas could be 

useful in a non-invasive breath sensor for diabetic applications. In this case, key design 

considerations (to inform potential backbone selection) include operational temperature (and the 

glass transition temperature of candidate polymeric materials), surface morphology, and the 

chemical behaviour of the target analyte. Solubility parameters, for example, can be used to 

provide insight about the compatibility of the target analyte (acetone) and potential sensing 

materials. For polymeric sensing materials, the most important characteristics are sensitivity and 

selectivity. Sensitivity studies provide information about how well the target analyte sorbs onto 

the polymeric material (that is, whether there is a strong affinity towards acetone), and selectivity 

measures how well the target analyte sorbs in the presence of other interferent gases. 
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After preliminary screening (based on a detailed literature review), three polymer backbones and 

three metal oxide dopants are selected as promising candidates for acetone sensing. Polyaniline, 

polypyrrole and poly(methyl methacrylate) are doped with varying quantities of SnO2, WO3 and 

ZnO nanoparticles. In a series of screening experiments, 30 materials are synthesized and 

evaluated in terms of acetone sorption (using a uniquely designed gas sensing set-up and a highly 

specialized gas chromatograph). The most promising materials are evaluated further, both in terms 

of surface morphology and in terms of selectivity (measurement of acetone sorption in the presence 

of acetaldehyde, ethanol and benzene). In general, pure polyaniline and pure polypyrrole show the 

most promise of the materials studied; poly(methyl methacrylate) does not sorb acetone at all, and 

metal oxide doping (using these dopants and up to 20 wt% doping) does not improve application 

performance. 

 

In the customized experiments, adjustments are made to polymer synthesis steps in an attempt to 

improve the properties of the polymeric sensing materials (especially in terms of selectivity). One 

customization option that is investigated is the acid-doping of polyaniline (synthesis in an aqueous 

oxalic acid solution) to change the backbone charge, thereby taking advantage of the polarity of 

acetone. Another customization option involves the synthesis of copolymers of polyaniline and 

polypyrrole (both in water and in oxalic acid solution) by combining the two monomers in a single 

formulation. Product characterization shows some improvement over the original (screening) 

materials, but further improvement is still possible. Therefore, this target application can continue 

to benefit from sequential, iterative steps towards optimality. 

 

Ultimately, both case studies overlap when the general design framework is considered. An 

awareness of existing materials and methods can inform statistically designed preliminary 

experiments, which eventually lead to optimally designed materials for specific (targeted) 

applications.  The contents of this thesis (especially the two major case studies) and several related 

publications demonstrate that this framework is useful and relevant for design of polymeric 

materials. The effectiveness is visible throughout the research process, but it is especially evident 

in the application performance of the final (optimal) product, along with the flexibility of the 

design approach with respect to expanding into new areas, at the same time by minimizing time 

and effort.  
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Chapter 1. Introduction 
 

1.1 Problem Statement 

 

The wide variety (and subsequent versatility) of available polymeric materials is extremely 

attractive from a design standpoint. Polymers are typically inexpensive (in terms of both materials 

cost and processing cost), lightweight, and have tailorable application properties. As a result, they 

are employed as foams, fibres, films, and bulk molded materials. 

 

The range of polymeric materials available for engineering applications can be overwhelming. 

Technical data are typically available once a material is selected, but how is that initial selection 

made? How can that material be tailored for a specific application? Many scientists and engineers 

use trial-and-error approaches; often the synthesis is the priority, and finding a suitable application 

is an afterthought. In other cases, researchers may have an application in mind, and they try various 

recipes until they are satisfied with the result. However, both of these approaches are ineffective. 

Not only are valuable experimental resources wasted during the trial-and-error stage, but there is 

also no guarantee that the polymer products have been optimized for the specific application. 

 

The overarching motivation for this work is to make full use of available resources and to 

efficiently work towards the identification, synthesis, characterization, and eventual application of 

polymer products with optimal properties. Therefore, the design of materials (through exploring 

structure-property relationships and making use of established design frameworks) is essential. To 

demonstrate the importance (and the potential for success) of using a systematic design (plan) for 

the synthesis of polymeric materials, two related (yet distinct) case studies are considered. Case 

Study #1 uses design principles to improve on existing materials for enhanced oil recovery (EOR), 

while Case Study #2 employs design prescriptions to select optimal polymeric sensing materials 

for gaseous acetone detection.  

 

For the enhanced oil recovery investigation (Case Study #1), the challenge is to design a water-

soluble polymer that performs better than the materials that are currently available. Typically, 

primary oil recovery, which forces the crude oil to the surface as a result of the natural reservoir 

energy, only extracts up to 10% of the total oil in the reservoir. The secondary oil recovery process, 

in which an additional 25% to 30% of the oil is extracted, typically uses water flooding to displace 

the oil [1]. In some cases, up to 75% of the oil remains in the reservoir, even after primary and 

secondary oil recovery has occurred [2]. Thus, there is significant motivation to advance to tertiary 

oil recovery. While tertiary oil recovery is more expensive than the previous stages, it has the 

potential to extract an additional 20% to 30% of the oil. Tertiary oil recovery processes include 

thermal recovery, gas injection, and chemical injection.  
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The chemicals injected during tertiary oil recovery are often polymeric materials; adding small 

quantities of polymeric material to the flood water improves mobility control and ultimately 

improves the efficiency of the oil recovery process. In general, the most widely used synthetic 

polymers for EOR are polyacrylamide and polyacrylamide-based materials (such as hydrolyzed 

polyacrylamide, HPAM). Polyacrylamide-based materials are relatively inexpensive, easily 

obtained, and perform fairly well in EOR applications. Specifically, HPAM is widely used in 

polymer flooding because it provides good control over viscosity and effective permeability. 

However, there is room for improvement when the mechanical and thermal stability of HPAM are 

considered. It would be extremely beneficial (in terms of application performance) to minimize 

shear degradation of the polymer backbone, especially at the high temperatures and high salinities 

characteristic of oil reservoirs. 

 

In Case Study #2, the aim is to detect gaseous acetone. Breath acetone concentration is correlated 

with blood glucose levels, which is especially important for people living with diabetes. If this 

relationship can be exploited, the physiological change could be detected through a simple and 

non-invasive breath test. Therefore, the goal is to design polymeric sensing materials that have the 

properties necessary to detect acetone. The versatility of polymeric materials and the range of 

available options (in terms of polymer backbones) make them a very attractive option for sensing 

applications. Compared to the metals and metal oxides that are typically used as sensing materials, 

polymers are more cost effective, can operate at room temperature, provide better selectivity [3], 

and can easily be customized. Therefore, an opportunity exists here to improve on what is currently 

available for the application, especially using prior knowledge and a framework for designing 

polymeric materials [4, 5]. 

 

1.2 Research Hypotheses 

 

This research aims to pursue several hypotheses, which range from general statements to more 

specific concepts. However, all hypotheses eventually converge to the common focal point of a 

more rational and systematic design of polymeric materials. 

 

(1) Design of polymeric materials (using a targeted approach and exploiting existing knowledge) 

is necessary for the synthesis of polymeric materials with optimized and desirable properties for 

specific applications.  

 

(2) A general design framework (valid for any number of applications) should exist to guide 

researchers in their pursuit of optimal polymeric materials. 

 

(3) Design principles (and, specifically, accurate reactivity ratios for multi-component polymers) 

can be employed to understand and manipulate the properties of synthetic water-soluble polymers 

for enhanced oil recovery.  
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(4) Design prescriptions can be advantageous in the development of polymeric sensing materials, 

especially when prior knowledge exists to inform new investigations. 

 

1.3 Research Objectives 

 

The goal of this thesis is to use statistical design principles to optimize polymeric materials for 

specific applications. There are known connections between polymerization kinetics and polymer 

properties, and between those properties and application requirements/performance. If these links 

are well-understood, it becomes possible to essentially ‘reverse-engineer’ the polymeric material; 

the researcher can start with known application requirements and synthesize polymers with tailor-

made properties using an optimized recipe (according to the polymerization kinetics). 

 

Since the number of applications for polymeric materials is essentially limitless, the current work 

will feature two specific case studies. The first examines water-soluble polymers for viscosity 

modification in enhanced oil recovery (EOR), while the second investigates polymeric sensing 

materials for acetone detection. In the specific research objectives outlined below, items 1 through 

4 relate to Case Study #1 (materials for enhanced oil recovery) and items 5 through 7 relate to 

Case Study #2 (polymeric sensing materials). Item 8 is more general, as it relates to design 

principles applied to polymeric materials and is linked to both case studies. 

 

(1) Identify important attributes of synthetic polymeric materials for improved enhanced oil 

recovery performance. 

 

(2) Research, characterize and exploit relationships between (experimental) synthesis conditions 

and properties of the terpolymer products. 

 

(3) Design, synthesize, characterize and test optimal terpolymers for the enhanced oil recovery 

application. 

 

(4) Demonstrate the importance of statistically correct experimental techniques and subsequent 

analyses, especially as they relate to copolymers and terpolymers. 

 

(5) Identify important attributes of synthetic polymeric materials for gas sensing applications, with 

specific emphasis on acetone sensing for diabetic applications. 

 

(6) Research and characterize relationships between polymeric sensing materials and dopants as 

they relate to analyte sensitivity and selectivity. 

 

(7) Design, synthesize, characterize and test optimal polymers for detection of acetone gas. 
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(8) Demonstrate the advantages of a design framework (considering physicochemical behaviour, 

statistical design principles, and product requirements) for polymer synthesis and application 

performance. 

 

1.4 Thesis Organization 

 

Based on the work conducted throughout this research period, the thesis includes 10 chapters. The 

nature of the project (with two related yet independent case studies) necessitates that the thesis be 

divided into two major (parallel) sections. Chapters 2 through 5 are specific to the enhanced oil 

recovery project (Case Study #1), whereas Chapters 6 through 8 focus on the polymeric sensing 

material project (Case Study #2). Both case studies follow the same general outline, as shown in 

Table 1.1. The two major sections are bookended by chapters that are relevant to both projects; 

Chapter 1, Chapter 9 and Chapter 10 are intended to draw links between the two case studies 

through more general tips on the design of polymeric materials. 

 

Table 1.1: Parallel Case Studies for Thesis Organization 

 Case Study #1:  

Enhanced Oil Recovery 

Case Study #2:  

Polymeric Sensing Materials 

Introduction Chapter 1 

Literature Background Chapter 2 Chapter 6 

Experimental Methodology Chapter 3 Chapter 7 

Results and Discussion Chapter 4 Chapter 8 

‘An Aside’ Chapter 5 -- 

Commonalities between 

Case Studies 
Chapter 9 

Overall Conclusions,  

Main Contributions & 

Recommendations 

Chapter 10 

 

Chapter 1 is the introductory chapter. It provides a problem statement (which is three-fold and 

related to design of materials, polymers for enhanced oil recovery, and polymeric sensing materials 

for acetone detection), the research hypothesis and associated objectives. Chapter 1 also provides 

a brief outline of subsequent chapters. 

 

In Chapter 2, background information from the literature is provided for the enhanced oil recovery 

(EOR) project (Case Study #1). The chapter begins with a review of existing EOR methods, but it 

also takes a critical look at the literature in order to identify application requirements (both in terms 

of polymer properties and application-specific performance), establish potential polymer 

backbones, and investigate techniques for product customization (note here the parallelism with 

Chapter 6, to be discussed shortly). Part of the design process is to build on existing knowledge, 

so Section 2.1 provides a comprehensive overview. Because this case study ultimately employs 
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multi-component polymers for the application, Sections 2.2 and 2.3 provide details and examples 

related to multi-component polymerization kinetics (copolymerization and terpolymerization) and 

reactivity ratio estimation (for both binary and ternary systems). Finally, Section 2.4 looks more 

specifically at how properties of the material selected for EOR (the terpolymer of 2-acrylamido-

2-methylpropane sulfonic acid, acrylamide and acrylic acid) can be manipulated. A preliminary 

understanding of formulation effects on the polymerization kinetics is available from the literature 

and is exploited herein.  

 

The experimental methodology (from synthesis to characterization) for the EOR project (Case 

Study #1) is presented in Chapter 3. Two related investigations were performed: a screening study 

and an optimally designed study (based on knowledge acquired from the screening experiments). 

The synthesis procedure was similar for both investigations, and relevant details are provided in 

Section 3.2. In general, polymer properties (characterized as described in Section 3.3) were 

evaluated for the screening experiments and the optimally designed experiments. However, since 

evaluating the application-specific properties involves more rigorous procedures, they were only 

performed for the optimally designed experiments. The techniques employed are explained in 

Section 3.4.   

 

Chapter 4 contains results and related discussion from the enhanced oil recovery project (Case 

Study #1). The chapter is divided into two major sections: Section 4.1 provides all of the results 

that are related to the screening experiments, while Section 4.2 is focused on the optimally 

designed experiments. Since the purpose of the screening experiments was primarily to determine 

the effects of potentially influential factors on the product terpolymer, the effects of pH, ionic 

strength, monomer concentration, and high salt (NaCl) content on the terpolymerization kinetics 

and terpolymer properties are critically evaluated. These results inform the synthesis of custom 

AMPS/AAm/AAc terpolymers, obtained from optimally designed experiments. The selected 

polymerization conditions are justified in Section 4.2.1, and the characteristics of the terpolymer 

products are expounded in the following sections (4.2.2 and 4.2.3).   

 

While this thesis is composed of two parallel case studies, Chapter 5 acts as an ‘intermission’ 

chapter. The terpolymerization research associated with the enhanced oil recovery project required 

additional investigation, specifically related to ternary reactivity ratio estimation. 

Terpolymerization systems are intrinsically linked to their analogous copolymers, and some 

researchers suggest that binary reactivity ratios (from copolymerization systems) can be used to 

describe ternary systems. Therefore, to elucidate the importance of ternary reactivity ratio 

estimation (and to justify this portion of the research), a direct comparison of binary and ternary 

reactivity ratios became necessary. Our findings are presented in the first half of Chapter 5 (Section 

5.1). The second half of the chapter (Section 5.2) is dedicated to a series of terpolymerization 

troubleshooting tips (again related to ternary reactivity ratio estimation) and describes many of the 

lessons learned over the course of this project through a series of smaller case studies.  
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Chapter 6 marks the beginning of the acetone sensing project (Case Study #2) and has parallel 

features to Chapter 2. Here, background information is provided about existing materials and 

methods for acetone sensing, and application requirements are deduced from the literature. As for 

the first case study, polymer properties and application-specific requirements are considered, 

potential polymer backbones are reviewed, and some common techniques for product 

customization are considered. This chapter also demonstrates how to extend the design process to 

additional volatile organic compounds (here, formaldehyde) and provides a brief introduction to 

sensor arrays. 

 

In Chapter 7, the experimental methodology for Case Study #2 is presented. As before (in Chapter 

3 for Case Study #1), the process involved two phases: a design of experiments for introductory 

tests and a customization phase. The detailed synthesis procedure for each polymer backbone is 

provided in Section 7.2 and characterization techniques are described in Sections 7.3 and 7.4. 

 

Like Chapter 4, the results and discussion shown in Chapter 8 are divided into two related 

sections. In Section 8.1, the preliminary (screening) experiments are evaluated in terms of 

sensitivity and selectivity towards acetone, and select polymer properties are considered to justify 

the results. The conclusions based on these experiments inform the study described in Section 8.2. 

To better appreciate the custom materials, the polymer samples are again characterized in terms of 

polymer properties (namely crystallinity and surface morphology) and application performance.  

 

The purpose of Chapter 9 is to further highlight the parallels between the two main case studies, 

and to bring the focus back to the overarching concept of design of polymeric materials. The 

chapter outlines the design framework that was used for both case studies (based on best practices) 

and describes the process for creating links between polymer properties and application 

performance. Ultimately, the goal is to use foundational knowledge (polymerization kinetics, 

application chemistry, and so on) to manipulate the properties of the product polymer and provide 

desirable properties (and design tips) for a specific application.  

 

Finally, Chapter 10 contains concluding remarks, identifies the main contributions of this work, 

and presents recommendations for future work. 

 

Appendices have also been included in this thesis to provide additional (supplemental) 

information. The four appendices include details regarding terpolymerization kinetics and the 

Alfrey-Goldfinger model (Appendix A), a computational package developed to simplify reactivity 

ratio estimation (developed during this PhD project and described in Scott and Penlidis [6], 

Appendix B), relevant data and sample calculations for Case Study #1 (Appendix C) and the same 

for Case Study #2 (Appendix D).  
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Chapter 2. Literature Background for Case Study #1 – 

Enhanced Oil Recovery 
 

2.1 Enhanced Oil Recovery 

 

Typically, oil is extracted from reservoirs through a sequence of recovery methods. Although 

specific methods are largely dependent on the properties of the reservoir, the same general 

procedures are generally followed. Primary oil recovery exploits the natural energy of an oil 

reservoir. Oil expansion, expansion of gases within the reservoir, migration of naturally 

pressurized water, or gravitational effects (for high elevation reservoirs) may contribute to the 

natural expulsive forces that promote primary recovery. Primary oil recovery can continue until 

the natural reservoir pressure has been depleted and may be supplemented with pumping. 

However, this primary stage will only be pursued while it is economically reasonable; eventually, 

the primary recovery will not be sufficient to justify the resources being used. 

 

During primary oil recovery, there is loss of most natural reservoir energy. However, a substantial 

volume of crude oil remains in the reservoir (often more than 90% of the original oil in place, 

especially for conventional crude oil) [7]. Thus, when feasible, secondary recovery methods are 

employed immediately after the natural reservoir energy has been exhausted. The objective at this 

stage is to inject a fluid (like water, brine, or natural gas) into the reservoir. Fluid injection 

repressurizes the system (which ‘revives’ the expulsive forces that are characteristic of primary oil 

recovery) and the fluid injected will sweep through the reservoir (transporting more crude oil 

towards the production well). The combination of increasing pressure and promoting fluid flow 

allows for further oil recovery. Water flooding is the most commonly used secondary oil recovery 

method, but the efficiency is dependent on the reservoir characteristics and oil viscosity. Water 

flooding essentially forces water through the reservoir and ‘pushes’ residual oil with it. However, 

if there is a clear path of least resistance (that is, reservoir segments with better permeability), the 

water will not sweep the whole reservoir. As a result, large volumes of oil are bypassed and remain 

in the reservoir. Similar behaviour is observed when the oil is much more viscous than the water; 

the water will simply flow around the oil that it is meant to displace. When water begins channeling 

through the reservoir (rather than sweeping the full reservoir volume), the production efficiency is 

much reduced. When this occurs (or when secondary methods become uneconomical), tertiary oil 

recovery methods are considered. 

 

Tertiary oil recovery methods are also called enhanced oil recovery (EOR) techniques, and 

supplement the oil recovery achieved in the first two stages. Many different EOR approaches exist, 

but can be divided into three main categories: thermal methods, miscible methods (where whatever 

is injected is miscible with the oil) and chemical flood methods (where the chemicals injected 

promote oil flow towards the production well). The most efficient approach for a particular 
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situation will depend on several factors including reservoir characteristics, crude oil 

characteristics, and economic considerations.  

 

Thermal methods are designed to assist with the removal of heavy and viscous crude oils, as the 

viscosity of oil can decrease significantly when temperature is increased. This allows residual oil 

to flow more easily towards a production well, which improves the recovery efficiency of the 

process. Typically, thermal methods involve the injection of steam or hot water, which 

simultaneously reduces the viscosity and increases the pressure; this acts as a driving force for oil 

production. Alternatively, thermal methods can involve the generation of thermal energy within 

the reservoir via oil combustion. In this case, injected air allows for the ignition of the residual oil, 

which in turn generates heat and produces combustion gases. Thermal methods are the most 

commonly used EOR methods worldwide (producing ~2 million barrels of oil per day) [8], but 

present major challenges including poor sweep efficiency, loss of thermal energy underground, 

poor injectivity of steam, negative environmental impacts, and poor control of in situ combustion 

reactions [7, 9].  

 

Miscible methods, in which the injected fluid dissolves in the crude oil to modify viscosity, are 

also commonly used in EOR. Many fluids including alcohols, carbon dioxide, and petroleum gases 

(containing ethane, propane, butane and/or pentane) have been employed [7], but CO2 injection is 

by far the most common [8]. The advantage of using CO2 is two-fold: the viscosity of the crude 

oil is reduced (therefore oil recovery can occur more easily) and greenhouse gases are consumed. 

To ensure that the CO2 is miscible with oil, the reservoir is usually repressurized (with water) 

before the CO2 injection. Typically, complete miscibility of the CO2 and the oil is only achievable 

when the reservoir temperature and pressure ensure the presence of supercritical CO2. Therefore, 

reservoirs deeper than 2,000 feet are preferable for CO2 flooding [10]. An additional advantage of 

using CO2 for EOR is the fluid behaviour upon exiting the production wells. As the supercritical 

CO2 returns to its gas state, it provides a ‘gas lift’ to enhance the recovery efficiency (as would 

occur during the primary oil recovery stage). That said, the main disadvantage of CO2 injection is 

the viscosity of CO2 under reservoir conditions (0.03 cP to 0.10 cP) compared to viscous crude oil 

(up to 50 cP) [7]. This can result in significant channeling (and reduced recovery) in the reservoir, 

similar to what was described previously as a limitation of water flooding. 

 

The final tertiary recovery method (or EOR method) discussed herein is chemical flooding. 

Chemical EOR uses additives like polymers, alkalis, or surfactants to improve the mobility control 

of the injected water and/or to reduce the interfacial tension between the oil and the reservoir pores. 

Polymer flooding is arguably the most common form of chemical EOR [8] and has been used 

effectively in Chinese oilfields [11, 12]. In Daqing, for example, up to 10% incremental oil 

recovery (and up to 53% overall oil recovery) was achieved using high molecular weight partially 

hydrolyzed polyacrylamide [12]. However, one of the main shortcomings of polymer flooding is 

the instability of materials at high temperature and high salinity conditions that are characteristic 
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of oil reservoirs [13-15]. In spite of this challenge, polymer flooding is still more widely used than 

alkali or surfactant flooding. Alkalis tend to be problematic as they introduce scaling and plugging 

[8], and both alkalis and surfactants become less efficient as they flow through porous media due 

to adsorption effects [15]. 

 

Polymer flooding is of particular interest because it is a developing field that still has significant 

room for improvement. As natural resources are being consumed, it is more important than ever 

to focus on overall (long-term) oil recovery rather than ‘easy’ (immediate) oil recovery. Therefore, 

it is worth investing in materials (such as optimally designed polymers) that will promote 

maximum oil recovery. In order to design new polymeric materials for enhanced oil recovery, a 

good understanding of the technique and the application requirements is essential. Taking 

advantage of prior knowledge will assist with identifying potential polymer backbones and can 

influence product customization. This will be described in what follows. 

 

2.1.1 Existing Materials and Methods  

 

During polymer flooding, a dilute aqueous polymer solution is slowly injected into the reservoir, 

which forces residual oil out of the reservoir and into a production well (see Figure 2.1). The 

viscosity increase (compared to regular water flooding) and the properties of the polymeric 

material ensure that channeling (that is, finding the path of least resistance) through the reservoir 

is minimal. Thus, more of the reservoir is exposed to the displacing fluid and less oil is left behind. 

 

 
Figure 2.1: Simplified Schematic of Polymer Flooding Process for Enhanced Oil Recovery  

 

Two main classes of polymeric materials are used in EOR: synthetic polymers and biopolymers. 

The most widely used synthetic polymer for polymer flooding is partially hydrolyzed 

polyacrylamide (HPAM), which is a linear water-soluble polymer. It can either be synthesized 

through the copolymerization of acrylamide and acrylic acid (or sodium acrylate) or by partially 

hydrolyzing polyacrylamide (that is, converting amide groups to carboxyl groups). HPAM is 

inexpensive, readily soluble in water, and provides good mobility control. Also, the anions on the 

carboxyl groups promote polyelectrolyte behaviour, which increases viscosity and decreases 
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adsorption within the reservoir. The oil recovery efficiency of a particular polymer is typically 

dependent on the degree of hydrolysis (which typically ranges from 15% to 35% [15]) as well as 

the molecular weight (which can be varied up to about 30×106 g/mol, as reported by [16]). 

 

However, as mentioned already in Chapter 1 (Section 1.1), HPAM is known to be shear sensitive 

at high temperatures and high salinities. If the polymeric material begins to degrade, the viscosity 

modification effects are reduced, as is the EOR efficiency. As a result, other synthetic polymers, 

many of which are derivatives of polyacrylamide, have also been considered for polymer flooding 

[17]. These include branched polyacrylamide [18, 19] and N,N-dimethyl acrylamide [20], as well 

as acrylamide-based copolymers containing 2-acrylamido-2-methylpropane sulfonic acid [20-23], 

n-vinyl pyrrolidone [21], and others. These types of materials have been studied in great detail, so 

only an overview of polyacrylamide-based materials for polymer flooding is presented herein. 

Many investigations synthesize new materials that show desirable properties for the EOR 

application, but EOR testing is not pursued. Similarly, many large-scale projects use proprietary 

materials with unknown characteristics. Polymer properties and resulting performance (including 

incremental oil recovery) available from recent studies are listed in Table 2.1. Also, an informative 

figure showing the incremental oil recovery of known polymer flooding projects (both pilot and 

large-scale applications) has been compiled by Sheng et al. [24]; this is provided in Figure 2.2. 

 

 
Figure 2.2: Incremental Oil Recovery vs. Amount of Polymer Injected  

(where PV represents Pore Volume; from [24]) 
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Table 2.1: Polyacrylamide-Based Materials for Polymer Flooding EOR 

Ref. Polymeric Material Polymer Properties Polymer Performance 

[20, 

23] 

AAm copolymers 

and NNDAM 

copolymers with 

AAc or AMPS 

𝐹𝐴𝐴𝑚 or 𝐹𝑁𝑁𝐷𝐴𝑀 ~ 0.60; 

𝐹𝐴𝐴𝑐 or 𝐹𝐴𝑀𝑃𝑆 ~ 0.40 

 NNDAM/AMPS had superior 

brine compatibility, shear 

stability, and thermal stability 

 Flooding with NNDAM/AMPS 

allowed for incremental oil 

recovery up to ~11% (using 

2000 ppm polymer solution) 

[25] 

 

AAm/AMPS/VN 

terpolymer 
𝐹𝐴𝐴𝑚~0.89; 𝐹𝐴𝑀𝑃𝑆~0.10 (low 

concentrations of VN); low MW  

 Experimental evidence of 

temperature-thickening, 

pseudoplastic behaviour, anti-

shearing behaviour and brine 

compatibility 

[21] AAm copolymers 

with AAc, AMPS or 

NVP 

AAm/AAc copolymer: 

𝐹𝐴𝐴𝑚~0.72;  

MW = 18.5×106 g/mol 

𝐹𝐴𝐴𝑚~0.67;  

MW = 12×106 g/mol 

 

AAm/AMPS copolymers: 

𝐹𝐴𝐴𝑚~0.95; MW = 6×106 g/mol 

𝐹𝐴𝐴𝑚~0.75; MW = 8×106 g/mol 

 

AAm/NVP copolymer: 

 𝐹𝐴𝐴𝑚~0.50;  

MW = 6-8×106 g/mol 

 Higher molecular weight 

polymers were more shear 

sensitive 

 AAm/AMPS had highest shear 

stability (larger AMPS 

proportion improved shear 

stability) 

 AAm/NVP and AAm/AAc had 

similar shear stability (not as 

good as AAm/AMPS, but better 

than PAAm) 

[26] AAm/AMPS 

copolymer (AN125)  

MW = 12×106 g/mol  0.2 wt% polymer solution in 

seawater exhibited RRF values 

up to 2.2; no plugging observed 

[27] HPAM and 

AAm/AAc/NAE 

terpolymer 

HPAM: 

MW = 5×106 g/mol 

 

AAm/AAc/NAE terpolymer  

synthesis conditions: [AAm] = 

 16wt%, [AAc] = 4wt%, 

[NAE] = 0.3wt% (balance water) 

Incremental oil recovery from 1 g/L 

polymer solution (in brine at 65°C): 

 HPAM: 4% 

 Terpolymer: 7.6% 

[18] PAAm with 

controlled molecular 

architectures 

Linear, star, and comb structures; 

MW ranging from 2.8×104 g/mol 

to 5.9×105 g/mol 

 Molecular architecture impacts 

polymer solution viscosity 

 Comb-like structures have 

higher viscosity and more 

elasticity than linear or star-like 

equivalents 
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[28] AAm/SAM/NABI 

terpolymer 

AAm/NABI copolymer 

sulfonated with HCHO and 

NaHSO3; 𝐹𝐴𝐴𝑚 >0.95 

 Incremental oil recovery up to 

10.6% in brine at 60°C (using 7 

g/L polymer solution) 

[29, 

30] 

Crosslinked 

AAm/DBSV 

copolymer  

MW = 1.2×106 g/mol 

 

 Incremental oil recovery up to 

20.8% (using 2 g/L polymer 

solution) 

[19] Salt-resistant 

HPAM derivatives 

with modified 

molecular 

architecture 

Comb-shaped, branched, star-

shaped and hydrophobic 

associating polymers 

 

Degree of hydrolysis ~25%; 

MW ranging from 10×106 g/mol 

to 25×106 g/mol 

 Modified polymers have better 

salt tolerance (viscosifying 

ability, long term stability, flow 

properties) than linear HPAM 

 Some materials have been used 

in EOR, but results are not 

reported 

[14] HPAM and 

proprietary 

hydrophobically 

modified AAm-

based copolymer 

HPAM:  

Degree of hydrolysis = 5% 

MW = 8×106 g/mol 

 

Proprietary copolymer:  

MW = 6×106 g/mol 

 

 Improved performance for 

proprietary copolymer over 

HPAM (more elastic properties, 

reformability, high mobility 

control) 

 Significant polymer retention in 

sand-pack tests (RRF = 165) 

[31] PAAm and  

AAm/AH 

copolymer 

PAAm: 

MW = 5.0×106 g/mol 

 

AAm/AH copolymer: 

𝐹𝐴𝐴𝑚~0.66;  

MW = 5.6×106 g/mol 

 Incremental oil recovery up to 

20.0% with 2000 ppm 

copolymer solution in water (at 

30°C); achieved 18.7% in brine 

(at 80°C) 

 Incremental oil recovery up to 

18.8% with 2000 ppm PAAm 

solution in water (at 30°C); only 

11.8% in brine (at 80°C) 

[32] 

 

AAm/AAc 

copolymer (HPAM) 
Polymer 1: 𝐹𝐴𝐴𝑚 = 0.67;  

MW = 6.0×106 g/mol 

 

Polymer 2: 𝐹𝐴𝐴𝑚 = 0.93; 

MW = 4.5×106 g/mol 

 

Commercial HPAM:  

𝐹𝐴𝐴𝑚 = 0.92; 

MW = 4.0×106 g/mol 

Incremental recovery from 1wt% 

polymer solution: 

 Polymer 1: 20.11% 

 Polymer 2: 29.68%  

 Commercial HPAM: 15.07% 

[33] Hydrophobically 

associating HPAM-

based water-soluble 

polymer 

AAm-rich multi-component 

polymer containing functional 

monomers (ACMO, HDDE, 

AMPS, IBOMA) 

 Experimental evidence of heat 

resistance, salt tolerance, and 

good antimicrobial degradation 

performance 
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AAc = acrylic acid; AAm = acrylamide; ACMO = N-acryloyl morpholine; AH = acryloyl hydrazide; 

AMPS = 2-acrylamido-2-methylpropane sulfonic acid; DBSV = 4-dodecyl-benzenesulfonate-1-

vinylimidazol-3-ium-divinyl sulfone; HDDE = N,N’-((2-hydroxy-4,5-dimethyl benzene-1,3-diyl) 

dimethanediyl) bisprop-2-enamide; IBOMA = isobornyl methacrylate; NABI = N‐allylbenzamide; 

NAE = N‐allyloctadec‐9‐enamide; NNDAM = N,N-dimethyl acrylamide; NVP = n-vinyl pyrrolidone; 

PAAm = polyacrylamide; SAM = sodium (acrylamido) methanesulfonate; VN = 2-vinylnaphthalene 

 

Many researchers have also considered combining polymer flooding with other chemical flooding 

techniques (for example, alkaline-surfactant-polymer (ASP) flooding), but those processes are 

beyond the scope of this work; detailed reviews have been conducted recently [34, 35]. 

Nevertheless, many of the polyacrylamide-based materials described in Table 2.1 could, in theory, 

be used in combination with alkalis and/or surfactants to further increase incremental oil recovery. 

 

Alternatively, the most common (natural) biopolymer for enhanced oil recovery is xanthan gum. 

Xanthan gum is less shear sensitive and more brine compatible than HPAM, but does not increase 

the viscosity to the same extent (and is therefore less efficient than HPAM). Several reviews of 

biopolymers that have been investigated for EOR applications have been compiled recently 

(including [15, 36]), and key points are summarized in Table 2.2. 

 

Table 2.2: Potential Biopolymers for Polymer Flooding EOR (adapted from [15]) 

Biopolymer Advantages Disadvantages 

Carboxymethylcellulose  Environmentally friendly 

 Water-soluble 

 Oxidative decomposition 

 Thermal degradation 

Cellulose  Thermal stability 

 Shear stability 

 Not water-soluble 

 Heterogeneous swelling 

Guar Gum  Environmentally friendly 

 Good salt compatibility 

 Potential for plugging 

 Thermal degradation 

 Weak elasticity 

Hydroxyethylcellulose  Water-soluble 

 Thermal stability 

 Shear stability 

 Good viscosity modification 

 Biodegradation 

Lignin  Environmentally friendly 

 Low cost 

 Not water-soluble 

 Biodegradation 

 Oxidative decomposition 

Schizophyllan  Thermal stability 

 Good salt compatibility 

 Good viscosity modification 

 Non-toxic 

 Biodegradation 
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Scleroglucan  Thermal stability 

 Shear stability 

 Good viscosity modification 

 Biodegradation 

 Oxidative decomposition 

 Poor filterability of material 

in porous media 

Welan Gum  Long-term stability 

 Good viscoelastic properties 

 Affected by inorganic 

cations in reservoir 

Xanthan Gum  Thermal stability 

 Shear stability 

 Good salt compatibility 

 Long-term stability 

 Biodegradation 

 Oxidative decomposition 

 Potential for plugging 

 

2.1.2 Application Requirements 

 

Since enhanced oil recovery has been studied in great detail, there is already a lot of information 

in the literature about current best practices. However, there are some general application 

requirements that must still be considered as part of the design process. It may seem evident, but 

one of the most important requirements for polymer flooding materials is that the polymer is water-

soluble. As mentioned previously, the two most widely used polymers for enhanced oil recovery 

are HPAM and xanthan gum, both of which meet this requirement.  

 

While water-soluble polymers come from a variety of sources, the current work focuses on 

synthetic polymers. This makes it possible to examine the design process from the initial synthesis 

(and recipe optimization) to applications, rather than modifying a pre-existing polymer. Free-

radical polymerization is the primary synthesis technique, mainly due to its simplicity and 

versatility. 

 

The application requirements for polymer flooding materials can be divided into two subsections: 

polymer properties and application-specific properties. Ultimately, to achieve desirable 

application-specific properties, one must first be able to understand and control the 

(microstructural and bulk) polymer properties. Therefore, they will be discussed separately.  

 

2.1.2.1 Polymer Properties  

 

A polymer’s ability to increase the aqueous solution viscosity depends largely on the 

hydrodynamic volume of said polymer. The hydrodynamic volume, in turn, is influenced by the 

polymer’s conformational rigidity and its molecular weight [37]. Therefore, the key properties for 

designing polymers for EOR are chemical composition (especially for multi-component 

polymers), sequence length distribution, and molecular weights.  

 

One must first establish the reactivity ratios for the system to predict polymer composition and the 

resulting polymer microstructure. Reactivity ratios provide information about the degree of 
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incorporation of each comonomer into the resulting polymer and can be estimated by applying the 

error-in-variables method to experimental data (namely, conversion, initial composition and 

cumulative copolymer composition). The importance of using appropriate estimation techniques 

has been strongly emphasized in previous work; specific details about reactivity ratio estimation 

for binary and ternary polymerization systems can be found in recent work by Scott and Penlidis 

[38], and are also discussed in Section 2.3 of this thesis. 

 

A significant advantage of using multi-component polymers (that is, copolymers or terpolymers) 

in EOR is the ability to tailor the product for the application requirements. Copolymers can 

incorporate the desirable properties of several components simultaneously, which ultimately 

improves the overall performance of the polymer [39]. The proportions of comonomers to be 

included in the recipe can be selected based on the expected degree of incorporation (that is, 

reactivity ratio estimates) and the known properties of their specific end groups. For example, high 

levels of amide (CONH2) groups are known to increase stability, while high levels of carboxylate 

ions (COO-) will increase viscosity and decrease adsorption in the reservoir [22]. These behaviours 

are related not only to the functional groups, but also to their charges; this will be discussed further 

during the ‘Backbone Selection’ step in Section 2.1.3. 

 

Knowledge of the terpolymerization reactivity ratios also provides information about the 

terpolymer microstructure, namely sequence length distribution and triad fractions. In some cases, 

two copolymers may have the same cumulative composition, but the distribution of the 

comonomers (and therefore functional groups) along the polymer backbone may differ. The 

structure of the copolymer (block, alternating, random, etc.) affects its viscoelastic properties 

(consider chain flexibility, for example), and will also affect the charge density in polyelectrolytes. 

For enhanced oil recovery, the microstructure can significantly affect the conformation of polymer 

chains in solution (that is, coiling or uncoiling). Since conformation affects the solution viscosity 

and EOR sweep efficiency, the distribution of the acidic comonomers is an important design 

consideration. 

 

Sequence length distribution can be evaluated using probability functions, given the reactivity 

ratios and the composition of the polymerizing mixture [40]. For the copolymer case, the mole 

fraction (Ni) of monomer i sequences of length l can be calculated according to Equation 2.1: 

𝑁𝑖(𝑙) = (𝑝𝑖𝑖
𝑙−1)(𝑝𝑖𝑗) = (𝑝𝑖𝑖

𝑙−1)(1 − 𝑝𝑖𝑖) 2.1 

Where pij represents the probability that a growing radical ending with unit i adds monomer j (and 

is presented in Equations 2.2 and 2.3). 
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𝑝𝑖𝑖 =
𝑟𝑖𝑓𝑖

𝑓𝑗 + 𝑟𝑖𝑓𝑖
 

2.2 

𝑝𝑖𝑗 =
𝑓𝑗

𝑓𝑗 + 𝑟𝑖𝑓𝑖
 

2.3 

 

The three-component case is presented in Equations 2.4 through 2.6, but the concept can be 

extended to any number of comonomers.  

𝑝𝑖𝑖 =
𝑓𝑖

𝑓𝑖 +
𝑓𝑗
𝑟𝑖𝑗
+
𝑓𝑘
𝑟𝑖𝑘

=
𝑟𝑖𝑗𝑟𝑖𝑘𝑓𝑖

𝑟𝑖𝑗𝑟𝑖𝑘𝑓𝑖 + 𝑟𝑖𝑘𝑓𝑗 + 𝑟𝑖𝑗𝑓𝑘
 

2.4 

𝑝𝑖𝑗 =
𝑟𝑖𝑘𝑓𝑗

𝑟𝑖𝑗𝑟𝑖𝑘𝑓𝑖 + 𝑟𝑖𝑘𝑓𝑗 + 𝑟𝑖𝑗𝑓𝑘
 

2.5 

𝑝𝑖𝑘 =
𝑟𝑖𝑗𝑓𝑘

𝑟𝑖𝑗𝑟𝑖𝑘𝑓𝑖 + 𝑟𝑖𝑘𝑓𝑗 + 𝑟𝑖𝑗𝑓𝑘
 

2.6 

 

Alternatively, polymer microstructure can be quantified using instantaneous triad fractions, Aijk. 

These values are also statistically based and can be calculated as a function of feed composition, 

given the associated reactivity ratios (see Equations 2.7 through 2.9). Note that only the i-centered 

triads are presented in the equations, but that the expressions can easily be extended to j-centered 

triads (thus, there are 6 possible triad fractions for the copolymer system).  

𝐴𝑖𝑖𝑖 = 𝑝𝑖𝑖
2 = (

𝑟𝑖𝑗𝑓𝑖

𝑟𝑖𝑗𝑓𝑖 + 𝑓𝑗
)

2

 
2.7 

𝐴𝑗𝑖𝑗 = 𝑝𝑖𝑗
2 = (

𝑓𝑗

𝑟𝑖𝑗𝑓𝑖 + 𝑓𝑗
)

2

 
2.8 

𝐴𝑖𝑖𝑗 = 𝐴𝑗𝑖𝑖 = 𝑝𝑖𝑖𝑝𝑖𝑗 = 𝑝𝑖𝑖(1 − 𝑝𝑖𝑖) =  
𝑟𝑖𝑗𝑓𝑖𝑓𝑗

(𝑟𝑖𝑗𝑓𝑖 + 𝑓𝑗)2
 

2.9 

 

As expected, multi-component polymers are more complex, but the triad fractions can still be 

estimated from reactivity ratios. As an example, there are 18 possible triad fractions for the 

terpolymer case. The probability functions defined in Equations 2.10 through 2.15 must be used 

to ensure that all three comonomers are taken into account. Again, only the i-centered triads are 

presented herein, with obvious extensions to the j- and k-centered triads. 

𝐴𝑖𝑖𝑖 = 𝑝𝑖𝑖
2 = (

𝑟𝑖𝑗𝑟𝑖𝑘𝑓𝑖

𝑟𝑖𝑗𝑟𝑖𝑘𝑓𝑖 + 𝑟𝑖𝑘𝑓𝑗 + 𝑟𝑖𝑗𝑓𝑘
)

2

 
2.10 

𝐴𝑗𝑖𝑗 = 𝑝𝑖𝑗
2 = (

𝑟𝑖𝑘𝑓𝑗

𝑟𝑖𝑗𝑟𝑖𝑘𝑓𝑖 + 𝑟𝑖𝑘𝑓𝑗 + 𝑟𝑖𝑗𝑓𝑘
)

2

 
2.11 

𝐴𝑘𝑖𝑘 = 𝑝𝑖𝑘
2 = (

𝑟𝑖𝑗𝑓𝑘

𝑟𝑖𝑗𝑟𝑖𝑘𝑓𝑖 + 𝑟𝑖𝑘𝑓𝑗 + 𝑟𝑖𝑗𝑓𝑘
)

2

 
2.12 
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𝐴𝑖𝑖𝑗 = 𝐴𝑗𝑖𝑖 = 𝑝𝑖𝑖𝑝𝑖𝑗 = (
𝑟𝑖𝑗𝑟𝑖𝑘𝑓𝑖

𝑟𝑖𝑗𝑟𝑖𝑘𝑓𝑖 + 𝑟𝑖𝑘𝑓𝑗 + 𝑟𝑖𝑗𝑓𝑘
)(

𝑟𝑖𝑘𝑓𝑗

𝑟𝑖𝑗𝑟𝑖𝑘𝑓𝑖 + 𝑟𝑖𝑘𝑓𝑗 + 𝑟𝑖𝑗𝑓𝑘
) 

2.13 

𝐴𝑖𝑖𝑘 = 𝐴𝑘𝑖𝑖 = 𝑝𝑖𝑖𝑝𝑖𝑘 = (
𝑟𝑖𝑗𝑟𝑖𝑘𝑓𝑖

𝑟𝑖𝑗𝑟𝑖𝑘𝑓𝑖 + 𝑟𝑖𝑘𝑓𝑗 + 𝑟𝑖𝑗𝑓𝑘
)(

𝑟𝑖𝑗𝑓𝑘

𝑟𝑖𝑗𝑟𝑖𝑘𝑓𝑖 + 𝑟𝑖𝑘𝑓𝑗 + 𝑟𝑖𝑗𝑓𝑘
) 

2.14 

𝐴𝑗𝑖𝑘 = 𝐴𝑘𝑖𝑗 = 𝑝𝑖𝑗𝑝𝑖𝑘 = (
𝑟𝑖𝑘𝑓𝑗

𝑟𝑖𝑗𝑟𝑖𝑘𝑓𝑖 + 𝑟𝑖𝑘𝑓𝑗 + 𝑟𝑖𝑗𝑓𝑘
)(

𝑟𝑖𝑗𝑓𝑘

𝑟𝑖𝑗𝑟𝑖𝑘𝑓𝑖 + 𝑟𝑖𝑘𝑓𝑗 + 𝑟𝑖𝑗𝑓𝑘
) 

2.15 

 

The cumulative triad fractions, 𝐴̅𝑖𝑗𝑘, are perhaps more useful, as they characterize the final 

polymer product as a function of conversion, X (given the initial feed composition and reactivity 

ratios); the relevant equation is shown in Equation 2.16.  

𝑑(𝑋𝐴̅𝑖𝑗𝑘)

𝑑𝑋
= 𝐴𝑖𝑗𝑘 

2.16 

 

While these calculations are theoretical in nature, previous research has shown promising 

agreement between predicted triad fractions and experimental results from 13C NMR [41]. 

 

High molecular weight polymers increase the solution viscosity and the permeability reduction 

factor (that is, the ability for EOR polymers to adsorb onto the porous well walls, reducing 

channeling effects and increasing sweep efficiency). This means that high molecular weight 

polymers allow more of the reservoir to be exposed to the displacing fluid and less oil is left behind 

[22]. The increased viscosity and permeability reduction factor both increase the oil recovery 

factor (compared to the same amount of a lower molecular weight polymer), which means that a 

high molecular weight polymer solution requires less polymeric material to achieve a designated 

recovery factor. The advantage of using less polymeric material in the EOR process is evident, 

both in terms of environmental and economic implications. 

 

If the molecular weights are too high, there will be additional complications associated with the 

EOR application. One of the major issues is the potential degradation of the polymer, as high 

molecular weight chains tend to be more shear sensitive (especially in typical EOR conditions). 

Another concern is that the viscosity of the polymer flooding solution may end up being too high; 

this could lead to problems with reduced injectivity (where injectivity is the ratio between injection 

rate and pressure drop) and slower fluid throughput in the reservoir (largely due to plugging) [42]. 

 

Therefore, molecular weight control is important during the design and synthesis of EOR 

polymers. In free radical polymerization, the molecular weight can be controlled through careful 

selection of monomer concentration and feed composition (in the multi-component case); these 

techniques will be discussed further in Section 2.4. Most researchers studying acrylamide-based 

polymers for enhanced oil recovery agree that a target molecular weight on the order of 106 g/mol 

is appropriate [21, 32, 43]. 
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2.1.2.2 Application-Specific Properties 

 

Good control over the polymer properties is essential, especially since they are expected to have a 

significant effect on the application performance. Quantitative structure-property relationships will 

be pursued throughout this study, but the specific application requirements must first be 

understood. For the sake of discussion, these requirements will be presented in terms of flow 

behaviour, polymer stability and EOR performance.  

 

The flow behaviour in enhanced oil recovery is characterized using a mobility ratio, M (see 

Equation 2.17). Ideally, the mobility ratio, which compares the displaced fluid (oil) to the 

displacing fluid (water), should be less than unity. 

𝑀 =
𝜆𝑤
𝜆𝑜
=
𝑘𝑤 𝜇𝑤⁄

𝑘𝑜 𝜇𝑜⁄
 

2.17 

Where λ represents mobility, k represents effective permeability, and μ represents viscosity for w, 

water and o, oil.  

 

Typically, lower mobility ratios lead to better EOR efficiency. Adding polymeric material to the 

flood water has significant potential to decrease the mobility ratio, as the polymer will increase the 

flood water viscosity (μw) and reduce the effective permeability (kw). Effective permeability is 

reduced as EOR polymers tend to adsorb onto the porous well walls, which ultimately reduces 

channeling effects and increases sweep efficiency. That is, more of the reservoir is exposed to the 

displacing fluid, and less oil is left behind, as demonstrated in Figure 2.3. 

 
Figure 2.3: Comparison of Sweep Efficiency in (a) Water Flooding and (b) Polymer Flooding [22] 

 

Depending on the polymer being used, the flow behaviour can be significantly influenced by the 

application conditions. For example, the effects of polymer concentration, salinity, pH, and 

temperature on polyacrylamide flow behaviour have been reported recently [44]. As expected, 
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increased polymer concentration decreases the mobility ratio (and therefore increases efficiency), 

as it alters the viscosity and the permeability of the polymer flood water. Salinity also has a 

significant impact on the flow behaviour, for two main reasons: first, some EOR polymers 

precipitate in high salinity reservoirs, and second, the dissolved salts affect the polymer chain 

conformation (due to charge effects) [41]. Thus, brine compatibility must be considered when the 

EOR polymer is being designed.  

 

Polymer stability (mechanical, chemical, etc.) is also an important consideration in EOR, as the 

polymer-containing flood water is often subjected to hostile conditions. One of the biggest 

mechanical concerns, especially for acrylamide-based polymers, is the shear stability of the 

material; the polymer is typically exposed to high flow rates (and therefore high shear stresses), 

which is known to cause backbone degradation. This ultimately reduces the molecular weight of 

the polymer, which in turn reduces the viscosity (and efficiency) of the polymer flood water.  

 

The chemical stability of the application polymer should also be considered, as there may be short-

term (contaminant) and long-term (hydrolysis) concerns. In the short-term, polymers may be 

susceptible to redox reactions in the presence of contaminants, like oxygen or iron, which lead to 

viscosity loss [22]. These issues are typically addressed during the polymer flooding stage. 

However, the long-term concerns should be considered as the material is being designed. The oil 

reservoir may be at a high temperature level, which is known to lead to hydrolysis. A study 

performed by Ryles [13] showed that high temperatures lead to faster and more severe polymer 

degradation (in both synthetic and bio-based EOR polymers). As shown in Figure 2.4, the majority 

of oil fields are below 120°C, but polymer materials for enhanced oil recovery should be stable 

until at least 200°C [45]. 

 

 
Figure 2.4: Temperature Distribution of Global Oil Fields (as of 1998) [45] 
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Finally, perhaps the most important application requirement is the EOR performance. The main 

goal for an EOR polymer is to maximize the amount of heavy oil recovery, while also taking 

environmental and financial considerations into account. This requires some level of optimization; 

injecting more polymer into the well (that is, increasing the polymer concentration in the flood 

water) will increase operating costs, but will likely increase the heavy oil recovery. 

 

The tailor-made polymer should manipulate polymer properties to ensure good flow behaviour 

and satisfactory stability, so that the oil recovery process can be as efficient as possible. The 

original oil in place (OOIP) recovered during polymer flooding can be determined using sand-pack 

flooding experiments (to be discussed in Section 3.4.2), and is defined as the ratio between the 

volume of oil that has been recovered over the original amount of oil in the sand-pack (reservoir 

equivalent). 

 

2.1.3 Backbone Selection 

 

According to Ashby and Johnson [46], design materials may be selected by analysis, synthesis, 

similarity and/or inspiration. In the case of selecting a backbone for an optimized EOR polymer, 

the first three selection methods are relevant. However, the key here is selection by similarity. As 

mentioned previously, there are already many synthetic polymers employed in enhanced oil 

recovery, so these can act as a starting point for the design process. 

 

The most widely used synthetic polymer for EOR is polyacrylamide (and other acrylamide-based 

polymers). Polyacrylamide and its derivatives are widely available, relatively inexpensive, and 

perform fairly well in EOR applications. However, polyacrylamide has a positive charge in acidic 

conditions, so partially hydrolyzed polyacrylamide (HPAM) is often preferred. Since HPAM loses 

some of the amide groups during hydrolysis, partially hydrolyzed polyacrylamide is essentially a 

copolymer of acrylamide and acrylic acid. Not only does the incorporation of the acrylic acid 

comonomer improve the electrostatic properties of the polymer, but the addition of the carboxylate 

groups also increases the solution viscosity.  

 

As outlined in Section 2.1.2, the EOR polymer should be designed with certain properties in mind; 

this is where Ashby’s selection by analysis becomes relevant. For the application, the polymer 

should have good flow behaviour (consider viscosity and effective permeability) and reasonable 

stability, which lead to excellent oil recovery properties. These requirements are linked to the 

polymer properties in Figure 2.5. 
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Figure 2.5: Linking Application Requirements to Polymer Properties 

 

From Figure 2.5, it is clear that good control over viscosity, effective permeability, and chemical 

stability can be obtained with a tailor-made copolymer of acrylamide and acrylic acid. However, 

the missing component is the mechanical stability; it is important to minimize shear degradation 

by increasing the chain rigidity. Thus, a third component must be considered for the backbone: 

one that is compatible with the other application requirements, but that will also protect the 

polymer backbone from shear degradation. 

 

Two comonomers have been considered: 2-acrylamido-2-methylpropane sulfonic acid (AMPS) 

and n-vinyl-pyrrolidone (NVP). However, since NVP has very poor additivity with acrylamide 

and acrylic acid, AMPS seems to be the better choice. Previously, it has been suggested that the 

bulky sulfonic acid group will protect the main chain (due to steric hindrance) and increase 

viscosity [20, 21]; also, strong hydrogen bonding will increase the polymer’s solubility in water. 

Recent studies have also shown that copolymers containing AMPS are more stable in conditions 

of high temperature and high salinity [20, 47]. 

 

Several groups have recently become interested in the terpolymer of AMPS with acrylamide 

(AAm) and acrylic acid (AAc) [21, 48-51]. However, the polymerization kinetics are often 

ignored; the primary focus tends to be on synthesis, characterization, and potential applications for 

this terpolymer. As mentioned previously, the characteristics (and application requirements) of the 

EOR polymer can be directly related to its microstructure. Therefore, it is important to have a clear 

understanding of the terpolymerization kinetics. Since this information is not available in the 

literature, reliable reactivity ratios for this AMPS/AAm/AAc system will be determined 

experimentally as part of this research. 
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2.1.4 Product Customization 

 

The key application requirements, both in terms of polymer properties and application-specific 

properties have been outlined in the previous sections. Now, it becomes necessary to understand 

how experimental conditions (that is, the pre-polymerization recipe) can be used to control the 

polymer product. The polymer properties (polymer composition, sequence length distribution and 

molecular weight) can all be optimized by selecting optimal reaction conditions. The most 

influential variables, herein called the ‘design variables’, are pH, ionic strength, monomer 

concentration and feed composition [41]. The first three design variables are known to affect the 

reactivity ratios (which in turn affect polymer composition and sequence length distribution). 

Additionally, molecular weight can typically be controlled with monomer concentration and feed 

composition.  

 

Once these relationships are established, there is significant potential to tailor kinetics (and, 

subsequently, to achieve the required polymer properties) by selecting optimal reaction conditions. 

A good understanding of the terpolymerization kinetics of AMPS/AAm/AAc is essential to 

designing optimal materials for enhanced oil recovery, so a more detailed review of the literature 

(especially in terms of how these design variables affect the product terpolymer) is presented in 

Section 2.4. Then, quantitative relationships can be developed through chemical understanding, 

statistical design of experiments, and relevant analysis of results. These will be discussed in what 

follows. 

 

2.2 Kinetics of Free Radical Polymerization 

 

Many polymers, including some of the polymeric systems investigated herein, are produced via 

free radical polymerization (FRP). FRP is a type of chain polymerization which involves four main 

steps: initiation, propagation, chain transfer and termination. 

 

The kinetics of free radical polymerization are well understood, and standard equations are readily 

available to provide information about polymerization rate [52]. The overall rate of 

polymerization, Rp, describes the rate of consumption of monomer (- d[M]/dt), with the majority 

of the monomer molecules consumed in the propagation step (long chain approximation).  

                                         𝑅𝑝 = 𝑘𝑝[𝑀][𝑅
∎] = 𝑘𝑝[𝑀] (

𝑅𝑖
𝑘𝑡
)
1/2

= 𝑘𝑝[𝑀] (
2𝑓𝑘𝑑[𝐼]

𝑘𝑡
)

1/2

 
2.18 

Where f = initiator efficiency, kd = initiator decomposition rate constant (very sensitive to 

temperature), kp = propagation rate constant (also sensitive to temperature), kt = overall termination 

rate constant, [M] = monomer concentration, [𝑅∎] = total free radical concentration, Ri = rate of 

initiation, Rp = rate of polymerization, and [I] = initiator concentration.  
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A good understanding of free radical polymerization kinetics has the potential to be used to control 

synthesis reactions for specific applications. Kinetics can be directly linked to design, especially 

for copolymerizations (Section 2.2.1) and terpolymerizations (Section 2.2.2). 

 

2.2.1 Free Radical Copolymerization 

 

2.2.1.1 Terminal Model 

 

When two comonomers are included within a single recipe, the kinetics become more complex. 

The typically used terminal model assumes that the reactivity of the propagating radical only 

depends on the terminal monomer unit (that is, the radical at the reactive end of the propagating 

chain) [53].  

 

The terminal model assumes that there are four possible propagation reactions:  

~~𝑀1
∎ +𝑀1       

𝑘11
→      ~~𝑀1 −𝑀1

∎ 

~~𝑀1
∎ +𝑀2      

𝑘12
→      ~~𝑀1 −𝑀2

∎ 

~~𝑀2
∎ +𝑀1       

𝑘21
→      ~~𝑀2 −𝑀1

∎ 

~~𝑀2
∎ +𝑀2      

𝑘22
→      ~~𝑀2 −𝑀2

∎ 

Figure 2.6: Terminal Model for Free-Radical Copolymerization 

 

In this series of reactions, 𝑀𝑖
∎ represents a radical species with monomer i at the chain end (i = 1, 

2). Similarly, Mj represents monomer j that is being added to the chain end (j = 1, 2). Each of the 

four reactions has a rate constant, kij (radical i adding monomer j).  

 

Two parameters, monomer reactivity ratios (r1 and r2), can be used to describe the potential for 

homopropagation relative to the potential for cross-propagation.  

𝑟1 =
𝑘𝑝11

𝑘𝑝12
      𝑎𝑛𝑑      𝑟2 =

𝑘𝑝22

𝑘𝑝21
  

2.19 

 

Reactivity ratios can be estimated using experimental data and a copolymerization model, if the 

unreacted monomer composition in the polymerizing mixture and the copolymer composition are 

known. Techniques used for reactivity ratio estimation will be discussed in Section 2.3 

 

The Mayo-Lewis equation, also called the instantaneous copolymer composition equation, is the 

most widely used copolymerization model. Two forms of this classical equation are shown below. 

Equation 2.20 is the differential form of the model, which is written in terms of monomer 

concentration in the polymerizing mixture ([Mi]). This assumes constant volume, which may not 

always be an accurate assumption.  
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𝑑[𝑀1]

𝑑[𝑀2]
= (

[𝑀1]

[𝑀2]
) (
𝑟1[𝑀1] + [𝑀2]

[𝑀1] + 𝑟2[𝑀2]
) 

2.20 

 

Equation 2.21 can be used to determine the instantaneous mole fraction of monomer 1 incorporated 

into the copolymer (F1) given the comonomer composition in the polymerizing mixture (as mole 

fractions, fi). It is important to note that the Mayo-Lewis equation provides the instantaneous 

copolymer composition, which means that the model is only applicable for low conversion data 

(typically <5%, where composition drift is minimal). 

𝐹1 =
𝑟1𝑓1

2 + 𝑓1𝑓2

𝑟1𝑓1
2 + 2𝑓1𝑓2 + 𝑟2𝑓2

2 
2.21 

 

In order to analyze polymerization data for medium or high conversion levels, a cumulative form 

of the copolymer composition model becomes necessary. Two cumulative composition models 

(one derived using numerical integration and one derived using analytical integration) are 

available. 

 

Direct numerical integration (DNI) requires solving an instantaneous mole balance and a 

cumulative mole balance (after reaching a certain conversion level, Xn) simultaneously [54]. The 

instantaneous mole balance (Equation 2.22), is an ordinary differential equation, for which fi can 

be found at any conversion level if reactor volume is constant (initial conditions f1 = f1,0 at Xn = 0). 

The cumulative mole balance at Xn gives the well-known Skeist equation, which is shown in 

Equation 2.23. 

𝑑𝑓1
𝑑𝑋𝑛

=
𝑓1 − 𝐹1
1 − 𝑋𝑛

 
2.22 

𝐹̅1 =
[𝑀1,0] − [𝑀1]

[𝑀1,0] + [𝑀2,0] − [𝑀1] + [𝑀2]
=
𝑓1,0 − 𝑓1(1 − 𝑋𝑛)

𝑋𝑛
 

2.23 

 

DNI employs a direct approach and does not rely on model transformations or other potentially 

restrictive assumptions. This is a significant advantage over other copolymerization models, 

including the analytical integration technique discussed next.  

 

Analytical integration of the Mayo-Lewis model (Equation 2.21) results in the Meyer-Lowry 

model (Equation 2.24), which is applicable for low to medium conversion levels (up to 20-40%) 

[55]. However, since Xn cannot be measured directly during experimentation, a rearranged version 

of the Skeist equation (Equation 2.23) is used to express conversion as a function of feed 

composition (f1) and cumulative copolymer composition (𝐹̅1). 

𝑋𝑛 = 1 − (
𝑓1
𝑓1,0
)

𝛼

(
𝑓2
𝑓2,0
)

𝛽

(
𝑓1,0 − 𝛿

𝑓1 − 𝛿
)
𝛾

=
𝑓1 − 𝑓1,0

𝑓1 − 𝐹̅1
 

2.24 

Where  𝛼 =
𝑟2

1−𝑟2
;      𝛽 =

𝑟1

1−𝑟1
;      𝛾 =

1−𝑟1𝑟2

(1−𝑟1)(1−𝑟2)
;      𝛿 =

1−𝑟2

2−𝑟1−𝑟2
  



25 

 

It is important to note that molar conversion (Xn) is used in Equations 2.22 through 2.24, but that 

mass conversion (Xw) is typically measured experimentally. Molar conversion and mass 

conversion can be related using monomer molecular weights, as shown in Equation 2.25. 

𝑋𝑛 = 𝑋𝑤
𝑀𝑊1𝑓1,0 +𝑀𝑊2𝑓2,0

𝑀𝑊1𝐹1 +𝑀𝑊2𝐹2
= 𝑋𝑤

𝑀𝑊1𝑓1,0 +𝑀𝑊2(1 − 𝑓1,0)

𝑀𝑊1𝐹1 +𝑀𝑊2(1 − 𝐹1)
 

2.25 

Where MW1 and MW2 are the molecular weights of monomer 1 and monomer 2, respectively. 

 

An additional point of interest in copolymerization kinetics is establishing the azeotropic 

composition (if it exists) for the system. At the azeotropic point, the feed composition (f1) and the 

instantaneous copolymer composition (F1) are equivalent. If the reactivity ratios are known, the 

instantaneous copolymerization equation (Equation 2.21) can be used to examine F1 as a function 

of f1 and to establish the azeotropic point. By setting F1 = f1, Equation 2.21 can be simplified, as 

shown in Equation 2.26. 

 𝐹1 = 𝑓1 =
1 − 𝑟2

2 − 𝑟1 − 𝑟2
 

2.26 

 

2.2.2 Free Radical Terpolymerization 

 

Terpolymerization systems (and multi-component polymerizations in general) are part of an 

interesting and growing area of research, since there are countless combinations of monomers to 

be discovered. However, because of the wide range of possibilities, terpolymerization systems 

have not been studied as thoroughly as copolymerization systems. 

 

2.2.2.1 Traditional Alfrey-Goldfinger Model 

 

The kinetics of terpolymerization systems were first described by Alfrey and Goldfinger [56]. 

Given that there are three different possibilities for the terminal monomer (on the growing radical), 

and three options for the added monomer, nine different propagation steps are possible according 

to the terminal model: 

~~𝑀1
∎ +𝑀1       

𝑘11
→      ~~𝑀1 −𝑀1

∎ 

~~𝑀1
∎ +𝑀2      

𝑘12
→      ~~𝑀1 −𝑀2

∎ 

~~𝑀1
∎ +𝑀3      

𝑘13
→      ~~𝑀1 −𝑀3

∎ 

~~𝑀2
∎ +𝑀1       

𝑘21
→      ~~𝑀2 −𝑀1

∎ 

~~𝑀2
∎ +𝑀2      

𝑘22
→      ~~𝑀2 −𝑀2

∎ 

~~𝑀2
∎ +𝑀3      

𝑘23
→      ~~𝑀2 −𝑀3

∎ 

~~𝑀3
∎ +𝑀1       

𝑘31
→      ~~𝑀3 −𝑀1

∎ 

~~𝑀3
∎ +𝑀2      

𝑘32
→      ~~𝑀3 −𝑀2

∎ 

~~𝑀3
∎ +𝑀3      

𝑘33
→      ~~𝑀3 −𝑀3

∎  
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Based on these propagation steps, Equations 2.27, 2.28 and 2.29 can be written in a form that is 

equivalent to the Mayo-Lewis equation (Equation 2.20), modified for a three-component system. 

The derivation is provided in Appendix A, Section A.1. 
𝑑[𝑀1]

𝑑[𝑀2]
= (

[𝑀1]

[𝑀2]
) (

[𝑀1]/𝑟31𝑟21+[𝑀2]/𝑟21𝑟32+[𝑀3]/𝑟31𝑟23

[𝑀1]/𝑟12𝑟31+[𝑀2]/𝑟12𝑟32+[𝑀3]/𝑟32𝑟13
) (

[𝑀1]+[𝑀2]/𝑟12+[𝑀3]/𝑟13

[𝑀2]+[𝑀1]/𝑟21+[𝑀3]/𝑟23
)  

 

2.27 

𝑑[𝑀1]

𝑑[𝑀3]
= (

[𝑀1]

[𝑀3]
) (

[𝑀1]/𝑟31𝑟21+[𝑀2]/𝑟21𝑟32+[𝑀3]/𝑟31𝑟23

[𝑀1]/𝑟13𝑟21+[𝑀2]/𝑟23𝑟12+[𝑀3]/𝑟13𝑟23
) (

[𝑀1]+[𝑀2]/𝑟12+[𝑀3]/𝑟13

[𝑀3]+[𝑀1]/𝑟31+[𝑀2]/𝑟32
)  

 

2.28 

𝑑[𝑀2]

𝑑[𝑀3]
= (

[𝑀2]

[𝑀3]
) (

[𝑀1]/𝑟12𝑟31+[𝑀2]/𝑟12𝑟32+[𝑀3]/𝑟32𝑟13

[𝑀1]/𝑟13𝑟21+[𝑀2]/𝑟23𝑟12+[𝑀3]/𝑟13𝑟23
) (

[𝑀2]+[𝑀1]/𝑟21+[𝑀3]/𝑟23

[𝑀3]+[𝑀1]/𝑟31+[𝑀2]/𝑟32
)  

 

2.29 

 

As before, [Mi] represents the concentration of monomer i (i = 1, 2, 3) in the system, and the rij 

values represent (binary) monomer reactivity ratios. In this case (given nine propagation steps), 

there are 6 unique reactivity ratios which can be estimated simultaneously given sufficient 

terpolymerization data. The estimation of these ternary reactivity ratios will be discussed further 

in Section 2.3. 

𝑟12 =
𝑘11
𝑘12

 𝑟13 =
𝑘11
𝑘13

 𝑟21 =
𝑘22
𝑘21

 𝑟23 =
𝑘22
𝑘23

 𝑟31 =
𝑘33
𝑟31

 𝑟32 =
𝑘33
𝑘32
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Again, these equations can be rearranged to form expressions for instantaneous terpolymer 

composition (Fi) as a function of unreacted monomer mole fractions in the feed (fi) (in a way 

analogous to Equation 2.21 for copolymerization). Typically, this form of the Alfrey-Goldfinger 

model uses ratios of mole fractions (i.e. Fi/Fj) as responses (see Appendix A). However, 

measurements taken from experimental work are typically single mole fractions, not ratios, which 

means that evaluating Fi/Fj results in lost information and a distorted error structure. 

 

2.2.2.2 Recast Alfrey-Goldfinger Model 

 

To avoid the limitations associated with the traditional Alfrey-Goldfinger model (described 

above), the terpolymerization equations were re-derived from basic polymerization kinetics for 

this study, so that each terpolymer mole fraction is presented as a single response (see Equations 

2.31 to 2.33; the derivation is presented in Appendix A, Section A.3). This formulation is an 

improvement over the original Alfrey-Goldfinger model, as it eliminates symmetry issues and 

error structures are not distorted. It also agrees with recent work published by Kazemi et al. [57], 

in which the ‘recast’ version of the Alfrey-Goldfinger model was developed using the ratio-based 

equations as a starting point (presented in Appendix A, Section A.2 for reference).  
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𝐹1 − 
𝑓1(

𝑓1
𝑟21𝑟31

+
𝑓2

𝑟21𝑟32
+

𝑓3
𝑟31𝑟23

)(𝑓1+ 
𝑓2
𝑟12
+
𝑓3
𝑟13
)

𝑓1(
𝑓1

𝑟21𝑟31
+

𝑓2
𝑟21𝑟32

+
𝑓3

𝑟31𝑟23
)(𝑓1+ 

𝑓2
𝑟12
+
𝑓3
𝑟13
)+𝑓2(

𝑓1
𝑟12𝑟31

+
𝑓2

𝑟12𝑟32
+

𝑓3
𝑟13𝑟32

)(𝑓2+ 
𝑓1
𝑟21
+
𝑓3
𝑟23
)+𝑓3(

𝑓1
𝑟13𝑟21

+
𝑓2

𝑟23𝑟12
+

𝑓3
𝑟13𝑟23

)(𝑓3+ 
𝑓1
𝑟31
+
𝑓2
𝑟32
)
= 0  

 

2.31 

𝐹2 − 
𝑓2(

𝑓1
𝑟12𝑟31

+
𝑓2

𝑟12𝑟32
+

𝑓3
𝑟13𝑟32

)(𝑓2+ 
𝑓1
𝑟21
+
𝑓3
𝑟23
)

𝑓1(
𝑓1

𝑟21𝑟31
+

𝑓2
𝑟21𝑟32

+
𝑓3

𝑟31𝑟23
)(𝑓1+ 

𝑓2
𝑟12
+
𝑓3
𝑟13
)+𝑓2(

𝑓1
𝑟12𝑟31

+
𝑓2

𝑟12𝑟32
+

𝑓3
𝑟13𝑟32

)(𝑓2+ 
𝑓1
𝑟21
+
𝑓3
𝑟23
)+𝑓3(

𝑓1
𝑟13𝑟21

+
𝑓2

𝑟23𝑟12
+

𝑓3
𝑟13𝑟23

)(𝑓3+ 
𝑓1
𝑟31
+
𝑓2
𝑟32
)
= 0  
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𝐹3 − 
𝑓3(

𝑓1
𝑟13𝑟21

+
𝑓2

𝑟23𝑟12
+

𝑓3
𝑟13𝑟23

)(𝑓3+ 
𝑓1
𝑟31
+
𝑓2
𝑟32
)

𝑓1(
𝑓1

𝑟21𝑟31
+

𝑓2
𝑟21𝑟32

+
𝑓3

𝑟31𝑟23
)(𝑓1+ 

𝑓2
𝑟12
+
𝑓3
𝑟13
)+𝑓2(

𝑓1
𝑟12𝑟31

+
𝑓2

𝑟12𝑟32
+

𝑓3
𝑟13𝑟32

)(𝑓2+ 
𝑓1
𝑟21
+
𝑓3
𝑟23
)+𝑓3(

𝑓1
𝑟13𝑟21

+
𝑓2

𝑟23𝑟12
+

𝑓3
𝑟13𝑟23

)(𝑓3+ 
𝑓1
𝑟31
+
𝑓2
𝑟32
)
= 0  

 

2.33 

 

In spite of the advantages associated with these newly derived equations, they are only valid for 

the instantaneous case. Using low conversion data makes it possible to assume that the terpolymer 

composition drift is negligible (that is, at low conversions, the measurable cumulative copolymer 

composition is approximately equal to its instantaneous value). However, this restrictive 

assumption introduces additional sources of error, including significant experimental difficulties.  

 

As an alternative, a cumulative ternary composition model can be used to analyze data over the 

full conversion trajectory. The cumulative model (essentially the Skeist equation applied to 

terpolymerization), shown in Equations 2.34 through 2.36, relates the cumulative terpolymer 

composition for each monomer (𝐹𝑖) to the mole fraction of monomer in the initial feed (fi,0), the 

mole fraction of unreacted monomer (fi) and the molar conversion (Xn). Note that these are 

analogous to Equation 2.23 for the copolymer case. 

𝐹1 = 
𝑓1,0 − 𝑓1(1 − 𝑋𝑛)

𝑋𝑛
 

2.34 

𝐹2 = 
𝑓2,0 − 𝑓2(1 − 𝑋𝑛)

𝑋𝑛
 

2.35 

𝐹3 = 
𝑓3,0 − 𝑓3(1 − 𝑋𝑛)

𝑋𝑛
 

2.36 

 

If one cannot assume constant composition (that is, composition drift is no longer negligible), fi 

must be evaluated over conversion Xn, according to the model in ordinary differential equation 

form (shown in Equations 2.37 through 2.39). Given the initial conditions fi = fi,0 at Xn = 0, a 

numerical solution can be used to evaluate terpolymer compositions along the full conversion 

trajectory. Here, the analogous equation for the copolymer case is Equation 2.22. 

 

𝑑𝑓1
𝑑𝑋𝑛

= 
𝑓1 − 𝐹1
1 − 𝑋𝑛

 
2.37 

𝑑𝑓2
𝑑𝑋𝑛

= 
𝑓2 − 𝐹2
1 − 𝑋𝑛

 
2.38 

𝑑𝑓3
𝑑𝑋𝑛

= 
𝑓3 − 𝐹3
1 − 𝑋𝑛

 
2.39 
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2.3 Reactivity Ratio Estimation 

 

As mentioned earlier, reactivity ratios are important parameters for multi-component 

polymerization, since they provide information about the degree of incorporation of each 

comonomer into the resulting polymer product. Reactivity ratios can be estimated using 

experimental data and a polymerization model, if the free (unreacted) monomer composition in 

the polymerizing mixture and the bound (incorporated) monomer composition in the polymer 

chains (i.e., copolymer composition) are known.  

 

Two important considerations for reactivity ratio estimation are careful (statistically informed) 

design of experiments and selection of appropriate parameter estimation techniques. Therefore, in 

this thesis section, design of experiments (Section 2.3.1) and reactivity ratio estimation (Section 

2.3.2) are described for both copolymer and terpolymer systems.  

 

2.3.1 Design of Experiments for Reactivity Ratio Estimation  

 

A common source of error in reactivity ratio estimation is poorly designed (or undesigned) 

experiments. When too few (usually unreplicated) data points are chosen at random, it can be 

difficult to draw accurate information from experimental results. Thus, design of experiments is 

an important consideration in reactivity ratio estimation studies. When a series of experiments is 

designed in an optimal way, it becomes possible to minimize the number of experiments while 

increasing the information content from those experiments. Optimally designed experiments 

typically have much smaller joint confidence regions (JCRs), which is indicative of higher 

precision reactivity ratio estimates [58].  

 

The error-in-variables model (EVM) can be used for model-based design of experiments, which 

increases the precision of parameter estimates through optimally designed experiments. EVM 

considers error in all terms, so using a design of experiments technique within the EVM context 

helps to account for the error in both the independent variables (feed compositions) and the 

dependent variables (copolymer or terpolymer compositions). EVM can also take into account any 

experimental limitations, which ensures that the mathematical results of the design of experiments 

are physically viable. Details have been presented previously [59, 60], but the key points are briefly 

revisited below. The following is applicable to any multi-component system, but details specific 

to binary and ternary systems are outlined in Sections 2.3.1.1 and 2.3.1.2, respectively. 

 

The EVM design criterion aims to maximize the determinant of the information matrix (G), which 

is the inverse of the variance-covariance matrix of the parameters. 

𝐺 =∑𝑟𝑖

𝑛

𝑖=1

𝑍′𝑖(𝐵𝑖𝑉𝐵𝑖
′)
−1
𝑍𝑖  

2.40 
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Here, ri is the number of replicates at the ith trial (out of n trials), Zi is the vector of partial 

derivatives of the model function with respect to the parameters (in this case, the partial derivatives 

of the copolymerization/terpolymerization model with respect to the reactivity ratios), Bi is vector 

of partial derivatives of the model function with respect to the variables (in this case, the partial 

derivatives of the copolymerization/terpolymerization model with respect to the feed (f) and 

copolymer/terpolymer (F) compositions), and V is variance-covariance matrix of the variables 

(which provides information about measurement error and possible correlation of the variables 

involved).  

 

During experimentation, either initial or sequential design schemes may be used. The initial design 

is employed when no prior information is known about the system; the design is based solely on a 

certain number of trials (usually chosen arbitrarily or at random, so they may or may not be 

optimal), and is a function of the number of parameters in the model. Alternatively, when some 

prior information is available for the system, a sequential design is employed. As the name 

suggests, the sequential design is an iterative process, and is repeated until the desired level of 

precision is obtained for the parameter estimates being studied [59]. Sequential design schemes 

typically provide smaller JCRs, which indicates that the reactivity ratio estimates are more reliable 

than those obtained from initial designs (a case study demonstrating this concept is shown in 

Section 2.3.1.1). Thus, to the extent possible, the sequential technique will be used to design 

experiments. 

 

2.3.1.1 Design of Experiments for Binary Reactivity Ratio Estimation  

 

Two common design of experiments techniques for copolymer systems are the Tidwell-Mortimer 

[61] and EVM (described above and elsewhere [59]) methodologies. Both use preliminary 

reactivity ratio estimates to suggest the initial feed compositions for subsequent runs [62]. 

 

Tidwell and Mortimer presented one of the earliest (mechanistic model-based) techniques for 

designing reactivity ratio estimation experiments [61]. The Tidwell-Mortimer methodology 

applies an approximate D-optimality criterion to the Mayo-Lewis copolymerization equation 

(Equation 2.21) to determine ‘optimal’ feed compositions at which to run reactivity ratio 

estimation experiments. The Tidwell-Mortimer design gives the following experimental 

conditions as optimal suggestions: 

𝑓2,0 =
𝑟1

2 + 𝑟1
 𝑓2,0 =

2

2 + 𝑟2
 

2.41 

Where f2,0 is presented twice to denote the feed composition of monomer 2 for two distinct 

experiments. Preliminary reactivity ratio estimates (r1 and r2) are typically obtained from the 

literature or from some type of preliminary experimentation.  
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The Tidwell-Mortimer (T-M) equations are recognized as practical tools for the design of optimal 

experiments in reactivity ratio estimation. However, the method does have some limitations. The 

T-M design cannot take composition constraints into account, and is only applicable to binary 

systems. In a recent comparison of T-M and EVM design techniques, both techniques yielded 

similar parameter estimates. However, those obtained from the EVM-designed data gave 

parameter estimates with a higher degree of confidence [62]. 

 

To demonstrate the importance of sequential design of experiments for reactivity ratio estimation, 

we will briefly review a case study presented by Scott and Penlidis [6]. This was published as part 

of a Feature Paper in Processes, which demonstrated a user-friendly computational package for 

reactivity ratio estimation using EVM. Details about the computational package are shown in 

Appendix B (Section B.1), but the case study below provides an excellent example of the benefit 

of sequential design of experiments.   

 

This case study employs experimental data for the copolymerization of butyl acrylate (BA; 

monomer 1) and methyl methacrylate (MMA; monomer 2). The original investigation by Dubé 

and Penlidis [63] was a detailed, multi-step analysis, but only data from the first step are used in 

the current exhibit. 

 

In investigating the effect of experimental design on the confidence in our estimation results, there 

are two important pieces of information to consider. If the preliminary estimates of r1 are smaller 

than r2, then (1) uncertainty in r1 will seem much lower than uncertainty in r2 (the same relative 

error will have a larger absolute value in r2 compared to r1) and (2) the Tidwell-Mortimer design 

will suggest recipes rich in monomer 1. As shown in Figure 2.7 (black JCR; 2 feed compositions), 

r1 < r2 for the BA/MMA system and there is more uncertainty in r2 (that is, in the vertical direction). 

Generally speaking, the JCR is ‘stretched’ along the axis of the larger reactivity ratio estimate, 

which is due to both the absolute error and the selected feed compositions. 

 

Since the absolute error is experiment-dependent, it is a fact of life that one has to live with. Thus, 

this case study focuses on item (2) described above: how do the feed compositions (selected 

randomly or via design of experiments) affect the reactivity ratio estimates and associated JCRs? 

In the case of BA/MMA copolymerization (given preliminary estimates r1 = 0.51 and r2 = 2.38 

from Grassie et al. [64]), the Tidwell-Mortimer criterion suggests the following feed compositions: 

f1,0 = 0.543 and f1,0 = 0.798, where monomer 1 is butyl acrylate [63]. Based on this criterion, all of 

the experimental data collected are rich in monomer 1, which provides more certainty in r1 (see 

again Figure 2.7; black JCR; 2 feed compositions).  

 

At the next step, EVM-based sequential design of experiments can be employed [59]. This allows 

for further refinement of the reactivity ratio estimates, a higher degree of certainty and therefore 

smaller JCRs. The procedure is described below: 
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(1) EVM is applied to instantaneous (low conversion) data (from [63]) to estimate reactivity 

ratios. Feed compositions are selected according to Tidwell-Mortimer design and four runs 

are done at each level: f1,0 = 0.543 and f1,0 = 0.798. 

(2) Parameter estimation results from EVM are recorded. Specifically, reactivity ratio 

estimates (r1 and r2) and the G matrix (as defined in Equation 2.40) are required for 

sequential design of experiments. 

(3) The EVM-based sequential design of experiments program (using data from step (2), as 

well as the preliminary feed compositions from step (1)) is employed. Details on the design 

have been reported by Kazemi et al. [59]. 

 

From the sequential design of experiments, the next ‘best’ feed composition for analysis of the 

BA/MMA copolymerization is f1,0 = 0.100. This indication that more monomer 2-rich data is 

required is very reasonable, since all data collected to this point has been rich in monomer 1. By 

introducing experimental data rich in monomer 2, the uncertainty in r2 should decrease. 

 

In the absence of experimental data for f1,0 = 0.100, data were simulated using the instantaneous 

copolymerization model and random error was added (based on the variance reported in the 

original study). As was the case for the other feed compositions, four data points at f1,0 = 0.100 

were added to the analysis. These new data points, along with the original data were then used to 

re-estimate the reactivity ratios with EVM. The results are shown alongside the original analysis 

in Figure 2.7 (red JCR; 3 feed compositions). 

 

 
Figure 2.7: Effect of Sequentially Designed Experiments for the Copolymerization of BA/MMA  
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The inclusion of data rich in monomer 2 drastically improves the degree of certainty in the 

reactivity ratio estimates. While the point estimates are unaffected, the error in r2 is significantly 

reduced. This is as expected: when data rich in monomer 2 are available, one can have greater 

confidence in r2. 

 

This result demonstrates the importance of design of experiments for reactivity ratio estimation. 

Design of experiments makes it possible to maximize the information content from a minimal 

number of runs and to decrease the degree of uncertainty in parameter estimates. Sequential 

designs are extremely useful and revealing, and minimize the overall experimental effort. 

 

2.3.1.2 Design of Experiments for Ternary Reactivity Ratio Estimation  

 

As explained in previous work by Kazemi et al. [60], three optimal experiments are sufficient to 

estimate terpolymerization reactivity ratios. In the terpolymerization problem, the EVM model 

consists of three equations (see again Equations 2.31 to 2.33) and five variables (f1, f2, F1, F2, F3); 

only 2 of the 3 feed compositions are independent (f3 = 1 - f1 - f2) and the terpolymer compositions 

are measured independently. Therefore, for the terpolymerization, there are two independent 

variables (5 variables – 3 equations = 2) and six (6) parameters (reactivity ratios). The number of 

optimal experiments needed can be calculated by dividing the number of parameters by the number 

of independent variables (see Bard [65] and Duever et al. [66]), hence 6 ÷ 2 = 3. 

 

Of particular note is a practical heuristic for designing experiments for ternary reactivity ratio 

estimation, which suggests that (statistically speaking) the optimal feed compositions always fall 

into the same range [60]. When a multiplicative error structure is assumed and there are no other 

process constraints, the optimal feed compositions are as shown (in the shaded areas) in Figure 

2.8. Three terpolymerization formulations, each rich in one comonomer, are sufficient to estimate 

ternary reactivity ratios [60]. In a recent study (also presented in Section 5.1.2 of this thesis), this 

was further confirmed while investigating the terpolymerization kinetics of 2-acrylamido-2-

methylpropane sulfonic acid, acrylamide and acrylic acid [38]. 
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Figure 2.8: Optimally Designed Experiments for Ternary Reactivity Ratio Estimation (as per [60]) 

 

2.3.2 Reactivity Ratio Estimation using the Error-in-Variables Model  

 

Linear regression techniques, including the Mayo-Lewis method (method of intersections), the 

Fineman-Ross method and the Kelen-Tudos method, have traditionally been used for reactivity 

ratio estimation [52]. However, by examining the instantaneous copolymer composition models 

shown in Equation 2.21 (for the 2-component system) and Equations 2.31 to 2.33 (for the 3-

component system), one can see that the kinetic models are clearly non-linear in the parameters! 

While linearization provides computational simplicity (which, incidentally, is no longer necessary 

thanks to technological advancements), it also requires making imprecise and invalid assumptions. 

The problems associated with linear methods for parameter estimation have been thoroughly 

discussed in the literature [54, 67], and an additional relevant case study is provided in the 

following section (see Section 2.3.2.1). 

 

Therefore, non-linear reactivity ratio estimation techniques should always be employed [67-70]. 

While some researchers choose to use a non-linear least squares approach, the error-in-variables-

model (EVM) method is the most statistically correct technique. EVM forces the experimenter to 

consider all sources of error, including the error associated with independent variables (such as 

feed composition).  

 

To obtain estimates of the ‘true’ values of both the independent variables and the parameters, EVM 

uses a nested-iterative approach (this is represented schematically in Figure 2.9, with variables 

defined in the discussion below) [69]. The inner loop searches for ‘true’ values of the independent 

variables, since there is inevitably some error associated with the measured values. 

Mathematically, one can relate the vector of known measurements (xi) to the vector of their 

unknown ‘true’ values (ξi) and an error term (kεi), according to Equation 2.42. In the error term, k 
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is a constant that represents the magnitude of the error and ε (error) is a random variable that is 

typically uniformly distributed on the interval [−1, 1] (an additional explanation is included in 

Appendix B, Section B.2 for the interested reader). At the same time, the outer loop uses a 

copolymerization model (such as the instantaneous copolymer composition model, Equation 2.21) 

to relate the ‘true’ variables and the parameter (reactivity ratio) estimates, as shown in Equation 

2.43. 

𝑥𝑖 = 𝜉𝑖(1 + 𝑘𝜀𝑖) where i = 1, 2, ..., n 2.42 

𝑔 (𝜉𝑖, 𝜃) = 0  where i = 1, 2, ..., n 2.43 

In both Equations 2.42 and 2.43, i represents the trial number (out of n trials), and underlined terms 

are either vectors or matrices.  

 

 
Figure 2.9: Nested-Iterative Algorithm for the Error-in-Variables-Model (EVM) 

 

From a statistical perspective, the program uses this nested-iterative approach to minimize the sum 

of squares between the observed and predicted values, both in terms of the error in the independent 

variables and in terms of the parameter estimates. When the objective function (Equation 2.44) is 

minimized, the program has found the best estimates for both the independent variables and the 

parameters (reactivity ratios). 

Φ =
1

2
∑𝑟𝑖(𝑥̅𝑖

𝑛

𝑖=1

− 𝜉𝑖̂)′𝑉 
−1(𝑥̅𝑖 − 𝜉𝑖̂) 

2.44 

Where n is the number of experimental trials (runs), ri is the number of replicates for the ith trial, 

𝑥𝑖̅ is the average of the ri measurements (𝑥𝑖), 𝜉𝑖 is an estimate of the true values of the variables 

(𝜉𝑖) and V is the variance-covariance matrix of the variables (which provides information about 

measurement error of the variables involved). To gain a better understanding of the magnitude of 

the error, the error distribution, the relationship between variables and errors (additive versus 

multiplicative), and potential correlation, independent replication becomes necessary; again, see 

Appendix B (Section B.2) for more information.  
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Alternatively, minimizing the objective function can be considered graphically, as in Figure 2.10. 

Given a model and some measured (independent) data, the inner loop minimizes the horizontal 

distances between the data points and the model (curve). At the same time, the outer loop 

minimizes the vertical distances between the data points and the model (that is, the outer loop 

attempts to reconcile model predictions and measurements). 

 

 

 
Figure 2.10: Graphical Representation of EVM (inspired by [67]) 

 

After estimates are obtained by EVM for both model parameters and model variables, it is 

important to evaluate the estimation results. This is primarily done by determining the precision 

of the parameter estimates. In the case of reactivity ratio estimation, several parameters are being 

estimated simultaneously. Thus, joint confidence regions (JCRs) are invaluable. JCRs are typically 

elliptical contours that quantify the level of uncertainty in the parameter estimates; as shown 

previously (in Section 2.3.1.1 and Figure 2.7), smaller JCRs indicate higher precision and therefore 

more confidence in the estimation results.  

 

To approximate the error with an ellipse (Equation 2.45) requires that the error be normally 

distributed and that the variance be known. Here, it is important to note that 𝜃 represents the vector 

of parameter estimates that minimize the objective function (Equation 2.44). 

(𝜃 − 𝜃)
′
𝐺(𝜃 − 𝜃) ≤ 𝜒2

𝑝,1−𝛼
 2.45 

Where 𝜒2
𝑝,1−𝛼

 represents the chi-squared distribution for p parameters and a confidence level of 

(1-α). 
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An additional advantage of EVM is that it can be used to analyze copolymerization data up to 

medium-high conversion levels, since either the instantaneous or the cumulative model can be 

employed (recall Section 2.2). The instantaneous model described previously (Equation 2.21 for 

copolymerization and Equations 2.31 to 2.33 for terpolymerization) is only applicable to low 

conversion data, as it assumes that composition drift in the free monomer fraction is negligible 

(which may be true below 5% or 10% conversion). Assuming that no composition drift occurs 

(that is, the cumulative and instantaneous mole fractions in the copolymer are about the same) is 

considered ‘best practice’, and is used throughout the reactivity ratio estimation literature (see, for 

example, [71-76]). 

 

However, limiting kinetic investigations to low conversion levels presents some fundamental 

challenges. In spite of our best efforts to validate the ‘lack of composition drift’ assumption, there 

is almost inevitably some change in feed composition with increasing conversion. From a more 

practical perspective, collecting low conversion data presents experimental challenges and the 

collected data are extremely prone to error.  

 

Researchers should be aware of these limitations and should act accordingly. One might choose to 

include conversion data in the analysis (using a cumulative model and DNI, as per Section 2.2) to 

account for composition drift. Alternatively (rather, in addition), researchers might use design of 

experiments and experimental replication to address the inevitable error associated with the data 

collected. If nothing else, parameter estimation using EVM considers the error present in all 

variables, which can account for some of the experimental error. Ultimately, though, even the most 

statistically correct technique cannot compensate for bad data collection! Case studies examining 

the limitations of low conversion data (Section 2.3.2.2) and the advantages of using a cumulative 

model for analysis of medium-high conversion data (Section 2.3.2.3) are presented in what 

follows. 

 

Although all three case studies presented in what follows are for copolymerization systems, the 

same observations (regarding shortcomings of linear parameter estimation, limitations of low 

conversion (instantaneous) data analysis, and advantages of full conversion (cumulative) models 

can be extended to the terpolymer case. Ternary reactivity ratios (that is, reactivity ratios estimated 

directly from ternary data) are described further in the following chapters, and two studies 

highlighting the importance of using appropriate estimation procedures are provided in Chapter 5 

(Section 5.1). 

 

2.3.2.1 MDO/VAc Case Study: Demonstrating the Shortcomings of Linear Parameter Estimation 

 

This case study was part of the feature paper by Scott and Penlidis published in Processes [6], and 

presents an overview of recent literature [71-73, 77] regarding the copolymerization of 2-

methylene-1,3-dioxepane (MDO; monomer 1) and vinyl acetate (VAc; monomer 2) (see also Table 
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2.3; RR stands for reactivity ratio). This copolymer has gained considerable attention in the past 

decade, largely due to its degradable properties. Researchers are especially interested in the 

reactivity ratios for the system, as reactivity ratios provide information about the copolymer 

microstructure. However, the reactivity ratio estimation (RRE) techniques used in this field are 

often incorrect. This case study will focus primarily on the issue of linear parameter estimation 

techniques, but invalid low conversion assumptions (that is, inappropriate use of the instantaneous 

copolymerization model) and error-prone data cannot be overlooked. Therefore, to demonstrate 

the advantages of EVM, select data from the literature will be re-evaluated (properly) and 

comparisons will be conducted. 

 

Table 2.3: Summary of Reactivity Ratio Estimation (RRE) Studies for 2-methylene-1,3-dioxepane 

(MDO; monomer 1)/Vinyl Acetate (VAc; monomer 2) Copolymerization 

Ref. RRE Technique 
RRE Results 

Comments 
r1 r2 

[71] Kelen-Tüdös (K-T) 0.47 1.56 

 Linear RRE technique used 

 Inappropriate low conversion assumption 

(reactivity ratios are ‘different enough’ that 

composition drift is possible) 

 Low conversion (<20%) data not presented; 

cannot be re-evaluated with EVM 

[72] 
Non-Linear Least 

Squares (NLLS) 
1.03 1.22 

 Non-linear RRE technique used (good!) 

 Controlled radical polymerization (RAFT) data 

used for RRE, therefore parameter estimates are 

‘apparent’ reactivity ratios (as per Feldermann 

et al. [74]) 

[73] Fineman-Ross (F-R) 0.14 1.89 

 Linear RRE technique used 

 Inappropriate low conversion assumption (as 

with [71], reactivity ratios are ‘different enough’ 

that composition drift is possible) 

 Suggest that low MDO reactivity (compared to 

other MDO/VAc RRE results in the literature) a 

result of low temperature; however, effect of 

temperature on RRs is usually weak 

[77] Fineman-Ross (F-R) 0.93 1.71 

 Linear RRE technique used 

 Unequal weighting of experimental data 

 Instantaneous model applied to high conversion 

data (58–78% conversion reported) 

 F-R plot axes unintentionally flipped in original 

work (which changes RR estimates) 

 More comments in what follows 

 

In a recent study by Undin et al. [77], experimental data from six distinct feed compositions were 

used to estimate reactivity ratios for the MDO/VAc copolymerization. These six (batch) runs were 

allowed to continue until conversion did not change and the final conversion and composition 

measurements were reported. Finally, the reactivity ratios for the system were calculated using the 

Fineman-Ross (F-R) method. However, as mentioned briefly in Table 2.3, the data on the x and y 
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axes were unintentionally flipped in the analysis; thus, the reactivity ratio estimates originally 

reported are not representative of the experimental data collected. 

 

Besides this unintended error, there are several other problems with the analysis, including (1) the 

use of undesigned data (that is, no design of experiments used for the selection of feed 

compositions); (2) the lack of composition drift considerations (RRE experiments should be 

performed at low conversion, or a cumulative model should be used); (3) the use of an outdated 

(and linear!) RRE technique. For the purposes of this discussion, we will focus on the use of the 

F-R method for RRE but the other important points should also be noted and kept in mind. 

 

As discussed by Hagiopol [78], the F-R method is often justified by its simplicity. However, it has 

many shortcomings, including unequal weighting of experimental data and symmetry issues (i.e. 

calculation results depend on which monomer is selected as M1). The data set presented in [77] is 

especially vulnerable to these shortcomings, largely due to the undesigned initial feed 

compositions (collection and use of undesigned data for parameter estimation also induce 

considerable correlation between the parameters, which is highly undesirable). As shown in Table 

2.4, some of the data are obtained under fairly low M1 comonomer feed fraction; these conditions 

tend to have the greatest influence on the slope of a line, which ultimately affects reactivity ratio 

estimates obtained using the F-R method [78]. 

 

Table 2.4: RRE Data for the Copolymerization of MDO (Monomer 1)/VAc (Monomer 2) [77] 

Sample Monomer Feed Copolymer Composition 

 f1,0 f2,0 𝑭𝟏 𝑭𝟐 

MDO70 0.70 0.30 0.66 0.34 

MDO50 0.50 0.50 0.42 0.58 

MDO30 0.30 0.70 0.23 0.77 

MDO10 0.10 0.90 0.06 0.94 

MDO5 0.05 0.95 0.03 0.97 

MDO1 0.01 0.99 0.005 0.995 

 

The more pressing concern with the F-R method (also described by Hagiopol [78]) is the lack of 

symmetry. Thus, values of r1 and r2 depend on which monomer is selected as M1. To demonstrate 

this point, the data collected by Undin et al. [77] are evaluated with M1 = MDO (which was 

performed incorrectly in the original work; see Figure 2.11a) and with M1 = VAc (performed 

herein for the demonstration; see Figure 2.11b).  
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(a) (b) 

Figure 2.11: Fineman-Ross Plots for the Copolymerization of MDO/VAc with  

(a) M1 = MDO (rMDO = 1.06; rVAc = 1.83 and (b) M1 = VAc (rMDO = 1.96; rVAc = 2.03) 

 

It is clear from Figure 2.11 that the reactivity ratio estimates depend on which comonomer is 

selected as M1; the fact that two reactivity ratio pairs can be obtained from a single estimation 

technique is problematic. It is also interesting to note that both analyses give r1 > 1 and r2 > 1. 

While this is physically impossible, it is a side-effect of experimental (and estimation) error. In 

reality, these results suggest that both reactivity ratios should be close to unity (which agrees with 

the findings of Undin et al. [77] and Hedir et al. [72]) but that at least one reactivity ratio is <1. 

 

The issue of symmetry (combined with the statistical inaccuracy of using linear parameter 

estimation to evaluate non-linear models) highlights the need for a non-linear parameter estimation 

technique like EVM. When using EVM for reactivity ratio estimation, the influence of which 

comonomer is defined as M1 has no impact on the parameter estimates. (If RR estimates are 

slightly different based on the choice of M1, this is due to experimental error in the data). As shown 

in Figure 2.12, reactivity ratio estimates are within the JCR, regardless of which monomer is 

identified as M1. That is, slight discrepancies between EVM-obtained reactivity ratio estimates are 

well within the expected error (1% error in fi,0 and 10% error in 𝐹𝑖; more on typical error levels in 

Appendix B, Section B.2). As expected, using measured/reported values as program inputs (in this 

case, fMDO,0 and 𝐹MDO) provides a greater degree of confidence in the results; note that the JCR in 

Figure 2.12a is smaller than that in Figure 2.12b. There is also significantly more parameter 

correlation visible in Figure 2.12b, as evidenced by the diagonal nature of the (more elongated) 

JCR. This, again, is as expected; the VAc data set was calculated from the measured MDO 

composition data, so correlation is inevitable here.  

 



40 

 

 

(a) (b) 

Figure 2.12: EVM-obtained RR Estimates and JCRs for the Copolymerization of MDO/VAc with  

(a) M1 = MDO (rMDO = 1.19; rVAc = 1.87) and (b) M1 = VAc (rMDO = 1.01; rVAc = 1.72). 

 

In using EVM to re-analyze the data, r1 > 1 and r2 > 1 is still observed (see again Figure 2.12). 

This outcome is likely a result of using cumulative composition data in an instantaneous model, 

since composition drift was not taken into account for this data set and conversion levels up to 

80% are reported. Even the most statistically correct technique cannot reconcile cumulative 

experimental data with an instantaneous model (and, in this case, appropriate conversion data are 

unavailable for reanalysis with the cumulative EVM program). 

 

The final step is to visually evaluate the prediction performance of the reactivity ratio estimates, 

which involves comparing the experimental values to those predicted by the instantaneous 

copolymer composition equation (Equation 2.21). As shown in Figure 2.13, the symmetry issues 

associated with the Fineman-Ross (F-R) technique have a significant impact on the prediction 

performance (red curves, Figure 2.13a). In contrast, both of the predictions using EVM-obtained 

RR estimates (blue curves, Figure 2.13b) are in agreement with each other and with the 

experimental data. This is compelling evidence to choose non-linear parameter estimation 

techniques like EVM over the statistically incorrect linear parameter estimation techniques. 
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(a) (b) 

Figure 2.13: Comparison of Prediction Performance for RR Estimates Obtained by (a) F-R and (b) EVM  

 

2.3.2.2 HEA/DCP Case Study: Considering the Limitations of Low Conversion Data Analysis 

 

This case study was part of the same feature paper by Scott and Penlidis described earlier [6].   

 

Since the virtues of EVM over linear parameter estimation techniques have already been 

established, the goal of the next case study is to emphasize the limitations of low conversion data 

and demonstrate how they can be addressed using EVM. The data set comes from recent work by 

Suresh et al. [75], whose work describes the synthesis and reactivity ratio estimation of 

photosensitive copolymers based on 4-(3-(2,4-dichlorophenyl)-3-oxoprop-1-enyl) phenylacrylate 

(DCP; monomer 2). In the study, DCP was copolymerized with hydroxyethyl acrylate (HEA; 

monomer 1) and with styrene and reactivity ratios were determined to better understand 

copolymerization behaviour. However, as established in the MDO/VAc Case Study (Section 

2.3.2.1), researchers often revert back to linear parameter estimation techniques and the authors 

(incorrectly) used the Fineman-Ross (F-R) and Kelen-Tüdös (K-T) methods for parameter 

estimation (see Table 2.5). 

   

Table 2.5: Summary of RRE Results for Hydroxyethyl Acrylate (HEA; Monomer 1)/4-(3-(2,4-

dichlorophenyl)-3-oxoprop-1-enyl) Phenylacrylate (DCP; Monomer 2) Copolymerization 

Ref. RRE Technique 
RRE Results 

r1 r2 

[75] Fineman-Ross (F-R) 1.53 ± 0.10 0.76 ± 0.16 

[75] Kelen-Tüdös (K-T) 1.67 ± 0.13 0.58 ± 0.05 

[75] Extended K-T 1.65 ± 0.13 0.60 ± 0.08 

Current Work [6] Instantaneous EVM 1.28 * 0.56 * 

Current Work [6] Cumulative EVM 1.32 * 0.55 * 

* Note: For EVM-obtained reactivity ratio estimates, statistically correct JCRs are presented instead of 

approximate confidence intervals (derived on a linear hypothesis); see Figure 2.15. 
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All experimental data that Suresh et al. [75] used for reactivity ratio estimation were kept below 

15% conversion, so that the instantaneous copolymerization equation could be used for parameter 

estimation. But, is ‘below 15% conversion’ enough? As mentioned previously, this is largely 

considered ‘best practice’, but does not account for composition drift (even at low conversions) 

nor for experimental error. As shown in Figure 2.14, only five (seemingly unreplicated) data points 

were collected for reactivity ratio estimation, with obvious discrepancies between the experimental 

data and the model predictions. 

 

 
Figure 2.14: Prediction Performance of RR Estimates for HEA/DCP Copolymerization  

(Obtained by Linear RRE Techniques) 

 

It is likely that these discrepancies are due to experimental error; this type of behaviour is observed 

very often, especially for low conversion data. In order to address this, researchers should review 

potential sources of error; they are likely (1) unidentified composition drift and/or (2) experimental 

difficulties. This case study will demonstrate both of these sources of error (and how to handle 

them). This is another very important, yet implicit, contribution of EVM. EVM, if nothing else, 

forces one to think about the possible sources of variation (and quantify them).  

 

To account for composition drift (even at low conversions), the cumulative copolymerization 

model (Equations 2.22 and 2.23) should be used. Using direct numerical integration to solve this 

system of equations ensures that the feed composition (f1) is considered as a function of conversion, 

thus taking any composition drift into account mathematically. To establish whether unidentified 

composition drift is the culprit in the current experimental data set, one can evaluate the data using 

both the instantaneous and cumulative models and compare the results (Figure 2.15, discussed 

below). In reality, using the cumulative model would also increase the amount of data available 

for analysis, as the copolymerization would be allowed to go to higher conversion levels (and data 

would continue to be collected); in addition, the experimental information is enhanced, anyway, 

since both conversion and copolymer composition data are included; see also Section 2.3.2.3. 
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Ultimately, this would increase the degree of confidence in the reactivity ratio estimates and 

decrease the size of the JCR.  

 

 
Figure 2.15: EVM-obtained RR Estimates and JCRs for the Copolymerization of HEA/DCP using the 

Instantaneous Model (rHEA = 1.28; rDCP = 0.56) and the Cumulative Model (rHEA = 1.32; rDCP = 0.55) 

 

Figure 2.15 indicates that the two EVM-obtained reactivity ratio estimates are in good agreement 

and the JCR sizes and orientations are similar. Thus, in this case, the effect of composition drift is 

likely minimal. Therefore, we will continue our troubleshooting by investigating the second source 

of error: experimental difficulties. Since no replicate data are available, it is not possible to 

calculate the error associated with the composition measurements shown in Figure 2.14. However, 

as discussed previously, EVM considers the error present in all variables throughout the parameter 

estimation process. The program default values of 1% error (associated with f1,0) and 5% error 

(associated with 𝐹1) were therefore used in the analysis (see Appendix B, Section B.2 for 

additional information).  

 

The reactivity ratios calculated using the EVM program are as described in Table 2.5 and Figure 

2.15. The converged program also provides the best available estimates of ‘true’ values of the 

variables (recall Equations 2.42 and 2.43). Thus, in Figure 2.16, it is possible to compare the 

experimental (measured) values to the ‘true’ experimental values and the EVM model predictions 

(both instantaneous and cumulative).  
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Figure 2.16: Prediction Performance of RR Estimates Obtained using EVM 

 

Figure 2.16 indicates that the experimental data points were subject to some degree of error, 

especially for f1,0 = 0.3 and f1,0 = 0.7. Thus, experimental difficulties are likely the culprit here. The 

best way to mitigate this type of problem is to design experiments, replicate copolymerization runs 

and use EVM for parameter estimation. Additionally, using full conversion data with the 

cumulative model gives a more complete picture of copolymerization kinetics; researchers do not 

have to struggle with the experimental challenges of collecting low conversion data. This will be 

discussed in the next case study. 

 

2.3.2.3 BMA/BA Case Study: Exploiting Information Content through Medium-High Conversion 

Data Analysis 

 

This case study was part of the same feature paper by Scott and Penlidis described earlier [6].  

 

Since medium-high conversion level data are used for parameter estimation in this case, reactivity 

ratios are estimated by applying the cumulative composition model (using direct numerical 

integration) to the data through EVM (see again Equation 2.23). Also, because conversion (X) 

varies with time as the polymerization proceeds, one cannot expect the composition of the 

polymerizing mixture to remain constant. Therefore, the instantaneous composition of the 

unreacted (unbound) monomer (fi) can be evaluated using the differential copolymer composition 

equation (Equation 2.22). Solving these equations simultaneously makes it possible to minimize 

the sum of squares between the measured and the predicted values (for both the independent 

variables and the parameter estimates), which is the main objective of EVM.  

 

The data used for this case study were taken from Ren et al. [79], who recently investigated the 

copolymerization kinetics of n-butyl methacrylate (BMA; monomer 1) and n-butyl acrylate (BA; 

monomer 2). Originally, the group collected copolymerization data at low conversion levels 

(<10%) so that the instantaneous model (Equation 2.21) could be used for analysis. After 
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estimating preliminary reactivity ratios using the original RREVM program [70], additional 

(replicated) designed experiments were completed to improve the quality of the data. This low 

conversion data set was re-analyzed using the new MATLAB-based EVM program [6]. As with 

the original investigation, analysis was first performed with the preliminary data only (9 

equidistant feed compositions). Then, the analysis was repeated with preliminary data 

supplemented by the designed replicates (feed compositions selected using the Tidwell-Mortimer 

criterion [61]). A comparison of reactivity ratio estimates (from the original and current studies) 

is shown in Table 2.6. 

 

Table 2.6: Summary of RRE Results for n-Butyl Methacrylate (BMA; Monomer 1) and n-Butyl Acrylate 

(BA; Monomer 2) Copolymerization 

Ref. RRE Technique 
RRE Results 

r1 r2 

[79] Preliminary Estimates (RREVM) [70] 2.100 0.489 

[79] 
Estimates from Tidwell-Mortimer Designed 

Experiments (RREVM) [67, 70] 
2.008 0.460 

Current Work [6] Instantaneous EVM (preliminary data) 2.109 0.492 

Current Work [6] 
Instantaneous EVM  

(preliminary data & designed replicates) 
2.012 0.462 

Current Work [6] Cumulative EVM 2.114 0.500 

 

Good agreement is observed between reactivity ratio estimates, no matter what the amount (or 

type) of data used. This indicates well-behaved data; the low conversion analysis was done in a 

methodical and statistically correct manner. The cumulative EVM results (presented in the final 

row of Table 2.6) are discussed in what follows. 

 

Although low conversion analysis (as performed by Ren et al. [79]) was sufficient for reactivity 

ratio estimation (especially since design of experiments was included in the investigation), it is 

interesting to consider the following: what if one had also included additional (medium-high 

conversion) experimental data? Ren et al. [79] chose to run three feed compositions up to high 

conversion values; the full conversion experimental data were used to evaluate the prediction 

performance of the reactivity ratio estimates. The analysis showed good agreement between model 

predictions and experimental data, thus confirming the reactivity ratio estimates.  

 

We can take this one step further for illustration purposes. Using the cumulative model and direct 

numerical integration provides us with the opportunity to ‘repurpose’ this cumulative (medium-

high conversion) data for improved reactivity ratio estimation. With a cumulative model, there is 

potential to obtain significantly more information (that is, more data points) from each experiment. 

Also, since researchers are not limited to low conversion, less experimental tedium is required to 

obtain the same degree of accuracy, as long as the experiments are well-designed.  

 

A direct comparison of the preliminary analysis (9 feed compositions) and the cumulative analysis 

(3 feed compositions) results is provided in Figure 2.17. The same initial estimates were used in 
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both cases to ensure that both of the RRE techniques had the same starting point. It is interesting 

to note that both the reactivity ratio estimates and the JCR areas are almost identical for the two 

data sets. This leads to two main conclusions: that the parameter estimation results using the 

instantaneous and cumulative models are in agreement and that the degree of confidence in the 

results is approximately the same (regardless of which data set and/or model is being used). 

Therefore, in this case, 3 full conversion runs have approximately the same information content as 

9 runs that are limited to low conversion levels. 

 

This result should motivate researchers to think carefully about their preliminary experimental 

work. By strategically selecting feed compositions (using design of experiments techniques like 

Tidwell-Mortimer [61, 62] or EVM [59, 80]) and collecting copolymerization data up to medium 

or high conversion levels, it is possible to obtain sufficient information about a new system. The 

results shown herein suggest that preliminary experimental work can almost be reduced to 1/3 of 

the original load, without any loss of information content. Therefore, researchers should be 

encouraged to make use of all copolymerization data by employing the cumulative 

copolymerization model.  

 

 
Figure 2.17: Comparison of Results for the Copolymerization of BMA/BA using the Instantaneous Model 

(rBMA = 2.11; rBA = 0.49) and the Cumulative Model (rBMA = 2.11; rBA = 0.50) 

 

2.4 Terpolymerization Kinetics of AMPS/AAm/AAc 

 

Most of the literature review outlined in this section has been recently published by Scott, Duever 

and Penlidis [81]; the work examines the effect of various experimental conditions on the 
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terpolymerization kinetics of 2-acrylamido-2-methylpropane sulfonic acid (AMPS), acrylamide 

(AAm) and acrylic acid (AAc). 

 

As explained in Section 2.1.3, AMPS/AAm/AAc terpolymers are a promising candidate for 

enhanced oil recovery (EOR), given the application requirements and the anticipated properties of 

the terpolymer. AMPS/AAm/AAc has only recently appeared in the literature, with applications 

ranging from enhanced oil recovery [21] to controlled drug delivery [82]. Typically, existing 

studies focus on the final properties of the material (swelling behaviour, thermal and mechanical 

stability, etc.) [21, 48, 50], but investigating the terpolymerization kinetics is equally important 

[80]. The bulk polymer properties (and, by extension, properties relevant to the final application) 

depend on the terpolymer microstructure, therefore a clear understanding of the terpolymerization 

kinetics is invaluable. 

 

The kinetics of an associated copolymer, acrylamide/acrylic acid, have been well-studied. 

Riahinezhad et al. [83], among others, have shown that experimental conditions (that is, the pre-

polymerization solution properties) can significantly impact polymerization kinetics and the 

resulting copolymer. Since the AAm/AAc copolymer is a polyelectrolyte, pH, ionic strength and 

monomer concentration are all influential variables during synthesis [84-87]. AMPS also exhibits 

polyelectrolyte behaviour, so one might expect that solution properties will also affect 

AMPS/AAm/AAc terpolymerization.  

 

In looking at extensions from the AAm/AAc copolymer to the AMPS/AAm/AAc terpolymer, it is 

important to note that binary observations do not always apply to the ternary system [38]; this will 

be discussed further in Chapter 5 (Section 5.1). In the past, many researchers have used 

copolymerization results to predict terpolymerization behaviour. Although this may work for some 

cases, it is an approximation, as it effectively ignores the presence of the third comonomer. A third 

comonomer will inevitably change the reaction conditions and, by extension, the polymerization 

kinetics. Therefore, although one might look to the AAm/AAc system for guidance, new 

terpolymer-specific investigations are needed.  

 

This section describes known effects of various reaction conditions on the polymerization kinetics 

of AMPS/AAm/AAc and (more often) the effects of those conditions on related homopolymers 

and copolymers. This background knowledge can help inform decisions about experimental 

conditions and can provide confirmation that the observed experimental results are reasonable. 

Therefore, a brief overview about the effects of pH, ionic strength, monomer concentration and 

feed composition on the polymerization of AMPS/AAm/AAc (and associated systems) is 

presented herein.  
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2.4.1 Effect of pH 

 

The terpolymer of AMPS/AAm/AAc is a polyelectrolyte. That is, the macromolecule can contain 

covalently bound anionic or cationic groups (as a result of dissociation), which ultimately results 

in a charged polymer. These charges are extremely influential in terms of polymerization kinetics 

and should therefore be understood for customization purposes. 

 

The comonomers AMPS and AAc are both acidic in nature, which means that dissociation (loss 

of the H+ ion from the carboxylic or sulfonic acid group) occurs as pH increases. The amount of 

dissociation that occurs is often reported as the degree of ionization, α, and can be calculated 

according to Equation 2.46. 

𝛼 =
10𝑝𝐻−𝑝𝐾𝑎

10𝑝𝐻−𝑝𝐾𝑎 + 1
 

2.46 

Where pKa is the acid dissociation constant, which varies by compound. Atta et al. [88] have 

reported that AMPS and AAc have pKa values of 2.3 and 4.2, respectively. 

 

The rate of polymerization is a strong function of the degree of ionization. As the monomers (and 

resulting polymer chains) dissociate, they will contain like charges. These charges repel one 

another, which causes two significant changes in the system. First, the chain is forced to stretch 

out to separate the charges as much as possible (which eliminates the typical coil conformation of 

polymer chains). Second, the monomers and the radical chain contain like charges, which 

decreases the reactivity ratio of said monomers. 

 

The effect of pH on the homopolymerization of AAm and the homopolymerization of AAc have 

been studied extensively, as have the copolymerization kinetics of AAm/AAc (see, for example, 

[89-92] for AAm, [93-96] for AAc, and [85, 97-99] for AAm/AAc. To the best of our knowledge, 

a limited number of homopolymerization studies have been performed for AMPS [100]; it is more 

frequently used as a comonomer with AAm or AAc (see, for example, [62, 101-105]).  

 

A brief overview of pH effects is presented herein, as this research can help inform the current 

study. However, it is important to recognize that binary reactivity ratios (and, in general, 

copolymerization behaviour) do not necessarily extend to terpolymer system [38]. So, by 

extension, the homopolymerization kinetics reported in literature may not always align with what 

is observed in terpolymer systems.  

 

A recent study by Beuermann et al. [100] investigated the homopolymerization kinetics for the 

solution polymerization of AMPS using near-infrared spectroscopy and pulsed laser 

polymerization. The study included pH effects, as 〈kt〉/kp values were compared over conversion 

for both the acid (AMPS) and salt (NaAMPS) forms of the monomer (where 〈kt〉 is a mean 

termination rate coefficient and kp is the propagation rate constant).  Kinetic behaviour was similar 
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for both the acid form (where pH was very low) and the salt form (where pH = 7), suggesting that 

pH had no significant effect [100].  

 

The effect of pH on the homopolymerization of poly(acrylamide) has been widely studied for 

many years (see, for example, [89-92]). The majority of these reports suggest that pH has little 

effect on acrylamide homopolymerization kinetics, at least over the ranges studied. Some 

exceptions are an increase in kp at pH 1 (compared to higher pH levels) reported by Currie et al. 

[89] and an increased rate of polymerization between pH 6 and pH 7 ([106] as reported by [90]). 

However, in general, other solution effects and reaction conditions are more influential than the 

solution pH. 

 

Many poly(acrylic acid) kinetic studies (including these references [93-96]) have experimentally 

confirmed that the rate of polymerization of acrylic acid is significantly affected by pH. As the 

solution is neutralized (that is, as pH increases to approximately pH 7 and the degree of ionization, 

α, increases to 1), repulsion occurs between monomers and around the propagating chain, thus 

reducing the rate of polymerization for poly(acrylic acid). As the pH is increased beyond pH 7, an 

increased rate of polymerization is observed, likely due to charge screening effects [93, 96].  

 

The general pH effects on the AAm/AAc copolymerization have also been well studied [97-99] 

and are summarized in Table 2.7. Copolymerization behaviour at pH 2 (that is, where the 

acrylamide radical is protonated) has been studied by Cabaness et al. [97] and Paril et al. [98]; 

although pH effects are minimal in acrylamide homopolymerization studies, both 

copolymerization studies showed a reduction in AAm incorporation (and, subsequently, increased 

AAc incorporation) at low pH. Riahinezhad et al. [85] recently confirmed pH effects for the range 

of pH 3 to pH 7; experimental observations showed that the charged (AAc) monomer (at higher 

pH values) has lower additivity (that is, a lower reactivity ratio) due to charge repulsion.  
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Table 2.7: Effect of pH on AAm/AAc Polymerization Kinetics 

pH 
Monomer Forms Present Effect on Reactivity Ratios 

(ri or rj) Acrylic Acid (AAc) Acrylamide (AAm) 

pH < 2 
CH

2

OH

O             

CH
2

OH

NH
2
+

 

Increased rAAc, decreased rAAm 

2 < pH < 6 
CH

2

OH

O               

CH
2

O

NH
2

CH
2

O

O  
 

Complex kinetics, since it can 

technically be considered a 

terpolymerization; both rAAc 

and rAAm are similar and close 

to 1 [99] 

pH > 6 

CH
2

O

O             

CH
2

O

NH
2  

Decreased rAAc, increased rAAm 

 

For simplicity, the acidic monomers are referred to as AMPS and AAc throughout the thesis; the 

change in structure is acknowledged in terms of experimental conditions (and not reflected in the 

monomer name). Based on the above discussion (and on the use of NaOH and NaCl for pH and 

ionic strength adjustment, respectively), the monomers become sodium salts as the acids 

dissociate. This will be discussed in more detail in what follows. However, the presence of 

NaAMPS (2-acrylamido-2-methylpropane sulfonic acid sodium salt) and NaAAc (acrylic acid 

sodium salt or sodium acrylate) is implied as pH increases. 

 

2.4.2 Effect of Ionic Strength 

 

The polyelectrolyte nature of this terpolymer means that the ionic strength (IS) of the polymerizing 

mixture must also be considered. To minimize the repulsion between charges (both within the 

polymer chains and between the monomers and the chains), counter-ions can be added to the 

system in the form of salt. These counter-ions shield (and effectively neutralize) the charged 

molecules, which limits repulsion and increases reactivity. The IS of a given solution can be 

calculated according to Equation 2.47.  

𝐼𝑆 =
1

2
∑𝑐𝑖𝑧𝑖

2 
2.47 

Where ci is the molar concentration of ion i (mol/L) and zi is the charge of ion i. 

 

Not only does the ion charge number play a role in the ion shielding, but the type of cation does 

as well; this affects the electrostatic attraction between anions and counter-ions. It has been shown 
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that the reactivities of both AAm and AAc in copolymerization can be affected by the type of 

cation [107, 108]. These studies indicate that the counter-ion type affects the reactivity ratios, 

which are also related to the copolymer composition and the sequence length. In the current work, 

sodium is the counter-ion of choice (largely due to availability and ease-of-use), but other options 

can be considered to customize the polymer product. 

 

Ionic strength effects have been evaluated for both acrylamide and acrylic acid 

homopolymerization kinetics, and have often been studied alongside pH effects (see, for example, 

[92, 93, 95]).  As mentioned in the discussion surrounding pH, a smaller amount of information is 

available for the AMPS comonomer, since it is less widely used.  However, since it is a strong 

acid, it is expected that the terpolymerization of AMPS/AAm/AAc will also be influenced by the 

IS of the pre-polymerization mixture.  

 

The effect of NaCl on polyacrylamide synthesis was studied by Lacik et al. [92] alongside their 

pH investigation. For aqueous polymerization with 5 wt% acrylamide, no change in kp was 

observed over the range of 0.001 M to 0.1 M NaCl. Further increasing the NaCl concentration to 

1 M resulted in a slight increase of kp. The effect of NaCl (or other salt) addition on poly(acrylic 

acid) synthesis is much more pronounced, as the cations from the salt act as counter-ions, providing 

charge screening and increased reactivity as described previously. The impact of salt addition on 

poly(acrylic acid) kinetics was first described by Kabanov et al. [93], who described an ‘ion pair 

mechanism’ that significantly increased the propagation rate and the molecular weights of the 

product polymers. Since then, similar ionic strength effects have been reported by many other 

groups for homopolymerization of acrylic acid and copolymerization of acrylic acid with 

acrylamide [84, 86, 95, 98, 99, 109]. 

 

Specifically, copolymerization studies for acrylamide/acrylic acid have shown that ionic strength 

affects the rate of polymerization and monomer reactivity ratios (see, for example, the recent study 

by Riahinezhad et al. [84]). When the acrylic acid monomer is partially or fully ionized, the 

reactivity ratio associated with AAc is low (due to charge repulsion). Experimental results have 

shown that adding salt (typically NaCl) to the pre-polymerization formulation can provide charge 

screening, thus increasing the incorporation of AAc (and rAAc) [84, 86, 99]. 

 

2.4.3 Effect of Monomer Concentration 

 

In aqueous polymerization, the total monomer concentration ([M]) can drastically affect the 

kinetics. This is especially true for polyelectrolytes, as the monomer concentration can also affect 

the ionic strength of the polymerizing mixture. The kinetic study for AMPS homopolymerization 

discussed earlier [100] compared rate constants (kp and kt) for aqueous solution polymerization (at 

40°C) with 20 wt% AMPS (1.04 M) and 50 wt% AMPS (2.79 M). The analysis indicated that kp 

was higher at a lower [M]; at the higher [M], a four-fold decrease in kp was reported. In this case, 

Beuermann et al. [100] suggested that the reduction in kp may be due to reduced chain mobility 
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and repulsion between charged monomers and charges along the macroradical. Similar behaviour 

has been observed for the homopropagation of acrylamide [92, 110], acrylic acid [111], and 

methacrylic acid [112-114].  

 

The relationship between monomer concentration, ionic strength and polymerization kinetics 

studied for poly(methacrylic acid) [113] can provide insight about the poly(acrylic acid) case. 

Pulsed-laser polymerization results showed that kp decreased with increasing [M] (as for the 

AMPS study) for the non-ionized case (α=0); there was a four-fold decrease as the concentration 

changed from 5 wt% (0.59 M) to 40 wt% (4.72 M). Conversely, for the fully ionized case (α=1), 

kp increased with increasing monomer concentration (three-fold increase over the same range), 

which may be due to charge screening. In all cases (that is, at all monomer concentration levels), 

the kp was higher for the non-ionized monomer than the ionized monomer [113]. This is as 

expected, since the ionized monomer will repel other monomers and charged macroradicals due 

to the like charges. Interestingly, polymerizations at lower monomer concentrations exhibited a 

more drastic change in kp as the degree of ionization increased. That is, ionization effects were 

more pronounced at low monomer concentration. This may indicate that a higher monomer 

concentration (and, therefore, a higher ionic strength for the fully ionized case) stabilizes the 

system via charge screening.  

 

As mentioned in the discussion of other recipe factor effects, extensions from homopolymerization 

to multi-component systems (copolymerization or terpolymerization) should be made with 

caution. The influence of monomer concentration on the copolymerization kinetics of AAm/AAc 

has been studied recently [85, 86, 99]. In general, copolymerization studies have shown that 

increased [M] does not have an isolated effect; it is influenced by other factors including pH and 

ionic strength (as one might expect given the complexity of the system). Riahinezhad et al. [85] 

reported that the effect of [M] becomes more pronounced at higher pH levels (that is, partially or 

fully ionized conditions); changing [M] at pH 3 had almost no effect on the reactivity ratios, but 

had significant effects at pH 7. At higher pH levels, increasing [M] results in a decreased rAAm and 

an increased rAAc. These results agreed with those reported previously by Rintoul and Wandrey 

[99]. Riahinezhad et al. [85] also observed that an increase in monomer concentration made 

reactivity ratios less ‘scattered’ (that is, more consistent over different pH levels). This observation 

aligns with the stability observed in the poly(methacrylic acid) study described previously [113]; 

higher monomer concentration seems to provide additional charge screening, thus decreasing the 

effect of monomer ionization on polymerization kinetics. 

 

It is well-known, but worth acknowledging nonetheless, that adjusting monomer concentration can 

also have a significant impact on the molecular weight of the polymer product. Molecular weight 

is directly proportional to [M], which provides researchers with a convenient way to achieve the 

desired molecular weight for a custom terpolymer.  
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2.4.4 Effect of Feed Composition 

 

In addition to the overall monomer concentration, the feed composition (that is, the fraction of 

each comonomer in the recipe) can also influence the polymerization kinetics and product 

properties. The design of experiments relies on EVM criteria to select optimal feed compositions 

(see Section 2.3.1), but the feed composition can be varied once relationships are known. 

Theoretically, the fraction of each comonomer in the recipe affects the cumulative copolymer 

composition and the sequence length distribution; these relationships are visible in several 

equations presented previously (see, for example, Equations 2.31 to 2.39 and 2.10 to 2.16).  

 

During AAm/AAc copolymer design work by Riahinezhad et al. [32], high levels of acrylamide 

showed the best performance for the EOR application. When the fraction of acrylamide was 

between 65% and 95%, the product exhibited high molecular weights and high shear viscosity 

(with maximum shear viscosity observed at 70% AAm) [115], both characteristics being desirable 

in EOR. The same study found that small amounts of acrylic acid improved the polyelectrolyte 

nature of the copolymer, but too much AAc resulted in brine sensitivity. 

 

These considerations can be extended to the case of the AMPS/AAm/AAc terpolymer. It is 

expected that high levels of acrylamide will still be necessary, therefore preference should be given 

to solution conditions that promote high AAm incorporation into the product terpolymer. Ideally, 

we are also looking for conditions where the terpolymerization exhibits very little composition 

drift, so that the cumulative terpolymer composition remains approximately constant at any level 

of conversion. 
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Chapter 3. Experimental Methodology for Case Study #1 – 

Enhanced Oil Recovery 
 

The experimental methodology has been presented (at least in part) in several of our publications. 

These publications provide information about preliminary investigations [80] and screening 

experiment results [81]. Also, several of the experimental procedures described in what follows 

will inform an additional paper (recently submitted), in which the optimally designed terpolymers 

for enhanced oil recovery are evaluated in terms of application performance. 

 

3.1 Materials 

 

Monomers 2-acrylamido-2-methylpropane sulfonic acid (AMPS; 99%), acrylamide (AAm; 

electrophoresis grade, 99%), and acrylic acid (AAc; 99%) were purchased from Sigma-Aldrich 

(Oakville, ON, Canada). AAc was purified via vacuum distillation at 30°C, while AAm and AMPS 

were used as received. Initiator (4,4′-azo-bis-(4-cyanovaleric acid), ACVA), inhibitor 

(hydroquinone) and sodium hydroxide were also purchased from Sigma-Aldrich. Sodium chloride 

from EMD Millipore (Etobicoke, ON, Canada) was used as received. In terms of solvents, water 

was Millipore quality (18 MΩ∙cm); acetone (99%) and methanol (99.8%) were used as received. 

Nitrogen gas (4.8 grade) used for degassing solutions was purchased from Praxair (Mississauga, 

ON, Canada). Finally, the reference polymers that were used as baseline for comparison of 

properties were part of the Alcoflood series (254S, 935X, and 955), purchased from BASF, USA.  

 

3.2 Polymer Synthesis 

 

3.2.1 Screening Experiments 

 

The screening experiment study was the first step in examining the effects of reaction conditions 

on the terpolymerization of AMPS/AAm/AAc. Specifically, optimally designed experiments 

(using the error-in-variables model (EVM) design [60] as described in Section 2.3.1.2) and a 

definitive screening design made it possible to select pre-polymerization recipes with high 

information content so that the entire system could be understood in just a few experimental runs. 

The experimental data were subsequently used to estimate ternary reactivity ratios, which provide 

valuable information about the resulting terpolymer properties. A good understanding of how the 

solution properties affect terpolymer reactivity ratios, composition, microstructure and molecular 

weight paves the way for the synthesis of custom-made polymers for specific applications.  

 

In general, the experimental techniques described by Riahinezhad et al. [83] were adopted for these 

terpolymer systems. As per the EVM design of experiments procedure for terpolymerizations [60], 

each pre-polymerization recipe was rich in one comonomer (fAMPS,0/fAAm,0/fAAc,0 = 0.8/0.1/0.1, 

0.1/0.8/0.1, 0.1/0.2/0.7). Prior work has shown poor polymerization when the AAc fraction is too 
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high [62], therefore the constrained design (relative to the general heuristic shown in Figure 2.8) 

shown in Figure 3.1 was used for this experimental work. Additional experimental conditions (at 

each of these feed compositions) are described in what follows. 

 

 
Figure 3.1: Optimally Designed Experiments for Ternary Reactivity Ratio Estimation  

(Constrained Design for AMPS/AAm/AAc Terpolymerization) 

 

Solutions to be polymerized were prepared with target monomer concentrations (according to the 

experimental design of Table 3.1) and the initiator (ACVA) concentration was adjusted to maintain 

a constant [M]/[I]1/2 ratio (=15.8). Prior to polymerization, solutions were titrated with sodium 

hydroxide to adjust the solution to the desired pH (±0.5), and sodium chloride was added to adjust 

ionic strength among the experiments.  

 

All solutions were purged for two hours under 200 mL/min nitrogen. After degassing, aliquots of 

~20 mL of solution were transferred to sealed vials using the cannula transfer method. Free-radical 

solution (aqueous phase) polymerizations were run in a temperature-controlled shaker-bath 

(OLS200; Grant Instruments, Cambridge, UK) at 40°C and 100 rpm. Vials were removed at 

selected time intervals, placed in ice and further injected with approximately 1 mL of 0.2 M 

hydroquinone solution to stop the polymerization. Polymer samples were isolated by precipitating 

the products in acetone, filtered (paper filter grade number 41, Whatman; Sigma-Aldrich, Oakville, 

ON, Canada) and vacuum dried for 1 week at 50°C.  

 

pH, ionic strength and monomer concentration are expected to affect the polymerization kinetics 

and resulting terpolymer properties. Therefore, in preliminary work [80], all variables were kept 

constant and controlled to the extent possible. In contrast, the current work employs a definitive 

screening design (using Design Expert software) to adjust four variables (in 3 levels each) 

simultaneously and glean general information about the system. Level selection was informed by 

prior work (for the AAm/AAc copolymer [84, 85] and the AMPS/AAm/AAc terpolymer [80]) and 
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influenced by considering desirable properties for enhanced oil recovery application performance 

[32]. The definitive screening design is presented in Table 3.1 (Runs S1 through S9). The 

conditions for two additional runs (Runs S10 and S11) were informed by preliminary results and 

kept screening variables constant to the extent possible, for comparison purposes. This will be 

discussed further in Section 4.1.2. 

 

Table 3.1: Definitive Screening Design for Terpolymerization of AMPS/AAm/AAc 

Run # pH IS [M] Feed Composition (fAMPS,0/fAAm,0/fAAc,0) 

S1 7 1.5 M 1.0 M 0.1/0.2/0.7 

S2 5 1.2 M 1.0 M 0.8/0.1/0.1 

S3 7 1.8 M 1.5 M 0.8/0.1/0.1 

S4 7 1.2 M 0.5 M 0.1/0.8/0.1 

S5 9 1.2 M 1.5 M 0.1/0.2/0.7 

S6 5 1.8 M 0.5 M 0.1/0.2/0.7 

S7 9 1.8 M 1.0 M 0.1/0.8/0.1 

S8 5 1.5 M 1.5 M 0.1/0.8/0.1 

S9 9 1.5 M 0.5 M 0.8/0.1/0.1 

     

S10 7 1.5 M 1.0 M 0.8/0.1/0.1 

S11 7 1.5 M 1.0 M 0.1/0.8/0.1 

 

By combining the definitive screening design with optimal feed compositions (as per the EVM 

design of experiments for ternary reactivity ratio estimation), different subsets of data for 

parameter estimation can be analyzed under specific conditions. For example, from Table 3.1, one 

could use Runs S1, S3 and S4 to estimate (approximate) reactivity ratios for the AMPS/AAm/AAc 

terpolymer at pH 7. Although [M] and IS are varying, the associated feed compositions for these 

3 runs make up an optimal design. Therefore, full conversion data from 3 runs can be used for 

parameter estimation. It is important to note that these parameter estimates are general; reactivity 

ratios from these experiments should not be used to predict cumulative terpolymer composition or 

terpolymer microstructure. Rather, these screening runs can be used to examine how changes in 

pH, ionic strength and monomer concentration affect general trends (i.e. incorporation of various 

comonomers, rate of polymerization, molecular weight averages, and so on). These trends inform 

subsequent runs, with the intent to manipulate pre-polymerization recipes and terpolymerization 

kinetics to create custom-made materials. 

 

3.2.2 Optimally Designed Experiments 

 

In the optimal design phase of this study, terpolymers were synthesized under consistent solution 

properties at the levels determined from the definitive screening design results [81]. Sodium 

chloride was added to adjust ionic strength to 0.9 M, and all monomer solutions were titrated with 

sodium hydroxide to adjust the pH to approximately 7 (±0.5). Total monomer concentration was 
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1.5 M for each synthesis, with 0.009 M initiator (ACVA). Two optimal feed compositions (both 

rich in acrylamide) were selected to allow for the most desirable terpolymer microstructure (see 

Table 3.2). These feed compositions were based on predictions made using newly estimated 

reactivity ratios (from definitive screening design data). A more detailed justification of these 

‘optimal’ experimental conditions is provided in Chapter 4 (Section 4.2.1). 

 

Table 3.2: Optimally Designed Experiments for Terpolymerization of AMPS/AAm/AAc 

Run # pH IS [M] Feed Composition (fAMPS,0/fAAm,0/fAAc,0) 

Opt1 7 0.9 M 1.5 M 0.21/0.69/0.10 

Opt2 7 0.9 M 1.5 M 0.10/0.75/0.15 

 

As with the screening experiments, all solutions were degassed with 200 mL/min nitrogen for 2h 

prior to polymerization. After degassing, aliquots of ~20 mL of solution were transferred to sealed 

vials using the cannula transfer method. Free-radical solution (aqueous phase) polymerizations 

were run in a temperature controlled shaker-bath (OLS200; Grant Instruments, Cambridge, UK)  

at 40°C and 100 rpm. Vials were removed at selected time intervals, placed in ice and further 

injected with approximately 1 mL of 0.2 M hydroquinone solution to stop the polymerization. 

Polymer samples were isolated by precipitating the products in acetone, filtered (paper filter grade 

number 41, Whatman; Sigma-Aldrich, Oakville, ON, Canada) and vacuum dried for 1 week at 

50°C. Both polymerizations were independently replicated. 

 

3.3 Characterization of Polymer Properties 

 

3.3.1 Conversion 

 

Conversion of all polymer samples was determined using gravimetry. Due to the high ionic 

strength (and necessarily high salt content), it was observed that sodium chloride remained present 

in the polymer samples at an approximate 1:1 ratio with acrylamide. This was initially deduced 

from elemental analysis results and uncharacteristically high conversion calculations, and then 

independently confirmed for select samples via inductively coupled plasma mass spectrometry 

(ICP). This is discussed further in Section 4.1.4. As per the recommendation of Riahinezhad et al. 

[84], the mass of the sodium ions (attracted to the dissociated acids along the polymer chain) was 

considered in conversion calculations. Sample calculations are available in Appendix C (Section 

C.1). 

 

3.3.2 Composition 

 

Polymer composition was measured using elemental analysis (CHNS, Vario Micro Cube, 

Elementar). The machine was calibrated daily (and after every 60 samples) using a sulfanilamide 

standard and samples were combusted at 1150°C. The content of elemental C, H, N and S in the 

samples was determined, which allowed for the subsequent calculation of cumulative terpolymer 
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composition. Composition calculations did not include H measurements, as residual water has 

been known to affect the determined H content. Sample calculations are provided in Appendix C 

(Section C.2). 

 

One of the challenges in performing elemental analysis for these terpolymer samples was the high 

sulfur concentration (especially for the AMPS-rich samples). Initially, sulfur entrapment within 

the elemental analysis system (and, potentially, poor combustion) resulted in poor repeatability of 

elemental analysis results. In collaboration with the technical team at Elementar, the following 

alterations to standard procedures were found to significantly improve the repeatability of the 

results: 

 WO3 powder was added to each polymer sample (in a 1:1 mass ratio) during the sample 

preparation stage. This provided additional oxygen during combustion and ensured 

complete combustion of the polymer sample. Additionally, the presence of WO3 in the 

combustion tube required that a ceramic ash crucible (with 5 mm WO3 in the bottom) be 

used instead of standard glass. The ceramic crucible is better able to collect sample 

combustion residue, whereas the WO3 may leach out of the standard glass tube (which 

could make the ash crucible stick to the inside of the combustion tube).  

 At least four conditioning runs were completed before daily calibration. Occasionally, 

additional conditioning runs were added, especially if the sulfur content seemed unstable. 

 Terpolymer samples were run in triplicate to ensure consistent results. Essentially, the first 

sample acted as a ‘conditioning’ sample for the terpolymer being analyzed, which was 

especially important if the sulfur content in the terpolymer was significantly different than 

the previous sample (or standard).  

 Over time, the quartz bridge (linking the combustion tube and the reduction tube) can 

develop a blue tint, which indicates that wolframic acids have precipitated. In this case, the 

quartz bridge should be replaced with a clean one, and the contaminated bridge should be 

thoroughly cleaned and dried. 

 The cotton ‘plugs’ in the drying tube are known to trap sulfur-containing compounds 

(mainly SO2). An alternative plug to improve gas flow rates (which Elementar calls their 

poly filter) can minimize the entrapment. 

 If sulfur content becomes especially high (noticeable during blank runs, conditioning runs, 

and/or calibration runs), the adsorption column can be baked out to clean out any debris. 

 

These adjustments significantly improved the repeatability of the elemental measurements (and 

simultaneously increased confidence in the results). 

 

3.3.3 Molecular Weight 

 

Molecular weight averages were determined using gel permeation chromatography (PL-GPC 50, 

Agilent, with two columns, type PL aquagel-OH MIXED-H 8 μm, Agilent). To analyze the 
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AMPS/AAm/AAc terpolymers, four detectors were employed: refractive index, low-angle and 

right-angle light scattering (LALLS/RALLS), and differential pressure. To minimize the charge 

interactions between the column and the polymer samples, a buffer solution of pH 7 was used as 

the mobile phase (flowing at a rate of 1.0 mL/min). The buffer was prepared using sodium nitrate 

(0.2 M) and sodium phosphate (monobasic and dibasic, 0.1 M) in Millipore quality water. The 

synthesized polymers were dissolved in the mobile phase (pH 7 buffer) to obtain concentrations 

of ~1 mg/mL. The solution preparation step required fine grinding prior to dissolving polymers in 

buffer, and allowing the solutions to sit under ambient conditions (with occasional manual mixing) 

until the polymer was dissolved. This sometimes took several days, since the material did dissolve 

easily. Prior to injection, polymer solutions were filtered through a 0.2 μm filter. Polyacrylic acid 

– sodium salt calibration standards were obtained from Agilent Technologies and their peak 

average molecular weight (𝑀p) values ranged from 4.67×105 to 2.25×106 g/mol.  

 

Calibration was also confirmed using a well-characterized copolymer (poly(acrylamide-co-acrylic 

acid) partial sodium salt from Aldrich; ~80% acrylamide; Mw = 520,000 and Mn = 150,000); 

measurements were in good agreement with the expected results (coefficient of variation <10% 

for both 𝑀w  and 𝑀n). For a dn/dc of 0.171, Mw = 456,400 and Mn = 160,362. Additional details 

are provided in Appendix C, Section C.3. 

 

For all unknown samples, a dn/dc of 0.175 was used (based on the dn/dc of the PAAc-Na standards 

and verified by laser refractometry). The range of dn/dc values for both polyacrylamide and 

polyacrylic acid (in salt water) are similar; changing the dn/dc value during analysis had no effect 

on the reported molecular weight averages. Note, however, that dn/dc values come from a variety 

of sources, meaning that the mobile phase is not necessarily consistent for measurements reported 

by different groups. A more complete analysis (like the one done by Leamen et al. [116]) would 

be necessary to understand the full intricacies of the system.  

 

3.3.4 Sequence Length Distribution 

 
13C-NMR (nuclear magnetic resonance) was conducted on a Bruker AVANCE 500 Ultrashield 

NMR spectrometer (Nuclear Magnetic Resonance Facility, Department of Chemistry, University 

of Waterloo). The NMR was run for 12 hours per sample at 68 ºC (around 6,000 scans) and 

employed inverse gated proton decoupling (30 degree pulse) with a pulse delay of 6 s (D1 = 6 s).  

 

To prepare the samples for analysis, each terpolymer was dissolved in a pH 7 D2O/buffer solution 

(prepared using 0.2 M sodium nitrate and 0.1 M sodium phosphate (monobasic and dibasic) as for 

GPC, but with D2O as the mobile phase). Polymer samples were finely ground and slowly added 

to the buffer to achieve a concentration of 6 wt% (~0.1332 g of polymer in 2 ml of D2O/buffer). 

Solutions were injected into NMR tubes using a long-tipped needle and a syringe, and tubes were 

heated in a 60°C water bath to ensure all bubbles had escaped prior to analysis.  
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3.3.5 Thermal Stability 

 

Select samples were analyzed using thermal gravimetric analysis (TGA) on a Q500 TGA from TA 

Instruments (analytical instrumentation lab, Department of Chemical Engineering, University of 

Waterloo). Small sample quantities (<5 mg) were placed in platinum pans for analysis, and 

samples were run from 30°C to 600°C with a heating rate of 10°C/min under nitrogen atmosphere. 

It was especially important to use small amounts of sample (< 5 mg), since entrapped water could 

result in sample expansion during analysis (see Appendix C, Section C.4). 

 

3.3.6 Additional Characterization 

 

To evaluate whether residual sodium chloride was present in the AMPS/AAm/AAc terpolymer, 

sodium concentration was measured for select samples using inductively coupled plasma (ICP) 

mass spectrometry. The instrument used was a Prodigy radial ICP-OES by Teledyne-Leeman 

(analytical instrumentation lab, Department of Chemical Engineering, University of Waterloo).  

Samples outside the calibration range (0-100 mg/L) were diluted to fall within the calibration range 

and dilution factors were applied to the results. All working standard solutions were prepared using 

Millipore quality water (18 MΩ∙cm), acidified with reagent grade nitric acid to a concentration of 

0.3%. 

 

3.4 Characterization of Application-Specific Properties 

 

3.4.1 Rheology 

 

Solutions for rheological analysis were prepared by dissolving finely ground terpolymer samples 

in Millipore quality water or pH 7 buffer (prepared as described for GPC; Section 3.3.3); solutions 

were made to have a concentration of 0.01 g/mL. A stress-controlled cone and plate rheometer 

(AR2000, TA Instruments) was used to measure the viscoelastic properties of the polymer 

solutions. An environmental test chamber (ETC) steel cone with 40 mm diameter and 1° angle was 

used for all tests, and all measurements were taken at 25°C. Select independent replicates were 

performed, and additional details are available in Appendix C, Section C.5. 

 

3.4.2 Enhanced Oil Recovery 

 

The optimal terpolymers designed for enhanced oil recovery were evaluated using specialized 

equipment (capable of simulating oil reservoir flooding on a lab scale) at the University of New 

Brunswick, Department of Chemical Engineering. Experimental procedures reported by 

Riahinezhad et al. [117] were used as a guideline, and details specific to the current investigation 

are presented in what follows. Generally speaking, the EOR application performance was 

evaluated in two phases. Phase I (described in Section 3.4.2.1) measured polymer flow 
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performance in unconsolidated porous media (that is, the sand-pack simulating an oil reservoir) 

and Phase II (described in Section 3.4.2.2) determined oil recovery efficiency through polymer 

flooding experiments. 

 

3.4.2.1 Phase I: Polymer Flow Performance Testing 

 

Phase I provides information about how each polymeric material behaves in solution as it is 

injected into the reservoir. The lab-scale experimental set-up used to simulate an oil reservoir is 

called a sand-pack system, and a schematic is shown in Figure 3.2. 

 

 
Figure 3.2: Experimental Set-Up for Sand-pack Flooding Tests  

 

The sand-pack system makes it possible to examine polymer flow behaviour through porous media 

(representative of oil reservoirs). The sand-pack used for this series of investigations contains 

Quikrete sand, and the particle size distribution of the sand is provided in Figure 3.3.  
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Figure 3.3: Particle Size Distribution of Sand for Sand-pack Flooding Tests 

 

The sand-pack geometry is also an important consideration in this experimental stage and is shown 

(along with additional experimental conditions) in Table 3.3. The system geometry is relevant to 

determine the required flow rate and is necessary for determining the porosity and permeability of 

the sand-pack. The injection flow rate was selected to simulate an average linear velocity of 1 

ft/day (similar to real conditions in oil fields); the linear velocity of 1 ft/day is equivalent to the 

volumetric flow rate of 0.18 ml/min (given the cross-sectional area of the sand-pack cylinder).  

 

Table 3.3: Sand-pack Characteristics and Experimental Conditions 

Property Value 

Length 15.30 cm 

Diameter 3.30 cm 

Cross sectional area 8.55 cm2 

Pump flow rate   0.18 ml/min 

 

The procedure for a typical polymer flow performance test is described below. Estimates of 

volume requirements are provided in Appendix C, Section C.6. 

 

1. Sand-pack preparation and characterization: The rigid cylinder (sand-pack system shown 

in Figure 3.2) was packed with sand. Then, the characteristics of the sand-pack (pore 

volume, porosity and permeability) were measured. Brine was injected into the sand-pack 

until the porous medium was fully saturated. The pore volume (PV) was established as the 

total volume of brine that could be injected into the system, the porosity was calculated 

from the total volume of the cylinder, and the permeability was experimentally determined 

using Darcy’s Law.   
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2. Brine injection #1: 1 pore volume (PV) + 1 dead volume (DV) of brine were injected into 

the sand-pack system. The synthetic brine that was used in this test (and subsequent 

polymer flooding tests) had a composition inspired by real conditions in oil reservoirs in 

Alberta, Canada (see Table 3.4).  

 

Table 3.4: Composition of Synthetic Brine 

Salt wt % 

NaCl 1.72 

MgCl2 0.04 

CaCl2 0.33 

Na2SO4 0.01 

Total Dissolved Solids 2.10 

 

3. Polymer solution injection: A 1 wt% polymer solution was prepared for polymer flooding. 

During the preparation of the polymer solution, it was essential that the polymer be ground 

into a fine powder. Also, adding the polymer gradually ensured that a homogeneous 

polymer solution was obtained. The required volume for this stage was equivalent to 2 PV 

+ DV, with an additional 10 mL included for expected sample losses. 

 

4. Brine injection #2: After polymer flooding, the sand-pack was further injected with brine. 

In this case, 4 PV + DV was required to remove the majority of the polymeric material 

from the sand-pack.  

 

The full procedure was completed at least twice for each of the polymeric materials (Opt1, Opt2 

and a reference polymer). The reference polymer used was a combination of two commercially 

available materials (both in the Alcoflood family); this made it possible to use a reference material 

with a molecular weight average similar to the designed terpolymers. Characteristics of the 

reference polymer are provided in Table 3.5. 

 

Table 3.5: Composition of Reference Polymer for EOR Testing 

Polymer MW (g/mol) Mass Fraction 

HPAM Alcoflood 254S  500,000 0.81 

HPAM Alcoflood 935X 5,000,000 0.19 

Average MW  

(based on terpolymer properties) 
1,370,000  

 

The purpose of Phase I testing was primarily to establish the resistance factor (RF) and the residual 

resistance factor (RRF) for each polymeric material. The RF provides information about the 

effective viscosity (mobility control capability) of the polymer solution in porous media relative 

to water. Therefore, higher RF values typically indicate that polymer flooding will be more 

successful. The definition of RF is provided in Equation 3.1. 
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𝑅𝐹 =
𝜆𝑤
𝜆𝑝
=

𝑘𝑤
𝜇𝑤
⁄

𝑘𝑝
𝜇𝑝
⁄

 3.1 

Where λw and λp are the mobility of the water and polymer solution, respectively. Also, λw can be 

replaced with λb (where b is brine), since the flood water used in these experiments was a brine 

solution. k represents the permeability of the porous media and μ represents the viscosity of the 

water or the polymer solution. The permeability, k, is calculated from Darcy’s Law (Equation 3.2). 

 

𝑘 = 1000 
𝐿

𝐴
 𝜇 𝑄 

1

(𝑃0 − 𝑃𝑖)
 3.2 

Where Q is the volumetric flow rate (ml/s), Po and Pi are the outlet and inlet fluid pressures (atm), 

μ is the fluid dynamic viscosity (centipoise, cP), L is the length of the sand-pack (cm), and A is 

the cross-sectional area of the sand-pack (cm2). 

 

By combining Equations 3.1 and 3.2 (assuming a fixed flow rate and knowing that the geometry 

is invariant), the measurement of the RF can be simplified as shown in Equation 3.3. 

𝑅𝐹 =
∆𝑃𝑝𝑜𝑙𝑦𝑚𝑒𝑟 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑖𝑛𝑗𝑒𝑐𝑡𝑖𝑜𝑛

∆𝑃𝑏𝑟𝑖𝑛𝑒 𝑖𝑛𝑗𝑒𝑐𝑡𝑖𝑜𝑛 #1
 3.3 

Where ΔP is the pressure difference across the sand-pack at steady state conditions. 

 

In contrast, the RRF provides information about polymer retention and adsorption onto solid 

surfaces within the reservoir (adsorption is usually physical in nature; chemisorption is less 

common). Any retention can lead to permeability reduction within the sand-pack (or, more 

broadly, the reservoir), and can cause potential injectivity issues. Therefore, lower RRF values are 

more desirable for EOR. 

 

As shown in Equation 3.4, the RRF is defined as the ratio of the mobility of water (or brine) before 

polymer injection (that is, brine injection #1) to the mobility of water (or brine) after polymer 

flooding (that is, brine injection #2). However, it can also be rewritten in terms of the pressure 

difference across the sand-pack before and after polymer solution injection (Equation 3.5). 

𝑅𝑅𝐹 =
𝜆𝑏,   𝑏𝑟𝑖𝑛𝑒 𝑖𝑛𝑗𝑒𝑐𝑡𝑖𝑜𝑛 #1

𝜆𝑏,   𝑏𝑟𝑖𝑛𝑒 𝑖𝑛𝑗𝑒𝑐𝑡𝑖𝑜𝑛 #2
 3.4 

𝑅𝑅𝐹 =
∆𝑃  𝑏𝑟𝑖𝑛𝑒 𝑖𝑛𝑗𝑒𝑐𝑡𝑖𝑜𝑛 #2

∆𝑃   𝑏𝑟𝑖𝑛𝑒 𝑖𝑛𝑗𝑒𝑐𝑡𝑖𝑜𝑛 #1
 3.5 

 

3.4.2.2 Phase II: Polymer Flooding Tests 

 

Polymer flooding tests were carried out using the same experimental set-up shown in Figure 3.2 

and at reservoir conditions similar to real conditions. The major difference in the experimental 
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process (compared to the tests in Section 3.4.2.1) was the addition of an oil injection step (step 2 

below).  

 

During each injection step, injection time, flow rate, pressure readings, and volume of oil produced 

were recorded. Also, at the end of each stage, the oil and brine saturation in the sand-pack and the 

oil recovery were calculated. The general procedure for a typical heavy oil displacement test is 

described in steps 1 through 6 below. Again, experimental details are provided in Appendix C, 

Section C.6. 

 

1. Sand-pack preparation and characterization: as per step 1 in the Phase I test; see Section 

3.4.2.1. 

 

2. Heavy oil injection: 2 pore volumes (PV) + 1 dead volume (DV) of oil were injected into 

the sand-pack system. The oil used in these tests (provided by Husky Energy, Canada) was 

diluted with natural condensate (provided by Corridor Resources Inc., Canada) to obtain a 

viscosity of 3.93 Pa·s at 25°C. 

 

3. Brine injection #1: The first brine injection is essentially a water flooding stage. 4 PV + 1 

DV brine (with the composition shown in Table 3.4) were injected into the sand-pack at 

constant flow rate (0.18 mL/min). 

 

4. Polymer solution injection: In this step, a 1 wt% polymer solution was prepared for 

polymer flooding. As mentioned in Phase I, using a fine powder and gradually adding it to 

the solution helped with solution preparation. The total volume injected during this 

polymer flooding step was 1 PV + DV (flow rate = 0.18 mL/min), with an additional 10 

mL included for sample losses.  

 

5. Brine injection #2: This is the post-polymer water flooding stage. Here, additional brine (2 

PV + DV) was injected into the sand-pack at 0.18 mL/min. This ensured that as much oil 

as possible would be produced from the reservoir.  

 

6. Determination of oil production: In order to measure the volume of oil produced, the output 

fluid was collected from the sand-pack in a separation funnel (of known mass). After 

several days (usually 4 to 7 days), most of the oil and brine mixture had separated. 

However, in some cases (if the separation of water was difficult), a known amount of 

toluene was added to the output fluid to force the rapid removal of residual water. When 

only oil remained in the funnel, the mass of the oil-containing funnel was measured, which 

made it possible to calculate the mass and the volume of the oil produced. 
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The primary objective at this stage is to determine the overall percentage of oil recovery that can 

be obtained from polymer flooding. This is essentially the sum of the oil recovery after water 

flooding (step 3 above), polymer flooding (step 4 above) and post-polymer water flooding (step 5 

above). It can also be informative to look at the incremental oil recovery. This provides a measure 

of ‘how much more’ oil can be recovered from polymer flooding compared to simple water 

flooding. Therefore, this is a combination of the recovery contributions from the polymer flooding 

stage (step 4 above) and the post-polymer water flooding stage (step 5 above).   
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Chapter 4. Results and Discussion for Case Study #1 – Enhanced 

Oil Recovery 
 

4.1 Screening Experiments 

 

The results and discussion provided in this section have largely been published in recent work by 

Scott, Duever and Penlidis [81].  

 

The screening experiments described in Section 3.2.1 make it possible to examine the effects of 

important factors (namely, pH, ionic strength and monomer concentration) on the 

terpolymerization of 2-acrylamido-2-methylpropane sulfonic acid (AMPS), acrylamide (AAm) 

and acrylic acid (AAc). A good understanding of how these factor levels affect terpolymerization 

reactivity ratios, and terpolymer composition, microstructure and molecular weight paves the way 

for the synthesis of custom-made polymers for specific applications.  

 

4.1.1 Effect of pH 

 

As mentioned in Section 2.4.1, changes in solution pH affect the degree of dissociation (and 

therefore the charge) of acidic monomers and the resulting polymer. By grouping the screening 

experiments according to pH level (that is, pH level constant with varying ionic strength and 

monomer concentration), it is possible to estimate ternary reactivity ratios at each pH level. The 

screening runs (from Table 3.1) used for each analysis and the resulting reactivity ratio estimates 

(obtained using full conversion data and cumulative terpolymer composition to obtain ternary 

reactivity ratios) are shown in Table 4.1. Again, note that at each pH, there is a pre-polymerization 

recipe rich in each of the three comonomers. For all estimation steps, preliminary estimates were 

taken from recent work [80]; in all cases, monomer 1 is 2-acrylamido-2-methylpropane sulfonic 

acid (AMPS), monomer 2 is acrylamide (AAm) and monomer 3 is acrylic acid (AAc).  

 

Table 4.1: pH Effects on Ternary Reactivity Ratio Estimates for AMPS/AAm/AAc (M1/M2/M3) 

pH Data from Run # r12 r21 r13 r31 r23 r32 

5 S2, S6, S8 0.96 0.53 0.25 1.22 1.55 0.51 

7 S1, S3, S4 1.14 0.66 0.45 0.99 1.48 0.42 

9 S5, S7, S9 1.12 0.53 0.32 1.56 2.07 0.55 

 

The estimation results at varying pH levels do not show any clear correlation between pH and 

reactivity ratio estimates; most values for a given parameter (say rij; ‘vertical’ comparison within 

Table 4.1) are close together. However, the point estimates only provide part of the story. The joint 

confidence regions (JCRs, or error ellipses) for the parameter estimates should also be examined, 

as they provide additional information about possible parameter correlation and degree of 
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confidence for each estimate. JCRs for all three pH levels and all ternary reactivity ratio pairs are 

presented in Figure 4.1. 

 

 
Figure 4.1: Comparison of Reactivity Ratio Estimates for AMPS/AAm/AAc at pH 5, 7 and 9 

 

Figure 4.1 provides significantly more information than the numerical estimates of Table 4.1. First, 

we can evaluate the area of the JCRs associated with each pH level. At pH 5 and pH 7, the JCRs 

are small, which indicates a high degree of confidence in the estimates. At pH 9, the JCRs are 

larger, which suggests more uncertainty. This may be related to the fact that other variables 

(namely ionic strength and monomer concentration) are not held constant, which affects the 

precision of the parameter estimates. Alternatively, fewer data points are available for Run S9 as 

it had an unusually long induction time, so the parameters are being estimated from a smaller (and 

therefore less informative) data set.  

 

A second observation from Figure 4.1 is related to the overlap in JCRs, especially for the 

AMPS/AAm and AAm/AAc comonomer pairs. This agrees with the numerical results shown in 

Table 4.1, which indicate that most parameter estimates are close together. According to Figure 

4.1, there is no statistically significant difference between parameter estimates for the AMPS/AAm 

and AAm/AAc comonomer pairs at pH 5 and pH 9. Distinct JCRs (that is, without overlap) are 

visible for the AMPS/AAc copolymer pair, which suggests that the acidic comonomers may be 

more affected by changes in pH. This agrees with physicochemical expectations, as the degree of 

acid dissociation is likely to be influential in the pH range being studied.  
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Given prior investigations of pH effects (especially for the AAm/AAc copolymer [85, 97-99]), one 

might expect bigger differences in the reactivity ratios at different pH levels. However, it is 

important to keep in mind that these results are under specific conditions, where several variables 

are being manipulated simultaneously. pH effects are largely due to acid dissociation and charge 

effects. Therefore, adding sodium chloride to the recipe (to adjust ionic strength) increases charge 

screening, reducing acrylic acid repulsion and moderating the effect that a pH increase would have 

in isolation.  

 

The final takeaway from Figure 4.1 is the shape and orientation of the JCRs. All JCRs are 

somewhat ‘stretched’ in one direction, which indicates more uncertainty associated with one of 

the parameters. This phenomenon has been described in recent work [6] and is likely related to the 

absolute value of the parameter estimate; a larger absolute value results in more uncertainty. It is 

also important to note that the JCRs are either horizontal or vertical (not on a diagonal). This 

indicates that parameter correlation is minimal, thanks to well-designed experimental runs based 

on the error-in-variables model.  

 

In referring again to the numerical estimates of Table 4.1, it is interesting to note that at each pH 

level, the relationship between reactivity ratios for a given comonomer pair remains consistent. 

That is, for any subset of screening runs, r12 > r21, r13 < r31 and r23 > r32. Therefore, regardless of 

pH, the degree of incorporation of each comonomer remains relatively constant. This is confirmed 

by using the reactivity ratio estimates from Table 4.1 to predict the cumulative terpolymer 

composition at pH 5, pH 7 and pH 9 given the AAm-rich recipe (fAMPS,0/fAAm,0/fAAc,0 = 0.1/0.8/0.1); 

see Figure 4.2.  

 

 
Figure 4.2: Predicted Cumulative Composition from Screening Experiments for  

AAm-rich Terpolymer at pH 5, 7 and 9  
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The relationship between reactivity ratios for comonomer pairs becomes even more interesting 

when the experimental results are compared to the (previously determined [80]) preliminary 

estimates. Scott et al. [80] estimated ternary reactivity ratios for AMPS/AAm/AAc using data 

collected at pH 7, with constant ionic strength (IS = 0.9 M) and monomer concentration ([M] = 

1.0 M). Therefore, it is straightforward to compare two sets of reactivity ratios from data obtained 

at pH 7: the current estimates (with varying IS and [M]) versus earlier estimates (with constant IS 

and [M]). 

 

Table 4.2: Reactivity Ratio Estimates at pH 7 with Varying and Constant IS and [M] 

Experimental 

Conditions 

r12 
 

r21 r13  r31 r23  r32 

Current study [81]: pH 7 

1.2 M < IS < 1.8 M 

0.5 M < [M] < 1.5 M 

1.14 > 0.66 0.45 < 0.99 1.48 > 0.42 

Scott et al. [80]: pH 7 

IS = 0.9 M 

[M] = 1.0 M 

0.66 < 0.82 0.82 > 0.61 1.61 > 0.25 

 

The key takeaway from Table 4.2 is the shift in relationship for two of the comonomer pairs. As 

discussed already, the current experimental results indicate that r12 > r21 and r13 < r31 in all cases 

(recall Table 4.1). In contrast, the reactivity ratio estimates determined by Scott et al. [80] show 

the opposite: r12 < r21 and r13 > r31. Since the pH is the same for these two data sets, it is possible 

to conclude that this ‘cross-over’ behaviour is not a result of pH effects. The most significant 

difference (aside from varying IS and [M] vs. constant IS and [M]) is the increased ionic strength 

used in the current experiments. This provides further motivation to investigate the effects of ionic 

strength on ternary reactivity ratios of AMPS/AAm/AAc (see Section 4.1.2). Specifically, if we 

can learn more about how ionic strength creates a cross-over point (at which rij ≈ rji), we can target 

specific reaction conditions to create custom-made materials with desirable properties. 

 

In summarizing the effect of pH on the terpolymerization of AMPS/AAm/AAc, the following 

remarks can be made: 

1. No clear correlation exists between pH and reactivity ratio estimates for the range of 5 to 9.  

2. The largest JCRs (and therefore the most uncertainty) were observed for reactivity ratio 

estimation at pH 9. 

3. Acidic comonomers (AMPS and AAc) seem to be more affected by changes in pH.  

4. pH effects are likely masked by salt addition in this type of screening design.  

5. Well-designed experiments (using the error-in-variables model) minimize parameter 

correlation. 

6. Cross-over behaviour was observed for AMPS/AAm and AMPS/AAc comonomer pairs 

(current designs [81] vs. Scott et al. [80]); both data sets are at pH 7, therefore cross-over 

behaviour is due to some other factor effect. 
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4.1.2 Effect of Ionic Strength 

 

Ionic strength is an important factor to consider during the synthesis of polyelectrolytes. As 

discussed in Section 2.4.2, adding counter-ions (in the form of salt) to a pre-polymerization 

solution can reduce repulsion between charged monomers and polymer chains. This effectively 

neutralizes the charged molecules (dissociated AMPS and/or acrylic acid, in this case), which 

minimizes repulsion and increases the rate of polymerization.  

 

The design of experiments used requires that the ‘low’ (-1) level for ionic strength be 1.2 M. This 

is the result of high monomer concentration and a high proportion of acidic monomer in a ‘low’ 

ionic strength run. Specifically, in Run S5 (from Table 3.1), a total monomer concentration of 1.5 

M and full dissociation of AMPS and AAc comonomers result in an ionic strength of 1.2 M before 

any NaCl is added to the recipe. Therefore, the ‘low’ (-1) ionic strength level is necessarily 1.2 M. 

This imposes a relatively high range for the ionic strength investigation, but this is a consequence 

of using the specific experimental design for such a complex polymerization. 

 

The data from the experiments were grouped according to ionic strength for reactivity ratio 

estimation. As explained previously, ternary reactivity ratios were estimated for the 

AMPS/AAm/AAc terpolymer at each ionic strength level (with varying pH and monomer 

concentration). The trials used for each analysis and the resulting reactivity ratio estimates 

(obtained as described in Section 4.1.1) are shown in Table 4.3. 

 

Table 4.3: Ionic Strength (IS) Effects on Ternary Reactivity Ratio Estimates for  

AMPS/AAm/AAc (M1/M2/M3) 

IS Data from Run # r12 r21 r13 r31 r23 r32 

1.2 M S2, S4, S5 0.90 0.65 0.24 1.08 1.87 0.52 

1.5 M S1, S8, S9 13.19 0.68 0.48 27.02 7.47 0.70 

1.8 M S3, S6, S7 1.11 0.54 0.46 1.35 1.65 0.55 

 

Given the reactivity ratios estimated at all three ionic strength levels, there is an obvious difference 

at IS = 1.5 M. For each reactivity ratio pair at IS = 1.5 M, the larger parameter estimates (namely 

r12, r31 and r23) are much larger than under the other conditions. These values have likely been 

overestimated (due to more uncertainty associated with these parameters), and the JCRs will be 

examined to troubleshoot this aspect (see Figure 4.3). Inaccurate estimation may be due to the 

effects of non-constant pH and monomer concentration, or (as suggested for the pH 9 analysis, see 

Section 4.1.1) non-informative experimental data. 
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(a) 

 
(b) 

 

Figure 4.3: Comparison of Reactivity Ratio Estimates for AMPS/AAm/AAc 

at IS = 1.2 M, IS = 1.5 M and 1.8 M ((a) All Data and (b) Without the IS = 1.5 M Data) 

 

Examining the point estimates and joint confidence regions for these reactivity ratios confirms that 

there is substantial uncertainty for the IS = 1.5 M data. These long and narrow JCRs emphasize 

the uncertainty associated with r12, r31 and r23; since the error is associated with all three 

comonomers, parameter estimates can likely be improved by eliminating the confounding 

variables (that is, keeping pH and [M] constant during synthesis). If the uncertainty were related 
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to non-informative data or poor experimental design, one might expect the error to be more clearly 

associated with one specific comonomer.  

 

4.1.2.1 Ternary Reactivity Ratios for Constant pH and [M]  

 

The most likely cause for the error associated with IS = 1.5 M is the influence of changing pH and 

[M]. Consideration of non-constant variables is a necessary part of screening design analysis, but 

it seems that some combinations of runs are more prone to error (that is, more influenced by non-

constant variables) than others. Therefore, for improved reactivity ratio estimates at IS = 1.5 M, 

two supplemental runs were added to the experimental docket: Runs S10 and S11 (recall Table 

3.1). Both runs are informed by the EVM design of experiments for ternary reactivity ratio 

estimation and vary only in feed composition. The data from these runs can be combined with the 

data from Run S1 for accurate ternary reactivity ratio estimation at IS = 1.5 M, pH 7 and [M] = 

1.0 M. As an additional bonus, these runs are under similar conditions to previous work; Scott et 

al. [80] have reported ternary reactivity ratios for AMPS/AAm/AAc from data collected at IS = 

0.9 M, pH 7 and [M] = 1.0 M. Therefore, comparison of reactivity ratios can be performed for IS 

= 0.9 M and IS = 1.5 M, all else being equal. 

 

First, the data from Runs S1, S10 and S11 are revisited to estimate reactivity ratios at IS = 1.5 M. 

As before, full conversion data can be analyzed using the cumulative composition model. The 

point estimates here are much more reasonable (compared to the IS = 1.5 M results of Table 4.3) 

and the JCR areas have decreased significantly (see Figure 4.4). This confirms that controlling IS, 

pH and [M] gives more reliable parameter estimates.  

 

 
Figure 4.4: Reactivity Ratio Estimates for AMPS/AAm/AAc at IS = 1.5 M;  

Comparison of Results at Constant/Varying pH and [M]  
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Table 4.4: Ionic Strength (IS) Effects on Ternary Reactivity Ratio Estimates;  

Varying and Constant pH and [M] 

Experimental Conditions r12 
 

r21 r13  r31 r23  r32 

IS = 1.5 M 

5 < pH < 9 

0.5 M < [M] < 1.5 M 

Data from Run #: S1, S8, S9 

13.19 > 0.68 0.48 < 27.02 7.47 > 0.70 

IS = 1.5 M 

pH = 7 

[M] = 1.0 M 

Data from Run #: S1, S10, S11 

2.66 > 0.39 0.27 < 1.54 1.27 > 0.39 

IS = 0.9 M 

pH = 7 

[M] = 1.0 M 

Data from Scott et al. [80] 

0.66 < 0.82 0.82 > 0.61 1.61 > 0.25 

 

Aside from the improved degree of confidence associated with the parameter estimates, it is also 

possible to compare ternary reactivity ratios at IS = 1.5 M (current study [81]) to IS = 0.9 M (Scott 

et al. [80]), with constant pH and monomer concentration. This comparison, shown in the last two 

rows of Table 4.4, provides an interesting result: we see the same change in relationship for the 

AMPS/AAm and the AMPS/AAc comonomer pairs that was observed during the pH analysis 

(recall the comparison between screening experiments and preliminary estimates in Section 4.1.1). 

The cross-over behaviour observed for AMPS/AAm and for AMPS/AAc between IS = 0.9 M and 

IS = 1.5 M must be a result of changing ionic strength; all other variables are controlled. To find 

the true cross-over point (that is, the ionic strength at which r12 = r21 and r13 = r31), additional 

experiments would need to be performed for 0.9 M < IS < 1.5 M at pH 7 and [M] = 1.0 M. 

However, this result proves that ionic strength in this range can be manipulated to adjust these 

reactivity ratios, thus improving control over the degree of incorporation of each comonomer in 

the product terpolymer. Interestingly, only the comonomer pairs containing AMPS exhibit cross-

over behaviour in this range. Therefore, it is only possible to manipulate relationships between 

AMPS/AAm and AMPS/AAc by adjusting ionic strength. Cross-over behaviour for the AAm/AAc 

comonomer pair has not been observed under current conditions, but has been observed for the 

analogous AAm/AAc copolymer by Riahinezhad et al. [85], Cabaness et al. [97] and Rintoul and 

Wandrey [99]. The crossover point varies slightly from study to study, but ranges from pH 3.77 to 

pH 5. In all cases, rAAm > rAAc above the crossover point, but rAAm < rAAc in more acidic solutions. 

It is unwise to make extensions directly from the copolymer case to the terpolymer case [38], but 

terpolymer synthesis below pH 5 might reveal the AAm/AAc cross-over point. One could 

conceivably manipulate both solution pH and IS to exploit this cross-over behaviour, in order to 

influence reactivity ratio ranges for AMPS/AAm/AAc terpolymerization. 
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4.1.2.2 Cumulative Terpolymer Composition  

 

The change in reactivity ratio estimates (as ionic strength increases) can directly influence 

cumulative terpolymer composition. As an example, refer to the final two rows of Table 4.4; as 

ionic strength increases, both r21 and r23 decrease (from 0.82 to 0.39 and from 1.61 to 1.27, 

respectively). Physically, this suggests that the likelihood of acrylamide incorporation decreases 

as ionic strength increases; higher ionic strength (that is, more NaCl added) results in more charge 

screening, improving incorporation of the charged (acidic) monomers and reducing the 

incorporation of the acrylamide monomer. 

 

This observation can be confirmed by predicting cumulative terpolymer composition under 

different experimental conditions. Given ternary reactivity ratio estimates and initial feed 

compositions, the recast Alfrey-Goldfinger model [57] can be used to predict cumulative 

terpolymer composition as a function of conversion. As seen in Figure 4.5 and Figure 4.6, it is 

possible to compare the cumulative composition of different terpolymers of AMPS/AAm/AAc, 

given reactivity ratios estimated at IS = 0.9 M and IS = 1.5 M. Experimentally speaking, pH and 

[M] were controlled at 7 and 1.0 M, respectively. Therefore, any changes in composition are 

primarily due to changes in ionic strength.  

 

 
Figure 4.5: Cumulative Composition for AMPS-rich Terpolymer at IS = 0.9 M and 1.5 M 

 

The predicted cumulative composition profiles (confirmed with experimental data) in Figure 4.5 

reveal an important result. As ionic strength changes, the composition of the resulting terpolymer 

changes substantially. For IS = 0.9 M, 𝐹𝐴𝐴𝑚 > 𝐹𝐴𝐴𝑐, but for IS = 1.5 M, 𝐹𝐴𝐴𝑚 < 𝐹𝐴𝐴𝑐. This 
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agrees with what was observed when evaluating the reactivity ratios: higher ionic strength creates 

charge screening, reducing repulsion of the charged acrylic acid monomers. Therefore, an 

increased acrylic acid incorporation and a decreased acrylamide incorporation is visible. This is 

especially obvious for the AMPS-rich polymer, as the EVM-based design of experiments dictates 

an initial feed composition of fAMPS,0/fAAm,0/fAAc,0 = 0.8/0.1/0.1. An equimolar concentration for 

AAm and AAc (at least initially) emphasizes the fact that solution properties affect the degree of 

incorporation of each comonomer. 

 

To confirm that the increased ionic strength is reducing the acrylamide content in the product 

terpolymer, it is also possible to examine the acrylamide-rich terpolymer recipe. As shown in 

Figure 4.6, the cumulative mole fraction of AAm in the product terpolymer is significantly reduced 

at IS = 1.5 M, especially at low conversion. Since high acrylamide content and minimal 

composition drift are both desirable properties for the EOR application, solutions with lower ionic 

strength (IS = 0.9 M) seem like the more promising candidate for synthesizing AMPS/AAm/AAc 

terpolymers specifically for EOR. 

 

 
Figure 4.6: Cumulative Composition for AAm-rich Terpolymer at IS = 0.9 M and 1.5 M 

 

Before concluding the discussion about the effect of ionic strength on cumulative terpolymer 

composition, a brief comment on azeotropy is in order. In this case, the ternary reactivity ratios 

estimated for IS = 0.9 M do not exhibit an azeotrope. However, those estimated for IS = 1.5 M 

exhibit azeotropic behaviour at fAMPS,0/fAAm,0/fAAc,0 = 0.26/0.35/0.39. This further emphasizes the 

customization potential for AMPS/AAm/AAc as more information is obtained about the solution 

effects on polymerization kinetics. 
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4.1.2.3 Terpolymer Microstructure 

 

Terpolymer microstructure, an important property for customization of materials (as explained in 

Section 2.1.2.1), is only discussed as a function of ionic strength herein. Given two data sets where 

all solution conditions (pH, IS and [M]) are the same (prior work from Scott et al. [80] and Runs 

S1, S10, S11 from the current study [81]), it is possible to consider terpolymer microstructure at 

IS = 0.9 M and 1.5 M more consistently.   

 

The instantaneous triad fractions are calculated for demonstration and in order to get a general 

understanding about the system. This involves using all possible initial feed compositions (0 < fi,0 

< 1; ∑ 𝑓𝑖,0 = 1
3
𝑖=1 ) and relevant reactivity ratios to calculate 18 possible triad fractions (recall 

Equations 2.4 to 2.6 and 2.10 to 2.15). As explained previously, 6 triads are centered around each 

monomer; the full list of triads is shown in Table 4.5. 

 

Since AMPS/AAm/AAc terpolymers are being investigated for enhanced oil recovery, the material 

should be acrylamide-rich with an equal distribution of anionic charges, as per references [32, 

118]. Therefore, given the triad fractions shown in Table 4.5, the goal is to minimize ‘blocky’ 

homopolymer sections (highlighted in red) and to simultaneously maximize alternating behaviour 

for acidic (charged) comonomers. For the analysis, it can be assumed that AMPS and AAc are 

both fully dissociated (which is true for any pH > 5), so they both contribute to the desired charge 

density. Therefore, any triad fraction for which AMPS or AAc alternates with AAm is desirable; 

these fractions (the sum of which is to be maximized) are highlighted in green in Table 4.5. 

 

Table 4.5: Possible Triad Fractions for the AMPS/AAm/AAc Terpolymer 

AMPS (1)- centered AAm (2)-centered AAc (3)-centered 

A111 A222 A333 

A212 A121 A131 

A313 A323 A232 

A112+211 A221+122 A331+133 

A113+311 A223+322 A332+233 

A213+312 A123+321 A132+231 

 

To better visualize the instantaneous triad fractions, the likelihood of ‘blocky’ sections occurring 

in the polymer chain can be plotted as a function of initial feed composition. This is achieved by 

summing the A111, A222 and A333 triad fractions at all feed compositions. Since the triad fractions 

can be predicted using reactivity ratios, the same analysis was completed using reactivity ratios 
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estimated from data at IS = 0.9 M and at IS = 1.5 M (recall Table 4.4). The results for both analyses 

are presented in Figure 4.7. 

 

As expected, the most ‘blocky’ behaviour is exhibited for homopolymers (fAMPS,0/fAAm,0/fAAc,0 = 

1.0/0.0/0.0, 0.0/1.0/0.0, 0.0/0.0/1.0). The minimum changes somewhat as the ionic strength shifts 

from IS = 0.9 M to IS = 1.5 M, but the general trends are the same. In this case, the desire to 

synthesize a terpolymer and the desire to minimize ‘blocky’ behaviour align: the ‘blocky’ 

behaviour decreases as we move towards the center of the composition diagram. 

 

(a) 

 

 
 

(b) 

 

 
 

Figure 4.7: Prediction of Instantaneous ‘Blocky’ Triad Fractions at IS = (a) 0.9 M and (b) 1.5 M 
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The charge distribution along the polymer backbone is considered next. Using Design Expert 

software, it is possible to minimize the ‘blocky’ triad fractions and maximize the desirable triad 

fractions (that is, those with alternating behaviour of charged comonomers) simultaneously. 

Additional composition constraints were added (all fi,0 ≥ 0.1) to ensure that the optimized recipes 

were, in fact, terpolymers. For both IS = 0.9 M and IS = 1.5 M, several solutions exist. Some feed 

compositions predict fewer ‘blocky’ fractions, others predict more alternating ion behaviour. Both 

requirements are equally weighted for the current study, but more tailoring is possible. The results 

of both optimizations are presented in Table 4.6 and Figure 4.8. 

 

Table 4.6: Optimized Triad Fractions for Enhanced Oil Recovery 

(a) Given Reactivity Ratios Estimated at IS = 0.9 M, pH 7 and [M] = 1.0 M 

Solution # fAMPS,0 fAAm,0 fAAc,0 
‘Blocky’ 

(to minimize) 

Charge Dist. 

(to maximize) 
Desirability 

1 0.209 0.691 0.100 0.487 1.420 0.569 

2 0.100 0.750 0.150 0.603 1.508 0.536 

3 0.400 0.500 0.100 0.323 1.154 0.490 

4 0.500 0.400 0.100 0.305 1.039 0.403 

5 0.539 0.100 0.361 0.286 0.890 0.238 

6 0.100 0.100 0.800 0.386 0.854 0.159 

(b) Given Reactivity Ratios Estimated at IS = 1.5 M, pH 7 and [M] = 1.0 M 

Solution # fAMPS,0 fAAm,0 fAAc,0 
‘Blocky’ 

(to minimize) 

Charge Dist. 

(to maximize) 
Desirability 

1 0.412 0.459 0.129 0.255 1.100 0.521 

2 0.400 0.500 0.100 0.301 1.125 0.520 

3 0.500 0.400 0.100 0.330 1.121 0.507 

4 0.637 0.100 0.263 0.217 0.980 0.448 

5 0.100 0.800 0.100 0.521 1.139 0.437 

 

According to the low ionic strength results in Table 4.6a (IS = 0.9 M, pH 7 and [M] = 1.0 M), the 

desirability function is maximized for fAMPS,0/fAAm,0/fAAc,0 = 0.209/0.691/0.100. This result also 

aligns with the desire to use an AAm-rich terpolymer; AAm-rich copolymers (with AAc) have 

been successfully employed for enhanced oil recovery [117]. Alternatively, Solutions 2 and 3 

(again from Table 4.6a) also show promise. The exercise predicts that Solution 2 will have more 

blocky behaviour, but improved charge distribution over Solution 1. In contrast, Solution 3 has 

less blocky triad fractions, but the negative aspects are the lower AAm content and the poorer 

charge distribution. Solutions 4 through 6 are not considered further, as the AAm content is likely 

too low for the EOR application. 
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The high ionic strength results in Table 4.6b (IS = 1.5 M, pH 7 and [M] = 1.0 M) show lower 

desirability values for the top two solutions (compared to the IS = 0.9 M results). In general, the 

reactivity ratios estimated at higher IS predict less ‘blocky’ triad fractions, but the charge 

distribution is not as good. This is likely due to the lower acrylamide content, both from a feed 

composition and an incorporation perspective (as shown in Section 4.1.2.2). Along the same line, 

most optimal feed compositions in Table 4.6b have low fAAm,0, which is not ideal for the EOR 

application. Given the optimized recipes, Solution 5 has the highest (therefore most desirable) 

AAm fraction, but the overall desirability is lower than for the optimal terpolymerizations at IS = 

0.9 M. 

 

(a) 

 

 
 

(b) 

 

 
 

Figure 4.8: Optimized Instantaneous Triad Fractions for Enhanced Oil Recovery at (a) IS = 0.9 M and (b) 

IS = 1.5 M (A = fAMPS,0, B = fAAm,0, C = fAAc,0) 
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As mentioned earlier, these instantaneous triad fractions were used to demonstrate the basic 

principles. Now, the cumulative terpolymer composition can be predicted as a function of 

conversion, given the most desirable feed compositions from Table 4.6. The most promising 

optimal recipes are examined for both IS = 0.9 M (Solutions 1, 2 and 3 of Table 4.6a) and IS = 1.5 

M (Solutions 1, 2 and 5 of Table 4.6b); corresponding cumulative terpolymer composition profiles 

are shown in Figure 4.9. 

 

In Figure 4.9a, all three feed compositions exhibit minimal composition drift. Therefore, along 

with composition, terpolymer triad fractions should remain relatively constant throughout 

conversion. As per previous EOR studies (for AAm/AAc copolymers), preference is given to 

materials with higher acrylamide content [32, 117]. Therefore, Solution 1 or Solution 2 of Table 

4.6a seem the most promising for future EOR testing. 

 

In Figure 4.9b, the three optimal feed compositions exhibit more composition drift. This is in 

agreement with earlier results (recall Figure 4.5 and Figure 4.6) but is not a desirable property for 

this application. Solutions 1 and 2 (from Table 4.6b) give similar results, but both end up being 

rich in AMPS. The most viable option at high ionic strength is Solution 5 (fAMPS,0/fAAm,0/fAAc,0 = 

0.100/0.800/0.100), since AAm is present in the highest proportion. However, as evidenced in 

Section 4.1.2.2, the high ionic strength limits AAm incorporation, and therefore the low ionic 

strength formulation is the better option. 

 

(a)  
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(b)  

 

Figure 4.9: Cumulative Terpolymer Composition Predictions from Optimized Triad Fractions  

at (a) IS = 0.9 M and (b) IS = 1.5 M 

 

In the next step of this enhanced oil recovery study, the most promising materials will be 

synthesized from acrylamide-rich recipes at IS = 0.9 M (fAMPS,0/fAAm,0/fAAc,0 = 0.209/0.691/0.100 

and 0.100/0.750/0.150). These are investigated further in what follows; the experimental 

methodology has been described in Section 3.2.2 and the results are discussed in Section 4.2.  

 

4.1.3 Effect of Monomer Concentration 

 

In Section 2.4.3, the effect of monomer concentration on terpolymerization kinetics was discussed. 

For related copolymer systems, monomer concentration has an impact on reactivity ratios [85, 86, 

99]. This is likely due to the change in monomer concentration influencing the ionic strength; 

higher monomer concentration results in a higher concentration of charged monomers, thereby 

influencing the ionic strength and associated charge effects described previously. 

 

Again, in this case, reactivity ratios are estimated (for the sake of completeness), and properties 

that are expected to be more affected by [M] (namely, molecular weight averages) are evaluated.  

 

Table 4.7: [M] Effects on Ternary Reactivity Ratio Estimates for AMPS/AAm/AAc (M1/M2/M3) 

[M] Data from Run # r12 r21 r13 r31 r23 r32 

0.5 M S4, S6, S9 1.05 0.65 0.30 1.14 1.81 0.54 

1.0 M S1, S2, S7 1.26 0.56 0.27 1.82 2.45 0.50 

1.5 M S3, S5, S8 1.06 0.56 0.44 0.94 1.19 0.47 
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In Table 4.7 and Figure 4.10, there are no obvious trends visible; the reactivity ratios do not tend 

in a particular direction as monomer concentration increases. Many of the reactivity ratio estimates 

are similar at different [M] levels (at least for the range and conditions considered), especially the 

AMPS/AAm comonomer pair (r12 and r21 estimates). As discussed in Section 4.1.1, reactivity 

ratios associated with acrylic acid seem to have more variability. Again, this may be because the 

incorporation of acidic comonomers (especially AAc) is more affected by changes in the pre-

polymerization solution. 

 

 
Figure 4.10: Comparison of Reactivity Ratio Estimates for AMPS/AAm/AAc  

at [M] = 0.5 M, 1.0 M and 1.5 M 

 

As shown in Figure 4.10, some overlap exists among JCRs for each comonomer pair. In the same 

way as for the pH effect estimates (Figure 4.1) and the IS effect estimates (Figure 4.3), one set of 

JCRs is much larger than the other two. In this case, the reactivity ratio estimates obtained from 

data at [M] = 1.0 M show the most uncertainty, especially for r12, r31 and r23. Interestingly, the runs 

used for estimation are Runs S1, S2, and S7 (see Table 4.7, and refer to Table 3.1 for detailed 

experimental conditions). Therefore, no ‘common denominator’ exists between the three 

estimations that exhibited higher error. Uncertainty is most likely related to the confounded effects 

of pH, ionic strength and monomer concentration.  
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4.1.3.1 Terpolymer Molecular Weights 

 

Finally, the peak average molecular weights (𝑀p) of all trials are examined. Samples at similar 

conversion levels (~30%) were selected for analysis, which ensures that any variation in molecular 

weight is a result of synthesis conditions. Again, the polymer samples are influenced by varying 

pH, ionic strength and monomer concentration. The results are categorized by feed composition 

and are presented in Figure 4.11. 

 

(a) 

 

(b) 

 

(c) 

 
Figure 4.11: Effect of Monomer Composition on Peak Average Molecular Weights for 

fAMPS,0/fAAm,0/fAAc,0 = (a) 0.8/0.1/0.1, (b) 0.1/0.2/0.7 and (c) 0.1/0.8/0.1 

 

As mentioned in Section 3.2.1, the initiator concentration was adjusted alongside the monomer 

concentration to ensure that a constant [M]/[I]1/2 ratio was maintained. This made it possible to 

target molecular weight averages that are desirable for enhanced oil recovery (on the order of 106 
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g/mol). The effect of [M] on 𝑀𝑝 is so significant that it is visible despite other confounding 

variables; even as pH and IS vary, there is still a clear increase in 𝑀p as [M] increases for all three 

feed compositions (Figure 4.11). 

 

It is also interesting to observe the effect of feed composition on 𝑀𝑝. The acrylamide-rich system 

(Figure 4.11c) exhibits the highest molecular weight averages of the three optimal terpolymer 

recipes, at least for the experimental conditions and conversion levels studied. As discussed earlier, 

high molecular weights are desirable for the enhanced oil recovery application; once again, the 

acrylamide-rich material is a promising candidate for EOR.   

 

4.1.4 Effect of High NaCl Content 

 

Due to the high ionic strength (and necessarily high salt content), we observed that sodium chloride 

remained present in the polymer samples at an approximate 1:1 ratio with acrylamide. This was 

initially deduced from elemental analysis results and uncharacteristically high conversion 

measurements, and subsequently independently confirmed for select samples via inductively 

coupled plasma emission spectrometry (ICP). 

 

4.1.4.1 Conversion as an Indicator 

 

For the AMPS/AAm/AAc screening experiments, the ‘low’ level of ionic strength (IS) was 

necessarily 1.2 M. In run S5, a total monomer concentration of 1.5 M and full dissociation of the 

acidic comonomers give an ionic strength of 1.2 M before any NaCl is added to the recipe. This 

imposes a relatively high range of ionic strength levels, and in some cases a large amount of NaCl 

was added to the pre-polymerization solution to adjust the ionic strength. The mass of NaCl added 

to each screening experiment is shown in Table 4.8. 

 

Table 4.8: NaCl Addition for the AMPS/AAm/AAc Terpolymerization Screening Design 

Run # pH IS [M] Feed Composition 

(fAMPS,0/fAAm,0/fAAc,0) 

NaCl Added (g) 

S1 7 1.5 M 1.0 M 0.1/0.2/0.7 8.20 

S2 5 1.2 M 1.0 M 0.8/0.1/0.1 3.69 

S3 7 1.8 M 1.5 M 0.8/0.1/0.1 5.23 

S4 7 1.2 M 0.5 M 0.1/0.8/0.1 12.85 

S5 9 1.2 M 1.5 M 0.1/0.2/0.7 0.00 

S6 5 1.8 M 0.5 M 0.1/0.2/0.7 16.92 

S7 9 1.8 M 1.0 M 0.1/0.8/0.1 18.70 

S8 5 1.5 M 1.5 M 0.1/0.8/0.1 14.26 

S9 9 1.5 M 0.5 M 0.8/0.1/0.1 12.27 
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The mass of NaCl required is not only influenced by the desired ionic strength, but also by the 

ionic contributions of acidic comonomers in the monomer feed. Since both AMPS and AAc 

dissociate, they both contribute to the ionic strength of a pre-polymerization solution. Therefore, 

in general, less salt needs to be added to increase the IS to a target value. In contrast, AAm-rich 

recipes rely more on NaCl addition to increase the IS to the desired value. This is evidenced in 

Table 4.8: the average NaCl added for AMPS-rich and AAc-rich recipes are 7.06 g and 8.37 g 

respectively, whereas the average NaCl added to AAm-rich recipes is 15.27 g. 

 

A side-effect of this high salt content (especially for the AAm-rich recipes) became clear when the 

conversion levels of polymer samples were measured as a function of time; conversion levels were 

consistently higher than 100%. Run S7, for example, which has the highest mass of NaCl added, 

plateaued at a conversion level of 150% (see Figure 4.12). This conversion vs. time profile is 

contrasted with an equivalent run from Scott et al. [80]; both had an initial feed composition of 

fAMPS,0/fAAm,0/fAAc,0 = 0.1/0.8/0.1 and a total monomer concentration of 1.0 M. Ionic strength and 

pH varied from run to run, but these factors generally have a minor effect on the rate of 

polymerization. 

 

 
Figure 4.12: Effect of High NaCl Content on the Conversion Level of AMPS/AAm/AAc 

(fAMPS,0/fAAm,0/fAAc,0 = 0.1/0.8/0.1 and [M] = 1.0 M); with data from Scott et al. [80] 

 

This behaviour, which was also observed for S8 and S11, was the first indication that the mass of 

NaCl was affecting the final mass (and subsequently, the measured conversion) of acrylamide-rich 

polymers.  

 

To selectively troubleshoot this unusually high conversion, several additional runs were performed 

for polyacrylamide homopolymers (PAAm). The experimental conditions were selected such that 

the NaOH and NaCl addition varied according to Table 4.9, and the monomer concentration was 

consistently 1.0 M. pH control proved to be much more challenging for the PAAm homopolymer 

than for the terpolymers. Despite the fact that no acidic monomers were present, the initiator (4,4′-

azo-bis-(4-cyanovaleric acid), ACVA) reduced the pre-polymerization solution to pH 3. With and 
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without the addition of NaCl, a pH decrease was observed throughout the ‘solution preparation’ 

stage for each recipe. Also, since little or no sodium hydroxide was included in the recipe, 

dissolution of ACVA took much longer than it did in standard terpolymerization syntheses. 

Therefore, in some cases, a ‘time 0’ sample was analyzed to check for premature polymerization. 

 

Table 4.9: PAAm Salt Study Experiments 

Run # NaOH NaCl pH IS 

PAAm1   3 0.0 M 

PAAm2 ✓  7 0.0 M 

PAAm3 ✓ ✓ 7 1.8 M 

PAAm4 ✓ ✓ 11 1.8 M 

PAAm5  ✓ 3 1.8 M 

 

Finally, it is important to note that PAAm5 could not be fully evaluated. The addition of ACVA 

brought the solution to pH 3, but after three hours of mixing the solids had not dissolved (see 

Figure 4.13; these solutions are normally transparent and colourless).  Therefore, this combination 

of pH and ionic strength was not suitable for the terpolymerization of PAAm.  

 

 
Figure 4.13: Poor Dissolution of Solids in PAAm5  

 

A comparison of conversion vs. time profiles for PAAm with and without NaOH and/or NaCl 

confirms what was observed during the screening experiments (recall Figure 4.12). In Figure 4.14, 

both experiments that were performed without NaCl (PAAm1 and PAAm2) plateaued at 100%. 

The two profiles are similar, which suggests that the NaOH addition (and, by extension, the 

solution pH) does not affect the rate of polymerization or the mass of the product polymer. This is 

as expected, as the screening experiments indicated that the incorporation of AAm was less 

affected by pH (compared to AMPS and AAc). 
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In contrast, both experiments that had NaCl added to the recipe showed almost 200% conversion. 

The change in pH (between PAAm3 and PAAm4) may have had a slight effect on the rate of 

polymerization, but the important observation here is the extraordinarily high conversion values. 

This validates the high conversion levels calculated earlier; this is in fact due to the combination 

of acrylamide and high NaCl. Since conversion levels are almost exactly twice the expected values 

(and NaCl and AAm have similar molecular weights), the most likely explanation is that NaCl is 

incorporating at a 1:1 molar ratio with acrylamide through a weak physical bond.  

 

 
Figure 4.14: Effect of High NaCl Content on the Conversion Level of PAAm at [M] = 1.0 M 

 

If the mass of each sample is numerically adjusted to include NaCl mass (on a 1:1 molar basis), 

45.1wt% of each sample is NaCl and the remainder is PAAm. This effectively reduces the 

conversion values by a half, providing much more reasonable results as shown in Figure 4.15. 
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Figure 4.15: Conversion Level Adjustment (NaCl Consideration) for PAAm at [M] = 1.0 M 

 

For now, this is only a numerical adjustment, but the implications are promising. In what follows, 

the salt retention assumption was confirmed by looking at the polymer composition. However, as 

a preliminary check, the S7 profile shown in Figure 4.12 can be revisited. Using the feed 

composition (80 mol% AAm in this case) as a rough approximation, it is possible to divide the 

total sample mass into polymer and NaCl contributions; sample conversion calculations for run S7 

are shown in Appendix C, Section C.1. 

 

As shown in Equation C.6, the NaCl adjustment gives a calculated conversion of 98.9% for S7-10 

(Sample 10 from Run S7). This result is much more reasonable than the “calculation artifact” of 

153.5% conversion, which was shown in Figure 4.12. Therefore, taking salt incorporation into 

account seems reasonable based on these results. The final step, which is typical of all 

AMPS/AAm/AAc terpolymerization analyses, is to consider the additional Na+ mass that is bound 

to dissociated AMPS and AAc comonomers (where the Na+ ions are present from titration with 

NaOH; the NaAMPS and NaAAc comonomers are incorporated into the product terpolymer) [84]. 

The detailed calculations for Na+ content are presented in Appendix C (specifically Equation 

C.14). For now, suffice it to say that the presence of Na+ further (slightly) decreases the total 

polymer mass, thus decreasing the calculated conversion. The updated conversion vs. time profile 

for Run S7 is provided in Figure 4.16, and similar behaviour was seen once the same numerical 

adjustments were made for other screening runs.  
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Figure 4.16: High NaCl Mass Adjustment for the Conversion of AMPS/AAm/AAc (fAMPS,0/fAAm,0/fAAc,0 = 

0.1/0.8/0.1 and [M] = 1.0 M); with data from Scott et al. [80] 

 

4.1.4.2 Composition as an Indicator 

 

Next, the sample composition was investigated (measured through elemental analysis). Nitrogen, 

carbon, hydrogen and sulfur can be measured, which means that the fraction of any additional 

expected elements (like oxygen, sodium, etc.) must be inferred. Typically, if the contributions of 

additional elements are estimated using stoichiometry, the elemental contributions of all 

components sum to ~100%. Take, for example, Run S5, where no NaCl was added to the recipe; 

results and sample calculations are shown in Appendix C, Section C.2. 

 

As shown in Table C.1, the sum of elements is almost exactly 100% for all S5 samples. However, 

for the acrylamide-rich copolymers with high NaCl addition, this was not the case. As discussed 

previously, Run S7 had 18.70 g NaCl added to the recipe prior to polymerization. In following the 

same calculations described for Run S5 (in Appendix C, Section C.2), the results of Table 4.10 

were obtained. 
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Table 4.10: Analysis of Elemental Contributions for Run S7 

 wt% N wt% C wt% H wt% S wt% O  

(polymer) 

wt% O 

(H2O) 

wt% Na Total 

wt% 

S7-2 8.00 26.27 4.02 2.51 14.61 3.36 3.03 61.80 

S7-3 7.37 24.66 3.74 2.75 13.94 2.80 2.98 58.24 

S7-4 7.16 23.58 3.55 2.36 13.15 2.50 2.73 55.03 

S7-5 5.83 19.73 2.92 2.11 11.21 1.75 2.51 46.07 

S7-6 5.04 17.08 2.51 1.95 9.74 1.36 2.16 39.84 

S7-7 5.71 19.26 2.83 2.18 10.95 1.50 2.40 44.83 

S7-8 5.90 19.60 2.91 2.09 11.01 1.74 2.32 45.57 

S7-9 5.72 19.15 2.94 2.06 10.81 2.52 2.34 45.54 

S7-10 7.99 26.09 3.95 2.45 14.45 2.99 2.95 60.86 

  

Looking at the elemental contributions for samples from Run S7, it is only possible to account for 

between 40% and 62% of the total mass of each sample. This confirms (as suspected) that there is 

something else present in the sample, namely residual NaCl. As described earlier, it seems that 

NaCl is incorporating at a 1:1 molar ratio with acrylamide through a weak physical bond. Taking 

this into account increases the total elemental contributions to more reasonable values (that is, 

closer to 100%, as was the case for Run S5 in Table C.1). The evidence is provided in Table 4.11.  

 

Table 4.11: Adjusted Analysis of Elemental Contributions for S7 

 wt% 

polymer 

g polymer in 

sample 

g NaCl  

in sample 

total g 

sample 

wt% NaCl Total (adjusted) 

wt% 

S7-2 61.80 0.2054 0.1132 0.3186 35.54 97.35 

S7-3 58.24 0.4788 0.2640 0.7428 35.54 93.78 

S7-4 55.03 0.7575 0.4176 1.1751 35.54 90.57 

S7-5 46.07 1.0808 0.5960 1.6768 35.54 81.61 

S7-6 39.84 1.4317 0.7894 2.2211 35.54 75.38 

S7-7 44.83 1.7025 0.9388 2.6413 35.54 80.37 

S7-8 45.57 1.5520 0.8558 2.4078 35.54 81.11 

S7-9 45.54 1.6694 0.9205 2.5899 35.54 81.08 

S7-10 60.86 1.8502 1.0201 2.8703 35.54 96.40 

 

Finally, the residual NaCl content was confirmed with select samples using inductively coupled 

plasma emission spectrometry (Prodigy radial ICP-OES by Teledyne-Leeman). Samples were run 

in triplicate, and the results from S7-10 analysis are shown in Table 4.12.  
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Table 4.12: Analysis of ICP Results for S7-10 

 prepared 

sample 

conc. (ppm) 

measured 

Na conc. 

(ppm) 

wt% 

total Na 

wt% Na+ ions 

(calculated; 

bound to acidic 

comonomers) 

wt% Na 

in 

residual 

NaCl 

wt% Cl 

from 

residual 

NaCl 

wt% 

NaCl 

1 9694.51 1,715.87  17.70  2.95 14.75 22.74 37.49  

2 9694.51 1,686.32  17.39  2.95 14.44  22.27 36.72  

3 9694.51 1,686.67   17.40  2.95 14.45  22.28 36.73  

 

In Table 4.12, the wt% total Na is the ratio between the measured Na concentration and the 

prepared (calculated) sample concentration. This total Na measurement includes the Na+ ions 

bound to acidic comonomers (calculated using elemental analysis and stoichiometry as discussed 

previously; see Equation C.14). Since any additional Na mass is assumed to be from residual NaCl 

in the sample, it is straightforward to calculate the total wt% NaCl in sample S7-10. The results of 

Table 4.12 are in good agreement with each other and are reasonably close to the estimated 35.54 

wt% shown in Table 4.11. This further confirms that NaCl incorporates with acrylamide at a 1:1 

molar ratio. 

 

4.1.5 Concluding Remarks on Terpolymerization Screening Experiments 

 

A series of nine terpolymerization experiments (from a definitive screening design) and two 

complementary experiments (Table 3.1) has provided a wealth of information about the 

terpolymerization kinetics of 2-acrylamido-2-methylpropane sulfonic acid (AMPS), acrylamide 

(AAm) and acrylic acid (AAc). Solution pH, ionic strength and monomer concentration can all be 

used to influence the properties of the resulting terpolymer, which ultimately assists with the 

design of custom materials for enhanced oil recovery and other applications. 

 

Although no clear correlation was observed between pH and reactivity ratio estimates (for 5 ≤ pH 

≤ 9), parameter estimation results suggest that the incorporation of acidic comonomers (AMPS 

and AAc) is affected by pH. More importantly, comparing these parameter estimates to prior work 

by Scott et al. [80] revealed cross-over behaviour for both AMPS/AAm and AMPS/AAc 

comonomer pairs. Since all estimates compared were from experiments at pH 7, other solution 

effects were explored in more detail. 

 

Ionic strength (IS) proved to have the greatest influence on reactivity ratios for the range studied. 

The two complementary runs confirmed that cross-over behaviour exists between IS = 0.9 M and 

IS = 1.5 M for AMPS-based reactivity ratios (r12 and r21; r13 and r31) at pH 7 and [M] = 1.0 M. This 

shift in reactivity ratios has significant potential for tailoring AMPS/AAm/AAc terpolymer 

properties. With the enhanced oil recovery application in mind, synthesis at the lower ionic 

strength (0.9 M) is more desirable, as it allows for increased AAm incorporation and a more 



93 

 

desirable microstructure. Analysis of terpolymer microstructure suggests that the following feed 

compositions may be of interest for EOR: fAMPS,0/fAAm,0/fAAc,0 = 0.21/0.69/0.10 and 0.10/0.75/0.15. 

 

Finally, monomer concentration had a minor influence on reactivity ratio estimates but had a 

visible impact on molecular weight averages (even when other factors were varied). All samples 

had peak average molecular weights on the order of 106 g/mol, but average molecular weights 

increased with increasing [M] for all feed compositions. This is as expected from polymerization 

theory, but these trends provide good experimental confirmation nonetheless. 

 

4.2 Optimally Designed Experiments 

 

4.2.1 Justification of Experimental Conditions 

 

It has been established that the polymerization kinetics of AMPS/AAm/AAc are largely dependent 

on feed/recipe operating conditions (environment solution properties). It is therefore critical to 

monitor and/or control the ionic strength, pH, monomer concentration and feed composition of 

each terpolymer formulation [81]. These variables can impact the rate of polymerization, the 

degree of incorporation of each comonomer into the terpolymer product, the polymer 

microstructure, and the molecular weight distribution.  

 

Therefore, at this stage of the investigation, every effort was made so that the terpolymers be 

synthesized with consistent formulations. In an attempt to synthesize materials that would have 

desirable properties for the enhanced oil recovery application, the experimental conditions selected 

were informed by the results of Section 4.1.  

 

The selected pH (at which synthesis occurred) for the optimally designed experiments was pH 7. 

As described in the screening experiments study (Section 4.1.1), no clear correlation between pH 

and reactivity ratio estimates was observed for the range of pH 5 to pH 9. However, since acidic 

comonomers seem to be affected by changes in pH, it is still important to select a pH for synthesis 

and adjust the pre-polymerization solution accordingly. A solution pH of 7 was selected here 

because the condition is moderate (neutral) and because it allows for a direct extension of prior 

work (especially the ionic strength study in Section 4.1.2.1). In Section 4.1, reactivity ratios were 

generally estimated in a relative way, since experimental conditions were varied (as mentioned 

earlier, this is the nature of a screening design of experiments). Therefore, the only reactivity ratio 

estimates that can be used with confidence (for prediction purposes) are from experimental data 

with constant (and carefully controlled) experimental conditions; this is the case for the reactivity 

ratios in Table 4.4. In both cases where reactivity ratios are available for AMPS/AAm/AAc under 

constant experimental conditions, the formulation is with pH 7. Thus, the predictions that are being 

used to inform these optimally designed experiments can only be guaranteed for new formulations 
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that are also at pH 7; sodium hydroxide solutions were used to adjust the pH of each optimal 

formulation to approximately 7 (±0.5). 

 

The optimal ionic strength (for the range of conditions studied thus far) was found to be 0.9 M. As 

observed in the previous section (specifically Figure 4.5 and Figure 4.6), lower ionic strength (IS) 

promotes the increased incorporation of acrylamide. Given the knowledge that high acrylamide 

content is desirable for the application, the low IS level (0.9 M) is more suitable for the synthesis 

of AMPS/AAm/AAc terpolymers for EOR. Therefore, sodium chloride was added to each 

formulation to achieve IS = 0.9 M; since the required NaCl mass (added to each formulation) was 

more than 5 g, adjustments for high NaCl content were taken into account (as per Section 4.1.4). 

 

In Section 4.1.3, monomer concentration had a limited impact on the reactivity ratios. By 

association, the terpolymer composition and microstructure were also minimally affected. 

However, as expected from polymerization kinetics, increasing the monomer concentration led to 

increased molecular weight averages. As discussed previously (Section 2.1.2.1), polymeric 

materials with high molecular weights (on the order of 106 g/mol) are desirable for the EOR 

application, so a total monomer concentration of 1.5 M was used for each formulation. As before, 

the [M]/[I]1/2 ratio was maintained, so 0.009 M initiator (ACVA) was used for the optimally 

designed experiments (see again Section 3.2). The [M] = 1.5 M condition was selected because it 

was the highest level that had been used in our preliminary studies, but higher monomer 

concentrations may be possible. That said, it is always important to take experimental limitations 

into account; even at [M] = 1.5 M, some of the screening runs exhibited premature polymerization, 

as the titration of a strong acid like AMPS releases considerable heat and can kick-start the 

polymerization. Viscosity effects may also play a role at higher monomer concentration, but this 

has not been considered in great detail. 

 

Finally, two optimal feed compositions (both rich in acrylamide) were selected to allow for the 

most desirable terpolymer microstructure, as predicted by the recently determined reactivity ratios 

[81]. The results of Section 4.1.2.3 established that optimal terpolymers for EOR would have 

minimal ‘blocky’ sections and that the charge (from the acidic comonomers) would be well-

distributed along the backbone. Given reactivity ratio estimates for the terpolymerization of 

AMPS/AAm/AAc at pH 7, IS = 0.9 M and [M] = 1.0 M (nearly the same as the current conditions, 

with the exception of the monomer concentration), the triad fraction model prediction, and the 

cumulative terpolymer composition prediction, the optimal feed compositions (from Design 

Expert software) are fAMPS,0/fAAm,0/fAAc,0 = 0.21/0.69/0.10 and 0.10/0.75/0.15. 

 

Thus, optimally designed terpolymers of AMPS/AAm/AAc were synthesized as described in 

Section 3.2.2. The product terpolymers were fully characterized (so that the polymer properties 

and the application-specific behaviour are well understood), and the results are presented in the 

following sections.   
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4.2.2 Investigation of Polymer Properties 

 

Several properties investigated herein are the same characteristics as those for the screening 

experiments: namely conversion, composition and molecular weight (recall Section 4.1). In this 

case, consistency of polymer properties (that is, good experimental reproducibility) is extremely 

important, since several samples must be combined for the application-specific characterization 

for EOR. As described in Section 3.4.2 and Appendix C (Section C.6), at least 5 grams of 

polymeric material are needed for a single test, so the polymer product from several vials (or, 

potentially, from several independent syntheses) must be amalgamated. Therefore, uniform 

properties are essential for the application. 

 

For both optimal formulations described in Table 3.2, genuine replication was carefully 

incorporated into the synthesis and subsequent characterization. At the synthesis stage, Opt1 and 

Opt1R (both of the same formulation) were synthesized from two unique (independently prepared) 

monomer stock solutions. Similarly, Opt2 and Opt2R were from independently prepared monomer 

stock solutions, and Opt2RB was synthesized from the same stock solution as Opt2R. Thus, 

reproducibility between stock solutions (with the same target formulation) and repeatability within 

a given stock solution (using the same concentrated solution for two separate synthesis procedures) 

have been considered. In addition, characterization replicates were performed for the evaluation 

of terpolymer properties described in what follows. A hierarchical design study (related to these 

two optimal terpolymers and molecular weight analysis) is currently in progress, as part of training 

a senior undergraduate student for their individual research project. 

 

4.2.2.1 Gravimetry  

 

As shown in Figure 4.17, both optimally designed experiments (shown in part (a) and (b) of the 

figure) exhibit similar polymerization rates. This is as expected, since influential reaction 

conditions are similar between the two formulations. Ionic strength and monomer concentration, 

known to affect the rate of polymerization [84], are the same between the two formulations. Also, 

although the feed composition varies for these two formulations, both terpolymers are rich in 

acrylamide. Therefore, the similarity of the two conversion profiles confirms that the syntheses are 

behaving as anticipated. 

 

In both cases, samples have reached full conversion after ~90 minutes of reaction time. As 

described previously, conversion values were adjusted to take the high salt content (and residual 

salt in the product polymer) into account. However, in this case, assuming that NaCl incorporated 

at a 1:1 molar ratio with acrylamide was unfounded, since there was not enough salt added to the 

system in the pre-polymerization step. Data analysis and evaluation of conversion and composition 

(elemental contributions) indicate that NaCl does still incorporate, but that the ratio at which it 

incorporates is approximately 0.4 mol NaCl to 1.0 mol AAm for Opt1 and 0.5 mol NaCl to 1.0 



96 

 

mol AAm for Opt2. It seems that incorporation at a 1:1 ratio occurs when enough salt is present in 

the system (that is, when the moles of NaCl outnumber the moles of acrylamide). When NaCl is 

limited, it incorporates to the extent possible. Therefore, numerical adjustment (or additional 

sample purification) is required to obtain reasonable conversion levels (below 100%) and to ensure 

that all sample mass is accounted for (in terms of elemental contributions). Note that, in this case, 

not all samples were characterized using elemental analysis (which is required to adjust for Na 

content as it relates to the acidic comonomers; see Section 3.3.1 and Appendix C (Section C.2)), 

so only the NaCl correction is applied herein. If the adjustment were made for the Na content, all 

conversion values would fall below 100%. 

 

(a)   

 

(b) 

   
Figure 4.17: Repeatability of Gravimetric Results for Optimal Terpolymers; fAMPS,0/fAAm,0/fAAc,0 =  

(a) 0.21/0.69/0.10 and (b) 0.10/0.75/0.15 

 

Most samples for both formulations were taken after 90 minutes. This was primarily so that there 

would be sufficient polymeric material (with nearly identical properties) for subsequent testing. 

The enhanced oil recovery tests, especially, require large quantities of polymer samples. Having 

several samples taken at the same time interval also provides additional data for repeatability 

analysis. 

 

Samples were also collected at lower and higher sampling times (that is, lower and higher 

conversion levels) to obtain an improved understanding of the conversion effects on other material 

properties (namely, composition drift and changes in molecular weight averages). For both 

formulations, the replicate runs were consistent with the original runs in terms of conversion, and 

the trajectories were as expected. These gravimetry results indicate that the terpolymerization 

process is consistent through several independent synthesis replicates, and that additional 

characterization steps can be pursued.   
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4.2.2.2 Cumulative Terpolymer Composition 

 

The cumulative terpolymer compositions for both optimal formulations were predicted from 

previously estimated ternary reactivity ratios (recall Figure 4.9a) [80, 81]. Given these predictions, 

the terpolymers are expected to be rich in acrylamide and to exhibit minimal composition drift 

throughout conversion. To confirm the cumulative terpolymer composition (and to evaluate the 

prediction performance of the reactivity ratio estimates), samples throughout the conversion 

trajectory were analyzed. The results (and comparisons to model predictions) are shown in Figure 

4.18 and Figure 4.19. 

 

 
Figure 4.18: Cumulative Terpolymer Composition for Terpolymer Opt1 (fAMPS,0/fAAm,0/fAAc,0 = 

0.21/0.69/0.10) 
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Figure 4.19: Cumulative Terpolymer Composition for Terpolymer Opt2 (fAMPS,0/fAAm,0/fAAc,0 = 

0.10/0.75/0.15) 

 

It is immediately evident that experimental data collected from both formulations are in good 

agreement with the model predictions. Overall, the composition values are close to the predicted 

values, and composition drift is minimal. As explained previously, the majority of samples were 

taken after 90 minutes, which means that the data set is much more comprehensive at higher 

conversion levels. All composition measurements taken at high conversion levels seem to be in 

agreement with each other and with the model.  

 

Some specific points at low conversion (at 18% conversion, which was sampled from Opt2RB) 

are worth examining further. Interestingly, the (repeatable) elemental analysis measurement 

indicates that the AAc fraction exceeds the AMPS fraction, which conflicts with the model 

prediction. This could be due to small amounts of experimental error (likely propagating from the 

synthesis step, since the elemental analysis measurements were replicated). It is also possible that 

the behaviour of the terpolymerization varies at low conversion levels, and that some composition 

drift exists early in the polymerization process (below 20% conversion). As outlined earlier 

(Section 2.3.2.2), this type of behaviour can make instantaneous parameter estimation (solely from 

low conversion data) unreliable. In this case, though, this discrepancy at 18% conversion is not a 

major concern. For the application, large quantities of material are desirable, so the polymerization 

process will typically be taken to higher conversion levels. The main conclusion here is that 

overall, the model predictions (from ternary reactivity ratios estimated earlier) accurately predict 

the cumulative terpolymer composition.  
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4.2.2.3 Molecular Weight Averages  

 

Given the results of the screening experiment study (Section 4.1.3.1 in particular), the expected 

range for the peak average molecular weights (𝑀p) of these samples was between 1.0×106 g/mol 

and 5.0×106 g/mol.  

 

Aqueous GPC analysis is notoriously difficult for multi-component polymers with polyelectrolyte 

behaviour (like the AMPS/AAm/AAc terpolymer). During this investigation, samples were 

carefully prepared as described in Section 3.3.3: crushed into a fine powder and given ample time 

to dissolve in the buffer solution. However, in comparing the ‘expected’ concentration of the 

polymer solutions (calculated during sample preparation) to the ‘measured’ concentration 

(obtained during GPC analysis), it was observed that more than 50% (by weight) of each polymer 

sample was being removed during the filtration step (prior to GPC injection). The comparison of 

‘expected’ and ‘measured’ concentrations is available in Appendix C, Section C.3.  

 

Using the GPC-measured concentrations for analysis provides more reliable and repeatable results. 

For example, analysis of two replicate GPC measurements for Opt2-1 (with both samples taken 

from the same polymer/buffer solution but filtered into unique GPC vials) demonstrates a 

significant improvement in repeatability. In Table 4.13, percent error calculations (coefficient of 

variation, CV) are compared for Mp replicates and Mw replicates, both using the ‘measured’ 

concentration (from GPC analysis) and the ‘expected’ concentration (from sample preparation) to 

determine the molecular weight averages.  

 

Table 4.13: Comparison of Molecular Weight Averages for Opt2-1 using ‘Measured’ and ‘Expected’ 

Sample Concentrations 

Concentration measured during sample prep = 1.02 mg/ml 
 

GPC-Measured 

Concentration 

Mp (using 

Measured Conc.) 

Mp (using 

Expected Conc.) 

Mw (using 

Measured Conc.) 

Mw (using 

Expected Conc.) 

Opt2-1 0.21 mg/ml 1.53E+06 7.47E+06 1.37E+06 6.69E+06 

Opt2-1 (GPC 

Replicate) 

0.26 mg/ml 1.57E+06 6.14E+06 1.45E+06 5.65E+06 

% Error (CV) 
 

2.13 13.87 4.05 11.96 

 

For both samples, the ‘measured’ concentration is much lower than the ‘expected’ concentration: 

only 20% to 25% of the sample remained in solution for GPC analysis. If this large difference is 

not taken into account, it can significantly impact the molecular weight averages. First, consider 

the peak average molecular weight of Opt2-1. When the correct concentration of polymer solution 

(as measured by the GPC) is used, the measured Mp is 1.53×106 g/mol (and the replicate value is 

reasonably close at Mp = 1.57×106 g/mol). However, assuming that the sample concentration is 

still 1.02 mg/ml (and that nothing has been filtered out) results in the recorded peak average 

molecular weight jumping up to 7.47×106 g/mol. In this case, significantly poorer agreement 
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between the original sample and the replicate analysis is observed (compare 2.13% error when the 

measured concentration is used to 13.87% error when the expected concentration is used). Given 

these results, it seems irrational to assume that all of the AMPS/AAm/AAc terpolymer that was 

dissolved into the buffer solution during sample preparation is still present during the GPC 

injection (that is, after filtration). Similar comparisons exist for the weight-average molecular 

weight measurements (also shown in Table 4.13) and for other sample replicates (not shown 

herein). 

 

There are two main takeaways from this result. First, it is important that GPC-measured 

concentrations are used when analyzing these types of samples (specifically, multi-component 

polyelectrolytes, often with high acrylamide content and high molecular weights; these have the 

potential to significantly increase the solution viscosity and limit polymer dissolution and 

subsequent filtration). Second, the molecular weight averages (though more consistent) may be 

underestimated. Since 50% (or more) of the sample is being removed during the filtration phase, 

it is very possible that the larger polymer chains (higher molecular weights) are being filtered out 

during sample preparation, thus creating a low bias in the measured molecular weight averages. 

With that in mind, the molecular weight averages for both optimal formulations will be examined: 

both the repeatability of the measurements and the measurements themselves (compared to 

expected values). The main focus here will be on the full conversion samples (taken after 90 

minutes of polymerization), since this characterization is valuable for additional (application-

specific) experimental work. However, the effect of conversion on the molecular weight averages 

will also (briefly) be investigated. 

 

For both formulations, excellent repeatability was observed. This is true for a variety of 

comparisons: between two independently synthesized polymers with the same formulation (for 

example, Opt1 samples vs. Opt1R samples), between samples independently isolated during a 

common synthesis (for example, Opt1-4 vs. Opt1-7; both taken after 90 minutes of 

polymerization), and between characterization tests (two GPC replicates of Opt1-4, completed 

over several months). Relevant data are shown in Table 4.14 and Table 4.15; in Table 4.14 and 

Table 4.15, Mp represents peak average molecular weight, Mn represents number average 

molecular weight, Mw represents weight average molecular weight, and IV represents intrinsic 

viscosity. ANOVA Tables comparing syntheses, samples and characterization (one for each 

formulation) are available in Appendix C, Section C.3. No statistically significant differences were 

observed for any of the comparisons. Therefore, the synthesis replicates and the sampling 

replicates do not contribute significantly to overall variability. 
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Table 4.14: Reproducibility/Repeatability of Molecular Weight Averages for Opt1 

  Sample Mp Mn Mw Bulk IV 

Original synthesis, sample & 

characterization 
Opt1-4 1.54E+06 1.33E+06 1.36E+06 7.76 

Original synthesis & sample, 

characterization (GPC) replicate 
Opt1-4 1.57E+06 1.43E+06 1.44E+06 8.09 

Original synthesis, sample replicate Opt1-7 1.56E+06 1.27E+06 1.32E+06 7.77 

Replicate synthesis Opt1R-3 1.56E+06 1.37E+06 1.39E+06 8.23 

Replicate synthesis & sample, 

characterization replicate 
Opt1R-3 1.61E+06 1.36E+06 1.40E+06 8.04 

Replicate synthesis, sample replicate Opt1R-8 1.55E+06 1.37E+06 1.39E+06 8.06 

 Average 1.57E+06 1.36E+06 1.38E+06 7.99 

 StDev 2.31E+04 5.26E+04 4.16E+04 0.19 

 % error 1.47 3.88 3.00 2.33 

 

Table 4.15: Reproducibility/Repeatability of Molecular Weight Averages for Opt2 

  Sample Mp Mn Mw Bulk IV 

Original synthesis, sample & 

characterization 
Opt2-4 1.44E+06 1.30E+06 1.32E+06 7.69 

Original synthesis & sample, 

characterization (GPC) replicate 
Opt2-4 1.56E+06 1.38E+06 1.40E+06 8.24 

Original synthesis, sample replicate Opt2-10 1.54E+06 1.32E+06 1.35E+06 7.21 

Replicate synthesis Opt2R-5 1.52E+06 1.36E+06 1.37E+06 7.53 

Replicate synthesis & sample, 

characterization replicate 
Opt2R-9 1.49E+06 1.32E+06 1.34E+06 7.64 

Replicate synthesis & sample, 

characterization (GPC) replicate 
Opt2R-9 1.49E+06 1.36E+06 1.37E+06 7.88 

 Average 1.51E+06 1.34E+06 1.36E+06 7.70 

 StDev 4.49E+04 2.93E+04 2.99E+04 0.35 

 % error 2.98 2.19 2.20 4.50 

 

Aside from the good repeatability established in Table 4.14 and Table 4.15, the average molecular 

weights of each sample can also be evaluated. Given the number of replicates available, the 

average for each formulation is considered. For formulation Opt1 (fAMPS,0/fAAm,0/fAAc,0 = 

0.21/0.69/0.10), the (mean) peak average molecular weight is 1.57×106 g/mol. Formulation Opt2 

(fAMPS,0/fAAm,0/fAAc,0 = 0.10/0.75/0.15) is about the same, with a mean Mp of 1.51×106 g/mol. The 

similarity allows for straightforward comparison of other (application-specific) properties; any 

differences in performance will be due to other factors (such as cumulative terpolymer composition 

or terpolymer microstructure). 

 

The molecular weight averages reported here are notably on the low end of the anticipated 

characteristics, but are still within the desired range. As mentioned previously, the molecular 



102 

 

weight averages may be underestimated somewhat, since a considerable portion of each polymer 

sample was filtered out of the buffer solution prior to analysis. However, these results are well 

aligned with a reference polymer that is currently used in EOR applications (Alcoflood 955, 

purchased from BASF, USA). The reference polymer is an acrylamide/acrylic acid copolymer 

(which had 𝐹𝐴𝐴𝑚 = 0.91 and 𝐹𝐴𝐴𝑐 = 0.09), and the peak average molecular weight was 1.42×106 

g/mol (characterized using the same techniques as for the optimally designed terpolymers). 

Therefore, it is anticipated that the application performance will be as good as (or better than) 

currently available materials. 

 

For interest, the effect of conversion on molecular weight averages was also examined. Although 

most data collected were for high conversion samples, the samples taken at low conversion levels 

indicate that the peak average molecular weight (Figure 4.20a), the weight average molecular 

weight (Figure 4.20b), and the bulk intrinsic viscosity (IV; Figure 4.20c) are relatively constant 

over the conversion range analyzed (approximately 15% to 100%). This conflicts with results 

observed previously for the acrylamide/acrylic acid copolymer [41], but the consistency in 

molecular weight averages over conversion may be related to the high proportion of each sample 

removed during the filtration step of the analysis. 

 

All three plots related to the molecular weight analysis (within Figure 4.20) also include the 

properties of the reference polymer (Alcoflood 955), which was characterized alongside the 

designed terpolymers. Since the conversion of the reference sample is unknown (but likely very 

high), the measured value for each property is presented as a horizontal (dashed) line. Both of the 

newly synthesized (optimal) terpolymers have similar molecular weight characteristics to the 

reference material, which suggests that the customized (designed) approach led to the development 

of materials with appropriate and desirable molecular weight characteristics. Also, the molecular 

weight averages (Mp and Mw) of the new materials are slightly higher than those of the reference 

material, which could improve the enhanced oil recovery performance. 
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(a) 

 
(b) 

 
(c) 

 
Figure 4.20: Effect of Conversion on (a) Peak Average Molecular Weight, (b) Weight Average 

Molecular Weight and (c) Bulk Intrinsic Viscosity (and Comparison to Reference Polymer 

Alcoflood 955) for Optimal Terpolymers 
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4.2.2.4 Sequence Length Distribution 

 
13C-NMR spectra were measured and analyzed for Opt1 and Opt2 terpolymers, as described in 

Section 3.3.4. The purpose of these tests was to compare the measured sequence length 

distributions to those predicted by ternary reactivity ratios in Section 4.1.2.3 (using analysis 

techniques similar to Randall [119] and Brar and Sunita [120]). However, given the 18 unique 

monomer triads, the chemical similarity of the comonomers, and the noisy spectra (due to the high 

viscosity of the samples), sequence length distribution could not be directly determined. What we 

were able to do was to confirm terpolymer composition from yet another independent source 

(described shortly below). For reference, 13C-NMR spectra of terpolymer #1 and terpolymer #2 

are presented in Figure 4.21 and Figure 4.22, respectively. 

 

 
Figure 4.21: 13C-NMR Spectra of Terpolymer #1 in Buffer/D2O at 68°C 
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Figure 4.22: 13C-NMR Spectra of Terpolymer #2 in Buffer/D2O at 68°C 

 

Although the spectra are not sufficient for the determination of sequence length distribution, they 

can still be used to calculate the cumulative terpolymer composition. Using the carbonyl carbon 

responses associated with AMPS (δ ≈ 176 ppm), AAm (δ ≈ 180) and AAc (δ ≈ 183 ppm), it is 

possible to calculate the mole fraction of each comonomer in the terpolymer sample. These are 

compared to the (averaged) elemental analysis (EA) results from Section 4.2.2.2 in Table 4.16. 

 

Table 4.16: Comparison of Cumulative Terpolymer Composition from 13C-NMR and EA 

 Cumulative Composition from 
13C-NMR 

Cumulative Composition from 

Elemental Analysis 

 𝑭𝑨𝑴𝑷𝑺 𝑭𝑨𝑨𝒎 𝑭𝑨𝑨𝒄 𝑭𝑨𝑴𝑷𝑺 𝑭𝑨𝑨𝒎 𝑭𝑨𝑨𝒄 

Terpolymer #1 0.19 0.74 0.07 0.21 0.68 0.11 

Terpolymer #2 0.13 0.80 0.07 0.11 0.75 0.13 

 

Composition measurements are in relatively good agreement between 13C-NMR and elemental 

analysis, especially considering the challenges associated with analyzing viscous polymer samples 

using nuclear magnetic resonance. NMR results provide adequate confirmation of the elemental 

analysis results, but the EA results are more trustworthy. 
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4.2.2.5 Thermal Stability 

 

Thermal gravimetric analysis (TGA) was performed (as described in Section 3.3.5) for Opt1 and 

Opt2, and included synthesis replicate analysis and characterization replicate analysis. The 

reference material (Alcoflood 955) and an AAm/AAc copolymer (from Riahinezhad et al. [32]) 

were also evaluated for comparison. The motivation here was two-fold. First, it was important to 

ensure that the thermal properties were consistent across synthesis replicates (and to ensure that 

TGA measurements were consistent for sample replicates). Second, thermal analysis provides an 

opportunity to confirm that thermal stability is improved (compared to the typically used 

AAm/AAc copolymer) when AMPS is incorporated into the polymer backbone. As shown 

previously (Figure 2.4), the majority of oil reservoirs are below 200°C, but behaviour at higher 

temperatures was evaluated herein as a ‘worst case’ scenario. TGA up to higher temperatures (at 

least 400°C) made it possible to compare the point at which significant mass loss occurred for each 

sample; materials that showed degradation at higher temperatures are more thermally stable (and 

may, therefore, be promising candidates for enhanced oil recovery). Results from synthesis 

replicates (Opt1 vs. Opt1R and Opt2 vs. Opt2R), the reference material (Alcoflood 955) and the 

AAm/AAc copolymer are shown in Figure 4.23. Characterization replicates for Opt1 and curve 

derivatives for all samples are available in Appendix C, Section C.4. 

 

 
Figure 4.23: Thermal Behaviour (from Thermal Gravimetric Analysis) for Optimally Designed 

Terpolymers, Reference Material, and a Designed AAm/AAc Copolymer 
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Examining all six curves on a single plot allows for the direct comparison of all materials. 

Immediately, excellent agreement is observed between the original terpolymer runs and the 

synthesis replicates. Both blue curves (for Opt1 and Opt1R) are directly on top of each other, and 

exhibit two main points of interest. Aside from the gradual decrease in weight initially (which is 

likely water loss), there are two more obvious transition points. The first transition occurs at 225°C 

and the second (more significant) transition occurs at 284°C. Thus, any substantial mass loss 

(degradation) is beyond 200°C. Similarly, excellent repeatability was observed from the 

independent replication of Opt2. Both red curves exhibit similar behaviour, and the transition 

points (easily identifiable from the derivatives; see Section C.4 in Appendix C) are identical. 

 

Another important conclusion from Figure 4.23 is the improved thermal behaviour of the 

terpolymers compared to the reference material and to the AAm/AAc copolymer. Both of these 

materials show a sudden decrease in sample mass: the reference material at 217°C and the 

AAm/AAc copolymer at 257°C. The mass reduction for these materials is much more sudden than 

for the terpolymers; this could have adverse effects in the EOR application.  

 

Table 4.17 provides some key findings from the TGA experimental work. A minor transition (with 

small mass loss) was only observed for the terpolymer samples, and may be related to water 

entrapment in the polymer samples. The major transition is the point at which significant mass loss 

occurs, and is likely related to sample degradation. It is reassuring to note that the major transition 

occurs at the lowest temperature for the reference material; the (designed) AAm/AAc copolymer 

can tolerate an additional 40°C before the major transition occurs. Even more improvement is 

observed when AMPS is added to the material formulation, as both Opt1 and Opt2 exhibit 

(relatively low) weight loss at 284°C and 281°C, respectively. 

 

It is also enlightening to examine the remaining weight proportion at several (meaningful) 

temperatures. In Table 4.17, the remaining weight % of each material is listed at 80°C (median 

reservoir temperature as per Figure 2.4), 120°C (maximum ‘encountered’ reservoir temperature 

for ~90% of reservoirs worldwide, again as per Figure 2.4), 200°C (maximum reservoir 

temperature) and 300°C (for interest and to represent a ‘worst case scenario’). For replicated 

samples, average values are shown. 

 

Table 4.17: Points of Interest from Thermal Gravimetric Analysis Results 

Material Minor 

Transition 

Major 

Transition 

Weight % 

at 80°C 

Weight % 

at 120°C 

Weight % 

at 200°C 

Weight % 

at 300°C 

Opt1 225°C 284°C 95.4% 92.8% 88.2% 80.8% 

Opt2 199°C 281°C 95.6% 93.3% 88.7% 79.1% 

Reference N/A 217°C 96.2% 94.0% 87.1% 57.7% 

AAm/AAc 

Copolymer 

N/A 257°C 93.5% 90.0% 84.5% 66.1% 
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All materials exhibit similar thermal behaviour up to 200°C, but the difference in material 

properties becomes evident at 300°C. In reality, thermal stability up to 300°C is much higher than 

what the EOR application currently demands, but the contrast in materials shows the improved 

thermal stability when a terpolymer of AMPS/AAm/AAc is used. Thus, this study has confirmed 

that the addition of AMPS does, in fact, improve the thermal stability of the polymeric material, 

as hypothesized in Section 2.1.3. 

 

4.2.3 Investigation of Application-Specific Properties 

 

In evaluating application-specific properties, larger sample volumes are often required (that is, 

several samples (from one or more synthesis replicate) may be combined for testing purposes). 

Given that good consistency of polymer properties has been established in the previous section, it 

is now possible to combine polymer samples (that were synthesized with the same formulation 

and under the same conditions) and have confidence that the final sample has homogeneous 

properties. Therefore, in some of the following sections, no distinction is made between synthesis 

replicates. For example, Opt1 and Opt1R are simply identified as optimal terpolymer #1. 

 

4.2.3.1 Rheological Properties 

 

The rheological properties are critical to the enhanced oil recovery performance. If the materials 

are not viscous enough, they will not provide the sweep efficiency required (that is, much of the 

residual oil will remain in the reservoir, even after polymer flooding). In contrast, if they are too 

viscous, they may cause pressure build-up and plugging in the reservoir. There is potential to adjust 

the viscosity of a solution by changing the concentration of the polymeric material within the 

solution [115], but using smaller quantities of the polymer is preferred (for environmental and 

economic reasons). Therefore, the goal is to create materials with similar properties to the reference 

material (here Alcoflood 955, described previously). Rheological properties of each optimal 

terpolymer and the reference polymer (in water and in a saline (pH 7 buffer) solution) were 

measured as described in Section 3.4.1, and key findings are presented herein. 

 

Frequency sweep tests, performed using a cone and plate rheometer, give information about the 

viscoelastic properties of the polymer solution. Among the relevant variables are |n*| (complex 

viscosity), G’ (elastic modulus) and G” (loss modulus); these measurements and their 

interpretation are discussed further in what follows. However, prior to completing each frequency 

sweep test, the linear viscoelastic region (LVR) must be established via a strain sweep test. Strain 

sweep tests were conducted at a fixed frequency of 10 Hz, ranging from 0.1% to 20%; a 

representative result for an Opt1 terpolymer sample in water is shown in Figure 4.24. This is 

representative of most solutions in the present study, and 1% strain was chosen for subsequent 

frequency sweep testing. As an additional check, for select samples, frequency sweep tests were 

performed at both 1% strain and 10% strain (both within the linear viscoelastic region), and results 
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showed excellent agreement (see Figure C.10 in Appendix C, Section C.5). Therefore, as long as 

the strain level selected is within the linear viscoelastic region, the % strain selected for analysis 

should not affect results. 

 

 
Figure 4.24: Sample Results (from Terpolymer #1) for Strain Sweep Test at 10 Hz  

(solution concentration of 0.01 g/mL in water) 

 

Representative plots (including replicates) from frequency sweep tests are shown in Figure 4.25.  

The shear thinning behaviour of the AMPS/AAm/AAc terpolymer solutions is immediately 

obvious: samples show a decrease in viscosity as angular frequency increases. This makes 

physicochemical sense, since at higher frequencies (or by analogy, at higher shear rates), the 

polymers transition from flowing in a coil conformation to flowing in a linear (aligned) 

arrangement. This decreases the viscosity of the solution, which in turn would decrease the 

efficiency of the EOR process. 

 

It is also interesting to examine the repeatability of the experimental results (both in terms of 

synthesis and characterization). For terpolymer #1, the synthesis replicates seem to exhibit more 

inconsistencies than the characterization replicates (especially for terpolymer #1 in water; Figure 

4.25a), but this is often expected. For terpolymer #2, excellent agreement is observed between 

synthesis replicates. 

 

For the rheological tests done in water, the complex viscosities of both optimal terpolymers were 

higher than the reference sample at low angular frequencies, and over most of the angular 
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frequency range studied. However, this distinction became less pronounced at higher angular 

frequencies (especially for terpolymer #1R (Figure 4.25a) and for terpolymer #2 (Figure 4.25b)).  

 

The change in behaviour between aqueous polymer solutions and polymers in buffer solutions was 

also examined. For the reference polymer and for the newly synthesized (optimal) terpolymers, 

the complex viscosity is lower in buffer solutions than in water. Physicochemically, these results 

are as expected. The terpolymer of AMPS/AAm/AAc is a polyelectrolyte and is therefore very 

sensitive to ions in solution. When charged molecules (salts, in this case) are added to the 

environment, charge screening occurs. As a result, previously elongated polymer chains (stretched 

due to charge repulsion along the macromolecule) reposition themselves into a coil conformation. 

Of course, this change in polymer conformation impacts the solution viscosity; a smaller radius of 

gyration will lower the shear viscosity of a given polymer solution. 

 

Interestingly, the designed terpolymers exhibited a larger reduction in complex viscosity 

(compared to the reference material) when the buffer solution was used rather than water. This is 

likely due to the addition of AMPS; incorporating a second acidic comonomer into the polymeric 

material amplifies the charge effects. However, it is anticipated that the presence of AMPS will 

have additional benefits, including mechanical and chemical stability [21, 23] and as per earlier 

discussion (recall Section 4.2.2.5). Also, the rheological behaviour of terpolymer #1 and 

terpolymer #2 is still comparable to the reference material, which makes them good candidates for 

the enhanced oil recovery application. 
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(a) 

 
(b) 

 
Figure 4.25: Complex Viscosity Profiles for AMPS/AAm/AAc Terpolymers in Water and Buffer for 

(a) Terpolymer #1 and (b) Terpolymer #2 
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It has been reported that the polymer flood water solutions used in EOR are exposed to a range of 

shear rates from about 1 s-1 to 7 s-1 [32]. The Cox-Merz rule makes it possible to assume that the 

relationship between |η*| and ω is analogous to the relationship between steady state shear 

viscosity (η) and shear rate (𝛾̇). Therefore, shear viscosities for 𝛾̇ = 1 s-1, 𝛾̇ = 5 s-1 and 7 s-1 (specific 

shear rates of interest for the EOR application) are provided in Table 4.18. Average values for each 

terpolymer (taken from synthesis and/or characterization replicates, as available) are presented 

herein, but the full data set is available in Appendix C, Section C.5. This direct comparison shows 

that the viscosity behaviour of the new terpolymers is generally comparable to the reference 

copolymer, and hence the designed AMPS/AAm/AAc terpolymers remain viable. 

 

Table 4.18: Summary of Shear Viscosities for Terpolymer Solutions 

In WATER Shear Viscosity (Pa·s) 

𝜸̇ = 1 s-1 𝜸̇ = 5 s-1 𝜸̇ = 7 s-1 

Terpolymer #1 Average 10.10 3.22 2.49 

Terpolymer #2 Average 8.12 2.52 1.98 

Alcoflood (Reference Material) 5.84 2.04 1.61 

In BUFFER Shear Viscosity (Pa·s) 

𝜸̇ = 1 s-1 𝜸̇ = 5 s-1 𝜸̇ = 7 s-1 

Terpolymer #1 Average 2.79 1.10 0.89 

Terpolymer #2 Average 2.41 0.93 0.74 

Alcoflood (Reference Material) 3.47 1.33 1.08 

AAm/AAc copolymer with best EOR 

performance (as reported in [115, 117]) 
3.41 -- 0.89 

 

Viscoelastic properties were also measured during frequency sweep tests. G’, the elastic modulus, 

provides information about the reversibly stored energy in the system. G’’, the viscous modulus, 

represents the irreversible energy loss. In general, polymer solutions for enhanced oil recovery 

with higher G’ and G’’ values (compared to a standard reference material) offer superior 

viscoelasticity. This is relevant for EOR, since the viscoelastic behaviour improves the sweep 

efficiency of the EOR process. The crossover point (that is, the frequency at which the behaviour 

shifts from predominantly viscous to predominantly elastic) was generally observed at very low 

frequencies and was occasionally not observed (especially for aqueous solution trials). This value, 

though commonly used as a measure of viscoelasticity, was not repeatable at these very low 

frequencies (especially since it was very early in the experimental run), and is therefore only used 

in a relative way as an indicator of potential EOR performance. Measurements of G’ and G’’ for 

both the water and buffer solutions are shown in Figure 4.26 and Figure 4.27. 
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(a) 

 
(b) 

 
Figure 4.26: Elastic and Loss Modulus for AMPS/AAm/AAc Terpolymers in Water for  

(a) Terpolymer #1 and (b) Terpolymer #2 
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(a) 

 
(b) 

 
Figure 4.27: Elastic and Loss Modulus for AMPS/AAm/AAc Terpolymers in Buffer for  

(a) Terpolymer #1 and (b) Terpolymer #2 

 

As demonstrated in Figure 4.26, G’ is generally larger than G’’ (except at very low frequencies). 

This indicates that the loss modulus dominates at very low frequencies, but that under normal 

operating conditions (that is, frequencies characteristic of the EOR application), the solutions are 

predominantly elastic in nature. A clear crossover point was observed for the reference sample, 

but the crossover behaviour occurred at very low frequencies (or not at all) for the optimal 

terpolymers. This predominantly elastic behaviour is desirable for enhanced oil recovery; studies 
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have shown that polymer solutions with higher elasticity also provide higher oil recovery 

efficiency [121]. In comparing the newly synthesized (optimal) terpolymers to the reference 

sample, terpolymer #1 (Figure 4.26a) seems to be somewhat more elastic than the reference 

material (the moduli are higher, and the crossover point occurs at a lower frequency). However, 

terpolymer #2 (Figure 4.26b) has characteristics that are very similar to the reference material. 

 

Figure 4.27 shows the viscoelastic behaviour of the same polymeric materials in buffer solution. 

The properties of the newly synthesized terpolymers are comparable to the reference polymer, but 

the modulus values are slightly higher for the reference polymer than they are for the optimal 

terpolymers. For all three materials (terpolymer #1, terpolymer #2 and the reference material) in 

buffer, the elastic behaviour still dominates, but to a lesser extent than in aqueous polymer 

solutions. The crossover frequency in buffer is consistently higher than the crossover frequency in 

water, which suggests that the polymer solution behaviour is more viscous (less elastic) for a wider 

range of low frequencies.  

 

Information about the storage and loss moduli can be combined by looking at the dynamic 

mechanical loss tangent (tanδ), which is the ratio of G’’ to G’. When tanδ (G’’/G’) is below unity, 

elastic behaviour dominates. Low values of tanδ (that is, high elasticity) can encourage ‘pulling’ 

behaviour in an oil reservoir, which assists with the removal of residual oil and increases the 

displacement efficiency in EOR [22]. 

 

 
Figure 4.28: Dynamic Mechanical Loss Tangent (tanδ) for Designed Terpolymers and Reference Polymer 
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As shown in Figure 4.28, terpolymer #1 and terpolymer #2 have similar tanδ profiles. In aqueous 

solutions, both of the optimally designed terpolymers have a lower tanδ (therefore higher elasticity 

and potentially improved EOR performance) compared to the reference polymer. For the reference 

polymer, tanδ values are closer to the buffer behaviour of the other materials. This indicates that 

the reference polymer is less affected by salts in solution, which agrees with the complex viscosity 

results observed previously (Figure 4.25). In any case, all tanδ values (over the frequency range 

presented herein) are below unity, which adds to the increasing list of desirable properties that 

these terpolymers possess for the enhanced oil recovery application. 

 

4.2.3.2 EOR Phase I: Polymer Flow Performance in Sand-pack Flooding Tests 

 

As described in Section 3.4.2.1, displacement tests (in a sand-pack flooding system) have been 

performed for three polymers (terpolymer #1, terpolymer #2 and a reference material); this has 

been pursued in collaboration with Professor Laura Romero-Zerón in the Department of Chemical 

Engineering at the University of New Brunswick. The purpose of these tests, which have a duration 

of about two months per material tested, is to compare the flow behaviour of the newly synthesized 

(optimal) terpolymers to commercially available materials. The process involves flooding a pre-

characterized sand-pack system with brine, then with a 1wt% polymer solution, and then with 

additional brine. Since the system was repacked with sand between each trial (to eliminate any 

confounding variables that could be introduced during a cleaning step), characteristics of the sand-

pack were measured for each run and are reported in Table 4.19. 

 

Table 4.19: Sand-pack Properties for Sand-pack Flooding Tests 

Sample PV (cm3) Porosity k (mD) 

Terpolymer #1, Trial #1 26.97 0.2010 78,118 

Terpolymer #1, Trial #2 25.47 0.1898 85,186 

Terpolymer #1, Trial #3 23.47 0.1749 99,383 

Terpolymer #2, Trial #1 25.47 0.1898 75,481 

Terpolymer #2, Trial #2 16.47 0.1227 98,291 

Terpolymer #2, Trial #3 25.47 0.1898 99,383 

Reference Material, Trial #1 25.97 0.1935 98,291 

Reference Material, Trial #2 25.47 0.1898 85,180 

 

In considering the flow behaviour of polymer solutions in an oil reservoir, the two factors of 

interest are the resistance factor (RF) and the residual resistance factor (RRF). These have been 

described in Section 3.4.2.1 (see Equations 3.3 and 3.5). Ideally, polymer solutions should have a 

high RF (indicative of good mobility control and high sweep efficiency) and a low RRF (indicative 

of polymer entrapment and reservoir plugging).  

 

Since the sand-pack characteristics (permeability and porosity) varied between runs (as evidenced 

in Table 4.19), differences between runs were normalized by using a modified capillary bundle 
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parameter (units of volume of fluid injected expressed as a fraction of PV; units of mD-0.5) which 

is defined by Equation 4.1 [117, 122].  

𝐶𝑎𝑝𝑖𝑙𝑙𝑎𝑟𝑦 𝐵𝑢𝑛𝑑𝑙𝑒 𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 =  
1

4
 
𝐹 𝑡 (1 − 𝜙) 𝐴

(𝜙𝑘)0.5𝑃𝑉
 4.1 

Where F is flux (cm/min), t is injection time (min), ϕ is porosity (dimensionless), k is permeability 

(millidarcy, mD), A is the cross-sectional area of the sand-pack (cm2), and PV is sand-pack pore 

volume (cm3). 

 

Figure 4.29 provides a comparison of RF values for all three polymeric materials as a function of 

volume of polymer injected (expressed as a fraction of pore volume normalized for permeability 

(i.e., capillary bundle parameter)). Since the polymer flow performance test was performed at least 

twice for each material, average values are shown herein. For both optimal terpolymers, the RF 

value increases gradually (as a function of volume of polymer injected) but eventually plateaus. 

When the RF value stabilizes, it indicates that the polymeric material has propagated throughout 

the sand-pack, which is a sign of good flow performance. Also, since the tailor-made materials 

have a higher RF than the reference material, the terpolymers provide better mobility control than 

the commercially available polymer. This is a promising result, since polymer solutions with 

higher RF values are typically more effective in recovering oil. 

 

 
Figure 4.29: Resistance Factor (RF) from Polymer Flow Performance Testing 
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In Figure 4.30, polymer retention in the reservoir (sand-pack) is evaluated by plotting the residual 

resistance factor for each material as a function of volume of fluid injected (again normalized for 

permeability and porosity using the capillary bundle parameter). As before, since at least two runs 

were performed for each material, average values are presented. All three materials exhibit the 

same general behaviour, as RRF values decrease with increased brine injection. This is as expected 

when the definition of RRF is considered (recall Equation 3.5). ΔPbrine injection #2 is in the numerator 

for RRF, and is a measure of the pressure difference along the sand-pack column after polymer 

flooding. Initially (immediately after polymer flooding), there will likely be significant pressure 

differences, as polymeric material remains entrained in the column. However, as more brine is 

injected into the system (and, subsequently, more of the polymeric material is recovered), the 

pressure difference along the sand-pack column will decrease. Therefore, as ΔPbrine injection #2 

decreases, RRF also decreases. The fact that this decrease is observed confirms that entrapped 

polymeric material is, in fact, being recovered from the system (which is a promising result). 

 

 
Figure 4.30: Residual Resistance Factor (RRF) from Polymer Flow Performance Testing 

 

Of the three polymeric materials evaluated, terpolymer #2 had the highest RRF values (therefore, 

it exhibited the most polymer retention). Terpolymer #1 had moderate RRF values, which 

(initially) decreased more quickly as the capillary bundle parameter increased (compared to 

terpolymer #2 or the reference material). The initial drop in RRF indicates that the polymer is more 
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easily recovered as brine is injected after polymer flooding. Since the molecular weight averages 

of terpolymer #1 and terpolymer #2 are similar, electrostatic effects due to composition differences 

are the most likely explanation for these different RRF profiles. Terpolymer #1 has a higher 

proportion of acidic (anionic) monomers along the polymer backbone (𝐹𝐴𝑀𝑃𝑆 + 𝐹𝐴𝐴𝑐 = 0.32 for 

terpolymer #1 and 𝐹𝐴𝑀𝑃𝑆 + 𝐹𝐴𝐴𝑐 = 0.25 for terpolymer #2), and a higher negative charge density 

would increase the repulsion between the polymer and the negatively charged sand particles. This, 

in turn, would decrease polymer adsorption on the sand surface (therefore, a steeper initial drop in 

RRF occurs, which indicates that the polymer is easily recovered as brine is injected after polymer 

flooding). Finally, the reference material (described in Table 3.5) had the lowest RRF. The lower 

initial value suggests that polymer entrapment was minimal to begin with, so the RRF plateaued 

fairly quickly. Although this reference material exhibited the best performance in terms of the 

RRF, it had the worst mobility control behaviour (from RF measurements in Figure 4.29). Finding 

a material with optimal EOR properties is a balancing act, since both RF and RRF need to be taken 

into account. 

 

A summary of reservoir flow properties for the three polymeric materials studied is presented in 

Table 4.20. Here, RF and RRF values are taken from the end of the corresponding experimental 

runs and the equivalent percentage of permeability reduction (relative to the original permeability 

of the corresponding sand-packs) is provided.  

 

Table 4.20: Summary of Reservoir Flow Properties for Terpolymer Solutions 

Polymeric Material Resistance Factor 

(RF) 

Residual Resistance 

Factor (RRF) 

Permeability 

Reduction (%) 

Terpolymer #1 47.3 8.6 88.3% 

Terpolymer #2 66.9 18.3 94.5% 

Reference Material 9.8 6.9 85.5% 

 

Given the RF and RRF values shown in Table 4.20, terpolymer #2 seems like the most promising 

candidate of the materials being evaluated herein. The fact that the RF values were high suggests 

that a polymer solution containing terpolymer #2 will exhibit good mobility control and, by 

extension, superior oil recovery efficiency. It is also important to note that the RF values in Figure 

4.29 were ‘leveling out’ (towards a plateau), which suggests that proper propagation of polymeric 

material through the sand-pack system was achieved (and reservoir plugging did not occur). Also, 

the RRF for terpolymer #2 plateaued around RRF = 18.3, which indicates that the sand-pack 

experienced a permeability reduction of 94.5% compared to the original permeability. A recent 

study by Riahinezhad et al. [117] reported successful oil recovery behaviour for a material with 

88% permeability reduction, so the properties of terpolymer #2 are reasonable. Also, there would 

be potential to inject post-polymer flooding brine for a longer period of time, which would remove 

additional residual polymer from the porous media. Therefore, reservoir plugging is not expected 

to be a concern for this polymer solution.   
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Terpolymer #1 is also an excellent candidate for further EOR testing, since it has a very good RF 

value and slightly better permeability reduction. Because it contains a higher proportion of AMPS 

(recall Section 4.2.2.2), it has improved properties in terms of thermal and mechanical stability. 

Also, as observed earlier, a higher proportion of anionic monomers along the backbone reduced 

the polymer retention within the reservoir. Therefore, both optimally designed terpolymers will be 

evaluated further (along with the reference material) in the following section. 

 

4.2.3.3 EOR Phase II: Heavy Oil Displacement in Sand-pack Flooding Tests 

 

Heavy oil displacement tests were performed for the two optimally designed terpolymers and the 

reference material, as per the experimental procedure described in Section 3.4.2.2. As described 

previously, heavy oil displacement tests use four consecutive injection stages: oil injection, water 

flooding (brine injection #1), polymer flooding (polymer solution injection), and chase water 

flooding (brine injection #2). Table 4.21 summarizes the sand-pack characteristics and initial test 

conditions for each experimental run; terpolymer #1 was characterized in triplicate, and the other 

materials were evaluated twice. Also, the initial oil saturation (Soi) and the irreducible water 

saturation (Swi) were determined after the oil injection stage and are provided in the table. These 

allow for an initial understanding of the sand-pack saturation composition (that is, the fraction of 

pore space occupied by oil and by water). Also, knowing the initial oil saturation makes it possible 

to monitor the oil saturation in the sand-pack as more oil is incrementally recovered. 

 

Table 4.21: Sand-pack Properties and Initial Conditions for Heavy Oil Displacement Tests 

Sample PV (cm3) Porosity k (mD) F (cm/min) Soi (%) Swi (%) 

Terpolymer #1, Trial #1 26.19 0.1952 110,426 0.0208 79.20 20.80 

Terpolymer #1, Trial #2 22.19 0.1654 98,834 0.0203 89.47 10.53 

Terpolymer #1, Trial #3 22.19 0.1466 116,922 0.0205 89.47 10.53 

Terpolymer #2, Trial #1 20.19 0.1560 129,631 0.0193 98.00 2.00 

Terpolymer #2, Trial #2 20.94 0.1560 102,223 0.0198 91.82 8.18 

Reference Material,  

Trial #1 

20.69 0.1542 104,006 0.0207 88.71 11.29 

Reference Material,  

Trial #2 

20.19 0.1505 117,691 0.0206 90.23 9.77 

 

Properties were generally similar from one trial to the next, but any discrepancies have been 

normalized by using the capillary bundle parameter described earlier (Equation 4.1). 

 

Once the initial conditions (or baseline values) were established for each trial, the flooding steps 

for oil recovery were performed consecutively. Throughout the oil recovery steps, the pressure in 

the sand-pack was recorded as a function of injection volume (again, reported as a fraction of PV 

and normalized using the capillary bundle parameter). Representative pressure graphs are shown 

in Figure 4.31. 
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(a) 

 
(b) 

 
(c) 

 
Figure 4.31: Sand-pack System Pressure throughout Heavy Oil Displacement Testing for  

(a) Terpolymer #1, (b) Terpolymer #2 and (c) the Reference Material 
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The plots shown in Figure 4.31 provide us with a more detailed understanding of how polymer 

solutions affect flow through the sand-pack. Initially, during the water flooding stage (that is, as 

brine is injected into the system), the fluid finds the path of least resistance and flows easily through 

the reservoir. However, at the polymer flooding stage, the polymer solution sweeps through the 

entire reservoir. While this improves the oil recovery efficiency, it can also significantly increase 

the pressure in the system. Therefore, it is extremely important to continue monitoring the pressure 

in the sand-pack to ensure that plugging does not occur. As expected, injecting a solution of 

terpolymer #2 results in the largest pressure increase (the highest recorded value during polymer 

flooding is nearly 10 psi), whereas terpolymer #1 only reaches 7 psi and the reference material 

remains below 4 psi. However, in all cases, the pressure measurements return to the baseline during 

the final injection stage (post-polymer flooding, or brine injection #2). This is an excellent result; 

given the results of the displacement tests (Section 4.2.3.2), some polymeric material is expected 

to remain in the sand-pack. However, these pressure profiles confirm that no plugging has 

occurred, and any residual polymer present in the sand-pack does not affect the system pressure. 

 

Finally, perhaps the most important results from these tests are the oil recovery efficiencies at each 

stage and for each material. In Table 4.22, the oil recovery efficiency (that is, the proportion of oil 

removed from the sand-pack relative to the original oil in place) is provided for each recovery 

stage. Also, since at least two trials were performed for each material, the average results are 

presented for each polymer. 

 

Table 4.22: Oil Recovery Efficiency Results from Heavy Oil Displacement Tests 

Sample & Trial 

Water 

Flooding 

(%) 

Polymer 

Flooding 

(%) 

Post-Polymer 

Water 

Flooding (%) 

Incremental 

Oil Recovery 

(%) 

Overall Oil 

Recovery 

(%) 

Terpolymer #1, Trial #1 24.7 37.3 16.3 53.6 78.3 

Terpolymer #1, Trial #2 22.8 35.8 17.6 53.4 76.2 

Terpolymer #1, Trial #3 28.6 35.3 15.9 51.2 79.8 

Average Terpolymer #1 25.4   36.1 16.6 52.7 78.0 

Terpolymer #2, Trial #1 24.8 47.5 15.2 62.7 87.5 

Terpolymer #2, Trial #2 25.9 49.3 14.7 64.0 89.9 

Average Terpolymer #2 25.4 48.4 14.9 63.3 88.7 

Reference Material, Trial #1 24.2 23.0 10.8 33.9 58.1 

Reference Material, Trial #2 23.6 26.0 12.1 38.0 61.6 

Average Reference 

Material 23.9 24.5 11.4 35.9 59.8 

 

As described previously (Section 3.4.2.2), water flooding (brine injection #1) was performed first. 

As expected, the oil recovery from water flooding was similar for all materials (since the polymeric 

material is not a factor at this stage). The slight variation in water flooding performance would 

likely be due to subtle changes in sand-pack characteristics between trials.  



123 

 

Clearer differences are observed at the polymer flooding stage, since the nature of the polymeric 

material can significantly affect the enhanced oil recovery performance. Here, we have confirmed 

that the designed terpolymers of AMPS/AAm/AAc show a significant improvement over the 

commercial reference. Terpolymer #2 has the best EOR performance, and 48.4% (nearly half of 

the original oil volume) is recovered during the polymer flooding stage. This is an excellent result, 

and is aligned with what was expected based on the displacement test results (recall the high RF 

values in Figure 4.29). Also, the % oil recovery from the polymer flooding is approximately twice 

as much for terpolymer #2 as it is for the reference material. Therefore, it is a significant 

improvement over currently available commercially standard materials. Terpolymer #1 also 

performs very well at this stage, recovering (on average) 36.1% of the original oil in place. This, 

too, is much higher than the recovery achieved by the commercially available reference material.  

 

The final experimental stage during heavy oil displacement experiments is post-polymer water 

flooding (or brine injection #2). Here, more brine is added to the sand-pack system so that any 

residual oil or polymeric material can be flushed from the reservoir. At the beginning of this stage, 

it can be advantageous to have some polymeric material entrained in the sand-pack; as it is 

removed from the system, it will sweep residual oil with it and promote further oil recovery. Trials 

for all three polymer solutions exhibited some oil recovery during post-polymer water flooding, 

but the terpolymers allowed for better recovery at this stage compared to the reference material. 

This further confirmed that both designed terpolymers are excellent materials for the enhanced oil 

recovery application. 

 

The recovery data from each stage can be summarized by calculating the incremental oil recovery 

and the overall oil recovery. Incremental oil recovery measures the contributions of the polymeric 

material compared to standard water (or brine) flooding. Therefore, incremental oil recovery is the 

sum of the recovery values from polymer flooding and post-polymer water flooding. The overall 

oil recovery, as one might expect, is the sum of the % oil recovered throughout the three recovery 

stages. As shown in the last two columns of Table 4.22, the incremental oil recovery was much 

higher for both terpolymers relative to the reference material. By using terpolymer #1, an 

additional 52.7% of the original oil in place was recovered; this valuable oil would have remained 

in the reservoir if only water flooding had been used. Thus, polymer flooding with terpolymer #1 

led to a total oil recovery of 78.0%. An even more impressive result was observed when terpolymer 

#2 was injected. An additional 63.3% of the original oil in place was recovered during the polymer 

flooding and post-polymer flooding stages, which ultimately made it possible to achieve an overall 

recovery of 88.7%. This excellent result was achieved through careful design of materials, a good 

understanding of product requirements, and careful manipulation of polymer formulations 

(informed by kinetic understanding) to achieve the desired material properties. 
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4.2.4 Concluding Remarks on Optimally Designed Terpolymers for EOR 

 

Two optimally designed terpolymers were selected based on the results of the screening 

experiments of Section 4.1. The formulations were selected so that the resulting AMPS/AAm/AAc 

terpolymers would have high molecular weight averages (on the order of 106 g/mol), high AAm 

content, and a desirable microstructure (with anions well-distributed along the backbone). Given 

an improved understanding of polymerization recipes and operating factors on the polymerization 

kinetics and resulting terpolymer characteristics, the two optimally designed terpolymers were 

synthesized at pH 7, ionic strength = 0.9 M, and monomer concentration = 1.5 M. The feed 

compositions selected were fAMPS,0/fAAm,0/fAAc,0 = 0.21/0.69/0.10 and 0.10/0.75/0.15. 

 

Thorough characterization confirmed that the terpolymer properties were as expected and were 

well aligned with the properties of a commercially available reference material. Several 

independent experiments confirmed that synthesis replicates and characterization replicates 

showed excellent repeatability. This is hardly ever done in the polymerization literature. We also 

found that the cumulative terpolymer compositions were as predicted from ternary reactivity ratio 

estimates, molecular weight averages were of the expected order of magnitude, and thermal 

stability was improved with the addition of AMPS. Thus, investigation of several unique polymer 

properties confirmed the validity of the designed formulations. 

 

Given these confirmatory results, application-specific properties were evaluated. The rheological 

properties of the newly designed terpolymers were evaluated in aqueous solution and in buffer, 

and behaviours were similar to the reference material. The terpolymer solutions had higher shear 

viscosities in water (compared to the reference material), but the reference material was less 

affected by the presence of salt. Also, both terpolymers had lower tanδ profiles than the reference 

material, indicating higher elasticity (which often translates to improved EOR performance).  

 

Finally, two phases of sand-pack flooding experiments were conducted to mimic the performance 

of each polymeric material in an oil reservoir. Here, both terpolymers were evaluated, and a new 

reference material (as described in Table 3.5) was used for comparison purposes. In the first phase 

of testing, polymer flow performance was established with displacement tests. Terpolymer #2 had 

the highest resistance factor (therefore highest potential for mobility control), but also the highest 

residual resistance factor, which indicates that residual polymeric material could cause injectivity 

issues within the reservoir. Terpolymer #1 also exhibited good flow performance, and would be 

an improvement over the reference material. 

 

In the second phase of testing, oil was injected into the sand-pack system to evaluate the oil 

recovery efficiency (especially in the polymer flooding stage). For all three materials, the pressure 

within the sand-pack system was at reasonable levels and controllable throughout testing, so no 

plugging occurred. Terpolymer #2 was an excellent polymer for EOR; the incremental oil recovery 
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(that is, the percentage of original oil in place that was removed after water flooding) was 63.3%, 

and the total oil recovery was 88.7%. Terpolymer #1 also performed exceptionally well, averaging 

a total oil recovery of 78.0%. Both optimally designed terpolymers performed much better than 

the reference material, which was able to recover 59.8% of the original oil in place. 

 

Thus, the design approach was successfully employed to synthesize, characterize and test optimal 

materials for enhanced oil recovery. We have acquired a wealth of information about the 

AMPS/AAm/AAc terpolymer, our model predictions were accurate, and our hypotheses for further 

performance were valid. Therefore, we can be confident in the application performance of these 

optimally designed terpolymers and the excellent oil recovery results. 
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Chapter 5. An Aside: Comparison of Binary and Ternary 

Reactivity Ratio Estimates 
 

5.1 Using Appropriate Estimation Procedures 

 

Section 5.1 has been recently published in European Polymer Journal [38]; the distinction between 

binary and ternary reactivity ratio estimates is an important part of this research, and is described 

in what follows. 

 

A big issue associated with ternary systems is a widely accepted analogy between 

copolymerization and terpolymerization mechanisms. Many researchers [123-134] have used 

binary reactivity ratios (obtained from copolymerization experiments) in models dealing with 

terpolymerizations. Although this approximation has been successfully used in some instances 

(see, for example, [127-129, 134]), it is not always accurate [123-125, 131]. Using binary reactivity 

ratios to describe ternary systems effectively ignores the presence of the third comonomer, which 

will inevitably change the reaction conditions (and may ultimately affect the polymerization 

kinetics). The effect of the third comonomer ultimately depends on its chemical identity and the 

overall polymerization ‘recipe’ to which it is being added. At the very least, monomer 

concentration may vary, potentially affecting rate of polymerization and molecular weight 

averages. For recipes similar to the AMPS/AAm/AAc terpolymer (described previously and in 

Section 5.1.2), there can also be a significant electrostatic effect (consider how an additional 

charged monomer can change the ionic strength of the system). Incorporation (propagation) of a 

particular monomer may have occurred quickly and easily in an associated copolymer system, but 

the introduction of a third monomer may result in competitive monomer addition. Thus, using this 

type of binary analogy for ternary systems calls into question the accuracy of the reactivity ratios, 

which in turn affects model prediction performance of terpolymer product characteristics. 

 

Previously, it has been suggested that ternary reactivity ratios should be estimated directly from 

terpolymer composition data, as opposed to using the related binary copolymer reactivity ratios 

[57].  However, direct comparison between binary and ternary systems has never been possible; 

differences in reactivity ratios may have been due to numerous other factors including reaction 

conditions and parameter estimation methods. Now, experimental binary and ternary data are 

directly compared for the 2-acrylamido-2-methylpropane sulfonic acid (AMPS)/acrylamide 

(AAm)/acrylic acid (AAc) system, based on recent copolymerization studies by Riahinezhad et al.  

[84] and Scott et al. [62], and an associated terpolymerization study [80]. To our knowledge, this 

is the first time that binary and ternary reactivity ratios have been compared directly, for the same 

system, with all other variables kept constant; to the extent possible, only the number of 

comonomers (two or three) and the feed composition were varied. Therefore, a direct comparison 

of binary and ternary reactivity ratios is finally possible.  
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5.1.1 Case Study: Terpolymerization of AN/Sty/MA 

 

Estimating accurate reactivity ratios for multi-component systems is an important aspect of 

polymer reaction engineering, as the reactivity ratios are used to predict composition and sequence 

length properties of the polymer product. Hence, it is important to check the reliability of the model 

by evaluating, for instance, agreement between experimentally determined composition data and 

predicted terpolymer compositions. Many of the research groups who have used binary reactivity 

ratios to describe ternary systems have observed serious deviations between their experimental 

data and model predictions, which has led them to question the credibility of the Alfrey-Goldfinger 

terpolymerization model (see, for example, [123, 125, 131], with a more detailed discussion in 

[57]). In reality, it is the accuracy of the reactivity ratios (as parameter estimates used within the 

model) that should be questioned.  

 

As an example (first exhibited by Kazemi [135] and re-evaluated for the current work), the 

terpolymerization of acrylonitrile (AN, M1), styrene (Sty, M2) and maleic anhydride (MA, M3) 

was studied by Kressler et al. [125]. In the original investigation, the corresponding binary 

reactivity ratios (for each of the possible copolymer systems) were obtained from the literature 

(see Table 5.1), and were used to predict terpolymerization composition. As shown in Figure 5.1a, 

there was a significant disagreement between the experimental data and the model predictions 

when binary reactivity ratios were used. 

 

By applying the EVM methodology to their (instantaneous) terpolymerization data, it is possible 

to estimate ternary reactivity ratios for the system (see again Table 5.1). Figure 5.1b shows that 

using these ternary reactivity ratios significantly improves the prediction performance of the A-G 

model. These excellent results can be attributed to (1) choosing to include the third comonomer in 

the estimation process and (2) using the EVM methodology for reactivity ratio estimation.  

 

Table 5.1: Comparison of Binary and Ternary Reactivity Ratio Estimates AN(M1)/Sty(M2)/MA(M3) 

Reactivity Ratios r12 r21 r13 r31 r23 r32 

Binary 0.04 0.41 6.00 10-4 0.04 10-4 

Ternary 0.14 0.58 0.40 2.40 0.05 0.07 
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  (a)       (b) 

 
Figure 5.1: Experimental [125] and Predicted Terpolymer Composition for the AN/Sty/MA Terpolymer, 

using (a) Binary and (b) Ternary Reactivity Ratio Estimates for Prediction (Inspired by [135]) 

 

These results confirm the hypothesis that binary and ternary reactivity ratios can differ 

significantly for a given system, and therefore should not be used interchangeably. However, since 

the binary reactivity ratios used for the original analysis were taken from literature (and would 

have been estimated using various techniques), the accuracy of the binary values was rather 

questionable. For a direct and fair comparison of binary and ternary reactivity ratio estimates, it is 

necessary to collect dependable experimental data from both terpolymerization experiments and 

(the so-called analogous) copolymerization experiments. This ensures experimental consistency 

as well as statistically sound parameter estimation (using EVM) for both the binary and ternary 

systems. Thus, in what follows, the terpolymer of 2-acrylamido-2-methylpropane sulfonic acid/ 

acrylamide/acrylic acid will be compared to the associated copolymers, based on recent studies by 

Riahinezhad et al. [84] and Scott et al. [62].  

 

5.1.2 Direct Comparison of Binary and Ternary Systems (AMPS/AAm/AAc) 

 

In what follows, the error-in-variables-model (EVM) is used to estimate reactivity ratios for the 

copolymerizations and the terpolymerization associated with the AMPS/AAm/AAc system. Data 

sets containing monomer feed composition, conversion and cumulative copolymer composition 

are fed to a MATLAB-based EVM program to obtain the best possible reactivity ratio estimates 

(and associated joint confidence regions, JCRs) [57, 67]. However, the goal here is to investigate 

more than just the reactivity ratios themselves. For the first time (to our knowledge), it is possible 

to do a direct comparison of binary and ternary systems, all else (polymerization conditions, 

reactivity ratio estimation techniques, etc.) being equal. 
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Thus, in Section 5.1.2.1, there will be a comparison of point estimates and the estimated degree of 

precision associated with the reactivity ratio estimates (JCRs) for binary and ternary systems. To 

complement these results, Section 5.1.2.2 will provide an in-depth look at composition prediction 

performance (using binary and ternary reactivity ratio estimates to predict cumulative terpolymer 

composition).  

 

5.1.2.1 Comparison of Reactivity Ratios 

 

Experimental information and data used for reactivity ratio estimation have been presented 

previously by Riahinezhad et al. [84] and Scott et al. [62, 80]. Now, it is finally possible to show 

a direct comparison of the binary reactivity ratios (for three distinct copolymerizations) and the 

ternary reactivity ratios (for the AMPS/AAm/AAc terpolymer). A numerical comparison is 

provided in Table 5.2, and joint confidence regions for each comonomer pair are presented in 

Figure 5.2 through Figure 5.4.  

 

It is important to note that three distinct data sets were used to estimate the binary reactivity ratios 

(one for each comonomer pair). In contrast, all six ternary reactivity ratio estimates were obtained 

from a single data set (experimental terpolymerization data). However, the JCRs have been split 

into comonomer pairs (in Figure 5.2 through Figure 5.4) for straightforward comparison. The main 

focus of this investigation is to compare copolymerization and terpolymerization data for ternary 

reactivity ratio estimation, but a second (more practical) observation cannot be ignored: using 

copolymerization data to describe a ternary system requires double the experimental work (2 

optimal copolymer feed compositions × 3 comonomer combinations (6 polymerizations in total) 

vs. 3 optimal terpolymer feed compositions (3 polymerizations in total)). This advantage becomes 

even more significant in considering replication and/or evaluation of model prediction 

performance: the binary reactivity ratios would need a minimum of four additional runs (each of 

the 3 comonomer pairs plus 1 terpolymerization). Conversely, 1 terpolymerization run would 

provide enough data to confirm the ternary reactivity ratio estimates and demonstrate the accuracy 

of the terpolymerization model prediction. 

 

Table 5.2: Comparison of Binary and Ternary Reactivity Ratio Estimates AMPS/AAm/AAc 

Reactivity Ratios rAMPS/AAm rAAm/AMPS rAMPS/AAc rAAc/AMPS rAAm/AAc rAAc/AAm 

Binary 0.18 0.85 0.19 0.86 1.06 0.22 

Ternary 0.66 0.82 0.82 0.61 1.61 0.25 
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Figure 5.2: Comparison of Reactivity Ratio Estimates for Comonomers AMPS/AAm using 

Copolymerization Data (Binary Estimates) and Terpolymerization Data (Ternary Estimates) 

 

 

 
Figure 5.3: Comparison of Reactivity Ratio Estimates for Comonomers AMPS/AAc using 

Copolymerization Data (Binary Estimates) and Terpolymerization Data (Ternary Estimates) 
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Figure 5.4: Comparison of Reactivity Ratio Estimates for Comonomers AAm/AAc using 

Copolymerization Data (Binary Estimates) and Terpolymerization Data (Ternary Estimates) 

 

The most important observation from Figure 5.2 through Figure 5.4 is the following: binary and 

ternary reactivity ratios for a given comonomer pair differ significantly, even under the same 

reaction conditions. For all three comonomer pairs, no overlap of JCRs is observed. Although 

individual reactivity ratio estimate values are similar (between binary and ternary systems) for 

rAAm/AMPS and rAAc/AAm, they should not be evaluated without their corresponding counterparts (that 

is, one cannot make statements about rij without also considering rji). Thus, point estimates are 

statistically different when the binary and ternary estimates are compared. 

 

In Figure 5.2 and Figure 5.3, the size and orientation of the binary and ternary JCRs are similar, 

which represents a similar degree of confidence in both the binary reactivity ratio estimates and 

ternary reactivity ratio estimates. Also, the fact that the JCRs are fairly round (and not inclined) 

indicates that there is little correlation between the parameter estimates. This is largely due to the 

fact that EVM-based design of experiments was used to select feed compositions for both the 

copolymerization and terpolymerization studies. In Figure 5.4, the uncertainty in rAAm/AAc seems 

to be much larger than the uncertainty in rAAc/AAm (notice how the JCR is somewhat ‘stretched’ 

horizontally). However, this is partially due to the relative values of rAAm/AAc and rAAc/AAm. Since 

rAAm/AAc is almost 6 times larger than rAAc/AAm, the absolute error is necessarily larger in the 

horizontal direction; this phenomenon has also been addressed by Scott and Penlidis [6]. This 

behaviour is visible for the copolymer because the analysis is evaluating the AAm/AAc 

relationship in isolation. When the full terpolymerization data set is used for analysis, additional 

information content helps to improve the precision of all reactivity ratio estimates.  
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The data can also be evaluated by looking at the three comonomer pairs herein, as they are divided 

into Figure 5.2 through Figure 5.4. One might expect that if rij > rji for the binary system, the same 

would be true for the ternary system. However, this is not always the case! As shown in the case 

study of Section 5.1.1 (with data from Kressler et al. [125]), relationships between comonomers 

may change between the binary and ternary systems; see again Table 5.1. 

 

In the current study, only two of the three comonomer pairs have consistent trends between the 

binary and ternary reactivity ratio estimates (see again Table 5.2). In looking at the combination 

of AMPS and AAm, rAAm/AMPS > rAMPS/AAm for both co- and terpolymerization. The trend is also 

consistent for AAm/AAc. Thus, it is reasonable to conclude that acrylamide is more reactive than 

the other comonomers (under these experimental conditions), regardless of whether a copolymer 

or a terpolymer is being synthesized. 

 

In examining the AMPS/AAc comonomer pair, the relationship between reactivity ratios is not so 

predictable. While rAAc/AMPS > rAMPS/AAc for the binary system, the opposite is true for the ternary 

system. The reactivity ratio estimates are also (numerically) closer together for the 

terpolymerization than they are for the copolymerization. We would postulate that this is due to 

the presence of acrylamide in the recipe; a non-ionized monomer in the presence of two ionized 

monomers would influence electrochemical interactions (and reduce repulsion) between AMPS 

and AAc.  

 

More generally, it is also important to recognize the increase in AMPS reactivity for the 

terpolymerization. Table 5.2 indicates that rAMPS/i is noticeably larger for the ternary system than 

for the binary system, where i can be either AAm or AAc. This would suggest that the low 

reactivity of AMPS in the binary systems is not due to steric hindrance, but rather due to charge 

effects. 

 

Direct comparison of binary and ternary reactivity ratios for the AMPS/AAm/AAc system has 

shown significant numerical differences, as well as some shifts in behaviour. However, point 

estimates are only one part of the story. It is equally important to evaluate the prediction 

performance when binary and ternary reactivity ratio estimates are used in the terpolymerization 

model. 

 

5.1.2.2 Comparison of Composition Predictions  

 

As mentioned previously, binary reactivity ratios are often used to predict terpolymer composition 

using the Alfrey-Goldfinger (A-G) model. However, for more accurate results, the recast A-G 

model (Equations 2.31 to 2.33) can be used in combination with recently determined ternary 

reactivity ratios [57]. In what follows, the recast A-G model is used to predict terpolymer 

composition using both the binary and ternary reactivity ratio estimates of Table 5.2. 
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Experimentally determined composition measurements (obtained using elemental analysis; see 

Section 3.3.2) are also included for evaluation of the model. 

 

Ternary composition diagrams for the AMPS/AAm/AAc terpolymer are shown in Figure 5.5. The 

three optimal feed compositions used for reactivity ratio estimation (established using EVM design 

of experiments) are close to the corners of the triangle, since each is rich in one comonomer. The 

initial feed compositions, along with the measured and predicted terpolymer compositions, are 

shown in Figure 5.5 for both the binary and ternary reactivity ratio estimates. One should note that 

these compositions have been measured over the full conversion range, so scatter is due to 

composition changes (as a function of conversion) and should not be taken as poor reproducibility. 

 

   (a)       (b) 

 
Figure 5.5: Experimental [80] and Predicted Terpolymer Composition for the AMPS/AAm/AAc 

Terpolymer using (a) Binary and (b) Ternary Reactivity Ratio Estimates for Prediction 

 

The ternary composition diagrams show fairly good agreement between the predicted and 

measured cumulative terpolymer compositions. However, closer examination of the prediction 

performance of the binary reactivity ratio estimates reveals that the AMPS-rich terpolymer 

composition is not well predicted (especially compared to the prediction performance of the 

ternary reactivity ratio estimates for the same recipe).  

 

This motivates closer examination of the AMPS-rich system. In Figure 5.6, the cumulative 

terpolymer compositions for all three comonomers (AMPS, AAm and AAc) are plotted against 

conversion, and the stark contrast between binary and ternary predictions is clearly visible. The 
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experimental data are in much better agreement with the ternary-based model. This is to be 

expected (as per previous discussion) and confirms the importance of using ternary reactivity ratios 

to describe/model terpolymer systems.  

 

 
Figure 5.6: Experimental [80] and Predicted Terpolymer Composition for the AMPS-rich Terpolymer 

(fAMPS,0/fAAm,0/fAAc,0 = 0.8/0.1/0.1) 

 

It is always good to confirm that model predictions (after parameter estimation) agree with 

experimental data. However, models are typically evaluated using the same experimental data that 

were used for parameter estimation [80]. It is important, then, to confirm that the model still holds 

when the behaviour of new recipes (that is, feed compositions not included in the design data) is 

being predicted. As mentioned previously, three optimal recipes were chosen for reactivity ratio 

estimation using EVM design of experiments; these were described in Section 2.3.1.2 and in 

previous work by Scott et al. [80]. Due to the nature of the design, all three points are near the 

corners of the composition triangle; they are rich in one comonomer and have low quantities of 

the other two comonomers. It is interesting to evaluate whether the model obtained from these 

three points still holds when the operating conditions are closer to the ‘middle’ of the triangle. That 

is, do the reactivity ratio estimates discussed in Section 5.1.2.1 apply to the entire composition 

range? 

 

To establish whether the reactivity ratio estimates (and subsequent terpolymer composition 

predictions) hold for all compositions, three sub-optimal terpolymerization recipes were evaluated. 

The same synthesis and characterization procedures were used as described previously (see 
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Section 3.2 and previous work by Scott et al. [80]; synthesis conditions were pH 7±0.5, IS = 0.9 

M; [M] = 1.0 M), but the results were not used for reactivity ratio estimation. Therefore, the 

reactivity ratio estimates are entirely independent of this sub-optimal region of experimental data. 

Figure 5.7 compares the experimentally measured terpolymer compositions and associated 

predicted (cumulative) terpolymer compositions for three additional recipes (fAMPS,0/fAAm,0/fAAc,0 = 

0.5/0.1/0.4; 0.2/0.4/0.4; 0.3/0.5/0.2). 

 

  (a)       (b) 

 
Figure 5.7: Experimental and Predicted Terpolymer Composition for Sub-Optimal AMPS/AAm/AAc 

Terpolymerizations, using (a) Binary and (b) Ternary Reactivity Ratio Estimates for Prediction 

 

For comparison (and to return to the main goal of the current study), we can again look at the 

prediction performance of both the binary and ternary reactivity ratio estimates. The binary 

estimates were lacking for the optimally designed experiments (recall Figure 5.5), but they are 

even worse for the sub-optimal experiments.  In Figure 5.7a, the biggest prediction discrepancy is 

for fAMPS,0/fAAm,0/fAAc,0 = 0.5/0.1/0.4 (which is graphically the lowest feed composition in the 

triangle). The other two predictions (both containing more AAm) are in the right general region, 

but the direction of the prediction (that is, the slope of the predicted composition) does not agree 

with the experimental data.  

 

These results can be contrasted with the model prediction using ternary reactivity ratio estimates, 

as shown in Figure 5.7b. The ternary prediction performance is much better than the binary 

prediction performance, which again highlights the importance of using ternary reactivity ratio 

estimates to describe/model/predict terpolymerization behaviour. From these results, it is also 

possible to confirm/conclude that ternary reactivity ratios obtained from optimally designed 
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experiments [60] apply to the whole composition range; the recast A-G model holds for any initial 

feed composition. 

 

Though the ternary model has excellent prediction performance for all three feed compositions, 

the trend is not entirely correct for fAMPS,0/fAAm,0/fAAc,0 = 0.5/0.1/0.4. The experimental data points 

seem to vary horizontally (physically, this indicates that 𝐹AAm shows very little drift). However, 

the model shows a different trend, suggesting that 𝐹AMPS is the comonomer fraction that remains 

approximately constant. For the sake of completeness, we can also look back to the binary 

prediction; because it varies in the opposite direction, it is predicting that 𝐹AAc will exhibit the 

least drift. Obviously, any one of these comonomer fractions are related to the other two (∑𝐹𝑖 =

1), but the model predictions and the experimental data seem to be in disagreement. Thus, the 

cumulative terpolymer composition can be examined as a function of conversion (Figure 5.8). 

 

 
Figure 5.8: Experimental and Predicted Terpolymer Composition for the Sub-Optimal Terpolymer 

(fAMPS,0/fAAm,0/fAAc,0 = 0.5/0.1/0.4) 

 

As mentioned earlier (in the discussion surrounding Figure 5.7b), the ternary plot indicated that 

there may be some discrepancies between the experimentally observed trends and trends predicted 

by the model (specifically for fAMPS,0/fAAm,0/fAAc,0 = 0.5/0.1/0.4). One might think that this variation 

is a result of composition drift changing with conversion, but it is actually due to slight differences 

between runs. Figure 5.8 confirms that any concerns about prediction performance are unfounded; 

the experimentally determined cumulative terpolymer composition and the ternary model 



137 

 

prediction are in very good agreement. The inconsistency observed in Figure 5.7b was not a result 

of bad prediction performance. Rather, a replicate run was ‘biased high’ (in terms of 𝐹AMPS 

measurements) and created a false impression. This variability between runs is not a cause for 

concern; the replicate run was performed entirely independently (from stock solution preparation 

to synthesis to characterization), so some experimental error is perfectly normal.  

 

Another important take-away from Figure 5.8 is the terrible prediction performance when binary 

reactivity ratios are used in the model. It has already been noted that the incorporation of AMPS 

changes considerably when the system changes from a copolymerization to a terpolymerization. 

This has been observed both in the change of reactivity ratio estimates (recall Table 5.2) and 

prediction performance for the optimally designed feed compositions (especially 

fAMPS,0/fAAm,0/fAAc,0 = 0.8/0.1/0.1; see Figure 5.6). Previously, in Figure 5.6, using binary reactivity 

ratios in the recast Alfrey-Goldfinger model severely underestimated 𝐹AMPS, which in turn 

affected the prediction performance for the other comonomer fractions. Now, for a sub-optimal 

recipe, this problem is amplified. 

 

The initial feed composition, again, is fAMPS,0/fAAm,0/fAAc,0 = 0.5/0.1/0.4. It is important to restate 

this here, because the fractions of AMPS and AAc in the recipe are close, but fAMPS,0 > fAAc,0. In 

the product terpolymer, the cumulative fraction of AMPS remains greater than that of AAc; 

𝐹AMPS > 𝐹AAc is measured throughout the polymerization (at least up to ~50% conversion). When 

the ternary reactivity ratio estimates are used in the recast A-G model, the model prediction 

supports these experimental observations, as it should. In contrast, when binary reactivity ratio 

estimates are used in the model, 𝐹AAc > 𝐹AMPS for up to about 85% conversion. This 

inconsistency is a major disadvantage of using binary reactivity ratio estimates to describe a 

ternary system. Imagine trying to synthesize an AAc-rich terpolymer (given inappropriate binary 

data), and finding that the end product is actually AMPS-rich! This would only result in frustration 

and wasted resources. It is therefore preferable, when possible, to use ternary reactivity ratios to 

obtain information about terpolymerization systems. 

 

5.1.3 Concluding Remarks on Appropriate Estimation Procedures 

 

Terpolymerization kinetics are complex. Historically, binary reactivity ratios have been used to 

predict terpolymerization behaviour (with some success), but this work shows that this binary-

ternary analogy is not always applicable. These results suggest that terpolymerization kinetics 

should not be oversimplified by applying binary reactivity ratios to ternary systems. When 

researchers use copolymerization data to describe a terpolymerization, they are essentially 

ignoring the presence of the third comonomer (and any possible interactions with the other two 

comonomers) and doubling the amount of experimental work required for reactivity ratio 

estimation.  
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In directly comparing the binary and ternary reactivity ratios for the AMPS/AAm/AAc system, 

significant differences in reactivity ratio estimates (numerically speaking) and in related trends 

were observed. This ultimately affects model prediction performance; binary reactivity ratios 

applied to the (recast A-G) terpolymerization model did not agree with experimentally measured 

composition data. In contrast, ternary reactivity ratios gave very good predictions.  

 

Through this study, it has been shown that three optimally designed feed compositions (selected 

using EVM-based design of experiments) provide enough information to accurately estimate 

ternary reactivity ratios. Not only do these three experiments provide better ternary reactivity ratio 

estimates (and subsequent prediction performance) than their so-called analogous binary 

estimates, but they also give equally good prediction performance for independent sub-optimal 

feed compositions. 

 

Thus, whenever possible, researchers should be motivated to use terpolymerization data to 

estimate ternary reactivity ratios. Design of experiments and the error-in-variables-model make 

data collection and parameter estimation straightforward and (perhaps more importantly) 

kinetically and statistically accurate. 

 

5.2 Terpolymer Troubleshooting Tips 

 

Section 5.2 has been recently published in a Special Issue of Processes regarding “Computational 

Methods for Polymers” [136]; the article includes a series of case studies highlighting the 

advantages and challenges of estimating ternary reactivity ratios directly from terpolymerization 

data. A portion of the original article is presented in what follows. 

 

When terpolymerization experiments are selected with parameter estimation in mind (that is, using 

an error-in-variables model (EVM)-based design of experiments for ternary systems [60]), it can 

be straightforward to estimate ternary reactivity ratios using the information-rich data set. 

However, in using historical data (which may not be designed for parameter estimation), 

experimental terpolymerization data may not be sufficient for analysis. Common limitations in 

terpolymerization studies include composition restrictions or a lack of experimental information 

content (minimal replication, formulations selected targeting final properties rather than 

information collection, etc.). Since working with historical (previously collected) data has some 

challenges, the case studies presented herein address those challenges and aim to improve ternary 

reactivity ratio prediction to the extent which is possible. For example, additional targeted 

experiments (i.e., the sequential selection of experiments based on an existing data set), 

experimental replication, and full-conversion (cumulative) analysis can supplement a pre-existing 

terpolymerization data set. While additional targeted experiments and replication may require 

revisiting the lab (or simulating additional data), full-conversion data are often already available 
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from earlier runs. Cumulative analysis can provide greater information content from fewer 

experimental runs [54]. 

 

Despite the fact that binary reactivity ratios are only a numerical approximation for ternary 

systems, several cases have reported that model predictions using binary reactivity ratios seem to 

be in good agreement with terpolymerization data (most recently [137]). In these cases, although 

binary reactivity ratios provide good prediction performance, there are still benefits associated 

with using ternary reactivity ratios directly [38]. First, this ensures that no unfounded assumptions 

are made about the nature of the terpolymerization, where the addition of the third comonomer 

(and any interactions it might have with the other two comonomers) is carefully evaluated. Second, 

it reduces the experimental load required to characterize the system (e.g., two designed 

formulations of three copolymers require six experiments for binary reactivity ratios, compared to 

three designed formulations per single terpolymer requiring three experiments for ternary 

reactivity ratios). This is especially important if a new (unknown) combination of comonomers is 

being investigated. Third, and perhaps most importantly, the kinetic and statistical accuracy of 

using ternary reactivity ratio estimation in terpolymerization studies ensures accurate model 

predictions for the system being studied. 

 

Several case studies are revisited herein to explore the advantages (and challenges) of directly 

estimating ternary reactivity ratios from terpolymerization data. In the first two case studies 

(Section 5.2.1), common challenges in parameter estimation are addressed, such as process 

constraints (experimental/composition limitations) and numerical estimation constraints (ill-

conditioned systems). Additional case studies (Section 5.2.2) are then presented to provide a direct 

comparison between binary and ternary reactivity ratio estimates. When the above-mentioned 

challenges are not a factor, the advantages of estimating ternary reactivity ratios are evident. 

 

5.2.1 Addressing Composition Restrictions & Ill-Conditioned Systems 

 

In some cases, system limitations and/or product requirements do not necessarily allow for 

statistically designed experiments, such as those described in Section 2.3.1.2 (each rich in a single 

comonomer). This paucity of data presents a challenge for researchers, especially when they hope 

to estimate reactivity ratios for subsequent microstructural predictions. The question is: What does 

one do when a terpolymer system has composition restrictions? How can a limited data set be 

analyzed in such a way that researchers are confident in their parameter estimates? In what follows, 

we take a closer look at the challenges associated with two such systems and provide some 

suggestions for overcoming the experimental limitations. 
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5.2.1.1 Case Study: HOST/EAMA/PAG 

 

In a recent study, Pujari et al. [138] synthesized a terpolymer of 4-hydroxystyrene (HOST; 

monomer 1), 2-ethyl-2-adamantyl methacrylate (EAMA; monomer 2), and a photoacid generator 

(PAG; monomer 3) to use in chemically amplified resists. Specifically, the PAG used for 

terpolymerization was triphenylsulfonium salt 4-(methacryloxy)-2,3,5,6-tetrafluorobenzene 

sulfonate (F4 PAG). 

 

Pujari et al. [138] provided an interesting contrast between the copolymerization and 

terpolymerization behaviour for the same comonomers. The authors reported that of the three 

comonomers, only HOST would homopolymerize. The HOST/EAMA copolymers were easily 

synthesized and HOST/PAG copolymers were achievable when the feed composition of PAG was 

below 10 mol%. However, their attempts to synthesize an EAMA/PAG copolymer were entirely 

unsuccessful (at a variety of distinct feed compositions). Finally, they synthesized 

HOST/EAMA/PAG terpolymers from several different feed compositions, in spite of their 

inability to synthesize some of the analogous copolymers. This is an example of a system where 

binary (copolymerization) data would not be suitable for predicting terpolymerization behaviour. 

 

Since Pujari et al. [138] had a specific application in mind, all terpolymer formulations had similar 

initial compositions. In the feed, mole fractions were selected within the following ranges: 0.25 ≤ 

f1,0 ≤ 0.40, 0.50 ≤ f2,0 ≤ 0.75, and 0.01 ≤ f3,0 ≤ 0.10 (with ∑𝑓𝑖 = 1.0). Of particular interest for the 

current investigation is the very low mole fraction of PAG. At most, the PAG content in the feed 

was only 10 mol%. These experiments are not designed with reactivity ratio estimation in mind, 

rather, application requirements take precedence. However, these (low conversion) 

terpolymerization data were still used to estimate reactivity ratios and predict terpolymer 

properties. 

 

Pujari et al. [138] were able to estimate ternary reactivity ratios using Procop 2.3 [139]. However, 

because this data set has minimal information content, the results exhibit a multiplicity of 

solutions. Table 5.3 compares the reactivity ratio estimates reported by Pujari et al. [138] with 

three successive estimations (labelled A through C) using the instantaneous model via the EVM 

(with the preliminary estimate that rij = 0.500 for all parameters). 

 

Table 5.3: Reactivity Ratio Estimates for HOST(1)/EAMA(2)/PAG(3) (Data from [138]) 

 r12 r21 r13 r31 r23 r32 

Reported by Pujari et 

al. [138] 

0.05 0.12 0.81 0.12 0.05 0.79 

Current Study (EVM Estimation) 

Inst. Estimation (A) 0.1063 0.2155 0.6754 0.0001 0.0877 0.0307 

Inst. Estimation (B) 0.1767 0.2394 99.9721 0.0002 0.0897 0.7035 

Inst. Estimation (C) 0.0003 0.1753 2.5329 0.0001 0.0728 99.9997 
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Clearly, the estimation stage and results using the instantaneous model with EVM are numerically 

unstable (and therefore unreliable). There are multiple solutions for this estimation. This is a 

limitation of using a data set that only contains limited process information arising from PAG-poor 

formulations. Although common sense suggests that a reactivity ratio pair of (r13, r31) = (99.9721, 

0.0002) seems unlikely, as seen in estimation (B), it is numerically possible. This is a numerical 

artefact, as reactivity ratios reach the ‘upper bound’ (UB) of the parameter estimation program 

(UB = 100 for all parameter values during estimation). 

 

All reactivity ratios presented in Table 5.3 give almost identical prediction performance when the 

PAG fraction is low. As shown in Figure 5.9, all model predictions ‘fit’ the experimental data 

(reported at one conversion level) equally well. The model predictions using the original reactivity 

ratio estimates reported by Pujari et al. [138] are not shown here, but they also ‘fit’ the 

experimental data well and fall within the ranges of Figure 5.9. 

 
Figure 5.9: HOST/EAMA/PAG Terpolymer Composition Prediction for f1,0/f2,0/f3,0 = 0.4/0.5/0.1 

(Experimentally Measured Composition for TPF10 from Pujari et al. [138]) 

 

In contrast, if terpolymerization behaviour is predicted beyond the available experimental data 

(e.g., a PAG-rich formulation: f1,0/f2,0/f3,0 = 0.1/0.1/0.8), these considerably different reactivity ratio 

estimates give distinctly different results (see Figure 5.10). This is an extreme case, selected for 

demonstration purposes, and may not be achievable experimentally. However, this inconsistent 

prediction performance is observed for any PAG-rich recipe (with f3,0 as low as 0.4). 
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Figure 5.10: HOST/EAMA/PAG Terpolymer Composition Prediction for f1,0/f2,0/f3,0 = 0.1/0.1/0.8 

 

The predictions shown in Figure 5.10 highlight the importance of statistically well-designed 

experiments. In spite of the experimental limitations in this case (limiting the PAG content to 10 

mol%), introducing a run with as much PAG as possible would likely eliminate the numerical 

instabilities (and therefore improve the reliability of these estimation results). 

 

5.2.1.2 Case Study: BA/BMA/limonene 

 

Another terpolymerization case that is subject to composition restrictions (as well as ill-

conditioning) is the terpolymerization of n-butyl acrylate (BA; monomer 1), butyl methacrylate 

(BMA; monomer 2), and D-limonene (lim; monomer 3), recently studied by Ren et al. [134]. D-

limonene, a renewable monoterpene, is advantageous in terms of its polymer sustainability. When 

used as a comonomer it reduces the polymerization rate and molecular weight averages. Therefore, 

no more than 40 mol% lim was used in any feed composition for the study. The feed compositions 

used in the original investigation [134] are shown in Figure 5.11. 
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Figure 5.11: Feed Compositions for the BA/BMA/lim Terpolymer, as Reported by Ren et al. [134] 

 

Given that most experimental data are collected under lim-poor conditions, one might expect more 

error in the reactivity ratio estimates associated with the limonene comonomer. For both the 

instantaneous model (using low conversion data) and the cumulative model (using all available 

data), ternary reactivity ratio estimation was performed three times (always with M1 = BA, M2 = 

BMA and M3 = lim). The results of each estimation are shown in Table 5.4. In this case, the binary 

reactivity ratio estimates (as reported by Ren et al. [134], collected from previous work by Dubé 

and colleagues [79, 140, 141]) were used as the preliminary estimates. 

 

Table 5.4: Reactivity Ratio Estimates for Terpolymerization of BA(1)/BMA(2)/lim(3) with Experimental 

Data from Ren et al. [134] 

 r12 r21 r13 r31 r23 r32 

Reported by Ren et 

al. [134] 

0.46 2.008 6.08 0.007 6.096 0.046 

Current Study (EVM Estimation with Low Conversion Data) 

Inst. Estimation (A) 0.3729 1.4350 5.0098 <10-3 35.5943 13.0409 

Inst. Estimation (B) 0.4986 1.4982 5.2291 27.9826 52.3811 <10-3 

Inst. Estimation (C) 0.3729 1.4350 5.0098 <10-3 35.5924 36.9594 

Current Study (EVM Estimation with Full Conversion Data) 

Cum. Estimation (A) 0.2787 0.9949 4.9888 0.0001 29.6738 12.2200 

Cum. Estimation (B) 0.2733 0.9214 5.0104 0.0039 27.1517 10.0072 

Cum. Estimation (C) 0.4081 0.9987 5.4698 2.4651 30.0914 0.0001 
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As observed for the HOST/EAMA/PAG system, the estimation is numerically unstable. However, 

in general, the cumulative estimation results seem less ill-conditioned than in the instantaneous 

analysis. This is likely due to the increased information content provided when analyzing 

composition data over the full conversion range with a cumulative model [6]. 

 

Looking closer at the instantaneous estimation results, relatively good agreement is obtained 

between instantaneous estimations A and C. However, in both cases, the r23 and r32 estimates are 

both much greater than 1. Such a case has not been observed in free-radical copolymerization. 

There are some reports in the literature that have shown both estimates >1, but this is likely due to 

experimental error or a different copolymerization model being active. In this case, it is likely due 

to error, but the degradative chain transfer mechanism (due to the presence of limonene) may also 

contribute here. The uncertainty in this system is confirmed by comparing instantaneous 

estimations A and C to instantaneous estimation B. The fact that estimation results based on the 

same data set have considerable convergence issues (likely due to local optima) suggests that there 

is not sufficient information for reactivity ratio estimation directly from the terpolymerization data. 

 

Similar behaviour is observed for the cumulative case. Here, cumulative estimations A and B are 

similar, whereas the third estimation, estimation (C), shows more variation. Again, the estimation 

results indicate that two reactivity ratios (for a given comonomer pair) are both greater than 1. The 

same comonomer pairs are of concern here: The BMA/lim comonomer pair (r23 and r32) in 

cumulative estimations A and B, and the BA/lim pair (r13 and r31) in cumulative estimation C. This 

behaviour can be examined further by plotting the joint confidence regions (JCRs, or error ellipses) 

for each of the point estimates obtained using cumulative analysis (Figure 5.12). 

 

(a) 
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(b) 

 
(c) 

 
Figure 5.12:  Ternary Reactivity Ratio Estimates for the Terpolymerization of 

BA(1)/BMA(2)/lim(3), with Data from Ren et al. [134] 

 

As shown in Figure 5.12a, the JCRs associated with r23 and r32 are very large. The largest 

uncertainty was for estimation A, but subsequent estimations showed similar results. In 

comparison, the JCRs for the other parameters look like point estimates! This indicates substantial 

and disproportionate uncertainty in the estimates, especially for the BMA/lim comonomer pair.  

 

As we focus in on the other parameter estimates (for the BA/BMA pair and the BA/lim pair), the 

JCRs become much smaller (note the change in scale between Figure 5.12a and Figure 5.12b). 

Comparing BA/BMA to BA/lim, the most uncertainty is clearly for the BA/lim comonomer pair 

(especially for estimation (C)). In comparison, the JCRs for BA/BMA are very small, which gives 

a much higher degree of certainty compared to the other estimates (see Figure 5.12c).  
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The more precise estimation of r12 and r21 (that is, for the BA/BMA pair) is not coincidental. As 

mentioned earlier, the experimental data collected (Figure 5.11) only included formulations with 

low mole fractions of limonene. Therefore, we would suggest that a lack of lim-rich data has 

contributed to poor estimation performance for the BA/BMA/lim terpolymer. This agrees with 

previous copolymerization observations reported by Scott and Penlidis [6]. 

 

To demonstrate the importance of using well-designed data for ternary reactivity ratio estimation, 

supplemental data have been simulated for the BA/BMA/lim system. Experimental data were 

simulated using the binary reactivity ratio estimates (which, as per the original investigation, give 

acceptable predictions of terpolymer behaviour up to full conversion levels [134]). Two feed 

compositions, f1,0/f2,0/f3,0 = 0.1/0.8/0.1 and f1,0/f2,0/f3,0 = 0.1/0.1/0.8 (that is, BMA-rich and lim-rich 

formulations) were selected to supplement the original data set. In both cases, the total conversion 

range was divided into 19 points (between 0 and 0.99 in steps of 0.052) and the corresponding 

monomer composition mole fractions were calculated via direct numerical integration. Then, the 

cumulative terpolymer compositions were calculated using the Skeist equation ([142] as per [54]). 

Random error was added to all data to mimic real experimental observations: A 1% error was 

added to conversion and feed composition (fi,0) data, while a 2% error was added to the cumulative 

terpolymer composition (𝐹𝑖) data. (Note that typically 5% error is standard for 𝐹𝑖 data, but using 

those levels for this system would occasionally make the simulated limonene content negative, 

given the low incorporation of limonene).  

 

For the instantaneous case, three low conversion data points from each (simulated) feed 

composition were added to the data set. As shown in Table 5.5, the addition of these data 

‘stabilized’ the estimation, and reactivity ratio estimates obtained were now almost well-behaved. 

However, the newly estimated parameters still pose a concern: For the r23 and r32 pair (BMA/lim 

comonomers), both reactivity ratios were much greater than 1 for the low conversion case 

(instantaneous). In fact, r32 was estimated at 100.00 from three consecutive assessments. As 

explained previously (in Section 5.2.1.1), this is a numerical artefact, where the parameter has 

reached the ‘upper bound’ of the estimation program. However, the consistency of this result 

invites further investigation. 

 

It is our understanding that the r32 = 100.00 result is due to the ill-conditioned nature of the 

terpolymer system. Physically, we can explain it as follows: The limonene incorporation is very 

low at low conversion levels, such that k32 (the rate constant for terminal limonene radicals adding 

BMA monomer units) is tending to 0. Given the reactivity ratio definition, r32 = k33/k32, and as k32 

→ 0, r32 → ∞. With this logic, we can explain the observation that r32 is continually hitting the 

upper bound of the estimation program. 
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Table 5.5: Reactivity Ratio Estimates for Terpolymerization of BA(1)/BMA(2)/lim(3) with Supplemental 

Data (Experimental Data from [134] and Simulated Data from Current Work) 

 r12 r21 r13 r31 r23 r32 

Reported by Ren et al. 

[134] 

0.46 2.008 6.08 0.007 6.096 0.046 

Current Study (EVM Estimation with Experimental and Simulated Low Conversion Data) 

Inst. Estimation (A) 0.3663 1.4317 7.5324 0.1003 10.1289 100.00 

Inst. Estimation (B) 0.3662 1.4317 7.5293 0.1004 10.1307 100.00 

Inst. Estimation (C) 0.3663 1.4317 7.5324 0.1003 10.1289 100.00 

Current Study (EVM Estimation with Experimental and Simulated Full Conversion Data) 

Cum. Estimation (A) 0.3009 2.4961 6.5236 0.0009 8.1873 0.0106 

Cum. Estimation (B) 0.3167 1.9085 5.7962 0.0017 5.9647 0.0087 

Cum. Estimation (C) 0.2876 1.5613 8.5751 0.0315 7.7202 0.1240 

 

In contrast, the cumulative analysis (which uses the composition data, both experimental and 

simulated, over the full conversion range) gives more stable results. Specifically, the estimation 

results show that r32 < 1. Clearly, supplementing the terpolymerization data set with optimal 

formulations (as per the EVM framework) significantly improves the stability and trustworthiness 

of ternary parameter estimates. Ideally, even more experimental data would be collected for the 

lim-rich system to offset the error associated with low limonene incorporation. 

 

5.2.2 Improved Performance with Ternary Data 

 

The above examples present a variety of challenges: data sets with low information content or ill-

conditioned systems (with reactivity ratios of different orders of magnitude) can make estimation 

difficult. If the estimation steps are unstable, then one does not have confidence in the final 

estimates. Unfortunately, even with many data points, researchers do not always have all the 

required information. Therefore, design of experiments for reactivity ratio estimation is key!  

 

In the cases that follow, we present some case studies that highlight the advantages of analyzing 

terpolymerization data directly using ternary reactivity ratio estimation. All three case studies were 

originally modelled using analogous binary reactivity ratios; the terpolymerization data have been 

revisited and reanalyzed. 

 

5.2.2.1 Case Study: BA/MMA/EHA 

 

A recent study by Gabriel and Dubé [137] investigated the terpolymer of butyl acrylate (BA; 

monomer 1), methyl methacrylate (MMA; monomer 2) and 2‐ethylhexyl acrylate (EHA; monomer 

3), which is a material of interest for pressure sensitive adhesives. First, the authors determined 

the reactivity ratio pairs for two of the associated copolymers (BA/EHA and MMA/EHA), and 

subsequently used these binary reactivity ratios, along with literature values for the BA/MMA 
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reactivity ratios, to predict terpolymer composition. The terpolymer model prediction (using binary 

reactivity ratios) showed good agreement with the collected data, as described in the original work 

[137]. 

 

In spite of the good results achieved using binary reactivity ratios, ternary reactivity ratio 

estimation directly from terpolymerization data presents some additional advantages. First, 

consider the experimental load: rather than nine experimental runs described by Gabriel and Dubé 

[137] (and additional prior work for estimating the BA/MMA reactivity ratios [63]), only three 

different feed compositions are required. Since Gabriel and Dubé [137] selected ternary feed 

compositions according to the EVM ‘rule-of-thumb’ for ternary reactivity ratio estimation [60], 

their data can be used to re-estimate reactivity ratios directly from terpolymerization data. 

 

First, only the low conversion data were used for an instantaneous analysis. Now, because these 

data points were collected for model validation (not necessarily parameter estimation), only 7 data 

points are available below 20% conversion. These data were used for ternary reactivity ratio 

estimation using the recast Alfrey-Goldfinger equation (recall Equations 2.31 to 2.33) and EVM 

(Equations 2.42 to 2.44). There are two observations of note here: (1) the estimation is stable, 

much more so than the case studies presented in Section 5.2.1, and (2) the estimation is 

symmetrical. That is, regardless of which monomer is defined as monomer 1, monomer 2 or 

monomer 3, the estimated parameters are the same. As an example, two variations are shown below 

and compared to the original (binary) estimation. Here, reactivity ratios are labelled according to 

the monomer name (rather than monomer number) for further clarity. Also, the colors shown in 

Table 5.6 are associated with the colors of the JCRs in Figure 5.13. 

 

Table 5.6: Reactivity Ratio Estimates for Terpolymerization of BA/MMA/EHA from Low Conversion 

Data (Experimental Data from [137]) 

 rBA/MMA rMMA/BA rBA/EHA rEHA/BA rMMA/EHA rEHA/MMA 

Reported by Gabriel and 

Dubé [137] (binary reactivity 

ratio estimates) 

0.34 2.02 0.99 1.62 1.50 0.32 

Inst. Estimation 

(M1/M2/M3 = BA/MMA/EHA) 

0.41 1.49 1.21 8.52 0.81 0.36 

Inst. Estimation 

(M1/M2/M3 = MMA/EHA/BA) 

0.41 1.49 1.20 8.45 0.81 0.36 
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(a) 

 
(b) 

 
Figure 5.13:  Ternary Reactivity Ratio Estimates for the Terpolymerization of BA/MMA/EHA 

for (a) M1/M2/M3 = BA/MMA/EHA and (b) M1/M2/M3 = MMA/EHA/BA, with Instantaneous 

Data from [137] 

 

In general, the ternary reactivity ratios follow the same trends as the original (binary) reactivity 

ratio estimates (that is, if rij > rji for the binary case, the same relationship holds for the ternary 

case). However, rMMA/EHA falls below 1.00 when estimated directly from terpolymerization data. 

This suggests that kMMA/MMA > kMMA/EHA in the binary case (homopropagation of MMA is 

preferable to cross-propagation of MMA and EHA), but that kMMA/MMA < kMMA/EHA in the ternary 

case (homopropagation becomes dominated by cross-propagation of MMA/EHA).  
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Another notable difference is the significant error present for the BA/EHA system. This is shown 

in both plots (of Figure 5.13), as the JCR for BA/EHA is much larger than the other JCRs. This 

may be related to the absolute value of the parameter estimates. As shown in a recent study [6], 

uncertainty becomes much greater for larger parameter values. Since rEHA/BA is larger than the 

other reactivity ratio estimates (by as much as 20 times, in some cases), the same relative error 

(assumed to be 5% for this system) will have a much larger absolute value in rEHA/BA compared to 

the other parameter estimates. This behaviour has been described for the copolymer case [6], but 

the difference in parameter estimates was observed within a single JCR (that is, the elliptical JCR 

was stretched in the direction of the larger parameter estimate). In this, a terpolymer case, the JCR 

associated with the comonomer pair containing larger parameter estimates is greater in both 

directions. The absolute value of the error seems magnified, likely because most other reactivity 

ratio estimates for the system are around or below 1.00. Another item of note is that both reactivity 

ratios for the BA/EHA pair are again >1; this may be for the same reasons discussed earlier for the 

BA/BMA/lim system. An additional reason may be related to the fact that the copolymerization of 

BA and EHA may lead to branched molecule formation and even microgel formation, which would 

complicate analysis further. 

 

Next, the full conversion data set is considered; ternary reactivity ratios can be estimated using the 

EVM and the cumulative terpolymerization model. All terpolymerization data from the original 

study [137] were used herein, and results are shown in Table 5.7 (and Figure 5.14). Again, the 

estimation is stable and symmetrical, which can be attributed to carefully designed data. As an 

aside, the estimation program also converged much more quickly; parameters were estimated in 

under an hour (on an Intel(R) Core™ i7-860 processor) compared to (on average) 50 hours of 

computation for the ill-conditioned system described earlier. 

 

Table 5.7: Reactivity Ratio Estimates for Terpolymerization of BA/MMA/EHA from All 

Terpolymerization Data (Experimental Data from [137]) 

 rBA/MMA rMMA/BA rBA/EHA rEHA/BA rMMA/EHA rEHA/MMA 

Reported by Gabriel and 

Dubé [137] (binary reactivity 

ratio estimates) 

0.34 2.02 0.99 1.62 1.50 0.32 

Cum. Estimation 

(M1/M2/M3 = BA/MMA/EHA) 

0.41 1.60 2.01 7.59 0.74 0.35 

Cum. Estimation 

(M1/M2/M3 = MMA/EHA/BA) 

0.41 1.60 2.06 7.66 0.74 0.35 
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(a)  

 
(b) 

 
Figure 5.14: Ternary Reactivity Ratio Estimates for the Terpolymerization of BA/MMA/EHA for 

(a) M1/M2/M3 = BA/MMA/EHA and (b) M1/M2/M3 = MMA/EHA/BA, with Cumulative Data 

from [137] 

 

The values estimated using all terpolymerization data (full conversion) are similar to the results of 

the instantaneous parameter estimation (compare Table 5.6 to Table 5.7). Also, in comparing 

Figure 5.13 to Figure 5.14, the JCR areas are reduced when the full conversion data set is used for 

analysis (note that scales are the same for easy comparison of Figure 5.13a to Figure 5.14a and of 

Figure 5.13b to Figure 5.14b). This is in agreement with previous studies [54, 57] and makes sense 

physically. Since more experimental data are available for analysis (18 data points over all 

conversion levels instead of 7 low conversion data points), the uncertainty associated with the 
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parameter estimates is reduced. Also, since the instantaneous analysis used low conversion data 

up to 20%, the requisite assumption that no composition drift occurs may not be valid for all of 

the data [54]. Interestingly, a direct comparison of Figure 5.13 and Figure 5.14 shows little or no 

JCR overlap (between the instantaneous and cumulative analysis), in spite of the fact that trends 

remain consistent. Additional replication or sequential design of experiments could be used to 

further supplement this data set, as has been described for the previous case studies (recall Section 

5.2.1). 

 

As for the instantaneous case, the most error associated with the cumulative analysis is present in 

the BA/EHA comonomer pair, and both reactivity ratios are greater than 1 (which is physically 

unlikely for any given comonomer pair). Again, this is likely due to the large values of the 

parameter estimates, which translate to a higher absolute value of the error (since the same relative 

error is assumed for all experimental data and resulting parameter estimates). Also, as mentioned 

in the evaluation of the instantaneous results, other copolymerization mechanisms (branching, etc.) 

may be active specifically for the BA/EHA comonomer pair. However, without further analysis, 

no specific conclusions can be drawn about this system. 

 

Finally, the prediction performance of these reactivity ratios can be evaluated (compared to the 

original binary reactivity ratio estimates). Since some of the more substantial differences in 

reactivity ratios were related to the EHA monomer (especially rEHA/BA and rMMA/EHA), the model 

prediction for the EHA-rich terpolymer is of particular interest. The model predictions (using both 

binary and ternary reactivity ratios) and a comparison to the experimental data from Gabriel and 

Dubé [137] are shown in Figure 5.15. Only the prediction performance of the cumulative analysis 

(for ternary reactivity ratio estimation) is provided in Figure 5.15; despite slight differences 

between the instantaneous and cumulative analysis results, the model prediction performance was 

very similar for both sets of reactivity ratio estimates.  
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Figure 5.15: Prediction of Cumulative Terpolymer Composition for BA/MMA/EHA 

(fBA,0/fMMA,0/fEHA,0 = 0.1/0.1/0.8) (Experimental Data and Binary Predictions from [137]) 

 

A direct comparison reveals that while the binary predictions are acceptable, the ternary reactivity 

ratios further improve the prediction performance of the cumulative terpolymer composition 

model. In fact, a statistical comparison of the EHA-rich data (experimental data vs. the two model 

predictions) shows that using the ternary reactivity ratio estimates in the model leads to an 85% 

reduction in prediction error (total sum of square errors). Similar results were observed for the 

other terpolymer formulations, but are not shown herein for the sake of brevity. These differences 

in prediction performance may further be accentuated if the estimated reactivity ratios are used in 

the sequence length part of the model.  

 

This case study has shown that when experiments are well-designed, ternary reactivity ratio 

estimates can be obtained from small(er) data sets. This allows for more resources to be directed 

towards careful replication and supplemental data collection. The results also suggest that binary 

and ternary reactivity ratio estimates may be similar when the comonomers have similar structures 

and the polymerization is not affected by solution properties. However, binary reactivity ratios are 

not always applicable to terpolymer systems (as has been shown recently [38, 57]). In this case, 

the binary reactivity ratios gave reasonable prediction performance, but the ternary reactivity ratios 

showed even better prediction performance based on fewer experimental data (and, hence, less 

effort overall).  

 

5.2.2.2 Case Study: Sty/MMA/MA 

 

A study by Schoonbrood et al. [128] looked at terpolymerization kinetics for the styrene/methyl 

methacrylate/methyl acrylate (monomer 1/monomer 2/monomer 3 = Sty/MMA/MA) terpolymer. 
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Again, according to standard practice, binary reactivity ratios (obtained from copolymerizations 

in the literature) were used to predict terpolymerization behaviour. During this study, only low 

conversion data were reported. At the time (1994), this was ‘best practice’, where low conversion 

(instantaneous) data were typically used for parameter estimation. Parameter estimation from 

cumulative composition data was not part of typical practice, especially with this more complex 

system of equations representing terpolymerization kinetics. Low conversion data allow for a 

computationally simpler parameter estimation process but require some assumptions about a lack 

of composition drift in the system [54]. 

 

The experimentally determined (assumed instantaneous) terpolymer compositions were compared 

to the model prediction. As reported in the original work, good agreement was observed between 

the predicted and measured values [128]. Given the available terpolymerization data, the recast 

Alfrey-Goldfinger model (with the EVM) can be used to re-estimate terpolymer reactivity ratios 

directly from terpolymerization data. The estimation is stable and symmetrical. A comparison of 

reactivity ratio estimates is presented in Table 5.8, and prediction performance is evaluated in 

Table 5.9.  

 

Table 5.8: Reactivity Ratio Estimates for Terpolymerization of Sty(1)/MMA(2)/MA(3) (Experimental 

Data from [128]) 

 r12 r21 r13 r31 r23 r32 

Reported by Schoonbrood et al. 

[128] (binary reactivity ratio 

estimates) 

0.48 0.42 0.73 0.19 2.49 0.29 

Instantaneous Estimation  

(current work) 

0.57 0.51 1.82 0.20 2.49 0.23 
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Table 5.9: Comparison of Model Predictions for the Sty/MMA/MA Terpolymerization (Experimental 

Data and Original Predictions from [128]) 

Feed Composition Experimental Data Original Predictions Current (EVM) 

Predictions 

𝑓𝑠𝑡𝑦,0 𝑓𝑀𝑀𝐴,0 𝑓𝑀𝐴,0 𝐹𝑠𝑡𝑦 𝐹𝑀𝑀𝐴 𝐹𝑀𝐴 𝐹𝑠𝑡𝑦 𝐹𝑀𝑀𝐴 𝐹𝑀𝐴 𝐹𝑠𝑡𝑦 𝐹𝑀𝑀𝐴 𝐹𝑀𝐴 

0.10 0.10 0.80 0.27 0.28 0.45 0.26 0.19 0.55 0.26 0.23 0.51 

0.10 0.20 0.70 0.24 0.38 0.38 0.24 0.33 0.44 0.23 0.37 0.40 

0.10 0.30 0.60 0.21 0.45 0.33 0.23 0.43 0.34 0.21 0.48 0.31 

0.20 0.10 0.70 0.44 0.18 0.39 0.37 0.16 0.47 0.40 0.20 0.41 

0.20 0.20 0.60 0.37 0.39 0.24 0.35 0.28 0.37 0.36 0.33 0.31 

0.20 0.30 0.50 0.33 0.39 0.28 0.34 0.38 0.28 0.34 0.43 0.23 

0.20 0.50 0.30 0.29 0.60 0.11 0.32 0.53 0.15 0.31 0.57 0.12 

0.30 0.20 0.50 0.42 0.27 0.31 0.43 0.26 0.31 0.46 0.31 0.24 

0.30 0.30 0.40 0.40 0.39 0.20 0.42 0.35 0.23 0.43 0.40 0.17 

0.30 0.40 0.30 0.41 0.44 0.15 0.40 0.43 0.16 0.41 0.47 0.12 

0.30 0.50 0.20 0.39 0.54 0.07 0.39 0.50 0.10 0.39 0.54 0.07 

0.40 0.30 0.30 0.48 0.34 0.18 0.48 0.34 0.18 0.50 0.38 0.12 

0.40 0.40 0.20 0.50 0.36 0.14 0.47 0.42 0.11 0.47 0.45 0.08 

0.50 0.20 0.30 0.56 0.24 0.21 0.55 0.25 0.21 0.59 0.28 0.13 

0.50 0.40 0.10 0.50 0.49 0.01 0.52 0.42 0.06 0.53 0.43 0.04 

0.50 0.30 0.20 0.52 0.43 0.06 0.53 0.34 0.13 0.56 0.36 0.08 

 

Although the prediction performance looks similar, the current (EVM) prediction shows a decrease 

in the sum of square errors for all three comonomer compositions, especially 𝐹𝑀𝑀𝐴 and 𝐹𝑀𝐴. In 

evaluating the total sum of square errors, the current work provides a 32% decrease in prediction 

error over the original analysis. To supplement this result, the residuals for both the original and 

current predictions can also be examined. As shown in Figure 5.16, the spread (that is, the vertical 

distance from 0) is reduced for the current predictions; residuals are smaller overall.  

 

 

Figure 5.16: Comparison of Residuals for Sty/MMA/MA Terpolymer Composition Predictions 
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Given these results (and those discussed previously), there is clearly an advantage of estimating 

ternary reactivity ratios directly from terpolymerization data. If medium-high conversion data were 

available, they could have been used to supplement the data set or to reduce the number of 

experiments required. However, even with this low conversion data set, estimating ternary 

reactivity ratios directly from terpolymerization data is feasible and preferable to using binary data. 

 

5.2.2.3 Case Study: AN/Sty/MMA 

 

The terpolymerization of acrylonitrile (AN; monomer 1), styrene (Sty; monomer 2) and methyl 

methacrylate (MMA; monomer 3) studied by Brar and Hekmatyar [143] provides interesting 

experimental data. In addition to reporting terpolymer composition data, they also reported 

microstructural (triad fraction) information. Thus, there is potential to re-estimate the ternary 

reactivity ratios for AN/Sty/MMA and evaluate their ability to predict composition and sequence 

length distribution. 

 

The original investigation used six experiments (no replication is mentioned) and the feed 

compositions selected provide a good amount of experimental information. As shown in the 

triangular diagram of Figure 5.17, there are three ‘outer’ formulations further along the outside of 

the triangle (designated with circles in Figure 5.17). Although (to the best of our knowledge) these 

were not statistically designed experiments, the fact that there is one formulation rich in each 

comonomer provides useful data for reactivity ratio estimation [60]. In fact, when reactivity ratios 

are estimated using only these three trials, parameter estimation results are as expected.  

 

 
Figure 5.17: Terpolymerization Feed Compositions for AN/Sty/MMA (Data from [143]) 
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Ideally, additional replication would be performed for all six formulations (perhaps even to higher 

conversion levels), but these results certainly represent carefully measured experimental (process) 

data (hence, good information content/lower experimental error), leading to a numerically stable 

estimation situation, thus ensuring that reactivity ratios can be successfully estimated even from a 

limited data set. 

 

Figure 5.18 shows a comparison of estimation results from these three (more optimal) points to 

estimation results from the full (six) trial set. Clearly, the three ‘internal’ data points supplement 

the composition data, but do not significantly alter the reactivity ratio estimation results. Also, the 

ternary reactivity ratio estimates are in good agreement with previously reported binary reactivity 

ratios for associated copolymers. 

 

 
Figure 5.18: Ternary Reactivity Ratio Estimates (RREs) for the Terpolymerization of 

AN/Sty/MMA with Data from Brar and Hekmatyar [143] 

 

For all three comonomer pairs, the binary reactivity ratios are within the JCRs for the ternary 

estimates. Thus, the prediction performance (for both terpolymer composition and microstructure) 

will be similar, regardless of which parameters are used. For the purposes of demonstration, 

analysis of the composition and microstructure of one terpolymer sample (experimentally 

determined by Brar and Hekmatyar [143]) is summarized in Table 5.10. Note that triad fractions 

are defined only by the first letter of the monomer name; for example, triad fraction ASM 

represents the AN-Sty-MMA triad sequence. 
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Table 5.10: Analysis of (a) Composition and (b) Microstructure for AN/Sty/MMA 

(Experimental Data from [143]) 

(a)    

Monomer Experimental [143] Original prediction 

(from binary RREs) [143] 

Current prediction  

(from ternary RREs) 

AN 0.30 0.28 0.30 

Sty 0.48 0.48 0.48 

MMA 0.22 0.24 0.22 

(b)    

Triad Experimental [143] Original prediction 

(from binary RREs) [143] 

Current prediction  

(from ternary RREs) 

AAA 0.01 0.01 0.00 

SAS 0.69 0.73 0.63 

MAM 0.03 0.00 0.03 

AAS 0.06 0.04 0.06 

AAM 0.01 0.00 0.01 

SAM 0.20 0.22 0.27 

SSS 0.05 0.05 0.05 

ASA 0.21 0.25 0.27 

MSM 0.08 0.08 0.06 

SSA 0.27 0.22 0.24 

SSM 0.16 0.12 0.12 

ASM 0.23 0.28 0.26 

MMM 0.05 0.04 0.04 

AMA 0.05 0.02 0.03 

SMS 0.42 0.40 0.39 

MMA 0.04 0.06 0.07 

MMS 0.21 0.26 0.26 

AMS 0.23 0.22 0.21 

 

5.2.3 Concluding Remarks on Terpolymer Troubleshooting Tips 

 

Through a series of case studies, we have demonstrated with examples and counter-examples both 

the challenges and advantages of estimating ternary reactivity ratios directly from 

terpolymerization data. We highlighted some difficulties that may arise when studying multi-

component polymerizations due to the nature of such systems and related experimental limitations. 

These limitations are usually translated to the paucity of experimental information content. The 

lack of sufficient information on polymer composition, combined with uncertain levels of 

experimental error (since independent replication is usually non-existent) usually leads to 

numerically ill-conditioned systems during the estimation steps. This in its turn results in a 

multiplicity of (and related confusion with) reactivity ratio values. Now, if the above already 

important limitations are superimposed to a lack of experimental design (i.e., the optimal selection 
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of feed compositions), the problem is compounded with the extra dimension of added pitfalls with 

the use of undesigned (happenstance) data.  

 

When experimental design is employed right from the outset and is combined with appropriate 

parameter estimation techniques using carefully measured (and replicated) data, i.e., when every 

effort is made to make the terpolymerization system numerically ‘well-behaved’, then accurate 

and reliable estimates of ternary reactivity ratios can be obtained. The case studies examined gave 

examples of both instantaneous (low conversion) and cumulative (medium-high conversion) data 

analysis and demonstrated the advantages of using the cumulative model. Some systems exhibited 

similarities between the binary and ternary reactivity ratio estimates, and the predictions related to 

composition and triad fractions were improved. 

 

In some other terpolymerization systems, the reactivity ratios of the binary copolymerization pairs 

do not apply to ternary systems [38]. Trying to predict terpolymerization behaviour from binary 

reactivity ratios can require making unfounded assumptions about system-specific polymerization 

kinetics. Researchers often assume that the presence of the third comonomer is exactly additive 

via simple superposition, hence the behaviour of the three comonomers is independent of each 

other. This is the main assumption, akin to assuming that interaction terms are non-existent in a 

model. Evaluating subsets of the experimental data collected (that is, comonomer pairs) to 

represent ternary systems can ultimately result in the oversimplification of complex processes. 

Using appropriate kinetic models can result in better prediction performance and a higher degree 

confidence in the resulting parameter estimates.  

 

5.3 Concluding Remarks 

 

In studying the terpolymerization kinetics of AMPS/AAm/AAc for the enhanced oil recovery 

application, it has been impossible to avoid these tangential topics. As described in Section 5.1, 

the widely accepted analogy between copolymerization and terpolymerization mechanisms is not 

always valid; reactivity ratios obtained for binary pairs (from copolymerization experiments) 

cannot blindly be used in models dealing with terpolymerizations. Using the binary-ternary 

analogy (even as an approximation) requires making considerable assumptions about the system. 

When binary reactivity ratios are used to describe ternary systems, the consequences may include 

substantial differences in reactivity ratio estimates, poor composition prediction performance, and 

incorrect determination of product (terpolymer) characteristics. As shown in this chapter (Section 

5.1.2), the inadequacy of binary reactivity ratios for terpolymerization systems is especially true 

for the AMPS/AAm/AAc terpolymer. This may be a consequence of the solution effects described 

in Section 4.1, since the addition of a third comonomer can drastically affect the properties of the 

polymerizing solution. 
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We have also found it necessary to explore the challenges and advantages associated with 

estimating ternary reactivity ratios directly from terpolymerization data. Through our estimation 

work (and through collaborations with other research groups including Yousefi et al. [144]), we 

have discovered the importance of carefully collected and well-behaved data. Although some 

adjustments can be made to make use of historical data, there is no substitute for experimental data 

collected specifically for ternary reactivity ratio estimation. Overall, and as demonstrated in this 

work [136], ternary reactivity ratio estimation directly from terpolymerization data can provide 

improved understanding about a complex terpolymer system. Dealing for the first time with a 

completely unknown terpolymerization system, the current approach offers, if nothing else, a 

systematic and ‘safe’ approach to accumulating experimental evidence (about the system in 

question) in fewer experimental trials and hence less experimental effort, but with reliable 

parameter estimates which can be fine-tuned further later, as one becomes more familiar with the 

terpolymerization system in a sequential-iterative-optimal manner. 
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Chapter 6. Literature Background for Case Study #2 – 

Polymeric Sensing Materials 
 

6.1 Polymeric Sensing Materials for Detection of Acetone 

 

Diabetes mellitus, generally called diabetes, is a series of metabolic diseases in which the affected 

persons experience high blood sugar levels over long periods of time. Type 1 diabetes is caused 

by the pancreas’ inability to produce enough insulin, whereas type 2 diabetes stems from an insulin 

resistance, which typically builds up over time. According to the most recent report by the 

International Diabetes Federation, 1 in 11 adults have diabetes (approximately 415 million people 

worldwide) and 46.5% of those adults are undiagnosed [145]. This organization estimates that a 

person dies every 6 seconds from diabetes; this may be influenced by the fact that an estimated 

75% of people with diabetes live in low- and middle-income countries. 

 

Diabetes research and treatment is very well developed in North America. Diagnosis typically 

involves taking blood samples to measure blood glucose concentration either (a) after fasting, or 

(b) two hours after a ‘glucose load’ [146]. Depending on whether a person has type 1 or type 2 

diabetes, it can generally be controlled using insulin injections (type 1) or diet, exercise and 

medication (type 2). However, there is still a need for low cost, fast responding diagnosis and 

treatment methods, especially for developing countries. 

 

When blood glucose levels are high, a person’s breath often smells sweet. This is largely due to 

elevated levels of ketones (namely acetone, acetoacetate and 3-β-hydroxybutyrate) that are 

produced as an alternative energy source, since the body cannot process the glucose that is present 

(this is a result of low insulin or insulin resistance). All three of the ketones listed above will 

increase in concentration, but acetone is by far the most volatile. Thus, it can be detected in a 

person’s breath or skin much more easily than acetoacetate or 3-β-hydroxybutyrate [147].  

 

6.1.1 Existing Materials and Methods 

 

Over the past 60 years, a variety of studies have been performed in an attempt to link breath acetone 

concentration to blood glucose levels. In effect, over 40 different investigations (involving over 

3,000 human subjects) have confirmed that breath acetone concentration can be used as a 

biomarker for diabetes mellitus [148]. In general, type 1 diabetics have shown significantly higher 

breath acetone concentrations when compared with a (non-diabetic) control group and with type 2 

diabetics. For example, in an early study, Rooth and Ostenson [149] measured 4.42 ± 0.71 μg/L in 

type 1 diabetes patients (n = 49), which is much higher than the 1.10 ± 0.88 μg/L observed in the 

control group (n = 67) and 1.70 ± 0.23 μg/L observed in type 2 diabetics (n = 20). Similarly, 

Tassopolous et al. [150] studied the relationship between blood glucose levels and breath acetone 

concentration, specifically for insulin-treated type 1 diabetics. Their group found that patients with 
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higher blood glucose levels had much higher breath acetone levels; breath acetone increased 

(though not entirely linearly) from 1.90 ± 0.16 μg/L to 7.49 ± 4.90 μg/L as blood glucose increased 

from 51 mg/100 mL to 450 mg/100 mL (patients were divided into four blood glucose level groups, 

or bins). Other similar studies have shown consistent results (see [148] for a detailed review). 

 

The relationship between breath acetone and type 2 diabetes has also been studied by several 

groups (see, for example, [151-155]), but a consensus about the trends observed has not yet been 

reached. Only Deng et al. [151] observed a noticeable difference between the breath acetone 

concentration of the control group and the type 2 diabetic group (the type 2 diabetic group had 

consistently higher breath acetone concentration). In most cases, though, there was no significant 

statistical difference between the breath acetone concentration of the (non-diabetic) control group 

and the type 2 diabetes group. That being said, increasing acetone breath concentration with 

increasing blood glucose levels was still observed, as per the type 1 diabetes studies [153, 155]. 

 

Two groups have also investigated the relationship between skin acetone concentration and blood 

glucose. Yamane et al. [156] reported that skin acetone levels were much higher for diabetic test 

subjects (188 ± 7 ppb, n = 63) compared to the control group (87 ± 10 ppb, n = 32), and that one 

patient with ketoacidosis (which is an extreme case that may lead to diabetic coma) had a skin 

acetone level of 940 ppb. Although their study did not distinguish between type 1 and type 2 

diabetics, they found that there was a positive correlation between fasting skin acetone and blood 

glucose for subjects that used insulin therapy (which are most likely type 1 subjects). In the same 

way, Turner et al. [157] analyzed five non-diabetic test subjects and found that skin acetone levels 

increased with breath acetone concentration. Also, both measurements seemed to be somewhat 

correlated with blood glucose levels.  

 

Increased acetone concentration within the human body can be exploited to develop non-invasive 

detection techniques for the diagnosis (and potential control) of high blood glucose levels 

experienced by people with diabetes. Several groups have recently investigated the possibility of 

using metals and metal oxides as breath acetone sensors, with some success (see Table 6.1, Part 

A). There have also been a handful of studies done that involved polymeric sensing materials and 

sensing arrays (see Table 6.1, Part B), but there is still room for improvement. In what follows, 

design principles (as per [4, 5]) will be used to develop polymeric sensing materials with optimal 

properties. Polymeric sensing materials typically provide better selectivity than metals and metal 

oxides [3] and have the added advantage of customization or tailorability. 
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Table 6.1: Breath Acetone Detection Studies; Summary of Sensing Materials 

Ref. 
Sensing Material (and 

dopant, if applicable) 

Sensor 

Type 
Detection Limit Selectivity 

Part A: Metals and Metal Oxides 

[158] Sb-doped SnO2 Resistive 65.3 ppm EtOH (1062.5); CO2 (27840) 

[159] 
Multi-walled carbon 

nanotubes with TiO2 
Resistive 1 wt% -- 

[160] 
Ga2O3 nanowires with and 

without pyruvic acid (PA) 
Capacitive 304 ppm 

Nitromethane (very poor with 

PA); Triethylamine (good 

selectivity in both cases, better 

without PA; no numerical 

values available) 

[161- 

163] 

Si-doped WO3 

nanoparticle films 
Resistive 20 ppb 

EtOH (4.7 – 6.7) [161] 

EtOH (8.0 – 16) [162] 

EtOH, MeOH, isoprene (cannot 

be calculated) [163] 

[164] Pt-doped WO3 nanofibres Resistive 1 ppm H2S (0.053) 

[165] Pure and Pt-doped SnO2 Resistive 120 ppb 
Pure: Toluene (1.0 – 18); Pt-

doped: Toluene (1.0 – 2.7) 

[166] WO3 microspheres Resistive 100 ppm 
H2S (2.8); EtOH (2.3); NH3 

(3.2); NO2 (7.3); H2 (4.8) 

[167] Pt-doped WO3 hemitubes Resistive 120 ppb 

H2S (1.9 – 8.4); Toluene (6.5 – 

12.5); EtOH (very high, data 

not reported) 

[168] 

‘Bumpy’ WO3 hemitubes 

(via O2 plasma surface 

mod.) with functionalized 

graphene 

Resistive 100 ppb 

H2S (0.36); EtOH (3.4); NH3 

(3.9); NO (5.0); CO (6.2); 

pentane (6.2) 

[169] 

SnO2 nanofibres with 

reduced graphene oxide 

nanosheets 

Resistive 100 ppb 

H2S (2.1); EtOH (4.3);  

Toluene (7.5); NH3 (10.0);  

CO (10.0) 

[170] Nanostructured ZnO film Resistive 80 ppm EtOH (0.50 – 0.75) 

[171] 
SnO2 / reduced graphene 

oxide composite 
Resistive 10 ppm -- 

Part B: Polymeric Sensing Materials 

[172] 

PPy/PMMA blend doped 

with α-naphthalene 

sulfonate 

Resistive 
Saturated  

(30.3 vol. %) 
Acetic Acid (3.9) 

[173] 

 

PPy sensor arrays: 4 

sensing materials varying 

in thickness & resistance 

Resistive 50 ppm 

EtOH 

S1: 0.95 – 1.4; S2: 1.0 – 1.6 

S3: 1.2 – 1.6; S4: 0.93 – 1.3 

[174] 

3-enzyme system: 

secondary alcohol 

dehydrogenase (s-ADH), 

lactate dehydrogenase 

(LDH), pyruvate oxidase 

(PO) 

Ampero-

metric (via 

formation 

of H2O2) 

0.2 ppm 

Good selectivity for ethanol; 

poor selectivity for 2-pentatone, 

3-pentanone, 2-butanone and 

acetaldehyde (data not reported) 

[175] 

Polyepichlorohydrin 

(PECH); 2 sensing 

materials varying in 

thickness 

Mass-based 

(QCM) 
0.16 ppm 

Dimethyl methyl phosphonate  

(S1: 2.1, S2: 5.2); EtOH (S1: 

4.7, S2: 6.3); Hexane (S1: 3.7, 

S2: 6.8) 
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[176] 

PPy deposited by 

chemical oxidation-

casting (COC) or CVD; 

PPy(COC) doped with α-

naphthalene sulfonate 

Resistive 

PPy(COC): 2983 

pm 

PPy(CVD): 

6010ppm 

 

[176] 

PANI/PMMA and PANI 

deposited by chemical 

oxidation-casting (COC) 

or impregnated oxidation 

(IO); PANI/PMMA 

(COC) doped with ClO4
- 

and SO4
2- 

Resistive 

PANI/PMMA 

(COC): 132 ppm 

PANI(IO): 29 ppm 

For PANI/PMMA(COC): 

O2, CO2, H2O  

(cannot be calculated) 

[177] 

NADPH-dependent 

carbonyl reductase 

enzyme and Nafion 

(C7HF13O5SC2F4) 

Ampero-

metric 

Enzyme showed no 

improvement over 

bare electrode; 

Nafion showed 

better response  

(still quite poor) 

For Nafion: 

EtOH (1.2);  

Formaldehyde (1.7);  

MeOH (0.72);  

NH4OH (0.34) 

[178] Chitosan Resistive 0.1 ppm MeOH (1.2 – 2.0) 

[179] 
OV-275 and P25DMA 

doped with NiO 
Capacitive 625 ppm for both 

Benzene 

OV-275: 6.7; P25DMA: 0.26 

[180] 

Polyvinylidene fluoride 

hexafluoro-propylene 

(PVDF-HFP) composite 

sensors with carbon black 

(C65);  

S1: PVDF-HFP/C65 

S2: multilayer with 

PVDF-HFP and PVDF-

HFP/C65 

S3: PVDF-HFP/C65/CNT 

Mass-based 

(QCM) 
42 ppm for all 3 

Ethanol  

(S1: 9.4, S2: 10.1, S3: 6.0) 

 

Isoprene  

(S1: 17.5, S2: 11.5, S3: 11.9) 

 

2-ethylhexyl acetate  

(good selectivity, cannot be 

calculated) 

Abbreviations: α-NS- = α-naphthalene sulfonate; C65 = carbon black; CNT = carbon nanotube; COC = 

chemical oxidation casting; CVD = chemical vapour deposition; DMMP = dimethyl methyl phosphonate; 

EtOH = ethanol; IO = impregnated oxidation; LDH = lactate dehydrogenase; MeOH = methanol; NADPH 

= nicotinamide adenine dinucleotide phosphate; OV-275 = highly polar siloxane-based polymer; P25DMA 

= poly(2,5-dimethyl aniline); PA = pyruvic acid; PANI = polyaniline; PECH = polyepichlorohydrin; 

PMMA = poly(methyl methacrylate); PO = pyruvate oxidase; PPy = polypyrrole; PVDF-HFP = 

polyvinylidene fluoride hexafluoropropylene; QCM = quartz crystal microbalance; s-ADH = secondary 

alcohol dehydrogenase 

 

6.1.2 Application Requirements 

 

First, it is important to distinguish between sensing materials and sensors. Sensing materials are 

the materials that interact with the target analyte (in this case, acetone) through either adsorption 

or absorption. Adsorption occurs when the gas molecules adhere to the surface of the sensing 

material, whereas absorption occurs when the gas molecules diffuse into the sensing material. The 

two most common families of sensing materials are metals and metal oxides, and polymeric 
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sensing materials. As mentioned previously, most sensing materials used in the field of breath 

acetone detection have been metals and metal oxides, but some polymeric materials have been 

used. A summary of these studies has been presented in Table 6.1.  

 

Simply put, sensors are devices that convert non-electrical inputs (physical or chemical) into an 

electrical output signal (that is a quantifiable response). Three of the most common types of sensors 

are resistive, capacitive, and mass-based sensors (microcantilevers). Resistive sensors rely on 

changes in conductivity, normally achieved through the sorption (that is, adsorption or absorption) 

of the target material onto a sensing material. Metals and metal oxides have historically been used 

in resistive sensors, but conductive polymers such as polyaniline (PANI) and polypyrrole (PPy) 

have also been employed successfully (see, for example, the acetone sensing case described by Do 

and Wang [176]). Capacitive sensors also rely on electrical properties, as the charge-storing ability 

of the sensing material changes with sorption. If absorption occurs, the sensing material will swell, 

causing a change in capacitance. Alternatively, if adsorption occurs, the dielectric permittivity of 

the sensor changes, which also causes a capacitance change. Finally, as the name suggests, mass-

based sensors measure changes in mass that occur during sorption; two commonly used mass-

based sensors are quartz crystal microbalance (QCM) and microcantilever sensors. 

  

6.1.2.1 Polymer Properties 

 

In the case of polymeric sensing materials, homopolymers or polymer blends are typically used. 

Therefore, several design considerations (including glass transition temperature, crystallinity, 

morphology, and the sensing mechanism) should be considered to create tailor-made polymers for 

the specific application.  

 

The operational temperature dictates what kind of material can be used, or rather eliminates some 

preliminary options. The glass transition temperature (Tg) of the material is usually preferred to be 

above the operational temperature of the sensor. If the sensor is to be used repeatedly, mechanical 

stability should also be considered. 

 

The crystallinity of the sensing material, the surface morphology and the degree of incorporation 

of any dopants used should also be considered. The influence of these characteristics on the sensor 

response is not very well studied, as it depends on the specific sensing material and the sensor. 

However, Sengupta et al. [181] reported that reduced crystallinity in acid-doped PANI (especially 

at high acid concentration) resulted in reduced conductivity. This observation is in line with a 

recent ethanol sensing study, in which Stewart [182] reported that poly (2,5-dimethyl aniline) 

(P25DMA) with lower crystallinity sorbed less of the target analyte.  

 

Surface morphology is a difficult characteristic to quantify, but is very important for sensing 

materials. Ultimately, the goal is to use thin films, nanorods or nanoparticles to maximize the 

surface area to volume ratio of the polymer. The morphology of the sensing material is largely 
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dependent on the synthesis technique used, but surface modification techniques are also fairly 

common. The degree to which dopants are incorporated into the sensing material (which depends 

on dopant concentration during synthesis and on dopant/polymer interactions) also affects surface 

morphology. An additional influence is deposition technique (onto the actual sensor), which is 

currently beyond the scope of this work. 

 

Finally, and perhaps most importantly, the type of functional groups on the target analyte (here, 

acetone) must be considered. According to the literature [4], the polarity and the capability for 

hydrogen bonding should be exploited when selecting a sensing material for ketones. Also, the 

two lone electron pairs on the oxygen act as a Lewis base, which means that sensing materials that 

behave as Lewis acids have significant potential. Common electron pair acceptors include NH4
+, 

metal cations, and trigonal planar species like BF3 and CH3
+. 

 

6.1.2.2 Application-Specific Properties 

 

The main evaluation of potential sensing materials depends on their sensing characteristics, namely 

sensitivity and selectivity. These properties will be described in some detail in what follows. 

 

The sensitivity of a sensor (or sensing material) is related to the lowest discernible concentration 

that can be measured. Lower concentrations are preferable, indicative of a sensitive sensor or 

sensing material. In the case of an acetone sensor, the required sensitivity will depend on the source 

of the analyte being detected. It has been reported previously that breath acetone ranges from 148 

ppb to 2744 ppb, and in an extreme case has reached 20 ppm [147]. This gives a general idea of 

the sensitivity that would be required for breath acetone concentration studies.  

 

A quantifiable measure of sensitivity is the limit of detection, which is the lowest possible signal 

that can be detected without being influenced by experimental noise. Assuming that a reasonable 

signal-to-noise ratio is 3, the detection limit can be calculated according to Equation 6.1: 

𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 𝐿𝑖𝑚𝑖𝑡 = 3 × [𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒]𝑁𝑜𝑖𝑠𝑒  6.1 

 

The challenge is to find materials that have a strong affinity towards the target analyte (that is, 

show high levels of sorption compared to other materials), but that can also sorb low concentrations 

(this is the sensitivity aspect). In the current work, the focus is to find materials with a strong 

affinity toward acetone (therefore, high sorption), with the assumption that materials with high 

affinity can sorb small quantities. To establish the detection limit, trials at lower gas analyte 

concentrations would be required. 

 

Another significant property of sensing materials is the selectivity for a given analyte (here, 

acetone). Selectivity measures how much the sensing material favours acetone over other possible 

interferents (at equal concentrations), and can be calculated using Equation 6.2.  
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𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦 =
𝐴𝑐𝑒𝑡𝑜𝑛𝑒𝑆𝑜𝑟𝑏𝑒𝑑

𝐼𝑛𝑡𝑒𝑟𝑓𝑒𝑟𝑒𝑛𝑡𝑆𝑜𝑟𝑏𝑒𝑑
 

6.2 

 

This is an extremely important consideration for this application, since over 3,500 chemical species 

are present in human breath [183]. Some of the main components that may be considered as 

interferents (largely due to their concentration in exhaled breath) are nitrogen, oxygen, carbon 

dioxide, water, ammonia, hydrogen sulfide and carbon monoxide. Of these, the presence of water 

(that is, the humidity effects on the sensor) will likely be the most problematic. Other, less 

concentrated interferents include nitric oxide, ethane, pentane, isoprene, methanol, ethanol, 

acetonitrile, xylene and benzene; some of these are related to whether or not the person in question 

is a smoker [184]. The most influential interferents for this system will depend on relative 

concentrations in the human body, and on the structural similarities to acetone. Ultimately, for the 

interferents studied, the selectivity toward acetone should be as high as possible. 

 

6.1.3 Backbone Selection 

 

Ashby and Johnson’s design principles [46] rely on analysis, synthesis, similarity or inspiration. 

The analysis aspect is extremely important here; the relationship between the target analyte (and 

any interferents) and the sensing material needs to be carefully considered. Selection by similarity 

can also be employed, as the literature can be used as a starting point for this and future 

investigations. 

 

Since acetone has the capacity to hydrogen bond, sensing materials that will promote hydrogen 

bonding are desirable. Therefore, it may be necessary for the backbone to contain –NH groups or 

–OH groups. For example, polyaniline or polypyrrole may promote sorption to –NH groups, while 

poly (vinyl alcohol) or poly (acrylic acid) may promote acetone sorption to –OH groups. However, 

interferents including water and alcohols also have the ability to hydrogen bond, which may limit 

the selectivity of the sensing material.  

 

One of the recommended techniques for selecting a sensing material is to examine the solubility 

parameters of the target analyte and the potential sensing materials. Solubility parameters take 

many material properties into account, which can help predict both solubility and sorption 

potential. If the solubility parameters for the analyte and the sensing material are close in value, 

this indicates that the materials are likely to interact. Table 6.2 presents the solubility parameters 

of the target analyte (acetone), as well as the solubility parameters of some potential interferents. 

The table also includes sensing materials of interest, some of which will be discussed further in 

what follows. 

  



168 

 

Table 6.2: Hildebrand Solubility Parameters for Target Analyte, Interferents, and Potential Sensing 

Materials (from [185] unless otherwise stated) 

Analytes δ (MPa1/2) Sensing materials δ (MPa1/2) 

Acetone 20.3 Poly(acrylic acid)* 18.0 – 21.3 

Acetic Acid 20.7 Polyaniline* [186] 22.2 

Benzene 18.8 Polyisoprene 16.2 – 20.5 

Chloroform 19.0 Poly(methyl acrylate) [187] 19.9 – 21.3 

Dichloromethane 19.8 
Poly(methyl methacrylate)* 

[187] 
18.6 – 26.2 

Ethanol 26.0 Polypyrrole* [188] 25.2 

Ethyl Acetate 18.6 Poly(vinyl acetate) 18.0 – 22.6 

Hexane 14.9 Poly(vinyl alcohol)* [187] 25.8 – 29.1 

Methanol 29.7 Poly(vinyl chloride) 19.2 – 22.1 

Toluene 18.2   

Water 47.9   

 

This preliminary (and very general) assessment suggests that any number of polymeric materials 

are compatible in terms of solubility. However, solubility parameters should only be used as a 

general ‘rule-of-thumb’, and should not be approached without critical thought. As mentioned 

previously, the glass transition temperature (Tg) of the sensing material is extremely important. 

Poly(vinyl acetate), for example, has a very promising range of solubility parameters relative to 

acetone. However, the Tg for PVAc is only around 30-35°C [185], which means that it will not be 

glassy at the operational temperature (human breath is generally around 35°C). Thus, it should not 

be considered as a candidate for breath acetone sensing. 

 

In what follows, five sensing materials (selected based on previous use in the literature and 

anticipated performance, marked with a * in Table 6.2) will be reviewed in more detail.  

 

6.1.3.1 Polyaniline  

 

Polyaniline (PANI; Tg = 100°C) is one of the most widely used sensing materials, largely due to 

its versatility. In fact, five different oxidation states of polyaniline exist, as shown in Figure 6.1. 

Emeraldine is the most stable form, but any form can be obtained through oxidation or reduction 

reactions (note that leucoemeraldine is fully reduced, whereas pernigraniline is fully oxidized) 

[189].  
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Figure 6.1: Five Oxidation States of PANI (from [189]) 

 

Although none of the above forms are conductive, one of the advantages of PANI is that it can be 

made conductive by protonic acid doping. Essentially, in an acidic (or salt) form, polyaniline 

becomes conductive without the addition or removal of electrons. A schematic highlighting the 

two forms of emeraldine is shown in Figure 6.2. 

 

 
Figure 6.2: Conductive and Non-Conductive Forms of PANI (from [190])  
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In Figure 6.2, the upper scheme is the ‘undoped’ basic form, which is non-conductive. Conversely, 

the lower scheme is the ‘doped’ acidic (or salt) form, which is conductive. The doped form of 

PANI can be achieved by modifying the basic form, or the more common ‘self-doping’ technique 

can be performed by adding acid to the pre-polymerization recipe in the synthesis phase [190]. 

The effect of acids in polyaniline synthesis will be discussed further in Section 6.1.4.2. 

 

Previously, PANI has been used to detect several target species besides acetone [176], including 

ammonia, benzene, carbon monoxide, chloroform, ethanol, hydrogen, hydrogen sulfide, methanol, 

nitrogen dioxide, toluene, water and xylene [191]. While this may seem like it could cause 

problems with selectivity, it actually demonstrates the versatility of PANI as the backbone of 

various tailored sensing materials. PANI can be doped with acids or metal oxides to improve 

sensing properties like sensitivity and selectivity (this will be discussed further in Section 6.1.4).  

 

Alternatively, derivatives of PANI like poly (o-anisidine) (PoANI) and poly (2,5-dimethyl aniline) 

(P25DMA) can be used. These derivatives maintain many of the desirable sensing characteristics 

of polyaniline, but also have some improved features like better solubility and processability (due 

to less dense packing) [182]. A schematic comparing PANI to PoANI and P25DMA is presented 

in Figure 6.3. 

 

(a) (b) (c) 

 
 

 

Figure 6.3: Polyaniline and Sample Derivatives (a) PANI, (b) PoANI and (c) P25DMA 

 

These derivatives have recently been investigated for ethanol sensing [182], but could also be 

tailorable for the detection of other gas analytes. Specific customization techniques will be 

discussed in Section 6.1.4. 

 

6.1.3.2 Polypyrrole 

 

Polypyrrole (PPy; Tg = 270°C) has also been used in sensing materials, mainly due to its 

conductive nature. Other favourable characteristics include its strong absorptive properties towards 

gases and its ability to perform at room temperature [192]. As shown in Table 6.1, it is perhaps the 

most frequently used polymeric material for acetone detection. Ruangchuay et al. [172], Yu et al. 

[173], and Do and Wang [176] all chose to use various forms of polypyrrole to construct their 

acetone sensing materials for resistive sensors.  
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The structure of PPy is similar to that of PANI, since it contains an –NH group (which promotes 

hydrogen bonding) and an aromatic ring. It is often produced either by chemical (redox) initiation 

or by electrochemical activation; both of these techniques have advantages and disadvantages 

[192]. Chemical polymerization allows for the production of different (and controlled) structures 

and sizes of PPy particles, including dopants when necessary. The polymerization process can 

produce large amounts of the polymer, but poor solubility in most solvents makes deposition 

difficult; chemically prepared PPy often has poor adherence to the sensor surface. Alternatively, 

electrochemical polymerization relies on an applied current to deposit a thin PPy film on the sensor 

surface. This technique provides good adherence and conductivity, as well as good control of the 

material’s thickness and morphology. While this method seems to be more common in practice, 

only very small amounts of polypyrrole are obtained [192]. 

 

6.1.3.3 Poly(vinyl alcohol) 

 

Poly (vinyl alcohol) (PVA; Tg = 85°C) has, to our knowledge, not been applied to acetone sensing 

materials. However, the hydrogen bonding capability of the –OH group makes PVA an interesting 

option. As mentioned previously, PVA has been used as an additive for PPy sensing materials 

[193-195] as well as PANI sensing materials [196-199]. The target materials range from methanol 

[193, 195] and ammonia [194] to humidity [196, 197, 199]. Ultimately, the application (and its 

success) depends on both the physical properties (thickness, morphology, etc.) and the chemical 

properties (namely the synthesis techniques, blend ratios and dopants used). 

 

Alone, PVA is most often used for humidity sensing (see, for example, [200-202]). The sensing 

techniques are varied, and include resistive [200], resonant frequency [201] and optical [202] 

methods. Penza et al. [201] noted that their sensor was very responsive to water, but was also 

sensitive to acetone, ethanol, methanol and 2-propanol. 

 

It is expected that breath samples will have high humidity levels, which eliminates the possibility 

for pure PVA to be used for acetone detection. However, it may be possible to use a sensor array 

(so that water can be eliminated from the sample earlier) or a modified PVA-based backbone to 

detect acetone. 

 

6.1.3.4 Poly(acrylic acid) 

 

Poly (acrylic acid) (PAA; Tg = 106°C) shows promise as an acetone gas sensing material, as it has 

a similar Hildebrand solubility parameter to acetone (see again Table 6.2). However, in the sensing 

literature, it is generally used to detect ammonia. Chabukswar et al. [203] used acrylic acid-doped 

PANI in a resistive sensor, while Ding et al. [204] and Lee et al. [205] used PAA as the sensing 

material with a QCM. While all three studies showed good sensitivity to ammonia, none of them 

considered the effect of interferents (except for humidity, in one case [204]). Thus, the response 

of PAA to other analytes (including acetone) is still unknown.  
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Polymer composites of PAA with polyaniline have also appeared in the literature. Tang et al. [206] 

and Tiwari et al. [207] both reported the successful detection of ascorbic acid using PANI/PAA 

composite materials for amperometric sensors. In both studies, dopamine and uric acid were 

considered as interferents, with no significant response in either case. Ascorbic acid has a more 

complex structure than acetone, but does contain a double-bonded oxygen atom (as does acetone). 

Therefore, these studies may be beneficial in establishing a tailor-made polymeric sensing material 

for acetone. 

 

6.1.3.5 Poly(methyl methacrylate) 

 

As shown in Table 6.1, poly (methyl methacrylate) (PMMA; Tg = 105°C) has been used for 

acetone detection alongside polypyrrole [172] and polyaniline [176]. In the work by Do and Wang 

[176], PMMA was only used as a binding agent for PANI. However, Ruangchuay et al. [172] used 

a PPy/PMMA blend to detect acetone (in the presence of interferents acetic acid and water) using 

the swelling behaviour of PMMA and the conductivity of PPy. PMMA has similar solubility 

parameters to both acetone and acetic acid, which limits selectivity. However, the swelling 

behaviour of the sensing material differs between the two analytes: acetic acid bonds permanently 

through protonation of the =N (present in α-NS--doped PPy), whereas acetone bonds reversibly 

via hydrogen bonding (to the –NH group within PPy). Ruangchuay et al. [172] found that the ratio 

of PMMA to PPy/α-NS- drastically affects the selectivity of the sensing material, and this 

observation can be used to tailor-make polymeric materials for acetone detection. In general, 

increasing PMMA increases the response of the sensing material (that is, increases electrical 

resistance due to swelling) in the presence of both acetone and acetic acid. However, the acetone 

response dominates when PMMA/(PPy/α-NS-) > 1. In the same study, Ruangchuay et al. [172] 

reported that the sensing material is insensitive to water when PMMA and PPy/α-NS- are present 

in equal amounts. Therefore, to optimize the selectivity toward acetone (in the presence of acetic 

acid and water), a PMMA/(PPy/ α-NS-) ratio of approximately 1 (or slightly higher) should be 

maintained.  

 

PMMA is an extremely versatile sensing material, and has been used for resistive, capacitive and 

mass-based sensors. Most often, PMMA has been used in humidity sensors. Various forms of pure 

PMMA (linear, crosslinked, surface modified PMMA, etc.) have been used in capacitive sensors, 

as water sorption in the polymer results in a capacitance change (see, for example, [208-210]). 

Alternatively, salt-doped PMMA has been used to create resistive humidity sensors, as water 

sorption promotes dissociation behaviour (and therefore increases ion mobility in the sensing 

material) [211, 212]. PMMA has also been used for VOC sensing, using resistive [213, 214] and 

mass-based [215] sensors. In both cases, the sensor response was based on sorption of the target 

analyte and swelling of the PMMA. Philip et al. [213] investigated the response of a surface 

modified carbon nanotube/PMMA sensor towards dichloromethane, chloroform, acetone, 

methanol, ethyl acetate, toluene and hexane. The results showed that the first three VOCs exhibited 

the highest response, which is largely due to the compatibility of their solubility parameters with 
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that of PMMA. Lang et al. [215], on the other hand, used a PMMA-coated cantilever sensor to 

detect four different alcohols (methanol, ethanol, 1-propanol and 1-butanol), with some success. 

 

In an interesting extension, Matsuguchi et al. [208] evaluated the durability of their capacitive 

humidity sensor by exposing the PMMA to acetone. Since acetone sorbs onto PMMA, their sensor 

measured high capacitance after exposure to saturated acetone vapour. While the linear PMMA 

was more sensitive, sorption caused permanent deformation and the sensor could not return to the 

baseline capacitance. Crosslinked PMMA was not as sensitive to acetone, as sorption was limited 

to the surface. However, changes in capacitance were still observed, and the capacitance returned 

to the baseline value. 

 

6.1.4 Product Customization 

 

PANI is perhaps the most attractive backbone, as the polymer product can be tailored and/or 

modified. The pH of the reaction medium determines whether the resulting polymer is conductive, 

functional groups and packing can be selected by choosing an appropriate monomer (that is, a 

derivative of aniline), and doping makes it possible to choose which metal oxides could be 

incorporated for optimal sensitivity and selectivity. However, beyond these conditions, the 

reaction is very robust; most polymerization conditions have a limited impact on the properties of 

polyaniline synthesized via chemical oxidation. Cao et al. [216], for example, investigated a range 

of synthesis variables including reactant concentrations (and related ratios), initiator type, aqueous 

solution pH, polymerization solvent (mixtures of organic and aqueous components for the reaction 

media), polymerization temperature and polymerization time. Some variables had an impact on 

viscosity (and, by extension, likely had some molecular weight effect). However, yield and 

conductivity were generally unaffected by the variables considered. Given the results presented by 

Cao et al. [216], it could be beneficial to target using a molar ratio of initiator/monomer < 1.15, 

ammonium persulfate or potassium dichromate as the initiator, aqueous hydrochloric acid solution 

as the protonic acid medium (concentration range from 1.2 M – 2.0 M), aqueous solution (no 

organic additives), temperatures between -5°C and 0°C, and a polymerization time between 4 

hours and 8 hours to achieve (conductive) PANI samples with high molecular weights. 

 

The PPy structure is largely controlled by the polymerization kinetics, which in turn are affected 

by the initiator (oxidant) used. Slower polymerization kinetics are generally preferred, since better 

rate control promotes the production of linear polypyrrole chains [217]. Also, there is a balance 

that needs to be obtained between the oxidation of pyrrole (to synthesize PPy chains) and the over-

oxidation of PPy (which leads to chain degradation). Key control variables, then, are initiator type 

(specifically the redox potential of the initiator), concentration of initiator, polymerization time 

and polymerization temperature. It has been shown previously that the conductivity of the sensing 

material can vary significantly with the Py/initiator ratio and with time (especially when the 
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polymerization proceeds quickly) [218]. Also, synthesis at higher temperatures (say, above 20°C) 

can lead to side reactions which are undesirable for the application [219, 220]. 

 

Modifying the non-conductive polymers described above (PVA, PAA and PMMA) may require 

the addition of dopants (likely metal oxides) or comonomers, depending on the desired effect. As 

described previously, the copolymerization kinetics (specifically, reactivity ratios) provide 

information about the polymer product (namely copolymer composition and sequence length 

distribution). Thus, if reactivity ratios are known, the formulation can be tailored to ensure a 

specific copolymer composition (containing desirable functional groups) and sequence length 

distribution (which affects steric effects and therefore packing). In some applications, materials 

like PVA and PMMA are also used as substrates or binders [176]. Therefore, even if these 

polymers show a poor affinity towards the target analyte, they may still be useful as a stabilizing 

agent or a backbone (onto which the functional polymer can be grafted).  

 

6.1.4.1 Metal Oxide Dopants 

 

Dopants are additives that can be incorporated into a sensing material to improve its properties. 

Most dopants are metals and metal oxides, which can improve sensitivity and selectivity, electrical 

conductivity, thermal stability and mechanical integrity. As mentioned previously, acids can also 

be used as dopants, especially in the case of polyaniline; adding acid to the polymerization ensures 

that the resulting polymer will be conductive. 

 

The number of studies surrounding polymeric sensing materials for acetone is limited, so the 

effectiveness of specific dopants is still relatively unknown. However, the metals, metal oxides, 

and acid dopants listed in Table 6.1 can be used as a starting point. Potential dopants are listed in 

Table 6.3 according to previous studies in which they were used for acetone detection. The effects 

of these materials (as additives) will be researched and evaluated in more detail so that the most 

promising dopants are selected.  
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Table 6.3: Potential Dopants, Based on Prior Breath Acetone Studies 

Ref. Dopant Sensor Type Additional Notes 

[176] α-NS- Resistive Doping makes PPy more conductive 

[172] α-NS- Resistive Doping makes PPy/PMMA blend more conductive 

[176] ClO4
- Resistive Doping makes PANI/PMMA blend conductive 

[160] Ga2O3 Capacitive Primary sensing material (Ga2O3 nanowires) 

[164] Ir2O3 Resistive Doping made material selective toward H2S 

[179] NiO Capacitive P25DMA with 20% NiO was not selective toward acetone 

[164] Pt Resistive Doping significantly improved response to both acetone and H2S 

[165] Pt Resistive Doping lowered selectivity (over toluene) 

[167] Pt Resistive Doping increased selectivity (over H2S) 

[160] PA Capacitive Doping lowered selectivity (over nitromethane and triethylamine) 

[158] Sb  Resistive No information about dopant-free response 

[161] Si Resistive Optimal doping (10 wt%) increased acetone sensitivity and thermal 

stability; materials with higher dopant levels had no sensitivity to 

acetone   

[162] Si Resistive Dopant quantity (10 wt%) selected based on [161]; optimal thermal 

stability, selectivity and sensitivity (even at high humidity levels) 

[163] Si Resistive See previous 

[158] SnO2 Resistive Primary sensing material 

[165] SnO2 Resistive Primary sensing material (SnO2 nanofibres) 

[169] SnO2 Resistive Primary sensing material (SnO2 nanofibres functionalized w 

reduced graphene oxide) 

[171] SnO2 Resistive Primary sensing material (SnO2/reduced graphene oxide hybrid 

composite) 

[176] SO4
2- Resistive Doping makes PANI/PMMA blend conductive 

[159] TiO2 Resistive Dopant acts as ‘trapping site’ for acetone on multiwall carbon 

nanotubes; response time increased with doping 

[161] WO3 Resistive Primary sensing material (WO3 nanoparticle films) 

[162] WO3 Resistive Primary sensing material (WO3 nanoparticle films) 

[163] WO3 Resistive Primary sensing material (WO3 nanoparticle films) 

[164] WO3 Resistive Primary sensing material (WO3 nanofibres) 

[166] WO3 Resistive Primary sensing material (WO3 microspheres) 

[167] WO3 Resistive Primary sensing material (WO3 hemitubes) 

[168] WO3 Resistive Primary sensing material (WO3 hemitubes) 

[170] ZnO Resistive Primary sensing material (ZnO film) 

 

6.1.4.2 Acid Dopants 

 

Acid dopants are especially useful in polyaniline synthesis, since they can be used to increase the 

protonation of the polymer backbone. Acid-doping polyaniline is typically necessary if the 

material is to be electrically conductive for a particular application; the charge improves the 

conductivity of the polymer. For example, emeraldine contains imine and amine sites in 
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approximately equal proportion along the backbone (recall Figure 6.1). Some studies have 

indicated that the imine sites are preferentially protonated, but it seems that some amine sites can 

be protonated as well [221]. The most common approach to obtain partially protonated emeraldine 

is using an in-situ technique (that is, through the synthesis of an emeraldine salt) [221, 222]. This 

can be achieved via the oxidative polymerization of aniline in aqueous acidic media. Typically, 

the oxidizing agent (that is, the initiator) is ammonium persulfate (APS) and the acid used in 

solution is hydrochloric acid (HCl) [221]. However, many different acids (or mixtures of acids) 

can be used to dope PANI [222].   

 

The selection of acids for PANI doping can also be extended to organic acids [223, 224]. Kulkarni 

et al. [223] investigated the chemical oxidative polymerization of PANI in four organic acids 

(namely, acetic acid, citric acid, oxalic acid and tartaric acid). The experimental results showed 

that of the four organic acids, oxalic acid provided the highest selectivity in obtaining the 

conducting (protonated) emeraldine salt phase. In comparing the conductivities of the synthesized 

materials, the oxalic acid-doped PANI had the highest conductivity, followed by citric acid-doped 

PANI, tartaric acid-doped PANI and acetic acid-doped PANI. Characterization of the samples also 

indicated that when acetic acid was used as the dopant, the fully oxidized pernigraniline form of 

PANI was dominant (see again Figure 6.1).  

 

Some researchers choose instead to dope the polymeric material after synthesis using protonic acid 

doping or pseudo-protonic acid doping (see, for example, [216, 221, 225]). In this case, to obtain 

the (protonated) emeraldine salt, one starts with an emeraldine base (non-protonated, as shown in 

the upper portion of Figure 6.2) and treats it with aqueous protonic acids. Again, HCl is most 

commonly used as the acid dopant, since it is a strong acid but can easily be removed from the 

product polymer [221]. With this technique, the degree of protonation can be controlled by 

changing the pH of the acid solution used for doping. Despite the ease-of-use of this technique, 

Cao et al. [216] observed a loss of viscosity (which may be indicative of a decreased molecular 

weight); they concluded that exposure to the strong acid resulted in chain degradation, and 

recommended protonating PANI with aqueous HCl solution with a low concentration (<0.5 M) 

for 2 hours.  

 

For most investigations, the motivation to protonate PANI stems from a desire to improve 

electrical conductivity of the polymeric material, as the emeraldine salt (that is, the protonated 

form) is significantly more conductive than the (original) emeraldine base [221]. However, in the 

acetone sensing case, both the conductivity (for possible future sensor applications) and the affinity 

towards the target analyte are being considered. Using the protonated form of polyaniline should 

make it possible to take advantage of the polarity of acetone, as the positively charged nitrogen 

atoms could attract the negative (oxygen) end of gaseous acetone molecules.  
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Some studies have also investigated the potential to use acids for polypyrrole doping [172, 176]. 

Ruangchuay et al. [172], for example, evaluated seven different acids in order to find the best PPy 

dopant for acetone detection. During the study, PPy was synthesized in solutions containing α-

naphthalene sulfonic acid (sodium salt), β-naphthalene sulfonic acid (sodium salt), camphor 

sulfonic acid, dodecylbenzene sulfonic acid (sodium salt), ethane sulfonic acid, perchloric acid, 

and p-aminobenzoic acid. Using α-naphthalene sulfonic acid (sodium salt) or β-naphthalene 

sulfonic acid (sodium salt) gave the best sensitivity results (for acetone sorption), but no interferent 

gases were considered. 

 

6.1.4.3 Copolymers and Polymer Blends 

 

One of the main challenges with polymers that are suitable for sensing is that they are not always 

easily processed. PANI, for instance, has very poor solubility, which makes characterization 

(molecular weight determination, for example) and processing difficult [216, 226]. Similarly, PPy 

can be very brittle; the mechanical properties are not sufficient for the demands of the sensing 

application. Therefore, researchers have been motivated to create copolymers and polymer blends 

containing these materials. Here, it is important to make a distinction between true copolymers 

and polymer blends. Copolymers contain both monomer types within a single polymer chain (this 

occurs during synthesis and has been described in detail in Section 2.2.1), whereas polymer blends 

are made via mixing techniques (combination of multiple homopolymers, which generally occurs 

after synthesis) [39].  

 

A customized sensing material (for a particular application) could combine desirable sensing 

characteristics (especially electrical conductivity in the case of PANI and PPy) of one polymer (or 

comonomer) and mechanical stability of another. In the current study, the main focus is the sensing 

capability (not processability), so the mechanical properties are a secondary consideration. 

However, once optimal sensing characteristics are obtained, there would be the potential to create 

a copolymer or a polymer blend to incorporate all of the required material properties. 

 

Due to the versatility of PANI and PPy, both materials have been incorporated into many 

copolymers and polymer blends. For example, for sensing applications, PANI has been grafted 

onto several different naturally occurring polymers including xanthan gum [227] and chitosan 

[228, 229]. These investigations reported that the copolymers exhibited increased sensitivity to 

target analytes and/or good processability (which included improved solubility, appropriate 

mechanical strength and desirable electrical properties). Similarly, researchers have synthesized a 

copolymer of polyaniline and poly-o-anisidine (recall the various derivatives of aniline shown in 

Figure 6.1) [190, 230]. The addition of the substituted –OCH3 functional groups modified the 

geometry of the polymer backbone, which improved the copolymer’s solubility (in common 

organic solvents like acetone, dimethylformamide (DMF), tetrahydrofuran (THF), and N-



178 

 

methylpyrrolidinone (NMP)) compared to pure PANI. However, the electrical conductivity 

decreased in the presence of the side group. 

 

In terms of PANI being incorporated into polymer blends, many investigations have been reported. 

To adjust the sensing performance of the materials, PANI has been blended with polyvinyl 

chloride, polystyrene, polyvinyl alcohol, and other polymers (see, for example, [231-233]). As 

mentioned in Table 6.1, Do and Wang [176] used a PANI/PMMA blend (where PMMA essentially 

acted as a binder for the sensor electrode) for an acetone sensing study. Also, acid doping of PANI 

(as described in Section 6.1.4.2) can be beneficial for the formation of polymer blends [226]. By 

doping PANI with organic acids (like camphorsulfonic acid or p-toluenesulfonic acid), the long 

alkyl chains can act as plasticizers, improving the miscibility of PANI and, subsequently, the 

processability of polymer blends. 

 

A recent study that proved useful for the current investigation reported the in-situ polymerization 

of a polyaniline/polypyrrole copolymer using several different techniques [234]. Hammad et al. 

[234] used conventional chemical oxidation processes to synthesize PANI/PPy copolymers with 

different morphologies. Two reaction media were employed (synthesis occurred in 0.2 M acetic 

acid solution or in 0.2 M hydrochloric acid solution) and three synthesis methods were attempted 

in each medium. Method 1 employed conventional chemical oxidation (similar to what is 

described in Section 7.2.1) with the dropwise addition of initiator (ammonium persulfate) prior to 

the 24 hour polymerization. In Method 2, all of the initiator was added at once (rather than 

gradually) and was rapidly mixed (at 1000 rpm) for the first two hours of the 24 hour 

polymerization. Finally, Method 3 employed supercritical CO2 in a 3 hour polymerization process 

in an attempt to improve the morphology of the product polymer. The results shown by Hammad 

et al. [234] indicate that the morphology changes drastically from one methodology to the next, 

and the type of acid used for the reaction medium is also influential.  

 

To ameliorate the mechanical properties of pure polypyrrole, several groups have attempted to 

blend PPy with other (stronger) polymers such as poly(vinyl chloride) [235-237] and poly(vinyl 

alcohol) [193-195]. Also, as shown in Table 6.1, a PPy/PMMA blend doped with α-naphthalene 

sulfonate has already been used for acetone sensing [172]. However, most groups reported that 

incorporation of the stronger polymer improved the mechanical properties of the sensing material, 

but decreased the conductivity, response time and recovery time compared to pure PPy. Therefore, 

the recipe must be optimized to achieve a desirable balance between mechanical and electrical 

properties. 

 

6.2 Extensions to Detection of Additional VOCs 

 

The same design principles can be applied to other volatile organic compounds. One must consider 

the application requirements (both in terms of polymer properties and application-specific 
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behaviour) and consider appropriate candidates for polymeric sensing materials. In parallel to the 

work described thus far (related to acetone detection), our research group was asked to design and 

test materials (over a 6-month period) for the detection of formaldehyde and benzene. The details 

of this work have been presented in an independent internal report entitled “Wearable Chemical 

Hazard Sensors”, which is available upon request. This project was especially successful not only 

because it developed and demonstrated technology for wearable sensors, but also because it lay 

the foundations for detecting surrogates of chemical warfare gases. Two groups collaborated in 

executing the project: 

1) The ‘polymer group’ developed detector polymers. The group included myself, Noushin 

Majdabadifarahani (MASc student) and Nicole A. Francis (MASc student), under the 

supervision of Professor A. Penlidis. 

2) The ‘sensor group’ developed the microsensor platform. The group included Mohamed 

Arabi (PhD student), Alaaedin Ahmed (PhD student), Dr. Nafissi Hamidreza (research 

associate), Muhammed Kayaharman (MASc student) and Junaid Siddiqui (undergraduate 

student), under the supervision of Professor E. Abdel-Rahman. 

 

Only a brief overview is presented herein, since the objective is to demonstrate that this design 

approach can be extended to other gas analytes for novel applications.  

 

6.2.1 Detection of Formaldehyde - Project Background 

 

Chemical similarities between target analytes and simple aldehydes (organic compounds 

containing a carbonyl group) can be exploited for preliminary testing of sensing materials. 

Specifically, if the goal is to detect phosgene (a chemical warfare agent), a surrogate gas like 

formaldehyde can be used; they are chemically similar (they contain a carbonyl group and are 

similar in size), yet formaldehyde is significantly less toxic. For the preliminary evaluation of 

materials, formaldehyde was selected as the main surrogate gas, but acetaldehyde (which is slightly 

larger, as a molecule) could also be used for evaluation. 

 

(a) (b) (c) 

 
  

Figure 6.4: Similarity of Chemical Structures of (a) Phosgene, (b) Formaldehyde and (c) Acetaldehyde 

 

Benzene was selected as the interferent gas for this study, as it is representative of aromatic 

hydrocarbons. It is the least complex aromatic hydrocarbon and is a good representative of 

interferent (rather large) gases for the application. 
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As described previously, the goal in designing sensing materials is to promote interactions between 

the gas analytes and the polymeric materials through various sensing mechanisms. In this case, 

there is potential to take advantage of the carbonyl group, since it is common to phosgene and (less 

toxic) aldehydes. Three properties that can be employed are polarity, hydrogen bonding, and Lewis 

acid-base behaviour. 

 

6.2.2 Significant Contributions 

 

The characteristics of aldehydes (and, by extension, warfare agents like phosgene) described above 

were considered in the selection of sensing materials. Initially, four polymeric materials were 

selected and analyzed: polyaniline (PANI), poly(2,5‐dimethyl aniline) (P25DMA), poly(4-

vinylpyridine) (P4VP) and poly(acrylic acid) (PAAc). Many of the same synthesis, deposition and 

characterization techniques described in Chapter 7 were used for this study. Through a series of 

experimental trials, the sensitivity of the selected materials (that is, the affinity of each material 

toward the target analyte) and the selectivity of the selected materials at various concentrations 

(with benzene as the interferent gas) were evaluated. Experimental results indicated that most 

promising materials for the application were PANI and P25DMA. 

 

In collaboration with the ‘sensor group’ (Systems Design Engineering, University of Waterloo), 

small quantities of these materials were deposited onto functional sensors. To achieve this, 1 g 

polymer (PANI or P25DMA) was mixed with 50 grams of ethylene glycol (ethylene glycol 

facilitates polymer dispersion for pumping and subsequent deposition, and is volatile enough that 

the solvent can evaporate naturally from the sensor-plate). The mixture was then deposited onto 

the sensor plate using a microfluidic pump (10 m3/min) through a pipe-pipette assembly to 

deposit a 10 m3 droplet on the sensor-plate. The solvent was then allowed to evaporate naturally, 

leaving the detector polymer on the plate (see Figure 6.5). 
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`  

Figure 6.5: Deposition of Polymeric Material onto Sensor Plate 

 

Figure 6.6a shows the sensor before the deposition process, while Figure 6.6b shows the successful 

deposition of P25DMA onto the sensor; this deposition process was developed by PhD student 

Mohamed Arabi, with support from our group.  

 

 
Figure 6.6: Sensor (a) Before and (b) After Polymer Deposition  

 

It is important to provide this additional background information so that the reader can appreciate 

the eventual application of this work. Although the main focus herein is the design of materials, 

one can apply the materials to different sensors given a target application. For this formaldehyde 

detection study, the ‘polymer group’ observed good selectivity of formaldehyde in the presence of 

benzene (for both PANI and P25DMA) and the ‘sensor group’ was able to develop new microscale 

and very sensitive gas sensors for the detection of formaldehyde.  
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6.3 Sensing Material Array for Volatile Organic Compounds 

 

An interesting extension of polymeric sensing materials is their use in sensor arrays. Sensor arrays 

or electronic noses (e-noses) have been developed for a wide variety of applications, including 

discrimination between and detection of specific ingredients in food [238, 239] and beverage [240, 

241] industries, wastewater assessment [242], disease diagnosis [243, 244], and chemical process 

analysis [245]. Sensor arrays combine multiple sensing materials into one sensor. The response 

from each of the sensing materials is incorporated into some algorithm (often an artificial neural 

network), which analyzes all of the data and provides an output where specific analytes are 

identified [242]. For an effective sensor array, both the algorithm and the sensing materials are 

important. 

 

The algorithms are used in principle to discriminate between different analytes through pattern 

recognition. Fine-tuning an algorithm can improve the selectivity of a sensor array for a specific 

application [246]. However, as a proof of concept, widely available cluster analysis tools such as 

principal component analysis (PCA) are used by researchers [247, 248].  

 

When selecting sensing materials, the specific materials do not need to exhibit high selectivity 

towards different analytes (that is, they do not need to sorb one specific analyte significantly more 

than other competing or interfering analytes). However, the response pattern should be different 

from that of the other sensing materials used [249]. A pattern with a larger variation in sensing 

material response to gas analytes generally means that fewer sensing materials may be needed in 

a sensor array [250]. In other words, if two materials respond similarly to gas analytes (sorbing 

approximately equal amounts of a given analyte, showing similar affinity to specific gas mixtures, 

etc.), incorporating both materials into a sensor array may not show significant improvement in 

terms of gas analyte separation and/or identification (compared to only using one of the materials 

in an array). Rather, in developing a sensor array, the goal is to find materials that respond 

uniquely; if material A preferentially sorbs a different analyte than material B, using the two 

materials in a sensor array will complement each other and enrich the information content of the 

array. Therefore, synthesizing, characterizing and evaluating sensing materials for various 

applications and environments are all important steps/aspects for the development of new sensor 

arrays.   

 

6.3.1 Case Study: Evaluation of Doped and Undoped PoANI as Materials for a Sensing Array 

 

In a recent paper (written collaboratively with K. M. E. Stewart [251]), three polymeric materials 

(pure poly-o-anisidine (PoANI), PoANI doped with NiO, and PoANI doped with ZnO) were 

evaluated as sensing materials for methanol, ethanol, acetone, and benzene. In addition, a sensor 

array (using PCA as the ‘clustering’ algorithm) was assessed using these three sensing materials.  
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Poly (o-anisidine) (PoANI) is a derivative of polyaniline (recall Figure 6.3b) and has been used as 

a sensing material for a variety of volatile organic compounds (VOCs), including aliphatic alcohols 

and aldehydes [4, 252, 253]. Since it has been used as a sensing material for multiple VOCs, it has 

partial selectivity. This means that PoANI can respond somewhat non-discriminately to a range of 

gases. PoANI’s non-specific sorption can be advantageous for sensor arrays, since it shows a 

partial response to several different gas analytes. However, to provide some specificity (that is, to 

improve the selectivity of PoANI), the material has been doped with nickel (II) oxide (NiO) and 

zinc oxide (ZnO) [247, 254].  

 

Principal component analysis (PCA) was used as the data processing algorithm to separate the gas 

analyte signatures from these three sensing materials. PCA is a well-known multivariate tool, often 

used to determine the inter-relationships between variables in large data sets. The goal is to explain 

the variation of a data set with fewer factors than were originally provided. By reducing the number 

of factors (components) in the data set, PCA simplifies the analysis while retaining the majority 

of the statistical information. This is useful for providing an understanding of relationships within 

and between variables and is often useful for troubleshooting and/or process analysis [255]. For 

example, plotting data often reveals clusters, identifying a collection of experimental runs/trials 

with similar properties and, in some cases, outlying trials. In addition, PCA can be used to identify 

influential variables and provide a qualitative idea of the relationships within or between variables. 

 

First, PCA was applied to the responses from the individual gas analytes and two principal 

components (or factors) were plotted against each other (see Figure 6.7). In Figure 6.7, M stands 

for methanol, E stands for ethanol, A stands for acetone, and B stands for benzene. It should be 

noted that for the individual gases, Factor 1 vs. Factor 3 was used, whereas Factor 1 vs. Factor 2 

was used for all of the other PCA plots. In general, Factor 1 vs. Factor 2 provides the best 

separation (since the first two factors contain the most statistical information). However, when 

using PCA as an algorithm for sensor arrays, these two factors may not always provide the best 

separation of analyte signatures. It is more important for a sensor array to have good separation of 

analytes than it is to maximize information content with fewer factors. This motivated the decision 

to plot Factor 1 versus Factor 3 for the individual gases (Figure 6.7) and Factor 1 versus Factor 2 

for the gas mixture analyses (Figure 6.8 through Figure 6.12). 
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Figure 6.7: Sensor Array for Individual Gases; Methanol (M), Ethanol (E), Acetone (A) and Benzene (B) 

 

For individual gas analytes, these three PoANI-based sensing materials (along with PCA as a 

clustering algorithm) were able to differentiate between methanol, ethanol, acetone and benzene. 

However, for real world applications, gas analytes are always present with other gas analytes 

(interferents). Therefore, all possible mixtures of these four gas analytes must be considered. PCA 

was applied to all of the related combinations of gas analytes with the goal of using these sensing 

materials and PCA in a more realistic setting (see Figure 6.8). 

 

 
Figure 6.8: Sensor Array for All Possible Gas Mixture Combinations of Methanol (M), Ethanol (E), 

Acetone (A) and Benzene (B) 



185 

 

 

Figure 6.8 shows the clustered responses of all four (individual) gas analytes and all of the gas 

mixtures (composed of two, three or four of the analytes). The individual gas responses (shown as 

diamonds in Figure 6.8) are generally on the outskirts of the plot; methanol and ethanol are in the 

top left quadrant, acetone is in the top right quadrant, and benzene is central in the lower half of 

the plot. The individual gases typically have the highest amount of sorption, and the larger response 

of the pure gases is somewhat amplified by the PCA projection. Therefore, the clusters related to 

individual gases are on the periphery in Figure 6.8. 

 

Upon closer inspection, Figure 6.8 also shows the relationship between certain gas analytes and 

gas mixtures. For example, it is not coincidental that the 4-gas mixture of methanol, ethanol, 

acetone, and benzene (MEAB, circles in Figure 6.8) is in the centre of the plot. The response to 

the MEAB mixture is centrally located between each of the individual analytes because it contains 

attributes of each of the four gases. Similarly, for a simpler case (like a two-gas mixture of 

methanol and ethanol), the ME response falls in between the pure methanol and the pure ethanol 

responses. In plotting these factors (Factor 1 and Factor 2 from PCA), methanol and ethanol give 

similar responses. Because they are close together, there is necessarily some overlap between the 

individual gases and the ME mixture; as shown in the top left corner, the ethanol (E) response and 

the ME response overlap somewhat. This overlap could be eliminated if different factors were 

plotted (Factor 1 vs Factor 3, for example), but at the expense of different analytes and mixtures 

overlapping elsewhere. To obtain even better separation, one might consider using a different 

combination of sensing materials (more selective to either methanol or ethanol); this will be 

discussed further in what follows. However, the fact that methanol and ethanol responses fall in 

the same quadrant does make physicochemical sense. Since the two analytes are chemically 

similar, it is likely that they will have a similar ‘footprint’ for this type of analysis. 

 

While the plot shown in Figure 6.8 contains a very large amount of information about individual 

gases and related gas mixtures, the clusters for each gas combination do not show sufficient 

separation to use this data as a reference plot for a sensor array for these four gas analytes. To 

‘unclutter’ the sensor array plot, new plots can be constructed using the same three sensing 

materials, but with combinations of up to three gas analytes (Figure 6.9 through Figure 6.12). That 

is, one gas analyte and all related mixtures are excluded from each plot. Benzene is excluded in 

Figure 6.9, methanol is excluded in Figure 6.10, ethanol is excluded in Figure 6.11, and acetone is 

excluded in Figure 6.12. By dropping the number of gas analytes from four to three, the potential 

combinations drop from fifteen to seven. This results in significantly better separation, especially 

for the individual gas responses; single gas clusters are almost always independent, with the 

exception of benzene (which is somewhat overlapping with the MAB three-gas mixture in Figure 

6.11).  

 

This simplification of data sets also highlights the relationship between single gases, two-gas 

mixtures and three-gas mixtures. Take, for example, Figure 6.9: the three individual gases (M, E 
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and A) are on the periphery (as observed in Figure 6.8), and the two-gas mixture responses fall in 

between the two related single-gas responses. Similarly, the three-gas mixture response falls in the 

middle of the ‘triangle’ that forms between the three single-gas responses. 

 

 
Figure 6.9: Sensor Array for All Gas Combinations of Methanol (M), Ethanol (E) and Acetone (A) 

 

 
Figure 6.10: Sensor Array for All Gas Combinations of Ethanol (E), Acetone (A) and Benzene (B)  



187 

 

 
Figure 6.11: Sensor Array for All Gas Combinations of Methanol (M), Acetone (A) and Benzene (B) 

 

 
Figure 6.12: Sensor Array for All Gas Combinations of Methanol (M), Ethanol (E) and Benzene (B) 

 

Although these three-gas analyses significantly improve the separation of analytes, some 

overlapping responses are still observed in Figure 6.11 and Figure 6.12. In Figure 6.11, B and 

MAB responses overlap in the upper right quadrant of the plot. Similarly, in Figure 6.12, EB and 

MEB responses overlap in the lower middle portion of the plot. Interestingly, in both cases, the 

common analyte is benzene. The poor separation observed here may be due to the low sorption of 
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benzene; low sorption (or low response) from experimental data limits the potential for separation 

of clusters using an algorithm like PCA. Also, all three PoANI-based sensing materials showed a 

(similar) poor affinity toward benzene (alone and in analyte mixtures). Therefore, to improve 

separation in this case, one might consider using a material that has a higher affinity to benzene as 

part of the sensing material array. 

 

The overlap shown on PCA plots with gas mixture data (especially Figure 6.8, Figure 6.11 and 

Figure 6.12) may be due to similar responses of the sensing materials to the different analytes in 

mixtures, the use of PCA as a clustering network, or a combination thereof. Therefore, to improve 

the usefulness of a sensor array, these PoANI-based sensing materials could be paired with 

different sensing materials (that is, different polymer backbones). In addition, a sensor array with 

more sensing materials could have better separation of analyte responses due to more information 

being included in the pattern recognition of the employed algorithm [256]. 

 

For example, such a sensor array could be one consisting of PoANI, poly (vinyl pyrrolidone) (PVP) 

[5], poly (2,5-dimethyl aniline) (P25DMA) [257], and SXFA (a polymeric sensing material 

containing trifluoro groups and hydroxyl groups) [258]. These potential sensing materials were 

chosen because each one has acceptable partial selectivity to one of the four gas analytes evaluated 

in this investigation: PoANI to acetone, PVP to ethanol, P25DMA to methanol, and SXFA to 

benzene. This combination of potential sensing materials may resolve the issues by having a wider 

variation in selectivity (to different gas analytes), as well as a larger number of sensing materials 

for the sensor array, which would provide more data for the pattern recognition algorithm.   

 

Overall, these three sensing materials in combination with PCA were not ideal for creating a sensor 

array capable of analyzing all possible combinations of methanol, ethanol, acetone, and benzene. 

However, sensor arrays that were able to distinguish between three of the four analytes were 

developed. Since the PoANI-based sensing materials showed affinity to these four gas analytes, 

there is potential to use them in sensor arrays, especially for a room temperature sensor. To 

improve these sensor arrays, a different combination of sensing materials could be used (including 

some of the PoANI-based sensing materials) and/or an improved pattern recognition technique 

could be employed to improve the separation of the response clusters, which would allow for better 

identification of the gas analytes. 
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Chapter 7. Experimental Methodology for Case Study #2 – 

Polymeric Sensing Materials 
 

Based on the background information for material design presented in Chapter 6 (specifically 

Sections 6.1.3 and 6.1.4), three polymer backbones and three metal oxide dopants were selected 

for experimental investigation. Polyaniline (PANI), polypyrrole (PPy) and poly(methyl 

methacrylate) (PMMA) showed promise as polymer backbones, and SnO2, WO3 and ZnO were 

among the most commonly used metal oxides for inorganic sensing materials. Thus, these three 

polymers (doped with different levels of the three metal oxides) are synthesized and characterized 

in what follows. 

 

7.1 Materials 

 

All reagents for this study were used as received. For the synthesis of polyaniline and polypyrrole, 

monomers (aniline and pyrrole) and initiators (ammonium persulfate, APS and iron (III) chloride, 

FeCl3) were purchased from Sigma-Aldrich (Oakville, Ontario, Canada). Poly(methyl 

methacrylate) (PMMA) powder was purchased from Sigma-Aldrich (average Mw ~15,000). Metal 

oxide (MO) nanoparticles (used for doping) were also purchased from Sigma-Aldrich; SnO2 and 

WO3 came as powders (both <100 nm nanoparticle size). ZnO came in a 50% solution with water, 

and the nanoparticle diameter was also < 100 nm. Oxalic acid dihydrate (ACS grade) from EMD 

Millipore was used for acid doping. Finally, in terms of solvents, deionized water was used for 

PANI and PPy synthesis; acetone (99%) and ethanol (ACS grade) were used as received. 

 

Analyte-containing gases used for sensing material evaluation were purchased from Praxair 

(Mississauga, Ontario, Canada). Separate gases containing pre-specified concentrations (on the 

ppm level) of acetaldehyde, ethanol, acetone and benzene were of standard grade, in nitrogen. Pure 

nitrogen (also from Praxair, 5.0 grade) was used to purge the samples prior to each sorption test. 

 

7.2 Polymer Synthesis for Acetone Detection 

 

Design of experiments was employed for the synthesis of polymeric materials: 3 polymer 

backbones, 3 metal oxides, and 3 dopant levels (that is, weight percent dopant) were considered. 

The original design of experiments is shown in Table 7.1 and formulations are numbered for easy 

reference throughout the discussion. 
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Table 7.1: Experimental Design of Polymeric Materials for Acetone Detection  

# Polymer 

Backbone 

Dopant wt% 

Dopant in 

Recipe 

 # Polymer 

Backbone 

Dopant wt% 

Dopant in 

Recipe 

1 PANI -- --  16 PPy WO3 10 

2 PANI SnO2 5  17 PPy WO3 20 

3 PANI SnO2 10  18 PPy ZnO 5 

4 PANI SnO2 20  19 PPy ZnO 10 

5 PANI WO3 5  20 PPy ZnO 20 

6 PANI WO3 10  21 PMMA -- -- 

7 PANI WO3 20  22 PMMA SnO2 5 

8 PANI ZnO 5  23 PMMA SnO2 10 

9 PANI ZnO 10  24 PMMA SnO2 20 

10 PANI ZnO 20  25 PMMA WO3 5 

11 PPy -- --  26 PMMA WO3 10 

12 PPy SnO2 5  27 PMMA WO3 20 

13 PPy SnO2 10  28 PMMA ZnO 5 

14 PPy SnO2 20  29 PMMA ZnO 10 

15 PPy WO3 5  30 PMMA ZnO 20 

 

7.2.1 Synthesis of PANI 

 

Polyaniline (PANI) was synthesized by mixing aniline, ammonium persulfate (APS), and the 

dopant (when applicable) in deionized water. PANI was synthesized in its pure (undoped) form, 

and doped with 5%, 10%, and 20% (by weight) of the three metal oxides (SnO2, WO3 and ZnO). 

 

As per Stewart et al. [259], up to 0.4 g of monomer was added to 20 mL of deionized water and 

then mixed using a sonicator for 30 minutes. This solution was then cooled to -1°C before the 

addition of a solution containing 1 g of APS in 5 mL of deionized water. The solution was mixed 

for one minute, and was then left for 6 hours to polymerize at -1°C. The reaction is extremely 

exothermic, which is the main motivation for using small quantities and low polymerization 

temperatures. Upon completion of the reaction, the polymer was filtered out (Whatman #5 filter 

paper) and the polymer was washed with ethanol or acetone at least three times. 

 

When dopants were added to the sensing material, up to 20% (by weight) of the metal oxide was 

suspended in the pre-polymerization solution. Then, the solution was cooled to -1°C and APS was 

added to the system. The rest of the synthesis process is as described previously. 

 

7.2.2 Synthesis of PPy 

 

The synthesis procedure used for PPy was based on the work done by Chitte et al. [260]. 

Polypyrrole (PPy) was synthesized by mixing pyrrole, FeCl3, and the dopant (when applicable) in 
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deionized water. Like PANI, PPy was synthesized in its pure (undoped) form, and doped with 5%, 

10%, and 20% (by weight) of the three metal oxides (SnO2, WO3 and ZnO). 

 

Up to 0.4 g of monomer was added to 20 mL of deionized water and then mixed using a sonicator 

for 30 minutes. This solution was then cooled to 1°C before the addition of a FeCl3 solution. The 

FeCl3 solution was prepared using 5 mL distilled water; the initiator mass was selected such that 

the molar ratio of initiator to monomer was 2.4:1. The solution was mixed for one minute, and was 

then left for 4 hours to polymerize at 1°C. Upon completion of the reaction, the polymer was 

filtered out (Whatman #5 filter paper) and the polymer was washed with ethanol at least three 

times. 

 

When dopants were added to the sensing material, up to 20% (by weight) of the metal oxide was 

suspended in the pre-polymerization solution. Then, the solution was cooled to 1°C and FeCl3 was 

added to the system. The rest of the synthesis process is as described previously. 

 

7.2.3 Preparation of PMMA 

 

Preliminary evaluation of PMMA as a sensing material for acetone employed PMMA (average 

molecular weight Mw ~15,000) purchased from Sigma-Aldrich. PMMA was blended with 5%, 

10% and 20% (again by weight) of the metal oxides (MO) described above. PMMA/MO blends 

were created directly in the round bottom flasks that would later be used for sorption tests (to be 

described in Section 7.4.2) to ensure that the percentage of metal oxides in each sample was as 

expected. In these cases, up to 0.1 g PMMA was dissolved in 10 mL acetone and stirred for 90 

minutes at 100 rpm. Then, if metal oxides were used, they were weighed (to achieve the desired 

weight percentage) and rinsed into the PMMA solution. Mixing at 100 rpm continued for another 

30 minutes, and then the flask was left (undisturbed) under ambient conditions for approximately 

1 week. Once all acetone had evaporated, the samples were further dried at 50°C until a constant 

mass was reached.  

 

7.2.4 Customized Synthesis: Acid Doping and Copolymerization 

 

After the original investigation with PANI, PPy and PMMA (described in this chapter and in 

Section 8.1), four additional polymers were synthesized in an attempt to improve the application 

performance of the sensing materials.  

 

As will be discussed in the following chapter (Section 8.1), PANI and PPy showed the most 

promise for acetone sensing (of the polymeric materials studied herein). Also, results indicated 

that adding metal oxides did not appreciably improve the application performance. Therefore, 

during this part of the investigation, the goal was to improve upon the preliminary performance of 

PANI and PPy. Therefore, for the customized synthesis, two main modifications were considered: 
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the potential to acid-dope the polymeric material and the potential copolymerization of aniline 

with pyrrole. The acid dopant selected for this investigation was informed by the organic acid 

study done by Kulkarni et al. [223]. The study used a synthesis technique similar to the technique 

described herein (as per Section 7.2.1), but with solutions of organic acids as the reaction medium. 

Kulkarni et al. [223] reported that oxalic acid-doping gave the highest yield of protonated 

emeraldine salt, and that it was the most conductive of the four organic acid-doped materials 

synthesized. The key motivator in our case was the protonation of the polyaniline; the positively 

charged polymer backbone should attract the negative end of the polar acetone molecules.  

 

A 22 design of experiments (as shown in Table 7.2) was employed to investigate the effectiveness 

of these modifications. To connect these additional polymers to the earlier formulations (recall 

Table 7.1), the numbering is continued from Table 7.1. 

 

Table 7.2: Experimental Design of Polymeric Materials for Acetone Detection: Part II 

# Polymer Backbone Dopant  # Polymer Backbone Dopant 

31 PANI --  33 PANI/PPy -- 

32 PANI oxalic acid  34 PANI/PPy oxalic acid 

 

Pure PANI (sample #31) was synthesized as described in Section 7.2.1. The process (and therefore, 

the product polymer) was the same as sample #1 (from Table 7.1), and was primarily performed 

as a replicate (confirmation) run. It also allowed for simple, direct comparison to the newly 

synthesized materials. As before, the polymerization was performed in deionized water, 

ammonium persulfate was used as the initiator, and the reaction was allowed to continue for 6 

hours at -1°C. 

 

Oxalic acid-doped PANI (referred to as ox-PANI or sample #32 herein) followed the same 

procedure as pure PANI, but the polymerization occurred in an aqueous oxalic acid solution 

(approximate concentration = 0.5 M). 1.5 g oxalic acid dihydrate was dissolved in 20 mL deionized 

water, then 0.4 mL of aniline (monomer) was added to the oxalic acid solution. The rest of the 

procedure was the same as for PANI synthesis in water: the formulation was mixed using a 

sonicator for 30 minutes and the flask (containing the monomer solution) was cooled to -1°C. 

Then, the initiator solution (1 g APS in 5 mL of deionized water) was added to the pre-cooled 

flask, and the complete solution was mixed for one minute. Finally, the polymerization was 

allowed to occur for 6 hours at -1°C. Upon completion of the reaction, the polymer was filtered 

out (Whatman #5 filter paper) and washed with deionized water or ethanol at least three times. 

Interestingly, the ox-PANI required less rinsing (that is, the filtrate ran clear after fewer rinses) 

than the PANI synthesized in water. Also, distinct colour differences were observed between the 

pure PANI and the ox-PANI (samples #31 and #32). As shown in Figure 7.1, the synthesis in water 

(on the left hand side of the image) created a dark blue PANI sample (in the round bottom flask 

and in the filter paper) and the filtrate was a light brown colour. In contrast, synthesis in oxalic 

acid (on the right hand side of Figure 7.1) resulted in a much darker green colour, and the filtrate 



193 

 

was a dark purple. This colour difference indicates that the presence of oxalic acid has changed 

the chemical structure of the product polymer. From the literature [221], emeraldine base has a 

blue tint and emeraldine salt has a bright green hue. Therefore, it is possible to conclude that 

sample #32 (that is, the ox-PANI formulation) contains the emeraldine salt, and that PANI was 

successfully customized through oxalic acid doping.    

 

 
Figure 7.1: Comparison of Qualitative Observations during PANI (left) and ox-PANI (right) Synthesis 

 

In parallel, the copolymers of PANI/PPy were synthesized in water and in an aqueous oxalic acid 

solution. Here, the procedures described by Hammad et al. [234] were used as a starting point. To 

obtain an equimolar concentration of aniline and pyrrole, 0.2 mL of aniline and 0.15 mL pyrrole 

were added to 20 mL deionized water (or, for the ox-PANI/PPy formulation, monomers were 

added to an aqueous solution of oxalic acid). All other synthesis steps were completed as before: 

1 g APS (in 5 mL deionized water) was used as the initiator, the reaction proceeded at -1°C, and 

product polymers were filtered out after 6 hours. 

 

Again, in this case, the colour varied between the PANI/PPy copolymer (sample #33) and the ox-

PANI/PPy copolymer (sample #34). Sample #33 (left side of Figure 7.2) was brown, while sample 

#34 (right side of Figure 7.2) had a purple tint. The polymeric materials synthesized are 

undoubtedly influenced by the presence of pyrrole, as comparison between Figure 7.1 and Figure 

7.2 shows clear differences in the colour of the product polymer.  

 



194 

 

 
Figure 7.2: Comparison of Qualitative Observations during PANI (left) and ox-PANI (right) Synthesis 

 

The purple colour observed for sample #34 may be due to the presence of pernigraniline (the fully 

oxidized form of PANI) [222]. Since the initiator concentration remained constant, but the amount 

of aniline monomer was lowered (since pyrrole was added to the formulation), it is possible that 

the aniline monomer was entirely consumed and the residual initiator (ammonium persulfate) 

oxidized the polymer. However, it is difficult to draw concrete conclusions about the form of 

polyaniline using these qualitative observations. The main result here is that the four different 

formulations allowed for the synthesis of four unique polymeric materials. These will be 

characterized further in Chapter 8 using techniques described in what follows. 

 

7.3 Characterization of Polymer Properties 

 

As explained in Section 6.1.2, key properties of the sensing materials include crystallinity, surface 

morphology, and dopant incorporation.  

 

The crystallinity of select polymer samples (primarily those obtained from customized synthesis) 

was analyzed using X-ray diffraction (XRD). XRD was performed at the Waterloo Advanced 

Technology Laboratory (WATLAB) on a PANalytical Material Powder Diffractometer (MPD)-

Pro. The source was a Cu tube at 45 kV and 35 mA (K-alpha1 = 1.54060 Å; K-Alpha2 = 1.54443 

Å; K-Beta = 1.39225 Å) and scans were performed at 25°C over the range of 2θ = 5° to 90° (step 

size = 0.0170°). Select independent replicates (both from independently synthesized samples and 

multiple samples from a single experimental synthesis) were performed. 

 

Surface morphology was evaluated for select samples using scanning electron microscopy (SEM), 

which provides information about both the topology and the composition by producing images of 

the sample surface (incidentally, the effect of doping can be qualitatively evaluated using SEM). 

SEM and energy dispersive X-ray spectroscopy (EDX) were both performed at WATLAB on a 

Zeiss UltraPlus FESEM. SEM stubs for analysis were prepared by placing small pieces of carbon 



195 

 

tape on each stub, suspending each polymeric material in a small volume of ethanol, pipetting each 

suspension onto its designated stub, and allowing the ethanol to evaporate off at room temperature 

(under ventilation). Also, any non-conductive samples were gold-coated prior to analysis. 

 

As in previous studies [182], EDX was performed alongside SEM to determine the composition 

of the sensing material. This was especially relevant for the polymeric materials doped with metal 

oxide, since this characterization step provides information about the degree to which each metal 

incorporated. Dopant incorporation largely depends on the initial composition (percent dopant in 

the pre-polymerization recipe), but is also affected by chemical and physical interactions between 

the dopant and the polymer.  

 

7.4 Characterization of Application-Specific Properties 

 

7.4.1 Deposition of Materials for Analysis of Sorption 

 

For PANI, PPy, and all related materials (Samples #1 through #20 and #31 through #34), 

approximately 0.1 g of the individual polymer samples were deposited into 100 mL round bottom 

flasks. The polymer was deposited by weighing out the material and rinsing it into the flask with 

ethanol. Flasks were left to dry under atmospheric conditions until all ethanol had evaporated. 

 

Since PMMA was used as received (for the pure PMMA and for blending with metal oxide 

nanoparticles), the deposition process included the dissolution of PMMA and the addition of metal 

oxides in appropriate proportions (as per Table 7.1). This has already been described in some detail 

in Section 7.2.3). 

 

7.4.2 Experimental Set-Up for Sorption Studies 

 

The test set-up for sorption studies has been described previously by Stewart et al. [261], and the 

key points are revisited here. Individual polymer samples (each with a mass of ~0.1 g) were 

deposited into round bottom flasks for the sorption study (as described in the previous section), 

and each polymer sample was purged with dry nitrogen for at least 1 hour prior to being exposed 

to the gas analyte. This ensured that any residual analyte sorbed (from previous runs) would be 

released. 

 

To measure the sorption, each polymeric sensing material was exposed to a gas (containing known 

concentrations of one or more analytes), and the amount of analyte that sorbed onto the sensing 

material was measured. If the sensing material being evaluated was sensitive to the target analyte, 

higher quantities of the analyte were sorbed. All sorption measurements were taken at room 

temperature (24°C) and approximately 15 psi (slightly above atmospheric pressure). 
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The set-up uses a difference in gas concentration (before and after exposure to the sensing material) 

to establish how much of the target analyte has been sorbed. Prior to exposure, a ‘blank’ run can 

be analyzed by a highly specialized Varian 450 gas chromatograph (GC) (with a photon discharge 

helium ionization detector (PDHID)) to determine the gas concentration for the case of no sorption. 

After exposure to the sensing material, the gas concentration is again measured by the GC, but this 

second measurement represents the amount of gas that did not sorb (residual gas). Therefore, by 

subtracting the residual analyte concentration from the initial concentration of the analyte, the 

amount of analyte sorbed can be calculated. The advantage of the highly specialized GC is that it 

can distinguish between similar analytes and record concentrations down to the ppb level; more 

details are presented in Appendix D, Section D.1. 

 

For each experimental run (before and after exposure to the sensing material), gas samples were 

collected at regular intervals until readings remained consistent (this indicated that the system had 

reached equilibrium). Independent sampling replicates were performed for all samples. A 

schematic is shown in Figure 7.3. 

 

 
Figure 7.3: Experimental Set-Up for Evaluation of Sensing Materials, where MFC represents Mass Flow 

Controller and FM represents Flow Meter (adapted from [257]) 

 

The most promising materials were further characterized through selectivity studies. Here, 

polymeric sensing materials were exposed to a mixture of up to four gases (acetone, acetaldehyde, 

ethanol and benzene) simultaneously, and the response to acetone was measured in the presence 

of interferent gas analytes.  
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Chapter 8. Results and Discussion for Case Study #2 – Polymeric 

Sensing Materials for Acetone Detection 
 

8.1 Screening Experiments: Metal Oxide-Doped Polyaniline, Polypyrrole and 

Poly(methyl methacrylate) 

 

8.1.1 Sensitivity – Acetone Sorption 

 

For the sensitivity study, thirty polymeric materials (listed in Table 7.1) were evaluated, based on 

their ability to sorb acetone gas. As described in Section 7.4.2, polymers were introduced into the 

experimental set-up and were exposed to 5 ppm acetone in balance nitrogen. This initial 

investigation allowed for the identification of the materials with the best sorption (or the strongest 

affinity towards the target analyte) and provided justification to rule out the most unresponsive 

polymers. Supplemental data tables are available in Appendix D, Section D.2. 

 

8.1.1.1 Original Polymeric Materials 

 

First, the sorption capabilities of the three (undoped, unmodified) polymer backbones were 

examined. As explained previously, polyaniline (PANI), polypyrrole (PPy) and poly(methyl 

methacrylate) (PMMA) were selected as promising candidates given our understanding of the 

system. The sorption of each material (after exposure to 5 ppm acetone, as described in Section 

7.4.2) is shown in Figure 8.1. 

 

 
Figure 8.1: Sorption of Acetone for PANI, PPy and PMMA (source: 5 ppm acetone in nitrogen) 

 

The results of Figure 8.1 suggest that PPy has the most acetone sorption, followed by PANI. In 

contrast, PMMA sorption is negligible. Although it is somewhat surprising that PMMA is not an 
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effective sensing material for acetone, it has historically been used in combination with other 

comonomers (see, for example [172, 176]). Therefore, we can continue to evaluate the potential 

of PMMA in other capacities. 

 

The sorption capability of the three materials is related to the surface morphology of each polymer. 

SEM imaging (in Figure 8.2(a) and Figure 8.3(a)) shows that the PANI sample has many ‘cavities’ 

(well dispersed throughout the sample), and the polymer itself exhibits a fibrous structure, which 

gives it a large surface area. Similarly, PPy samples are characterized by a large surface area, but 

in this case it is more due to the granular morphology (see Figure 8.2(b) and Figure 8.3(b)). In both 

cases, these structures resemble what happens when a catalyst particle accommodates a reaction 

within it that produces new material. This reaction can cause fragmentation of the (almost 

spherical) starting particle. This ‘explosion-fragmentation’ in turn creates a large fraction of 

interstitial space. In other words, more surface area is exposed and thus more area is available for 

whatever interactions can take place between the sensing material and the analyte in question. 

Hence, there are many sorption ‘sites’ available for an analyte (like acetone) to sorb (analogous to 

active sites in a catalytic system that can bind with adsorbing reactant molecules to lead to surface 

reaction and subsequently desorption of product molecules). Therefore, it makes sense that both 

PANI and PPy showed good sorption for acetone.  

 

In contrast, Figure 8.2(c) and Figure 8.3(c) provide images of PMMA (at 500X and 5000X 

magnification, respectively). This is a different material altogether, compared to the other two 

morphologies discussed above. The image reveals a rather smooth ‘plate-like’ structure. This 

suggests that the sorption capability of this sample is limited, as the analyte may not sorb as easily 

to such a uniformly smooth material. Thus, the SEM images further support the sorption 

measurements: PANI and PPy have more surface area available (compared to PMMA), which is 

influencing the sorption capabilities. 

 

Thus, based on these preliminary results, PANI and PPy show significantly more promise than 

PMMA. However, all three polymer backbones are further investigated with the addition of metal 

oxide dopants, as described in Section 7.2. While PANI and PPy are more likely to be useful for 

acetone sensing, PMMA is still an interesting material to pursue further. Not only can PMMA act 

as a substrate for metal oxides, but it may also be useful as a ‘zero baseline’ in future sensing 

applications. 
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(a) 

 
 

(b) 

 
 

(c) 

 
Figure 8.2: Surface Morphology of (a) PANI, (b) PPy and (c) PMMA from SEM at 500X 

Magnification 
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(a) 

 
 

(b) 

 
 

(c) 

 
Figure 8.3: Surface Morphology of (a) PANI, (b) PPy and (c) PMMA from SEM at 5000X 

Magnification 
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8.1.1.2 PANI-based Polymeric Materials 

 

PANI doped with different levels of SnO2, WO3 and ZnO is considered next (formulations #2 

through #10 in Table 7.1), and sorption performance is compared to that of pure PANI (formulation 

#1). First, material properties (namely surface morphology and degree of incorporation of each 

metal oxide) are evaluated, followed by sorption of acetone from a 5 ppm source (as before). 

 

The degree of incorporation of each metal oxide, as measured by EDX, is shown in Table 8.1. The 

expected weight percentage of the metal oxide (as calculated for synthesis) is provided in the first 

column, and the percentage of each metal oxide measured is listed within the table. All 

measurements took the full imaging area into account so that the measurement would be a good 

representation of the whole sample. Also, select replicate measurements were taken at different 

levels of magnification (typically ranging from 500X to 1000X), and showed good repeatability. 

Where more than one measurement was taken, averages are provided.  

 

Table 8.1: Measured Metal Incorporation for PANI-based Polymeric Materials 

Polymeric Nanocomposite 
wt% of Metal (M) in Product Polymer 

SnO2 WO3 ZnO 

PANI w 5% MOx  7.00 0.22 0.10 

PANI w 10% MOx  10.21    0.54 0.75 

PANI w 20% MOx  19.57    0.77 0.94 

 

These results indicate that of the three metal oxides investigated, only SnO2 incorporated into the 

product polymer. Slight increases in W content and Zn content were observed for the other metal 

oxides (as the wt% of the metal oxide increased in the recipe), but not by any appreciable amount.  

Interestingly, while the average measurements for WO3 were very low, targeted measurements 

(where metal oxides were clearly visible) showed much higher concentrations of W. These ‘spot’ 

measurements for different formulations of PANI with WO3 ranged from 18.79 wt% W to 73.38 

wt% W, depending on the area selected. This (along with the SEM images) indicates that WO3 

remains present in the polymer sample, but clumps together in large aggregates (compare Figure 

8.4(c) and (d)). 

 

To ensure that WO3 or ZnO are better incorporated in the future, modifications could be made to 

the synthesis procedure. For example, one might consider surface modification of the nanoparticles 

prior to the polymerization, more vigorous mixing during the polymerization, or a multi-step 

synthesis process. Regardless of the degree of incorporation, the presence of the metal oxides 

during synthesis may affect the surface morphology of the product polymer. Therefore, 

representative SEM images are shown in Figure 8.4. Here, the pure (undoped) PANI morphology 

(Figure 8.4(a)) can be compared to the morphology of the materials doped with 10 wt% of each 

metal oxide (whether or not large amounts of the metal oxide remain in the final product). 
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Although the surface morphology of pure PANI has already been shown in Figure 8.2 and Figure 

8.3, it is shown again here for comparison at the same level of magnification. 

 

(a) 

 
 

(b) 
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(c) 

 
 

(d) 

 
 

(e) 

 
Figure 8.4: Surface Morphology of (a) PANI, (b) PANI doped with 10 wt% SnO2, (c) PANI 

doped with 10 wt% WO3 (typical result), (d) PANI doped with 10 wt% WO3 (metal oxide 

cluster), and (e) PANI doped with 10 wt% ZnO 
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Figure 8.4(b) is a representative image of SnO2-doped PANI. There are speckles visible throughout 

the sample, which indicates that the metal oxide particles are well distributed (as expected given 

the EDX results of Table 8.1). However, the underlying morphology is very similar to that of the 

pure PANI (compare Figure 8.4(b) with Figure 8.4(a)). Therefore, although the SnO2 is well 

distributed, the surface morphology of the PANI itself remains unchanged. 

 

Figure 8.4(c) and Figure 8.4(d) are both images of WO3-doped PANI. As discussed earlier, WO3 

nanoparticles tend to form agglomerates during PANI synthesis, thus leaving the majority of the 

PANI sample with little or no WO3. In Figure 8.4(c), the WO3 particles are non-existent. In 

contrast, Figure 8.4(d) (which is at the same magnification) is dominated by the WO3 agglomerate. 

Where WO3 is absent (in Figure 8.4(c)), the PANI morphology is similar to the pure PANI 

morphology; one may argue that it has a slightly more granular morphology (which may be due to 

the presence of WO3 during synthesis).  

 

Finally, the ZnO-doped PANI is shown in Figure 8.4(e). Given the EDX results of Table 8.1, 

negligible quantities of ZnO are present in the sample. However, it seems as though the negative 

space (or ‘cavities’) present in this sample is larger than in the pure PANI. It is possible that the 

presence of ZnO during synthesis has resulted in a slight deterioration of the morphology; ZnO 

nanoparticles may have prevented polymer growth in certain locations, only to be rinsed out 

following polymer synthesis. 

 

Given these observations of the metal oxide effects on the surface morphology, it is interesting to 

consider how acetone sorption performance has been affected. As before, all sensing materials 

(formulations #2 through #10) were exposed to 5 ppm acetone in balance nitrogen, and sorption 

was calculated as described in Section 7.4.2. In this case, different source tanks were used for 

acetone, which resulted in slight variations in the initial acetone concentration (measured 

concentrations ranged from 4.64 ppm to 5.98 ppm). Therefore, to account for the tank variation, 

acetone sorption is normalized and reported as percent sorption (= [acetone sorbed]/[initial 

concentration] × 100). The percent sorption of all 9 materials (and pure PANI, for comparison) is 

plotted in Figure 8.5. 
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Figure 8.5: Sorption of Acetone for PANI-based Polymeric Materials  

(formulations #1-#10; source 5 ppm acetone in nitrogen) 

 

Immediately, Figure 8.5 indicates that doping PANI with any metal oxide shows little 

improvement in the sorption ability; if anything, the sorption of metal oxide-doped materials is 

lower than the sorption of pure PANI. Statistical comparison of means through Fisher’s least 

significant difference (LSD) test and multiple t-tests (with the Bonferroni correction applied) was 

used to compare sorption performance within each dopant type (that is, comparing the wt% doped 

for a given metal oxide); the analysis, shown in Appendix D (Section D.3), is summarized herein: 

 For SnO2-doped materials, sorption averages at the three dopant levels were statistically 

different. PANI doped with 10% SnO2 (formulation #3) was found to be statistically better 

than the other SnO2-doped materials. 

 For WO3-doped materials, there was no statistical difference between the percentage of 

acetone sorption at the three dopant levels. PANI doped with 5% WO3 (formulation #5) is 

preferred, since it uses the smallest amount of metal oxide and is therefore the least 

expensive option (if doping is used at all). 

 For ZnO-doped materials, sorption averages at the three dopant levels were statistically 

different. PANI doped with 20% ZnO (formulation #10) was found to be statistically better 

than the other ZnO-doped materials. 

 

Once the best formulation for each metal oxide was identified, those preferred formulations were 

compared to each other and to pure PANI (formulation #1). Again, Fisher’s LSD and multiple t-

tests were performed (see Appendix D, Section D.3). Analysis showed that formulations #1 and 

#10 (pure PANI and PANI with 20% ZnO) were significantly different (and had better sorption) 

than formulations #3 and #5 (PANI with 10% SnO2 and PANI with 5% WO3). However, 
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statistically speaking, there was no difference between formulations #1 and #10, and no difference 

between formulations #3 and #5.  

 

These four materials (formulations #1, #3, #5 and #10) were selected as the best candidates for 

PANI-based polymeric materials (of the formulations studied thus far), and were therefore 

considered for the selectivity study. Therefore, the sorption capabilities of these materials will be 

revisited in Section 8.1.2. 

 

8.1.1.3 PPy-based Polymeric Materials 

 

Next, polypyrrole and the metal oxide-doped PPy samples are investigated (formulations #11 to 

#20 of Table 7.1). Since PPy was the most promising material of the pure polymer backbones 

studied (recall Section 8.1.1.1), this study examines whether the sorption performance can be 

improved by incorporating metal oxide nanoparticles. As for the PANI case, surface morphology 

and degree of incorporation of each metal oxide are evaluated first. Then, the sorption of acetone 

from a 5 ppm source is measured. 

 

Given the poor incorporation of metal oxides for PANI (and the similar synthesis procedure used 

for PPy), only PPy doped with 20% of each metal oxide is evaluated herein. As shown in Table 

8.2, SnO2 incorporates better than the other metal oxides, but incorporation is low for all three. 

Despite low incorporation, the presence of metal oxides may have affected the morphology of the 

product polymer. Therefore, representative SEM images are provided in Figure 8.6; these can be 

contrasted with the pure PPy sample imaged at the same magnification, which was shown in Figure 

8.2(b). 

 

Table 8.2: Measured Metal Incorporation for PPy-based Polymeric Materials 

Polymeric Nanocomposite 
wt% of Metal (M) in Product Polymer 

SnO2 WO3 ZnO 

PPy w 20% MOx 8.62 2.76 0.41 
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(a) 

 
 

(b) 

 
 

(c) 

 
Figure 8.6: Surface Morphology of (a) PPy doped with 20 wt% SnO2, (b) PPy doped with 20 

wt% WO3, and (c) PPy doped with 20 wt% ZnO 
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The three images in Figure 8.6 are almost identical; the presence of metal oxides during synthesis 

(even at 20 wt%) seems to have little effect on the PPy surface morphology. One might suggest 

that Figure 8.6(a) (formulation #14; PPy with 20% SnO2) has more ‘cavities’ in the sample 

(compared to the other materials), but the general morphology is the same. 

 

 
Figure 8.7: Sorption of Acetone for PPy-based Polymeric Materials  

(formulations #11-#20; source 5 ppm acetone in nitrogen) 

 

In Figure 8.7, the sorption results indicate that the addition of metal oxides reduces polypyrrole’s 

ability to sorb acetone. This behaviour is similar to what was observed for PANI; the pure polymer 

(without any dopants) seems to have the highest acetone sorption. Again, though, a full statistical 

analysis can provide an improved understanding of the materials. Therefore, comparison within 

each metal oxide (at different levels) is performed first (see again Appendix D, Section D.3), and 

then the best candidates from each metal oxide grouping are compared to each other and to the 

pure polymer. The outcomes of the Fisher’s LSD and multiple t-tests are summarized below: 

 For SnO2-doped materials, all three dopant levels showed statistically significant 

differences in sorption. The best-performing material from this subset was PPy doped with 

10% SnO2 (formulation #13). 

 For WO3-doped materials, statistically significant differences in sorption were detected 

between 5% and 10%, and between 10% and 20% dopant. In both comparisons, the 10% 

WO3-doped material exhibited a lower percentage of sorption, and was therefore ruled out. 

However, no significant difference was observed in comparing the 5% WO3 PPy 

(formulation #15) and the 20% WO3 PPy (formulation #17). Therefore, for simplicity and 

to conserve resources, formulation #15 was selected. 
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 For ZnO-doped materials, no statistical difference was observed as the amount of dopant 

was varied. Therefore, PPy doped with 5% ZnO (formulation #18) is preferred, since it 

uses the least metal oxide. 

 As before, the final comparison was the ‘best’ performing metal oxide-doped materials 

relative to the pure (undoped) polypyrrole. Statistically speaking, formulations #11 and 

#13 were equivalent and exhibited more sorption than the other formulations. Formulations 

#15 and #18 were not statistically different from one another, but did not perform as well 

as the other formulations. Therefore, of the formulations shown in Figure 8.7, pure PPy 

and PPy with 10% SnO2 show the most potential. 

 

Given these results, formulations #11, #13, #15 and #18 were selected as the best candidates for 

PPy-based polymeric materials (at least for the formulations studied thus far). Even though #11 

and #13 sorbed more acetone under these conditions, the WO3 and ZnO-doped materials should 

not be ruled out prematurely. The presence of these other metal oxides (even just during the 

synthesis step, if not in the product polymers) may provide additional (desirable) properties in 

terms of selectivity. This will be revisited in Section 8.1.2. 

 

8.1.1.4 PMMA-based Polymeric Materials 

 

As discussed in Section 8.1.1.1, pure (undoped) PMMA showed very low levels of acetone 

sorption. However, it is worth investigating whether or not it can be used as a substrate for metal 

oxide nanoparticles (namely, the metal oxides discussed already herein). If the metal oxides 

promote sorption on their own, we can be further motivated to use them alongside other polymeric 

materials. That is, if the metal oxides (essentially on their own) show sorption, it may be possible 

to pursue higher degrees of metal oxide incorporation in the (perhaps more promising) polymer 

backbones.  

 

In this case (as described in Section 7.2.3), PMMA was purchased directly from the supplier, and 

the doping involved a mechanical mixing process. Since the sample preparation here did not 

include any filtration or rinsing, all metal oxides added to the formulation remained within the 

sample. Given that the amount of metal oxide present in the PMMA sample was known a priori, 

EDX was not performed. 

 

Select samples were imaged using SEM and a representative image is provided in Figure 8.8. In 

general, the PMMA did not act as a substrate for the metal oxides. Instead, two separate and distinct 

components were visible in the sample. In Figure 8.8, for example, the smooth pieces on the left 

side of the image are PMMA, and the top right corner contains only SnO2 particles. Thus, 

incorporation was limited. 
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Figure 8.8: Surface Morphology of PMMA doped with 10 wt% SnO2 

 

For all potential sensing materials that were PMMA-based (formulations #21 to #30 of Table 7.1), 

the amount of acetone sorbed was negligible. That is, addition of SnO2, WO3 or ZnO nanoparticles 

did not improve the sorption by any appreciable amount. It had already been established that 

PMMA showed poor sorption on its own, and metal oxide-based sensors often require high 

temperatures. Additional modifications (including higher molecular weights of PMMA and in situ 

doping during in-house synthesis) were attempted [262], but similar results were obtained. 

Therefore, these combinations should not be pursued further for this application. The sorption 

results for formulations #21 through #30 are shown in Figure 8.9 for the sake of completeness. 

 

 
Figure 8.9: Sorption of Acetone for PMMA-based Polymeric Materials  

(formulations #21-#30; source 5 ppm acetone in nitrogen)  
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Initially, PMMA was chosen as a sensing material candidate based on previous success in the 

literature [172, 176] (as well as promising Hildebrand solubility parameters; recall Table 6.2). 

However, based on the current experimental results, PMMA seems to act more like a substrate for 

other (more active) polymeric components like PANI and PPy. This makes sense when the sorption 

mechanisms proposed by Stewart and Penlidis [4, 5] are considered; PMMA does not have the 

same potential for sorption (through polar effects or hydrogen bonding, for example) compared to 

PANI or PPy. Also, from the SEM results (Figure 8.8), it is clear that the morphology of PMMA 

(at least at this molecular weight) is not conducive for sorption, as the sample surface is completely 

smooth. Polymeric materials that are porous (like both of the sensing materials described earlier) 

are more readily able to sorb gas analytes. Therefore, due to both the sensing mechanisms and the 

physical properties of PMMA, it is not a promising material for acetone sorption. 

 

Although PMMA seems incapable of sorbing acetone under these conditions, the observed results 

are still useful for sensing applications. Zero-sorption materials can be used in sensors or sensor 

arrays to establish a baseline, which can help reduce the number of false positives in a sensing 

study [259]. Therefore, this result, though negative with respect to the sorption capabilities of 

PMMA, can still inform future work, as it is useful in establishing a true zero. 

 

8.1.2 Selectivity – Mixtures of 4 Gases 

 

Following the sensitivity study of Section 8.1.1, a selectivity study was performed for the most 

promising materials. As described in Section 7.4.2, polymers were introduced into the 

experimental set-up for evaluation of sensing materials and were exposed to four gas analytes 

simultaneously. That is, each polymeric material was exposed to a mixture of acetaldehyde, 

ethanol, acetone and benzene (in balance nitrogen). These analytes were specifically chosen as 

representatives of different volatile organic compounds, so that the sorption of acetone could be 

measured in the presence of interfering aldehydes, alcohols and aromatics.  

 

Eight polymeric sensing materials were used for this portion of the study. PANI-based materials 

and PPy-based materials showed promise in the sensitivity study (Section 8.1.1), but PMMA-based 

materials were not pursued further. As mentioned previously, statistical comparison of means 

through Fisher’s least significant difference (LSD) test and multiple t-tests (with the Bonferroni 

correction applied) were used to compare sorption performance of materials. The materials 

selected as ‘most promising’ either improved sorption in a statistically significant way (compared 

to other loadings of a given metal oxide) or, if no statistically significant improvement was 

observed, the lowest (and therefore most cost effective) metal oxide loading was selected. 

Therefore, based on the results of Section 0, formulations #1, #3, #5 and #10 (from Table 7.1) 

were chosen for the selectivity study of PANI-based materials. Similarly, based on the results of 

Section 8.1.1.3, formulations #11, #13, #15 and #18 (also from Table 7.1) were investigated as 

representative PPy-based materials. Selectivity results from gas mixtures with equal 
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concentrations of all analytes (Section 8.1.2.1) and acetone-rich mixtures (Section 8.1.2.2) are 

presented in what follows.  

 

8.1.2.1 Gas Mixtures with Equal Concentrations of Analytes 

 

To establish each polymeric material’s ability to sorb acetone in the presence of other interferent 

gases, each material was exposed to a 4-gas mixture containing acetaldehyde, ethanol, acetone and 

benzene (in balance nitrogen). The concentration of each gas in the mixture was 0.9 ppm ± 0.1 

ppm, and the total concentration of analytes in the gas mixture ranged from 3.3 ppm to 4.0 ppm. 

Therefore, the gas mixture is slightly less concentrated than that used for the pure acetone study, 

and there are several analytes competing for sorption sites. This is essentially mimicking a ‘healthy 

breath’ scenario; endogenous volatile organic compound concentrations should generally be fairly 

low. As reported by Rooth and Ostenson [149], the breath acetone levels for their control group 

averaged 0.95 ppm (although healthy levels reported by Jones [263] were as high as 4.01 μg/L 

(3.46 ppm)). The other gas analytes are also expected to be present in low quantities (assuming the 

subjects are healthy and no exogenous factors are contributing). Jones [264] reported typical 

acetaldehyde breath concentrations ranging from 0.2 nmol/L to 0.6 nmol/L (7.6 ppb to 22.8 ppb), 

with higher levels after the moderate consumption of alcohol. Higher levels of ethanol levels have 

been reported, again by Jones [263]: breath ethanol measurements ranged from 0.07 to 0.39 µg/L 

(60.3 ppb to 336 ppb) when no exogenous alcohol was consumed. Finally, benzene is not expected 

to be present in breath samples in any appreciable amount (unless the subject is a smoker [265, 

266] or has had substantial environmental exposure [267, 268] – these levels are beyond the scope 

of this work). However, benzene was selected for inclusion in the current study to examine the 

sorption effects of aromatic compounds and because benzene is a typical ‘bulky’ interferent.  

 

 
Figure 8.10: Sorption of Acetaldehyde, Ethanol, Acetone and Benzene for PANI-based Polymeric 

Materials (formulations #1, #3, #5 and #10); source ~1 ppm each analyte in nitrogen) 
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Figure 8.10 shows the sorption results for each of the most promising PANI-based materials (pure 

PANI and one representative sample for each of the metal oxides). The bar graph provides the 

average amount of each analyte sorbed, and is presented in terms of absolute concentration sorbed 

(in ppm) rather than the (normalized) percent sorption of earlier plots (since very low 

concentrations are being considered here). In parallel, the line graph provides a comparison of the 

total percentage sorbed for the combination of analytes and the percentage of acetone sorbed from 

the 5 ppm source (described in Section 0 for the sensitivity study). 

 

For all PANI-based materials, acetaldehyde, ethanol and acetone show similar amounts of 

sorption. Thus, all four materials shown in Figure 8.10 have poor selectivity toward acetone. In 

fact, only the PANI with 5% WO3 (formulation #5) sorbs acetone in the highest proportion, but 

statistically speaking there is no difference in sorption between ethanol and acetone. The other 

three materials sorb ethanol more than acetone, but, again, the selectivity is quite poor. Therefore, 

these materials would not be used in isolation to sorb low concentrations of acetone, but may be 

useful as part of a sensor array [251]. This information can also help to establish a baseline for a 

‘negative’ result (that is, breath acetone levels are normal and are not indicative of high blood 

glucose). 

 

The comparison of line plots shows an increase in the percentage of analyte sorption for the 4-gas 

mixture (compared to pure acetone at 5 ppm). This is especially evident for the WO3-doped PANI 

(formulation #5), which allowed 27.5% sorption (compared to 10.0% sorption for acetone alone). 

For the 4-gas mixture, both the ethanol sorption and the acetone sorption were fairly high; one 

might suggest that the presence of ethanol is enhancing acetone sorption, thus increasing the 

overall analyte sorption. However, a more detailed study (with gas mixtures containing only 

ethanol and acetone, for example) would be needed to confirm this hypothesis. Regardless, it 

seems as though some synergistic effect is improving sorption of the gas mixtures on the PANI-

based sensing materials. 

 

Next, the same experimental investigation is performed for the most promising PPy-based 

materials (again, with representative samples doped with each of the three metal oxides). The 

sorption of each analyte in the 4-gas mixture (acetaldehyde, ethanol, acetone and benzene) is 

presented in the bar graph portion of Figure 8.11, while the total percentage of sorption (from 5 

ppm pure acetone and from the 4-gas mixture) is shown as a line graph. 
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Figure 8.11: Sorption of Acetaldehyde, Ethanol, Acetone and Benzene for PPy-based Polymeric Materials 

(formulations #11, #13, #15 and #18); source ~1 ppm each analyte in nitrogen) 

 

Again (as observed for the PANI-based materials), there is no appreciable selectivity towards 

acetone. In fact, ethanol sorption is slightly higher than acetone sorption for all four materials. The 

same statements made previously (about PANI-based materials) are valid here: one might use these 

results in establishing a baseline for a ‘negative’ result (normal/healthy breath acetone levels) and 

these sensing materials may be useful in sensor arrays [251]. 

 

The more interesting result for PPy-based materials is related to the comparison of line graphs for 

total sorption of the 4-gas mixture and the total sorption of 5 ppm acetone (from the sensitivity 

study of Section 8.1.1.3). As shown in Figure 8.11, the two sets of experiments provide nearly 

identical sorption results. That is, regardless of whether the PPy-based sensing materials are 

exposed to pure acetone (at 5 ppm) or a mixture of gas analytes (totaling ~ 4 ppm), the proportion 

of gas analytes sorbed remains approximately consistent. This suggests that polypyrrole (and metal 

oxide-doped polypyrrole samples) are indiscriminately sorbing all analytes, and that the materials 

are not selective towards any particular chemical species. Thus, these polymers may not be useful 

for detecting one particular target analyte, but (again) could be useful in a sensor array or as a 

material for air filtration applications. 

 

8.1.2.2 Acetone-Rich Gas Mixtures 

 

While the polymeric sensing materials did not demonstrate good selectivity when exposed to 1 

ppm gas mixtures, the results of Section 8.1.2.1 provide information about the behaviour of the 

sensing materials when all analytes are present in low concentrations. As described in the 

introduction, several (sometimes conflicting) relationships between breath acetone and blood 

glucose have been reported. However, these studies have motivated our work to detect (relatively) 
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high acetone concentrations in gaseous samples, even in the presence of other interfering gas 

analytes. 

 

For the final stage of this investigation, the acetone concentration in the gas mixture can be 

increased, thus creating an acetone-rich gas mixture (with acetaldehyde, ethanol and benzene 

present as interferents). Although the exact (expected) concentration of acetone varies 

considerably in biological studies, a relatively high acetone concentration was selected herein. If, 

in reality, breath acetone levels are lower, the sorption response would likely be lower as well. 

However, as proof of concept, PANI-based materials and PPy-based materials were exposed to a 

4-gas mixture of acetaldehyde (1.3 ppm ± 0.1 ppm), ethanol (1.3 ppm ± 0.2 ppm), acetone (105 

ppm ± 5 ppm) and benzene (1.4 ppm ± 0.2 ppm).  

 

For brevity, only the sorption response of pure PANI and pure PPy are shown herein; similar 

results were obtained for the metal oxide-doped materials. A comparison of sorption performance 

for the gas mixtures where all analytes had similar concentration levels (labeled 1 ppm gas mixture 

in Figure 8.12) and the acetone-rich (A-rich) gas mixtures is provided below.  

 

 
Figure 8.12: Sorption of Acetaldehyde, Ethanol, Acetone (A) and Benzene for Pure PANI and Pure PPy 

(formulations #1 and #11); source ~1 ppm each analyte in nitrogen or A-rich gas mixture) 

 

The PANI: 1 ppm Gas Mixture and the PPy: 1 ppm Gas Mixture data have been shown previously 

(in Figure 8.10 and Figure 8.11, respectively), but are shown again herein for direct comparison 

(and to appreciate the scale of sorption of the acetone-rich gas mixtures. A clear increase in acetone 

sorption is visible for both pure PANI and pure PPy, which is expected given the significant 

increase in acetone exposure. In both acetone-rich (A-rich) cases, error bars (representative of 

standard deviation over 6 replicates) are much wider, but this is due to the larger absolute value of 

the measurements (especially compared to the non-dominant analytes: acetaldehyde, ethanol and 

benzene). The results obtained from both PANI and PPy suggest that both polymers show promise 

as sensing materials for acetone detection, as long as the acetone is present in much larger 
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concentrations than other interfering gases. However, a better understanding of acetone levels in 

breath measurements would be needed to quantify the required ratio of acetone to interferents in 

the source gas. In the current study, acetone was approximately 100x more abundant than the other 

analytes, which may not be representative of actual conditions.  

 

It is also interesting to note that the amount of acetone sorbed is not proportional to the 

concentration of acetone in the source gas. That is, when the acetone concentration in the source 

gas is increased by two orders of magnitude, the same kind of increase is not observed in the 

sorption response. The same type of behaviour was observed for all PANI-based and PPy-based 

materials (including the metal oxide-doped polymers) exposed to ~100 ppm acetone in the gas 

mixture; total acetone sorption was always well below 10 ppm. This could indicate that the 

polymeric sensing material is saturated, and that no additional analyte units would sorb onto the 

sample (even at higher concentrations). 

 

A final observation from Figure 8.12 is the decreased sorption of the interferent gases present in 

the acetone-rich gas mixture. Take PANI, for example: in comparing the sorption of acetaldehyde, 

ethanol and benzene from the 1 ppm gas mixture to the sorption of those analytes from the acetone-

rich mixture, all three analytes sorb more in the 1 ppm gas mixture case. The same relationship 

can be observed for the PPy case. This is somewhat counterintuitive, as the concentration of each 

interferent analyte in the source gas is lower for the 1 ppm mixture (0.9 ppm ± 0.1 ppm for the 

equal concentration study, vs. concentrations > 1.0 ppm for the acetone-rich study). One might 

expect that having higher concentrations in the source gas would increase the sorption of each 

analyte. However, in this case, the high acetone concentration seems to be dominating the system. 

As a result, the analytes are competing for the sorption sites available on the sensing material; the 

high concentration of acetone leaves fewer sorption sites available for the interferent analytes. This 

explains the reduced sorption of acetaldehyde, ethanol and benzene that occurs in spite of increased 

concentrations in the source gas. 

 

8.1.3 Concluding Remarks on Screening Experiments for Acetone Sensing 

 

In this detailed preliminary study, polyaniline, polypyrrole and poly(methyl methacrylate) were 

doped with varying levels of metal oxide nanoparticles (namely SnO2, WO3 and ZnO at 5%, 10% 

and 20% doping by weight). Thirty polymeric materials were characterized (in terms of polymer 

properties and application-specific behaviour). Only SnO2 incorporated well into the polymeric 

materials, but did not appreciably affect the sorption of acetone. WO3 and ZnO incorporation was 

poor, and (again) doping had a minimal effect on the concentration of acetone sorbed. In spite of 

the low incorporation of metal oxides, PANI-based materials and PPy-based materials were found 

to be the most promising candidates. PMMA-based materials did not show significant sorption, 

and metal oxide nanoparticles on PMMA (with PMMA essentially acting as a substrate) did not 

show any sorption under the experimental conditions used for this study.   
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Eight of the most promising materials (formulations #1, #3, #5, #10, #11, #13, #15 and #18 from 

Table 7.1) were studied further through two selectivity studies. These formulations represent 

PANI- and PPy-based polymers, each in its pure form and doped with each metal oxide (dopant 

levels selected based on sensitivity results). Selectivity studies were performed using a custom-

made gas testing system [261]; polymeric sensing materials were exposed to four gas analytes 

(acetone and three interferent gases). When all four analytes were present in equal concentrations, 

selectivity was poor (that is, none of the materials could preferentially sorb acetone). However, 

given an acetone-rich mixture (where the acetone concentration was 100x higher than the 

concentration of the interferent gases), acetone sorption was much increased. 

 

In comparing the polymer surface morphology to the sorption ability, we would suggest that the 

materials with the more porous structures sorb more acetone (PPy > PANI > PMMA). However, 

even the most porous materials are not selective. For PPy, for example, exposure to 5 ppm acetone 

(in nitrogen) or a mixture of 4 different gas analytes (with the total concentration ~ 5 ppm) led to 

the same total proportion of analytes sorbed. Therefore, the polypyrrole samples indiscriminately 

sorb all analytes, and the material is not selective towards any of the four chemical species. 

 

Additional customization of materials is necessary to improve the selectivity of sensing materials. 

One might consider some (or all) of the following: (1) trying to improve the degree of incorporation 

of metal oxides, (2) acid-doping polyaniline to change the backbone charge (thereby taking 

advantage of the polarity of acetone) or (3) creating multi-component polymers containing two or 

more of the backbones listed in Section 6.1.3. Some of these (especially items (2) and (3)) will be 

considered in Section 8.2.  

 

8.2 Customized Experiments: Acid-Doped Polymers and Copolymers 

 

8.2.1 Investigation of Polymer Properties 

 

Given the results of the previous section, customized polymeric materials (to further improve 

sensitivity and selectivity toward acetone) were synthesized as described in Section 7.2.4. These 

materials either (1) were doped in situ with oxalic acid (to increase protonation of the polymer 

backbone), (2) were copolymers of the two most promising materials (PANI and PPy), or (3) were 

acid-doped copolymers (that is, a combination of both modifications (1) and (2)). To ensure that 

these synthesis modifications affected the polymer product, samples were characterized in terms 

of crystallinity and surface morphology.  

 

To establish a reference point for XRD results, pure PANI (not doped; synthesized in deionized 

water as described in Section 7.2.1) is analyzed first (see Figure 8.13; red curve). The XRD pattern 

shows two main peaks: the first at 18.6° and the second at 25.4°. These are in relatively good 

agreement with other XRD characterization results reported for PANI [234, 269-271], although 
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the first peak occurs at a slightly lower angle than expected. Most researchers postulate that the 

earlier peak (around 20°) is attributed to a periodicity parallel to the polymer chain and the later 

peak (between 24° and 26°) is attributed to a periodicity perpendicular to the polymer chain [272]. 

The characteristic peaks shown in Figure 8.13 were obtained from [271], but all references listed 

above show equivalent agreement with our experimental results. The slight discrepancy in the first 

peak (comparison from literature and comparison between replicates) may be due to the presence 

of a different form of PANI (different oxidation state or acid/base form).  

 

Now, the pure PANI (formulation #31, synthesized in water; red curve) can be compared to the 

acid-doped PANI (formulation #32, synthesized in oxalic acid; green curve); see again Figure 8.13. 

The peak observed at 25.4° for the PANI sample is also present for the ox-PANI sample, but the 

earlier peak (at 2θ = 19.9° for ox-PANI) has shifted to the right. In fact, the peak is better aligned 

with the characteristic peaks from literature, for which the occurrence is at 2θ = 19.5°. This result 

makes sense when we consider that the literature values [271] were measured for PANI samples 

synthesized in acetic acid. Therefore, the two materials synthesized in acids (our ox-PANI and the 

PANI characterized by Noby et al. [271]) have more consistent XRD characteristics (compared to 

PANI synthesized in deionized water). Also, one might postulate that the shift in the first peak is 

due to acid-doping.  

 

The later peaks in Figure 8.13 (the largest of which is at 2θ = 43.8°) are likely related to the sample 

holder response. Finally, from this preliminary XRD analysis, the characteristic peaks are fairly 

sharp (especially relative to the XRD results shown in what follows), which suggests that PANI 

exhibits some crystalline behaviour. 

 

 
Figure 8.13: XRD for pure PANI (formulation #31) and ox-PANI (formulation #32); characteristic peaks 

reported by Noby et al. [271] 

 

Before examining the crystallinity of the PANI/PPy copolymer, it is important to characterize 

samples containing the pure PPy homopolymer (formulation #11). XRD was performed twice for 

PPy, and samples were independently prepared for XRD from a common synthesis. As shown in 

Figure 8.14, excellent agreement was observed between the two replicates. Also, from the 
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literature, the location of the primary characteristic peak ranges from 2θ = 24° [273] to 2θ = 26° 

[274], which is in good agreement with our experimental result. The broader peaks (especially 

compared to PANI and ox-PANI in Figure 8.13) indicate that the material is more amorphous, and 

this result is in agreement with previous studies [273, 274]. Again, the later peak is observed at 2θ 

= 43.8° (and a broader peak is observed at 2θ = 50.6°). These are aligned with peaks identified (at 

the same angles) in Figure 8.13, which confirms that they are not sample-specific, and are 

responses from the XRD sample holder. 

 

 
Figure 8.14: Replicated XRD for pure PPy (formulation #11); characteristic peak range reported by 

Chougule et al. [273] and Waghuley et al. [274] 

 

The analysis of the PANI/PPy copolymer is especially important; a unique scan (that is, a unique 

XRD pattern) can confirm that a new copolymer has been synthesized. If, for example, the trace 

for formulation #33 (the PANI/PPy copolymer) was exactly the same as one of the related 

homopolymers (pure PANI or pure PPy), it would indicate that one monomer was preferentially 

added during chain propagation and that a homopolymer formed, even in the presence of the 

second comonomer (recall Section 2.2.1). Also, given the comparison of PANI/PPy synthesis 

techniques published by Hammad et al. [234], the main diffraction peak should be centred between 

2θ = 20° and 2θ = 24°.  

 

Figure 8.15 confirms the successful synthesis of a PANI/PPy copolymer. The primary peak for the 

copolymer (at 2θ = 22.2°) falls between the pure PANI and pure PPy peaks, which suggests that it 

is incorporating properties from both comonomers but is, in fact, a distinct polymer product. Given 

the broad peak, the copolymer is amorphous in nature, and it seems to be more structurally similar 

to PPy than to PANI. Also, the peak for the PANI/PPy copolymer falls in the centre of the range 

reported by Hammad et al. [234]; the expected range for the main diffraction peak is included in 

Figure 8.15 for reference.  
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Figure 8.15: XRD for the copolymer of PANI/PPy (formulation #33); characteristic peak range reported 

by Hammad et al. [234] 

 

The relationship between the PANI/PPy copolymer (formulation #33) and the ox-PANI/PPy 

copolymer (formulation #34) is examined next (Figure 8.16). This comparison of XRD patterns 

makes it possible to establish whether the addition of oxalic acid to the formulation had any effect 

on the product copolymer. The main diffraction peak of the ox-PANI/PPy copolymer is not as 

broad as that of the PANI/PPy copolymer, which suggests that it is more crystalline. Also, the peak 

center is shifted to the right for the oxalic acid-doped sample; this behaviour was also observed 

when the PANI homopolymer was doped with oxalic acid (recall Figure 8.13).  

 

 
Figure 8.16: XRD for the copolymer of ox-PANI/PPy (formulation #34) compared to PANI/PPy 

(formulation #33); characteristic peak range (for PANI/PPy copolymer) reported by Hammad et al. [234]  

 

Finally, for comparison, the crystallinity of the pure PMMA (average molecular weight Mw 

~15,000) investigated in Section 8.1 was analyzed (see Figure 8.17). The peaks are much larger 

than the other samples, which is simply a result of a higher sample loading (PMMA was not 

synthesized in-house, so larger quantities are available for analysis). The characteristic peaks of 

PMMA are observed at 2θ = 15°, 30.2° and 42.2° [275], and are included in Figure 8.17 for 

reference. An important observation here is the very broad peak; it is by far the least crystalline 

sample of the three original polymer backbones (PANI, PPy and PMMA). This indication that the 

PMMA sample is amorphous, along with the smooth ‘plate-like’ polymer surface shown in Section 
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8.1.1 (Figure 8.2 and Figure 8.3), can be linked to the poor application performance (that is, 

negligible acetone sorption). Therefore, the properties of PMMA (low crystallinity and smooth 

surface morphology) make it unsuitable as a sensing material for acetone. 

 

 
Figure 8.17: XRD for PMMA (formulation #21); characteristic peaks reported by Abdelrazek et al. [275] 

 

The surface morphologies of the customized samples (formulations #32 to #34) were examined 

and properties were compared to those of pure PANI (formulation #31); see Figure 8.18. 

Additionally, these samples can be compared to the original polymeric materials (PANI, PPy and 

PMMA) examined in Section 8.1.1.1. 
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(a) 

 
 

(b) 
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(c) 

 
 

(d) 

 
Figure 8.18: Surface Morphology of (a) PANI (b) ox-PANI, (c) PANI/PPy and (d) ox-PANI/PPy 

from SEM at 5000X Magnification 
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As observed previously (recall Figure 8.3), pure polyaniline contains many well-dispersed 

‘cavities’ throughout the sample, which provides a large surface area for sorption. Interestingly, in 

this synthesis replicate (Figure 8.18a), the fibrous structure seen earlier (in Figure 8.3a) is less 

pronounced. Although the fibres are still visible, there is also a layered characteristic here, where 

polymer ‘sheets’ seem stacked on top of each other. The minor structural variation here may be 

due to any number of influences, such as slight temperature fluctuations during synthesis or sample 

preparation for SEM (that is, mounting the polymer sample onto the stub). 

 

Using pure polyaniline (formulation #31) as the benchmark for surface morphology, we can 

examine the effect of adding oxalic acid as an in situ dopant and/or pyrrole as a comonomer. PANI 

imaging reveals surface structures that are fibrous and sheet-like, and these features have fairly 

sharp edges. In contrast, the ox-PANI (Figure 8.18b) exhibits a more rounded polymer surface. 

Kulkarni et al. [223] described oxalic acid-doped PANI (ox-PANI) as a sponge-like structure 

resulting from aggregates of small granules; our observations are well-aligned with this account. 

 

Both copolymers of PANI/PPy (synthesized in water and in aqueous oxalic acid; Figure 8.18c and 

Figure 8.18d, respectively) seem to have increased surface area compared to the homopolymers of 

PANI or PPy. The materials have the same granular structure observed for the PPy homopolymer 

(Figure 8.3b), and exhibit a very small average particle size. This allows for a large surface area, 

which may lead to increased sorption (this hypothesis will be tested in the following section). In 

comparing the copolymers with and without oxalic acid doping, we would suggest that the ox-

PANI/PPy granules (Figure 8.18d) have a more uniform size than the PANI/PPy granules (Figure 

8.18c). Also, the ox-PANI/PPy samples has more interstices (and therefore more sorption sites) 

than ox-PANI. 

 

8.2.2 Investigation of Application-Specific Properties 

 

Equipped with the knowledge that the polymer properties have been successfully modified, the 

next step involves re-evaluating the application performance of these customized polymeric 

sensing materials. As before, sensitivity is evaluated first by exposing each candidate sensing 

material to 5 ppm acetone in balance nitrogen. The sorption results are presented in Figure 8.19 

for formulations #31 to #34, and can be contrasted with the sorption measured in the screening 

stage (recall Figure 8.5, Figure 8.7 and Figure 8.9). For this study, eight replicates were collected 

for each material (rather than four replicates in the screening study). This increases our confidence 

in the final experimental results. 
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Figure 8.19: Sorption of Acetone for Customized Polymers (source: 5 ppm acetone in nitrogen) 

 

The materials synthesized in this stage are able to sorb more acetone than PANI-based polymers 

(Figure 8.5) and PMMA-based polymers (Figure 8.9) studied previously. In fact, the pure PANI 

shown in Figure 8.19 uses the same formulation as the pure PANI shown in Figure 8.5, but the 

sorption is slightly higher for these later experiments (average 12% in Figure 8.5 vs. 16% in Figure 

8.19). Of the four samples shown herein, ox-PANI/PPy (formulation #34) demonstrates the highest 

percent sorption, but also contains the most variability in results. On the other hand, ox-PANI 

(formulation #32) provides the lowest amount of sorption, but sorption is only slightly lower than 

for pure PANI. In comparing the sorption performance of these materials using Fisher’s LSD test 

and multiple t-tests (see Appendix D, Section D.3), the following two conclusions can be made: 

 Sorption capabilities of ox-PANI and PANI/PPy are not statistically different than pure 

PANI. Therefore, adding oxalic acid or pyrrole (as a comonomer) to the synthesis process 

does not increase the amount of acetone sorbed from a 5 ppm source. 

 The copolymer of PANI/PPy synthesized in oxalic acid (ox-PANI/PPy, formulation #34) 

allows for more sorption than the other three materials, and the improvement is statistically 

significant in all cases. Thus, the combination of the oxalic acid and the pyrrole 

comonomer in the formulation does increase the amount of acetone sorbed. 

 

Despite the increase in sorption observed for ox-PANI/PPy, all four materials are still sorbing a 

lower percentage of the total analyte source compared to PPy-based materials (average acetone 

sorption of pure PPy was 32%; recall Figure 8.7). This is not unexpected; both PANI and PPy 

showed promise in terms of sensitivity, but the main motivation at this customization stage was to 

improve the selectivity. Moderate sorption levels are acceptable for sensing materials, as long as 

the target analyte sorbs more than any interferent analytes present in the system. Selectivity studies 

for the customized polymeric materials (using the same interferent gases as in Section 8.1.2) are 

presented in what follows.  



226 

 

The selectivity analysis performed at this stage was more in-depth than the previous selectivity 

studies (shown in Section 8.1.2), since each interferent gas was examined individually. That is, 

acetone was mixed with one interferent gas at a time, and the response of each two-gas mixture 

was recorded. Also, each combination of gases and sensing materials was evaluated with six 

replicates. The results are shown in Figure 8.20 through Figure 8.22. 

 

 
Figure 8.20: Sorption of Acetone in the Presence of Acetaldehyde for Customized Polymeric Materials 

(formulations #31 to #34); source ~2 ppm each analyte in nitrogen) 

 

As per Figure 8.20, acetone sorbs at a higher concentration than acetaldehyde when the custom 

sensing materials are exposed to the two-gas mixture; this is the case for all four materials. It is 

interesting to note that pure PANI (formulation #31) exhibits selectivity towards acetone, 

especially since acetone and acetaldehyde sorbed in similar amounts when the four-gas mixture 

was tested previously (recall Figure 8.10). However, given the size of the error bars (representative 

of the standard deviation over six replicates), the selectivity towards acetone may be slightly less 

than what was observed during these experimental runs. Of the four materials, the largest 

experimental error was recorded for PANI and ox-PANI. This error is likely due to the very low 

concentrations being evaluated by the highly specialized GC and the fact that PANI sorption was 

affected by humidity. PANI/PPy and ox-PANI/PPy were also moderately selective towards 

acetone under these conditions. The total concentration of analytes sorbed was higher for the 

copolymers (compared to PANI and ox-PANI) and the quantitative sorption measurements were 

more repeatable. A comparison of selectivity values for all four materials is presented in Table 8.3. 
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Figure 8.21: Sorption of Acetone in the Presence of Ethanol for Customized Polymeric Materials 

(formulations #31 to #34); source ~3 ppm each analyte in nitrogen) 

 

For the two-gas mixture of acetone and ethanol, acetone sorbs in a higher proportion for all four 

polymeric materials (Figure 8.21). Compared to the acetone and acetaldehyde gas mixture, the 

sorption of acetone is higher for the acetone and ethanol gas mixture (approximately 150% higher 

in most cases). This may be a result of the higher source gas concentration (~3 ppm rather than ~2 

ppm), but it may also be related to the synergistic effects observed previously (recall discussion 

surrounding Figure 8.10 for the four-gas mixture). That is, it could be that the presence of ethanol 

in the gas mixture is enhancing acetone sorption. Again, the selectivity of these materials towards 

acetone in the presence of ethanol is given in Table 8.3. 

 

 
Figure 8.22: Sorption of Acetone in the Presence of Benzene for Customized Polymeric Materials 

(formulations #31 to #34); source ~ 2 ppm each analyte in nitrogen)  
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Finally, a two-gas mixture of acetone and benzene was evaluated (Figure 8.22). The low selectivity 

towards acetone here is surprising, especially since benzene was the least-sorbed analyte when the 

four-gas mixtures were evaluated during screening experiments (Figure 8.10 through Figure 8.12). 

It is possible that benzene is interacting with acetone (and subsequently the polymeric sensing 

materials) since there are no other competing analytes. The fact that the selectivity is close to unity 

(Table 8.3) may indicate that the benzene is ‘piggy-backing’ onto the acetone before (or during) 

sorption, which allows the benzene and the acetone to sorb at approximately equal concentrations. 

 

Table 8.3: Average Selectivity of Customized Polymeric Materials for Three Distinct Interferent Gases 

Polymeric Material Acetaldehyde Ethanol Benzene 

PANI 2.10 1.61 1.38 

ox-PANI 3.79 1.91 1.01 

PANI/PPy 1.60 1.76 1.37 

ox-PANI/PPy 1.65 1.69 1.11 

 

Due to the unexpectedly high benzene sorption observed in Figure 8.22, the materials were re-

evaluated for benzene sorption (without acetone or other interferent gases present). Each material’s 

sorption from a 5 ppm benzene source (balance nitrogen) was evaluated and compared to sorption 

from a 5 ppm acetone source (as described earlier; results shown in Figure 8.19). If benzene is 

sorbing directly onto the polymeric material (that is, competing against acetone for active sorption 

sites), the percent sorption calculated will be similar to the percent sorption determined for acetone. 

However, if benzene sorption is ‘enhanced’ in the presence of acetone, the experimentally 

determined sorption from the 5 ppm benzene source will be lower than those measured from the 5 

ppm acetone source. 

 

Figure 8.23 confirms our hypothesis that the polymeric materials are not specifically attracting 

benzene; the percent sorption is significantly lower than it was for acetone (the acetone sorption is 

shown again herein for direct comparison). Therefore, benzene sorption is increased in the 

presence of acetone, and this synergistic effect is most likely responsible for the low selectivity 

reported in Table 8.3. This relationship could be beneficial in sensing applications: although 

benzene does not sorb well on its own, it seems to ‘attach’ to acetone (in approximately a 1:1 

ratio). Therefore, the acetone response is somewhat amplified in the presence of benzene, and this 

can improve the detection of acetone. That said, if this behaviour is to be exploited for sensing 

materials, the potential interaction of benzene with other gas analytes (like ethanol, for example) 

should also be evaluated. Additional evaluation of gas analyte interactions (between each other 

and between sensing materials) will reduce the potential for ‘false positives’ in future sensor 

applications. 
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Figure 8.23: Sorption of Acetone and Sorption of Benzene for Customized Polymers (analytes evaluated 

individually; source: 5 ppm acetone in nitrogen or 5 ppm benzene in nitrogen) 

 

8.2.3 Concluding Remarks on Customized Materials for Acetone Detection 

 

The customized polymeric materials for acetone detection have been evaluated in terms of their 

polymer properties and their application performance. These materials were selected using the 

design framework; it was anticipated that the protonation of polyaniline and/or the 

copolymerization of aniline and pyrrole (combining properties of the two materials) would modify 

the polymer properties, which in turn would improve the sorption performance (especially towards 

acetone). 

 

Evaluation of materials through X-ray diffraction and scanning electron microscopy showed the 

similarities and differences between the original polymeric materials (PANI, PPy, PMMA) and 

the customized polymeric materials (ox-PANI, PANI/PPy and ox-PANI/PPy). Pure PANI was the 

most crystalline material, whereas PPy and PMMA were more amorphous in nature. During this 

analysis, no correlation was observed between the crystallinity of the materials and the sorption 

capabilities. For example, PPy allowed for the most sorption, but was moderate in terms of 

crystallinity. In contrast, PANI exhibited moderate sorption potential, but was the most crystalline 

material. Therefore, although the crystallinity of the polymeric material is an interesting property 

to characterize, it did not play a major role in the application performance for this study. 

 

Surface morphology (established through scanning electron microscopy) seemed to have a bigger 

impact on the concentration of analyte sorbed. SEM revealed that polypyrrole (formulation #11) 

contained aggregates of very small granules, which translated to a very large surface area (many 

sorption sites for the gas analytes). As a result, PPy exhibited the highest percent sorption of the 
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materials studied. The oxalic acid-doped copolymer of PANI/PPy (ox-PANI/PPy, formulation 

#34) was also characterized by a large surface area (small granular aggregates), and in turn sorbed 

acetone well. PANI, ox-PANI, and PANI/PPy were moderately porous; the available surface area 

for each sample (upon inspection of SEM images) was poorer than for PPy, but much improved 

over PMMA. This was reflected in the sorption measurements; the percentage of acetone sorbed 

was aligned with the (qualitatively evaluated) surface area for each sample. 

 

Despite this perceived relationship between a polymeric sensing material’s surface morphology 

and its ability to sorb, the surface morphology does not impact the selectivity towards a target 

analyte. This was observed for PPy-based materials in Section 8.1.2.1 (Figure 8.11), where the 

sensing materials sorbed the same total percentage of analytes under two distinct environments (5 

ppm acetone vs. a 4-gas mixture containing 1 ppm of each analyte). This indiscriminate sorption 

highlighted the need to explore (and exploit) primary sensing mechanisms for selective detection 

of acetone, and this result motivated the synthesis and characterization of three customized 

formulations (formulations #32 to #34). 

 

The materials synthesized with sensing mechanisms in mind showed improved selectivity towards 

acetone. The interferent gases (acetaldehyde, ethanol and benzene) all sorbed to the sensing 

materials at lower concentrations than acetone, which was an improvement over the selectivity of 

the screening experiments. The most promising material studied (in terms of selectivity) was ox-

PANI: it was selective towards acetone in the presence of acetaldehyde and moderately selective 

in the presence of ethanol. Although it was not selective when benzene was the interferent gas, an 

additional sorption test revealed that benzene was likely experiencing some synergistic effect in 

the presence of acetone. We have postulated that benzene is essentially ‘piggy-backing’ onto 

acetone (at a 1:1 ratio) when acetone sorbs onto the sensing material. This can help explain the 

reduction in the measured concentration of benzene (in the gas mixture) after it is exposed to the 

polymeric sensing material. It may be possible to exploit this effect to amplify a material’s 

response to acetone, but further investigation would be needed. 

 

Ultimately, the customized materials synthesized and evaluated herein were comparable in terms 

of sorption capability, but the protonation of the polyaniline backbone (using oxalic acid as a 

dopant) improved the selectivity towards acetone in the presence of other interferent gases. 

Therefore, the design methodology allowed for the successful synthesis of a polymeric material 

that meets the application requirements outlined in Section 6.1.2. Given the iterative nature of 

design, there is still potential to optimize this material further (especially in terms of increasing the 

sensitivity and selectivity) given our newfound understanding of material properties and 

application performance.  
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Chapter 9. Commonalities between Case Studies – Design of 

Polymeric Materials: Synthesis of Design Prescriptions 
 

9.1 Design Framework 

 

Throughout this research, every effort has been made to consider design principles for the 

selection, synthesis and subsequent characterization of polymeric materials. Using this targeted 

approach (and making use of prior knowledge) has helped to create links between polymerization 

kinetics (and pre-polymerization formulations), the polymer properties, and the application 

performance for both case studies.  

 

In Case Study #1, there was significant emphasis on reactivity ratios, largely because a multi-

component (ternary) system with unique polyelectrolyte behaviour was selected for the 

application. Since the application performance (that is, enhanced oil recovery efficiency) was not 

easily evaluated, many polymer properties were studied first to improve our understanding of the 

material properties. The characterization of the optimally designed materials (determination of 

conversion, terpolymer composition, molecular weight and so on) provided the confidence 

necessary to pursue additional (more time-consuming and more resource-intensive) application-

specific testing, namely polymer flooding tests and heavy oil displacement tests. 

 

In Case Study #2, the kinetics of the corresponding polymerization were less influential on the 

application performance. However, using a designed approach ensured that target functional 

groups, solubility parameters, operational temperature, and product customization were considered 

in the early stages of the investigation. In this case, relevant links were established between the 

material properties of each polymer and the sensing ability (both in terms of sensitivity and 

selectivity). 

 

Both of these case studies were inspired by prior knowledge [41, 182]. In each case, a ‘road map’ 

was established to clarify the investigation steps and to draw links between different stages of the 

project. These plans and the related prescriptions (tips) are provided in Figure 9.1 (for a 

copolymerization study for enhanced oil recovery) and in Figure 9.2 (for selection of sensing 

materials; specifically ethanol in the original study). However, part of the current project is to 

create a more generalized framework that can be applied to the design of any custom polymeric 

material. Therefore, the contents of both Figure 9.1 and Figure 9.2 are taken into account, and a 

new general design procedure is presented in Figure 9.3. 
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Figure 9.1: Overall Experimental Plan for Related Copolymerization Study (based on [41]) 

  



233 

 

 

 
 

Figure 9.2: Practical Prescriptions for the Selection of Polymeric Sensing Materials (from [182]) 

 

  



234 

 

 
Figure 9.3: General Framework for the Design of Polymeric Materials for Custom Applications 

 

Of course, the framework shown in Figure 9.3 is very general, which ensures that it can be 

applicable to a wide range of polymeric materials and related applications. This process has been 

used for both the enhanced oil recovery study and the sensing material investigation within this 

thesis; the specific steps within the approach of Figure 9.3 will be discussed in more detail in the 

following sections.  

 

Although this design framework is inspired by the research performed in this thesis, it is aligned 

with ‘best practices’ for material design (see, for example, [46, 276]). The first stage (Section 9.2) 

requires a good understanding of product requirements. The middle stage (Section 9.3) allows for 

an improved awareness of product customization and provides an opportunity for preliminary 

characterization. Relationships between polymer formulations, structures and properties cannot be 
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manipulated if they are not first well-understood! The final stage (Section 9.4) moves us towards 

optimally designed materials, characterizes the most important properties, and still allows for 

modifications (as needed) to meet the desired specifications. A key aspect of this framework is the 

sequential and iterative nature of design: the characteristics of the polymer products (either in the 

preliminary investigation or in the optimal synthesis step) may not always meet the target 

requirements. In these cases, designing new screening experiments (with different polymer 

backbones, different customization techniques, etc.) may be the most appropriate path forward in 

this iterative optimal scenario. 

 

9.2 Awareness of Existing Materials and Methods 

 

Before undertaking any new investigation, it is important to identify (and build upon) prior 

research in the area. This may seem obvious, but it can be tempting to initiate a new project without 

a full understanding of existing materials and methods used for the application. The importance of 

prior knowledge in design cannot be understated; existing work (done either by the current 

researcher or by other research groups) should always be critically examined and used as building 

blocks for new studies. Although such strictures may sound like platitudes, the discipline involved 

in considering/thinking through the purpose of the background of an experimental program is very 

valuable. If the program involves collaboration, time used in building up knowledge and 

subsequently clarifying the main objectives is always well spent, and the effort is very informative. 

 

As mentioned briefly in earlier chapters (Sections 2.1.3 and 6.1.3), Ashby and Johnson [46] 

describe four selection methods for material design: analysis, synthesis, similarity and inspiration. 

Typically, at least one of these selection methods is applicable to the design of a new material. 

Selection by similarity was most useful for the enhanced oil recovery application, while selection 

by analysis was most relevant for sensing materials. That said, research (like thinking) is rarely 

limited to a single selection method. In fact, several different methods can be used simultaneously 

to increase the information available for design. A brief overview of the four selection methods is 

provided herein, and more details are available in the original work [46]. 

 

Selection by analysis is primarily motivated by an understanding of the technical requirements for 

an application. The general principle is to translate the (often non-technical) requirements into a 

statement of objectives and constraints, analyze and identify important material properties (those 

that determine performance), and screen a database of materials and their properties (this makes 

use of existing materials and methods). During the screening process, any materials that do not 

meet the constraints can be eliminated, and those that remain can be evaluated in terms of 

anticipated performance. This is the type of approach that was used for the acetone sensing project. 

Given the objectives and constraints, material properties (solubility parameters, desirable 

functional groups, glass transition temperature, etc.) were used to screen a database of 50 potential 

polymeric sensing materials (compiled by Stewart [182]). Preliminary screening led to the list of 
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nine polymeric materials shown in Table 6.2. Then, the list was reduced to five potential materials 

(consideration of solubility parameters and glass transition temperature). Finally, based on 

previous studies (as outlined in Section 6.1.3), the three most promising polymer backbones 

(PANI, PPy and PMMA) were selected for experimental evaluation trials. 

 

Selection by synthesis takes advantage of prior knowledge and essentially combines desirable 

properties from several existing technologies. New solutions (that is, new polymeric materials) 

can be developed by examining materials with desirable features and incorporating those materials 

(and, therefore, those features) into the new product. This was done, to some extent, in the final 

stage of the acetone sensing project: PANI and PPy both exhibited desirable characteristics, so a 

copolymer containing both promising monomers was synthesized (recall Section 8.2). However, 

true selection by synthesis involves exploiting the knowledge obtained from another problem that 

has already been ‘solved’; in this case, neither material had ideal properties on their own, which 

motivated the copolymerization process. 

 

Selection by similarity is exactly as the name suggests: building from existing (or potential) 

solutions for a given application. This technique is typically used when an established material 

becomes unavailable or shows room for improvement in one or more aspect. Of course, the new 

material should have similar properties to the existing (currently used) material, except in the area 

where we are targeting improvement. This approach was demonstrated in the enhanced oil 

recovery case study: we built on existing polymeric materials for EOR (namely previously studied 

copolymers of AAm/AAc [32]) and modified the polymer backbone by adding a third comonomer 

(AMPS). At several stages of the analysis, we compared the new product properties to reference 

materials (Alcoflood 955 and AAm/AAc copolymers designed for EOR [32]), which confirmed 

that the new material was a good candidate for the application. 

 

Selection by inspiration is arguably the least technical approach and was not used in great capacity 

in the current work. It relies on creative thinking and exploring ideas somewhat randomly [46]. 

Although the selection of materials by inspiration does not rely as heavily on the design principles 

described previously, it is important to leave some room for creativity in the process of designing 

new materials. In this case, flexibility is important, and an element of luck is intimately involved 

in successful applications. 

 

Regardless of the primary selection technique employed, all selection methods require databases 

of materials, methods and products (or at least a good understanding of current best practices). 

This is especially critical to aid in the understanding of specific application requirements. As 

demonstrated for both case studies, requirements exist both in terms of polymer properties and 

application performance. Key polymer properties that have been considered include composition 

(either for multi-component polymeric materials or metal oxide-doped materials), microstructure, 

molecular weight averages, glass transition temperature, crystallinity and surface morphology. For 
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both case studies, we also considered the presence of specific functional groups (contributing to 

stability, flow behaviour, or analyte affinity) along the polymer backbone. Most of these 

microstructural and bulk polymer properties are intrinsically related to the application 

performance. For example, molecular weight averages of the AMPS/AAm/AAc terpolymer affect 

the rheology (and subsequent flow behaviour and oil recovery ability) of the terpolymer solution. 

Similarly, the surface morphology of candidate sensing materials influences the ability to sorb gas 

analytes. A good understanding of these requirements (both for the material itself and for the end-

use application) allows for informed (targeted) selection of potential polymer backbones. 

 

Identifying promising polymer backbones for a given application can require a significant amount 

of exploration. As described already, researchers can make use of analysis, synthesis, similarity, 

or inspiration during this design stage. However, for any of these approaches, some prior work (or 

databases, if available) must be referenced so that the researcher can become familiar with the 

relevant properties of each candidate backbone. Again, this highlights the importance of having a 

solid background (both technical and of the prior work): here, the goal is to combine information 

about existing materials and methods, knowledge of product requirements, and relevant data for 

polymeric materials to create a ‘short-list’ of potential polymers for the target application. 

 

Finally, as evidenced in both case studies, comprehension of product customization techniques can 

be extremely beneficial for design. Since new materials are typically being developed, the 

possibility to customize said materials is largely based on theoretical knowledge. For example, in 

the enhanced oil recovery project, we were aware of the potential effects of solution conditions 

(pH, ionic strength, monomer concentration, etc.) on related homopolymerization and 

copolymerization systems, but the solution effects on the AMPS/AAm/AAc terpolymerization had 

not yet been evaluated. In contrast, the customization of polyaniline (through metal oxide or acid 

doping) was well-established. However, the success of the modification (the degree of 

incorporation of various metal oxides, for example) was unknown. Also, the specific effects of 

these customization steps on the application performance were hypothesized from theory. 

Determining the effectiveness of specific polymer backbones and product customization requires 

moving from theory to practice. Therefore, the next step is to move to preliminary (screening) 

experiments. 

 

9.3 Design of Preliminary Experiments 

 

The main purpose of the preliminary experimental investigation is to establish relationships 

between key variables and the most relevant polymer properties. This is accomplished using 

statistically designed experiments, which makes it possible to obtain the most experimental 

information in the fewest experimental runs (that is, making the best use of resources). In this 

thesis, different experimental designs were used for both case studies: a definitive screening design 

was employed for enhanced oil recovery (recall the experimental runs described in Section 3.2.1 
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and the results and discussion of Section 4.1), and a 33 factorial design was used for the sensing 

material study (experimental runs described in Section 7.2 and analysis provided in Section 8.1).  

 

The type of design of experiments employed depends on the prior knowledge available and on the 

desired outcomes from this stage. In Case Study #1, preliminary ternary reactivity ratios for 

AMPS/AAm/AAc were available from prior work [80]. If they were not, preliminary design of 

experiments would have focused on reactivity ratio estimation (feed compositions as key variables, 

designed using the error-in-variables model for reactivity ratio estimation as described in Section 

2.3.1). In that case, other (potentially influential) experimental conditions like pH, ionic strength 

and monomer concentration would be held constant. Then, once reactivity ratios were known for 

particular conditions, the next iteration of designed experiments would investigate these factor 

effects (based on the customization potential established in the previous stage of the design 

framework).  

 

In effect, for Case Study #1, we had prior knowledge (ternary reactivity ratio estimates at pH 7, IS 

= 0.9 M and [M] = 1.0 M) and the desire to estimate new ternary reactivity ratios. We had also 

identified key variables (pH, ionic strength, monomer concentration and feed composition) that 

could affect the terpolymer synthesis and product properties (recall Section 2.4). Based on the 

design of experiments ‘rule-of-thumb’ for optimal ternary reactivity ratio estimation [60], we 

wanted combinations of experimental runs where each run was rich in one comonomer and 

operating conditions were varied in a systematic way. This led to the definitive screening design 

of Table 3.1. 

 

For Case Study #2, we were not constrained by the design of experiments for multi-component 

polymerization and reactivity ratio estimation. Therefore, we were inspired to do a full factorial 

design to synthesize (and later characterize) three polymer backbones and three metal oxide 

dopants (recall Table 7.1). In this case, since we started with limited information, the key variables 

were the polymer backbones and the quantity/chemical identity of the dopants. Key variables could 

also delve further into the synthesis conditions: consider reaction temperature and duration, 

initiator type, reaction solution properties (aqueous vs. acidic, or the type of acid solution), and so 

on. However, in this case, the preliminary design of experiments was kept relatively simple. 

 

Once the main factors (variables) are identified and the design of experiments is developed, we 

move to polymer synthesis and characterization. It is important to note that the characterization at 

this stage is specifically for key polymer properties. That is, not all conceivable (relevant) polymer 

properties are investigated during the preliminary investigation. Carefully selected characteristics 

(whether polymer properties or application performance) can give us an indication of whether or 

not the material seems promising for the target application. Also, characterization results can 

provide some insight on how to further improve the material(s). 

 



239 

 

In the enhanced oil recovery study, one of the most important aspects in the preliminary stage was 

the estimation of ternary reactivity ratios. Thus, conversion data (from gravimetry) and 

composition data (from elemental analysis) were critical. We also evaluated molecular weight 

averages (using aqueous gel permeation chromatography, GPC) to ensure that we were in an 

appropriate range, especially compared to the available reference material. The cumulative 

terpolymer composition, reactivity ratio estimates and molecular weight averages provided us with 

an excellent starting point for these materials. Not only were we able to establish some 

relationships between recipe (formulation) effects and the polymer properties, but we were also 

able to identify optimal feed compositions for the next step of the investigation. An additional 

advantage of using elemental analysis and GPC at this stage is that both characterization 

techniques are relatively direct (especially compared to the application-specific characterization). 

These methods are not overly time-consuming, they can be done using our own equipment, and 

they require small amounts of polymeric material for characterization. Therefore, it was 

straightforward to decide on the key characteristics to be analyzed at this stage of the investigation.  

 

Similarly, for the acetone sensing project, only select characteristics were considered in the 

preliminary stage. In this case, we evaluated sensitivity and selectivity of all 30 candidate 

polymers. Although this was a time-consuming process, it was relatively uncomplicated, and 

provided us with a good overview of the materials’ performance. Again, the results from this stage 

(along with additional background information from the literature) helped us to identify the most 

promising materials and to discern the important variables (i.e., the polymer backbones were more 

influential than the metal oxides), which ultimately led to the synthesis of more customized 

materials. 

 

9.4 Design of Optimal Materials 

 

The results obtained from the preliminary experiments inform the design of optimal materials. At 

this stage of the design process, we have already identified key variables (and their impact on 

polymer properties) from the preliminary runs, so we can select new formulations that are expected 

to have desirable properties. The optimal design stage may be the final stage of the investigation, 

but it is also possible that some ‘fine-tuning’ will be needed. Therefore, the design cycle can be 

reiterated as needed until the application requirements are met. Using sequential and iterative 

procedures lead to optimality.  

 

As observed in Case Study #1, the most influential variables in the screening experiments for EOR 

polymers were ionic strength and monomer concentration (recall Section 4.1). Ionic strength had 

a significant impact on reactivity ratios and cumulative terpolymer composition, while monomer 

concentration influenced molecular weight averages (as expected). Thus, from the screening 

experiments, we were able to establish that low ionic strength (IS = 0.9 M) and high monomer 

concentration ([M] = 1.5 M) would be suitable for the application. Also, once we had estimated 
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reactivity ratios, we were able to predict (and optimize) average indicators from the sequence 

length distribution. This optimization step (in Section 4.1.2.3) provided us with feed compositions 

that were expected to reduce blockiness and yield a good distribution of ions along the polymer 

backbone (according to model predictions). Therefore, the key variables (ionic strength, monomer 

concentration and feed composition) were identified and manipulated given the results of the 

screening experiments, and two optimally designed terpolymers were arrived at and subsequently 

synthesized accordingly. 

 

Similarly, preliminary experiments in Case Study #2 (Section 8.1) indicated that the polymer 

backbone was much more influential than the type or quantity of metal oxide dopants. Thus, the 

customization potential of the two most promising backbones (polyaniline and polypyrrole) was 

considered. In this case, two new modification techniques (oxalic acid-doping and 

copolymerization) were investigated, but any number of new formulations could be investigated 

at this stage. 

 

The final aspect in the design of optimal materials is to evaluate (test) all relevant characteristics 

of the polymer products. This will likely include re-evaluation of ‘key’ characteristics measured 

in the preliminary stage as well as the evaluation of new properties that are essential for application 

performance. For example, in Case Study #1, we predicted the cumulative terpolymer composition 

of the optimally designed terpolymers. Once the terpolymers were synthesized, it was important 

to experimentally confirm that the polymer products had the expected cumulative composition. 

Similarly, in Case Study #2, we evaluated the sorption ability of the customized sensing materials, 

just as we did in the preliminary study. 

 

Typically, optimally designed polymeric materials should be evaluated in greater detail than those 

synthesized in the preliminary study. Since this is (often) the final stage, it is important that we 

know as much as possible about a given material. For example, do material properties match with 

model predictions? Do the materials perform well for the desired application? Do materials behave 

better than the (currently available) reference material in the areas we claimed? Sometimes, 

answering these questions can involve more time-consuming (and more costly) experimental 

work, so the full evaluation is reserved for the samples that we have designed (and, ultimately, the 

materials in which we are most confident based on their properties). In Case Study #1, for example, 

thermal behaviour, rheology, and polymer flooding efficiency were evaluated for the two most 

promising materials. Similarly, for Case Study #2, selectivity with two-gas mixtures and 

crystallinity behaviour were measured for the customized materials. This again saves money, time 

and resources, in contrast to the typically employed trial-and-error approaches. Whichever 

properties are evaluated should be relevant to the target application and should supplement the 

available information about the materials. Eventually, these characteristics may even be used as 

prior knowledge for future (fine-tuning) studies targeting new applications. 
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9.5 Extensions and Concluding Remarks 

 

The same framework described in this chapter (and illustrated in Figure 9.3) can be applied to any 

novel polymeric material; extensions from the two main case studies shown herein are evident. 

Using the enhanced oil recovery project as a guideline, the framework can easily be used to design 

multi-component polymers for any number of applications. The polyelectrolyte nature of 

AMPS/AAm/AAc makes it a complex case, so many copolymer and terpolymer systems may be 

simpler. Consider, for example, the design of multi-component polymers for pressure sensitive 

adhesives [136, 137] or self-polishing coatings [144]. A good understanding of reactivity ratios 

(using appropriate estimation procedures) can lead researchers towards optimality. 

 

Similarly, the framework can easily be applied to other sensing materials. In Section 6.2, we briefly 

discussed extending the project to formaldehyde detection, but any number of target analytes have 

the potential to be detected using the same approach. As described herein, researchers must 

consider application requirements (for a specific target analyte) to identify candidate backbones 

and customization potential. Related work has investigated prospective sensing materials for 

formaldehyde and ethanol [4, 259, 277], as well as aqueous sensors for the detection of heavy 

metals [278].  

 

Beyond these two case studies, many more opportunities exist for optimization. This design 

approach is intended to act as a general framework, which should encourage researchers to make 

use of prior knowledge, carefully designed experiments and targeted analysis to make the most of 

their resources. Ultimately, using sequential and iterative techniques, it is possible to converge on 

an optimally designed material for a specific target application. 

 

The extensions listed above are primarily long-term extensions, but the short-term extensions 

should not be overlooked. For example, in Case Study #1, we can further characterize the optimally 

designed terpolymers (and iterate the design steps as needed). Now that we have the optimal 

materials, it would be beneficial to investigate the thermal stability and brine compatibility 

(additional application requirements as per Section 2.1.2) and to demonstrate the economic 

benefits of the materials. Similarly, in Case Study #2, further iteration of the design steps 

(including additional customization of the selected polymer backbones) could improve the 

materials’ selectivity towards acetone. These extensions, among others, are discussed further in 

Chapter 10 (Section 10.3). 
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Chapter 10. Overall Thesis Conclusions, Main Thesis 

Contributions, and Recommendations  
 

10.1 Overall Thesis Conclusions 

 

The overarching theme of this work was to develop a framework to design polymeric materials 

with desirable properties. Two case studies were employed to demonstrate the design approach 

and to refine the framework. Case Study #1 sought optimized polymers for enhanced oil recovery 

and Case Study #2 demonstrated the design of polymeric sensing materials for acetone detection. 

 

In Case Study #1, design principles were successfully employed to understand and manipulate the 

properties of a terpolymer for enhanced oil recovery (EOR). The terpolymer composed of 2-

acrylamido-2-methylpropane sulfonic acid, acrylamide and acrylic acid (AMPS/AAm/AAc, a 

synthetic water-soluble terpolymer) was selected ‘by similarity’ [46]. The copolymer of 

acrylamide and acrylic acid had been well-studied, but the careful selection and addition of the 

third comonomer (AMPS) improved the polymer properties (in terms of stability, for example) 

and the application performance (that is, the oil recovery efficiency). 

 

The terpolymerization kinetics for AMPS/AAm/AAc proved to be very complex, largely due to 

the polyelectrolyte behaviour of the material. From the literature, it was anticipated that operating 

conditions (pH, ionic strength, monomer concentration and feed composition) would all have 

significant impacts on the polymerization kinetics and on the properties of the polymer products. 

Preliminary experiments (synthesis of 11 terpolymer formulations and related characterization) 

indicated that ionic strength had the most significant effect on terpolymer composition (and ternary 

reactivity ratios), whereas monomer concentration impacted the molecular weight averages of the 

product terpolymer. Also, from these screening experiments (and, specifically, reactivity ratio 

estimates), we were able to model the terpolymer microstructure (triad fractions) and choose feed 

compositions that would provide desirable microstructural properties. 

 

Two optimally designed formulations were carefully selected (based on the results of the screening 

experiments) and characterized. Among the properties considered were cumulative terpolymer 

composition, molecular weight averages, bulk intrinsic viscosity, thermal properties, rheological 

properties, and application performance (that is, enhanced oil recovery efficiency). Typical studies 

in the literature, when evaluating polymeric materials for specific applications, usually stop after 

an investigation of polymerization kinetics; at best, they may go to rheological properties. A 

significant contribution of the current thesis is that it saw the evaluation of the terpolymer from 

kinetics all the way to application performance and time-consuming testing of oil recovery 

efficiency. Both designed terpolymers had similar (or improved) characteristics compared to 

available reference materials. Ultimately, in terms of application performance, a significant 

improvement was observed: the newly synthesized terpolymers were able to achieve an overall oil 
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recovery of (on average) 78.0% for one optimal material and 88.7% for the second optimal 

material. In contrast, the commercially available reference material (evaluated during the same 

investigation) achieved an overall oil recovery of 59.8%. 

 

Another significant aspect of this study (which is tangentially related to the enhanced oil recovery 

project) is the importance of accurately determined reactivity ratios. This is especially true for 

ternary systems, since we have proven that binary reactivity ratios are not always appropriate to 

describe terpolymerization kinetics. Using binary reactivity ratios for ternary systems is ill-

advised, as it requires ignoring the presence of the third comonomer and doubling or tripling the 

amount of experimental work required. Also, there can be significant numerical differences in the 

reactivity ratio estimates for terpolymerizations and their analogous (binary) copolymerizations, 

which can drastically impact model predictions (of composition, sequence length distribution, and 

so on). This work has shown that researchers should aim to use terpolymerization data to estimate 

ternary reactivity ratios. Design of experiments (feed composition) and the error-in-variables-

model allow for straightforward data collection and parameter estimation. More importantly, 

researchers can be confident that the resulting parameter estimates are kinetically and statistically 

accurate. 

 

Case Study #2 demonstrated the advantages of using design prescriptions for the development of 

new polymeric sensing materials. Here, a good understanding of application requirements 

informed the selection of potential sensing materials ‘by analysis’ [46]. The initial list of candidate 

materials was reduced by considering various aspects of the polymer properties including target 

functional groups, solubility parameters, operational temperature, and product customization 

potential. The five possible polymer backbones that made the ‘short-list’ were further considered 

(through additional background research) and ultimately three polymeric materials were selected.  

 

Preliminary analysis of polyaniline (PANI), polypyrrole (PPy), and poly(methyl methacrylate) 

(PMMA) doped with metal oxide nanoparticles (SnO2, WO3 and ZnO) involved a full factorial 

design of experiments. Thirty materials were synthesized (varying polymer backbone, dopant type, 

and dopant quantity) and were characterized in terms of sensitivity and selectivity (that is, ability 

to sorb acetone alone (5 ppm pure acetone in balance nitrogen) and in the presence of other 

interferent gases (namely acetaldehyde, ethanol and benzene)). In some cases, additional 

properties (such as surface morphology and polymer composition) were evaluated to better 

understand and explain the experimental results. At this stage of the study, most metal oxides did 

not incorporate well into the polymer products, nor did they improve acetone sorption. The most 

influential variable was determined to be the polymer backbone type: PPy sorbed the highest 

concentrations of acetone (but was non-selective) and PANI also exhibited acceptable acetone 

sorption. However, PMMA did not sorb any acetone, whether or not metal oxide dopants were 

present.  
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In the customization stage, additional experiments were designed in an attempt to improve the two 

most promising materials (PANI and PPy). Oxalic acid doping (in situ) was employed to protonate 

the polymer backbone (thus taking advantage of the polarity of acetone) and copolymers of 

PANI/PPy were synthesized in an effort to combine the desirable properties of the two polymeric 

materials. These customized materials performed well in terms of acetone sorption and some 

improvement was observed in the selectivity (again, with respect to acetaldehyde, ethanol and 

benzene). Further improvement is still possible here, since a higher selectivity would be more 

desirable. This highlights the sequential iterative nature of the design framework, which leads to 

optimal materials. 

 

As we began investigating these two distinct (yet related) case studies, we hypothesized that design 

of polymeric materials (using a targeted approach and exploiting existing knowledge) is an 

important aspect of polymer research. Employing a design framework allows for the synthesis and 

evaluation of polymeric materials with desirable (optimized) properties for specific applications. 

We have shown that this framework is useful and relevant for design of polymeric materials. The 

effectiveness is visible throughout the research process, but it is especially evident when we see 

the application performance of the final (optimal) product. Therefore, we have demonstrated the 

importance of having a generalized design framework that researchers can use to guide their 

pursuit of optimal polymeric materials. Essentially, there is nothing more innovative and efficient 

than following a systematic plan. 

 

10.2 Main Thesis Contributions 

 

To appreciate the main contributions of this thesis, we revisit the objectives outlined in Chapter 1 

(Section 1.3): 

 

(1) We have identified important attributes of synthetic polymeric materials for improved 

enhanced oil recovery performance and selected the terpolymer of AMPS/AAm/AAc for the 

application. This was provided in Chapter 2, Section 2.1. This overview will also be presented in 

an upcoming manuscript in December 2019 (currently in production for a special issue invitation 

in Processes). 

 

(2) We have researched, characterized and exploited relationships between (experimental) 

synthesis conditions and properties of the AMPS/AAm/AAc terpolymer through a series of 

screening experiments. The literature background (anticipating the effect of synthesis conditions 

on the terpolymerization of AMPS/AAm/AAc) has been presented in Chapter 2 (specifically, 

Section 2.4). Similarly, experimental research (using screening experiments and appropriate 

characterization techniques) has been described in Chapter 3 (especially Section 3.2.1 for synthesis 

and parts of Section 3.3 for the characterization of screening experiments). The results of the 

screening experiments (and the relationships available to be exploited) are described in Chapter 4, 
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Section 4.1. These chapter subsections (all related to understanding and exploiting factor effects) 

have been presented at an international polymer conference (Polymer Reaction Engineering X, 

Punta Cana, Dominican Republic, May 20-25, 2018; by invitation only) and have been published 

in two parts: “AMPS/AAm/AAc Terpolymerization: Experimental Verification of the EVM 

Framework for Ternary Reactivity Ratio Estimation” [80] and “The Role of pH, Ionic Strength 

and Monomer Concentration on the Terpolymerization of 2-Acrylamido-2-Methylpropane 

Sulfonic Acid, Acrylamide and Acrylic Acid” [81]. 

 

(3) We have designed, synthesized, characterized and tested two optimal terpolymers of 

AMPS/AAm/AAc for the enhanced oil recovery application. The design was informed by the 

results of the screening experiments, and the justification of experimental conditions was presented 

in Section 4.2.1. The synthesis, characterization and application-specific testing techniques used 

are described in Chapter 3 (Sections 3.2.2, 3.3 and 3.4). All experimental results (showing the 

successful production of two optimally designed materials with improved polymer properties and 

excellent enhanced oil recovery performance) were presented in Chapter 4, Section 4.2. These 

results and the surrounding discussion are part of two manuscripts (in progress): one about the 

design of terpolymers with optimal polymer properties and one specifically about the enhanced oil 

recovery application performance (to be co-authored with Prof. Laura Romero-Zerón, Department 

of Chemical Engineering, at the University of New Brunswick). 

 

(4) The ‘aside’ in Chapter 5 demonstrated the importance of statistically correct experimental 

techniques and subsequent analyses, especially as they relate to copolymers and terpolymers. 

Chapter 5 is based on two papers related to appropriate procedures for reactivity ratio estimation. 

Most of Section 5.1 has been published in European Polymer Journal under the title “Binary vs. 

Ternary Reactivity Ratios: Appropriate Estimation Procedures with Terpolymerization Data” [38]. 

Similarly, most of Section 5.2 has been published in collaboration with researchers at the 

University of Ottawa, in a paper entitled “Making the Most of Parameter Estimation: 

Terpolymerization Troubleshooting Tips” [136]. Although the majority of the reactivity ratio 

estimation performed for this thesis was for ternary systems, a tangential project was to develop a 

‘user-friendly’ MATLAB code for binary reactivity ratio estimation. The related publication, 

“Computational Package for Copolymerization Reactivity Ratio Estimation: Improved Access to 

the Error-in-Variables-Model”, was published in Processes [6], and is receiving considerable 

interest from researchers. Select case studies from the project were shown (for background) in 

Chapter 2 (Section 2.3) and additional details were provided in Appendix B. 

 

(5) & (6) We have identified the important attributes of synthetic polymeric materials for sensing 

applications, primarily for acetone sensing (and, as an extension, for formaldehyde sensing as 

well). These considerations have been described in Chapter 6 (especially Section 6.1). We have 

also researched and characterized relationships between polymeric sensing materials and dopants 

as they relate to analyte sensitivity and selectivity; the experimental steps necessary to develop 
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these relationships were explained in Chapter 7 and preliminary experimental results were 

presented in Chapter 8 (Section 8.1). This screening investigation is summarized in a manuscript 

entitled “Design of Polymeric Sensing Materials for Acetone Detection”, currently under review 

[279]. As part of this project, we also developed a sensing material array (using a variety of 

different sensing materials for the detection of four different gas analytes). This tangential study, 

briefly described in Section 6.3, is part of a paper entitled “Evaluation of Doped and Undoped Poly 

(o-anisidine) as Sensing Materials for a Sensor Array for Volatile Organic Compounds”, which 

has been accepted for publication in Polymers for Advanced Technologies [251]. 

 

(7) We have designed, synthesized, characterized and tested customized polymers for detection of 

acetone gas. The customized materials have not yet been optimized (that is, there is still room for 

improvement in terms of selectivity), but the design framework has been successfully applied. 

There is still potential to use sequential iterative techniques to further improve the selectivity of 

the candidate sensing materials. However, the experimental process has been described in Chapter 

7, and relevant results and discussion for the customized materials are in Chapter 8 (Section 8.2).  

 

(8) Finally, we have demonstrated the advantages of a design framework (considering 

physicochemical behaviour, statistical design principles, and product requirements) for polymer 

synthesis and application performance. The design approach is infused throughout the thesis, but 

key aspects are revisited in Chapter 9. 

 

Over the course of my PhD, I have contributed to the publication of 10 refereed papers (first author 

for 7 of the 10 items). In addition, a paper related to sensing materials (described above) is 

currently under review. Finally, as alluded to in this section, at least 4 more publications are 

anticipated (an enhanced oil recovery overview, a paper about the design of optimal 

AMPS/AAm/AAc terpolymers for EOR, a paper about the enhanced oil recovery application 

performance, and a paper describing the customized sensing materials for acetone detection). 

Several of these manuscripts are already in progress. 

 

10.3 Recommendations for Future Work 

 

10.3.1 Short-Term Recommendations 

 

For Case Study #1 (enhanced oil recovery), the following short-term recommendations have been 

considered: 

 

 A more in-depth ionic strength study (expanding from Section 4.1.2) is recommended. It 

has been established that a cross-over point exists between IS = 0.9 M and 1.5 M, but it is 

unclear exactly where the shift occurs (that is, the exact ionic strength at which r12 = r21 

and r13 = r31 is still unknown). To find the true cross-over point, additional experiments 
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would need to be performed for 0.9 M < IS < 1.5 M at pH 7 and [M] = 1.0 M. A better 

understanding of the ionic strength effect could allow for the manipulation of feed 

formulation components and properties to control the degree of incorporation of each 

comonomer in the terpolymer product. This is related to a long-term recommendation in 

the following section. 

 

 The addition of AMPS to the polymer formulation for enhanced oil recovery has improved 

the application performance and we anticipate that it will also improve the mechanical and 

thermal stability of the polymer flooding solution. Mechanical stability has been evaluated 

using rheological measurements and thermal stability has been evaluated using TGA. 

However, it is also recommended that high temperature rheological testing be performed. 

This would provide additional information about the impact of increased temperature on 

polymer flow behaviour, which is relevant for the EOR application. This is related to the 

consideration of oil reservoir conditions, which is discussed further in the long-term 

recommendations.  

 

 The synthesis replicates and sampling replicates obtained for both Opt1 and Opt2 

terpolymers are suitable for a more detailed hierarchical design study. With these samples 

(and a hierarchical design approach), it is possible to evaluate the variability associated 

with synthesis, sampling, sample preparation, and characterization. Although some 

hierarchical (nested) analysis concepts have already been applied for molecular weight 

analysis (Section 4.2.2.3), it is not a full hierarchical study. Therefore, a complete 

hierarchical design project could be performed (evaluating the variability of molecular 

weight average measurements along with the other error contributions described earlier). 

This project is currently in progress. 

 

For Case Study #2 (polymeric materials for acetone detection), the foremost short-term 

recommendation is to further improve the selectivity towards acetone in the presence of other 

interferent gases. This involves reiterating the design sequence described in Chapter 9 (recall 

Figure 9.3). Three specific possibilities are described below:  

 

 Oxalic acid doping improved the sorption performance of the PANI/PPy copolymer, but 

there is still more room for improvement. It is recommended that other acids (like 

hydrochloric acid, for example) be considered to improve protonation of the polymer 

backbone. 

 

 The metal oxides considered in the preliminary investigation did not incorporate well, nor 

did they improve sorption performance. It may be beneficial to investigate techniques to 

improve metal oxide incorporation through a modified synthesis procedure or via pre-

treatment of the metal oxide nanoparticles.  
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 The two lone electron pairs on acetone’s carbonyl group act as a Lewis base. It would be 

worthwhile to investigate the addition of Lewis acids to the polymer backbone. 

 

10.3.2 Long-Term Recommendations 

 

For Case Study #1 (enhanced oil recovery), the following long-term recommendations have been 

considered: 

 

 As mentioned earlier (in the short-term recommendations and in Section 4.1.2), 

manipulation of terpolymerization solution properties can allow for customized terpolymer 

products. In determining the ternary reactivity ratios for AMPS/AAm/AAc at different 

ionic strength levels, only the comonomer pairs containing AMPS exhibited cross-over 

behaviour within the range considered. Thus, once the exact cross-over point is established 

(as per the short-term recommendations above), it would be possible to manipulate 

relationships between AMPS/AAm and AMPS/AAc by adjusting ionic strength. For the 

third comonomer pair (AAm/AAc), cross-over behaviour was not observed in the current 

study, but has been reported for the analogous AAm/AAc copolymer [85, 97, 99]. Although 

it is unwise to make extensions directly from the copolymer case to the terpolymer case, 

terpolymer synthesis below pH 5 may reveal the cross-over point for AAm/AAc. 

Therefore, one could conceivably manipulate both solution pH and ionic strength to exploit 

cross-over behaviour and influence reactivity ratios (and, by extension, related terpolymer 

properties) for AMPS/AAm/AAc terpolymerization. 

 

 The polymer flooding tests and heavy oil displacement tests (described in Section 3.4.2) 

require fairly large quantities of terpolymer samples (especially relative to the amount 

synthesized in a typical experiment). Of course, extensions to field reservoirs will require 

substantially more material. Therefore, there is a need to investigate the scale-up potential 

of the AMPS/AAm/AAc terpolymer synthesis. Preliminary investigations (in a 450 mL 

bench scale reactor) have already been performed, but more work is needed to ensure 

consistency of polymer properties. This item has as its target the lowering of manufacturing 

cost. 

 

 Considering extensions to field reservoirs necessitates the evaluation of the terpolymer 

performance in a variety of reservoir conditions. Specifically, solution rheology, polymer 

flow performance, and subsequent heavy oil displacement should be evaluated when there 

is high salinity, a high degree of hardness, and/or high temperatures. This type of study 

would benefit from a design of experiments, since the concentration and chemical nature 

of ions present (Na+, Mg2+, Ca2+, Cl-, SO4
- and others) could significantly impact the 

application performance of the polymeric material. In addition, high temperatures could 

impact performance, and temperature effects may be influenced by the salinity or degree 
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of hardness of the flood water (that is, there is potential for the confounding of factor 

effects, especially in terms of polymer precipitation [17]). Finally, the polymer 

concentration used in the polymer flooding solution can be varied widely, and should be 

optimized (minimize polymer concentration required for economic reasons and 

simultaneously maximize the degree of oil recovery). Therefore, a fractional factorial 

design of experiments investigating concentration and chemical nature of ions, temperature 

and polymer solution concentration is recommended. Given conditions typically reported 

in the literature [8, 23, 28], one might consider designing a series of experiments within 

the following ranges: 0 ppm < [NaCl] < 15,000 ppm; 0 ppm < [CaCl2] < 2,000 ppm; 25°C 

< T < 200°C; 1,000 ppm < [polymer] < 10,000 ppm. 

  

 All pH and ionic strength adjustments performed in the current work relied on sodium ions 

(Na+). However, it is well-established that the type of cation can impact the polymerization 

kinetics [107, 108]. Therefore, an interesting extension would be to evaluate the presence 

of different cations (consider, for example, potassium or calcium ion effects). This may 

also be helpful in addressing the following item (related to terpolymer purification). 

 

 As described in the main text, the AMPS/AAm/AAc samples contain residual NaCl and 

H2O. Ideally, especially if the material is to be used for the EOR application, the final 

product should only contain the ‘active ingredient’ (that is, the terpolymer). Therefore, it 

would be worthwhile to investigate additional purification techniques for NaCl removal 

and sample drying that could be used in post-processing. However, if this route is explored, 

it will be extremely important to avoid any harsh treatments that could alter microstructure 

(and subsequent EOR performance) of the terpolymer product. 

 

 Finally, in considering the kinetics aspect of this case study, there is still more to explore 

in terms of reactivity ratio estimation. Two interesting extensions are as follows: (1) 

development of a user-friendly MATLAB code for ternary reactivity ratio estimation 

(inspired by the binary reactivity ratio estimation program shown in Appendix B [6]) and 

(2) investigation of experimental error associated with low conversion data (and, 

specifically, how error-prone low conversion data affect instantaneous reactivity ratio 

estimation).  

 

For Case Study #2 (polymeric materials for acetone detection), the following long-term 

recommendations have been considered: 

 

 As described in the short-term recommendations section, there is still potential to improve 

the sensing material in terms of selectivity. If the ‘customization’ approaches listed in the 

short-term recommendations are insufficient, there is potential to reiterate the preliminary 

selection step. The two most promising polymer backbones that have been identified are 
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PANI and PPy, but other options are also available. For example, some functionalized 

polyaniline derivatives (e.g., poly-o-anisidine, poly-o-aminobenzoic acid, poly-m-

aminobenzoic acid, poly-m-nitroaniline) may be useful for acetone sensing. Similarly, 

although the three most promising metal oxides (based on the literature review) were 

evaluated herein, there are many more candidates for doping. There is always the potential 

to return to the literature for new inspiration. 

 

 It would be interesting to look at varying the composition of the PANI/PPy copolymers for 

property modification and improved kinetic understanding. If the copolymer composition 

were available, it would be possible to establish whether the copolymer product contains 

50% aniline and 50% pyrrole. On a related note, there is also potential to estimate reactivity 

ratios for the PANI/PPy copolymerization; one would need to perform additional runs 

(with designed formulations) to collect enough data for reactivity ratio estimation. 

 

 The sensing data presented herein could be useful within a sensing material array (as per 

Section 6.3). Given the large amount of information that has been collected (for individual 

gases and gas mixtures in the presence of many different sensing materials), there is a 

wealth of information that could be used as a ‘filtering algorithm’ for detection and 

identification of specific target analytes. 

 

 The prescriptions and the general framework used for designing polymeric materials for 

acetone sensing could also be extended to the detection of additional compounds. One area 

of interest is the detection of pollutant gases (benzene, nitrogen oxides, sulfur oxides, 

carbon monoxide, and so on). Benzene contributes to poor indoor air quality, and is often 

a by-product of industrial processes and vehicle exhaust. Similarly, NOx, SOx and CO are 

released from a variety of industrial processes and contribute significantly to air pollution. 

Thus, using the same general procedure demonstrated in this thesis, new polymeric 

materials could be developed to detect one or more of these gas components. 

 

 Polymeric sensing materials can also be designed for the detection of toxic aqueous 

analytes. This can be significantly more challenging than gaseous analytes, since the water 

effects must also be considered. However, preliminary work in this area has led to the 

development of a polymeric sensing material (and the design of a functional electrostatic 

Micro-Electro-Mechanical Systems (MEMS) sensor) to identify mercury acetate in water 

[278].  
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Appendix A. Derivation of Equations for Multi-Component 

Polymerization Kinetics 
 

A.1 Derivation of the Alfrey-Goldfinger Model 

 

This appendix contains the derivation of the Alfrey-Goldfinger model, as described in Chapter 2, 

Section 2.2.2.1 (see Equations 2.27 to 2.29). 

 

As described in the main text, 9 unique propagation steps occur during free radical 

terpolymerization. These propagation are shown alongside their respective rates of reaction in 

Equation A.1. These rate equations are used in Equations A.2 through A.4 to calculate the rate of 

consumption of the three comonomers. 

 

{
 
 
 
 
 
 

 
 
 
 
 
 𝑀1

∗ + 𝑀1  
𝑘11
→  𝑀1

∗,                 𝑅11 = 𝑘11[𝑀1][𝑀1
∗]

𝑀1
∗ + 𝑀2  

𝑘12
→  𝑀2

∗,                 𝑅12 = 𝑘12[𝑀2][𝑀1
∗]

𝑀1
∗ + 𝑀3  

𝑘13
→  𝑀3

∗,                 𝑅13 = 𝑘13[𝑀3][𝑀1
∗]

𝑀2
∗ + 𝑀1  

𝑘21
→  𝑀1

∗,                 𝑅21 = 𝑘21[𝑀1][𝑀2
∗]

𝑀2
∗ + 𝑀2  

𝑘22
→  𝑀2

∗,                 𝑅22 = 𝑘22[𝑀2][𝑀2
∗]

𝑀2
∗ + 𝑀3  

𝑘23
→  𝑀3

∗,                𝑅23 = 𝑘23[𝑀3][𝑀2
∗]

𝑀3
∗ + 𝑀1  

𝑘31
→  𝑀1

∗,                 𝑅31 = 𝑘31[𝑀1][𝑀3
∗]

𝑀3
∗ + 𝑀2  

𝑘32
→  𝑀2

∗,                 𝑅32 = 𝑘32[𝑀2][𝑀3
∗]

𝑀3
∗ + 𝑀3  

𝑘33
→  𝑀3

∗,                 𝑅33 = 𝑘33[𝑀3][𝑀3
∗]

 A.1 

 

𝑑[𝑀1]

𝑑t
= 𝑅11 + 𝑅21 + 𝑅31 A.2 

𝑑[𝑀2]

𝑑t
= 𝑅12 + 𝑅22 + 𝑅32 A.3 

𝑑[𝑀3]

𝑑t
= 𝑅13 + 𝑅23 + 𝑅33 A.4 

 

Using Equations A.2 through A.4, employing the long chain approximation (LCA) assumption for 

the free radicals (Equations A.5 through A.7), and knowing the relationship between rate constants 

and reactivity ratios (Equation 2.30), one can derive the instantaneous terpolymer composition 

model, also known as the Alfrey-Goldfinger equation (Equation A.8, which has also been shown 

in Equations 2.27 to 2.29 in the main text).  
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𝑅12 + 𝑅13 = 𝑅21 + 𝑅31            A.5 

𝑅21 + 𝑅23 = 𝑅12 + 𝑅32              A.6 

𝑅31 + 𝑅32 = 𝑅13 + 𝑅23                                                                                                                     A.7 

 

 

𝑑[𝑀1]: 𝑑[𝑀2]: 𝑑[𝑀3] =  

  [𝑀1] (
[𝑀1]

𝑟31𝑟21
+

[𝑀2]

𝑟21𝑟32
+

[𝑀3]

𝑟31𝑟23
) ([𝑀1] +

[𝑀2]

𝑟12
+
[𝑀3]

𝑟13
)  

∶ [𝑀2] (
[𝑀1]

𝑟12𝑟31
+

[𝑀2]

𝑟12𝑟32
+

[𝑀3]

𝑟32𝑟13
) ([𝑀2] +

[𝑀1]

𝑟21
+
[𝑀3]

𝑟23
)                                                                         

: [𝑀3] (
[𝑀1]

𝑟13𝑟21
+

[𝑀2]

𝑟23𝑟12
+

[𝑀3]

𝑟13𝑟23
) ([𝑀3] +

[𝑀1]

𝑟31
+
[𝑀2]

𝑟32
)   

                                                                                                                     

A.8 

 

However, this model relies on ratios of responses, which can cause issues with symmetry during 

parameter estimation. Therefore, the recast Alfrey-Goldfinger model (shown in what follows) is 

preferred. 

 

A.2 Original Derivation of the Recast Alfrey-Goldfinger Model (from Ratios) 

 

The derivation of the recast terpolymerization composition model is shown herein, as described in 

Chapter 2, Section 2.2.2.2 (see Equations 2.31 to 2.33). This was originally demonstrated by 

Kazemi [135], and uses the original Alfrey-Goldfinger equation (ratios) as a starting point. 

However, rather than using the monomer concentration form shown in Equation A.8, composition 

is presented in mole fractions fi (Equations A.9 to A.11): 

𝑑𝑓1
𝑑𝑓2

=
𝐹1
𝐹2
=
𝑓1 (

𝑓1
𝑟31𝑟21

+
𝑓2

𝑟21𝑟32
+

𝑓3
𝑟31𝑟23

) (𝑓1 +
𝑓2
𝑟12
+
𝑓3
𝑟13
)

𝑓2 (
𝑓1

𝑟12𝑟31
+

𝑓2
𝑟12𝑟32

+
𝑓3

𝑟32𝑟13
) (𝑓2 +

𝑓1
𝑟21
+
𝑓3
𝑟23
)
 

 

A.9 

𝑑𝑓1
𝑑𝑓3

=
𝐹1
𝐹3
=
𝑓1 (

𝑓1
𝑟31𝑟21

+
𝑓2

𝑟21𝑟32
+

𝑓3
𝑟31𝑟23

) (𝑓1 +
𝑓2
𝑟12
+
𝑓3
𝑟13
)

𝑓3 (
𝑓1

𝑟13𝑟21
+

𝑓2
𝑟23𝑟12

+
𝑓3

𝑟13𝑟23
) (𝑓3 +

𝑓1
𝑟31
+
𝑓2
𝑟32
)
 

 

A.10 

𝑑𝑓2
𝑑𝑓3

=
𝐹2
𝐹3
=
𝑓2 (

𝑓1
𝑟12𝑟31

+
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) (𝑓2 +
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𝑟21
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𝑓3
𝑟23
)

𝑓3 (
𝑓1
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) (𝑓3 +
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𝑟31
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A.11 
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The right-hand sides of Equations A.9 to A.11 are summarized as shown in Equation A.12 to 

simplify subsequent calculations. 
𝐹1

𝐹2
=
𝑔1

𝑔2
 ,      

𝐹1

𝐹3
=
𝑔1

𝑔3
,       

𝐹2

𝐹3
=
𝑔2

𝑔3
 

 

A.12 

 

Since stoichiometry dictates that the sum of the mole fractions of terpolymer composition must be 

unity (Equation A.13), we can use this relationship as a starting point and make substitutions from 

the original A-G model (Equation A.14). Further simplification gives Equation A.15 (for the F1 

mole fraction), and the same procedure can be followed for F2 and F3. The entire recast model is 

shown in Equations A.16 through A.18 (and is equivalent to Equations 2.31 to 2.33). 

 

𝐹1 + 𝐹2 + 𝐹3 = 1 

 

A.13 

𝐹1 +
𝑔2
𝑔1
𝐹1 +

𝑔3
𝑔1
𝐹1 = 1 

 

A.14 

𝐹1 =
𝑔1

𝑔1 + 𝑔2 + 𝑔3
 

 

A.15 
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𝑟31𝑟23
)(𝑓1+ 

𝑓2
𝑟12
+
𝑓3
𝑟13
)+𝑓2(

𝑓1
𝑟12𝑟31

+
𝑓2

𝑟12𝑟32
+

𝑓3
𝑟13𝑟32

)(𝑓2+ 
𝑓1
𝑟21
+
𝑓3
𝑟23
)+𝑓3(

𝑓1
𝑟13𝑟21

+
𝑓2

𝑟23𝑟12
+

𝑓3
𝑟13𝑟23

)(𝑓3+ 
𝑓1
𝑟31
+
𝑓2
𝑟32
)
= 0  
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𝐹2 − 
𝑓2(

𝑓1
𝑟12𝑟31

+
𝑓2

𝑟12𝑟32
+

𝑓3
𝑟13𝑟32

)(𝑓2+ 
𝑓1
𝑟21
+
𝑓3
𝑟23
)

𝑓1(
𝑓1

𝑟21𝑟31
+

𝑓2
𝑟21𝑟32

+
𝑓3

𝑟31𝑟23
)(𝑓1+ 

𝑓2
𝑟12
+
𝑓3
𝑟13
)+𝑓2(

𝑓1
𝑟12𝑟31

+
𝑓2

𝑟12𝑟32
+

𝑓3
𝑟13𝑟32

)(𝑓2+ 
𝑓1
𝑟21
+
𝑓3
𝑟23
)+𝑓3(

𝑓1
𝑟13𝑟21

+
𝑓2

𝑟23𝑟12
+

𝑓3
𝑟13𝑟23

)(𝑓3+ 
𝑓1
𝑟31
+
𝑓2
𝑟32
)
= 0  

 

A.17 

𝐹3 − 
𝑓3(

𝑓1
𝑟13𝑟21

+
𝑓2

𝑟23𝑟12
+

𝑓3
𝑟13𝑟23

)(𝑓3+ 
𝑓1
𝑟31
+
𝑓2
𝑟32
)

𝑓1(
𝑓1

𝑟21𝑟31
+

𝑓2
𝑟21𝑟32

+
𝑓3

𝑟31𝑟23
)(𝑓1+ 

𝑓2
𝑟12
+
𝑓3
𝑟13
)+𝑓2(

𝑓1
𝑟12𝑟31

+
𝑓2

𝑟12𝑟32
+

𝑓3
𝑟13𝑟32

)(𝑓2+ 
𝑓1
𝑟21
+
𝑓3
𝑟23
)+𝑓3(

𝑓1
𝑟13𝑟21

+
𝑓2

𝑟23𝑟12
+

𝑓3
𝑟13𝑟23

)(𝑓3+ 
𝑓1
𝑟31
+
𝑓2
𝑟32
)
= 0  

 

A.18 

 

 

A.3 New Derivation of the Alfrey-Goldfinger Model (from Kinetics) 

 

This newly derived equation does not use the Alfrey-Goldfinger ratios as a starting point. Instead, 

it is derived directly from kinetics. The first two steps are similar to what has been described for 

the original A-G model, since the propagation rates (Equation A.1) and the long chain assumption 

(LCA; Equations A.5 to A.7) are critical. 

 

Combining the individual rates of reaction (for each propagation step; Equation A.1) and the LCA 

relationships (Equations A.5 to A.7) gives Equations A.19 through A.21 (note that Equation A.5 

is used to obtain Equation A.19, and so on). 
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[𝑀1
∗] =  

𝑘21[𝑀1][𝑀2
∗] + 𝑘31[𝑀1][𝑀3

∗]

𝑘12[𝑀2] + 𝑘13[𝑀3]
 

 

A.19 

[𝑀2
∗] =  

𝑘12[𝑀2][𝑀1
∗] + 𝑘32[𝑀2][𝑀3

∗]

𝑘21[𝑀1] + 𝑘23[𝑀3]
 

 

A.20 

[𝑀3
∗] =  

𝑘13[𝑀3][𝑀1
∗] + 𝑘23[𝑀3][𝑀2

∗]

𝑘31[𝑀1] + 𝑘32[𝑀2]
 

A.21 

 

Next, consider ϕi
*, which represents the fraction of radicals of type i. Given the definition of ϕ1

* in 

Equation A.22, the equation can be inverted to obtain Equation A.23. Type 1 radicals are the focus 

herein, but the same general process applies to the other comonomer radicals. 

 

𝜙1
∗ = 

[𝑀1
∗]

[𝑀1
∗] + [𝑀2

∗] + [𝑀3
∗]

 

 

A.22 

1

𝜙1
∗ =  1 +

[𝑀2
∗]

[𝑀1
∗]
+
[𝑀3

∗]

[𝑀1
∗]

 

 

A.23 

 

To eliminate the radical terms (which cannot be directly measured), both ratios in Equation A.23 

are considered independently. First, radical terms are eliminated in [M2
*]/[M1

*] by combining 

Equations A.19 and A.20 (and recognizing that [M3
*] is the same in both equations and therefore 

‘cancels out’); see Equation A.24. Similarly, radical terms are eliminated in [M3
*]/[M1

*] by 

combining Equations A.19 and A.21 (now allowing [M2
*] to be ‘cancelled out’); see Equation 

A.25.  

 

[𝑀2
∗]

[𝑀1
∗]
=
𝑘12𝑘31[𝑀1][𝑀2] + 𝑘12𝑘32[𝑀2]

2 + 𝑘13𝑘32[𝑀2][𝑀3]

𝑘21𝑘31[𝑀1]
2 + 𝑘21𝑘32[𝑀1][𝑀2] + 𝑘23𝑘31[𝑀1][𝑀3]

 

 

A.24 

[𝑀3
∗]

[𝑀1
∗]
=
𝑘13𝑘21[𝑀1][𝑀3] + 𝑘12𝑘23[𝑀2][𝑀3] + 𝑘13𝑘23[𝑀3]

2

𝑘21𝑘31[𝑀1]
2 + 𝑘21𝑘32[𝑀1][𝑀2] + 𝑘23𝑘31[𝑀1][𝑀3]

 

 

A.25 

 

In Equations A.24 and A.25, the denominator is the same, which makes substitution into Equation 

A.23 fairly straightforward: 

 

1

𝜙1
∗ =

[

𝑘21𝑘31[𝑀1]
2 + 𝑘21𝑘32[𝑀1][𝑀2] + 𝑘23𝑘31[𝑀1][𝑀3]

+ 𝑘12𝑘31[𝑀1][𝑀2] + 𝑘12𝑘32[𝑀2]
2 + 𝑘13𝑘32[𝑀2][𝑀3]

+ 𝑘13𝑘21[𝑀1][𝑀3] + 𝑘12𝑘23[𝑀2][𝑀3] + 𝑘13𝑘23[𝑀3]
2

]

𝑘21𝑘31[𝑀1]
2 + 𝑘21𝑘32[𝑀1][𝑀2] + 𝑘23𝑘31[𝑀1][𝑀3]

 

A.26 
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∴ 𝜙1
∗ = 

𝑘21𝑘31[𝑀1]
2 + 𝑘21𝑘32[𝑀1][𝑀2] + 𝑘23𝑘31[𝑀1][𝑀3]

[

𝑘21𝑘31[𝑀1]
2 + 𝑘21𝑘32[𝑀1][𝑀2] + 𝑘23𝑘31[𝑀1][𝑀3]

+ 𝑘12𝑘31[𝑀1][𝑀2] + 𝑘12𝑘32[𝑀2]
2 + 𝑘13𝑘32[𝑀2][𝑀3]

+ 𝑘13𝑘21[𝑀1][𝑀3] + 𝑘12𝑘23[𝑀2][𝑀3] + 𝑘13𝑘23[𝑀3]
2

]

 

 

A.27 

 

Similarly, for the other comonomers: 

𝜙2
∗ = 

𝑘12𝑘31[𝑀1][𝑀2] + 𝑘12𝑘32[𝑀2]
2 + 𝑘13𝑘32[𝑀2][𝑀3]

[

𝑘21𝑘31[𝑀1]
2 + 𝑘21𝑘32[𝑀1][𝑀2] + 𝑘23𝑘31[𝑀1][𝑀3]

+ 𝑘12𝑘31[𝑀1][𝑀2] + 𝑘12𝑘32[𝑀2]
2 + 𝑘13𝑘32[𝑀2][𝑀3]

+ 𝑘13𝑘21[𝑀1][𝑀3] + 𝑘12𝑘23[𝑀2][𝑀3] + 𝑘13𝑘23[𝑀3]
2

]

 

 

A.28 

𝜙3
∗ = 

𝑘13𝑘21[𝑀1][𝑀3] + 𝑘12𝑘23[𝑀2][𝑀3] + 𝑘13𝑘23[𝑀3]
2

[

𝑘21𝑘31[𝑀1]
2 + 𝑘21𝑘32[𝑀1][𝑀2] + 𝑘23𝑘31[𝑀1][𝑀3]

+ 𝑘12𝑘31[𝑀1][𝑀2] + 𝑘12𝑘32[𝑀2]
2 + 𝑘13𝑘32[𝑀2][𝑀3]

+ 𝑘13𝑘21[𝑀1][𝑀3] + 𝑘12𝑘23[𝑀2][𝑀3] + 𝑘13𝑘23[𝑀3]
2

]

 

 

A.29 

 

Finally, the radical fractions (ϕi
*) can be used to determine the instantaneous copolymer 

composition (Fi). The general expression for monomer 1 (F1) is in Equation A.30; since total 

radical concentration [R*] and monomer concentration [M] are in both the numerator and the 

denominator, they can be eliminated. Replacing the ϕi
* terms in Equation A.30 with the 

expressions derived in Equations A.27 through A.29 (and considering the reactivity ratio 

definitions shown in Equation 2.30) yields an expression for F1 that does not require the 

determination of any radical concentrations (see Equation A.31). Similar expressions can be 

obtained (following the same process) for F2 and F3; these are shown in Equations A.32 and A.33 

for completeness. These expressions (Equations A.31 to A.33) are equivalent to the recast Alfrey-

Goldfinger model shown in Equations 2.31 to 2.33 (and derived in Section A.2), but use 

terpolymerization kinetics as a starting point (rather than pre-determined ratios from the original 

Alfrey-Goldfinger model). 

 

𝐹1 = 
𝑓1(𝑘11𝜙1

∗ + 𝑘21𝜙2
∗ + 𝑘31𝜙3

∗)

[

𝑓1(𝑘11𝜙1
∗ + 𝑘21𝜙2

∗ + 𝑘31𝜙3
∗)

+ 𝑓2(𝑘12𝜙1
∗ + 𝑘22𝜙2

∗ + 𝑘32𝜙3
∗)

+ 𝑓3(𝑘13𝜙1
∗ + 𝑘23𝜙2

∗ + 𝑘33𝜙3
∗)
]

 

 

A.30 
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𝐹1 = 
𝑓1 (

𝑓1
𝑟21𝑟31

+
𝑓2

𝑟21𝑟32
+

𝑓3
𝑟31𝑟23

)(𝑓1 + 
𝑓2
𝑟12
+
𝑓3
𝑟13
)

[
 
 
 
 
 𝑓1 (

𝑓1
𝑟21𝑟31

+
𝑓2

𝑟21𝑟32
+

𝑓3
𝑟31𝑟23

)(𝑓1 + 
𝑓2
𝑟12
+
𝑓3
𝑟13
)

+𝑓2 (
𝑓1

𝑟12𝑟31
+

𝑓2
𝑟12𝑟32

+
𝑓3

𝑟13𝑟32
) (𝑓2 + 

𝑓1
𝑟21
+
𝑓3
𝑟23
)

+𝑓3 (
𝑓1

𝑟13𝑟21
+

𝑓2
𝑟23𝑟12

+
𝑓3

𝑟13𝑟23
) (𝑓3 + 

𝑓1
𝑟31
+
𝑓2
𝑟32
)
]
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𝐹2 = 
𝑓2 (

𝑓1
𝑟12𝑟31

+
𝑓2

𝑟12𝑟32
+

𝑓3
𝑟13𝑟32

)(𝑓2 + 
𝑓1
𝑟21
+
𝑓3
𝑟23
)

[
 
 
 
 
 𝑓1 (

𝑓1
𝑟21𝑟31

+
𝑓2

𝑟21𝑟32
+

𝑓3
𝑟31𝑟23

)(𝑓1 + 
𝑓2
𝑟12
+
𝑓3
𝑟13
)

+𝑓2 (
𝑓1

𝑟12𝑟31
+

𝑓2
𝑟12𝑟32

+
𝑓3

𝑟13𝑟32
) (𝑓2 + 

𝑓1
𝑟21
+
𝑓3
𝑟23
)

+𝑓3 (
𝑓1

𝑟13𝑟21
+

𝑓2
𝑟23𝑟12

+
𝑓3

𝑟13𝑟23
) (𝑓3 + 

𝑓1
𝑟31
+
𝑓2
𝑟32
)
]
 
 
 
 
 

 

 

A.32 

𝐹3 = 
𝑓3 (

𝑓1
𝑟13𝑟21

+
𝑓2

𝑟23𝑟12
+

𝑓3
𝑟13𝑟23

)(𝑓3 + 
𝑓1
𝑟31
+
𝑓2
𝑟32
)

[
 
 
 
 
 𝑓1 (

𝑓1
𝑟21𝑟31

+
𝑓2

𝑟21𝑟32
+

𝑓3
𝑟31𝑟23

)(𝑓1 + 
𝑓2
𝑟12
+
𝑓3
𝑟13
)

+𝑓2 (
𝑓1

𝑟12𝑟31
+

𝑓2
𝑟12𝑟32

+
𝑓3

𝑟13𝑟32
) (𝑓2 + 

𝑓1
𝑟21
+
𝑓3
𝑟23
)

+𝑓3 (
𝑓1

𝑟13𝑟21
+

𝑓2
𝑟23𝑟12

+
𝑓3

𝑟13𝑟23
) (𝑓3 + 

𝑓1
𝑟31
+
𝑓2
𝑟32
)
]
 
 
 
 
 

 

 

A.33 
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Appendix B. Computational Package for EVM 
 

B.1 Computational Package Demonstration 

 

The following screenshots from the MATLAB-based EVM program are meant to provide an 

overview of the computational package; more details are provided in the related publication [6]. 

The analysis of instantaneous copolymerization data is presented herein, but the same general 

information is relevant to the analysis of cumulative data.  

 

We will start by demonstrating the manual data input option, then we will show the same 

information using the ‘data file’ option. The prompts contain sample data from McManus and 

Penlidis [280]. If the user decides to input data using a pre-made data file, the same inputs are 

required (with slightly different formatting). 

 

Running the program brings up the ‘QuickStart’ menu (Figure B.1), and Figure B.2 through Figure 

B.4 show the pop-up menus (that is, the required data) for manual input of instantaneous 

composition data. Typically, only the preliminary reactivity ratio estimates (Figure B.2) and the 

copolymerization (composition) data (Figure B.3) need to be modified by the user; the form of the 

data entry can be observed in the screenshots below. 

 

As for Figure B.4, the only default value that may require updating (at the user’s discretion) is the 

variance-covariance matrix. If necessary, the magnitude of the matrix entries may be modified but 

the size of the matrix itself should not be changed (that is, it should remain a 2 × 2 matrix for the 

instantaneous case). 

 

 
Figure B.1: ‘QuickStart’ Menu 
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Figure B.2: ‘Preliminary Estimates’ Prompt 

 

 
Figure B.3: ‘Copolymerization Data’ Prompt 
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Figure B.4: ‘Default Settings’ Prompt 

 

An alternative to the step-by-step prompts is to include all the required estimation data in a single 

“.txt” data file. When a user chooses the data file input option, a pop-up window containing their 

files appears (that is, any files in the same folder as the ‘QuickStart’ file). Once an appropriate file 

is selected, the program will access the data and run automatically. 

 

A data file includes all of the same data as the prompts but it can be saved, modified and reused. 

It can either be created in Notepad or in MATLAB but should have the extension “.txt”. The data 

file must be prepared prior to running the EVM program, since the program will access the data 

file ‘behind the scenes’ to obtain the required information. A sample data file (here for the 

McManus and Penlidis [280] data set) is shown in Figure B.5. 
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Figure B.5: Sample Data File for Computational Package 

 

In Figure B.5, line 1 provides the ‘Default Settings’ for the program, such as the number of 

parameters, equations and variables (the reader will notice that these values are the same as in 

Figure B.4, with slightly different formatting). Line 2 contains preliminary reactivity ratio 

estimates (recall Figure B.2), while lines 3 and 4 can be combined to form the variance-covariance 

matrix for the variables. Finally, lines 5 through 12 are the experimental copolymerization data 

(recall Figure B.3). The first column represents the initial feed composition (f1,0) and the second 

column represents the corresponding measured cumulative copolymer composition (𝐹1). 

 

B.2 Relevant Statistical Principles for the Error-in-Variables Method 

 

Information about relevant statistical principles is presented. This is intended to provide additional 

insight about ‘behind-the-scenes’ mathematical details. The program user need not have a detailed 

understanding of the statistical principles used in the error-in-variables-model. However, for the 

interested reader, some additional information is included in what follows. 

 

B.2.1 Additive and Multiplicative Error 

 

The magnitude (and type) of error associated with the variables can be determined through 

independent replication. Typically, the relationship between a variable and its error is either 

additive (absolute) or multiplicative (relative). Multiplicative error is typically assumed because 

error is presented as a percentage of the measurement (and is, therefore, relative in nature). 

However, if a user has insight about a system that indicates additive error, it is possible to modify 

the program accordingly.  
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The relationships between the ‘true’ value of the variable (𝜉𝑖) and the measured/recorded values 

(𝑥𝑖) are shown in Equations B.1 and B.2 for additive and multiplicative error, respectively.  

𝑥 = 𝜉 + 𝑘𝜀 B.1 

𝑥 = 𝜉(1 + 𝑘𝜀) B.2 

Where k is a constant that reflects the uncertainty of the variables (for example, if 5% error is 

assumed for the multiplicative case, k = 0.05). Error, ε, is a random variable that is typically 

uniformly distributed between −1 and 1 [281]. 

 

When multiplicative error is assumed, it becomes necessary to transform Equation B.2 so that the 

error term is additive. Taking the natural logarithm of both sides gives Equation B.3. Note that 

ln(1 + kε) can be replaced by kε, as long as the magnitude of the error does not exceed 10% (k ≤ 

0.10). 

ln(𝑥) = ln(𝜉) + 𝑘𝜀 B.3 

 

Regardless of error structure, the value of k (the degree of uncertainty) manifests itself in the same 

way in the variance-covariance matrix. This is shown in Equations B.4 through B.7. Equation B.4 

gives the variance of x (for the additive case), whereas Equation B.5 gives the variance of ln(x) 

(for the multiplicative case).  

𝑉(𝑥) = 𝑉(𝜉 + 𝑘𝜀) = 𝑘2𝑉(𝜀) B.4 

𝑉(ln(𝑥)) = 𝑉(ln(𝜉) + 𝑘𝜀) = 𝑘2𝑉(𝜀) B.5 

 

Equations B.6 and B.7 are relevant to both error structures since V(x) = V(ln(x)), as shown above. 

𝑉(𝜀) = 𝐸(𝜀2) − [𝐸(𝜀)]2 = ∫
𝜀2

2
𝑑𝜀 =

1

3

1

−1

 B.6 

𝑉(𝑥) = 𝑉(ln(𝑥)) =
𝑘2

3
 B.7 

 

The variance estimate shown in Equation B.7 is applied to different variables, which populate the 

variance-covariance matrix for the EVM program. The program’s default settings assume 1% error 

associated with feed composition (x1 = f1,0 and k1 = 0.01) and 5% error associated with cumulative 

copolymer composition (x2 = 𝐹𝑖 and k2 = 0.05). Therefore, the variance-covariance matrix, V, for 

the instantaneous (low conversion) case is shown in Equation B.8. 

𝑉 = [
𝑉(𝑥1) 0
0 𝑉(𝑥2)

] =

[
 
 
 
𝑘1
2

3
0

0
𝑘2
2

3 ]
 
 
 

=

[
 
 
 
0.012

3
0

0
0.052

3 ]
 
 
 

= [0.00003 0

0 0.00083
] B.8 

This can be cross-referenced with the input data shown in Section B.1 (Figure B.4 and Figure B.5). 
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B.2.2 Calculation of G as an EVM Program Output 

 

Only the very basics are presented in what follows. A detailed discussion of the nested-iterative 

EVM algorithm has been presented by Reilly and Patino-Leal [69] and has more recently been 

described by Kazemi et al. [54, 58]. 

 

Equation B.9 below is the definition of G, the second derivative of Φ with respect to the 

parameters. 

𝐺 =  𝐸 [
𝑑2Φ

𝑑𝜃𝑖𝑑𝜃𝑗
] = ∑𝑟𝑖𝑍𝑖

′(𝐵𝑖𝑉𝐵𝑖
′)
−1
𝑍𝑖

𝑛

𝑖=1

 B.9 

Where ri is the number of replicates for the ith trial and V is the variance-covariance matrix of the 

variables). Zi is the vector of partial derivatives of the function 𝑔 (𝜉𝑖, 𝜃) (that is, the model) with 

respect to the parameters for the mth element (see Equation B.10) and Bi is the vector of partial 

derivatives of the function 𝑔 (𝜉𝑖, 𝜃) with respect to the variables (Equation B.11). 

𝑍𝑖 = [
𝜕𝑔 (𝜉𝑖 , 𝜃)

𝜕𝜃𝑚
] B.10 

𝐵𝑖 = [
𝜕𝑔 (𝜉𝑖 , 𝜃)

𝜕 (𝜉𝑖)
] B.11 
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Appendix C. Relevant Data & Calculations for Case Study #1 
 

C.1 Sample Gravimetry Calculations 

 

These sample calculations are for the high NaCl system described in Section 4.1.4 (specifically, 

Sample 10 from Run S7). However, the same general principles apply for all terpolymerization 

analyses described in Chapter 4. 

 

First, the total monomer mass in a given pre-polymerization solution is calculated. In the case of 

Run S7, both acids are fully dissociated, which means that each mole of AMPS and AAc is actually 

one mole of NaAMPS and NaAAc (where the Na+ ions are introduced during titration with NaOH). 

 

Total mmonomer in pre-polymerization solution: 

𝑚𝑚𝑜𝑛𝑜𝑚𝑒𝑟 = (∑𝑚𝑚𝑜𝑛𝑜𝑚𝑒𝑟  𝑡𝑜𝑡𝑎𝑙 𝑓𝑟𝑜𝑚 𝑠𝑡𝑜𝑐𝑘 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛) (
𝑚𝐿 𝑠𝑡𝑜𝑐𝑘 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑖𝑛 𝑝𝑟𝑒 − 𝑝𝑜𝑙𝑦𝑚𝑒𝑟 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛

𝑡𝑜𝑡𝑎𝑙 𝑚𝐿 𝑠𝑡𝑜𝑐𝑘 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛
)

= [(10.363 𝑔 𝐴𝑀𝑃𝑆 ×
𝑚𝑜𝑙 𝐴𝑀𝑃𝑆

207.24 𝑔 𝐴𝑀𝑃𝑆
×
1 𝑚𝑜𝑙 𝑁𝑎𝐴𝑀𝑃𝑆

1 𝑚𝑜𝑙 𝐴𝑀𝑃𝑆
×
229.22 𝑔 𝑁𝑎𝐴𝑀𝑃𝑆

𝑚𝑜𝑙 𝑁𝑎𝐴𝑀𝑃𝑆
)

+ 28.439 𝑔 𝐴𝐴𝑚

+ (3.5928 𝑔 𝐴𝐴𝑐 ×
𝑚𝑜𝑙 𝐴𝐴𝑐

 72.06 𝑔 𝐴𝐴𝑐
×
1 𝑚𝑜𝑙 𝑁𝑎𝐴𝐴𝑐

1 𝑚𝑜𝑙 𝐴𝐴𝑐

×
94.04 𝑔 𝑁𝑎𝐴𝐴𝑐

𝑚𝑜𝑙 𝑁𝑎𝐴𝐴𝑐
) 𝑖𝑛 250 𝑚𝐿 𝑠𝑡𝑜𝑐𝑘 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛] (

100 𝑚𝐿 𝑠𝑡𝑜𝑐𝑘 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛

250 𝑚𝐿 𝑠𝑡𝑜𝑐𝑘 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛
) 

 

Therefore, in the pre-polymerization solution: 

𝑚𝑚𝑜𝑛𝑜𝑚𝑒𝑟 = 17.8359 𝑔 𝑚𝑜𝑛𝑜𝑚𝑒𝑟 𝑖𝑛 100 𝑚𝐿 𝑠𝑡𝑜𝑐𝑘 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 

𝑚𝑚𝑜𝑛𝑜𝑚𝑒𝑟 = 17.8359 𝑔 𝑚𝑜𝑛𝑜𝑚𝑒𝑟 𝑖𝑛 200 𝑚𝐿 𝑝𝑟𝑒 − 𝑝𝑜𝑙𝑦𝑚𝑒𝑟 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 

C.1 

 

With this information, the mass of monomer (represented as NaM) present in each sample flask 

can be calculated. Generally, since the pre-polymerization solution is an aqueous solution, a 

solution density of 1 g/ml can be assumed. However, when large amounts of NaCl are used to 

adjust the ionic strength for a given polymerization, the mass of NaCl must be added to the total 

‘recipe’ mass. Not including the NaCl mass would result in the measured monomer mass (that is, 

the sum of monomer masses from all individual vials) being larger than physically possible given 

the stock solution calculations. 

 

Specifically for sample S7-10: 
𝑚𝑚𝑜𝑛𝑜𝑚𝑒𝑟  𝑖𝑛 𝑠𝑎𝑚𝑝𝑙𝑒

= (
𝑚𝑚𝑜𝑛𝑜𝑚𝑒𝑟  𝑖𝑛 𝑝𝑟𝑒 − 𝑝𝑜𝑙𝑦𝑚𝑒𝑟𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛

𝑚𝐿 𝑝𝑟𝑒 − 𝑝𝑜𝑙𝑦𝑚𝑒𝑟 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛
)(
𝑚𝐿 𝑝𝑟𝑒 − 𝑝𝑜𝑙𝑦𝑚𝑒𝑟 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛

𝑚𝑝𝑟𝑒−𝑝𝑜𝑙𝑦𝑚𝑒𝑟 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 +𝑚𝑁𝑎𝐶𝑙
) (𝑚𝑟𝑒𝑐𝑖𝑝𝑒 𝑖𝑛 𝑣𝑖𝑎𝑙)

= (
17.8359 𝑔 𝑚𝑜𝑛𝑜𝑚𝑒𝑟

 200 𝑚𝐿 𝑝𝑟𝑒 − 𝑝𝑜𝑙𝑦𝑚𝑒𝑟 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛
) (

200 𝑚𝐿 𝑝𝑟𝑒 − 𝑝𝑜𝑙𝑦𝑚𝑒𝑟 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛

200 𝑔 𝑝𝑟𝑒 − 𝑝𝑜𝑙𝑦𝑚𝑒𝑟 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 + 18.7041 𝑔 𝑁𝑎𝐶𝑙
) (22.9319 𝑔 𝑖𝑛 𝑣𝑖𝑎𝑙) 

= 1.8702 𝑔 𝑚𝑜𝑛𝑜𝑚𝑒𝑟 (𝑜𝑟 𝑔 𝑁𝑎𝑀) 𝑖𝑛 𝑠𝑎𝑚𝑝𝑙𝑒 𝑆7 − 10. 
 

C.2 
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The sum of monomer masses from all individual vials is 17.1041 g (~96% of calculated mass 

shown in Equation C.1). However, ignoring the NaCl mass in the above calculation would make 

the sum of monomer masses from all individual vials equal to 18.7037 g (nearly 1 g more than 

anticipated given Equation C.1). This confirms the importance of considering NaCl in the 

monomer mass calculation. 

 

Now that the total monomer mass in each vial is known, the conversion can be calculated using 

gravimetry. This calculation is the ratio of polymer (sample) mass to monomer mass, and this 

general formula was used to determine the conversion vs. time results in Figure 4.12. However, as 

discussed, the sample mass in these (high NaCl) cases should be divided into polymer and NaCl 

contributions, as shown in Equation C.3. 

 

Since 𝑡𝑜𝑡𝑎𝑙 𝑠𝑎𝑚𝑝𝑙𝑒 𝑚𝑎𝑠𝑠 = 𝑝𝑜𝑙𝑦𝑚𝑒𝑟 𝑚𝑎𝑠𝑠 + 𝑁𝑎𝐶𝑙 𝑚𝑎𝑠𝑠  

and 𝑁𝑎𝐶𝑙 𝑚𝑎𝑠𝑠 = 𝑤𝑡% 𝐴𝐴𝑚 ×
𝑀𝑊𝑁𝑎𝐶𝑙

𝑀𝑊𝐴𝐴𝑚
 

 

C.3 

 

Specifically for sample S7-10: 
 

𝑝𝑜𝑙𝑦𝑚𝑒𝑟 𝑚𝑎𝑠𝑠 =
𝑠𝑎𝑚𝑝𝑙𝑒 𝑚𝑎𝑠𝑠

1 + 𝑤𝑡% 𝐴𝐴𝑚 ×
𝑀𝑊𝑁𝑎𝐶𝑙
𝑀𝑊𝐴𝐴𝑚

=
2.8703 𝑔 𝑠𝑎𝑚𝑝𝑙𝑒

1 + [
0.8(71.08𝑔/𝑚𝑜𝑙)

0.1 𝑚𝑜𝑙 𝐴𝑀𝑃𝑆(207.25𝑔/𝑚𝑜𝑙) + 0.8 𝑚𝑜𝑙 𝐴𝐴𝑚(71.08𝑔/𝑚𝑜𝑙) + 0.1 𝑚𝑜𝑙 𝐴𝐴𝑐(72.01𝑔/𝑚𝑜𝑙)
] (
58.44 𝑔/𝑚𝑜𝑙
71.08 𝑔/𝑚𝑜𝑙

)
 

= 1.8502 𝑔 𝑝𝑜𝑙𝑦𝑚𝑒𝑟 

 

C.4 

 

Therefore: 

𝑁𝑎𝐶𝑙 𝑚𝑎𝑠𝑠 = 𝑡𝑜𝑡𝑎𝑙 𝑠𝑎𝑚𝑝𝑙𝑒 𝑚𝑎𝑠𝑠 − 𝑝𝑜𝑙𝑦𝑚𝑒𝑟 𝑚𝑎𝑠𝑠 = 2.8703 𝑔 − 1.8502 𝑔

= 1.0201 𝑔 𝑁𝑎𝐶𝑙 

 

C.5 

 

Finally, using gravimetry: 

% 𝑐𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛 =
𝑚𝑝𝑜𝑙𝑦𝑚𝑒𝑟

𝑚𝑁𝑎𝑀
× 100 =

1.8502𝑔 𝑝𝑜𝑙𝑦𝑚𝑒𝑟

1.8702𝑔 𝑚𝑜𝑛𝑜𝑚𝑒𝑟
× 100 = 98.93% 

 

C.6 

 

 

As mentioned in the main text (Section 3.3.1), the mass of the sodium ions (attracted to the 

dissociated acids along the polymer chain) must also be considered in conversion calculations (as 

per the recommendation of Riahinezhad et al. [84]). The number of moles of each comonomer in 

the resulting terpolymer was determined using elemental analysis, and sample calculations will be 

presented in Section C.2. The mass of Na+ ions in the system is directly related to the number of 

moles of AMPS and AAc, as the molar ratio of Na+ to both AMPS and AAc is 1:1. Calculations 

for Na+ mass (which is distinct from the NaCl correction shown previously) and corrected 

conversion are shown below for a representative sample: 
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Per 100g AMPS/AAm/AAc terpolymer: 

g Na+ = (0.0763 mol AMPS + 0.0520 mol AAc) ×
1 mol Na

1 mol acidic comonomer
×
22.989 g Na

mol Na
= 2.948 g  C.7 

 

Corrected Conversion =  
g polymer − (g polymer)(0.01)(g Na)

g monomer
× 100 

             =
1.8502 g − (1.8502 g) (

2.9480 g
100 g

)

1.8702 g
× 100 = 96.0% 

C.8 

 

 

C.2 Sample Elemental Analysis Calculations 

 

These sample calculations are also referenced in Section 4.1.4; composition was used as an 

indicator of residual NaCl in the AAm-rich terpolymer samples. Elemental analysis calculations 

(and extensions to estimate the elemental contributions for terpolymer samples) were examined 

for terpolymer ‘recipes’ without NaCl and with NaCl; and the details are shown in this section. 

These calculations and related principles are applicable to all other terpolymer samples studied 

herein. 

 

Table C.1: Analysis of Elemental Contributions for S5 (no NaCl added) 

 wt% N wt% C wt% H wt% S wt% O  

(polymer) 

wt% O 

(H2O) 

wt% Na Total 

wt% 

S5-1 4.98 36.37 5.06 3.04 27.12 7.97 14.30 98.85 

S5-2 4.81 36.91 5.19 2.97 27.78 8.91 14.95 101.52 

S5-3 4.44 35.96 5.11 2.99 27.36 9.26 14.94 100.06 

S5-4 4.61 36.80 4.96 2.98 27.91 7.38 15.20 99.85 

S5-5 4.08 36.77 4.85 2.92 28.48 7.17 16.07 100.34 

S5-6 4.93 36.75 5.13 3.16 27.53 8.21 14.60 100.31 

S5-7 4.54 36.71 4.95 3.06 27.93 7.39 15.24 99.82 

S5-8 4.57 36.45 5.04 3.11 27.67 8.18 15.01 100.03 

S5-9 4.72 36.27 5.10 3.09 27.33 8.61 14.66 99.77 

S5-10 4.62 36.31 5.04 3.39 27.53 7.98 14.77 99.64 

  

Here, wt% of N, C, H and S are as measured by elemental analysis. This provides the data 

necessary to calculate the mole fraction of AMPS, AAm and AAc in the product terpolymer. A 

sample calculation is shown below for sample S5-1 in Table C.1. First, the wt% S is used to 

determine the AMPS content, as S is only present in one comonomer (Equation C.9). Next, the 

wt% N is used to calculate the AAm content (Equation C.10). Finally, the wt% C can be used to 

establish how much AAc is present in the sample (Equation C.11). 
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Per 100g AMPS/AAm/AAc terpolymer: 

Since 𝑚𝑜𝑙𝑒𝑠 𝑆 = 𝑛𝐴𝑀𝑃𝑆 
 

𝑛𝐴𝑀𝑃𝑆 =
𝑤𝑡% 𝑆

32.065
𝑔
𝑚𝑜𝑙

=
3.04 𝑔

32.065
𝑔
𝑚𝑜𝑙

= 0.0948 𝑚𝑜𝑙 𝐴𝑀𝑃𝑆 

 

 

 

C.9 

 

Since 𝑚𝑜𝑙𝑒𝑠 𝑁 = 𝑛𝐴𝑀𝑃𝑆 + 𝑛𝐴𝐴𝑚 
 

𝑛𝐴𝐴𝑚 =
𝑤𝑡% 𝑁

14.007
𝑔
𝑚𝑜𝑙

− 𝑛𝐴𝑀𝑃𝑆 =
4.98 𝑔

14.007
𝑔
𝑚𝑜𝑙

− 0.0948 𝑚𝑜𝑙 𝐴𝑀𝑃𝑆

= 0.2607 𝑚𝑜𝑙 𝐴𝐴𝑚 

 

 

 

C.10 

 

 

Since 𝑚𝑜𝑙𝑒𝑠 𝐶 = 7𝑛𝐴𝑀𝑃𝑆 + 3𝑛𝐴𝐴𝑚 + 3𝑛𝐴𝐴𝑐 
 

𝑛𝐴𝐴𝑐 =

𝑤𝑡% 𝐶

12.0107
𝑔
𝑚𝑜𝑙

− 7𝑛𝐴𝑀𝑃𝑆 − 3𝑛𝐴𝐴𝑚

3

=

36.37 𝑔

12.0107
𝑔
𝑚𝑜𝑙

− 7(0.0948 𝑚𝑜𝑙 𝐴𝑀𝑃𝑆) − 3(0.2607 𝑚𝑜𝑙 𝐴𝐴𝑚)

3

= 0.5275 𝑚𝑜𝑙 𝐴𝐴𝑐 

 

 

 

C.11 

 

 

Now, the mass of additional elements present in the terpolymer sample can be inferred. The only 

element present in the monomers that has not been measured directly is oxygen. Therefore, 

stoichiometry can be used to estimate the oxygen content, again using a 100 g polymer basis 

(Equation C.12). 

Since 𝑚𝑜𝑙𝑒𝑠 𝑂 = 4𝑛𝐴𝑀𝑃𝑆 + 𝑛𝐴𝐴𝑚 + 2𝑛𝐴𝐴𝑐 
 

𝑤𝑡% 𝑂 = (4𝑛𝐴𝑀𝑃𝑆 + 𝑛𝐴𝐴𝑚 + 2𝑛𝐴𝐴𝑐) × 16
𝑔

𝑚𝑜𝑙
= 4(0.0948 𝑚𝑜𝑙 𝐴𝑀𝑃𝑆) + (0.2607 𝑚𝑜𝑙 𝐴𝐴𝑚) + 2(0.5275 𝑚𝑜𝑙 𝐴𝐴𝑐)

× 16
𝑔

𝑚𝑜𝑙
= 27.12 

 

 

C.12 

 

 

Similarly, the polymer is known to contain small amounts of water. Therefore, oxygen will also 

be present in the form of H2O. We can only make a rough approximation here, but it is possible to 

take advantage of the wt% H measurement from elemental analysis. Subtracting the known wt% 

H in the polymer (according to stoichiometry) from the measured wt% provides a general idea of 

how much ‘extra’ H is present in the form of water (Equation C.13). It is also important to note 
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that the stoichiometric calculations eliminate 1 H+ ion for both nAMPS and nAAc, as acid dissociation 

(and attraction of sodium ions along the polymer chain) is assumed. The incorporation of Na+ ions 

(as described previously by Riahinezhad et al. [84]) is due to titration with NaOH; the wt% Na 

calculation is shown in Equation C.14. 

 

Since 𝑚𝑜𝑙𝑒𝑠 𝐻 = 12𝑛𝐴𝑀𝑃𝑆 + 5𝑛𝐴𝐴𝑚 + 3𝑛𝐴𝐴𝑐 
 

𝑤𝑡% 𝑂 =

𝑤𝑡% 𝐻
1.008 𝑔/𝑚𝑜𝑙

− (12𝑛𝐴𝑀𝑃𝑆 + 5𝑛𝐴𝐴𝑚 + 3𝑛𝐴𝐴𝑐)

2 𝑚𝑜𝑙 𝐻
𝑚𝑜𝑙 𝐻2𝑂

×
1 𝑚𝑜𝑙 𝐻2𝑂
1 𝑚𝑜𝑙 𝑂

× 16
𝑔

𝑚𝑜𝑙

=

5.06 𝑔
1.008 𝑔/𝑚𝑜𝑙

− (12(0.0948 𝑚𝑜𝑙 𝐴𝑀𝑃𝑆) + 5(0.2607 𝑚𝑜𝑙 𝐴𝐴𝑚) + 3(0.5275 𝑚𝑜𝑙 𝐴𝐴𝑐))

2 𝑚𝑜𝑙 𝐻
𝑚𝑜𝑙 𝐻2𝑂

×
1 𝑚𝑜𝑙 𝐻2𝑂
1 𝑚𝑜𝑙 𝑂

× 16
𝑔

𝑚𝑜𝑙
=  7.97 

 

C.13 

 

𝑤𝑡% 𝑁𝑎 = (𝑛𝐴𝑀𝑃𝑆 + 𝑛𝐴𝐴𝑐) × 22.989
𝑔

𝑚𝑜𝑙

= (0.0948 𝑚𝑜𝑙 𝐴𝑀𝑃𝑆 + 0.5275 𝑚𝑜𝑙 𝐴𝐴𝑐) × 22.989
𝑔

𝑚𝑜𝑙
= 14.30 

C.14 

 

 

As shown in Table C.1, the calculated elemental contribution summed to ~100% for each sample. 

However, when large quantities of NaCl were included in the terpolymer ‘recipe’, only ~40% to 

~60% of the elemental contributions could be identified. This is discussed in more detail in Section 

4.1.4.2, and is especially evident in comparing Table C.1 to Table 4.10. 

 

C.3 Molecular Weight Analysis (Supplemental Information) 

 

Molecular weight averages were determined using gel permeation chromatography (as described 

in Section 3.3.3). A sample chromatogram (and related analysis) is shown herein for a reference 

copolymer of AAm/AAc (with known properties), which was not used for calibration but was used 

to confirm the accuracy of the GPC.  

 

Table C.2: Confirmation of GPC Accuracy for Polyelectrolytes using AAm/AAc Reference Copolymer 

 Weight-Average Molecular 

Weight (Mw) 

Number-Average Molecular 

Weight (Mn) 

Expected Values 520,000 150,000 

Measured Values 456,400 160,362 

Mean 488,200 155,181 

Standard Deviation 44971.99 7327.04 

Coefficient of Variation 9.21% 4.72% 



288 

 

 

(a) 

 
(b) 

 
(c) 

 
Figure C.1: Sample Analysis from GPC; (a) Sample Chromatograms, (b) Sample Peaks and (c) 

Distribution Plots for the AAm/AAc Reference Copolymer 

 

As described in Section 4.2.2.3, there were significant discrepancies between the ‘expected’ 

concentration of the polymer solutions (calculated during sample preparation) and the ‘measured’ 

concentration (obtained during GPC analysis) for the optimally designed (AAm-rich) terpolymers. 
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The comparison of ‘expected’ and ‘measured’ concentrations is provided in Table C.3. The 

repeatability of analysis results was much improved when the GPC-measured concentrations were 

used, as evidenced by the ANOVA tables in Table C.4 and Table C.5. 

 

Table C.3: Effect of Sample Filtration on Concentration of GPC Samples (see Section 4.2.2.3) 

Sample 

Mass 

Polymer 

(g) 

Mass 

Buffer 

(g) 

Expected 

Conc. 

(mg/ml) 

GPC-

Measured 

Conc. 

(mg/ml) 

% Sample 

Remaining 

% Sample 

Filtered Out 

Opt1-1 0.0098 10.1086 0.9695 0.3046 31.4 68.6 

Opt1-1  GPC Replicate 0.9695 0.3943 40.7 59.3 

Opt1-2 0.0098 10.1387 0.9666 0.3575 37.0 63.0 

Opt1-4 0.0108 10.1166 1.0676 0.4060 38.0 62.0 

Opt1-4 0.0100 10.1391 0.9863 0.4242 43.0 57.0 

Opt1-7 0.0097 10.1411 0.9565 0.4070 42.6 57.4 

Opt1R-1 0.0099 10.1460 0.9758 0.3430 35.2 64.8 

Opt1R-1 0.0105 10.1270 1.0368 0.2881 27.8 72.2 

Opt1R-1 GPC Replicate 1.0368 0.3018 29.1 70.9 

Opt1R-2 0.0098 10.1286 0.9676 0.3240 33.5 66.5 

Opt1R-2 0.0097 10.1332 0.9572 0.3987 41.6 58.4 

Opt1R-3 0.0104 10.1435 1.0253 0.4240 41.4 58.6 

Opt1R-3 GPC Replicate  1.0253 0.4480 43.7 56.3 

Opt1R-8 0.0108 10.1445 1.0646 0.3780 35.5 64.5 

Opt1R-10 0.0109 10.1179 1.0773 0.4230 39.3 60.7 

Opt2-1 0.0103 10.1324 1.0165 0.2079 20.4 79.6 

Opt2-1 GPC Replicate  1.0165 0.2578 25.4 74.6 

Opt2-2 0.0103 10.1332 1.0165 0.2805 27.6 72.4 

Opt2-4 0.0107 10.1484 1.0544 0.4370 41.4 58.6 

Opt2-4 0.0100 10.1225 0.9879 0.4216 42.7 57.3 

Opt2-4 GPC Replicate 0.9879 0.3530 35.7 64.3 

Opt2-10 0.0094 10.1184 0.9290 0.4430 47.7 52.3 

Opt2R-1 0.0105 10.1300 1.0365 0.3660 35.3 64.7 

Opt2R-2 0.0099 10.1197 0.9783 0.3610 36.9 63.1 

Opt2R-5 0.0099 10.1198 0.9783 0.4150 42.4 57.6 

Opt2R-9 0.0104 10.1291 1.0267 0.3570 34.8 65.2 

Opt2R-9 GPC Replicate  1.0267 0.3460 33.7 66.3 

Opt2R-10 0.0092 10.1400 0.9073 0.3690 40.7 59.3 

Opt2RB-1 0.0101 10.1191 0.9981 0.3288 32.9 67.1 

Opt2RB-1 GPC Replicate 0.9981 0.2507 25.1 74.9 

Opt2RB-2 0.0097 10.1270 0.9578 0.2979 31.1 68.9 

Opt2RB-6 0.0111 10.1705 1.0914 0.3670 33.6 66.4 
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Table C.4: ANOVA Table for Comparisons between Opt1 Samples (see Section 4.2.2.3) 

Null: difference in Mp between runs = 0 

Alternate: difference in Mp between runs > 0 

Source df SS MSE F f_crit 

Polymerization 1 3.67E+08 3.67E+08 0.73 18.5 

Samples 2 1.00E+09 5.02E+08 0.78 19.0 

GPC 2 1.29E+09 6.46E+08   

Total 5 2.66E+09    

**Note that since this is not a complete hierarchical study, some adjustments were 

made to the ANOVA calculations. In particular, in considering the number of 

replicates at the ‘GPC’ (characterization) stage, T = 1.5, since dfGPC = 2 = P·S·(T-1). 

 

Table C.5: ANOVA Table for Comparisons between Opt2 Samples (see Section 4.2.2.3) 

Null: difference in Mp between runs = 0 

Alternate: difference in Mp between runs > 0 

Source df SS MSE F f_crit 

Polymerization 1 3.27E+08 3.27E+08 0.43 18.5 

Samples 2 1.54E+09 7.68E+08 0.19 19.00 

GPC 2 8.15E+09 4.07E+09   

Total 5 1.00E+10    

**Again, this is not a complete hierarchical study. For the ‘GPC’ (characterization) 

stage, T = 1.5, since dfGPC = 2 = P·S·(T-1). 

 

The final portion of ‘supplemental information’ provided herein for molecular weight analysis is 

a series of relationships between GPC measurements (Mp, Mw and bulk IV) for the two optimal 

terpolymers and the reference material. These further confirm that the newly synthesized materials 

exhibit similar properties to the reference material.  
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Figure C.2: Peak Average Molecular Weight and Weight Average Molecular Weight for Optimal 

Terpolymer Samples (compared to Reference Polymer Alcoflood 955) 

 

 
Figure C.3: Bulk Intrinsic Viscosity (IV) and Peak Average Molecular Weight for Optimal Terpolymer 

Samples (compared to Reference Polymer Alcoflood 955) 
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Figure C.4: Bulk Intrinsic Viscosity (IV) and Weight Average Molecular Weight for Optimal Terpolymer 

Samples (compared to Reference Polymer Alcoflood 955) 

 

C.4 Thermal Gravimetric Analysis (Supplemental Information) 

 

Thermal gravimetric analysis was conducted for the optimally designed terpolymers, the reference 

polymer (Alcoflood 955) and a representative designed copolymer of AAm/AAc [32]. The 

experimental methodology was provided in Section 3.3.5 and the most important results were 

presented in Section 4.2.2.5. Replicate analyses are provided herein for the two terpolymers, and 

the derivatives of the weight % measurements are presented for all samples. 

 

For terpolymer #1, the characterization replicate shown in Figure C.5 shows good agreement 

initially, but becomes unreasonable at about 350°C. This was a result of extreme expansion that 

occurred during heating (20 mg sample shown in Figure C.6), which affected subsequent mass 

measurements. Similar behaviour was observed for terpolymer #2 and for the reference material 

(when 20 mg samples were used), but results are not shown herein. Therefore, to obtain reliable 

results, less than 5 mg of polymeric material was used beyond preliminary analyses. 
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Figure C.5: Synthesis and Characterization Replicates of TGA for Terpolymer #1 

 

  
Figure C.6: Expansion of Terpolymer #1 Sample during TGA 

 

Good repeatability was also observed for terpolymer #2 (comparison of synthesis replicates). The 

weight % measurement and related derivatives are provided in Figure C.7. Similar results (with 

earlier/lower temperature degradation) were observed for the reference material (Alcoflood 955) 

and a designed AAm/AAc copolymer [32], and are shown in Figure C.8 and Figure C.9, 

respectively. 
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Figure C.7: Synthesis Replicates Analyzed with TGA for Terpolymer #2 

 

 
Figure C.8: Thermal Gravimetric Analysis Results for Reference Material (Alcoflood 955) 
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Figure C.9: Thermal Gravimetric Analysis Results for a Designed AAm/AAc Copolymer  

 

 

C.5 Additional Rheology Data 

 

Rheological properties were measured as described in Section 3.4.1 and as reported in Section 

4.2.3.1. The claim was made in Section 4.2.3.1 that any % strain within the linear viscoelastic 

region will give similar frequency sweep results; this was confirmed by analyzing the reference 

material at both 1% strain and 10% strain. Results are shown in Figure C.10.  
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Figure C.10: Comparison of Frequency Sweep Results at 1% Strain and 10% Strain for Reference 

Polymer (solution concentration of 0.01 g/mL in water) 

 

A summary of shear viscosities at specific frequencies was provided in the main text (recall Table 

4.18). However, for brevity, only average values were given for each unique terpolymer 

formulation. An extended version of the table (with individual trials) is shown herein (see Table 

C.6). 
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Table C.6: Summary of Shear Viscosities for Terpolymer Solutions (extended version of Table 4.18) 

In WATER 
Shear Viscosity (Pa s) 

𝜸̇ = 1 s-1 𝜸̇ = 5 s-1 𝜸̇ = 7 s-1 

Terpolymer #1 11.11 3.41 2.63 

Terpolymer #1 (Rheology Replicate) 10.68 3.60 2.78 

Terpolymer #1R (Synthesis Replicate) 8.50 2.65 2.07 

Terpolymer #1 Average 10.10 3.22 2.49 

Terpolymer #2 7.66 2.38 1.86 

Terpolymer #2R (Synthesis Replicate) 8.57 2.66 2.09 

Terpolymer #2 Average 8.12 2.52 1.98 

Alcoflood (for reference) 5.84 2.04 1.61 

In BUFFER 
Shear Viscosity (Pa s) 

𝜸̇ = 1 s-1 𝜸̇ = 5 s-1 𝜸̇ = 7 s-1 

Terpolymer #1 2.82 1.09 0.87 

Terpolymer #1 (Rheology Replicate) 2.89 1.08 0.88 

Terpolymer #1 (Synthesis Replicate) 2.67 1.12 0.91 

Terpolymer #1 Average 2.79 1.10 0.89 

Terpolymer #2 2.28 0.86 0.69 

Terpolymer #2R (Synthesis Replicate) 2.54 0.99 0.79 

Terpolymer #2 Average 2.41 0.93 0.74 

Alcoflood (for reference) 3.47 1.33 1.08 

AAm/AAc copolymer with best EOR 

performance (as reported in [115, 117]) 
3.41 -- 0.89 

 

C.6 Sand-pack Flooding Experimental Details 

 

Sand-pack flooding experiments were conducted to characterize the polymeric materials in terms 

of polymer flow performance and oil recovery efficiency. The experimental procedures were 

described in Section 3.4.2, and results and discussion were presented in Sections 4.2.3.2 and 

4.2.3.3. Additional details regarding the experimental plan and the sand-pack set-up are provided 

herein (see Table C.7 and Table C.8).  

 

The dead volumes used for these calculations varied from one step to the next, since it depends on 

which flow path is being used for a given experimental step. For reference, the dead volumes (and 

which stage they are related to) are shown in Table C.9. 
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Table C.7: Experimental Plan for Phase I of EOR Study 

 Total Volume 

to Inject (ml) 

Injection 

Time (min) 

Injection 

Time (hr) 

1) Prepare the sand-pack    

2) Determine pore volume and permeability    

3) Brine injection #1.  

Injection of 1 PV + DV of brine  

(Flow rate = 0.18103 ml/min) 

56 309.34 5.16 

4) Polymer injection.  

Injection of 2 PV + DV of 1 wt% polymer solution 

(Flow rate = 0.18103 ml/min) 

84 464.01 7.73 

5) Brine injection #2. 

Injection of 4 PV + DV of brine 

(Flow rate = 0.18103 ml/min) 

140 773.35 12.89 

**Total volumes to inject were based on approximate values of PV and DV; both were assumed 

to be 28 mL for preliminary calculations. 
 

Table C.8: Experimental Plan for Phase II of EOR Study 

 Total Volume 

to Inject  (ml) 

Injection 

Time (min) 

Injection 

Time (hr) 

1) Prepare the sand-pack    

2) Determine pore volume and permeability    

3) Heavy oil injection. 

Injection of 2 PV + DV of heavy oil. 

(Flow rate = 0.18103 ml/min) 

81.05 447.70 7.46 

4) Brine injection #1.  

Injection of 4 PV + DV of brine  

(Flow rate = 0.18103 ml/min) 

135.56 748.82 12.48 

5) Polymer injection.  

Injection of 1 PV + DV of 1 wt% polymer solution 

(Flow rate = 0.18103 ml/min) 

53.70 296.62 4.94 

6) Brine injection #2. 

Injection of 2 PV + DV of brine 

(Flow rate = 0.18103 ml/min) 

79.56 439.48 7.32 

**Total volumes to inject were based on approximate values of PV which was assumed to be 28 

mL for preliminary calculations. 
 

Table C.9: Dead Volume Values for Phase II of EOR Study 

Material 
Relevant Injection Steps 

(refer to Table C.8) 
Dead Volume (ml) 

Heavy Oil Metal Step 3 25.05 

Brine Metal Step 4 & Step 6 23.56 

Polymer Plexiglass Step 5 25.70 
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Appendix D. Relevant Data & Calculations for Case Study #2 
 

D.1 Sample Gas Chromatography Analysis 

 

Most experimental data for Case Study #2 were obtained using a carefully designed experimental 

set-up and a highly specialized gas chromatograph; the details have been presented in Section 

7.4.2. In this appendix section, more details about the data acquisition (and some representative 

data) are presented. 

 

The specialized GC allows for the detection of low concentrations of gas analytes, and can 

distinguish between chemically similar gases. Typical chromatograms are shown in Figure D.1 for 

a 4-gas mixture (~1 ppm of each analyte, as described in Section 8.1.2.1). Because such low 

concentrations are being analyzed, the peaks are not easily identified on the full scale (helium and 

nitrogen peaks dominate below 5 minutes). Therefore, Figure D.1a shows the full chromatograms 

(shown here for ~ 1ppm acetaldehyde, ethanol, acetone and benzene), while Figure D.1b through 

Figure D.1e narrow in on the individual gases, which are identified based on their pre-established 

retention time. In each case, the red curve represents the ‘blank’ system (no sensing material 

present) and the black curve is the response when polypyrrole is present in the testing system. 

 

The retention times for the analytes studied (and other components used in related studies) are 

shown in Table D.1; acetaldehyde, ethanol and acetone all elute before 10 minutes, but benzene (a 

larger molecule) is retained until almost 18 minutes. 

 

(a) 
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(b) 

 
 

(c) 
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(d) 

 
 

(e) 

 
 

Figure D.1: Sample Chromatograms (red = no sensing material; black = PPy) from GC for ~1 ppm 

Mixture of Acetaldehyde, Ethanol, Acetone and Benzene; (a) Full Chromatogram, (b) Acetaldehyde 

Response, (c) Ethanol Response, (d) Acetone Response and (e) Benzene Response  
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Table D.1: GC Retention Times for Molecules of Interest 

Peak Name Retention Time (Minutes) 

Helium 4.54 

Nitrogen 4.61 

Formaldehyde 5.34 

Water 5.54 

Methanol 6.14 

Acetaldehyde 6.24 

Ethanol 7.20 

Acetone 8.11 

Benzene 17.17 

 

As described in Section 7.4.2, the analysis of results involves comparing the concentration of each analyte 

before and after exposure to the sensing material of interest. Using the data of Figure D.1 as an example, 

the concentration of each analyte is measured (using the area under the curve and pre-established 

correlations) for the ‘blank’ run and after PPy has been introduced in the system. The GC software outputs 

are provided in Figure D.2 for (a) the ‘blank’ run and (b) the PPy-exposure run. Note that helium and 

nitrogen concentrations are reported as 0.00 ppm because the machine has not been calibrated for those 

gases. 

 

(a) 

 
 

(b) 

 
 

Figure D.2: Sample GC Results for ~1 ppm Mixture of Acetaldehyde, Ethanol, Acetone and Benzene; 

(a) Blank System and (b) with Polypyrrole 

 

Given these results, the concentration of each analyte sorbed can easily be calculated by 

difference. For example, for acetaldehyde: 

[𝐴𝑐𝑒𝑡𝑎𝑙𝑑𝑒ℎ𝑦𝑑𝑒 𝑆𝑜𝑟𝑏𝑒𝑑] = [𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝐴𝑐𝑒𝑡𝑎𝑙𝑑𝑒ℎ𝑦𝑑𝑒] − [𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 𝐴𝑐𝑒𝑡𝑎𝑙𝑑𝑒ℎ𝑦𝑑𝑒] 

                                = 0.81 𝑝𝑝𝑚 − 0.58 𝑝𝑝𝑚 

                                =  0.23 𝑝𝑝𝑚 

D.1 

 

Similar calculations can be performed for the other analytes present.  
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D.2 Experimental Data from Sensitivity and Selectivity Studies 

 

In Chapter 8, the experimental data is generally presented in summary figures; the full 

experimental data set is shown herein. As mentioned in Section 0, different source tanks were used 

for acetone throughout the sensitivity study, which resulted in slight variations in the initial acetone 

concentration (measured concentrations ranged from 4.64 ppm to 5.98 ppm). Therefore, to account 

for the tank variation, acetone sorption is normalized and reported as percent sorption (= [acetone 

sorbed]/[initial concentration] × 100). All sensitivity data (for both screening experiments and 

customization experiments) are shown first (Table D.2 through Table D.5), followed by selectivity 

data (Table D.6 to Table D.10). 

 

Table D.2: Experimental Acetone Sorption Data for PANI-based Polymeric Materials  

(formulations #1 through #10; supplemental to Figure 8.5)  

Sample Trial 1A Trial 1B Trial 2A Trial 2B Average 
Coefficient 

of Variation 

Pure PANI 11.83% 12.17% 11.06% 11.06% 11.53% 4.85% 

PANI 5% SnO2 8.42% 9.11% 8.84% 8.62% 8.75% 3.37% 

PANI 10% SnO2 10.86% 10.86% 10.04% 9.84% 10.40% 5.18% 

PANI 20% SnO2 7.85% 7.68% 8.19% 8.19% 7.98% 3.20% 

PANI 5% WO3 10.86% 10.34% 9.32% 9.53% 10.02% 7.15% 

PANI 10% WO3 11.09% 11.27% 9.85% 9.85% 10.51% 7.33% 

PANI 20% WO3 9.91% 10.09% 9.61% 9.41% 9.75% 3.11% 

PANI 5% ZnO 8.52% 8.35% 7.83% 8.00% 8.17% 3.87% 

PANI 10% ZnO 8.76% 8.76% 9.18% 8.51% 8.81% 3.15% 

PANI 20% ZnO 12.71% 12.54% 12.50% 12.16% 12.48% 1.85% 

 

Table D.3: Experimental Acetone Sorption Data for PPy-based Polymeric Materials  

(formulations #11 through #20; supplemental to Figure 8.7)  

Sample Trial 1A Trial 1B Trial 2A Trial 2B Average 
Coefficient 

of Variation 

Pure PPy 32.53% 32.34% 30.74% 30.74% 31.59% 3.11% 

PPy 5% SnO2 23.97% 23.97% 24.60% 24.20% 24.18% 1.23% 

PPy 10% SnO2 26.33% 26.13% 31.00% 30.80% 28.56% 9.45% 

PPy 20% SnO2 16.96% 16.77% 22.36% 22.16% 19.56% 15.93% 

PPy 5% WO3 25.74% 25.74% 24.61% 24.02% 25.02% 3.43% 

PPy 10% WO3 18.93% 19.33% 23.15% 23.15% 21.14% 11.01% 

PPy 20% WO3 25.15% 24.36% 26.95% 28.14% 26.15% 6.56% 

PPy 5% ZnO 19.76% 20.55% 24.55% 24.55% 22.35% 11.44% 

PPy 10% ZnO 25.40% 24.80% 22.55% 23.15% 23.98% 5.60% 

PPy 20% ZnO 21.22% 21.61% 23.03% 22.64% 22.12% 3.85% 
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Table D.4: Experimental Acetone Sorption Data for PMMA-based Polymeric Materials  

(formulations #21 through #30; supplemental to Figure 8.9) 

Sample Trial 1A Trial 1B Trial 2A Trial 2B Average 

Pure PMMA 1.81% 2.01% 0.00% 0.00% 0.96% 

PMMA 5% SnO2 0.00% 1.00% 0.00% 0.00% 0.25% 

PMMA 10% SnO2 0.00% 0.20% 0.00% 0.00% 0.05% 

PMMA 20% SnO2 0.00% 0.00% 0.00% 0.00% 0.00% 

PMMA 5% WO3 0.00% 0.00% 0.00% 0.00% 0.00% 

PMMA 10% WO3 0.00% 0.20% 0.00% 0.00% 0.05% 

PMMA 20% WO3 2.80% 2.20% 1.40% 1.20% 1.90% 

PMMA 5% ZnO 0.21% 0.00% 0.00% 0.00% 0.05% 

PMMA 10% ZnO 0.21% 0.62% 0.00% 0.00% 0.21% 

PMMA 20% ZnO 1.40% 1.20% 0.00% 0.00% 0.65% 

 

Table D.5: Experimental Acetone Sorption Data for Customized Polymeric Materials  

(formulations #31 through #34; supplemental to Figure 8.19) 

Sample PANI ox-PANI PANI/PPy ox-PANI/PPy 

Trial 1A 14.54% 14.54% 19.12% 21.12% 

Trial 1B 15.14% 14.54% 18.73% 21.12% 

Trial 2A 17.33% 14.79% 19.42% 20.04% 

Trial 2B 17.95% 15.00% 19.62% 19.83% 

Trial 3A 16.91% 12.32% 17.75% 29.09% 

Trial 3B 16.70% 11.72% 17.95% 28.28% 

Trial 4A 15.15% 12.97% 17.37% 26.55% 

Trial 4B 15.56% 12.77% 17.37% 26.35% 

Average 16.16% 13.58% 18.42% 24.05% 

Coefficient of Variation 7.57% 9.40% 4.98% 16.18% 
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Table D.6: Experimental Selectivity Data from ~1 ppm Analyte Gas Mixture ((a) Acetaldehyde,  

(b) Ethanol, (c) Acetone and (d) Benzene; supplemental to Figure 8.10 and Figure 8.11) 

(a) Acetaldehyde Sorption (ppm) 

 Pure SnO2-doped WO3-doped ZnO-doped 

PANI 
0.19 0.16 0.20 0.16 0.21 0.21 0.20 0.16 

0.16 0.13 0.13 0.15 0.23 0.21 0.15 0.15 

Average 0.16 0.16 0.22 0.17 

St. Dev. 0.02 0.03 0.01 0.02 

PPy 
0.26 0.24 0.33 0.33 0.23 0.23 0.24 0.21 

0.22 0.23 0.25 0.23 0.22 0.21 0.20 0.17 

Average 0.24 0.29 0.22 0.21 

St. Dev. 0.02 0.05 0.01 0.03 

 

(b) Ethanol Sorption (ppm) 

 Pure SnO2-doped WO3-doped ZnO-doped 

PANI 
0.21 0.16 0.26 0.27 0.26 0.25 0.18 0.21 

0.15 0.19 0.23 0.23 0.33 0.36 0.15 0.19 

Average 0.18 0.25 0.30 0.18 

St. Dev. 0.03 0.02 0.05 0.03 

PPy 
0.25 0.28 0.35 0.33 0.24 0.28 0.31 0.34 

0.31 0.29 0.23 0.25 0.24 0.22 0.22 0.22 

Average 0.28 0.29 0.25 0.27 

St. Dev. 0.03 0.06 0.03 0.06 

 

(c) Acetone Sorption (ppm) 

 Pure SnO2-doped WO3-doped ZnO-doped 

PANI 
0.17 0.13 0.19 0.16 0.30 0.30 0.18 0.16 

0.15 0.13 0.19 0.14 0.31 0.31 0.15 0.14 

Average 0.15 0.17 0.31 0.16 

St. Dev. 0.02 0.02 0.01 0.02 

PPy 
0.24 0.22 0.30 0.31 0.20 0.20 0.21 0.24 

0.22 0.24 0.24 0.26 0.26 0.26 0.20 0.20 

Average 0.23 0.28 0.23 0.21 

St. Dev. 0.01 0.03 0.03 0.02 

 

(d) Benzene Sorption (ppm) 

 Pure SnO2-doped WO3-doped ZnO-doped 

PANI 
0.03 0.03 0.07 0.04 0.14 0.12 0.13 0.15 

0.09 0.09 0.10 0.08 0.17 0.11 0.13 0.08 

Average 0.06 0.07 0.14 0.12 

St. Dev. 0.03 0.03 0.03 0.03 

PPy 
0.23 0.17 0.24 0.21 0.18 0.13 0.13 0.15 

0.23 0.22 0.21 0.22 0.12 0.13 0.20 0.16 

Average 0.21 0.22 0.14 0.16 

St. Dev. 0.03 0.01 0.03 0.03 
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Table D.7: Experimental Selectivity Data from Acetone-Rich Analyte Gas Mixture (containing 

Acetaldehyde, Ethanol, and Benzene; supplemental to Figure 8.12) 

 Pure PANI Pure PPy 

Acetaldehyde 

0.11 0.11 0.07 0.04 

0.10 0.08 0.10 0.09 

0.12 0.10 0.09 0.09 

Average 0.10 0.08 

St. Dev. 0.01 0.02 

Ethanol 

0.18 0.14 0.19 0.20 

0.18 0.12 0.16 0.15 

0.17 0.16 0.19 0.17 

Average 0.16 0.18 

St. Dev. 0.02 0.02 

Acetone 

2.35 1.67 3.49 1.77 

4.07 2.37 3.92 2.77 

3.61 2.41 5.22 3.05 

Average 2.75 3.37 

St. Dev. 0.90 1.16 

Benzene 

0.00 0.00 0.00 0.00 

0.06 0.03 0.06 0.08 

0.07 0.07 0.07 0.07 

Average 0.04 0.05 

St. Dev. 0.03 0.04 

 

Table D.8: Experimental Selectivity Data from ~2 ppm Analyte Gas Mixture of Acetone and 

Acetaldehyde; supplemental to Figure 8.20 

 PANI ox-PANI PANI/PPy ox-PANI/PPy 

Acetone 

0.46 0.45 0.19 0.20 0.39 0.37 0.39 0.38 

0.25 0.26 0.34 0.31 0.45 0.43 0.32 0.33 

0.22 0.21 0.20 0.20 0.33 0.32 0.36 0.34 

Average 0.31 0.24 0.38 0.35 

St. Dev. 0.12 0.07 0.05 0.03 

Acetaldehyde 

0.26 0.26 0.00 0.00 0.22 0.21 0.24 0.25 

0.12 0.14 0.14 0.15 0.32 0.32 0.20 0.20 

0.04 0.06 0.05 0.04 0.17 0.19 0.21 0.18 

Average 0.15 0.06 0.24 0.21 

St. Dev. 0.10 0.07 0.07 0.03 
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Table D.9: Experimental Selectivity Data from ~2 ppm Analyte Gas Mixture of Acetone and Ethanol; 

supplemental to Figure 8.21 

 PANI ox-PANI PANI/PPy ox-PANI/PPy 

Acetone 

0.49 0.47 0.41 0.39 0.51 0.52 0.68 0.63 

0.55 0.51 0.32 0.31 0.45 0.47 0.57 0.56 

0.39 0.40 0.47 0.49 0.60 0.56 0.50 0.50 

Average 0.47 0.40 0.52 0.57 

St. Dev. 0.06 0.07 0.06 0.07 

Ethanol 

0.24 0.25 0.15 0.14 0.33 0.30 0.35 0.33 

0.37 0.40 0.21 0.21 0.25 0.25 0.37 0.37 

0.24 0.25 0.27 0.27 0.33 0.31 0.31 0.30 

Average 0.29 0.21 0.30 0.34 

St. Dev. 0.07 0.06 0.04 0.03 

 

Table D.10: Experimental Selectivity Data from ~2 ppm Analyte Gas Mixture of Acetone and Benzene; 

supplemental to Figure 8.22 

 PANI ox-PANI PANI/PPy ox-PANI/PPy 

Acetone 

0.47 0.47 0.22 0.20 0.28 0.29 0.38 0.39 

0.28 0.28 0.18 0.18 0.32 0.31 0.56 0.57 

0.27 0.28     0.28 0.32 0.41 0.42 

Average 0.34 0.20 0.30 0.46 

St. Dev. 0.10 0.02 0.02 0.09 

Benzene 

0.30 0.29 0.20 0.18 0.23 0.20 0.38 0.37 

0.25 0.21 0.20 0.19 0.22 0.20 0.53 0.52 

0.22 0.22     0.24 0.22 0.35 0.32 

Average 0.25 0.19 0.22 0.41 

St. Dev. 0.04 0.01 0.02 0.09 

 

D.3 Comparison of Acetone Sorption Performance 

 

This appendix section provides details about the statistical analysis of acetone sorption. ANOVA 

Tables allow for the comparison of means, which provides information about whether or not the 

dopant level has a statistically significant effect on the amount of acetone sorption. First, the 3 

dopant levels for each metal oxide (5% vs 10% vs 20%) are compared, and then the ‘best 

performing’ level of metal oxide in each case is compared to pure polymer. 
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 Table D.11: ANOVA Comparing SnO2 Dopant Levels in PANI 

Source SS df MS Fobs F2,9,0.05 

Between 0.001227 2 6.14E-04 41.51 4.26 

Within 0.000133 9 1.48E-05   

Total 0.00136 11    

      

Mean Comparison Tobs LSD    

5-10 6.09 1.65%    

5-20 2.83 0.77%  STAT DIFF - use 10% 

10-20 8.92 2.42%    

      

Tcrit (9,(0.1/3)) = Tcrit (9,0.033) = use Tcrit (9,0.025) Tcrit =  2.262 

    α' =  0.073141 

    LSD = 0.61% 

  
Table D.12: ANOVA Comparing WO3 Dopant Levels in PANI 

Source SS df MS Fobs F2,9,0.05 

Between 0.000119 2 5.97E-05 1.49 4.26 

Within 0.00036 9 4.00E-05   

Total 0.000479 11    

    NO STAT DIFF - use 5% (less MO) 

 
Table D.13: ANOVA Comparing ZnO Dopant Levels in PANI 

Source SS df MS Fobs F2,9,0.05 

Between 0.004320958 2 2.16E-03 281.58 4.26 

Within 6.90534E-05 9 7.67E-06   

Total 0.004390011 11    

      

Mean Comparison Tobs LSD    

5-10 3.23 0.63%    

5-20 21.98 4.30%  STAT DIFF - use 20% 

10-20 18.75 3.67%    

      

Tcrit (9,(0.1/3)) = Tcrit (9,0.033) = use Tcrit (9,0.025) Tcrit =  2.262 

    α' = 0.0731406 

    LSD = 0.44% 
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Table D.14: ANOVA Comparing Pure PANI to ‘Best’ Doped PANI 

Source SS df MS Fobs F3,12,0.05 

Between 0.001499 3 5.00E-04 17.09 3.49 

Within 0.000351 12 2.92E-05   

Total 0.00185 15    

      

Mean Comparison Tobs LSD    

P-ZnO 2.47 0.95%    

P-WO3 3.97 1.52%   

P-SnO2 2.96 1.13%    

ZnO-WO3 6.44 2.46%    

ZnO-SnO2 5.43 2.08%    

WO3-SnO2 1.01 0.38%    

      

Tcrit (12,(0.1/6)) = Tcrit (12,0.0167) = use Tcrit (12,0.01) Tcrit =  2.681 

    α' = 0.05852 

    LSD = 1.03% 

 
Table D.15: ANOVA Comparing SnO2 Dopant Levels in PPy 

Source SS df MS Fobs F2,9,0.05 

Between 0.016219 2 8.11E-03 14.24 4.26 

Within 0.005124 9 5.69E-04   

Total 0.021344 11    

      

Mean Comparison Tobs LSD    

5-10 2.60 4.38%    

5-20 2.74 4.62%  STAT DIFF - use 10% 

10-20 5.34 9.00%    

      

Tcrit (9,(0.1/3)) = Tcrit (9,0.033) = use Tcrit (9,0.025) Tcrit =  2.262 

    α' = 0.073141 

    LSD = 3.82% 

 
Table D.16: ANOVA Comparing WO3 Dopant Levels in PPy 

Source SS df MS Fobs F2,9,0.05 

Between 0.006879 2 3.44E-03 14.81 4.26 

Within 0.00209 9 2.32E-04   

Total 0.008969 11    

      

Mean Comparison Tobs LSD    

5-10 3.60 3.88%    

5-20 1.73 1.87% 10% is worst, but no difference between 5% & 20% 

10-20 5.33 5.75% therefore use 5% (less MO)  

      

Tcrit (9,(0.1/3)) = Tcrit (9,0.033) = use Tcrit (9,0.025) Tcrit =  2.262 

    α' =  0.07314063 

    LSD = 2.44% 
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Table D.17: ANOVA Comparing ZnO Dopant Levels in PPy 

Source SS df MS Fobs F2,9,0.05 

Between 0.000815705 2 4.08E-04 1.35 4.26 

Within 0.0027183 9 3.02E-04   

Total 0.003534005 11    

    NO STAT DIFF - use 5% 

 

Table D.18: ANOVA Comparing Pure PPy to ‘Best’ Doped PPy 

Source SS df MS Fobs F3,12,0.05 

Between 0.019566 3 6.52E-03 16.80 3.49 

Within 0.004658 12 3.88E-04   

Total 0.024224 15    

      

Mean Comparison Tobs LSD    

P-ZnO 6.79 9.46%    

P-WO3 4.71 6.56%  

P-SnO2 2.17 3.02%  

ZnO-WO3 2.08 2.90%    

ZnO-SnO2 4.62 6.44%    

WO3-SnO2 2.54 3.54%    

      

Tcrit (12,(0.1/6)) = Tcrit (12,0.0167) = use Tcrit (12,0.01) Tcrit =  2.681 

    α' =  0.05852 

    LSD = 3.74% 

 

Table D.19: ANOVA Comparing Customized Materials (from Section 8.2) 

Source SS df MS Fobs F3,28,0.05 

Between 0.047696 3 1.59E-02 33.30 2.95 

Within 0.013368 28 4.77E-04   

Total 0.061065 31    

      

Mean Comparison Tobs LSD    

PANI vs. ox-PANI 1.67 2.58%    

PANI vs. PANI/PPy 1.46 2.26%  

PANI vs. ox-PANI/PPy 5.10 7.89%  

ox-PANI vs. PANI/PPy 3.13 4.83%    
ox-PANI vs.  

ox-PANI/PPy 6.77 10.46%    
PANI/PPy vs.  

ox-PANI/PPy 3.64 5.63%    

      

Tcrit (28,(0.1/6)) = Tcrit (28,0.0167) = use Tcrit (28,0.01) Tcrit =  2.467 

    α' =  0.05852 

    LSD = 3.81% 

 


