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Abstract 

This paper presents a distributed parameter model to study the effects of the harnessing cables on 

the dynamics of a host structure motivated by space structures applications. The structure is modeled using 

both Euler-Bernoulli and Timoshenko beam theories. The presented model studies the effects of coupling 

between various coordinates of vibrations due to the addition of the cable. The effects of the cable’s offset 

position, pre-tension and radius are studied on the natural frequencies of the system. Strain and kinetic 

energy expressions using linear displacement field assumptions and Green-Lagrange strain tensor are 

developed. The governing coupled partial differential equations for the cable-harnessed beam that includes 

the effects of the cable pre-tension are found using Hamilton’s principle. The natural frequencies from the 

coupled Euler Bernoulli, Timoshenko and decoupled analytical models are found and compared to the 

results of the Finite Element Analysis. 

Keywords: Beam Structures, Cable-Harnessed Structures, Coupled Vibration Analysis, Tension. 

Nomenclature 

𝑢(𝑥, 𝑡) Axial displacement 

𝑣(𝑥, 𝑡) In plane bending displacement 

𝑤(𝑥, 𝑡) Out of plane bending displacement 

𝜃(𝑥, 𝑡) Torsional displacement 

𝜑(𝑥, 𝑡) Rotation of cross-section about z axis 

𝜓(𝑥, 𝑡) Rotation of cross-section about y axis 

𝜈 Poisson’s Ratio 

𝜅 Shear Correction Factor 

𝐸𝑏 Young’s Modulus of the beam 

𝐺𝑏 Shear Modulus of the beam 

𝐴𝑏 Area of cross section of the beam 

𝐴𝑐 Area of cross section of the cable 

𝐸𝑐 Young’s modulus of the cable 

𝑏1 − 𝑏9 Strain energy coefficients of Euler Bernoulli model 

𝑐1 − 𝑐15 Strain energy coefficients of Timoshenko model 

𝑘1 − 𝑘6 Kinetic energy coefficients 

mailto:kyerrapr@uwaterloo.ca
mailto:salehian@uwaterloo.ca
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𝜔 Natural Frequency 

𝜔𝑓 Driving frequency 

𝑥𝑠 Sensing location 

𝑥𝑎 Actuation location 

(𝜀𝑥𝑥)𝑏 Direct strain in the beam in the x direction 

(𝜀𝑥𝑥)𝑐 Direct strain in the cable in the x-direction 

(𝛾𝑥𝑦)𝑏 Shear strain in the beam in the xy plane 

(𝛾𝑥𝑧)𝑏 Shear strain in the beam in the xz plane 

𝜌𝑏 Density of the beam  

𝜌𝑐 Density of the cable 

𝑙 Length of the beam 

𝑏 Width of the beam 

ℎ Depth of the beam 

𝑇 Pre-tension of the cable 

𝑟𝑐 Radius of the cable  

𝑦𝑐 y coordinate of the center of the cable (𝑦𝑐 =
𝑏

2
− 𝑟𝑐)  

𝑧𝑐 z coordinate of the center of the cable (𝑧𝑐 =
ℎ

2
+ 𝑟𝑐) 

𝐴𝑐 Area of cross-section of the cable (𝐴𝑐= 𝜋𝑟𝑐
2), circular cross-section 

𝐴𝑏 Area of cross-section of the beam 

 

1. Introduction 

Large space structures are often too large for dynamic ground testing as a whole. Therefore, a 

common approach to model validations for these structures entails ground testing the individual 

components prior to their launch. One major component for these structures include electronic cords and 

power cables that have been commonly ignored in modeling these structures. These cables have shown to 

weigh up to 20% of the mass of the host structure [1]. This number will increase significantly with the use 

of composite materials in aerospace applications. Therefore, obtaining a dynamic model that accurately 

accounts for the mass, stiffness and damping effects of these cables is of paramount importance and has 

received a lot of attention in the past few years [2,3]. Apart from space structures, cables also have important 

structural applications in the areas of (but not limited to) power lines and marine applications. In power 

lines [4] stranded cables are used frequently, where several wires are twisted to form a single cable. Ref. 

[4] models the dynamic response of power transmission cables when subjected to shock loads. The stranded 

cables considered in [4] comprise of aluminum and galvanized steel. Ref. [5] develops mathematical models 

to determine the bending stiffness of stranded cables which have application in power and signal 

transmission. In marine cables [6] two layers are present. Armour layer is the outer, which provides the 

mechanical strength, and the inner layer contains optical fibers and conducting wires [6]. Ref. [7] states that 

the marine cables usually cannot withstand compressive load and operate in tension-slack condition which 

results in non-linear behaviour. In space structure applications, the power cables are attached to the host 

structures using zip-ties and the cable resonances are usually observed in the higher modes and the presence 
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of cabling significantly effects the dynamics of the host structure [2]. In the current paper, the pre-tensioned 

cable is attached all along the length of the beam (host structure). Cabling induces coupled vibration 

behaviour between various coordinates and this phenomenon is investigated analytically in this work. For 

the cable model in this paper, the strain and kinetic energy expressions are evaluated based on the strain 

and displacement values at the centre of the cable cross-section.  

Previous research in the area of cable-harnessed structures includes ad hoc techniques that 

mathematically model these cables as lumped masses attached to the host structure ignoring their stiffness 

and damping properties [8] . To overcome deficiencies in the earlier models, [1] considers the effect of 

distributed mass, stiffness and damping effects of cables where added cables are modeled as a beam 

structure attached to a host specimen. Ref. [1] models the cables using shear-beam theory. The dynamics 

of cabled beam is studied using analytical methods. The paper reports bending modes related to the host 

structure and the cable. It is reported that the shear beam model (for cable) predicts damping better than the 

case where the cable is modelled using Euler-Bernoulli beam model. Goodding et al [3,9] developed 

methods to attach the cable to the host structures with the help of tie-down structures. The paper reports 

that at lower modes, mass effects dominate and at higher modes, the damping effects increase. Their work 

pertains to studying bending vibrations using finite element analysis (FEA) for free-free cabled structures. 

The bending frequency response functions obtained from the FEA are validated using experiments. 

Babuska et al [2]  model the host structure and cable using Euler-Bernoulli beam theory. They develop 

distributed parameter model for transverse vibrations of cable and beam. It is also shown in their work that 

the stiffness effects are dominant in the lower vibration modes, where as, the damping effects dominate the 

higher modes of vibrations. Refs. [10] develop a cable loaded panel. The host structure considered is a plate 

and cables are attached to it. The paper develops finite element model to predict the vibration characteristics 

of the cable loaded panel and the finite element model is validated with experiments. 

Spak et. al Refs. [5,11–13] modeled the spaceflight cables using the shear and Timoshenko beam 

theory and developed theoretical models to determine various effective properties of non-homogenous 

space flight cables such as density and Young’s modulus. Using the predicted properties, the frequency 

response characteristics of bending vibrations cable harnessed structures are found out using analytical 

methods and the predicted frequency response functions are validated using experiments.  The initial phase 

of Spak et al work studies the frequency response of strings and space flight cables. The experimental 

investigations in Ref. [14] study the bending vibration characteristics of cables (modeled as beams). Spak 

et al report that as the tension in string and cables vary, the structure’s frequency response shifts slightly. 

The paper validated the cable models for bending modes that are developed using beam theory (model 

solved using DTFM approach) with the experiments. Extensive experimental investigations in [13] focuses 

on cabled beams and reports the existence of cable-beam interaction modes and coupled bending-torsion 
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modes. Spak et al report that when host structure is harnessed with thick space flight cables, the presence 

of interaction and torsional modes is seen experimentally. The analytical model by Ref.[13] neglects the 

effect of bending torsional coupling in the cabled structure. Ref. [13] compares the analytical model’s 

bending frequency response function with that of experimental frequency response function. 

Choi et. al [15] model both the bending vibrations of cable and beam structures using Timoshenko 

beam theory. The cable is attached to the beam using tie down structures. The frequency response functions 

for the bending mode obtained using the Spectral Element Method are compared with the Finite Element 

Method (FEM). Authors [15] conclude that Spectral Element Method uses significantly lower number of 

elements when compared to the FEM method. Huang et al [16,17] extend this spectral element approach 

developed by Choi et al [15] to study the bending vibration characteristics of a cantilevered cable-harnessed 

beam with a tip mass at the free end. The mathematical model [16,17] also accounts for damping in the 

structure part from extensively studying of tip mass. 

Martin et al [18–23] developed analytical models along with their experimental validations for 

cable-harnessed beam structures of periodic cable patterns. In their work, cables are modeled using both 

bar and string element assumptions. Partial Differential Equations (PDEs) that account for cables’ mass, 

stiffness and tension properties on the system’s dynamics are developed. In all the developed models in 

[18–23], the out-of-plane bending is of primary interest. The method used employs the homogenization 

technique for truss structures in [24–29] to obtain the PDE’s using a linear displacement field through the 

strain and kinetic energy expressions of a fundamental repeated elements. The coupling induced between 

various coordinates of vibrations due to the addition of the cables is entirely neglected in their modelling. 

Therefore, a main object of the current work is to extend the studies in [18–23] to investigate the 

effects of coupling induced in the system due to presence of the cables on the host structure. As this paper 

represents the first attempt by the authors on the coupled vibrations analysis for cable harnessed beams, a 

simpler pattern geometry for the cable is considered for the current work compared to the previously 

published work by Martin et. al [18–23] . The presented work extends the assumptions of the model that is 

previously used to study uni-dimensional vibrations in the out-of-plane bending direction to account for the 

coupling between various coordinates of vibrations such as in-plane bending, out-of-plane bending, torsion 

and the axial modes. Both Euler Bernoulli (EB) and Timoshenko beam theories (TBT) are used. The effects 

of several cable parameters such as the cable offset position, radius and pre-tension on the system’s coupled 

dynamics are investigated. The results are compared to a decoupled model to indicate the importance of 

including the coupling effects into the system’s dynamics.  

The paper is organized as follows, in section 2, the system’s configuration, the developed 

mathematical model for the fully coupled cable-harnessed beam and the procedure to find out the natural 

frequencies are presented. In section 3, the natural frequencies for the decoupled and coupled vibration 
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models are compared to the finite element results for several boundary conditions such as the fixed-fixed, 

cantilever and simply supported. Finally, the results for the sensitivity analysis to study the effects of several 

cable parameters such as cable’s geometry, pre-tension and offset position on the natural frequencies are 

presented. The relation between the system’s coupling and the energy transfer between various coordinates 

of vibrations are also studied. The frequency response functions when the structure is excited in the out of 

plane bending direction for cantilever boundary condition is also presented. 

 

2. Mathematical Modeling 

 

This section presents the mathematical modeling and underlying assumptions for the structure in 

this study. The structure considered is a beam system with a cable attached along the side of the beam as 

shown in Figure (1). The coordinate axes are shown in the figure. The cable is positioned at an offset 

distance along the y-axis. 

 

To develop the continuum model of the cable-harnessed structure, the following assumptions apply: 

1) The host structure is assumed to be a beam and it is modeled using Euler-Bernoulli and Timoshenko 

beam theories. 

2) The cable stays in contact with the beam during vibrations along its length. This is because the 

electronic cords and power cables are secured in place using cable ties that prevents them from being 

detached from the host structure during vibrations.    

3) The strain values at a cable cross-section remains the same as the values evaluated at the center of 

the cable cross-section due to its radius being small.  

4) The cable is in pre-tension at the equilibrium position and will remain in tension during the 

vibrations. The tension value is assumed to be constant during vibrations.  

5) The pre-tension in the cable results in the pre-compression in the beam [23]. 

 

The following sections pertain to the free vibration analysis of the cable-harnessed beam shown in 

Figure (1) using a distributed parameter model. The previous work by the authors on the analytical model 

for the periodically wrapped beam, [23], excludes the coupling effects between various coordinates of 

vibrations, i.e., bending, axial and torsion. The following steps outline the procedure for a fully coupled 

continuum model development for the system shown in Figure (1) using Euler-Bernoulli and Timoshenko 

beam theories. The first step in finding an equivalent continuum model is to establish the displacement field 

relationship and stress-strain components. The linearized three-dimensional displacement fields using 

Euler-Bernoulli (EB) and Timoshenko beam theories are as follows [30–33]. 
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Euler-Bernoulli beam model Timoshenko beam model  

 

 

(1) 

𝑋(𝑥, 𝑦, 𝑧, 𝑡) = 𝑢(𝑥, 𝑡) − 𝑦
𝜕𝑣(𝑥, 𝑡)

𝜕𝑥

− 𝑧
𝜕𝑤(𝑥, 𝑡)

𝜕𝑥
 

𝑋(𝑥, 𝑦, 𝑧, 𝑡) = 𝑢(𝑥, 𝑡) − 𝑦𝜑(𝑥, 𝑡) + 𝑧𝜓(𝑥, 𝑡) 

𝑌(𝑥, 𝑦, 𝑧, 𝑡) = 𝑣(𝑥, 𝑡) − 𝑧𝜃(𝑥, 𝑡) 𝑌(𝑥, 𝑦, 𝑧, 𝑡) = 𝑣(𝑥, 𝑡) − 𝑧𝜃(𝑥, 𝑡) 

𝑍(𝑥, 𝑦, 𝑧, 𝑡) = 𝑤(𝑥, 𝑡) + 𝑦𝜃(𝑥, 𝑡) 𝑍(𝑥, 𝑦, 𝑧, 𝑡) = 𝑤(𝑥, 𝑡) + 𝑦𝜃(𝑥, 𝑡) 

 

where 𝑢(𝑥, 𝑡), 𝑣(𝑥, 𝑡), 𝑤(𝑥, 𝑡), 𝜃(𝑥, 𝑡), 𝜑(𝑥, 𝑡), 𝜓(𝑥, 𝑡) are the motions in the axial, in-plane bending, out-

of-plane bending, torsion, rotation of cross-section about z and y-axes respectively. The next step is to find 

the stress-strain expressions using the displacement field. Equation (2) gives the relationship between the 

stress and strain for an isotropic material.  

 

{
 
 

 
 
𝜎𝑥𝑥
𝜎𝑦𝑦
𝜎𝑧𝑧
𝜏𝑥𝑦
𝜏𝑦𝑧
𝜏𝑧𝑥}
 
 

 
 

=

[
 
 
 
 
 
 
 
 
 

𝐸(1 − 𝜈)

(1 + 𝜈)(1 − 2𝜈)

𝐸𝜈

(1 + 𝜈)(1 − 2𝜈)

𝐸𝜈

(1 + 𝜈)(1 − 2𝜈)
0 0 0

𝐸𝜈

(1 + 𝜈)(1 − 2𝜈)

𝐸(1 − 𝜈)

(1 + 𝜈)(1 − 2𝜈)

𝐸𝜈

(1 + 𝜈)(1 − 2𝜈)
0 0 0

𝐸𝜈

(1 + 𝜈)(1 − 2𝜈)

𝐸𝜈

(1 + 𝜈)(1 − 2𝜈)

𝐸(1 − 𝜈)

(1 + 𝜈)(1 − 2𝜈)
0 0 0

0 0 0 𝐺 0 0
0 0 0 0 𝐺 0
0 0 0 0 0 𝐺]

 
 
 
 
 
 
 
 
 

⏟                                            

{
 
 

 
 
𝜀𝑥𝑥
𝜀𝑦𝑦
𝜀𝑧𝑧
𝛾𝑥𝑦
𝛾𝑦𝑧
𝛾𝑧𝑥}
 
 

 
 

 

                                                                       [𝐷] 

 

 

 

(2) 

where [𝐷] is the elasticity matrix, and 𝐸 and 𝐺 are the Young’s and the Shear Moduli respectively. The 

expressions for the Green-Lagrange strain tensor are shown in Equations. (3-5) [30,33]. This structure is 

modelled using beam theory, therefore, the strain components in the 𝑦 and 𝑧 directions, (𝜀𝑦𝑦 and 𝜀𝑧𝑧), and 

the shear strain on the 𝑦𝑧 plane, (𝛾𝑦𝑧), can be neglected (Ref. [30]). Once the continuum model based on 

the Timoshenko beam theory is obtained, the Euler-Bernoulli model can be obtained by neglecting the 

effects of shear deformation and rotary inertia [30,33]. 

𝜀𝑥𝑥 =
𝜕𝑋

𝜕𝑥
+
1

2
(
𝜕𝑋

𝜕𝑥
)
2

+
1

2
(
𝜕𝑌

𝜕𝑥
)
2

+
1

2
(
𝜕𝑍

𝜕𝑥
)
2

 
 

(3) 

= (
𝜕𝑢

𝜕𝑥
− 𝑦

𝜕𝜑

𝜕𝑥
+ 𝑧

𝜕𝜓

𝜕𝑥
) +

1

2
[(
𝜕𝑢

𝜕𝑥
− 𝑦

𝜕𝜑

𝜕𝑥
+ 𝑧

𝜕𝜓

𝜕𝑥
)
2

+ (
𝜕𝑣

𝜕𝑥
− 𝑧

𝜕𝜃

𝜕𝑥
)
2

+ (
𝜕𝑤

𝜕𝑥
+ 𝑦

𝜕𝜃

𝜕𝑥
)
2

] 

𝛾𝑥𝑦 =
𝜕𝑋

𝜕𝑦
+
𝜕𝑌

𝜕𝑥
+
𝜕𝑋

𝜕𝑥

𝜕𝑋

𝜕𝑦
+
𝜕𝑌

𝜕𝑥

𝜕𝑌

𝜕𝑦
+
𝜕𝑍

𝜕𝑥

𝜕𝑍

𝜕𝑦
 

 

(4) 

= −√𝜅𝜑 + √𝜅
𝜕𝑣

𝜕𝑥
− 𝑧

𝜕𝜃

𝜕𝑥
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𝛾𝑧𝑥 =
𝜕𝑍

𝜕𝑥
+
𝜕𝑋

𝜕𝑧
+
𝜕𝑋

𝜕𝑧

𝜕𝑋

𝜕𝑥
+
𝜕𝑌

𝜕𝑧

𝜕𝑌

𝜕𝑥
+
𝜕𝑍

𝜕𝑧

𝜕𝑍

𝜕𝑥
 

 

(5) 

= √𝜅𝜓 + √𝜅
𝜕𝑤

𝜕𝑥
+ 𝑦

𝜕𝜃

𝜕𝑥
 

Here, 𝜅 is the shear correction factor and can be found as  
5+5𝜈

6+5𝜈
 , [33], where, 𝜈 is the Poisson’s ratio. The 

effect of Poisson’s ratio on the direct strains of the host structure is neglected. The total strain energy of the 

unit can be found using the strain energy for each of the beam and cable as,  

 

𝑈 = 
1

2
[∭{𝜀}𝑏

𝑇{𝜎}𝑏 𝑑𝑉 +∭{𝜀}𝑐
𝑇{𝜎}𝑐 𝑑𝑉] 

(6) 

  

where  {𝜀}𝑏 and {𝜀}𝑐 are the strain components of the beam and cable respectively. {𝜎}𝑏 = [𝐷]𝑏{𝜀}𝑏 and 

 {𝜎}𝑐 = [𝐷]𝑐{𝜀}𝑐. After neglecting 𝜀𝑦𝑦, 𝜀𝑧𝑧, 𝛾𝑦𝑧 in Equation. (2) due to using a beam theory, the stresses in 

the beam are found using {𝜎𝑥𝑥, 𝜏𝑥𝑦, 𝜏𝑧𝑥}𝑏
𝑇
= {𝐸𝑏(𝜀𝑥𝑥)𝑏, 𝐺𝑏(𝛾𝑥𝑦)𝑏 , 𝐺𝑏(𝛾𝑧𝑥)𝑏}

𝑇
. The cable is assumed to 

undergo strain in the 𝑥 direction only, therefore, (𝜎𝑥𝑥)𝑐 = 𝐸𝑐(𝜀𝑥𝑥)𝑐. Also, the shear modulus effects in the 

cable are assumed to be negligible. Additionally, the strains components for the beam and cable include the 

strain experienced during the vibrations as well as the cable pretension that also induces a pre-compression 

in the beam. Therefore, the expressions for the direct strains induced in the cable and beam after the 

incorporating the effect of pre-tension in the cable and pre-compression in the beam are as (𝜀𝑥𝑥)𝑐 =

𝑇 𝐸𝑐𝐴𝑐⁄ + 𝜀𝑥𝑥 and (𝜀𝑥𝑥)𝑏 = −𝑇 𝐸𝑏𝐴𝑏⁄ + 𝜀𝑥𝑥. The negative sign in the equation for (𝜀𝑥𝑥)𝑏 is due to the 

pre-compression induced in the beam upon the cable pre-tension. The final energy expressions for the 

kinetic and strain of the cable-harnessed beam for a Timoshenko beam theory are as follows.  

𝑈𝑠𝑦𝑠𝑡𝑒𝑚 =
1

2
[∭𝐸𝑏(𝜀𝑥𝑥)𝑏

2 +𝐺𝑏(𝛾𝑥𝑦)𝑏
2 + 𝐺𝑏(𝛾𝑧𝑥)𝑏

2 𝑑𝑉] +
1

2
[∭𝐸𝑐(𝜀𝑥𝑥)𝑐

2 𝑑𝑉] 

=
1

2
∫ [𝑐1(𝑢

′)2 + 𝑐2(𝑣
′)2 + 𝑐3(𝑤

′)2 + 𝑐4(𝜃
′)2 + 𝑐5(𝜑

′)2 + 𝑐6(𝜓
′)2 + 𝑐7(𝜑)

2 +
𝑙

0

2𝑐8(𝑢
′)(𝜑′) + 2𝑐9(𝑢

′)(𝜓′) + 2𝑐10(𝜑
′)(𝜓′) + 2𝑐11(𝑣

′)(𝜑) + 2𝑐12(𝑣
′)(𝜃′) + 2𝑐13(𝑤

′)(𝜃′) +

𝑐14(𝜓)
2 + 2𝑐15(𝑤

′)(𝜓)] 𝑑𝑥  

 

 

(7) 

𝑇𝑠𝑦𝑠𝑡𝑒𝑚 =
1

2
[∭𝜌𝑏𝑒𝑎𝑚{𝑋̇, 𝑌̇, 𝑍̇}

𝑇
{𝑋̇, 𝑌̇, 𝑍̇} 𝑑𝑉 +∭𝜌𝑐𝑎𝑏𝑙𝑒{𝑋̇, 𝑌̇, 𝑍̇}

𝑇
{𝑋̇, 𝑌̇, 𝑍̇} 𝑑𝑉] 

=
1

2
∫ [𝑘1(𝑢̇)

2 + 𝑘2(𝑣̇)
2 + 𝑘3(𝑤̇)

2 + 𝑘4(𝜃̇)
2
+ 𝑘5(𝜑̇)

2 + 𝑘6(𝜓̇)
2
] 

𝑙

0

𝑑𝑥 

 

(8) 
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The constants used in the kinetic and strain energy expressions are as follows: 

𝑐1 = 𝐸𝑏𝐴𝑏 + 𝐸𝑐𝐴𝑐 𝑐12 = −𝑧𝑐𝑇  

 

 

 

 

 

 

 

 

(9) 

𝑐2 = 𝜅𝐴𝑏𝐺𝑏 𝑐13 = 𝑦𝑐𝑇 

𝑐3 = 𝜅𝐴𝑏𝐺𝑏 𝑐14 = 𝜅𝐴𝑏𝐺𝑏 

𝑐4 = 𝐺𝑏𝐽 + 𝑇(𝑦𝑐
2 + 𝑧𝑐

2) −
𝑇𝐽

𝐴𝑏
 

𝑐15 = 𝜅𝐴𝑏𝐺𝑏 

𝑐5 = 𝐸𝑐𝐴𝑐𝑦𝑐
2 + 𝑇𝑦𝑐

2 + 𝐸𝑏𝐼𝑧𝑧 −
𝑇𝐼𝑧𝑧
𝐴𝑏

 
𝑘1 = 𝜌𝑏𝐴𝑏 + 𝜌𝑐𝐴𝑐 

𝑐6 = 𝐸𝑐𝐴𝑐𝑧𝑐
2 + 𝑇𝑧𝑐

2 + 𝐸𝑏𝐼𝑦𝑦 −
𝑇𝐼𝑦𝑦

𝐴𝑏
 

𝑘2 = 𝜌𝑏𝐴𝑏 + 𝜌𝑐𝐴𝑐 

𝑐7 = 𝜅𝐴𝑏𝐺𝑏 𝑘3 = 𝜌𝑏𝐴𝑏 + 𝜌𝑐𝐴𝑐 

𝑐8 = −𝐸𝑐𝐴𝑐𝑦𝑐 − 𝑇𝑦𝑐 𝑘4 = 𝜌𝑏𝐼𝑥𝑥 + 𝜌𝑐𝐴𝑐  (𝑦𝑐
2 + 𝑧𝑐

2) 

𝑐9 = 𝐸𝑐𝐴𝑐𝑧𝑐 + 𝑇𝑧𝑐 𝑘5 = 𝜌𝑏𝐼𝑧𝑧 + 𝜌𝑐𝐴𝑐  (𝑦𝑐
2) 

𝑐10 = (𝐸𝑐𝐴𝑐 + 𝑇)(−𝑦𝑐𝑧𝑐) 𝑘6 = 𝜌𝑏𝐼𝑦𝑦 + 𝜌𝑐𝐴𝑐  (𝑧𝑐
2) 

𝑐11 = −𝜅𝐴𝑏𝐺𝑏  

where, 𝑦𝑐 and 𝑧𝑐 are the position coordinates of the cable. 𝐼𝑧𝑧 and 𝐼𝑦𝑦 are the area moment of inertias of the 

beam about z-axis and y-axis respectively, 𝐽 is the torsion constant of the beam, 𝐼𝑥𝑥 = 𝐼𝑦𝑦 + 𝐼𝑧𝑧 is the polar 

moment of inertia of the beam. Other parameters are defined in the nomenclature table. 

The terms 𝑐1, 𝑐2, 𝑐3 and 𝑐4 represent the strain energies in the axial, in-plane bending, out of plane 

bending and torsion modes respectively. 𝑐5, 𝑐7 and 𝑐6, 𝑐14 represent the coefficients related to the two 

rotations of cross-sections. The remaining strain energy coefficients are due to coupling terms, which in 

case of Timoshenko model depend on the geometry and material properties of the host structure and the 

radius, pre-tension and position coordinates of the center of the cable. 

The energy expressions for Euler-Bernoulli model can be found by neglecting shear deformation 

and rotary inertia effects. Assuming negligible initial twist, and zero wrapping angle of the cable, the strain 

and kinetic energy expressions of the system using this theory are found as Ref. [23], 

𝑈 =
1

2
∫ [𝑏1(𝑢

′)2 + 𝑏2(𝑣
′′)2 + 𝑏3(𝑤

′′)2 + 𝑏4(𝜃
′)2 + 2𝑏5(𝑣

′′)(𝑤′′) + 2𝑏6(𝑢
′)(𝑣′′)

𝑙

0

+ 2𝑏7(𝑢
′)(𝑤′′) + 2𝑏8(𝑤

′)(𝜃′) + 2𝑏9(𝑣
′)(𝜃′)] 𝑑𝑥 

 

(10) 

𝑇 =
1

2
∫ [𝑘1(𝑢̇)

2 + 𝑘2(𝑣̇)
2 + 𝑘3(𝑤̇)

2 + 𝑘4(𝜃̇)
2
] 

𝑙

0

𝑑𝑥 
(11) 
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where superscript ( )′denotes partial derivative with respect to spatial coordinate 𝑥(
𝜕

𝜕𝑥
) and superscript ( )̇ 

denotes partial derivative with respect to time 𝑡(
𝜕

𝜕𝑡
). The constants of the above strain and kinetic energy 

expressions are as follows: 

𝑏1 = 𝐸𝑏𝐴𝑏 + 𝐸𝑐𝐴𝑐 𝑏8 = 𝑇𝑦𝑐  

 

 

 

 

 

(12) 

𝑏2 = 𝐸𝑏𝐼𝑧𝑧 + 𝐸𝑐𝐴𝑐𝑦𝑐
2 + 𝑇𝑦𝑐

2 −
𝑇𝐼𝑧𝑧
𝐴𝑏

 
 

𝑏9 = −𝑇𝑧𝑐 

𝑏3 = 𝐸𝑏𝐼𝑦𝑦 + 𝐸𝑐𝐴𝑐𝑧𝑐
2 + 𝑇𝑧𝑐

2 −
𝑇𝐼𝑦𝑦

𝐴𝑏
 

𝑘1 = 𝜌𝑏𝐴𝑏 + 𝜌𝑐𝐴𝑐 

𝑏4 = 𝐺𝑏𝐽 + 𝑇(𝑦𝑐
2 + 𝑧𝑐

2) −
𝑇𝐽

𝐴𝑏
 

𝑘2 = 𝜌𝑏𝐴𝑏 + 𝜌𝑐𝐴𝑐 

𝑏5 = 𝐸𝑐𝐴𝑐𝑦𝑐𝑧𝑐 + 𝑇𝑦𝑐𝑧𝑐 𝑘3 = 𝜌𝑏𝐴𝑏 + 𝜌𝑐𝐴𝑐 

𝑏6 = (𝐸𝑐𝐴𝑐 + 𝑇)(−𝑦𝑐) 𝑘4 = 𝜌𝑏𝐼𝑥𝑥 + 𝜌𝑐𝐴𝑐  (𝑦𝑐
2 + 𝑧𝑐

2) 

𝑏7 = (𝐸𝑐𝐴𝑐 + 𝑇)(−𝑧𝑐)  

Here, 𝑏1 to 𝑏4 represent the coupling coefficients in the axial, in-plane bending, out-of-plane bending and 

torsion modes respectively. The remaining coefficients (𝑏5 to 𝑏9) represent the coupling coefficients. The 

coupling coefficients in case of Euler-Bernoulli model depends on the parameters like cable radius, cable 

pre-tension, young’s modulus of the cable and the position coordinates of the center of the cable along the 

y and z axis. Assuming free vibrations and no external loads acting on the system, equations of motion for 

free vibrations for the two beam theories may be found.  

The coupled equations of motion for the six coordinates of vibrations for the Timoshenko beam model are 

found as,  

−𝑘1𝑢̈ + 𝑐1𝑢
′′ + 𝑐8𝜑

′′ + 𝑐9𝜓
′′ = 0 (13a) 

−𝑘2𝑣̈ + 𝑐2𝑣
′′ + 𝑐12𝜃

′′ + 𝑐11𝜑
′ = 0 (13b) 

−𝑘3𝑤̈ + 𝑐3𝑤
′′ + 𝑐13𝜃

′′ + 𝑐15𝜓
′ = 0 (13c) 

−𝑘4𝜃̈ + 𝑐4𝜃
′′ + 𝑐12𝑣

′′ + 𝑐13𝑤
′′ = 0 (13d) 

−𝑘5𝜑̈ + 𝑐5𝜑
′′ − 𝑐7𝜑 + 𝑐8𝑢

′′ − 𝑐11𝑣
′ + 𝑐10𝜓

′′ = 0 (13e) 

−𝑘6𝜓̈ + 𝑐6𝜓
′′ − 𝑐14𝜓 + 𝑐9𝑢

′′ − 𝑐15𝑤
′ + 𝑐10𝜑

′′ = 0 (13f) 

The six coupled partial differential equations obtained after applying Hamilton’s principle are presented in 

Equations. (13a) - (13f) will require six boundary conditions at each end. The boundary conditions (also 

obtained from Hamilton’s principle) for each of the fixed, simply supported and free ends are as follows. 

The boundary conditions for the fixed, free and simply supported ends are shown in Equations (14), (15) 

and (16) respectively. 
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𝑢 = 𝑣 = 𝑤 = 𝜃 = 𝜑 =  𝜓 = 0|𝑥=0 𝑜𝑟 𝑙 (14) 

 

𝑐1𝑢
′ + 𝑐8𝜑

′ + 𝑐9𝜓
′= 0|𝑥=0 𝑜𝑟 𝑙 

𝑐2𝑣
′ + 𝑐11𝜑 + 𝑐12𝜃

′= 0|𝑥=0 𝑜𝑟 𝑙 

𝑐3𝑤
′ + 𝑐4𝜃

′ + 𝑐15𝜓= 0|𝑥=0 𝑜𝑟 𝑙 

𝑐4𝜃
′ + 𝑐12𝑣

′ + 𝑐13𝑤
′= 0|𝑥=0 𝑜𝑟 𝑙 

𝑐5𝜑
′ + 𝑐8𝑢

′ + 𝑐10𝜓
′= 0|𝑥=0 𝑜𝑟 𝑙 

𝑐6𝜓
′ + 𝑐9𝑢

′ + 𝑐10𝜑
′= 0|𝑥=0 𝑜𝑟 𝑙 

 

 

   

(15) 

 

𝑢 = 𝑣 = 𝑤 = 𝜃= 0|𝑥=0 𝑜𝑟 𝑙 

𝑐5𝜑
′ + 𝑐8𝑢

′ + 𝑐10𝜓
′= 0|𝑥=0 𝑜𝑟 𝑙 

𝑐6𝜓
′ + 𝑐9𝑢

′ + 𝑐10𝜑
′= 0|𝑥=0 𝑜𝑟 𝑙 

 

  (16) 

 

A simpler version of  Equations. (13a) - (13f) can be found using assumptions for a Euler Bernoulli beam 

model in which the shear and rotary inertia effects are excluded. The governing equations for Euler 

Bernoulli beam model is presented in  Equations. (17a)- (17d). 

−𝑘1𝑢̈ + 𝑏1𝑢
′′ + 𝑏6𝑣

′′′ + 𝑏7𝑤
′′′ = 0 (17a) 

−𝑘2𝑣̈ − 𝑏2𝑣
′′′′ − 𝑏6𝑢

′′′ − 𝑏5𝑤
′′′′ + 𝑏9𝜃

′′ = 0 (17b) 

−𝑘3𝑤̈ − 𝑏3𝑤
′′′′ − 𝑏7𝑢

′′′ − 𝑏5𝑣
′′′′ + 𝑏8𝜃

′′ = 0 (17c) 

−𝑘4𝜃̈ + 𝑏4𝜃
′′ + 𝑏9𝑣

′′ + 𝑏8𝑤
′′ = 0 (17d) 

The associated boundary conditions for the Equations. (17a) - (17d) for the fixed, free and simply supported 

ends are shown in Equations (18), (19) and (20) respectively. 

𝑢 = 𝑣 = 𝑤 = 𝜃 = 𝑣′ = 𝑤′= 0|𝑥=0 𝑜𝑟 𝑙 (18) 

  
𝑏1𝑢

′ + 𝑏6𝑣
′′ + 𝑏7𝑤

′′= 0|𝑥=0 𝑜𝑟 𝑙 

𝑏2𝑣
′′ + 𝑏5𝑤

′′ + 𝑏6𝑢
′= 0|𝑥=0 𝑜𝑟 𝑙 

𝑏2𝑣
′′′ + 𝑏5𝑤

′′′ + 𝑏6𝑢
′′ − 𝑏9𝜃

′= 0|𝑥=0 𝑜𝑟 𝑙 

𝑏3𝑤
′′ + 𝑏5𝑣

′′ + 𝑏7𝑢
′= 0|𝑥=0 𝑜𝑟 𝑙 

𝑏3𝑤
′′′ + 𝑏5𝑣

′′′ + 𝑏7𝑢
′′ − 𝑏8𝜃

′= 0|𝑥=0 𝑜𝑟 𝑙 

𝑏4𝜃
′ + 𝑏8𝑤

′ + 𝑏9𝑣
′= 0|𝑥=0 𝑜𝑟 𝑙 

 

 

(19) 

 

𝑢 = 𝑣 = 𝑤 = 𝜃 = 0|𝑥=0 𝑜𝑟 𝑙 

𝑏2𝑣
′′ + 𝑏5𝑤

′′ + 𝑏6𝑢
′= 0|𝑥=0 𝑜𝑟 𝑙 

𝑏3𝑤
′′ + 𝑏5𝑣

′′ + 𝑏7𝑢
′= 0|𝑥=0 𝑜𝑟 𝑙 

 

 

(20) 
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For physical description of the governing coupled partial differential equations, Equations. (13a) - (13f) 

and Equations. (17a) - (17d), the readers can refer to section S1 in the supplementary document. After 

obtaining the governing equations, the next step is to obtain the natural frequencies and mode shapes. In 

the following steps, the solution procedure for coupled partial differential equations, the Timoshenko model 

is shown in Equations. (13a)- (13f). The same procedure is applicable for the Euler-Bernoulli model which 

are shown in Equations. (17a) - (17d). The general form of the solution for the coupled PDE’s shown in  

Equations. (13a)- (13f) are as follows,  

{
 
 

 
 
𝑢
𝑣
𝑤
𝜃
𝜑
𝜓}
 
 

 
 

=

{
 
 

 
 
𝑈
𝑉
𝑊
Θ
Φ
Ψ}
 
 

 
 

𝑒𝛼𝑥𝑒𝑖𝜔𝑡 

 

(21) 

where 𝑈, 𝑉,𝑊, Θ,Φ and Ψ are modal vectors. The temporal solution of the PDEs is assumed to be harmonic 

(represented by the complex exponential 𝑒𝑖𝜔𝑡), and the spatial solution is assumed to be of the form 𝑒𝛼𝑥, 

where 𝜔 is the frequency and 𝛼 is the mode shape parameter. Substituting Equation. (21) in Equations. 

(13a)- (13f), we obtain six simultaneous algebraic equations, which are converted into matrix form as 

follows,  

 

[𝐴]6 𝑋 6

{
 
 

 
 
𝑈
𝑉
𝑊
Θ
Φ
Ψ}
 
 

 
 

6 𝑋 1

= {0}6 𝑋 1 

 

 

 

(22) 

where [A] is given by:   

         

[
 
 
 
 
 
 
𝑐1𝛼

2 + 𝑘1𝜔
2 0 0 0 𝑐8𝛼

2 𝑐9𝛼
2

0 𝑐2𝛼
2 + 𝑘2𝜔

2 0 𝑐12𝛼
2 𝑐11𝛼 0

0 0 𝑐3𝛼
2 + 𝑘3𝜔

2 𝑐13𝛼
2 0 𝑐15𝛼

0 𝑐12𝛼
2 𝑐13𝛼

2 𝑐4𝛼
2 + 𝑘4𝜔

2 0 0

𝑐8𝛼
2 −𝑐11𝛼 0 0 𝑐5𝛼

2 − 𝑐7 + 𝑘5𝜔
2 𝑐10𝛼

2

𝑐9𝛼
2 0 −𝑐15𝛼 0 𝑐10𝛼

2 𝑐6𝛼
2 + 𝑘6𝜔

2 − 𝑐14]
 
 
 
 
 
 

 

 

For non-trivial solution,|𝐴(𝛼, 𝜔)| should be zero. This results in a polynomial that relates the mode shape 

parameters 𝛼 and frequency 𝜔. Solving the above polynomial results in 12 roots for 𝛼 in terms of 𝜔. The 

next step is to find the spatial solutions. We know from Equation. (22) that 
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𝐴61𝑈 + 𝐴62𝑉 + 𝐴63𝑊+𝐴64Θ+ 𝐴65Φ+ 𝐴66Ψ = 0 (23) 

 

where 𝐴6𝑖 (𝑖 → 1 𝑡𝑜 6) represent the elements of the sixth row of matrix [A] (any arbitrary row can be used 

to develop the linear dependency condition. In this case, sixth row was selected). For the linear dependency 

between 𝑈, 𝑉,𝑊, Θ,Φ and Ψ to be satisfied, the spatial solutions for different coordinates of motion should 

be as follows.  

𝑈𝑛 = |(−1)
6+1𝑀61| 𝑉𝑛 = |(−1)

6+2𝑀62| 𝑊𝑛 = |(−1)
6+3𝑀63| 

 

 

(24) 

Θ𝑛 = |(−1)
6+4𝑀64| Φ𝑛 = |(−1)

6+5𝑀65| 

 

Ψ𝑛 = |(−1)
6+6𝑀66| 

where 𝑀6𝑖 (𝑖 → 1 𝑡𝑜 6) represent the minors of the elements 𝐴6𝑖 for 𝑖 → 1 𝑡𝑜 6 of matrix [A]. The 

determinant of the co-factor elements presented in Equation. (24) gives us the final spatial solution for each 

coordinates of vibration. Since we have 12 roots for 𝛼, subscript 𝑛 is from 1 to 12. After obtaining 𝛼 in 

terms of 𝜔 and obtaining the spatial solutions, the general solution of the coupled PDEs is expanded as 

follows. 

{
 
 

 
 
𝑢(𝑥, 𝑡)
𝑣 (𝑥, 𝑡)
𝑤 (𝑥, 𝑡)
𝜃 (𝑥, 𝑡)
𝜑 (𝑥, 𝑡)
 𝜓(𝑥, 𝑡)}

 
 

 
 

= ∑𝑑𝑛

12

𝑛=1

{
 
 

 
 
𝑈𝑛(𝛼 = 𝛼𝑛)
𝑉𝑛(𝛼 = 𝛼𝑛)
𝑊𝑛(𝛼 = 𝛼𝑛)
Θ𝑛(𝛼 = 𝛼𝑛)
Φ𝑛(𝛼 = 𝛼𝑛)
Ψ𝑛(𝛼 = 𝛼𝑛)}

 
 

 
 

𝑒𝛼𝑛𝑥𝑒𝑖𝜔𝑡 

 

 

(25) 

Here, 𝑑𝑛is a solution constant for 𝑛 → 1 to 12. The total of 12 boundary conditions are then used to find 

the frequencies using the algebraic equations below.  

[𝐿(𝜔)]12 𝑋 12 {𝑑}12 𝑋 1 =
{0}12 𝑋 1 

 

(26) 

The non-trivial solution results in |𝐿( 𝜔)| = 0, from which the natural frequencies are found. 

 

3. Results and Discussions  

Presented in this section are the natural frequencies and mode shapes for the cable-harnessed beam 

structure shown in Figure (1) using the analytical models developed in the previous section. The results are 

compared to the decoupled Euler Bernoulli model presented in Ref.[23] for the system parameters shown 

in Table (1). Further, the presented results help better understand the dynamics behind the coupling and its 

effects. In addition, sensitivity analysis such as the effects of the offset position, radius and pre-tension of 

the cable on the natural frequencies are further presented and discussed using the coupled Euler Bernoulli 

theory. 
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The position coordinates of the center of the cable in the y and z directions are given by the 

expressions 𝑦𝑐 =
𝑏

2
− 𝑟𝑐; 𝑧𝑐 =

ℎ

2
+ 𝑟𝑐. For the system parameters shown in Table (1), the values (𝑦𝑐 , 𝑧𝑐) are 

equal to (0.0043,0.00145) 𝑚. The root of transcendental equation |𝐿( 𝜔)| = 0  is used to obtain the natural 

frequencies of the system for the parameters shown in Table (1) for the coupled system. Results of both 

Euler-Bernoulli and Timoshenko models are presented for parameters in Table (1). Fixed-fixed, cantilever 

and simply supported boundary conditions are considered. To validate the analytical results, a finite element 

analysis is performed. The system is discretized by assuming each displacement function to be a third order 

polynomial in 𝑥 (where 𝑥 is the length of the beam) [23,34]. The elemental mass and stiffness matrices are 

constructed from the strain and kinetic energy expressions using the Timoshenko model, Equations. (7-8). 

The structure was meshed into 200 elements. The total number of nodes in the system are 201 for all the 

boundary conditions considered. Once the elemental mass and stiffness matrices are constructed, they are 

assembled and respective boundary conditions are applied. The eigenvalue problem gives us the natural 

frequencies and the mode shapes. The natural frequency errors for each of the models in comparison with 

the FEA results are presented in the Tables. (2)-(4). To identify the coordinate of vibration associated with 

each frequency, the mode shapes are found and plotted in Figures. (2)-(4) in this paper and in Figures. (s1)- 

(s3) in the supplementary document. From this point, for referring figures and equations in the 

supplementary document, the format Figure. (s1) or Equation. (s1) will be used. For example, Figure. (s1) 

and Figure. (s2) represent the first and second figures in the supplementary document. The mass 

normalization condition for the coupled Timoshenko beam model can found by following the procedure 

outlined in [35].  

∫ (𝑘1𝑈𝑛(𝑥)𝑈𝑛(𝑥) + 𝑘2𝑉𝑛(𝑥)𝑉𝑛(𝑥) + 𝑘3𝑊𝑛(𝑥)𝑊𝑛(𝑥) + 𝑘4𝜃𝑛(𝑥)𝜃𝑛(𝑥) + 𝑘5𝜑𝑛(𝑥)𝜑𝑛(𝑥) +
𝑙

0

𝑘6𝜓𝑛(𝑥)𝜓𝑛(𝑥))𝑑𝑥 = 1  

 

(27) 

Equation. (27) shows the mass normalization condition for a coupled Timoshenko model, the same 

condition can be easily obtained for an Euler-Bernoulli beam model and is shown in Equation. (28). 

∫ (𝑘1𝑈𝑛(𝑥)𝑈𝑛(𝑥) + 𝑘2𝑉𝑛(𝑥)𝑉𝑛(𝑥) + 𝑘3𝑊𝑛(𝑥)𝑊𝑛(𝑥) + 𝑘4𝜃𝑛(𝑥)𝜃𝑛(𝑥))𝑑𝑥 = 1
𝑙

0

 
(28) 

As an example, the first two mass-normalized mode shapes for the coupled theory using Euler-

Bernoulli assumptions for several boundary conditions are shown in Figures. (2-4). The results in Figure. 

(2) for fixed-fixed boundary condition indicate that for the 1st and 2nd modes, the out-of-plane bending is 

the dominant mode. Similarly, the shapes for the in-plane bending, torsion-and axial dominant modes are 

presented in Figure. (s1) of the supplementary document. To further confirm, the dominance of each 

coordinate of vibration at a given frequency, a strain energy analysis is performed to find the contribution 

of each coordinate for the modes shown. Therefore, after obtaining the solution to the coupled PDEs, the 
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strain energy for each of the coordinates is calculated at each frequency. Finally, the percentages for the 

strain energy contributions of each of the coordinates of vibrations for each mode are plotted in Figure. 

(5a). These values indicate the dominance of each coordinate for a given mode, and further confirm the 

findings of Figure. (2) and Figure. (s1) of the supplementary document. The same explanation can be 

extended to cantilever and simply supported boundary conditions.  It should be noted that the main 

assumption behind a decoupled model is that the stiffness values associated with the coordinates of 

vibrations not included in the analysis are infinitely large, and as a result those coordinates may be 

neglected. This leads to an overestimation of the frequencies using a decoupled model. Once the effects of 

these coordinates are included in the coupled analysis, the stiffness values associated with the previously 

ignored coordinates now become finite that result in a more reasonable natural frequency estimation and 

improved accuracy. The results shown in Tables. (2-4) further indicate the overestimation of the frequencies 

for the decoupled model as well as the improved accuracy for the coupled model that is particularly more 

important for the higher modes. In another words, the coupled model allows for the distribution of strain 

energy between coordinates of vibrations that is ignored in a decoupled analysis.  

The mode shape results in Figure. (3) pertain to the cantilever boundary condition. For this 

boundary condition, it is shown that the out-of-plane bending is dominant in the first; whereas, the in-plane 

bending is dominant at the second mode. Also, from Figure (5b) and Figure (s2), the torsional mode is 

dominant at the fifth frequency, and the sixteenth mode corresponds to the first axial mode. For the simply 

supported boundary condition, Figure. (4), the out-of-plane bending is dominant in the first, second modes. 

From Figure. (s3) and Figure. (5c), In-plane bending is dominant in the mode 3. Torsion is dominant in the 

mode 6, and the mode 23 shown relates to the axial dominant mode.  

The natural frequencies found using the decoupled and coupled models are presented and compared 

to the FEA results in Tables. (2-4). Comparing the errors in the natural frequency estimations for each of 

these methods clearly indicates the advantage of the coupled analysis over the decoupled. In particular, 

significant improvement in the accuracy can be observed for the out-of-plane bending dominant modes. It 

is shown that the decoupled model tends to overestimate the frequencies compared to the coupled model 

due to overestimating the overall stiffness of the system. This is because the decoupled model only allows 

for the out of plane bending, hence, it ignores the flexibility of the system in other directions and their 

vibrations. In addition, it can be seen that the Timoshenko model predicts the frequencies better when 

compared to the Euler Bernoulli. This is particularly noticeable for the higher in-plane bending modes due 

to the length to thickness ratio in that direction and the shear effects becoming more important.   

Finally, to obtain more insight into the coupling effects, a sensitivity analysis is performed by 

varying several parameters such as radius of the cable, the offset position, and the tension in the cable. For 

simplicity, these analyses are performed using the coupled EB analytical model as the shear effects become 
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important for structures with larger length to thickness ratios. Figure. (6) shows, the effects of cable radius 

on natural frequencies for each mode while keeping other system parameters constant. 

As the cable radius increases, the frequencies pertaining to the modes for which out of plane 

bending is dominant increase, while the frequencies for the dominantly torsional modes decrease. This is 

because the as the radius of the cable increases, the strain energy increases at a faster rate than the kinetic 

energy for the out of plane bending dominant mode and its frequency increases; however, the kinetic energy 

increases at a faster rate than the strain energy for the torsion dominant modes as the cable radius becomes 

larger, that results in smaller torsional frequencies.  

 In Figure (7), the errors between the natural frequencies of coupled and decoupled EB models 

compared to the FEA are plotted against the cable radius for different boundary conditions. As expected, 

when the cable radius increases, the coupling between different coordinates of vibrations gets stronger. It 

is shown that the error for the decoupled model with respect to the FEA becomes significantly larger when 

compared to the coupled model due to ignoring the coupling effects that are particularly important for larger 

cable radius values due to greater coupling. 

The results for several cable-offset positions are presented in Figure (8). The natural frequency 

results shown in this figure further indicate the strain energy transfer between the in-plane and out-of-plane 

bending modes as the system coupling increases. As the cable is placed further from the center, the coupling 

effects are more pronounced that result in an energy transfer between the in-plane and out-of-plane bending 

modes subsequently causing the smaller frequencies for the out-of-plane bending dominant modes and 

larger frequencies for the in-plane modes. In addition, the frequency patterns show a symmetric behavior 

for offset positions on either side of the beam as expected.     

To better understand the math behind this energy transfer, a further simplified model is built for 

the cable-harnessed beam in which only the coupled in-plane and out-of-plane bending modes are 

considered. Refs.[36,37] developed closed form expressions for natural frequencies of repeated truss 

structures and beams with initial loads. Following the same approach, closed form expressions for natural 

frequencies are obtained for the system in the following study for simply supported boundary conditions. 

The mathematical details for this procedure are explained below. 

The reduced order Euler-Bernoulli model for the cable-harnessed beam that includes the bending modes 

only can be written as follows (reduced from Equations. (17a)- (17d)): 

−𝑘2𝑣̈ − 𝑏2𝑣
′′′′ − 𝑏5𝑤

′′′′ = 0 (29a) 

−𝑘3𝑤̈ − 𝑏3𝑤
′′′′ − 𝑏5𝑣

′′′′ = 0 (29b) 

 

 

Simply supported boundary condition is considered as an example, therefore,  

𝑣 = 𝑤 = 0|𝑥=0 𝑜𝑟 𝑙 

𝑏2𝑣
′′ + 𝑏5𝑤

′′= 0|𝑥=0 𝑜𝑟 𝑙 
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𝑏3𝑤
′′ + 𝑏5𝑣

′′= 0|𝑥=0 𝑜𝑟 𝑙 (30) 

The last two expressions of Equation. (30) correspond to the equivalent bending moment in the in-plane 

and out-of-plane directions. Using the assumed form of solution for bending of a simply supported beam, 

we get, 

𝑣(𝑥, 𝑡) = 𝑉 sin(
𝑛𝜋𝑥

𝑙
) 𝑒𝑖𝜔𝑡 

𝑤(𝑥, 𝑡) = 𝑊 sin(
𝑛𝜋𝑥

𝑙
) 𝑒𝑖𝜔𝑡 

 

(31) 

After substituting the general solution (Eq. (31)) in the coupled PDEs (Equations (29a) and (29b)), the 

simultaneous algebraic equations are converted into the matrix form and the frequency equation is obtained 

by setting the determinant of the resulting matrix to zero. The resulting natural frequency roots are as 

follows, 

𝜔1 =
√
𝑏3𝑘2𝑛

4

𝑙4
+
𝑏2𝑘3𝑛

4

𝑙4
−
√(𝑏3𝑘2)

2𝑛8 − 2𝑏2𝑏3𝑘2𝑘3𝑛
8 + 4(𝑏5)

2𝑘2𝑘3𝑛
8 + (𝑏2𝑘3)

2𝑛8

𝑙4

2𝑘2𝑘3
𝜋2 

  

 

 

 

(32) 

𝜔2 =
√
𝑏3𝑘2𝑛

4

𝑙4
+
𝑏2𝑘3𝑛

4

𝑙4
+
√(𝑏3𝑘2)

2𝑛8 − 2𝑏2𝑏3𝑘2𝑘3𝑛
8 + 4(𝑏5)

2𝑘2𝑘3𝑛
8 + (𝑏2𝑘3)

2𝑛8

𝑙4

2𝑘2𝑘3
𝜋2 

 

The system parameters are assumed the same as Table. (1). The value of 𝑛 is taken to be one.  For 

𝑛 = 1, we get two frequencies from Equation (32). One of them corresponds to the out of plane bending 

dominant mode and the other corresponds to the in-plane dominant mode. As a result, the two natural 

frequencies obtained from Equation. (32) correspond to the same wavenumber. The detailed derivations to 

obtain Equation (32) and obtaining mode shapes corresponding to the frequency roots of Equation. (32) are 

presented in the supplementary document in the section S2. For the given wave number, the root with lower 

magnitude corresponds to the out-of-plane bending dominant mode and the root with higher magnitude 

corresponds to the in plane bending dominant mode. This can be confirmed from the mode shape plots 

Figures. (s4a) and (s4b) in the supplementary document.  

Figure. (9) shows the variations for the strain energy and the fundamental natural frequency for 

these two bending modes as the cable offset changes. Zero offset in the plot denotes the system is decoupled 

at that point and at zero offset, the solutions pertaining to the decoupled system are presented. It is shown 

that as the offset distance increases, both the frequency and strain energy corresponding to the out-of-plane 



 

    17                                                                                                           VIB-18-1239, Salehian        

 

bending dominant mode drop while they both increase for the in-plane bending mode. This indicates an 

energy transfer between the two modes as the coupling increases due to the offset position.   

Another interesting aspect to study is the effect of the cable tension on the natural frequencies. In 

Figure. (s5) of supplementary document, the effect of cable pre-tension is studied on the natural frequencies 

of the cable-harnessed structure using the parameters given in Table. (1). Due to high bending stiffness, the 

structure is less susceptible to the effects of cable pre-tension. Therefore, to better study this effect, the 

system parameters in Table. (5) are additionally considered for a rectangular cross section. The position 

coordinates of the center of the cable (𝑦𝑐 , 𝑧𝑐) are equal to (0.0098,0.00095) 𝑚.   From Figure (10), we can 

see that as the cable pre-tension increases, the fundamental natural frequency for the out-of-plane bending 

drops to zero as the system undergoes buckling. As expected, the buckling load for the fixed-fixed boundary 

condition is the largest, then the simply supported, and finally the cantilever beam has the smallest critical 

loading. The strain energy distribution (bar graph) for beams with system parameters from Tables (1) and 

(5) for fixed-fixed boundary condition for the first mode (which corresponds to the out of plane bending 

dominant mode) are shown in Figures (11a) and (11b) respectively. In Figure (11a), the strain energy 

contributions from the axial, in-plane bending, out of plane bending and torsion coordinates are 5.08 %, 

15.43 %, 79.48 % and 0.008 % respectively. In Figure (11b), the strain energy contributions in the axial, 

in-plane bending, out-of-plane bending and torsion coordinates are 0.005 %, 0.023 %, 71.75 % and 28.21 

% respectively. As explained earlier for Figure (5a), in Figure (11a), the out of plane and in plane bending 

coordinates are strongly coupled to each other (for beam with parameters from Table (1)). In Figure (11b), 

the out of plane bending coordinate is strongly coupled to the torsion mode when compared to axial and in-

plane bending as a beam with lower young’s modulus and wider geometry is more flexible in the torsional 

direction. By increasing the value for the cable pre-tension, the system’s coupling gets stronger that results 

in strain energy transfer between the out of plane bending mode and other coordinates of motion as shown 

in Figure (10). As similarly observed for the offset case study, for the modes associated with the same wave 

number, the mode with lower natural frequency transfers energy into the modes with the higher frequency. 

In this case, there is noticeable increase in the frequency for the torsion dominant mode when compared to 

the in-plane due to the nature of the coupling between these three modes. Similarly, the effect of cable pre-

tension on a cable-harnessed structure with open-cross section is presented in Fig. (s7) of the supplementary 

document.  

Finally, to clearly show the effect of coupling, a case study where forced excitation is applied to 

the structure in the out of plane bending direction and the resulting frequency response functions for the 

coupled Euler-Bernoulli analytical, coupled Timoshenko model, FEA and decoupled Euler Bernoulli model 

are presented in Figure (12). 
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The numerical parameters used are from Table. (1). The frequency response function for the 

coupled analytical model is calucated from Equation (33).  

𝑊(𝜔) =∑
𝑊(𝑥 = 𝑥𝑠).𝑊(𝑥 = 𝑥𝑎)

𝜔𝑖
2 −𝜔𝑓

2

∞

𝑖=1

 
 

(33) 

 

where 𝑊(𝑥 = 𝑥𝑠) represents the mass-normalized coupled out-of-plane bending displacement at the 

sensing location and  𝑊(𝑥 = 𝑥𝑎) represents the mass-normalized coupled out-of-plane bending 

displacement at the actuation location.  𝜔𝑓 is the forcing frequency. 𝜔𝑖 is the natural frequency 

corresponding to the mode 𝑖. Cantilever boundary condition is selected for this case study. The natural 

frequencies for cantilever condition are presented in Table. (3).  

Here, 𝑥𝑠 = 0.25 𝑚 & 𝑥𝑎 = 0.0952 𝑚, are the sensing and actutation locations respectively. 

Similarly, the frequency response functions for the decoupled and FEA models are calculated and plotted 

in Figure. (12). The significant peaks in the plots correspond to the out of plane bending direction and the 

first sharp peak corresponds to the in-plane bending dominant mode and the second sharp peak corresponds 

to the torsional dominant mode. As we can clearly observe from Figure. (12), the frequency response 

function of both coupled Euler-Bernoulli and coupled Timoshenko models match very well with that of 

FEA. The frequency response functions for the fixed-fixed and simply-supported boundary condition are 

presented in Figure. (s8) in the supplementary document. Therefore, the coupled model provides a better 

picture of the dynamics of the system when compared to a decoupled model. 

 

4. Conclusions 

An analytical model is presented to study the free vibrations characteristics of a cable-harnessed 

beam structure motivated by space applications. A distributed parameter model that accounts for the effect 

of coupling in cable harnessed structures is developed. Kinetic and strain energy derivations are found using 

the Green-Lagrange strain field and Hamilton’s principle is used to obtain both Timoshenko and Euler-

Bernoulli coupled partial differential equations for the system. The natural frequencies obtained from the 

analytical model are validated against the finite element analysis results. The natural frequencies of the 

decoupled vibration model adopted in the literature were compared against the coupled vibration model 

used in this paper. The coupling effects between various coordinates of vibrations due to the presence of 

the cable are studied. The results demonstrate the importance of using a coupled vibration model to 

accurately predict the vibration behavior of the cable-harnessed structure. Several cable parameters are 

studied for their effects on the system’s frequencies, coupling and the energy transfer between the modes. 
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It is observed that at larger cable radius, and if the cable is placed at an offset position, the coupling effect 

is greater and the coupled analytical model predicts the natural frequencies better than the decoupled model.  
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Fig 1: Representation of the cable harness beam along with the coordinate axes. 
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Fig 2: Vibrations mode shapes for fixed-fixed boundary conditions using coupled EB theory for the first 

two modes 

 

   

Fig 3: Vibrations mode shapes for cantilever boundary conditions using coupled EB theory for the first 

two modes 

 

    

Fig 4: Vibrations mode shapes for simply supported boundary conditions using coupled EB theory for 

the first two modes 
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                                         (a)                                                                                  (b) 

 

(c) 

Fig 5: Percentage for the strain energy contribution of each modal coordinate with respect to mode 

number  
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                                                                            (c) 

Fig 6: Effects of cable radius on the coupled natural frequencies  
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                                      (a)                                                                             (b) 

 

 (c)  

Fig 7: Error comparisons for natural frequencies between the coupled and decoupled models and the FEA 
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(a)                                                                                (b) 

 

(c) 

Fig 8: Effect of cable offset position on the coupled natural frequencies  
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(a)                                                                                   (b) 

Fig 9: Strain energy and natural frequency with respect to cable offset position  
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(a)                                                                                    (b)                                                                                             

 

(c) 

Fig 10: Effect of cable pre-tension on the natural frequencies for first in-plane bending, out-of-plane 

bending and torsional mode using the system parameters of Table (5)  
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(a) 

 

(b) 

Fig 11: Bar graph of strain energy contributions for mode 1 for beam with parameters from a) Table 1 b) 

Table 5 for fixed-fixed boundary condition. 
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Fig 12: Frequency response functions for Cantilever boundary condition. 
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Table 1: Material and geometrical properties of the cable harnessed beam structure. 

System parameters  Value 

Beam length  (𝑙) 0.25 m 

Beam width  (𝑏) 0.01 m 

Beam height (ℎ) 0.0015 m 

Beam density (𝜌𝑏) 2,700 Kg/m3 

Beam modulus of elasticity (𝐸𝑏) 68.9 GPa  

Beam Shear modulus (𝐺𝑏) 26 GPa  

Beam Poisson’s ratio (𝜈) 0.34 

Cable tension (𝑇) 25 N 

Cable radius (𝑟𝑐) 0.0007 m 

Cable density (𝜌𝑐) 1,400 Kg/m3 

Cable modulus of elasticity (𝐸𝑐) 150 GPa 
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Table 2: Natural Frequencies for coupled and decoupled models for fixed-fixed boundary conditions (Hz) 

Mode Decoupled 

Euler-Ber. 

Coupled 

Euler-Ber. 

Coupled 

Timoshenko 

FEA Error % 

Decoupled 

Error % 

Coupled 

Euler-Ber. 

Error % 

Coupled 

Timoshn

ko 

1 227.36 OP 189.39 189.23 189.75 16.53 -0.16 -0.22 

2 626.73 OP 521.87 521.55 522.68 16.60 -0.13 -0.18 

3 990.1 IP 964.32 949.51 952.35 3.81 1.20 -0.28 

4 1228.6 OP 1023.7 1020.98 1023.63 16.68 0.00 -0.21 

5 1650.8 T 1650.8 1650.44 1652.8 -0.12 -0.12 -0.14 

6 2031 OP 1691.8 1685.45 1689.91 16.79 0.09 -0.21 

7 3034 OP 2527.4 2513.06 2520.45 16.92 0.22 -0.24 

8 2729.3 IP 2657.9 2567.17 2576.83 5.58 2.97 -0.35 

9 3301.7 T 3301.7 3302.47 3305.59 -0.11 -0.11 -0.09 

10 4237.6 OP 3528.5 3504.59 3513.78 17.08 0.34 -0.21 

22 10889 A 10890 10886.2 10900.1 -0.10 -0.09 -0.12 

*OP, IP, T and A refer to the out-of-plane bending, in-plane bending, torsional and axial modes 

respectively. 
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Table 3: Natural Frequencies for coupled and decoupled models for cantilever boundary conditions (Hz) 

Mode Decoupled 

Euler-Ber. 

Coupled 

Euler-Ber. 

Coupled 

Timoshenko 

FEA Error % 

Decoupled 

Error % 

Coupled 

Euler-Ber. 

Error % 

Coupled 

Timoshe-

nko 

1 35.72 OP 29.79 29.63 29.76 16.67 0.07 -0.37 

2 155.58 IP 151.53 151.32 151.47 2.63 0.03 -0.09 

3 223.91 OP 186.53 186.37 186.65 16.63 -0.05 -0.12 

4 626.86 OP 522.35 521.71 522.38 16.66 -0.00 -0.10 

5 825.42 T 825.38 825.69 825.91 -0.05 -0.06 -0.02 

6 975.07 IP 949.52 938.53 939.92 3.60 0.98 -0.14 

7 1228.5 OP 1023.7 1021.46 1022.75 16.74 0.07 -0.10 

8 2031 OP 1691.8 1687.04 1688.65 16.85 0.15 -0.07 

9 2476.3 T 2476.5 2476.45 2477.73 -0.05 -0.04 -0.05 

10 2729.8 IP 2527.4 2516.24 2518.81 7.72 0.31 -0.09 

16 5444.5 A 5447.9 5446.28 5449.63 -0.09 -0.03 -0.06 

*OP, IP, T and A refer to the out-of-plane bending, in-plane bending, torsional and axial modes 

respectively. 
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Table 4: Natural Frequencies for coupled and decoupled models for simply supported boundary 

conditions (Hz) 

Mode Decoupled 

Euler-Ber. 

Coupled 

Euler-Ber. 

Coupled 

Timoshenko 

FEA Error % 

Decoupled 

Error % 

Coupled 

Euler-Ber. 

Error % 

Coupled 

Timoshe

nko 

1 100.29 OP 86.38 86.34 86.32 13.93 0.06 0.01 

2 401.18 OP 334.06 334.06 334.03 16.73 0.00 0.00 

3 436.76 IP 436.40 434.65 434.98 0.40 0.32 -0.07 

4 902.67 OP 755.34 754.07 754.17 16.45 0.13 -0.01 

5 1604.75 OP 1336.58 1333.56 1333.87 16.88 0.16 -0.01 

6 1650.84 T 1650.44 1650.44 1652.8 -0.11 -0.14 -0.14 

7 1747.06 IP 1701.37 1675.90 1677.3 3.99 1.37 -0.08 

8 2507.42 OP 2091.3 2083.34 2084.66 16.86 0.26 -0.05 

9 3610.69 OP 3008.03 2992.11 2992.51 17.12 0.42 -0.01 

10 3301.69 T 3302.47 3302.47 3305.59 -0.11 -0.09 -0.09 

23 10889.0 A 10797.1 10766.8 10783.9 0.96 0.12 -0.15 

*OP, IP, T and A refer to the out-of-plane bending, in-plane bending, torsional and axial modes 

respectively. 
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Table 5: Material and geometrical properties for the tension case study, rectangular cross-section beam. 

  

System parameters  Value 

Beam length  0.25 m 

Beam width  0.02 m 

Beam height 0.0015 m 

Beam density 1,300 Kg/m3 

Beam modulus of elasticity 2.2 GPa 

Beam shear modulus 0.785 GPa 

Beam Poisson’s ratio  0.4 

Cable radius  0.0002 m 

Cable density 1,200 Kg/m3 

Cable modulus of elasticity 2 GPa  

 

 

 

 

 

 

 

 

 

 

 

 


