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Abstract

Using the continuum Landau-de Gennes model for the nematic liquid crystal (NLC)
phase, we study the equilibrium behaviour of nematic cells, accounting for the coupling
between external fields and nematic order. This is motivated by the substantial past
theoretical and computational studies either neglecting or simplifying this coupling. Two
different types of NLC cells are studied, those used to measure nematic elasticity through
observation of a macroscopic optical response (Fréedericksz transition) and a typical NLC
light shutter used in liquid crystal display (LCD) technology.

The Fréedericksz cell and its associated transition are studied, comparing simulation
prediction, given phenomenological parameters describing nematic elasticity, to experimen-
tal observations. This NLC cell configuration involves a relatively simple imposed electric
(or magnetic) field, which is usually approximated instead of numerically determined. Par-
ticular emphasis is placed on investigating the impact of typical model approximations and
parameter variance on the predicted transition point. We demonstrate that the relative
values of the thermodynamic bulk constants has a pronounced effect on the transition
voltage. It is shown that the coupling effect becomes significant above the Fréedericksz
transition point.

The in-plane switching (IPS) nematic cell is studied, which involves a relatively complex
electric field compared to the previous case. Approximation of the electric field is not
feasible in this case, highlighting the use of a fully-coupled simulation approach. The
effects of electrode placement and use of a fully coupled model versus a decoupled isotropic
approximation are studied. A significant discrepancy between the predicted ON-state
textures near the lower substrate of the IPS cells between the coupled and uncoupled
models is observed. Finally, the utility of the model for the design and optimization of
LCD cell systems is demonstrated and discussed.
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ticular molecular axis. b) Uniaxial orientation distributions corresponding
to low (black) and high (cyan) degrees of ordering . . . . . . . . . . . . . . 18

3.3 a) Molecular axis and corresponding spaces on unit sphere b) Lines of con-
stant probability density for a uniaxial (blue) and biaxial (red) phases with
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Chapter 1

Introduction

The desire for simultaneously precise, intricate and yet arbitrary manipulation of light has
driven a persistent line of scientific and technical interest. This field has grown from the
nascent use of focusing lenses in antiquity to the vast and complex optical manipulation
found in modern display and imaging technology. Though the significant breadth of desired
control over light creates a highly eclectic ensemble of methods and technologies, the shared
core of this pursuit is the exploitation of the physical properties of phases of matter which
exhibit anisotropy.

The search for suitable candidate materials in the construction of optical devices is often
difficult, with prospective compounds needing to manifest (or absolutely not manifest)
multiple properties simultaneously with multiple degrees and mechanisms of tunability.
Current display technologies require materials which can rotate the polarization of light
with tunability faster than the human eye can perceive. Adaptive lenses require materials
whose refractive indices can be adjusted continuously without change in transmittance.
Adaptive glass technologies require materials which scatter light in one state and transmit
it faithfully in another.

Liquid crystalline phases of matter have unique properties that satisfy the above cri-
teria, with their physical and dielectric anisotropies being exploitable for a broad array of
purposes. The many different species of liquid crystal molecules, and the degrees of free-
dom associated with constructing liquid crystal systems, create a broad range of properties
which has resulted in their widespread adoption. Liquid crystal displays (LCDs) alone con-
stitute a multi-billion dollar global industry, with many people living the majority of their
days within arms reach of at least one liquid crystalline thin film.

Given their ubiquity and utility, it is unsurprising that an immense amount of work has

1



been done in understanding liquid crystals (LCs) within a rigorous physical framework.
Several different models exist to describe the dynamics of these systems, varying in the ap-
proximations they make or the phases they describe. As LCs become still further prevalent
with emerging technologies in medical imaging and adaptive optics, and with simulation
increasingly eclipsing more costly experimentation, understanding explicitly the accuracy
and scope of these models becomes a task that transitions from useful to unignorable.

1.1 Objectives

Contemporary models of LC phases vary in the approximations they make and the range
of systems they are able to accurately describe. Early models, or models designed for
homogeneous LC domains, construct a theory using either scalar or vector order parame-
ters. More general models use a tensor order parameter capable of describing the multiple
degrees and directions of ordering present in the phase, and have experienced increased
interest as new liquid crystal phases are discovered. In simulations of the LC phase in-
teraction with applied electric or magnetic fields, it is common practice to solve the field
portion heuristically. That is, to ignore the coupling between the ordering of the material
and the electric field mediated by dielectric anisotropy.

The purpose of this work is to study the effect of coupling between the multiple degrees
and directions of ordering in liquid crystals and external electric fields. To this end, a
dynamic continuum model is formulated using the Landau-de Gennes free energy of the
nematic LC phase and solved using the standard numerical methods for partial differential
equations. Simulations are performed for a number of both analytically and industrially
relevant systems. The primary objectives of this work are:

1. Construct a numerical solution of the continuum model, building upon an existing
uncoupled implementation by Abukhdeir and Fu [15].

2. Validate the model against experimental data and quantify its precision relative to
the precision of model parameters and assumptions.

3. Investigate the validity of approximations used in uncoupled models, and identify
unique dynamics associated with the interchange between bulk and electric free en-
ergies.

4. Demonstrate the utility of the developed model by conducting a study of the design
optimization of In-Plane Switching (IPS) LCD cells.
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1.2 Thesis Structure

This thesis outlines the derivation of the Landau-de Gennes model, its numerical implemen-
tation within a finite element scheme, and the validation of the model against contemporary
models and experimental data.

Thermotropic liquid crystals and their properties are outlined in Chapter 2. The phys-
ical theory of thermotropic liquid crystals and a description of the numerical methods used
by this work is contained in Chapter 3.

With the implemented model and theory described, we study the splay-mode Freeder-
ickzs transition in Chapter 4. The model is validated against experimental data and the
impact of director-field coupling on transition dynamics is examined.

Having an understanding of model validity and precision, and the impact of coupling
on a simple texture, we consider in-plane switching liquid crystal display cells in Chapter
5. The effect of coupling on the pertinent attributes of their design is studied, and the
potential of the model for design optimization is established.

Concluding in Chapter 6, we then summarize our findings and comment on the potential
for future work.
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Chapter 2

Background

2.1 Liquid Crystal Classifications

Liquid crystals (LCs) are a phase of matter intermediate to conventional crystalline solids
and isotropic liquids, and exhibit characteristics of both phases. Where crystals are char-
acterized by strong long-range ordering in both molecular position and alignment (trans-
lational and orientational ordering), isotropic liquids exhibit only short-range ordering,
and are rotationally and translationally invariant on macroscopic scales. LC molecules,
or mesogens, exhibit a number of modes of long range order with semi-continuous degree
across mechanisms in temperature, concentration, and molecular composition [2, 3].

There exists an immense number of liquid crystal species, with additional members
commonly being constructed from well-understood chemical building blocks or being dis-
covered. In this work we focus on rod-like thermotropic mesogens, which exhibit a strong
physical anisotropy and whose phase transitions are governed by temperature. At low tem-
peratures, these LCs form conventional crystalline solids, melting into multiple intermedi-
ary phases or mesophases and ultimately an isotropic liquid with increasing temperature
[1].

At low temperatures, the smectic phases are characterized by the presence of orienta-
tional order and translational order of lower dimensionality relative to the crystal phase;
LC molecules align in regular planes which are positionally isotropic within themselves.
As temperature is varied in the smectic range, preferred molecular orientation (commonly
referred to as the director) transitions from tilted (Smectic C) to perpendicular (Smectic
A) with respect to the molecular planes. With the addition of further thermal energy,

4



Figure 2.1: Orientational and positional ordering in thermotropic mesophases. From ref
[1].

translational ordering is lost and the resulting nematic phase exhibits only orientational
ordering. Hydrodynamic properties vary significantly between the mesophases, with the
positional isotropy granting the nematic lower viscosity. As temperature is still further
increased, all long-range ordering is lost and the mesogen becomes disordered, entering a
conventional isotropic liquid phase[3, 1]. Figure 2.1 depicts the temperature dependence
of thermotropic mesophases.

This work focuses on the nematic phase of thermotropic liquid crystals, which exists at
room temperature for many mesogens and is of primary relevance to most LC technology
including LCD displays [16].

2.1.1 Molecular Structure

The unique properties of liquid crystals are rooted in their anisotropy at the molecular
scale, the structure of which determines the phases they form. Liquid crystal molecules
may be conic, discotic, or rod-like in geometry; conic and discotic mesogens are capable of
two dimensional columnar ordering whereas rod-like mesogens are capable of orientational
and one-dimensional translational ordering as discussed above.

Liquid crystals must exhibit and maintain significant geometric anisotropy, requiring
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Figure 2.2: Rod-like nematic mesogens. a) 4-Cyano-4’-pentylbiphenyl (5CB) b) N-4-
Methoxybenzylidene-4-butylaniline (MBBA) c) para-Azoxyanisole (PAA). From references
[60, 61, 62], respectively.

molecules which are both anisometric and highly rigid. Room temperature liquid crystals
commonly consist of long alkyl groups (which provide an extended shape) and benzene
rings (which provide rigidity) [17, 18].

2.2 Physical Properties

The molecular ordering and physical anisotropy of nematic mesophases imparts them with
unique macroscale properties. These properties are the source of practical interest in liquid
crystals, with their continuous and tunable nature being highly useful in the engineering
of optical devices. While of course intimately related, these properties manifest in a broad
array of physical interactions.

2.2.1 Electromagnetic

As in any sufficiently weakly-bonded dielectric material, liquid crystals exhibit a tendency
to align (or anti-align, in the case of negative dielectric anisotropy) with an applied external
field. Assuming a sufficiently strong field and/or dielectric anisotropy, a torque will be
exerted by the dipoles of molecules oblique to the field (Figure 2.4).

The presence of inherent dipoles in the mesogen structure is the key factor in determin-
ing the sign of anisotropy and thus the nature of the interaction with applied fields. While
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Figure 2.3: Liquid Crystal textures for four different LC compounds viewed under a po-
larizing optical microscope: a) Nematic phase; b) Nematic phase; c) Smectic A phase; d)
Smectic C phase. From ref [8].
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Figure 2.4: Diagram of polarization for LC molecule with positive dielectric anisotropy
(ε‖ − ε⊥ > 0).

the geometric anisotropy of the molecules creates a tendency to create stronger induced
dipoles along the molecular axis, sufficiently strong inherent dipoles across the molecular
axis may predestine the mesogen for negative anisotropy [19]. The geometric bias towards
positive induced dipoles leads to most species exhibiting positive anisotropy. The electric
field strength necessary to induce a distortion in the director of a liquid crystalline system
is often non-zero due to competition with other alignment interactions including surface
effects and elasticity; this is the essence of the Fréedericksz Transition, to be discussed in
depth in the following chapter. Nematic liquid crystalline phases are also orientationally
tunable with magnetic fields through an analogous mechanism [11].

2.2.2 Substrate Interactions

Liquid crystalline ordering may also be affected, in both degree and direction, through
interaction with the substrate molecules comprising a bounding surface. This anchoring
effect can be induced using a number of distinct techniques to produce several different
boundary conditions. In principle many of these mechanisms can be thought of as being
similar to, if not intimately linked with, epitaxy exhibited by conventional crystals[20].

As will be seen shortly, it is often advantageous to force the molecular axis to a uniform
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Figure 2.5: a) Micrograph of rubbed polyamide surface used to induce uniform planar
anchoring in an LCD cell. From ref [1]. b) Diagram of polymer brush induced homeotropic
anchoring. From ref [9].

planar distribution or planar anchoring. This is commonly achieved through the use of
anchoring compounds, which are rubbed or etched to produce nanometre-scale grooves
[1]. These grooves produce an asymmetry in the molecular bonds, and thus the charge,
on the surface of the anchoring material which creates a local electromagnetically-induced
preference for alignment of the liquid crystal along the grooves [21]. Typical anchoring
compounds include polyamides, whose long chain-like structure is amenable to reordering
through abrasive rubbing. Anchoring of the molecular orientation of the liquid crystal per-
pendicular to the plane of the surface or homeotropic anchoring is also possible through
interaction with elongated surfactant molecules which are themselves homeotropically or-
dered [9]. These primary methods of creating surface anchoring are depicted in Figure
2.5.

Surface-induced positional anchoring is also possible, and indeed to some finite extent
inevitable. As the nematic phase is characterized by translational invariance on macro-
scopic scales, a surface boundary represents a broken symmetry. The molecular centres of
mass will tend to form planes parallel to the surface, however this effect is comparatively
weak in contrast to both other surface effects and alignments induced by electric fields [22].

The competition between the ordering induced by surface interactions with that by
applied fields, in conjunction with geometric constraints imposed by the topology of the
surfaces themselves, is responsible for the highly tunable and specific orientational distribu-
tions seen in liquid crystals. Of primary importance to both the theory and implementation
of liquid crystal devices is the strength of anchoring at the surface. It is often desirable to
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have an anchoring effect at the surface which is dominant to such an extent as to essen-
tially impose a specific degree and direction of ordering regardless of applied fields or bulk
considerations. This limit of so-called strong anchoring can be determined experimentally
using the VanSprang-Yokoyoama technique [23]. Some rubbed polyamide surfactants are
capable of inducing sufficiently strong anchoring within the context of the voltages and
design parameters of some modern LCD cell technology [7].

2.2.3 Optical

In properly describing the highly structured optical properties liquid crystal phases can
produce, it is useful to re-examine the optical properties of conventional crystals as a
contrast. It will be seen that the ability of liquid crystals to form manipulatable textures
allows them to extend classic crystal optical phenomena into new and exciting properties.

Polarization

Many conventional crystal systems are well known to induce a dephasing effect on elec-
tromagnetic waves which pass through them with polarization oblique to the crystal axes.
The magnitude of this effect is dependent upon the orientation of the crystal axis relative
to the polarization of the incident light [6].

This is an immediate consequence of the dielectric anisotropy of the molecules (which
is parlayed into uniform macroscopic dielectric anisotropy by the long-range orientational
ordering), to which the speed of propagation in the medium is related as v = 1√

εµ
. Thus

the components of the electric field along and perpendicular to the molecular axis traverse
the medium at different velocities; upon exiting, there will necessarily be a phase difference
induced between the two, excepting the case where the phase difference is exactly a mul-
tiple of 2π. Therein an initially linearly polarized wave may be dephased into a elliptical
polarization of arbitrary eccentricity based on the length of the medium and the magnitude
of the dielectric anisotropy.

Rotating linear polarizations without inducing elliptical eccentricity is key to selectively
and discretely passing light through crossed polarizers in an optical device. The simplest
mechanism to do so can be achieved using homogenous molecular alignments analogous
to a crystal and exploiting the degeneracy of the linearity condition. Namely, by setting
the incident light polarization to lie at 45◦ to the parallel and perpendicular molecular
axes, the axial components of the electric wave are of equal magnitude. Ensuring a phase
retardation of π, the wave remains linearly polarized but is itself rotated by a factor π,
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i.e. the wave is moved from an E‖ = E⊥ polarization to an E‖ = −E⊥ polarization. This
places a strict value on the depth of the crystalline device relative to the optical anisotropy.

Liquid crystal systems are capable of reproducing this behaviour, and further the pres-
ence of spatial variation in the molecular orientation allows for more complicated interac-
tions with light. Uniquely, non-homogenous liquid crystal orientational textures offer the
ability to rotate linear polarizations of light continuously by arbitrary degree, using mech-
anisms requiring shorter depth. Twisted nematic phases, also commonly called cholesteric
phases due to first being observed in plant cholesterols, are defined by a transverse twisting
of the molecular orientation shown in Figure 2.6. This helical texture rotates the incident
polarization congruent with the molecular axis without inducing elliptical eccentricity and
without loss of intensity [1]. This mechanism can be understood rigorously by considering
the dispersion relation for an electromagnetic wave passing through two immediate layers
which vary in molecular orientation by a small angle [24].

In this way a twisted nematic cell fitted with cross-polarizers allows light to pass through
the system without loss. If the surface-induced texture is overridden by a strong applied
field as in the ON-state depicted in 2.6, then the light is not rotated and is absorbed by the
second polarizer. This is the principle behind the until recently widespread TN-cell LCD.
The rate of the polarization rotation relative to the thickness of the material is referred to
as the rotary power; liquid crystals exhibit rotary power in the hundreds of revolutions per
millimetre. In constrast, rotary power using alternative mechanisms in conventional crystal
setups are orders of magnitude lower: quartz gives ≈ 24◦/mm [24]. These structures also
exhibit a number of other interesting optical properties, including a prospensity to strongly
reflect circularly-polarized incident light with opposite-handedness to the helix [1].

Ultimately, cholesteric nematic liquid crystal phases offer the ability to tunably rotate
the polarization of light across small distances, making them ideal as waveguides in the
selective transmittance of light.

2.2.4 Topological

The freedom of liquid crystals to spatially vary in molecular orientation allows for a sizeable
breadth of intimately topologically-rooted phenomena. Of primary interest is the effect of
the surface geometry and anchoring on the formation of so-called textures and disclinations.
Nematic texture refers to the vector field of primary molecular alignment; the OFF-state
shown in Figure 2.6 is characterized as a 90◦ twist texture. Disclinations, or nematic
defects, represent discontinuities and singularities in the texture and are associated with
lowered uniaxial alignment and increased biaxial alignment [1]. Defects can be topologically
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Figure 2.6: Twisted nematic cell ON and OFF states. From ref [1].

required, such as in nematic droplets with homeotropic anchoring [15], or induced by a
combination of topology, anchoring, and external fields such as in π-cell LCDs [13]. The
study of nematic defects is important to the function of certain liquid crystal devices,
though an in-depth discussion of this phenomena is not included here as this work studies
exclusively defect-free systems.

2.3 Liquid Crystal Displays

No overview on the practical application of liquid crystal phases could reasonably omit
liquid crystal displays (LCDs); these devices represent the primary motivation for the
engineering of LC devices and today constitute a multi-billion dollar international industry.
Their desired and necessary properties drive the search for new mesogens, engender the
structure of standard numerical models, and provide the literature base on which new
simulations are commonly validated.

The previously mentioned twisted nematic (TN) cell patented in 1970 represents the
first true LCD cell, and became ubiquitous in display technology through the 1980s and
1990s. TN cells benefit from the use of parallel plates to produce the on-state field; not
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only is it comparatively easy to manufacture a uniform thin film of sufficiently transpar-
ent electrode (typically an indium-tin oxide layer) compared to a discrete patterning, the
resulting field is uniform omitting the anistropic effects of the liquid crystal. The primary
limitations of the TN cell are a high viewing angle dependency and poor colour reproduc-
tion [25]. The discongruity between the ON and OFF state textures complicates design:
as rotary power is inversely proportional to twist pitch, there is motivation to apply strong
anchoring at the substrates. However, since the ON state must strongly override the helical
texture with a uniform one, this necessitates an increase in power drawn by the device to
generate the electric field. The OFF state also exhibits competition between the field and
the surface anchoring at both boundaries, competition which induces nonuniformity. Even
small variations in the OFF state texture can introduce non-zero transmittance, reducing
contrast [26] [25].

Figure 2.7: Schematic of an in-plane switching mode LCD cell. From ref [10].

A number of LC cell implementations have been developed since the mid 1990s with the
goal of supplanting TN and addressing its functional limitations. The number of designs
is sizeable, with different incarnations being designed for specific applications and to cir-
cumvent patent-protected designs. Currently however, variations on the in-plane switching
mode (IPS) cell have become widely adopted. The IPS cell is similar in construction to
the TN cell, but it applies a field in the plane of the LC film, shown in Figure 2.7. This
patterned electrode configuration is more difficult (and expensive) to manufacture. Addi-
tionally, the distance between electrodes must be larger than the thickness of the film to
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create a sufficiently horizontal field, increasing the voltage required to match field strength
with the TN configuration. However, the incongruity between ON and OFF states is sig-
nificantly minimized with the applied field acting contrary to the surface anchoring of only
one boundary. This lessens the competition between the two mechanisms of control, re-
laxing the need for a strong applied field and lessening orientational heterogeneity in the
ON state. The IPS cell exhibits lower transmittance in the ON state for greater contrast,
higher colour fidelity, and significantly wider viewing angle at the cost of higher power
draw and longer switching time [1, 27].

Although IPS cells provide a number of attractive optical properties, there remains both
numerous permutations of this base principle and alternative LC cells designed to suit a
wide range of specific display implementations. The continuous need for the customization
of LC cells as well as investigations into their application-specific limitations necessitates
the construction of general and rigorous numerical simulations.
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Chapter 3

Theory

3.1 Order Parameter Choice, Description, and Prop-

erties

Given an understanding of the molecular picture of mesogens, we are free to seek a theory
which describes their thermodynamic properties. We require a suitable order parameter
associated with the phase, around which expressions for the properties may be constructed.

3.1.1 Scalar Order Parameters and Limitations

In constructing a theory of the free energy of liquid crystals it is sensible to consider the
use of a scalar-valued parameter to describe a continuous degree of orientational order. In
the simplified case of a purely uniaxial texture, the director constitutes an axis of perfect
rotational symmetry about which ordering is a function of only the azimuthal angle θ.
Figure 3.2 shows distributions of angular deviation of a uniaxial phase from the director.
A continuous measure can be constructed in terms of θ to describe the average magnitude
of deviation; as will be seen in the next section, even-numbered Legendre polynomials are
a convenient choice. The standard measure, the scalar order parameter S, is typically
defined as [28]:

S = 〈P2(θ)〉 =
3

2
〈cos2(θ)〉 − 1

2
(3.1)

Higher-order even Legendre polynomials are sometimes used to increase accuracy [28]; the
headlessness (n̂ = −n̂) of the director causes the expected value of an odd measure to be
zero.
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This measure however assumes that the director acts as an axis of rotational symmetry
for the angular distribution function. This precludes describing biaxial phases, where a
pependicular secondary axis of alignment is present. In biaxial systems, there is no axis
where a rotation of any magnitude leaves the system constant. Because of this, scalar order
parameter models are inaccurate in describing numerous materials and topologies, and
fundamentally incapable of investigating phenomena which arise directly from biaxiality
such as trirefringence. They remain popular in literature concerning systems with strong
uniaxiality [29, 30, 31, 32, 33].

3.1.2 Frank-Oseen Theory

Putting aside for the moment our reservations about the limitations of a scalar order
parameter, we consider a continuum theory for the free energy of a nematic phase developed
in 1958 by Frank [4]. Building off of the fundamentals of liquid crystal elasticity theory
developed by Oseen in 1920, the Frank-Oseen theory expands the free energy density of the
system in terms of gradients in the director. Taken to second order these expansion terms
are regrouped into four terms representing four fundamental modes of elastic deformation
[5]:

fFO =
1

2
k11(∇·n)2+

1

2
k22(n·∇×n)2+

1

2
k33(n×∇×n)2− 1

2
(k22+k24)∇·(n(∇·n)+n×∇×n)

(3.2)

where the modes splay (k11), twist (k22), and bend (k33) are depicted in Figure 3.1. The
final mode, saddle-splay is not easily visualized, and due to its divergence factor is often
reformulated to a surface integral via divergence theorem when considering the total free
energy off a system. For this reason saddle-splay is sometimes omitted in systems where
anchoring effects are strongly dominant at the surface, or the bulk energies dominate [34].

A prime advantage of the Frank-Oseen Theory is that it describes the elastic free energy
in terms of these conveniently-interpretable modes, and the constants kii can be readily
measured by examining systems which exhibit only one mode of elastic deformation.

However the Frank-Oseen model is strongly limited by its omission of the following
phenomena, many of which are critical to the description of the LC systems we seek to
study:

• Biaxial ordering is neglected, as the director only accounts for the primary (uniaxial)
alignment
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Figure 3.1: Categorization of Frank-Oseen elastic modes. From ref [1].

• Variations in the thermodynamic bulk free energy associated with variation in molec-
ular orientation strength are neglected, i.e. the scalar order parameter S is assumed
constant throughout the domain and only the director may vary in the minimization
of the free energy.

• Director headlessness is not accounted for, creating large artificial free energy contri-
butions in some texturally complex systems [35].

3.1.3 Alignment Tensor

Modelling LC systems with generality then requires a higher-dimensional order parameter
which encapsulates the multiple degrees and directions of ordering LC phases can exhibit.
The alignment tensor derived by Pierre-Gilles de Gennes provides such an object.

Consider a single LC molecule in the bulk of a material with a molecular axis described
by û, an element of RP2 which may be thought of as a point on a unit sphere.

A small region of LC material contains some distribution of axes ~u which can be repre-
sented as a density function η on the unit sphere S2. Since there is no meaningful distinc-
tion in the choice of ~u or −~u to describe the molecular axis, the distribution is constant
across antipodes (η(a) = η(−a), a ∈ S2). In the thermodynamic limit the distribution is
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Figure 3.2: a) Schematic of molecular orientation, where n̂ is the director and û is a par-
ticular molecular axis. b) Uniaxial orientation distributions corresponding to low (black)
and high (cyan) degrees of ordering
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ŷ
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ẑ

Figure 3.3: a) Molecular axis and corresponding spaces on unit sphere b) Lines of constant
probability density for a uniaxial (blue) and biaxial (red) phases with secondary axis ẑ

18



continuous, and we can examine the tensorial moments thusly:∫
S2

u η(u)dS = 0 First Moment (3.3)∫
S2

u⊗ u η(u)dS ≡M Second Moment (3.4)

The first moment is trivially zero by the antipodal property. The second moment however,
forms a symmetric matrix M. When the LC molecules are in the isotropic phase, η(u) is
constant and thus

Miso ≡
∫
S2

u⊗ u
1

4π
dS (3.5)

=
1

4π

∫
S2

u1u1 u1u2 u1u3

u2u1 u2u2 u2u3

u3u1 u3u2 u3u3

 dS (3.6)

=
1

3
I (3.7)

where I is the identity matrix. The de Gennes alignment tensor is then defined as the
deviation of M from the isotropic value; this sets the order parameter to the zero matrix
at the phase transition and is then congruent with Landau expansions of thermodynamic
quantities [28].

Q ≡M−Miso =

∫
S2

(u⊗ u − 1

3
I) η(u)dS (3.8)

Q is symmetric and traceless, i.e. Q = QT, Tr(Q) = 0. These four constraints reduce
the number of degrees of freedom from nine to five. This is reflective of the number of
independent values needed to specify the vectors representing uni- and bi-axiality: a system
of two vectors in three dimensions constrained by mutual orthogonality similarly has (6-
1=5) degrees of freedom. Because Q is real and symmetric, its eigenvectors n,m, l form
an orthonormal basis in which Q may be diagonalized:

Q = λ1n⊗ n + λ2m⊗m + λ3l⊗ l (3.9)

Q can then be re-expressed in a form that more clearly identifies the degrees of uniaxial
and biaxial ordering:

Q = S(n⊗ n− 1

3
I) + P (m⊗m− l⊗ l) (3.10)

19



where S = 3
2
λ1 is a scalar measure of the degree of uniaxial alignment along the director n,

and P = λ2−λ3
2

is a scalar measure of the degree of biaxial alignment along the secondary
axis m. From (3.8) it can be seen that −1

3
≤ λi ≤ 2

3
and thus −1

2
≤ S ≤ 1. To interpret

the meaning and range of S, we can consider the uniaxial case where P = 0 and compare
expressions between the diagonalized and distributional forms [28]:

nQn = Sn(n⊗ n− 1

3
I)n (3.11)

= S(n(n⊗ n)n− 1

3
nIn) (3.12)

=
2

3
S (3.13)

nQn =

∫
S2

n(u⊗ u − 1

3
I) n η(u)dS (3.14)

= 〈n(u⊗ u)n− 1

3
nIn〉 (3.15)

= 〈(n · u)2 − 1

3
〉 (3.16)

= 〈cos2 θ〉 − 1

3
(3.17)

Where θ is the angle between the director and molecular axis. Thus combining eqns
(3.13) and (3.17):

S =
3

2
〈cos2 θ〉 − 1

2
(3.18)

which identifies S as the expectation value of the second Legendre polynomial in terms
of cos θ. Thus the alignment tensor recovers the scalar order parameter from uniaxial
theory, while also providing a similar measure of biaxiality. As cosine ranges from -1 to
1 we again recover that −1

2
≤ S ≤ 1, though now it can be seen that negative values

of S are of questionable physicality. Considering S = −1
2
, we have that the molecular

axes all lie perpendicular to the director, which is not self-consistent. Indeed, S < 0
corresponds to geometrically allowable but ultimately highly unstable distributions, while
S = 0 corresponds to the isotropic phase. 0 < S ≤ 1 corresponds to increasing strength of
uniaxial ordering.
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3.2 Landau-de Gennes Free Energy Model

3.2.1 Bulk Free Energy

Armed with an order parameter which properly encodes multiple modes of ordering, a
phenomenological expression for the free energy density can be obtained as a Landau
expansion of (rotationally invariant) combinations of Q and its gradients. Taken to fourth
order, the non-gradient terms form an expression for the bulk free energy density: the
energy associated with with the nematic-isotropic phase transition [5].

fb = fiso +
1

2
a0(T − Tni)QijQji −

1

3
b QijQjkQki +

1

4
c (QijQji)

2 +O(Q5) (3.19)

The constants a0, b, and c are experimentally-obtained temperature-independent parame-
ters associated with the specific liquid crystal species. T ∗ni is the supercooling temperature,
the temperature at which the isotropic phase is no longer metastable; this is slightly below
the transition temperature Tni. By convention, the sign of the third order term is negative
in order to keep all phenomenological constants positive. Because only the minimization
of the free energy is relevant to modelling the dynamics of the system, the constant free
energy of the isotropic phase fiso is hereon omitted.

3.2.2 Elastic Free Energy

The gradient terms of the Landau expansion represent energy associated with elastic de-
formation of the phase. These terms can be interpreted as penalizing combinations of
different gradients of the director within the material [3, 13].

felas =
1

2
L1(∂iQjk∂iQkj)+

1

2
L2(∂iQij∂kQkj)+

1

2
L3(Qij∂iQkl∂jQkl)+

1

2
L24(∂kQij∂jQik)+O([∇Q]3)

(3.20)
It is important to note that these alignment tensor elastic constants are not analogous to the
elastic constants of the uniaxial Frank-Oseen model; whereas the Frank-Oseen constants
can be seen as individually penalizing splay, twist, bend, and saddle-splay deformations,
the the Landau-de Gennes elastic constants have no simple physical interpretation.

The common single constant approximation:

L1 6= 0, L2 = L3 = L24 = 0 (3.21)
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has the effect of penalizing all modes of deformation identically with the exception of saddle-
splay, which is negated. In practice, thermotropic liquid crystals can vary significantly in
the free energy penalties of the elastic modes [7].

Unlike the Frank-Oseen model, wherein the elastic parameters are easily measured
through the Fréedericksz transition, there is no simple experimental procedure to determine
the Landua-de Gennes constants; since the Landau-de Gennes model is a strict generaliza-
tion of the Frank-Oseen model the constants are here instead derived by equating the two
models under the latter’s assumptions. That is, assuming purely uniaxial alignment and a
constant degree of uniaxial ordering throughout the system, the two models are equivalent
leading to the relations [13]:

L1 =
1

6S2
eq

(k33 − k11 + 3k22) (3.22)

L2 =
1

S2
eq

(k11 − k22 − k24) (3.23)

L3 =
1

2S3
eq

(k33 − k11) (3.24)

L24 =
1

S2
eq

k24 (3.25)

(3.26)

where Seq is the equilibrium uniaxial order parameter under the same assumptions,
given by considering the uniaxial bulk free energy [3]:

fbulk(S) =
1

3
a0(T − T ∗ni)S2 +

2

27
bS3 +

1

9
cS4 (3.27)

whose minimization gives:

Seq =
b

4c

(
1 +

√
1− 24

(a0c(T − T ∗ni))
b2

)
(3.28)

It is perhaps somewhat unfortunate that an approximation of low biaxiality must be
used here to obtain elastic parameter values, given the ability to describe biaxiality being
one of the major incentives of using a tensorial order parameter. For this reason we must
still remain cognizant of significant spatial variation in the uniaxial order parameter S in
simulation and the impact it has on the precision of the model’s elastic free energy.
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3.2.3 Electric Free Energy

Seeking to quantify the interaction of the phase with an external field, we have the standard
expression for the electric energy associated with an applied field

felec =
1

2
(D · E) (3.29)

For a dielectrically anistropic material, the displacement field is related to the electric field
via the dielectric tensor:

Di = εijEj (3.30)

The dielectric tensor itself is dependent on the orientation of the LC molecules, and thus
its expression must be a function of Q. Isolating this dependence, it can be written as a
sum of the average (isotropic) permittivity and the anisotropy [30]:

εij = εiso δij + ∆ε Qij =
ε‖ + 2ε⊥

3
δij + (ε‖ − ε⊥)Qij (3.31)

Thus the electric free energy density of the liquid crystal is

felec =
ε0
2

(ε‖ + 2ε⊥
3

δij + (ε‖ − ε⊥)Qij

)
EiEj (3.32)

Since the isotropic term is spatially invariant, the sign of the dielectric anisotropy deter-
mines whether this free energy is minimized by alignment along or counter to the applied
field. There exists a similar term describing interaction with an applied magnetic field;
however in this work we will only apply external electric fields [11].

3.2.4 Surface Interaction Free Energy

The free energy associated with the surface interaction is taken as the Rapini-Papoular
model, which simply penalizes deviation from the preferred ordering induced by the sub-
strate:

fs =
1

2
α(Qij −Qs

ij)
2 (3.33)

where Qs is the alignment tensor associated with the surface at equilibrium, and α is an
experimentally-obtained parameter.

In principle, a more general expression may be obtained similarly to the bulk and elastic
free energies; that is, by expanding in terms of the alignment tensor and the surface normal
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and keeping rotationally invariant terms. Assuming a uniform and weakly-penetrating
surface interaction (confining the effect to the first few layers of the nematic)[36]:

fs = fiso + α11k1Qijkj + α21kiQijQjlkl + α22(kiQijkj)
2 +O(Q3) (3.34)

This formulation has the benefit over Rapini-Papoular of being capable of encapsulating
planar degenerate ordering, i.e. where the surface induces planar anchoring but with no
preferred direction. Varying the parameters αij amounts to varying both the strength of
surface anchoring and the preferred alignment (homeotropic or planar).

However, to remain accurate away from the transition temperature, this expression
would need to be expanded to higher order, with each order having multiple terms. This
introduces a sizeable new non-trivial set of phenomenological parameters whose values
and temperature dependence would need to be experimentally measured for any given
surfactant, and possibly for surfactant-mesogen combinations. Since we wish to simulate
well into the nematic phase, we instead implement Rapini-Papoular anchoring.

Total Free Energy

Combining and integrating over all contributions, we arrive at the total free energy of the
liquid crystal system:

F =

∫∫∫
Ω

fbulk + felas + felec︸ ︷︷ ︸
fv

dΩ +

∫∫
A

fs dA (3.35)

=

∫∫∫
Ω

(
1

2
a0(T − Tni)QijQji −

1

3
b QijQjkQki +

1

4
c (QijQjk)

2 (3.36)

+
1

2
L1(∂iQjk∂iQkj) +

1

2
L2(∂iQij∂kQkj) +

1

2
L3(Qij∂iQkl∂jQkl) +

1

2
L4(∂kQij∂jQik)

+
ε0
2

(ε‖ + 2ε⊥
3

δij + (ε‖ − ε⊥)Qij

)
∂iV ∂jV

)
dΩ +

∫∫
A

1

2
α(Qij −Qs

ij)
2 dA

where we have chosen to work in terms of the electric potential field V .
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3.3 Gauss’s Law for Dielectrically Anisotropic Medi-

ums

As discussed earlier we must also solve for the electric potential field inside the system.
This is given by the macroscopic formulation of Gauss’s law as:

∂iDi = ρf (3.37)

For a dielectrically anisotropic medium, the displacement field is related to the potential
field through the dielectric tensor [13] [37]:

∂iεij∂jV = 0 (3.38)

which as previously, is a function of the molecular alignment through the alignment
tensor, giving:

∂i

(ε‖ + 2ε⊥
3

δij + (ε‖ − ε⊥)Qij

)
∂jV = 0 (3.39)

3.4 Fréedericksz Transition

A key phenomena, both for determining the value of mesogen elastic constants and val-
idating a model, is the Fréedericksz transition. In a nematic liquid crystal system with
non-zero anchoring energy in the absence of an external field, the equilibrium texture will
be governed by the surface interaction. As an external field is switched on such that its
preferred orientation is counter to that of the surfaces, the texture becomes characterized
by the competition between the electric and elastic free energies. At small values of electric
field strength, it is not favourable for the texture to realign with the field to any degree;
only after a critical field strength is reached will the molecular orientation then begin to
continuously deform from the initial state [1, 25].

This phase transition can be observed experimentally to compare the relative values
of the electric and elastic free energies. In a Fréedericksz cell configuration, it is possible
to isolate the contribution of an individual elastic mode. We present here the typical
derivation of this effect within Frank-Oseen theory with respect to the K22 twist constant.

25



Figure 3.4: Various configurations for the Fréedericksz transition. Adapted from ref [11].
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Consider a nematic liquid crystal thin film with planar anchoring in the ŷ direction on
the ẑ boundaries, as depicted in Figure 3.4 b). Application of an electric field in the x̂
direction causes spatial variation in the director field; this pure splay deformation produces
a director of varying alignment:

n̂ = cos(θ(z))ŷ + sin(θ(z))x̂ (3.40)

Assuming uniaxiality and constant S, we apply the Frank-Oseen model for elastic defor-
mation energies. At the point of transition the energy contribution of the non-twist modes
is negligible, and the energy associated with deformation is then [1]:

U = Uelas + Uelec =
1

2
K22

(∂θ
∂z

)2

− 1

2
ε0∆εE2 sin2(θ) (3.41)

Minimizing this using the calculus of variations gives the Euler-Lagrange equation:

∂U

∂θ
− d

dz

( ∂U
∂ dθ
dz

)
= 0→ K22

d2θ

dz2
+ ε0∆εE2 sin θ cos θ = 0 (3.42)

For a cell of thickness d, there is a critical electric field value Ec

Ec =
π

d

√
K22

ε0∆ε
(3.43)

below which the functional (3.42) is minimized by a constant θ = 0 function. Thus the
nematic texture of the cell exhibits no response to an external field lower than this critical
threshold. Above Ec, (3.42) is minimized by a nonconstant θ function; under this field
the nematic texture will deform as it becomes energetically favourable to align with the
external field to some degree [1].

By measuring the deformation of the cell (commonly through measurements of the
capacitance or optical transmittance [7]) in response to a continuously increasing applied
field, it is possible to determine Ec and calculate K11. The same process can be applied to
other cell/field combinations which induce exclusively bend or twist deformation to obtain
the other Frank constants. All other single-mode cells depicted in Figure 3.4 follow an
analogous derivation, and thus the generalized form of equation (3.43) is simply:

Ec =
π

d

√
Kii

ε0∆ε
(3.44)

This methodology requires highly controlled experimental parameters in order to ensure
the isolation of a single elastic mode at the point of transition. The isolation of the splay
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mode relies on an assumption of strong surface anchoring (i.e. α → ∞), and even small
extraplanar deviations in the director at the surface produce significant changes in the
critical voltage [38]. Additionally even comparatively small deviations in the direction of
the applied field also impact the transition phenomena. This lends difficulty to generating
the necessary transverse fields for the bend and twist cell geometries, which require uniform
fields in the plane of the film. For this reason, in practice Fréedericksz transition methods
often instead use a variety of textural configurations with known mode ratios (i.e. the free
energy contribution of each mode is known) and solve the resulting system of equations
for the Kii constants [7] [39].

3.5 Numerical Methods

3.5.1 Free Energy Minimization

Given a formulation 3.36 for the total free energy of the system, the equilibrium state can
be obtained by solving for the minimization in terms of the order parameter Q and electric
potential V , satisfying an appropriate set of boundary conditions. A standard variational
approach results in the Euler-Lagrange equation 1 [15]:

∂fv
∂Q
−∇ · ∂fv

∂∇Q
= 0 (3.45)

with boundary condition:

∂fs
∂Q
− k · ∂fs

∂∇Q
= 0 (3.46)

3.5.2 Finite Element Implementation

A time-perturbation numerical method is used to solve the Euler-Lagrance equations: 3.45
is modified with a time derivative term:

∂fv
∂Q
−∇ · ∂fv

∂∇Q
= µ

∂Q

∂t
(3.47)

1This model equation was originated by Fred Fu.
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where µ is a rotational viscosity of the phase. This formulation allows for an initial
condition significantly different from the equilibrium solution to be used, time-stepping
forward without requiring significant foreknowledge of the steady state [40].

A finite element scheme is implemented to solve the system of partial differential equa-
tions 3.47 and 3.39; finite element schemes are particularly well suited for simulating com-
plicated domains and allow for highly irregular and even unstructured meshes. FE schemes
exhibit high accuracy in problems involving complicated boundary conditions, and are thus
useful in simulating arbitrary configurations of nematic cells [41]. The implemented scheme
is a continuous Galerkin method using first-order Lagrange interpolants as the test func-
tions.

Equations 3.47 and 3.39 combined are initially rewritten in the weak form - multiplying
through by a weighting function v and integrating over the domain gives 2 [15]:

∫∫∫
Ω

µr
∂Qij

∂t
vjidΩ +

∫∫∫
Ω

[(
aQij − b(QikQkj −

1

3
QklQlkδij) + c(QklQlkQij)

− ε0
2

(∆ε)(∂iV ∂jV −
1

3
∂kV ∂kV δij)

)
vji + L1(∂kQij∂kvji)
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)
∂jV

)
∂iv
]
dΩ +

∫∫
S

αvjidS = 0 (3.48)

The system domain is then discretized into a set of tetrahedral subdomain elements.
On each element, the numerical solution is represented by a combination of basis functions;
here we use linear Lagrange interpolants. In this way the solution is discretized to a finite
number of degrees of freedom. Substituting this into the weak form (3.48) results in a
system of nonlinear ordinary differential equations, which are solved simulatenously via
Newton’s method.

Given the long variation in timescales found in the relaxational dynamics of nematic
liquid crystal systems, an adaptive timestepping system is implemented. At each iteration
in time, the solution Qt+∆t is computed twice: first using a single ∆t timestep, and again
using two ∆t

2
timesteps. The local error at this step is taken as the difference in these

2The Landau-de Gennes portion of the weak form was originated by Fred Fu.
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two solutions: if the local error is higher than a user-defined tolerance then the timestep
is decreased proportionally and the process repeated until sufficiently small local error is
predicted[15].

The finite element implementation used in this thesis including the above described
adaptive timestepping is built off of a comprehensive existing implementation for uncou-
pled, single-boundary simulations in uniform electric fields by Fred Fu, whose contributions
cannot be neglected [15].

3.5.3 Weak Form - Gauss’s Law

Presented here is the derivation of the weak form of the macroscopic formulation of Gauss’s
Law. Beginning with the expression:

∂iDi = ρf = 0 (3.49)

Obtaining the weak formulation by integration and the addition of the test function ν∫∫∫
Ω

(
∂iDi

)
νdΩ = 0 (3.50)

Using product rule ∫∫∫
Ω

[
∂i

(
Diν

)
−Di∂iν

]
dΩ = 0 (3.51)

Applying divergence theorem∮
A

niDiν dA−
∫

Ω

Di∂iν dΩ = 0 (3.52)

Re-expressing in terms of the electric potential and dielectric tensor∮
A

niεij∂jV ν dA−
∫

Ω

εij∂jV ∂iν dΩ = 0 (3.53)

3.6 Previous Work in Thermotropic Nematic Liquid

Crystal Simulation

To place new simulations of liquid crystal display cells in a meaningful context, and moreso
to interpret their results properly in a way that is conductive to further work and refine-
ment, it is necessary to underline both the historical and contemporary bodies of work in
this field.
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One of the first theoretical models for the nematic LC phase is the Frank-Oseen model
[4], which characterizes the free energy of the system in terms of four modes of director
distortion. This fundamentally hydrostatic formulation was further developed by Ericksen
in 1961 [42] and Leslie in 1968 [43] to create the dynamic Ericksen-Leslie theory. Ericksen-
Leslie was used in some of the first numerical simulations of liquid crystal display cells
in the 1970s; simulations of the then-dominant twisted-nematic design exhibited general
transmission phenomena agreement with experiment [12] [44]. Notably, less well under-
stood behaviour such as the tendency of a TN cell to have a non-monotonically decreasing
transmission curve (a so-called ’bounce’) between the ON- to OFF-states as in Figure 3.5,
was recovered and explained, in this case as arising from a particular dynamical structure
in the bulk of the cell [12].

As discussed the Frank-Oseen formulation relies on several approximations, most no-
tably the assumptions of purely uniaxial ordering with uniform degree and an inability
to acknowledge the headlessness of the director. Kilian and Hess introduced a numerical
formulation of single-constant Frank-Oseen theory which used a tensorial formulation of
the director to preserve the symmetry properties of the texture, i.e. (n̂ = −n̂) [35]. This
prevented the accidental inclusion of ’phantom’ free energy contributions arising in the
simulation of texturally complex domains. They showed reasonable agreement with this
formulation and experiment regarding the Fréedericksz transition threshold and reorien-
tation timescales, however the description of orientational defects was at best qualitative
[45]. Simulations of the transmittance profiles and contrast ratios of In-Plane Switching
LCD cells using this numerical approach reported agreement with experiment to within
10% [46].

Although Ericksen-Leslie improved upon Frank-Oseen by allowing the degree of uniaxial
ordering to vary spatially, neither model offers a formalism for describing biaxial ordering
within nematic phases. Numerical simulation using the Landau-de Gennes model, which
constitutes the most general continuum theory for nematic liquid crystals [47], makes use
of a higher-order order-parameter to encode biaxiality. Such a theory is necessary for
the numerical simulation of LCD cell designs which inherently involve defect structures.
Mori et al. showed that in π-cells, which exhibit topologically-demanded defects, Frank-
Oseen theory was unable to predict the equilibrium texture, again producing phantom free
energies due to director symmetries in the defect regime. However, an analagous Landau-de
Gennes implementation sufficiently matched experimental values of the texture, especially
with respect to the defects as shown in Figure 3.5 [13].

Within works using all of the above theories, there exists a broad range of implementa-
tions of external electric fields. It is common to assume an equilibrium or transient field,
which is then used as a constant model parameter [48, 12, 44, 33]. These assumptions omit
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Figure 3.5: a) The transmission ’bounce’ observed in TN-cell LCDs, from ref [12].
Splay/bend mode defect line (highlighted in red) as predicted b) correctly through the
Landau-de Gennes model and c) incorrectly through the Frank-Oseen model. Adapted
from ref [13].

the coupling effect which takes place in liquid crystal systems: as the director reorients in
the presence of an external field, the dielectric properties of the phase change, affecting the
net field within the material. Especially in domains where there exists no obvious equilib-
rium field to impose, some studies handle this coupling appropriately by simultaneously or
iteratively solving Gauss’s law alongside the free energy minimization [37, 30, 13, 46, 32].

The further development of liquid crystal theory is significantly driven by industrial in-
terest in LC applications, most notably of course LCD technologies. New interactions are
added to existing models through the inclusion of additional free energies, themselves often
necessitated by the consideration of new mesogenic species. Recently Kim et al. introduced
a term in the Frank-Oseen model corresponding to the flexoelectric effect, which couples
the geometric deformation of the director field to the molecular polarization, studying the
effects within the context of In-Plane Switching mode LCD cells [29]. The inclusion of
this consideration predicted a change in cell transmittance associated with constructive or
deconstructive interaction of the applied field with the flexoelectric polarization, demon-
strating not only the complexity of liquid crystal systems but that there is still a great
amount of work to be done in fully describing them.

Ultimately, contemporary work makes use of all three continuum theories (Frank-Oseen,
Ericksen-Leslie, Landau-de Gennes) under a sizeable variety of approximations and as-
sumptions. Historically, the primary goal of simulation has been to discover and un-
derstand liquid crystalline phenomena; as high-fidelity numerical simulation increasingly
accentuates or supplants physical experimentation in the practical engineering of liquid
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crystalline devices, we seek a stronger understanding of model precision. To that end, we
are interesting in comparative study of models using different assumptions.

In this work we implement the most general Landau-de Gennes theory with non-equal
elastic parameters, with appropriate coupling between the external field and molecular ori-
entation. Numerical simulations of the Fréedericksz transition and in-plane switching LCD
cells are performed to study and contextualize the model precision. Uncoupled simulations
using the most accurate ad-hoc approximations for the electric field are compared against
in order to understand the significance of coupling and the specific dynamical structures
omitted by simpler models in LCD systems.
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Chapter 4

Simulation of Single Elastic Mode
Cells

4.1 Overview

In order to both validate the implemented continuum model and investigate the dynamics
associated with coupling between molecular orientation and external fields, a study of
liquid crystalline thin films was performed.

New mesogenic species are commonly engineered from their well-understood chemical
building blocks to suit an application, and existing species are occasionally lifted from
relative obscurity for similar purposes. Accurate studies of their numerous elastic, thermo-
dynamic, and electrical parameters require precise experimental method, and the precision
of these measurements is often difficult to quantify. Table 4.1 holds a number of reported
values for the dielectric constants of 4-Cyano-4’-pentylbiphenyl (5CB), a room tempera-
ture nematic liquid crystal with broad application. It is then of practical importance to
understand the impact of parameter variance on the dynamics predicted by the model.

The model and parameter derivations also make use of several approximations. Al-
though the alignment tensor is able to encapsulate biaxial ordering, the Landau-de Gennes
elastic constants are derived from the Frank-Oseen constants under the assumption of
trivial biaxiality, which motivates a strong understanding of biaxiality within simulated
domains.

Given a validated model which sufficiently matches experimental observations, we then
seek to study the impact of solving Gauss’s law simultaneous to the free energy minimiza-
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ε⊥(∆T = 10◦) ε‖(∆T = 10◦) εiso(∆T = 3◦) Source

6.85 18.4 11.0 [49]

6.35 17.6 10.6 [50]

7.7 20.2 11.8 [51]

6.8 19.5 11.2 [52]

6.6 17.7 11.2 [53]

6.5 18.4 11.3 [54]

6.6 19.7 11.2 [7]

Table 4.1: Reported values of perpendicular, parallel, and isotropic dielectric constants of
5CB. Adapted directly from [7].

tion by comparing our model to the common linear approximation to the potential field.
Quantifying variation in the electric field for a topologically simple texture such as the
one discussed in this chapter serves as a useful reference when examining the much more
complicated textures of later simulations.

The specific goals of this section are as follows:

• Validate the implemented model through comparison to experimental observations
of the Fréedericksz transition. Perturb the model parameters within their experi-
mentally reported ranges to quantify the precision of the model and understand any
discrepancy with experiment.

• Estimate regimes of validity for the model respective to the derivation assumptions.

• Compare dynamics between the coupled model and an uncoupled implementation
using a linear potential field approximation. Identify effects on dynamics including
the director pitch and the Fréedericksz transition.

4.2 Methodology

The previously described continuum model derived from Landau-de Gennes theory was
implemented using the parameters recorded in table 4.2. These parameters correspond to
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the approximate properties of 5CB at temperature of T = 303.35◦K, 4◦K below the su-
percooling temperature. Measurements of the saddle-splay constant are indirect, and have
proven difficult and produced strongly varying results [55, 34, 56, 57]. Here we set k24 = k22

4

to ensure it lies within the Ericksen limits; as this simulation uses strong anchoring, the
saddle splay constant ultimately has no effect as previously discussed. Landau-de Gennes
elastic constants Li are derived from the Frank-Oseen elastic constants Kii according to
equations 3.23. A Dirichlet condition is used for the surface interaction, corresponding to
an arbitrarily high Rapini-Papoular anchoring constant (α → ∞), as an implementation
of strong anchoring. This anchoring penalty is necessary to isolate a single elastic mode
of deformation at the exact point of transition, and offers a convenient opportunity to
compare with experiment [1, 58]. This is consistent with experimental studies measuring
the splay Frank-Oseen elastic constant [7], where sufficiently strong anchoring is possible
and verified using the VanSprang-Yokoyama method [23].

Simulations of a nematic thin film sandwiched between uniform planar electrodes under
increasing applied external field strength were conducted. The thickness of the film, d =
5µm, is consistent with experimental measurements and common LCD applications [29, 7].

The finite element mesh depicted in Figure 4.1 used to discretize the simulation domain
is regular but non-uniform; element density is increased near the electrodes in order to
improve convergence of the solution. Because the dynamics of the splay cell are two-
dimensional, the simulation can be performed on a 2-D mesh. In order to ensure the
validity of the continuum assumption, element size is kept larger than the characteristic
length scales of the system. In the nematic phase, the most pertinent is the nematic
coherence length, which corresponds to the thickness of a nematic-isotropic phase interface.
An approximate form of the coherence length is obtained by comparing the free energy
associated with the thermodynamic and elastic contributions [3]. Simplifying to the single-
elastic approximation, we have:

λnem =

√
L1

a0∆T
≈ 3nm (4.1)

which is easily maintained at the aforementioned domain size.

The substrate between the LC film and the electrodes creates a preferred uniformly
planar orientation. This substrate is treated as infinitesimally thin. The initial alignment
tensor and the preferred alignment tensor at the substrate boundry are, respectively:

Qinit = Seq

(
ỹ ⊗ ỹ − 1

3
I
)
, Qbound = Seq

(
ŷ ⊗ ŷ − 1

3
I
)

(4.2)

where ỹ is a unit vector slightly perturbed (θ << 1◦) from the ŷ direction in the field-aligned
direction, and Seq is given by equation 3.28. This choice of initial condition corresponds
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Parameter Value Units Source Parameter Value Units Source

T ∗ni 307.35 K [17] K24 7.75×10−13 J m−1 See text

a 1.3×105 J m−3 K−1 [17] L1 4.28×10−12 J m−1 derived

b 1.6×106 J m−3 [17] L2 1.99×10−12 J m−1 derived

c 3.9×106 J m−3 [17] L3 2.68×10−12 J m−1 derived

K11 4.45×10−12 J m−1 [7] L24 1.99×10−12 J m−1 derived

K22 2.90×10−12 J m−1 [6] ε‖ 18.4 - [7]

K33 5.75×10−12 J m−1 [7] ε⊥ 7.2 - [7]

to the equilibrium state of the system below the Fréedericksz transition voltage. The
small perturbation of initial orientation is made to eliminate disclinations which would
arise as a result of the symmetry of the cell; as the induced director of the applied field
and surface anchoring are perpendicular, two opposite-handed splay textures are equally
valid minimizations of the free energy [45]. In reality this symmetry is broken by locally
independent thermal fluctuations in the director. The non-substrate boundaries are treated
as periodic to simulate the lack of surface interaction on these axes.

The uncoupled model simulations are identical with the exception that Gauss’s law is
not solved and instead a linear electric field is imposed.

4.3 Results

Figure 4.2 depicts the equilibrium textures of the splay mode cell under increasing applied
voltages. There exists a finite range of applied voltages under which no change in the
nematic texture is induced; this is consistent with the free energy minimization theory of
the Fréedericksz transition [45].

After reaching a critical Fréedericksz voltage the equilibrium texture continuously de-
forms in the direction of the applied voltage gradient. The texture begins to form a uniform
splay-deformation structure, of handedness determined by the initial director perturbation.
Two regimes of post-transition texture can be identified: in the first, the LC molecules fur-
thest from the surface approach full alignment with the applied field, creating a sub-π

2
pitch
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Figure 4.1: Splay mode cell mesh a) wireframe and b) glyph representations. Element
size is increased continuously near the true boundaries and constant across the periodic
boundaries.

structure. After the centre of the cell reaches full field alignment, the texture maintains a
π
2

structure whose pitch decreases with increased potential.

Figure 4.3 shows the voltage dependence of the average field-aligned director compo-
nent. The Fréedericksz voltage can be identified clearly from this data as Vc = .80V in
contrast to the experimentally recorded value [7]:

V e
c = π

√
K11

∆ε ε0
= .67V (4.3)

This is in good agreement with work by Kilian and Hess, who also simulated a Fréedericksz
transition, also reporting a simulated Fréedericksz transition voltage V sim

c ≈ 1.2V exp
c in the

static regime [45]. In that work, a tensorial generalization of the Frank-Oseen model was
used; this addresses the director symmetry issue but still assumes uniaxial ordering of
uniform degree. As will be shown explicitly by this work’s model, at the Fréedericksz
transition the texture is uniaxial and uniformly ordered. Additionally, because the texture
at the transition is uniform, field-orientation coupling should have no effect. Because of
this we expect, and observe, no difference between the models in observing this specific
phenomena, as shown in Figure 4.3 b).
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Figure 4.2: Equilibrium splay cell nematic textures for increasing voltages: 1) 0.7V b)
0.85V c) 1.4V d) 2V.
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Figure 4.3: a) Average splay cell director z-component against applied voltage. Blue
line indicates the transition point consistent with the reported K11 constant. b) Centre-
cell director z-component behaviour for coupled and uncoupled model simulations at the
transition voltage.

4.3.1 Validation of Approximations

Given the difference between experimental and simulated values of the the Fréedericksz
transition voltage, we seek to understand this discrepancy through an investigation of the
underlying assumptions of the model and the precision of its parameters.

Presence of biaxiality

Figure 4.4 shows the spatial variation of uniaxial and biaxial order parameters S and
P in the Fréedericksz cell below, immediately after, and well above the critical voltage
Vc. Below the transition the texture is homogenous and S is constant while the system
exhibits no biaxiality. As the texture begins to reorient at V = Vc biaxiality is induced
commensurate to the pitch of the texture: as the voltage is further increased the pitch
shortens, concentrating the biaxial ordering. The induction of biaxial order necessarily
decreases uniaxial order proportionately. Because variation in S is proportional to the
variation of the director in this system, it is zero at the transition point.

Figure 4.5 shows the change in electric, elastic, and bulk free energy contributions for
the full system relative to the zero-field state. The transition point can easy be see again
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in this plot as the point when the elastic free energy contribution becomes non-zero. The
electric free energy follows the expected quadratic form. While there does exist a finite
change in the bulk free energy after the transition commensurate with the variation in the
uniaxial ordering, it is negligible compared to the other contributions.

The assumption of low-biaxiality used in the determination of the Landau-de Gennes
elastic parameters is thus strictly valid at the Fréedericksz transition point, and should
have no impact on the critical voltage. However, biaxial ordering becomes significantly
present at higher voltages.

Uncertainty in model parameters

Given the validity of the model assumptions in the near-transition regime, we seek to
understand the impact the precision of model parameters has on the simulated Fréedericksz
voltage.

As the Fréedericksz voltage corresponds to competition between the electric and elas-
tic free energy penalties we begin by examining the Frank-Oseen constants and dielectric
anisotropy. Both of these parameters are reported to comparatively high degrees of preci-
sion [7]. Additionally, because both of these parameters are related to the transition point
quadratically

Vc ∝
√
K11

∆ε
(4.4)

significant variation in the parameter space is necessary to decrease the dynamical gap.
Simulations varying the elastic and electric constants within their reported ranges as ex-
pected had an unsubstantial effect of the Fréedericksz voltage.

Examining the effect of the bulk constants, which for 5CB are known to a lower precision
[17], simulations were performed for a range of constant values within the reported ranges.
Table 4.2 records the observed Fréedericksz voltage under several bulk parameter sets.
Unintuitively, relative variance between the bulk constants has a pronounced effect on the
transition, with the transition voltage ranging from .74V to .83V. Uniform variance in the
parameters produced no effect on the transition voltage.

4.3.2 Impact of Field-Orientation Coupling

Following the validation of the model against experimental data, we seek to quantify the
impact that coupling between the molecular order and applied field have on the model dy-
namics. It is common to impose uniform or ad-hoc fields [12, 44, 48], however the explicit
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Figure 4.4: Spatial variation in uniaxial order parameter S (Reds) and biaxial order pa-
rameter P (Blues) in the ∆T = 4◦C splay modulus cell at a) 0.7V b) 0.82V c) 2V
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Figure 4.5: Changes in free energy against applied voltage. The blue and orange lines
denoted the simulated and experimental Fréedericksz voltages, respectively. Note that the
variation in the bulk free energy is negligible in comparison to the elastic and electric
contributions.

a [Jm−3K−1] b [Jm−3] c [Jm−3] Vc Vc − V e
c

1.4× 105 1.8× 106 3.6× 106 .83 .16

1.4× 105 1.6× 106 3.9× 106 .81 .14

1.3× 105 1.6× 106 3.9× 106 .8 .13

1.3× 105 1.4× 106 4.2× 106 .74 .07

1.3× 104 1.4× 105 4.2× 105 .74 .07

1.3× 103 1.4× 104 4.2× 104 .74 .07

Table 4.2: Fréedericksz voltages exhibited by the model associated with different bulk
parameter sets and the variation from experimental value. The first four sets correspond
to values within the experimentally reported ranges; the final two sets are arbitrarily and
uniformly reduced.
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accuracy of these approximations is often not well quantified. Additionally, while many ex-
tensive properties of the system may be largely invariant under uncoupled approximations,
it is instructive to see what dynamics are potentially being obscured. Here we examine
the effect of accounting for coupled interactions on the Fréedericksz transition, the electric
field, and the nematic texture.

Simulations identical to those described immediately above were performed with the
uncoupled solver; Gauss’s Law was not solved simultaneous to the free energy minimization
which instead assumed a linearly increasing electric potential and thus constant electric
field across the cell.

Figure 4.3 b) shows the voltage dependence of the field-aligned director component
of the cell centre under coupled and uncoupled simulation. The Fréedericksz transition
occurs at the same applied voltage as the coupled model, as it must since uniformity in
the alignment tensor at the transition corresponds to a linearly increasing electric field.

Figure 4.6 a) shows the coupled equilibrium potential function across the splay-mode
cell in comparison to the linear approximation at V = 4.0. Figure 4.6 b) shows the
difference in potential profiles (uncoupled - coupled) across the cell at several voltages. At
applied voltages near the Fréedericksz transition a sinusoidal deviation from the linear form
follows the extended deformation of the phase. At higher voltages, where the centre of the
cell is strongly-field aligned, the deviation is confined to an increasingly smaller section
near the surface, congruent to the high pitch of the rotating director.

Figure 4.7 shows the electric field at equilibrium for a) V = 0.85 and b) V = 4.0
in contrast to the constant-field approximation. As the applied voltage is increased, the
variation of E from its mean value is significantly increased and again concentrated along
the pitch of the rotating director. Table 4.3 records the variation in the electric field at
additional voltages.

4.4 Summary

Continuum simulations were performed to validate the implemented Landau-de Gennes
model against experimentally observed data and to understand the precision of the model
as a function of the precision of the model parameters. The expected dynamics associ-
ated with the Fréedericksz transition was observed within close (≈20%) proximity to the
value observed by Bogi and Faetti in their comprehensive study of the material [7]. The
discrepancy initially suggests a significant correction to the elastic or electric parameters,
however closer investigation of the bulk constants showed that the transition dynamics
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Figure 4.6: Comparisons of the potential field between simulation and linear approxima-
tion. a) Simulation potential [black] and linear potential [blue] across cell thickness at
4V. b) Difference (uncoupled-coupled) in potential fields across cell thickness for several
applied voltages.

Figure 4.7: Comparisons of the electric field profiles between simulation [black] and linear
[blue] approximation for the splay-mode cell at a) V = 0.85V b) V = 4V .
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V Emax Emin Elin

.85 .178 .164 .170

1.0 .237 .182 .200

1.5 .412 .261 .300

2.0 .597 .360 .400

4.0 1.31 .751 .800

Table 4.3: Maximum and minimum electric field (V/µm) at simulation equilibrium versus
a linear aproximation for several applied voltages.

were strongly affected by the relative value of the thermodynamic parameters. This is
not immediately obvious as the change in bulk free energy is proportional to the spatial
variation of the alignment tensor, which is (and was verified to be) near-constant at the
transition point. Additionally, it is only the relative variance of the thermodynamic con-
stants which impacts the cell dynamics - an arbitrary factor applied to all bulk parameters
created no change in Fréedericksz voltage or nematic texture. This leads to the unobvious
conclusion that the less-precisely known thermodynamic constants can have a significant
impact on the simulated dynamics of the Fréedericksz cell.

Additionally, a parameter combination belonging to the reported space was not found
which matched experiment with high precision. This suggests that beyond concerns with
parameter values, the truncation of the Landau expansion chosen in the model could be
re-examined. There exists literature wherein models are expanded to fifth order in the
alignment tensor, or third order in the alignment tensor gradients, however this necessarily
introduces an increasing bevy of additional thermodynamic and elastic parameters which
are themselves difficult to measure with precision.

The splay-mode cell was found to exhibit low, if non-trivial biaxial ordering under
voltage ranges commonly associated with industrial use of liquid crystalline thin films.
P = .02 was observed at 3.0V, with S varying by a congruent amount. This is relevant to
model precision as the Landau-de Gennes elastic constants are derived from the much more
easily observed Frank-Oseen elastic constants under the assumptions of the Frank-Oseen
formalism (wherein uniaxial ordering is assumed constant, and biaxial ordering is assumed
non-existent).

Evaluating the assumptions of the model explained our good agreement with Kilian
and Hess, whose model approximations should become completely negligible at the Freed-
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ericksz transition point. That we agree with experiment reasonably well and to previous
work extremely well supports the validation of the model. We show explicitly that the dis-
crepancy with experiment is not due to biaxial ordering or non-uniform uniaxial ordering.
This suggests that the discrepancy is due to an additional free energy not included in the
models, such as thermal fluctuations or the flexoelectric free energy contribution recently
presented by Kim et al [29]. Alternatively, because the elastic parameters are ultimately
calculated using Frank-Oseen theory, the discrepancy between model and experiment could
be understood as arising from the limited order of the Frank-Oseen model. Lastly, uncer-
tainty in the relative values of the bulk constants could again be partially responsible. The
impact of using a higher order in the Landau-de Gennes bulk constants could similarly be
non-negligible because of this.

Ultimately the implemented model can be understood to model field-induced nematic
textures to a practical degree of precision. The dynamics associated with the coupled
relationship between molecular orientation and external fields was studied, with significant
spatial variation in the electric field found at voltages above the Fréedericksz transition.
This non-uniformity demonstrates the importance of solving Gauss’s Law simultaneous to
the free energy minimization in systems where the molecular director varies strongly over
the domain at equilibrium.
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Chapter 5

Simulation of IPS Cells

5.1 Overview

Continuing on the previous preliminary study, we now model the dynamics of more complex
and industrially relevant systems. This work simulates in-plane-switching (IPS) liquid
crystal display cells consistent with modern applications. At the crux of IPS development
is the careful optimization of intimately related and frequently conflicting cell properties;
ideal balances of anchoring strength against electric field strength, field eccentricity against
applied voltage, and switching-time against all of the above necessitate accurate predictive
simulations of cell dynamics.

We first study the effect of the structure of the applied electric field on the equilib-
rium state of such cells, characterizing the competition between the surface and electric
free energies which drives the dynamics of the system. This is manifest in the electrode
configuration and voltage differential applied.

With an understanding and demonstration of the nematic phase’s behaviour across
different regimes of the parameter space, we then have the proper context with which to
study the impact of coupling between molecular ordering and external electric fields on the
dynamics of IPS cells. We compare qualitatively and quantitatively the dynamics predicted
by our model against those predicted using stringent contemporary approximations.

The specific goals of this work are:

• Study the effects of electrode placement and applied voltage strength on the equilib-
rium ON-state texture of IPS cells. This is primarily within the context of consider-
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ing the effect on cell transmittance, examining director and electric field uniformity
throughout the domain.

• Study the performance of the coupled model relative to contemporary approximations
of the potential field for IPS systems. Additionally, characterize the types of dynamics
lost under such ad-hoc solutions.

• Demonstrate the ability of the model to accurately compute arbitrary electrode and
domain configurations associated with modern LCD application.

Figure 5.1: SEM image of interdigital electrodes associated with IPS construction. Electric
field configuration in an IPS cell. From ref [14].

5.2 Methodology

The model parameters used are identical to the previous section, shown in table 4.2, with
the additional inclusion of a finite anchoring energy constant, α = 5×10−4J/m2. This value
is consistent with rubbed-polymer surfaces, which exhibit anchoring energies on the order
of 10−4− 10−5J/m2 [59]. The anchoring energy is then implemented as a Rapini-Papoular
contribution of the form:

fsurf =
1

2
α(Q−Qs)2 (5.1)

where the preferred order parameter at the surfaces is given by:

Qs
z=d = Seq

(
x̂⊗ x̂− 1

3
δ
)

(5.2)

Qs
z=0 = Seq

(
ŷ ⊗ ŷ − 1

3
δ
)

(5.3)
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with ẑ being across the cell thickness and with the equilibrium uniaxial order parameter
given by equation 3.28 as:

Seq =
b

4c

(
1 +

√
1− 24(a0(T − T ∗ni)c/b2)

)
= .6070 (5.4)

The IPS domain consists of a thin liquid crystalline film patterned on one side with
interdigital electrodes of uniform width w and separation s, a configuration depicted in
Figure 5.1. Each set of interlocked ’fingers’ is connected away from the domain, creating
alternating strips of positive and negative potential. For a film of thickness d, d

s
> 1

corresponds to a predominately horizontal electric field in the plane of the film across the
patterned electrodes. To allow for proper periodicity, two IPS cells are simulated on a
domain containing a half-thickness positive electrode, a negative electrode, and a second
half-thickness positive electrode.

An identical meshing practice to the previous chapter is used, creating a regular but
non-uniform mesh which increases in density near the electrodes. Alternating electrodes
are treated as being connected far away from the system, such that they may be treated
as infinitely long strips. Electrodes are considered Dirichlet potential bounds alternating
across the x̂ axis, and the non-substrate boundaries are again treated as periodic.

The simulation initial condition (Figure 5.2)is consistent with the equilibrium position
of an OFF-state IPS cell:

Qinit = Seq

(
ninitninit −

1

3
δ
)

(5.5)

The initial director represents a 90◦ twist in the plane of the film:

ˆninit = sin(
π

2

z

d
)x̂+ cos(

π

2

z

d
)ŷ (5.6)

The initial condition for the potential field is a uniform gradient across the electrodes:

Vinit =
∆V x

2w + s
(5.7)

This is chosen simply as a convenient initial guess for the ideal behaviour of the potential
field, which is then iterated towards the true value. Remaining conscious of the inherent
length scales involved with the continuum model, we compare the competition between
different free energies to obtain characteristic distances. We will again revert to the single-
constant elastic approximation as we are only interested in the approximate orders of
magnitude. Comparing electric and elastic free energies we have
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λe =

√
L1

∆εε0E2
(5.8)

a dielectric coherence length. For the parameters listed, this length scale is at most
approximately 80nm.

Figure 5.2: OFF- and ON-state director textures for an IPS cell with dimensions s = 10µm,
w = d = 5µm, and voltage differential V = 24V across the positive [red] and negative
[blue] electrodes. Image dimensions are resized and only a fraction of mesh elements are
vizualized for clarity.

5.3 Results

5.3.1 Investigation of Electrode Patterning

Simulations of in-plane switching cells with the domain parameters w = 5µm, d = 5µm,
V = 24V were performed under a set of electrode spacing distances ranging 5µm ≤ s ≤
25µm. A voltage differential of 24V was chosen because it represents a reasonable value in
the practical engineering of IPS devices and allows for a wide range of electrode separation
distances to be considered. Figure 5.3 shows equilibrium director fields of the ON-state for
increasing values of s.
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Figure 5.3: ON-state director textures for an IPS cell with voltage differential V = 24V
and dimensions, w = d = 5µm and a) s = 7.5µm b) s = 10µm c) s = 15µm d) s = 25µm .
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The immediately obvious benefit to increasing separation distance is readily apparent in
Figure 5.3, where the decreasing d

s
ratio results in a more consistently horizontal director

texture between the interdigital electrodes. This corresponds to the electric field itself
becoming less eccentric as well as the increased lengthscale over which the texture may
elastically deform.

At a separation distance between 5µm ≤ s ≤ 7.5µm, the twist structure of the OFF-
state initial condition ceases to be unwound, with the pitch at ON-state equilibrium in-
creasing with further separation. This is an immediate consequence of the electric field
decreasing in strength as the potentials are moved apart, and the surface interaction thus
failing to be sufficiently overwhelmed.

Figure 5.4 a) shows the ŷ (anchoring-aligned) component of the director across the
cell thickness at the central point (the optical pathway) between the electrodes at various
separations of the ON-state. At s < 7.5µm, the director field is completely unwound at
the surface. As s is increased past 7.5µm, the director becomes anchoring-aligned at the
lower surface and exhibits a twist of increasing pitch.

Figure 5.4 b) shows the x̂ (field-aligned) component of the director along the cell width
at z = d

2
. The breadth of strongly x̂-aligned nematic increases with separation as the field

eccentricity lowers. This is ideal for creating a wide region through which to transmit
light through the cell. It can be argued from this data that there exists no appropriate
separation distance within this parameter set which both sufficiently unwinds the initial
condition and produces a reliable horizontal texture of significant width; thus it may be
concluded that either the surface interaction strength α should be lowered or the voltage
increased. One should remain cognizant that the former will increase cell switching time
between the states. In practice a wide range of cell separations, anchoring interactions,
and voltages are found in IPS systems.

5.3.2 Impact of Field-Orientation Coupling

The previous simulations of IPS cells with varied electrode separation distances were reper-
formed using a model which did not couple the electric potential field to the molecular
orientation. In this model, the potential field is held constant throughout all timesteps
at the values corresponding to an isotropic 5CB medium. Figure 5.5 depicts this poten-
tial. This represents arguably the most stringent approximation against which to compare
the coupled model, as the only way to improve upon this approximation would require
knowledge of molecular orientation. This uncoupled model is a direct modification of the
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Figure 5.4: a) Director y-component across IPS cell thickness at midway between elec-
trodes. b) Director x-component along electrode plane midway through cell thickness.

previously described model. All other initial conditions and model parameters are identical
to the coupled model.

Figure 5.6 shows the difference in the equilibrium director field for an IPS cell whose
ON-state exists at the cusp of unwinding the OFF-state twist texture. This parameter set is
chosen as a characteristic example because the unwinding transition is of primary relevance
to the cell’s transmittance. The alignment behaviour in the bulk is qualitatively similar
for both models, though the uncoupled simulation exhibits a generally weaker anchoring-
aligned texture at the lower substrate. The difference in director alignment is strongly
localized to the areas directly above the electrodes, with the comparatively homogenous
textures of the optical pathways being similar to within 1% away from the lower substrate.

These effects can be seen more clearly in Figure 5.7, which depicts the difference in field-
aligned director components between the models; the behaviour at the lower substrate is
noticeably different between the models near the unwinding transition. However, repetition
of the above separation distance study showed the unwinding transition is not significantly
affected by the coupling approximation.

5.3.3 Presence of Biaxiality

We are interested in examining the presence of biaxial ordering in these systems, both
to the illustrate the necessity of using the biaxial Landau-de Gennes model and to con-
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Figure 5.5: Lines of equipotential for the IPS ON-state at equilibrium using the [top] cou-
pled model [bottom] uncoupled model with the isotropic dielectric constant approximation.
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Figure 5.6: Equilibrium ON-state textures for uncoupled [left] and coupled [right] simula-
tions of IPS cells with parameters w = 5µm d = 5µm s = 10µm V = 24V .

Figure 5.7: Absolute difference in director x̂ component between coupled and uncoupled
simulations with parameters w = 5µm d = 5µm s = 7.5µm V = 24V .
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Figure 5.8: Degrees of [left] uniaxial and [right] biaxial ordering within an IPS cell with
parameters w = 5µm d = 5µm s = 7.5µm V = 24V .

sider the impact on the elastic parameters derived from Frank-Oseen theory. Unlike the
earlier Fréedericksz cell system, biaxial ordering is expected to be non-trivial under the
competition between the surface, elastic and electric free energies which drives the IPS cell
transition.

Figure 5.8 shows the presence of uniaxial and biaxial ordering in the IPS ON-state for a
parameter set near the point where electric field strength ceases to overwhelm the surface
effect at the lower substrate. Near this unwinding point, strong competition between the
perpendicular anchoring and electric effects induce biaxiality near the lower substrate, with
P = .012 quickly decaying to near non-existence within the bulk of the optical pathway.
A commensurate 6% variation in S near the substrate necessarily coincides with the
induced biaxial ordering. It can be seen that the electric field increases the ordering of the
phase away from the surface. The presence of biaxiality limits the accuracy of the elastic
parameters of the model as represented in that region, however it also highlights the need
for the Landau-de Gennes theory in describing even defect-free systems to a high degree
of fidelity.

5.4 Summary

Continuum simulations of in-plane switching liquid crystal display cells were performed
under a variety of electrode configurations and under both a coupled and uncoupled model.
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We were able to study the equilibrium behaviour of the IPS ON-state as a function of
applied electric field strength and eccentricity, observing three regimes of textures. At
low electrode separation distances, the field eccentricity prevented in the optical pathway
sufficiently uniform and purely horizontal molecular alignment, which diminishes the ON-
state transmittance. At a middle regime of electrode separations the optical pathway
texture was substantially horizontal. At higher separation distances, the electric field
strength was insufficient to overpower the anchoring effect, and as a result the OFF-state
twist was not fully unwound. This has a pronounced effect on cell transmittance as the
presence of the twisting structure rotates incident light polarizations.

Comparing IPS simulations between the coupled and uncoupled model, we observed
similar electric potential fields and optical pathway bulk behaviour. Nematic texture near
and above the electrodes exhibited significant differences in director, however as the per-
tinent properties of the cell are dependent on the optical pathway, optical properties are
largely unaffected by the coupling interaction. The uncoupled model underpredicts the
degree of field-alignment at the substrate, even when using the most stringent possible
approximation.

Ultimately, while coupling between the electric field and molecular orientation in liquid
crystal systems has been accounted for in some previous works, we have examined and
quantified the specific impact of this consideration on the critical dynamics of industrially
relevant systems. We find that while coupling has a pronounced effect on some cell prop-
erties, the relevant characteristics of the cell are not significantly misrepresented under
uncoupled approximations. This supports the many contemporary works which omit field-
orientation coupling for design optimization of these systems, while also demonstrating
that coupling has a pronounced impact on complex textures generally.

Additionally, we demonstrate that the generality and modularity of the model justify
its candidacy as a tool for the engineering and optimization of LCD systems. The ability
to specify arbitrary configurations of electrodes and surface interactions while requiring
no foreknowledge of the equilibrium electric field makes the presented work useful for
simulating a wide range of highly specific LCD devices.
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Chapter 6

Conclusions

6.1 Conclusions

In this work, there has been implemented a continuum simulation of thermotropic nematic
liquid crystals using the Landau-de Gennes model with proper accounting for the inherent
coupling between molecular ordering and external electric fields through the simultaneous
solving of the macroscopic formulation of Gauss’s law for dielectrically anisotropic media.
This most general description of nematic phases was implemented without common ap-
proximations including the single elastic constant and (when appropriate) strong-anchoring
approximations.

The precision of this model and its susceptibility to uncertainty in its parameters was
assessed within the common experimental paradigm of the Fréedericksz transition, with
the following primary conclusions:

• Model performance at the Fréedericksz transition point was consistent with earlier
works. This is expected as the improvements of this model over previous works
confers no benefit when the electric field at equilibrium is already precisely known,
and instead serves as a validation of the model.

• The relative, not absolute, values of the bulk constants were found to have a pro-
nounced effect on the Fréedericksz voltage predicted by simulations. This indicates
that model dynamics are significantly affected by the precision of these constants
even in regimes where the change in bulk free energy is negligible in comparison to
the elastic and electric contributions.
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• The impact of typical model approximations, notably the derivation of the Landau-
de Gennes elastic constants from the Frank-Oseen elastic constants via uniform uni-
axiality, was assessed. It was shown explicitly that at the transition point, these
approximations become negligible. Thus we conclude the discrepancy is linked to
other factors, including the limited order of the Frank-Oseen model and absence of
thermal fluctuations.

Additionally a study of the model in using a more complex nematic texture, the in-plane
switching LCD cell, was performed in the interest of understanding first the dynamics omit-
ted by uncoupled models in systems with complex textures, and secondly to demonstrate
the utility of the model in the design and optimization of these systems. The following
primary conclusions are made:

• There exists a significant discrepancy between the predicted ON-state textures of
the IPS cell between the coupled and uncoupled models. Behaviour of the nematic
director at and above the patterned electrodes was substantially different. While
pertinent cell optical properties are unsensitive to this difference, coupling can be
seen to nontrivially impact texturally complex nematics.

• The developed model is of practical use in the optimization of these LCD cells;
allowing an examination of the effects of the many tunable parameters on the state
of the liquid crystal phase. The model allows the simulation of irregular and non-
uniform domains, arbitrary electrode configurations, and arbitrary combinations of
surface interactions.

Thus we stress the importance of not only eschewing approximations in the modelling
of these systems as is generally known, but understanding explicitly the impact of these
assumptions on the predictions and precision of the models.

6.2 Recommendations

The presented model represents a state-of-science description of nematic liquid crystal
phases, drawing from a wide body of contemporary work to be as general as possible.
However, there still exists further room for improvements; accounting for additional free
energy contributions such as thermal fluctuations or the flexoelectric contribution described
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recently by Kim et al. [29] could improve the accuracy of the model in describing phe-
nomena near the nematic-isotropic phase transition and in densely varying textures, re-
spectively. Although flow is considered negligible in the studied systems, hydrodynamical
considerations could extend the model to study additional systems wherein the hydro-
static assumption is not reasonable. These improvements are non-trivial, however may be
worthwhile with increasing engineering interest in high-fidelity simulation of such systems.

It would also be of great interest to numerically simulate the optical properties of the
simulated textures, especially with regard to transmittance ratios and birefringence. The
lack of consistent paraxial alignment in the IPS cells requires use of the [2x2] extended Jones
matrix method for transmittance, whose implementation into the finite element framework
would be non-trivial [29]. Since these are the properties which ultimately drive design and
optimization, a more explicit understanding of their behaviour is pertinent.
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