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Abstract

This study addresses entropic segregation effects at the surfaces of monodisperse

and bidisperse melts. For the monodisperse melts, we focus on the segregation of chain

ends to the surface, and for the bidisperse melts, we examine the segregation of short

polymers to the surface. Universal shapes have been predicted for their concentration

profiles, but the derivations rely on the mean-field approximation, which only treats the

excluded-volume interactions in an approximate manner. To test whether or not the

predictions hold up when the polymers are rigorously prevented from overlapping, we

compare mean-field calculations with Monte Carlo simulations performed on the exact

same model. Apart from a significant increase in the statistical segment length, the

rigorous enforcement of excluded-volume interactions has a relatively small effect on

the mean-field predictions. In particular, the universal profiles predicted by mean-field

theory are found to be accurate.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Waterloo's Institutional Repository

https://core.ac.uk/display/250588255?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Introduction

Polymer melts are not only commercially important, they also represent one of the most

fundamental systems in soft condensed matter physics. Their equilibrium properties are

of particular interest. Fortunately, the excluded-volume interactions that would poten-

tially complicate the behavior are screened,1 and consequently polymers in the bulk exhibit

random-walk statistics with an average end-to-end length of a
√
N , where N is the number

of segments per polymer and a is the statistical segment length. The next issue is how the

polymer statistics are affected by a surface, but this also turns out to be surprisingly sim-

ple, at least, to a first approximation. Silberberg2 has argued that surfaces just behave like

reflecting boundaries. This rationalization largely accounts for the distribution of polymer

conformations in the surface region.3,4

One implication of the Silberberg argument is that the distribution of any particular

segment, such as an end segment, maintains a uniform bulk density all the way to the

surface, in the absence of any enthalpic preference. However, simulations5–11 have found an

entropic enrichment of chain ends at the surface, followed by a long-range depletion. This

effect is captured by mean-field calculations,12–14 at least qualitatively. The segregation

occurs due to violations in the assumptions used by Silberberg, namely a sharp step-like

concentration profile and the absence of an energy penalty for folding polymer chains.14

Linear-response theory finds that the amplitude of the enrichment is dependent upon the

details of the model, but that the compensating depletion exhibits a universal shape with a

range proportional to a
√
N , regardless of model details.13

In the case of polydisperse melts, the chain-end segregation causes an enrichment of short

polymers near the surface, since they have more ends per unit volume. This has yet to be

demonstrated by simulation, but it has been predicted by mean-field theory. Hariharan et

al.15 did so for a bidisperse melt of short and long polymers. They investigated both the

amplitude and the range of the enrichment. Van der Gucht et al.16 extended the mean-

field calculations to polydisperse melts with multiple chain lengths. They found that the
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integrated excess of polymers of polymerization N obeyed a strikingly simple relationship,

θN ∝ φ̄N

(
1− N

Nw

)
(1)

where φ̄N is the bulk volume fraction of the polymers and Nw is the weight-average poly-

merization. This dependence has since been derived using linear-response theory.17,18 The

theory predicts universal concentration profiles for the various polymerizations of the melt,

which in turn implies that the functional form of eq 1 is universal. The amplitude of the

effect is directly related to that of the chain-end segregation, and thus it again depends on

model details.

Universality is a powerful property implying that all systems, experimental as well as

theoretical, exhibit quantitatively equivalent behavior. However, we need to remember that

these predictions of universality originate from linear-response theory, which relies upon the

mean-field approximation. Therefore, it remains uncertain how accurate they actually are.

It was previously pointed out that the excluded-volume interactions, which are neglected in

mean-field theory, violate Silberberg’s assumption that polymer configurations can be folded

without incurring an energy penalty.14 The implication is that the mean-field predictions

may be considerably inaccurate. The simplest way of assessing this is by comparing with

simulation. However, as of yet, there have been no simulations examining surface segregation

for polydisperse melts, and the simulations on monodisperse melts have not closely examined

the long-range depletion of ends.

Here, we perform Monte Carlo (MC) simulations for monodisperse and bidisperse melts.

The results are directly compared with mean-field theory for the exact same model. This

provides the first quantitative assessment of how reliable mean-field theory is in treating

entropic surface segregation, and in particular how accurate its universal predictions are.
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Monte Carlo Simulations

In the interest of accurate statistics, our MC simulations employ a simple model,19 whereby

the polymers are restricted to an fcc lattice with a maximum of one monomer per lattice

site and bonded monomers occupying nearest-neighbor sites. The fcc lattice is created by

taking a simple-cubic L×L×L lattice and deleting every second site, leaving a total of L3/2

sites. To allow room for the polymers to move, the lattice is only filled to 80% occupancy,

which corresponds to an average monomer density of ρ0 ≈ 0.8
√

2/b3, where b is the bond

length (i.e., the lattice spacing). At this density, the statistical segment length is known to

be a = 1.233b.20

Rather than relying on cohesive interactions between monomers to create surfaces, we

simply constrain the polymers between two hard walls in the (001) direction. This is done

by applying periodic boundary conditions in the x and y directions, while restricting the

polymers between z = 0 and (L − 1)∆z, where ∆z = b/
√

2 is the spacing between lattice

planes. We also apply an external field, w(z), so as to create a uniform polymer concentration

up to the edge of the walls. The energy of the field is

E =
∑
z

m̂(z)w(z) (2)

and the polymer concentration is defined as

φ̂(z) ≡ 2m̂(z)

ρ0L2
(3)

where m̂(z) is the total number of monomers in the lattice layer at z. This definition of φ̂(z)

is such that its thermodynamic average, φ(z) ≡ 〈φ̂(z)〉, equals one, once the field has been

appropriately adjusted. Given the uniform polymer concentration, the energy of monomer-

monomer interactions would be relatively constant, and thus such interactions should have a

negligible effect on the simulations. For this reason, we do not include interactions between
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the monomers, apart from the constraints that prevent the overlap of monomers and that

link the bonded monomers together.

Monte Carlo simulations of this model are performed in the canonical ensemble, where

the number of molecules remains fixed. The Monte Carlo steps (MCS) involve selecting

a molecule at random, and attempting with equal probability either a slithering snake or

crankshaft move.19 Moves are accepted or rejected using the standard Metropolis criterion.

In order to fill the lattice, the polymers are initially placed on the lattice in extended config-

urations. Therefore, we generally start with 106 MCS per monomer to allow the polymers

to adopt coiled configurations. Following that, we perform a further 105 MCS per monomer,

where we adjust the field after each MCS per monomer using a simple-mixing iteration

w(k+1)(z) = w(k)(z) + λ(φ̂(z)− 1) (4)

with a mixing parameter of λ = 0.01. This value is sufficiently large to provide a reasonable

rate of convergence, but not so large as to cause an instability. Once the system is well

equilibrated and the field has saturated, we fix the field and collect statistics for typically

107 MCS per monomer. Thermodynamic averages are evaluated by sampling observables

once every 40 MCS per monomer.

Our monodisperse melts consist of n polymers with polymerization N . For this system,

we sample the dimensionless concentration of end monomers,

φ̂e(z) ≡ Nm̂e(z)

ρ0L2
(5)

where m̂e(z) is the total number of end monomers at z. This definition is such that the

average concentration, φe(z) = 〈φ̂e(z)〉, becomes one in the bulk, and thus the excess con-

centration of end monomers is just

δφe(z) ≡ φe(z)− 1 (6)
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For bidisperse melts, we fill the lattice with ns short and nl long polymers, consisting of Ns

and Nl monomers, respectively. The dimensionless concentrations of the two polymerizations

are given by

φ̂ν(z) ≡ 2m̂ν(z)

ρ0L2
(7)

where m̂ν(z) is the total number of monomers at z belonging to the ν-type polymers (ν = s

or l). We focus on the excess concentration of short polymers defined by

δφs(z) ≡ φs(z)− φ̄s (8)

where φs(z) = 〈φ̂s(z)〉 and φ̄s is the average bulk concentration in the middle of the simulation

box. From that, we obtain the integrated excess

θs ≡ ρ0
∑
z

δφs(z)∆z (9)

by summing from z = 0 to the middle of the box (i.e., where δφs(z) = 0).

Naturally, the size of our simulation box, L, has to be sufficient to attain bulk behavior

in the middle, but not so large that the simulations are unnecessarily slow. Our choice of

L is guided by the mean-field calculations, which will be described in the next section. For

bidisperse melts, we generally want appropriate values of ns and nl to target a particular

bulk composition, φ̄s, while providing an overall monomer concentration of ρ0 = 0.8
√

2/b3. It

will turn out that the mean-field calculations are sufficiently accurate to provide reasonable

estimates of these values. Nevertheless, we typically tweak the nν values and rerun the

simulations a second time to obtain φ̄s values that are well within one percent of our targets.

Mean-Field Theory

The mean-field theory for lattice models has been developed by Scheutjens and Fleer.21,22

It also involves a field, but this time w(z) accounts for all non-bonded interactions. The
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main computational step is to calculate a partition function, Gi(z), for a chain fragment of

i monomers with one end fixed at z. It is evaluated by applying the recursive relation

Gi+1(z) = h(z)
∑
Z

g(Z)Gi(z − Z) (10)

starting from G1(z) = h(z), where h(z) ≡ exp(−w(z)/kBT ). The function g(Z) is the

fraction of nearest-neighbor sites a monomer at z has in the lattice layer at z +Z; for (001)

layers of an fcc lattice, g(0) = g(±1) = 1/3 and zero otherwise. Equation 10 is solved with

h(z) = 0 for z < 0 and a reflecting boundary at the large-z end of our system. Naturally,

the system size has to be sufficiently large that we obtain bulk behavior at large z. Just

as in the simulations, w(z) is adjusted using the same simple-mixing iteration, eq 4, but

with the instantaneous concentration, φ̂(z), replaced by the average concentration, φ(z).

For convenience, we adjust the field by an additive constant so that it is zero in the bulk

(i.e., at large z).

In the case of monodisperse melts, the average polymer concentration is given by

φ(z) =
1

Nh(z)

N∑
i=1

Gi(z)GN+1−i(z) (11)

and the average end-monomer concentration is simply

φe(z) = GN(z) (12)

For bidisperse melts, the total concentration is φ(z) = φs(z)+φl(z), where the concentrations

of the two polymerizations are evaluated using

φν(z) =
φ̄ν

Nνh(z)

Nν∑
i=1

Gi(z)GNν+1−i(z) (13)
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Linear-Response Theory

Linear-response theory is an approximation of mean-field theory that becomes increasingly

accurate for large polymerizations. The application to our lattice model is a straightforward

adaption of the calculations in refs 14 and 18. The first step involves solving the mean-field

theory for infinitely long polymers, where

G∞(z) = h∞(z)
∑
Z

g(Z)G∞(z − Z) (14)

with h∞(z) adjusted so that

G2
∞(z)

h∞(z)
= 1 (15)

From the solution, the amplitude of the entropic segregation is18

A =
1√
2

∑
z

[G∞(z)− 1] = 0.1895 (16)

The long-range depletion of end monomers in a monodisperse melt is given by13

δφe(z) ≈ A√
N
B

(
z

a
√
N

)
(17)

where

B(ζ) =

√
6

π
exp

(
−3

2
ζ2
)
− 4b(ζ) (18)

is a universal function. The later part of the function is obtained by performing an inverse

Fourier transform,

b(ζ) ≡ 1

2π

∫ ∞
−∞

s2e(x)

sφ(x)
eikζζdkζ (19)

where sφ(x) = 2(e−x + x− 1)/x2 is the Debye function, se(x) = (1− e−x)/x is a Debye-like

function, and x = k2ζ/6.
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For bidisperse melts, the excess concentration of short polymers is approximated by18

δφs(z) ≈ A√
Ns

C

(
z

a
√
Ns

)
(20)

where

C(ζ) = 4φ̄s

(√
6

π
f(ζ)− c(ζ)

)
(21)

This universal function is made up of two parts,

f(ζ) ≡
∫ 1

0

1

2
√
s

exp

(
− 3

2s
ζ2
)
ds (22)

and

c(ζ) ≡ 1

2π

∫ ∞
−∞

sφ(x)[se(x) + βse(αx)]

sφ(x) + αβsφ(αx)
eikζζdkζ (23)

which is a function of α ≡ Nl/Ns and β ≡ (1 − φ̄s)/φ̄s. From this, one can show that the

integrated excess of short polymers is

θs
aρ0
≈ 2A(α− 1)φ̄s(1− φ̄s)

α− (α− 1)φ̄s
(24)

which coincides with eq 1 for the special case of a bidisperse melt.

Results

We begin by considering monodisperse melts. Figure 1a plots the average concentration

profile, φ(z), from simulations for N = 80 with and without the external field, w(z), which

is shown in the inset. Figure 1b goes on to compare the end-monomer concentration, φe(z),

from the simulation (solid curve) to that of mean-field theory (dashed curve). The agreement

is remarkably good. In both cases, there is a substantial excess of end monomers next to the

wall (i.e. z = 0), followed by a depletion that extends far into the melt. The amplitude of the

depletion must balance the excess at the surface due to the conservation of end monomers,
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and consequently the amplitude depends on the model details. On the other hand, the

depletion is predicted to exhibit the universal shape in eq 17, with a range that scales as

a
√
N .
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Figure 1: (a) total concentration, φ(z), of monodisperse N = 80 polymers from simulations
without (blue curve) and with (black curve) an external field, w(z). The field producing
the step profile is shown in the inset. (b) distribution of end monomers, φe(z), from the
simulation for the step profile (solid curve) compared to mean-field theory (dashed curve).

Figure 2a zooms in on the end-monomer depletion from the simulations (solid curves)

and mean-field theory (dashed curves) for three different polymerizations, N . As expected,

the range of the depletion increases for larger polymers. Although the simulations agree

reasonably well with mean-field theory, the range of the depletion is noticeably larger in

the simulations. However, recall that the segment length in the simulations is a = 1.233b,

whereas in mean-field theory it is simply a = b. The increased segment length is largely

due to the fact that chain back-folding is prohibited in the simulations. As we can see

from Figure 2b, when the scaled excess, δφe(z)
√
N , is plotted in terms of z/a

√
N , both
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the simulation and mean-field results roughly collapse onto the universal prediction, eq 17,

from linear-response theory (red curve). The small deviations from a perfect collapse can be

largely attributed to the finite chain lengths, N .
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Figure 2: (a) depletion of end monomers in monodisperse melts of various polymerizations,
N , obtained from simulation (solid curves) and mean-field theory (dashed curves). (b) scaling
plot comparing the results to eq 17 from linear-response theory (red curve).

We now move on to the bidisperse melts. Figure 3a compares the concentration of short

polymers, φs(z), from simulation (solid curves) to that of mean-field theory (dashed curves)

for different degrees of polymerization. As the polymerization increases, the amplitude of

the segregation decreases while the range increases. In all cases, the simulation and mean-

field results are reasonably similar, but the amplitude and the range are somewhat larger

in the simulations. Figure 3b compares the scaled results to the prediction, eq 20, from

linear-response theory (red curve). Again, the difference in segment lengths accounts for the

difference in the range of the segregation, but the difference in amplitude still remains. Figure

3c compares the integrated excesses, θs, to the prediction, eq 24, from linear-response theory
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Figure 3: (a) concentration of short polymers, φs(z), for bidisperse melts of different poly-
merizations with fixed α ≡ Nl/Ns = 8 and φ̄s = 0.5, obtained from simulation (solid curves)
and mean-field theory (dashed curves). (b) scaling plot comparing the results to eq 20 from
linear-response theory (red curve). (c) integrated excess of short polymers, θs, from simula-
tions (crosses) and mean-field theory (circles) compared to eq 24 from linear-response theory
(red line).

12



(red line). As observed previously,18 the mean-field results approach the linear-response

prediction from below as Ns approaches infinity. The simulation results are slightly above

the mean-field predictions, reflecting the elevated amplitudes observed in Figure 3b.
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Figure 4: (a) scaling plot for the excess concentration of short polymers in a bidisperse melt
for Nl = 80 and 320 with fixed Ns = 20 and φ̄s = 0.5, obtained from simulation (solid curves)
and mean-field theory (dashed curves). (b) integrated excess from simulation (crosses) and
mean-field theory (circles). Red curves denote predictions from linear-response theory.

Next, we examine the accuracy of the mean-field theory for different ratios of polymer-

ization, α = Nl/Ns. Figure 4a starts by comparing the scaled excess concentration of short

polymers for Nl = 80 and 320, with fixed values of Ns = 20 and φ̄s = 0.5. As before,

the simulation (solid curves) and the mean-field (dashed curves) results are similar, but the

amplitude of the segregation is somewhat greater in the simulation. This is also evident in

Figure 4b, where the integrated excess, θs, is plotted as a function of α = Nl/Ns. As we can

see, θs approaches zero as α approaches one, which must be the case since this limit corre-

sponds to a monodisperse melt. Although the linear-response predictions (red curves) are in

reasonable agreement with the simulation and mean-field results, they are not particularly
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accurate. This is undoubtedly because of the relatively low polymerization Ns = 20.
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Figure 5: Analogous plots to those of Figure 4 showing the dependence on φ̄s for Ns = 20
and Nl = 160.

Lastly, we check the agreement between simulation and mean-field theory over a range of

compositions. Figure 5a compares predictions of the excess concentration for φ̄s = 0.2 and

0.8, with fixed polymerizations of Ns = 20 and Nl = 160. There is good agreement for the

lower composition, but less so for the higher one. Figure 5b compares the integrated excess,

θs, from simulation and mean-field theory as a function of φ̄s. Naturally, the segregation

has to vanish in the limits φ̄s = 0 and 1, since they correspond to monodisperse melts. The

position of maximum segregation is consistent with the linear-response prediction, φ̄max
s =

1/(1 +α−1/2) = 0.739. However, the integrated excess predicted by mean-field theory proves

to be least accurate near the peak, underestimating the simulations by up to 20%. The linear-

response predictions (red curves) agree better with the simulations than the full mean-field

theory, but that is only because of a compensating inaccuracy due to the relatively low value

of Ns = 20.
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Discussion

The aim of this study was to assess the inaccuracy in the mean-field predictions for entropic

surface segregation resulting from excluded-volume effects. In order to isolate the effects,

it was crucial that the simulations and mean-field theory were performed using the exact

same model. We also needed to obtain accurate statistics for relatively long chains (e.g.,

N ≈ 300), and therefore we chose the simplest model conceivable. Using an external field,

w(z), to control the shape of the surface profile also helped isolate the effects and speed up the

simulations. Although it would have been feasible to produce the surface using appropriate

interactions rather than a field, that would have resulted in nontrivial concentration profiles

that would have only complicated the comparison with mean-field theory. By taking our

simpler approach, the simulations were exactly equivalent to the mean-field calculation, apart

from the fact that the simulations rigorously respected the excluded-volume interaction by

preventing more than one monomer per lattice site.

There was good reason to expect the simulations to agree with the universal behaviors,

δφe(z) ∝ B(z/a
√
N) and δφs(z) ∝ C(z/a

√
Ns), predicted by linear-response theory, despite

the fact that it relies on the mean-field approximation. This is because these linear-response

predictions are independent of the short-range details of the system. In the bulk, we know

that the excluded-volume interactions are screened on the molecular length scale,1 which

is why polymers obey random-walk statistics and thus why mean-field theory is accurate

for polymer melts. The agreement we observed simply implies that this screening of the

excluded-volume interactions continues to hold in the surface region of the melt.

Although we could have anticipated the agreement with B(ζ) and C(ζ), there was no

way to know that the amplitude of the segregation would agree so well with the prediction,

A, in eq 16. The amplitude is influenced by the short-range details of the model, and thus

excluded-volume interactions could still affect A despite the screening. Indeed, we have pre-

viously pointed out that the excluded-volume interactions cause violations to the Silberberg

argument, and therefore could contribute significantly to the entropic segregation.14 How-
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ever, as it turns out, the present study finds that the effect is relatively minor, at least, for

our simple lattice model. It would be useful to repeat the comparison between simulation

and mean-field theory for other, perhaps more realistic, models in order to test the generality

of this finding.

In simulations, the interactions between all the monomers are usually identical, which

ensures that the surface segregation is entirely due to entropic effects. However, in real sys-

tems, the interactions of end monomers will always be slightly different from those of middle

monomers, which will produce an effective enthalpic interaction between chain ends and the

surface.23 This enthalpic effect may very well dominate the entropic one. Nevertheless, the

linear-response calculation remains the same when these enthalpic interactions are included,

apart from an additional contribution to the amplitude, A.17 Thus, the universal functions,

B(ζ) and C(ζ), should still apply to actual experiments.

Summary

We have tested mean-field predictions for the entropic enrichment of chain ends to the surface

of a monodisperse melt and of short polymers to the surface of a bidisperse melt. This was

done by performing simulations and mean-field calculations on the exact same lattice model.

The excluded-volume interactions, which are treated properly by the simulations but not

the mean-field theory, cause a modest increase in the statistical segment length, a. The

shape of the long-range depletion of chain ends that balances the enrichment agrees with the

universal function, B(z/a
√
N), predicted by mean-field theory once the change in segment

length is accounted for. Likewise, the enrichment of short polymers in the bidisperse melt

matched the universal shape, C(z/a
√
Ns). These findings are consistent with the notion that

excluded-volume interactions are screened on molecular length scales. Although there is no a

priori reason to expect mean-field theory to accurately predict the non-universal (i.e., model-

dependent) amplitude, A, of the entropic segregation, it only underestimated the effect by a
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small amount. Thus, mean-field theory appears to provide reliable predictions for polymer

configurations at surfaces.
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