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Design and preliminary testing of
demand-responsive transverse rumble
strips

Md Shakhawat Hossen1 , Christopher Kappes1,2, Mohamed Trabia3,
Brendan Morris4, JeeWoong Park5 and Alexander Paz6

Abstract
Transverse rumble strips are common practice to alert drivers by engaging their auditory and tactile senses in addition
to visual senses by traffic signals. However, continuous exposure to noise and vibration by transverse rumble strips often
results in diminished effectiveness and erratic behaviors, leading to additional safety challenges. In response, demand-
responsive transverse rumble strips were developed as traffic safety countermeasures that reduce unnecessary noise
and vibration associated with transverse rumble strips by incorporating active control of the rumble strips. Rather than
staying static, demand-responsive transverse rumble strips are activated based on the presence of pedestrians, at prede-
signated times, or in response to abrupt changes in traffic flow. To evaluate the effectiveness of demand-responsive trans-
verse rumble strips, the research team assessed noise and vibration data, both inside the vehicles and on the roadside,
for various types of vehicles traveling at different speeds. The test data indicate that demand-responsive transverse rum-
ble strips produced noticeable in-vehicle noise and vibration that could alert drivers to downstream events.
Furthermore, demand-responsive transverse rumble strips generated sufficient noise to alert roadside pedestrians to
vehicle presence but at low enough level to be considered as acceptable for a residential neighborhood use. Accordingly,
demand-responsive transverse rumble strips could address the challenges that static transverse rumble strips face, by
providing a design with relatively limited noise while enhancing safety.
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Introduction

Crashes at intersections have been one of the most sig-
nificant challenges in traffic management. According to
the Fatality Analysis Reporting System (FARS),1

pedestrian–vehicle crashes were responsible for 17,551
pedestrian fatalities nationwide during the 2015–2017
period, which is approximately 16% of total traffic
fatalities. The number of these crashes has increased in
the United States over the past several years due to var-
ious factors (e.g. distraction, fatigue, dizziness, and low
visibility).2 Of these factors, distracted driving has
become a significant concern over the years, accounting
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for a large portion of total traffic fatalities, estimated
at 9% in 2017.3 Among the fatalities due to distracted
driving, 14% involved cell phone usage.4

While visual signals are some of the most common
approaches to alert drivers to the need to slow down,
pay attention, or stop, their effectiveness is limited by
factors such as distractions, fatigue, and/or low visibi-
lity. In response to these challenges, several traffic
safety countermeasures that focus on enhancing the
safety of pedestrians have been developed.5 For exam-
ple, the use of transverse rumble strips (TRS) has
increased at intersections with high crash potential.
TRS are warning devices that can alert drivers who
miss visual signs by generating in-vehicle noise and
vibration that are higher than ambient conditions.

Despite the effectiveness of TRS to alert drivers by
giving extra noise and vibration, their effectiveness
tends to diminish over time6,7 as drivers become famil-
iar with their locations, and the effect of a sudden alert
is reduced.8 In addition, continued exposure to TRS
may cause erratic maneuvers by some drivers who are
trying to avoid them,7 which may lead to additional
crashes.9 Moreover, the roadside noise produced by
TRS is a concerning issue for adjacent residents, as
TRS create noise each time a vehicle passes over them,
and studies have shown that prolonged exposure to
traffic noise can lead to negative health effects.10–12

To mitigate the identified challenges associated with
TRS, this article discusses the alternative solution of
demand-responsive transverse rumble strips (DRTRS),
which use active control of the rumble strips. The pro-
posed system will automatically lower the pavement
under the strips to activate a rumble effect to alert driv-
ers to roadway conditions. The system will be level with
the road when not in use, thereby reducing the prob-
lems associated with TRS, as described above.

This research aims to develop and validate DRTRS
in terms of their ability to mitigate the practical chal-
lenges associated with TRS. More specifically, this arti-
cle evaluates the noise and vibration of both in-vehicle
and roadside conditions caused by an active DRTRS.
The article also includes system development, system
installation on an actual roadway, data collection, data
analysis, and conclusion/discussion.

Background

Noise and vibration for inattentive drivers

As of now, most traffic safety countermeasures at inter-
sections are related to signs and signals that require
engaging drivers’ visual attention. As one of the com-
mon ones, pedestrian hybrid beacons were found to
contribute to safety by reducing vehicle–pedestrian
crashes by 69%;13 however, the drivers were required to

be aware and attentive while driving, and its effective-
ness diminished with inattentive drivers. To the prob-
lem of inattentive drivers, stimulation of their auditory
and tactile senses is considered as an effective way to
regain the attention of distracted drivers when their
visual sense is distracted. TRS allow the mechanisms
that typically engage the acoustic and haptic senses to
regain drivers’ attention in response to a downstream
event, prompting them to take preventive action.6,7,14 A
study6 shows that a change of 2.5–4.25ms22 in in-
vehicle vibrations could sufficiently stimulate the haptic
sense of drivers.

Literature has shown various findings related to
detectable noise. One study indicated that an increase
in the sound level, from the ambient noise level, by
4 dB is detectable,15 while another study indicated that
7 dB is detectable.16 Other studies have demonstrated
that TRS can generate an extra 10–17 dB of in-vehicle
noise14,17 and up to 2.55ms22 of vibration,18 compared
with those produced only by ambient roadway condi-
tions. This extra noise and vibration has been found
sufficient to alert drivers. Additional studies18,19 have
presented similar findings, confirming the effectiveness
of TRS in creating additional noise and vibration,
resulting in crashes being reduced by up to 60%.9,20

Despite this positive impact, continued exposure to
TRS reduces effectiveness. One study concluded that
the effectiveness of haptic signals depended on the sud-
denness of vertical deflection.8 With increased familiar-
ity and awareness of TRS location, the suddenness and
thus effectiveness are reduced. In addition, exposure to
TRS has been found to cause erratic maneuvers (e.g.
swerving) for some drivers wishing to avoid unwanted
noise and vibration,7 which can contribute to crashes.9

DRTRS developed in this research particularly address
this problem, and the detailed design, experiment, and
validation are subsequently discussed.

Roadside noises by TRS

Although proper in-vehicle noise is important for alert-
ing drivers, roadside noise generated by TRS is a con-
cerning issue for adjacent neighborhoods.21,22

Continual exposure to noise above audible limit is
responsible for mental disturbances and other hearing
complications.10,11 In response, previous research con-
ducted various studies to identify optimum dimensions
of TRS that could reduce roadside noises.14,19,23

Nonetheless, roadside TRS noises were found to be a
significant challenge as they were distinguishable even
at half mile away.16 To that concern, DRTRS are an
alternative design that eliminates the potentiality of
errant driving to avoid the bumps from the strips and
reduces roadside noises by remaining inactive while
there is no downstream event.
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Design and dimension of TRS

While the earlier research has included various studies
that identify the optimal dimensions of TRS to increase
in-vehicle noise while reducing roadside noise,14,19,23

there are no universally accepted designs for TRS. For
example, in Alabama, Florida, Georgia, Kentucky,
Mississippi, and South Dakota, raised strips are used,
whereas in Arkansas, Colorado, Idaho, Iowa, Kansas,
Michigan, and West Virginia, grooved rectangular
rumbles cut into pavements are used. In other states,
including Illinois, Nebraska, North Dakota, Ohio,
Oklahoma, and Wisconsin, both raised and grooved
TRS are used.14,17,24 Furthermore, the strips in use
have varying dimensions. For example, the number of
strips in a set vary from 5 to 25,25 and strip width
changes between 3 ft and the full length of a lane.25 In
addition, the lengths of individual strips range from 2
to 18 in, with some states using those of 4 in.26–28 The
range of height or depth also varies between 0.188 and
1.5 in.24,25

An et al.14 and Haron et al.17 evaluated the in-vehicle
noise with different shapes and dimensions (including
2$ width, 0.4$ depth, 8$ center-to-center distance;
0.35$ width, 0.25$ depth, 1.85$ center-to-center dis-
tance; 12$ width, 0.25$ depth, 18$ center-to-center dis-
tance) for rectangular shaped and semicircular shaped
TRS (4$ width radius, 0.4$ depth, 12$ center-to-center
distance). The authors concluded that all variants of
TRS regardless of their shape and dimension were
effective to generate sufficient in-vehicle noise that
could alert drivers, which was supported by other
similar studies as well.6,16,18,19,24 As depth is the
major contributing factor to in-vehicle vibration,29,30

much research has focused on identifying the optimum
depth, leading to a standard of 0.5 in in most states.19,25

However, states including Alabama, Arkansas, Mississippi,
and Oklahoma practiced higher depth of 0.625, 1.5, 1, and
0.875 in, respectively, although their effects on in-vehicle
vibration were unknown.24 Nonetheless, any depth greater
than 0.6 in was not effective in operations.8

The current study developed a prototype of DRTRS
with appropriate dimensions to cause both sufficient
in-vehicle noise and vibration to regain the attention of
the drivers and be mostly congruent with jurisdictional
practice as well. The design and dimensions of DRTRS
are discussed in detail in the ‘‘DRTRS design metho-
dology’’ section.

DRTRS design methodology

The design goal for DRTRS was to maintain the desir-
able vibration and sound properties of traditional TRS
while improving long-term effectiveness by removing
driver familiarity. The developed system should only
provide the rumble effect when required. In addition,

the DRTRS were to be practical—easy to install and
maintain—which leads to a design where rumble strips
could be actively lowered into roadway to avoid dam-
age from street sweeping or snow plows.

Conceptual description

DRTRS were designed to operate on-demand, based
on active downstream events that necessitate alerting
drivers. Figure 1 shows the overall conceptual opera-
tion of the system with several different activation (low-
ering the strips) and deactivation (taking the strips back
to road level) schemes. The activation and deactivation
schemes are as follows:

1. Push Button Event: Pedestrians can engage the
system with a crosswalk push button.

2. Pedestrian Detection Event: A thermal imaging
camera is installed to automatically detect
pedestrians at the crosswalk in case the push
button is not used.

3. Timed Activation Event: The system can be acti-
vated at specific times of the day, such as for
school zones.

4. Remote Control Event: A remote signal can be
sent to activate the system in response to
emergencies.

Figure 2(a) and (b) shows the implementation of
DRTRS prototype and pedestrian crosswalk, respec-
tively, on an actual roadway. The distance between
DRTRS and crosswalk is 200 ft, calculated by consider-
ing perception reaction and braking distance. Figure 3
shows the main components used for implementing the
prototype.

Mechanical design and prototyping

DRTRS are designed to be enclosed in a steel box that
is embedded in a roadway (Figure 3). The five

DRTRS 

controller 

cabinet

Camera 

and push 

buttons 

controller 

cabinet

Communication 
between control 

units and 
DRTRS

DRTRS

Camera

Figure 1. Conceptual operation of DRTRS.
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hydraulically actuated rumble units are equally spaced
within a box that is placed transverse to the flow of
traffic. The 4-in-wide rumble strips are spaced at 12 in
center-to-center distance. Each rumble unit is topped
by a C-channel beam, which can be lowered and raised
to create a rumble effect. The depth of the rumble is
half of an inch. The rumble units are separated by
metal troughs filled with concrete to provide stiffness
and stability.Each unit can be quickly disassembled in
case of a mechanical failure or required maintenance.
The system is designed to maintain functionality under
various environmental conditions, including rain,
snow, and dirt, as well as temperature variations. Since
the rumbles are lowered into the roadway, there is
reduced risk of damage from street cleaning or snow
plowing.

Figure 3(a) shows the exploded view of a single rum-
ble unit. The main design details of DRTRS are shown
in Figure 3(b), which presents the key components of a
rumble unit: a hydraulic actuator, C-channel beam,
support column, and base plate. Rumble strips and
metal troughs are bolted to the steel box, which is fixed
to the road using studs and epoxy. Hydraulic lines con-
nect the actuator to a hydraulic pump and a controller
unit placed in a cabinet on the side of the road, as
shown in Figure 4.

To move the rumble units to the default position
(level with the roadway), the hydraulic pump is turned

on, allowing the hydraulic actuators and springs to
push the C-channel beams up. To lower the rumble
units, hydraulic actuator valves are opened, allowing
gravity to lower the strips, which creates the rumble
effect. Figure 5 shows the inactive and active states of
DRTRS that were installed on a roadway.

Experimental setup

Experimental evaluation was designed to measure the
in-vehicle noise and vibration to determine whether
DRTRS could alert drivers to potential downstream
events. In addition, the experiment incorporated the
measurement of roadside noise and vibration created

Figure 2. Implementation of DRTRS: (a) DRTRS and (b) crosswalk.

Support 

Column

C Channel 

Beam

Hydraulic 

ActuatorMetal Trough

0.5 inch

Case when the 

DRTRS is active

Case when the 

DRTRS is inactive

Base Plate

(a) (b)

Figure 3. Schematic design and detailed specifications of DRTRS: (a) exploded view of a rumble unit and (b) detailed view showing
the components of rumble strip units with the left unit inactive (at roadway level) and the right unit active (lowered).

Hydraulic 

Pump

Control 

Unit

Figure 4. DRTRS control cabinet.
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by the active DRTRS and their effects on the surround-
ing neighborhood.

Test plan

A DRTRS prototype was installed on a road within the
campus of the University of Nevada, Las Vegas
(UNLV), as shown in Figure 5. In order to evaluate the
effectiveness of the system, it was tested using three test
vehicles: a diesel truck (Ford F250), SUV (2017 Nissan
Rogue S), and sedan (2012 Honda Civic). The drivers
of these vehicles were asked to drive over DRTRS at
three different speeds (15, 25, 40mph). Each condition
(e.g. active DRTRS, in-vehicle data for SUV at 25mph)
was repeated three times, resulting in a total of 54 trials.
Active DRTRS data were compared with reference data
from the ambient roadway.

Data acquisition

During the tests, the following high-resolution data
were collected: (1) in-vehicle noise (dBA), (2) in-vehicle
vibration (ms22), (3) roadside noise (dBA), and (4)
roadside vibration (ms22). This research used a data
acquisition unit (NI cDAQ-9178), a sound level meter
(SLM) (QUEST 2700), and a triaxial piezoelectric
accelerometer (Endevco� Isotron� accelerometer,
45A).

Figure 6 shows a diagram presenting the data acqui-
sition and flow during the experiment. Data were col-
lected at 10 kHz using LabVIEW through the NI-
DAQmx API and saved in a timestamped.csv file for
post-analysis.

Noise and vibration measurement setup

Figure 7(a) and (b) shows the setup of the instruments
during the roadside experiments. The SLM was aimed
toward DRTRS to attenuate unwanted noise, mounted

at a height of 4 ft, and located 13 ft away from the cen-
ter of DRTRS. The accelerometer was placed on the
sidewalk and was covered by a 5-lb soft mesh lead shot
weight to absorb high-frequency vibrations. The x, y,
and z axes of the accelerometer were aligned with
respect to the lateral, longitudinal, and vertical direc-
tions of the roadway, respectively.

Figure 7(c) and (d) shows the setup of the instru-
ments during the in-vehicle experiments. The SLM was
placed on a tripod at the ear level of the driver (Figure
7(c)) to approximate the actual driver’s perception. The
accelerometer was mounted on the steering column to
minimize the effects of the vehicle’s suspension on the
measured vibration.14 The accelerometer was placed
between two 5-lb soft mesh lead shot weights to absorb
high-frequency vibrations and to ensure its stability
during the experiment.

Data processing

Given DRTRS spacing of 12 in, the DRTRS-induced
vibrations at the highest test speed (40mph) were
expected to be 58.67Hz. Frequency analysis showed

Figure 5. Inactive (left) and active (right) states of DRTRS.

Figure 6. Block diagram of data acquisition with SLM and
accelerometer.
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almost all vibration was below 60Hz. Therefore, all
data were filtered using a first-order LP Butterworth
filter with 60Hz cutoff frequency. It was deemed that
the sound signals had limited higher order noise and
were not filtered.

Figure 8 shows examples of in-vehicle and roadside
noise, and filtered vibration data collected from an
SUV at a 25-mph speed while passing over active
DRTRS. Figure 8(a) and (b) shows that the front
wheels hit the rumbles at 2.72 s and the back wheels at
3.02 s for the in-vehicle experiment. Similarly, in Figure
8(c) and (d), these events occurred at 2.45 and 2.73 s for
the roadside case. Note the sharp peaking in noise and
vibration while over the DRTRS.

Results

In-vehicle noise and vibration

Peak noise and magnitude of vibration are used to
assess the DRTRS performance.16 Table 1 provides the
data for in-vehicle noise measured at ambient roadway
conditions. Ambient noise is consistent for each
vehicle but increases due to engine noise at higher
speeds. Figure 9(a) shows the in-vehicle noise when
passing over DRTRS, and Figure 9(b) shows the
increase in in-vehicle noise, which is computed by

subtracting the ambient data (Table 1) from the in-
vehicle noise data.

Based on the literature review, 7 dBA is the detect-
able threshold of noise for most individuals.16 Figure
9(b) shows that in all test scenarios, the increase in
noise when a vehicle passed over the active DRTRS
was greater than 7 dBA. While the increase in in-vehicle
noise varied with vehicle speed and type, such varia-
tions seemed reasonable because each test scenario had
a unique dynamic interaction between the test vehicle
and DRTRS due to differences in engines, suspension
mechanisms, sizes of car components, and test para-
meters. Sound generally increased as speed increased,
but the noise differential was the lowest at the highest
speed. This decreased sound at higher speed is likely
due to reduced deflection time (e.g. tires skipping
DRTRS rumbles), as well as louder engine noise at
higher speed.

Figure 10 shows the increase in in-vehicle vibration
for the test cases, due to active DRTRS. Similar to in-
vehicle noise, the results varied with speed and vehicle
type, but were consistently above the upper ceiling of
detectable vibration of 4.25ms22. The only exception
was in-vehicle at 40mph in the case of the diesel truck,
which might be explained by the larger tire size and
nature of the vehicle’s suspension absorbing more
vibrations.

Figure 7. Data acquisition setup: (a) SLM setup for roadside experiment, (b) accelerometer setup for roadside experiment, (c) SLM
setup for in-vehicle experiment, and (d) accelerometer setup for in-vehicle experiment.

6 Advances in Mechanical Engineering



Therefore, active DRTRS were effective in engaging
both the auditory and tactile senses of the drivers of
these passenger vehicles, with discernible noise and
vibration. However, since the diesel truck experienced
lower vibration and noise at higher speed, active
DRTRS may not have a discernible effect on other
heavy vehicles.
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Figure 8. In-vehicle and roadside noise and vibration data for a case of SUV running at 25 mph over active DRTRS: (a) in-vehicle
noise, (b) in-vehicle vibration, (c) roadside noise, and (d) roadside vibration.

Table 1. In-vehicle ambient noise in decibels.

Vehicle speed (mph) Diesel truck SUV Sedan

15 58 62 61
25 60 65 66
40 63 68 69
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Figure 9. In-vehicle noise and increase in in-vehicle noise due to active DRTRS: (a) in-vehicle noise for different vehicles and
(b) increase in in-vehicle noise for different vehicles.

Hossen et al. 7



Roadside noise and vibration

Similar to the previous section, the ambient roadside
noise is shown in Table 2. Figure 11 shows the ambient
roadside noise and the associated increase in roadside
noise for the test vehicles. Interestingly, the roadside
noise exhibited a consistent positive correlation with
speed for all tested vehicles. In addition, the increase in
roadside noise was typically beyond the noise threshold
of 7 dBA.16 The increase in roadside noise for passen-
ger cars (SUV and sedan) was significant enough to be
distinguished by pedestrians at any given speed.

Furthermore, the roadside vibration exerted by the
active DRTRS was only 0.5–0.8ms22 for any given
condition, which was too minimal to perceive, and
therefore excluded from further analysis.

Noise created by vehicles due to the active DRTRS
was sufficient to alert roadside pedestrians while having
little additional noise in the adjacent neighborhood.

Discussion

Active DRTRS have been shown to be effective in
engaging the auditory senses of drivers by generating
in-vehicle noise above the minimum threshold of dis-
cernible noise for passengers in vehicles, including an
SUV and a sedan. However, at higher speeds, DRTRS
did not create distinguishable in-vehicle noise for a die-
sel truck. Nonetheless, active DRTRS were effective in
engaging the haptic senses of all drivers, which are
associated with sufficient in-vehicle vibration, irrespec-
tive of vehicle type or running speed.

DRTRS generate noise that are higher than roadside
ambient noise, sufficient for roadside pedestrians to
hear, in the active state. Yet, the inactive state has noise
pollution similar to ambient roadway conditions, mean-
ing the use of DRTRS could have a positive impact on
adjacent neighborhoods.

DRTRS provide flexibility for a wide variety of
applications besides pedestrian crossings. During
school hours, DRTRS should always remain active
with the intention of alerting drivers passing the school
zone regardless of the presence of pedestrians. On high-
ways, DRTRS can be used as a warning tool for over-
speeding and wrong-way driving with activation if driv-
ers exceed posted speed limits or travel in the wrong
direction.

An advantage of the dynamic nature of DRTRS is
that drivers might not get accustomed to its placement
since it only responds to a meaningful event.
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Figure 11. Roadside noise exerted and increase in noise by active DRTRS: (a) roadside noises for different vehicles and
(b) increase in roadside noises for different vehicles.

Table 2. Roadside ambient noise in decibels.

Vehicle speed (mph) Diesel truck SUV Sedan

15 75 67 67
25 77 74 74
40 83 80 80
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Consequently, the on-demand activation of DRTRS
may have some added benefits compared with static
TRS, including the ability to maintain the effect of
alerting drivers over time, to reduce potential safety
challenges from erratic avoidance maneuvers, as well as
to produce a customized warning system per road
requirement either in residential neighborhood or in
highways. However, these potential benefits must be
investigated further.

Finally, the researchers note that it may be necessary
to optimize the number of rumbles, their spacing, and
dimensions based on the needs of a specific jurisdiction.
Differing dimensions yield different levels of noise and
vibration, and the appropriate levels must be tuned for
the application, for example, low noise pollution in neigh-
borhoods or extreme noise and vibration on a highway.

Conclusion

DRTRS, a new potential traffic safety countermeasure,
can provide advance warning on demand to reduce the
issues of extraneous noise and vibration associated with
TRS. Drivers will generally experience the natural feel-
ing of an ambient roadway most of the time with inac-
tive DRTRS. Upon the detection of a potential
downstream event, DRTRS become active and lower
their array of strips to alert drivers in a similar manner
as traditional TRS. Experimental evaluation has shown
that the designed DRTRS are effective at producing
haptic and auditory changes necessary to regain driver
attention. In addition, DRTRS can be used in school
zones and residential areas, where roadside noise is
objectionable, given that they will remain inactive and,
therefore, produce no rumbling noises until an event
requiring their activation occurs.
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