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Abstract

Background

This study aims to assess the decline in telomere length (TL) with age and evaluate effect

modification by gender, chronic stress, and comorbidity in a representative sample of the

US population.

Methods

Cross-sectional data on 7826 adults with a TL measurement, were included from the

National Health and Nutrition Examination Survey, years 1999–2002. The population rate of

decline in TL across 10-year age categories was estimated using crude and adjusted

regression.

Results

In an adjusted model, the population rate of decline in TL with age was consistent and linear

for only three age categories: 20–29 (β = -0.0172, 95% CI: -0.0342, -0.0002), 50–59 (β =

-0.0182, 95% CI: -0.0311, -0.0054) and 70–79 (β = -0.0170, 95% CI: -0.0329, -0.0011)

years. The population rate of decline in TL with age was significantly greater for males and

those with high allostatic load and a history of comorbidities. When the population rate of

decline in TL was analyzed by gender in 10-year age bins, a fairly consistent yet statistically

non-significant decline for males was observed; however, a trough in the rate was observed

for females in the age categories 20–29 years (β = -0.0284, 95% CI: -0.0464, -0.0103) and

50–59 years (β = -0.0211, 95% CI: -0.0391, -0.0032). To further elucidate the gender differ-

ence observed in the primary analyses, secondary analyses were conducted with reproduc-

tive and hormonal status; a significant inverse association was found between TL and

parity, menopause, and age at menopause.
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Conclusions

TL was shorter with increasing age and this decline was modified by gender, chronic stress

and comorbidities; individuals with chronic morbidity and/or chronic stress and females in

their twenties and fifties experienced greater decline. Female reproductive factors, i.e., par-

ity and menopause, were associated with TL.

Introduction

Telomeres, nucleoprotein structures located at the ends of eukaryotic chromosomes, protect

the end of the chromosome from degradation and end-to-end fusion [1]. With each somatic

cell division, there is a gradual attrition of the telomere, resulting in telomere length shortening

with increasing age [1]. Telomere length (TL) has been proposed as a candidate biomarker of

aging [2] whereby longer TL is an indicator of healthy aging. Preservation of TL among

healthy individuals, in comparison to those with multiple morbidities, is thought to be one of

the several pathways by which the development of chronic diseases and mortality can be

explained. Although the association between health status and TL has been fairly well estab-

lished, it is unclear how quickly TL declines with increasing age, or whether there is any effect

modification by gender, chronic stress and morbidities, all of which influence telomere

dynamics [3,4,5,6].

Although TL shortens with increasing age [7], TL decreases are not directly proportional

with age. Gender, chronic stress, and comorbidities may modify the relationship between age

and TL. Females have longer telomeres than males [6]. Chronic psychosocial stress, depres-

sion, anxiety, and childhood trauma was associated with shorter TL [4,8,9,10,11]. Perceived

stress was associated with lower telomerase activity, and shorter telomere length among

healthy premenopausal women [4]. An association between childhood trauma and shorter

telomere length in adulthood has been reported [9]. Stressful life events within the last five

years was associated with associated with shorter telomeres in Netherlands Study of Depres-

sion and Anxiety [12]. A systematic review aimed to examine whether chronic social stress is

associated with telomere length throughout the life course, concluded that chronic social stress

was associated with shorter telomeres in both early and adult exposures [13]. Further, evidence

suggests that shorter telomeres is associated with greater cortisol reactivity to stress, central ele-

ments of the physiological stress response system [14,15]. "Allostatic load," also called the wear

and tear in the body [16], has been proposed as a conceptualization of cumulative stress

exacted on the body through attempts to adapt to life’s demands [17]. Stress, an inevitable con-

dition of human existence, has been associated with poor health outcomes [16]. Limited

research has looked at the relationship between TL and allostatic load [3].

TL has been linked to various morbidities such as diabetes [18], heart disease [19,20,21,22],

hypertension [23] cancer [24], and depression [25], as well as overall mortality [26,27]. A

meta-analysis of 62 population based studies found a non-significant association between

short telomeres and overall risk of cancer but an increased risk for gastrointestinal tumor and

head and neck cancer indicating that telomeres may play diverse roles for risk in different can-

cers [24]. In contrast, a Mendelian Randomization Study reported an increased risk for several

cancers with longer telomeres but reduced risk for cardiovascular diseases [28]. Another meta-

analysis reported negative association between depression and TL [25]. The Charlson comor-

bidity index (CCI) is commonly used to provide a cumulative weighted score of 17 comorbid

conditions [29]. The measure of decline in TL with age by allostatic load and comorbidities

Decline in telomere length by age, gender, allostatic Load and comorbidities

PLOS ONE | https://doi.org/10.1371/journal.pone.0221690 August 30, 2019 2 / 14

Pharma, L.P., Stamford, CT. However, she was not

employed by Purdue Pharma during the duration

and completion of the study. There are no patents,

products in development or marketed products

associated with this research to declare. This does

not alter the authors’ adherence to PLOS ONE

policies on sharing data and materials.

https://doi.org/10.1371/journal.pone.0221690


could be useful particularly in elucidating the biologic pathway by which chronic stress and

comorbidities can affect TL and accelerate the rate of aging. Once this pathway is better under-

stood, this information can be used to develop effective prevention measures in at-risk popula-

tions. Therefore, we aim to assess the decline in TL with age and evaluate any effect

modification by gender, chronic stress and comorbidities in a representative sample of the US

population. Guided by the results of the primary analyses and in order to further elucidate the

observed gender differences, secondary analyses were conducted to examine the association

between TL, parity and menopause.

Methods

Study design

National Health and Nutrition Examination Survey (NHANES) is a cross-sectional nationally

representative survey of the US civilian noninstitutionalized population, conducted using

complex, multistage, stratified, clustered sampling [30,31]. Details of NHANES methodology

have been reported elsewhere [30,31]. We used data from the cycles 1999–2000 and 2001–

2002; combining them following the National Center for Health Statistics (NCHS) recommen-

dations [31].

Study participants

NHANES 1999–2000 and 2001–2002 included a total of 9965 and 11,039 participants, respec-

tively. For our analyses, we included those aged� 20 years who had a measure of telomere

length, for a total of 7826 individuals from both the cycles, NHANES 1999–2002.

Ethical approval

NHANES was approved by the NCHS Research Ethics Review Board (https://www.cdc.gov/

nchs/nhanes/irba98.htm). All participants provided written informed consent. The Institu-

tional Review Board at the University of Nevada Las Vegas approved the current study.

Measurements

Telomere length. Telomere length in leukocytes was measured from whole blood using

the quantitative polymerase chain reaction method, described in detail elsewhere [32,33]. The

Mean T/S ratio, which is the measure of TL relative to standard reference DNA, were provided

in the NHANES dataset. During data analysis, the T/S ratio was converted to kilobase pairs

(kbp) using the following formula: (3,274 + 2,413 � (T/S))/1000.

Allostatic load. Chronic stress, a hypothesized effect modifier, was measured in terms of

allostatic load (AL), quantified using nine biomarkers of cardiovascular, inflammatory, and

metabolic system functioning. The nine biomarkers with corresponding cutoffs [34,35] were:

systolic blood pressure� 140 mm Hg, diastolic blood pressure� 90 mm Hg, heart rate� 90

beats/minute, total cholesterol level� 240 mg/dL, high-density lipoprotein (HDL) cholesterol

< 40mg/dL, BMI� 30 kg/m2, glycosylated hemoglobin� 6.4%, C-reactive protein� 0.3 mg/

dL, and albumin< 3.8 g/dL. Each measure was coded as a dichotomous variable at the cutoff

(1, if the respondent had indicated the condition; 0, if otherwise). The cumulative score of the

nine indicators was then converted into a dichotomous variable, with high AL defined as an

AL score� 3. The same cutoff values and measures have been used to quantify allostatic load

with the NHANES dataset in previous studies [34,35].

Comorbidity. We calculated the Charlson Comorbidity Index [29], another hypothesized

effect modifier, to account for the impact of any comorbid conditions on telomere length.
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Different health conditions included in calculating CCI, their definations and corresponding

weights in the calculation, are provided in S1 Table. Because a score of�4 points is associated

with an estimated 53% 10-year mortality, a weighted combined index score of�4 points was

used to define a history of chronic comorbid conditions [29].

Other covariates. Covariates for this study, selected based on the literature, were race/eth-

nicity, educational attainment, socioeconomic status (SES), and physical activity levels

[6,33,36].

Age (in years and 10-year categories), gender, race/ethnicity (nominal: Hispanic, NH white,

NH Black, and others including multi-racial); educational level (ordinal: <12th grade, high

school graduate/some college, and college graduate or above); and marital status (nominal:

married/living with partner, divorced/widowed/separated, and never married) were self-

reported by the participants. SES was measured on a continuous scale, in terms of poverty

income ratio (PIR). PIR, the ratio of family income to the poverty threshold, calculated follow-

ing the U.S. Department of Health and Human Services’ poverty guidelines and described in

detail elsewhere [31]. BMI, the ratio of weight/height2 measured in kg/m2, was available as a

continuous measure and was categorized as normal weight (<25 kg/m2), overweight (25- <30

kg/m2) and obese (�30 kg/m2). Physical activity was defined as participants’ self-reported par-

ticipation in at least 10 minutes of moderate or vigorous activity or muscle strengthening activ-

ities in the previous 30 days [33]. Following the definition for menopause proposed by

McKinlay [37], menopause was defined as one or more of the given criteria: over 55 years, had

a hysterectomy or both ovaries removed, and menopause as the reason for no periods in the

past 12 months. Age at menopause as well as number of pregnancies resulting in live birth

were self-reported by women.

Statistical analyses

Sample weights were adjusted according to NHANES guidelines to generate a nationally repre-

sentative sample [31]. For nominal variables, percentages with 95% CIs are provided; for con-

tinuous variables, unadjusted means with standard error (SEM) are provided (Table 1). TL

was divided into quartiles based on the weighted population distribution. Covariate character-

istics, between the quartiles of TL, were compared using Rao-Scott Chi-Square tests and analy-

sis of variance. Linear regression with TL (kbp) as the outcome was used to assess the

association with socio-demographic factors, biomarkers of allostatic load, and reproductive

factors among females. Initially, univariate models were evaluated, then a group of covariates

(age, gender, race/ethnicity, education, PIR, and physical activity) were added to the model.

The main outcome of this study is rate of decline in TL, which would best use a longitudinal

design study. Since this is a cross-sectional study, we aim to examine the cross-sectional rates

of TL decline as a proxy for rate of decline in TL by age. For this we are assuming that an indi-

vidual with a TL at a certain age will, later in life, have the same telomere length as another

individual at an older age with similar covariates. Therefore, the rate we are measuring is a

population rate of decline in TL, not an individual rate of decline. To measure the population

rate of decline in TL in different age categories, we used 10-year bins and calculated the slope

of the rate of decline in TL as a function of age in each bin, using a linear regression with TL

(kbp) as outcome and age (years) as predictor. All population rates of decline in TL are

adjusted for gender, ethnicity, physical activity, CCI, and allostatic load. A two-tailed p-value

less than 0.05 was considered statistically significant. Data analyses were performed using the

survey procedures that account for the weights and complex survey design of NHANES, in

SAS 9.4 (SAS Institute Inc., Cary, NC).
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Results

Participant’s characteristics

The mean (±SE) age and TL of the participants were 45.2±0.4 years and 5.8±0.04 kbp, respec-

tively (Table 1). Participants with shorter TL, i.e., in lower quartiles, were older, NH White,

married, and had higher BMI, allostatic load, and CCI. A gradual decreasing trend in mean

age, BMI, allostatic load and CCI was noted from lowest to highest quartiles (Table 1).

Telomere length and associated factors

In analyses adjusted for age, gender, race/ethnicity, education, PIR, and physical activity

(Table 2), increasing age, and higher heart rate, BMI, and C-reactive protein were associated

with lower TL. Likewise, NH Black compared to NH White and unmarried compared to mar-

ried/living with a partner had higher TL. A further stratified analysis was conducted to assess

the role of age and gender in the association between marital status and TL. We found that the

marital status and TL association was significant only for younger (20–29 years) females (β:

Table 1. Socio-demographic characteristics of the study participants by quartiles of leukocyte telomere length- NHANES 1999–2002.

Overall (N = 7826) Quartiles, % (95% CI)

N % (95% CI) One (N = 2415) Two (N = 2120) Three (N = 1633) Four (N = 1658) p-Value

Range: 4.2-<5.4 kbps Range:5.4-<5.8 kbps Range: 5.8-<6.2 kbps Range:�6.2 kbps

Age, years, mean ±SEM 7826 45.2 ±0.4 54.6 ±0.7 46.2 ±0.8 41.5 ±0.7 37.4 ±0.8 <0.001 a

LTL, kbp, mean ±SEMb 7826 5.8 ± 0.04 5.1 ±0.0 5.6 ±0.0 6.0 ±0.0 6.7 ±0.0 <0.001 a

Gender

Male 3770 48.6 (47.6–49.5) 50.7 (48.3–53.2) 48.0 (45.1–50.9) 47.7 (45.5–49.9) 47.7 (45.2–50.3) 0.287

Female 4056 51.4 (50.5–52.4) 49.3 (46.8–51.7) 52.0 (49.1–54.9) 52.3 (50.1–54.5) 52.3 (49.7–54.8)

Race/Ethnicity

Hispanic 2292 13.8 (9.7–17.8) 11.8 (6.0–17.7) 13.4 (9.3–17.4) 14.2 (9.7–18.6) 15.9 (11.1–20.6) <0.001

NH White 3965 72.8 (69.0–76.5) 77.4 (71.8–82.9) 74.7 (70.5–78.9) 71.1 (66.4–75.8) 67.2 (62.4–72.0)

NH Black 1333 9.4 (7.2–11.6) 7.2 (5.2–9.2) 8.1 (5.6–10.6) 9.8 (7.6–12.1) 12.8 (9.4–16.3)

Other 236 4.1 (2.7–5.4) 3.6 (1.8–5.5) 3.9 (2.7–5.0) 4.9 (3.1–6.7) 4.0 (1.8–6.3)

Educational Status

<12th Grade 2640 21.3 (19.4–23.2) 26.3 (23.4–29.2) 20.6 (18.3–22.9) 20.8 (17.4–24.2) 17.1 (15.3–18.9) <0.001

High School/Some College 3733 54.6 (51.7–57.5) 53.0 (49.1–56.9) 55.2 (51.6–58.8) 52.1 (47.1–57.1) 57.9 (53.4–62.5)

College Graduate 1441 24.1 (20.7–27.5) 20.7 (16.8–24.6) 24.2 (20.7–27.7) 27.1 (21.6–32.7) 24.9 (19.8–30.1)

Marital Status

Married/Living with Partner 4759 65.1 (63.0–67.2) 68.8 (66.4–71.1) 67.3 (64.2–70.3) 63.9 (60.5–67.3) 59.5 (55.7–63.3) <0.001

Divorced/Widowed/Separated 1566 17.5 (16.2–18.9) 23.0 (21.0–24.9) 19.4 (17.3–21.6) 14.4 (11.9–16.8) 12.1 (9.8–14.4)

Never Married 1123 17.4 (15.6–19.1) 8.3 (6.8–9.8) 13.3 (10.8–15.8) 21.8 (19.1–24.4) 28.4 (25.4–31.4)

Family PIR, mean ±SEM 7128 3.0 ±0.1 3.0 ±0.1 3.1 ±0.1 3.1 ±0.1 2.8 ±0.1 <0.001 a

BMI, kg/m2, mean ±SEM 7577 28.0 ±0.1 28.7 ±0.2 28.2 ±0.2 27.8 ±0.2 27.4 ±0.3 <0.001 a

Physical Activity <0.001

Physically active 4552 66.3 (63.5–69.1) 59.4 (55.7–63.2) 66.6 (62.8–70.4) 69.2 (66.6–71.8) 70.7 (66.5–74.8)

Physically inactive 3271 33.7 (30.9–36.5) 40.6 (36.8–44.3) 33.4 (29.6–37.2) 30.8 (28.2–33.4) 29.3 (25.2–33.5)

Allostatic load, mean± SEM b 7826 2.4 ±0.0 2.7 ±0.0 2.5 ±0.0 2.4 ±0.0 2.2 ±0.1 <0.001 a

CCI, mean ±SEM b 7826 1.5 ±0.0 2.2 ±0.1 1.5 ±0.1 1.2 ±0.1 1.0 ±0.1 <0.001 a

a: p-values from one-way ANOVA; all others from a Chi-square test.
b SEM values of 0 indicates a value <0.1. Abbreviations: BMI: body mass index, CCI: Charleston’s comorbidity index, CI: confidence interval, Kbp: kilo base pairs, LTL:

leucocyte telomere length, NH: Non-Hispanic, PIR: poverty income ratio, SEM: standard error of mean. Values expressed are % (95% CI) unless otherwise stated.

https://doi.org/10.1371/journal.pone.0221690.t001
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0.5194, 95%CI: 0.1129–0.9258, p-value: 0.0141) and older (80 years and above) females (β:

0.2770, 95%CI: 0.1217–0.4323, p-value: 0.001). Although female gender demonstrated a posi-

tive trend and family PIR demonstrated an inverse trend with TL, the findings did not reach

the statistical significance of<0.05 (Table 2).

Of the nine biomarkers of allostatic load, after controlling for covariates, only the regression

coefficients of heart rate, HDL cholesterol, BMI, and C-reactive protein had the 95% CIs that

did not include the null of no association (Table 2); while a higher heart rate, BMI, and C-reac-

tive protein was associated with shorter TL, a higher value of HDL cholesterol preserved it. In

an unadjusted analysis, a one-unit difference in allostatic load and CCI were associated with

17.3% and 7.2% decrease in TL, respectively. However, the estimates for CCI did not remain

statistically significant when controlled for covariates. Specifically, age had a strong confound-

ing effect on our estimates because most of the covariates with a significant coefficient in

Table 2. Multivariable regression for factors associated with telomere length- NHANES 1999–2002.

Model 1 unadjusted Model 2 adjusted a

β 95%CI p-value β 95%CI p-value

Age -0.0146 -0.0162, -0.0130 <0.001 -0.0142 -0.0157, -0.0127 <0.001

Gender (Reference = Male)

Female 0.0252 -0.0265, 0.0769 0.328 0.0460 -0.0015, 0.0934 0.0569

Race/Ethnicity (Reference = NH White)

Hispanic 0.0681 -0.0692, 0.2054 0.319 -0.0053 -0.137, 0.1264 0.9352

NH Black 0.1687 0.0802, 0.2572 <0.001 0.1186 0.028, 0.2092 0.0121

Other 0.0396 -0.1005, 0.1797 0.568 -0.0141 -0.1502, 0.122 0.8334

Educational Status (Reference = High School)

<12th Grade -0.1203 -0.1825, -0.0581 <0.001 -0.0679 -0.1365, 0.0006 0.052

College Graduate -0.0023 -0.0689, 0.0642 0.943 0.0305 -0.0357, 0.0967 0.354

Marital Status (Reference = Married/with Partner)

Divorced/Widowed/Separated -0.1111 -0.1655, -0.0566 <0.001 -0.0128 -0.0722, 0.0465 0.6614

Never Married 0.3162 0.2422, 0.3901 <0.001 0.0979 0.0233, 0.1726 0.0119

Family PIR -0.0127 -0.0354, 0.0100 0.261 -0.0048 -0.0275, 0.018 0.6699

Physical Activity (Reference = Physically Active)

Physically Inactive -0.1158 -0.1653, -0.0663 <0.001 -0.0151 -0.0537, 0.0236 0.4316

Biomarkers of allostatic load

Systolic blood pressure -0.0030 -0.0044, -0.0015 <0.001 0.0011 -0.0001, 0.0023 0.0631

Diastolic blood pressure 0.0041 0.0022, 0.0060 <0.001 0.0001 -0.0018, 0.0018 0.9755

Heart rate -0.0008 -0.0026, 0.0009 0.325 -0.0021 -0.0036, -0.0006 0.0074

Total cholesterol -0.0002 -0.0007, 0.0004 0.516 -0.0001 -0.0007, 0.0004 0.5865

High-density lipoprotein cholesterol 0.0027 0.0009, 0.0044 0.004 0.0023 0.0005, 0.0041 0.0134

BMI (kg/m2) -0.0093 -0.0133, -0.0052 <0.001 -0.0068 -0.0105, -0.0031 0.0007

Glycosylated hemoglobin -0.0370 -0.0573, -0.0167 <0.001 -0.0004 -0.0257, 0.0249 0.9751

C-reactive protein -0.0538 -0.0993, -0.0083 0.022 -0.0558 -0.0903, -0.0214 0.0025

Albumin 0.1664 -0.3897, 0.7225 0.545 0.2317 -0.6846, 1.1481 0.609

Allostatic load (Reference = Low)

High -0.1735 -0.2226, -0.1244 <0.001 -0.0697 -0.1166, -0.0228 0.005

Charleston Comorbidity Index -0.0723 -0.0823, -0.0624 <0.001 -0.0044 -0.0173, 0.0086 0.4971

DV: Telomere length in kbp
a Adjusted for age, gender, race/ethnicity, education, PIR, and physical activity. Abbreviations: BMI: body mass index, CI: confidence interval, NH: Non-Hispanic, PIR:

poverty income ratio. p-value less than 0.05 are bold.

https://doi.org/10.1371/journal.pone.0221690.t002
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unadjusted models retained their statistical significance when adjusted for other covariates

except age (S2 Table).

Cross-sectional population rates of telomere length decline

The population rates of decline in TL stratified by 10-year age bins showed that decline in TL

with age was initiated early in life (20–29 years) and was consistent and linear for only three

age categories: 20–29 (β = -0.0172, 95% CI: -0.0342, -0.0002), 50–59 (β = -0.0182, 95% CI:

-0.0311, -0.0054) and 70–79 (β = -0.0170, 95% CI: -0.0329, -0.0011) years. The population rate

of decline in TL was sharp in the age category 70–79 years; whereas, in the oldest age category

examined (80–89 years), the rate of decline (β = -0.0096, 95% CI: -0.0412, 0.0220) was highly

variable and did not follow a linear pattern. Likewise, the population rate of decline in TL strat-

ified by allostatic load and comorbid conditions showed a significantly greater rate of decline

among those with high allostatic load (β = -0.0122, 95% CI: -0.0143, -0.0101), and history of

comorbid conditions (β = -0.0133, 95% CI: -0.0164, -0.0102).

Gender stratified analyses, adjusted for ethnicity, physical activity, CCI, and allostatic load,

(Fig 1) showed a significantly greater rate of decline for males (β = -0.0153, 95% CI: -0.0171,

-0.0135) compared to females (β = -0.0128, 95% CI: -0.0153, -0.0103). When the population

rate of decline in TL was further stratified by gender in 10-year age bin (Table 3), we observed

a fairly consistent population rate of decline in TL for male; none of the regression coefficients

were statistically significant (Table 3). Interestingly, for females, a peak in the population rate

of decline in TL was observed in the age categories of 20–29 years (β = -0.0284, 95% CI:

-0.0464, -0.0103) and 50–59 years (β = -0.0211, 95% CI: -0.0391, -0.0032). Although women in

the age categories of 30–39 years and 60–69 years displayed a minimal reduction in TL, the

estimates were not statistically significant (Table 3).

To explore the heterogeneity in the population rate of decline in TL among females, we

conducted additional analyses for women’s reproductive history, particularly parity and meno-

pause, since ages 20–29 and 50–59 years are common ages for parity and menopause, respec-

tively. After controlling for ethnicity, education, PIR, and BMI, the number of live children a

woman had was negatively associated with TL (β = -0.0318, 95% CI: -0.0510, -0.0125). Further,

compared to nulliparous women, decline in TL was noted for women with live births (S1 Fig).

Similarly, women’s menopausal status (β = -0.2875, 95% CI: -0.3517, -0.2232), age at meno-

pause (β = -0.0077, 95% CI: -0.0130, -0.0023) as well as years passed since menopause (β =

-0.0095, 95% CI: -0.0127, -0.0063) were inversely associated with TL. Further, variation in

slope of decline in TL with years passed since menopause was noted by women’s weight status

(S2 Fig). However, these findings were no longer statistically significant once we controlled for

age (S3 Table).

Discussion

Overall, TL significantly reduced with age, but this decline was modified by gender, chronic

stress and comorbidities; those with chronic morbidities and chronic stress experienced

greater decline. Gender stratified analysis was more interesting, showing a fairly consistent

and statistically non-significant rate for male but a substantial trough in TL for females in the

age categories 20–29 and 50–59 years. Female reproductive factors, i.e., parity and menopause,

were associated with TL.

Decline in TL with age is unanimously supported by the literature [33,38]. Heterogeneity in

rate of decline in TL is suggested by a previous study from the Erasmus Rucphen Family (ERF)

data, which found a significant reduction in variance in TL from young adulthood to old age

by using the TL of grandchildren as a proxy for participants’ TL at childhood [38]. For females,
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a trough in the adjusted population rate of decline in TL was noted in early (20–29) and mid-

life (50–59) years. In general, for females the 20–29 and 50–59 age bands are periods of impor-

tant hormonal changes, as these are the common ages for parity and menopause, respectively.

Consistent with previous studies, we found a significant negative association between TL and

parity, menopausal status, and age at menopause [39]. The observed inverse relationship

between TL and parity is supported by the life history theory, which postulates that the energy

used during reproduction reduces the energy available for tissue maintenance given that the

amount of energy an organism can mobilize at any given time is finite, and that poor tissue

maintenance, in turn, leads to faster cellular degradation and aging [40]. Biologically, estrogen

deficiency or over-activity may cause either ovarian tissue aging or tumorigenesis, respectively,

through estrogen regulation of telomere remodeling [41]. Therefore, telomere attrition rate

should accelerate after menopause in response to a decrease in estrogen [41]. In vitro,

Fig 1. Telomere Length by Age and Gender in NHANES 1999–2002. (a) Male (β = -0.0153; p-value<0.001), (b)

Female (β = -0.0129; p-value<0.001). Estimates, obtained from linear regression with telomere length (kbps) as

outcome and age (years) as predictor, are adjusted for ethnicity, physical activity, allostatic load and comorbidity

index.

https://doi.org/10.1371/journal.pone.0221690.g001

Table 3. Decline in telomere length by gender, across age groups, NHANES 1999–2002.

Age group, years Male Female

β 95% CI p-value β 95% CI p-value

20–29 -0.0080 -0.0367, 0.0208 0.5763 -0.0284 -0.0468, -0.0099 0.0038

30–39 -0.0078 -0.0290, 0.0135 0.4621 -0.0012 -0.0214, 0.0191 0.9084

40–49 -0.0060 -0.0290, 0.0170 0.5985 -0.0130 -0.0321, 0.0060 0.1724

50–59 -0.0166 -0.0337, 0.0005 0.0571 -0.0216 -0.0396, -0.0036 0.0202

60–69 -0.0124 -0.0333, 0.0085 0.2342 0.0040 -0.0179, 0.0258 0.7134

70–79 -0.0215 -0.0439, 0.0010 0.0599 -0.0146 -0.0326, 0.0034 0.1079

80 and above -0.0116 -0.0377, 0.0145 0.3700 -0.0075 -0.0519, 0.0369 0.7334

Estimates are slope from a linear regression with telomere length (kbps) as outcome and age (years) as predictor, by age category and gender, adjusted for ethnicity,

allostatic load, and comorbidity index. p-value less than 0.05 are bold.

https://doi.org/10.1371/journal.pone.0221690.t003
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telomerase activity is upregulated by estrogen [42,43]. Population-based studies also provide

evidence that greater estrogen exposure, as measured by the use of hormone therapy [44], and

longer duration of reproductive years [45], are related to significantly higher TL in postmeno-

pausal women. Oxidative stress and proinflammatory cytokines have also been associated with

telomere shortening [46,47]; thus, antioxidants aid in the attenuation of telomere shortening

[48,49]. Estrogen is known to have antioxidant properties [50,51]; thus, the conferred protec-

tive role may be due to its ability to lower oxidative stress and reduce inflammation [52,53].

This study found that one-unit increases in allostatic load were associated with 7%

decreases in TL after controlling for covariates. Further analyses stratified by allostatic load lev-

els showed a greater decline in TL among those with higher allostatic load. The allostatic load

model posits that repeated or inadequate physiological adaption to social and environmental

stress over time results in dysregulation of cortisol (via dysfunction of the hypothalamic-pitui-

tary-adrenal axis) and catecholamines (via the sympathetic nervous system), which may in

turn result in dysfunction of the body’s cardiovascular, immune, and metabolic systems [16].

Therefore, it is likely that TL may serve as an important cellular-based indicator of systemic

allostatic load.

The associations between TL and various morbidities such as diabetes [18], heart disease

[19,20,21,22], hypertension [23] cancer [24], and depression [25], as well as overall mortality

[26,27] have been established. In this study, one-unit increases in comorbidities, as measured

by the Charlson Comorbidity Index, was associated with 7.2% decreases in TL, although find-

ings lost significance after adjusting for age. Regardless, there is biological plausibility linking

comorbidities with TL. Additionally, since TL is strongly correlated with chronological age,

the latter had a powerful confounding effect on most of our estimates which lost statistical sig-

nificance when adjusted for age. Further, analyses stratified by comorbidity levels showed a

greater decline in TL among those with four or more comorbidities. It has been suggested that

telomere shortening might contribute to various morbidities through pathways involving cel-

lular senescence, chronic inflammation and endothelial dysfunction [54,55].

Many of the covariates we selected were associated with TL. TL in our study was positively

correlated with HDL cholesterol and inversely correlated with BMI and heart rate [36]. The

existing literature on race/ethnicity and TL is inconsistent [33,56]. In our study, NH Black had

higher allostatic load compared to NH White (OR = 1.32, 95% CI = 1.13–1.53), after adjust-

ment for age, gender, and PIR. Despite the higher allostatic load, in overall and stratified analy-

sis by allostatic load status, NH Black had higher TL than NH White. Although unexpected

given that African-Americans experience greater stress in various life domains, sociocultural

factors such as social support and religion/spirituality may enhance resilience when dealing

with psychological distress for this group [57]. These factors may nurture coping efficacy

which in turn fosters an ability to manage adversity [57]. More research is needed to under-

stand relationships between high effort coping styles and TL for racial and ethnic populations

in the United States. Another surprising finding in our study was never having been married

was associated with longer TL than being married. This finding conflicts with other studies

that showed being married is associated with longer TL [58,59]. In general, being unmarried is

associated with poor health outcomes, presence of systemic inflammation [60,61] increased

mortality risk, and a shorter lifespan [60,61,62,63]. Although the protective role of marriage is

not completely understood, it has been hypothesized that the social, emotional, and financial

support provided by a spouse/partner acts as a buffer to life stressors [64]. Even among labora-

tory animals, social isolation was related to increased oxidative stress [65] which in turn is

related to telomere attrition. In our stratified analyses, we found that age and gender played a

role in the association between marital status and TL. Thus, different mediators and
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moderators may explain the inconsistency observed in the relationship between marital status

and TL attrition, which should be explored in future research.

Strengths, limitations and implications

The strengths of the study include a large sample size, a nationally representative sample of

non-institutionalized American adults, rigorous methodology and the comprehensive quality

control procedures of NHANES. The statistical analyses have been adjusted for study weights

and complex survey design to reduce errors in estimation. The cross-sectional design of the

study is the primary limitation, and no causation should be inferred from this study. Limita-

tions were also observed for the quantification of allostatic load and CCI. Currently no gold

standard measure exists to quantify allostatic load, and while our approach was similar to oth-

ers [34,35], the extent to which the measures of allostatic load actually reflect the complex con-

cept of “wear and tear” is uncertain, which may impact the accuracy of the measurement, and

consequently, the quality of the evidence generated. Of the 17 comorbidities used in the origi-

nal CCI, we were unable to include the measures of hemiplegia and metastatic cancer due to

unavailability of data on these conditions in NHANES 1999–2002. Some of the disease statuses

used in calculating CCI were self-reported. Lastly, the possibility of residual confounding due

to unmeasured covariates cannot be ruled out.

If the findings from this current study could be replicated with longitudinal data, there may

be several important implications. First, our findings imply that interventions aimed at pre-

serving TL should be targeted at younger ages, not just at old age. The heterogeneity in decline

in TL and absence of a linear pattern in the oldest age category (�80 years) may also partially

explain the lack of statistical association between TL and survival, as seen in some studies con-

ducted among the elderly. For women, a trough in decline in TL with age was noted in early

and midlife years. Although 20–29 and 50–59 years are common ages for first childbirth and

menopause, respectively, the underlying cause of the decline in these age categories is still not

clear and should be addressed by future research.

Conclusions

We found shorter TL with increasing age; this decline was modified by gender, chronic stress

and comorbidities. Females in their twenties and fifties and those with chronic morbidities

and/or chronic stress experienced greater TL decline. Female reproductive factors, i.e., parity

and menopause, were associated with TL. Given the cross-sectional design of our study, future

research should attempt to replicate our findings, specifically those related to parity and meno-

pause, in a longitudinal design. Females in their twenties and fifties are potential subgroups of

interest for any interventions or programs aimed at preserving TL.
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