
remote sensing  

Article

Determining Optimal New Generation Satellite
Derived Metrics for Accurate C3 and C4 Grass Species
Aboveground Biomass Estimation in South Africa

Cletah Shoko 1,*, Onisimo Mutanga 1 and Timothy Dube 2 ID

1 Discipline of Geography, School of Agricultural, Earth and Environmental Sciences, University of
KwaZulu-Natal, Private Bag X01, Scottsville, Pietermaritzburg 3209, South Africa; mutangaO@ukzn.ac.za

2 Department of Earth Sciences, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa;
tidube@uwc.ac.za

* Correspondence: kiletashoko@gmail.com; Tel.: +27-78846-4673

Received: 7 February 2018; Accepted: 26 February 2018; Published: 6 April 2018

Abstract: While satellite data has proved to be a powerful tool in estimating C3 and C4 grass species
Aboveground Biomass (AGB), finding an appropriate sensor that can accurately characterize the
inherent variations remains a challenge. This limitation has hampered the remote sensing community
from continuously and precisely monitoring their productivity. This study assessed the potential of a
Sentinel 2 MultiSpectral Instrument, Landsat 8 Operational Land Imager, and WorldView-2 sensors,
with improved earth imaging characteristics, in estimating C3 and C4 grasses AGB in the Cathedral
Peak, South Africa. Overall, all sensors have shown considerable potential in estimating species AGB;
with the use of different combinations of the derived spectral bands and vegetation indices producing
better accuracies. However, WorldView-2 derived variables yielded better predictive accuracies (R2

ranging between 0.71 and 0.83; RMSEs between 6.92% and 9.84%), followed by Sentinel 2, with R2

between 0.60 and 0.79; and an RMSE 7.66% and 14.66%. Comparatively, Landsat 8 yielded weaker
estimates, with R2 ranging between 0.52 and 0.71 and high RMSEs ranging between 9.07% and
19.88%. In addition, spectral bands located within the red edge (e.g., centered at 0.705 and 0.745 µm
for Sentinel 2), SWIR, and NIR, as well as the derived indices, were found to be very important in
predicting C3 and C4 AGB from the three sensors. The competence of these bands, especially of the
free-available Landsat 8 and Sentinel 2 dataset, was also confirmed from the fusion of the datasets.
Most importantly, the three sensors managed to capture and show the spatial variations in AGB for
the target C3 and C4 grassland area. This work therefore provides a new horizon and a fundamental
step towards C3 and C4 grass productivity monitoring for carbon accounting, forage mapping, and
modelling the influence of environmental changes on their productivity.
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1. Introduction

C3 and C4 grass species Aboveground Biomass (AGB) indicates the productivity of grasses
with common phenological, physiological, and morphological characteristics [1,2]. The accumulation
and availability of C3 and C4 grasses AGB offers a wide range of ecosystem goods and services, as
well as influence varying environmental processes. For instance, they are forage sources for a vast
array of wildlife and livestock populations [3], provide a fuel load [4], maintain biodiversity, and are
potential carbon pools [5]. C3 and C4 grass species are, however, facing considerable threats from
environmental changes and these are anticipated to vary significantly, according to species functional
types [6,7]. Most importantly, as they have different environmental tolerances and requirements, C3
and C4 AGB will respond differently to environmental changes, anthropogenic pressure, management
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practices, and invasion. Similarly, considerable uncertainties about the productivity of C3 and C4 grass
species also exist under a carbon dioxide-enriched, warmer environment and the influence of local
conditions [8]. Consequently, there is a need to identify robust methods, which have the ability to
spatially and temporarily characterize the AGB of these grasses, with better and reliable accuracies.
This is critical to improve the monitoring of C3 and C4 grasses’ productivity, and the associated
response to environmental and anthropogenic pressure.

Field measurements and experimental surveys have, so far, been the prominent approaches used
to determine C3 and C4 grasses’ AGB for various applications [4,9,10]. However, these approaches
are labour-intensive and very expensive, which has limited their full operationalization, especially
in the developing world. In addition, they lack spatial representation [11–13], which is insufficient
for spatial and temporal monitoring. The use of remotely sensed data remains the feasible method to
estimate and spatially characterize C3 and C4 grass species AGB, for large areas, in a cost effective
manner [12,14]. The review by Shoko et al. [15] has provided a much needed overview on the progress
of the remote sensing of C3 and C4 grass species AGB. The review identified detailed findings on the
availability of sensors, their potential and limitations, and the challenges and prospects for C3 and C4
grass species AGB monitoring. In summary, it was found that finding a cost-effective sensor, with a
sufficient spatial resolution, and more and unique spectral bands, at a large geographical coverage for
estimating C3 and C4 grass species AGB, is a major challenge that has discouraged the remote sensing
community to continuously monitor these ecosystems. For example, previously-used sensors, such
as the Advanced Very High Resolution Radiometer (AVHRR), have a very limited number of bands,
which limits their spectral potential in differentiating C3 and C4 species characteristics. Their coarse
spatial resolution, such as that of the Moderate-resolution Imaging Spectro-radiometer (MODIS at
1 km), misrepresents spatial variations in AGB.

It was also identified that new generation sensors, such as Landsat 8, RapidEye, WorldView-2, and
Sentinel 2, with improved and unique characteristics, provide an invaluable opportunity to detect and
quantify variations in AGB across grassland compositions of different photosynthetic types [15]. These
sensors present more advanced remotely-sensed data to the remote sensing community, which has
been caught in between the image acquisition cost, spatial coverage (which include spatial resolution
and swath width), spectral capabilities, and accuracy, in predicting species AGB. More spectral bands
constituted by these sensors (e.g., 13 from Sentinel 2) provide wide spectral windows to capture
C3 and C4 AGB variations. Similarly, more spectral bands with different capabilities increase the
sensitivity of the sensor to species phenological, physiological, and morphological characteristics,
which influence AGB. The unique red edge bands have been acknowledged in species AGB estimation,
due to their sensitivity and ability in providing additional relevant species information [16,17]. This is
very important, especially considering the different physiological, morphological, and phenological
properties of C3 and C4 grasses and the associated influence in AGB variations. For example, the
phenological contrast between C3 and C4 has been documented. C3 grasses are typically present in
the cool season, most active under cool conditions, and remain active throughout the year. C4 are
warm season grasses mostly active during summer conditions and become dormant during winter.
Similarly, the review by Adjorlolo [6] has highlighted the morphological differences in leaf anatomy
between C3 and C4 grasses, which influences their ability to scatter, reflect, or transmit incoming
radiation. Slaton et al. [18] also noted that typically, C4 grass leaves are significantly thinner, with long
palisade cells, which reflect more radiation in the near infrared portion, compared to C3. On the other
hand, C3 grasses have thick walls, which are normally associated with short, cylindrical mesophyll
cells. The review by Shoko et al. [15] also reviewed the influence of these contrasts in estimating C3
and C4 grass species AGB. These contrasts in leaf anatomy require remote sensing variables which
have the ability to differentiate for optimal AGB estimation. So far, the readily-available Sentinel 2
provides easy access to high resolution red edge bands, which are currently available in commercial
satellites [19,20]. These bands have the ability to extract subtle differences between species, so their
inclusion will enhance the accuracy of AGB estimation.
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The spatial properties of available sensors (e.g., 1 km2 pixel resolution of AVHRR and MODIS),
which have been the primary data sources for estimating C3 and C4 AGB, have also been limiting the
accurate quantification and mapping of these grasses’ AGB. The spatial resolutions of the Sentinel
2 (10 m) and Landsat 8 (30 m) are far better for characterizing C3 and C4 grass species AGB. These
pixel resolutions enable better spatial representation of species AGB, which might be under- or
over-estimated at a 1 km pixel resolution. Also, considering the co-existence of C3 and C4 grass
species, sensor spatial resolution becomes a critical concern to capture AGB variations from these
grasslands. In addition, a large swath width (e.g., 185 km for Landsat 8 and 290 km for Sentinel 2)
allows monitoring at a large geographical coverage, whereas the associated high spatial resolution
for Sentinel 2 is indispensable; hence these sensors hold much appeal for C3 and C4 grass species
AGB estimation. This study therefore assessed the performance of new generation sensors, with
refined earth imaging properties in estimating and mapping C3 and C4 grasses’ AGB variations in the
temperate region of KwaZulu-Natal, South Africa.

2. Methodological Approach

2.1. Study Site

AGB estimation for C3 and C4 grass species was conducted within the Drakensberg area of
KwaZulu-Natal, which is one of the key natural grassland ecosystems in South Africa [4]. The area
is predominantly grassland, with patches of Afromontane forests and rocky out crops. The study
area (Figure 1) experiences wet and humid summers, extending from November to March [21], with
varying rainfall ranging between 990 and 1130 mm [22]. The area also experiences dry and cold winters,
from May to August, and is also characterized by regular frosts and snowfall [23]. Temperatures also
vary, with a minimum of 5 ◦C in winter and a maximum of 16 ◦C in summer [4]. The topography of
the area is highly diverse, with elevation between 1225 and 3034 m; as derived from the Advanced
Spaceborne Thermal Emission and Reflection Radiometer (ASTER) digital elevation model (DEM).
These characteristics influence AGB variations across the area.
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Figure 1. Location of the study area (a) and its altitudinal variations (b) [20].

2.2. Grass Species AGB Data Collection

The target grass species; Festuca costata, C3, and Themeda triandra, C4, are illustrated in Figure 2.
These will be referred to as F. costata and T. triandra thereafter. The collection of AGB for these species
was conducted from 10 to 17 February 2016, using 80 randomly generated points for each species.
At each point, three quadrats measuring 50 cm × 50 cm were randomly thrown within a 10 by 10 m plot.
This quadrat has been regarded as providing representative samples for AGB prediction, especially in
predominantly grassland areas [24–26]. In each quadrat, standing grass was harvested and its weight
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was determined in situ. The grass AGB samples were then transported and oven dried in grassland
facilities, at the University of KwaZulu-Natal, to determine dry AGB which was then converted to
kilograms per square meter (kg/m2). A total of 240 AGB samples for each species was used for analysis.
AGB sample x and y locations were also captured and recorded, at a sub-meter accuracy, using a
Trimble GEO XH 6000 handheld global position system (GPS) (manufactured by Trimble Navigation
Limited, Westminster, CA, USA).
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2.3. Remote Sensing Data Characteristics and Processing for AGB Estimation

Three images were acquired, with one each for the Landsat 8, Sentinel 2, and WorldView-2
multispectral sensors. Detailed information on the remote sensing image acquisition dates and the
corresponding field data collection of species AGB is tabulated in Table 1. Landsat 8 images are
delivered as raw digital numbers in the Universal Transverse Mercator (UTM) system. The sensor
acquires 12-bit images at a 16-day revisit time, using the visible range, NIR, SWIR, and TIR, at a spatial
resolution of 30 m. The calibration of Landsat 8 images was performed as highlighted on the website
(http://landsat.usgs.gov/). The image was also corrected for atmospheric effects to derive surface
reflectance, using the Fast Line-of-sight Atmospheric Analysis of Spectral Hypercube (FLAASH)
model in the ENVI environment. Seven bands from the Landsat 8 were used in AGB estimations and
these correspond to coastal blue (0.435–0.451 µm), blue (0.452–0.512 µm), green (0.533–0.590 µm), red
(0.636–0.673 µm), NIR (0.851–0.879 µm), and the two SWIR (1.566–1.6512, 107–2294 µm), which have
been considered by previous studies, not only in monitoring C3 and C4 grasslands [20,24], but in
grassland areas [27,28].

Sentinel 2 is an open and freely-accessible multispectral data source, acquiring 12-bit images,
every 5–19 days, at a 10 m, 20 m, and 60 m spatial resolution, in 13 spectral bands. Four bands
delivered at a 10 m spatial resolution are centered at 0.49, 0.56, 0.665, and 0.842 µm. The 20 m spatial
resolution six bands are centered at 0.705, 0.74, 0.783, 0.865, 1.375, and 2.190 µm, whereas three bands
at a 60 m resolution are centered at 0.443, 0.945, and 1.375 µm. The Sentinel 2 image was provided
in orthorectified top of atmosphere reflectance, with the UTM system, associated with the World
Geodetic ellipsoid 84. The atmospheric correction of the image was also performed using the Sen2Cor
atmospheric correction toolbox, which is an inbuilt algorithm within the Sentinel Application Platform
(SNAP) tool. The tool was developed primarily to work with Sentinel images. The three bands
acquired at a 60 m spatial resolution were excluded from the analysis, as they are primarily designated
for atmospheric monitoring purposes [29], whereas the 20 m spatial resolution bands were resampled
to 10 m of the rest of the bands. The resampling was performed in SNAP using the nearest neighbor
resampling tool. A WorldView-2 commercial image was purchased and it was delivered after all
the necessary corrections were performed by the supplier. The image was acquired at a 2 m spatial
resolution in eight spectral ranges corresponding to coastal blue (0.4–0.45 µm), blue (0.45–0.51 µm),
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green (0.51–0.581 µm), yellow (0.585–0.625 µm), red (0.63–0.69 µm), red edge (0.705–0.745 µm), NIR
(0.77–0.895 µm), and NIR 2 (0.86–1.04 µm) [30].

It remains a challenge to obtain three different remote sensing datasets, with the same acquisition
date, due to their varying revisit time. For example, within a month, only two images are available
from the Landsat 8, with a 16-day revisit time. However, for Sentinel 2, there are high possibilities of
obtaining more images within a month, with its high revisit frequency of five days. In addition, the
influence of cloud cover also hinders the acquisition of corresponding images, especially during the
summer period. However, although the images had different acquisition dates, they were all collected
within the same week and seasonal period during the summer. Only one image for each dataset was
acquired and used in this study. Although more images are required for better vegetation classification,
the intention of the study was to compare the performance of newly-launched Sentinel 2 and Landsat 8.
In addition, different studies elsewhere have yielded reasonable results in assessing the performance of
different sensors, using a single image dataset, acquired within the same season. Secondly, it remains a
challenge to acquire more images for WorldView-2 commercial data, due to its acquisition cost.

Table 1. Summary of datasets acquired and used in this study.

Field Data Collection
Period Remote Sensing Dataset Acquisition Date Supplier/Source

10–17 February 2016

Landsat 8 16 February 2016 USGS GloVis
https://glovis.usgs.gov/

Sentinel 2 12 February 2016
Sentinels Scientific Data Hub

archive
https://scihub.copernicus.eu/

WorldView-2 16 February 2016 Purchased from Digital Globe,
Longmont, CO, USA

To derive AGB maps for the target species, without other land cover or grass classes, image
classification was performed. The classification was done using the species GPS points collected as
training samples, whereas other land cover classes within the study area were masked out to show
AGB variations for the target grass species only. In a separate study [19], the potential of Landsat
8, Sentinel 2, and WorldView-2 in discriminating the target species was investigated, using images
acquired in summer, which were used to estimate the AGB in this study. The detailed information
for the classification procedure, associated variables, and accuracy results are provided by Shoko and
Mutanga [19]. The final output map for the two grass species was derived using the standard NDVI,
which showed a great performance when compared to other indices that were considered in the study.

2.4. Regression Algorithm for Predicting F. costata and T. triandra Grass Species AGB

This study used the Sparse Partial Least Square Regression (SPLSR) [31] to predict AGB variations
using Landsat 8, Sentinel 2, and WorldView-2 multispectral datasets. SPLSR is a robust and powerful
algorithm for estimating vegetation biophysical properties using remote sensing data. So far, its
high performance in predicting grass AGB across different environments has been reported [32–34].
The model builds estimation functions and associated variables using remote sensing datasets.
The model achieves this through transformation of the remote sensing variables to a set of components
and variables, which show their ability in estimating AGB [27]. To determine the number of
components for optimal results in estimating species AGB, the leave-one-out cross-validation (LOOCV)
approach was used. The cross validation was done using 30% of the AGB data collected from the
field. The optimum number of components searched for each variable set was between 1 and 10, as
recommended by Chun and Keleş [31]. The approach produced estimation errors, using the Root Mean
Square Error of Prediction (RMSEP) associated with a certain number of components. The component
and associated variables with the lowest estimation errors were then considered for further analysis

https://glovis.usgs.gov/
https://scihub.copernicus.eu/
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and the AGB estimation. The same approach was used successfully, for example, by Sibanda et al. [27],
Abdel-Rahman et al. [34], and Kiala et al. [35].

The SPLSR was run using single species datasets separately and a combined species dataset.
The single species dataset comprised individual species AGB for F. costata and T. triandra grasses,
separately. Secondly, the model was run using pooled data, where the F. costata and T. triandra species
dataset was combined. This was performed to produce integrated species AGB models for mapping.
Before the model was run, the field-based AGB data samples were split into 70%, which was used
to train the model, whereas the remaining 30% was used for validation. This is a requirement when
estimating vegetation biophysical properties using machine learning algorithms. All the computations
of the SPLSR model were run using R software. The model also provided the most optimal variables
for estimating AGB, by means of variable scores, where variables with scores above 1 were regarded
as the most important, while those below 1 were less important. The SPLSR output includes a model
that is used for AGB calculation with remote sensing images within a Geographic Information System
environment. In this study, the AGB maps were produced using ARCGIS 10.2. (ESRI; New York, NY,
USA) software based on the model derived using SPLSR.

2.5. Remote Sensing Variables for Estimating Grass Species AGB

Three sets of variables derived from Landsat 8, Sentinel 2, and WorldView-2 sensors, as illustrated
in Table 2, were used to predict AGB, using the SPLSR model. Vegetation indices that were used to
predict AGB for the target grasses were chosen based on their performance in estimating AGB for C3
and C4 grass species compositions [2,36,37]. In addition, the red edge-based simple ratio and NDVI,
which were previously reported [25] to perform well across grassland ecosystems in general, were
adopted to predict AGB variations for C3 and C4 grass species. This provides more insight about
the potential of the unique bands in deriving these indices differently, which have been primarily
developed using the visible portion of broadband multispectral datasets.

In analyses i and ii, individual variables were used in isolation to predict species AGB. Thus for
analysis I, which included the use of spectral bands only from the three sensors, the model was run
with field-based species AGB values and their corresponding reflectance values. For analysis ii, only
indices were used to estimate species AGB, whereas in analysis iii, all the bands and indices were
combined with their corresponding field-based species AGB.

In addition, sensors data fusion was done, where all the variables from each sensor were combined
and used in the model. This was performed using the three variables which included all sensors
(i) bands, (ii) indices, and (iii) bands plus indices. This provides a more comprehensive insight of the
competence of each sensor’s variables in estimating C3 and C4 grass species AGB, than when the
sensor variables are used in isolation. Additionally, data fusion provides the most important bands or
indices across multispectral sensors.

Table 2. Remote sensing variables used to predict species AGB for C3 and C4 grass species compositions.

Data Type Details Analysis Set

Landsat 8 Seven spectral bands (CB, B, G, R, NIR, SWIR1, SWIR2)
iSentinel 2 Ten spectral bands (B, G, R, RE1–3, NIR, RE4, SWIR1, SWIR2)

WorldView-2 Eight spectral bands (CB, B, G, Y, R, RE, NIR1, NIR 2)

Vegetation Indices (VIs)

EVI, SAVI, StNDVI, RDVI, SR, MSR (common to all sensors)

ii
NDVIRE1–4, SRRE1–4 (using Sentinel 2 red edge bands)

NDVIRE, SRRE (using WorldView-2 NIR1 and RE)
NDVI2 and SR2, (using WorldView-2 NIR2 and R)

NDVIRE2, SRRE2 (using WorldView-2 NIR2 and RE)
Image spectral data + VIs Combined image spectral bands and vegetation indices iii

EVI: Enhanced vegetation index [38], SAVI: Soil adjusted vegetation index [39], StNDVI: standard NDVI [40], RDVI:
renormalized difference vegetation index [41], SR: simple ratio [42].
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Table 3 illustrates the formulas for all the indices used for estimating species AGB using Landsat
8, Sentinel 2, and WorldView 2 datasets. The indices were differentiated with the prefixes L8, S2, and
WV2, indicating Landsat 8, Sentinel 2, and WorldView-2 data sources.

Table 3. Indices used derived from the three sensors’ spectral bands.

Vegetation Index Formula Details

EVI 2.5 ((NIR − R)/(1 + NIR + 6R − 7.5 × B))

Common to all sensors

SAVI ((NIR − R) × (1 + L))/(NIR + R + L)
Stnd NDVI (NIR − R)/(NIR + R)

RDVI (NIR − R)/Sqrt (NIR + R)
Simple ratio NIR/R

MSR (NIR/R − 1)/Sqrt (NIR/R) + 1

NDVIRE1 (NIR − RE1)/(NIR + RE1)

Sentinel 2 red edge-derived NDVI and SR

NDVIRE2 (NIR − RE2)/(NIR + RE2)
NDVIRE3 (NIR − RE3)/(NIR + RE3)
NDVIRE4 (NIR − RE4)/(NIR + RE4)

SRRE1 NIR/RE1
SRRE2 NIR/RE2
SRRE3 NIR/RE3
SRRE4 NIR/RE4

NDVIRE1 (NIR − RE)/(NIR + RE)

WorldView-2 red edge and additional
NIR-derived NDVI and SR

SRRE1 NIR/RE
NDVI2 (NIR2 − R)/(NIR2 + R)

SR2 NIR2/R
SRRE2 NIR2/RE

Sqrt: squareroot, L: constant.

2.6. Species AGB Estimation Accuracy Assessment

Statistical measures of AGB estimation accuracy using the different sensors and associated
variables were determined, as well as the model performance in estimating species AGB. These
measures included the coefficient of determination (R2), root mean square error (RMSE), and RMSE%.
The RMSE is a measure of the difference between the actual measured AGB values in the field and the
estimated values. These are frequently used in prediction accuracy assessments using remote sensing
data. The RMSE was calculated using the formula:

RMSE =

√√√√∑n
i−1

(
Xmeasured − Xpredicted

)2

n
(1)

where: Xmeasured is the measured AGB, Xpredicted is the predicted AGB, and i is the predictor variable
included. The RMSE% was also calculated as:

RMSE% =

√
1
n ∑n

1=n(yi − ŷi)
2

y
× 100 (2)

where n is the number of measured values, yi is the measured value, ŷi represents the estimated values,
and y is the mean of the measured AGB. These formulas were adopted from Dube and Mutanga (2015).

A better model using the different metrics was selected from each sensor based on the highest
R2 and lowest RMSE. The selected model and associated variable with the highest VIP score for each
sensor were then used to produce AGB maps for the study area in ARCGIS 10.2. Significant difference
tests were also performed to determine if the performances of the three sensors in estimating C3 and C4
grass species AGB were significantly different. In addition, it was also tested whether the estimation
accuracies of F. costata was significantly different from that of T. triandra, using the three sensors.
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3. Results

3.1. Species AGB Variations Measured

Table 4 shows the descriptive statistics of measured F. costata and T. triandra grass species AGB.
It was found that in early February, T. triandra grass had higher AGB variations, when compared to
F. costata. The measured AGB of T. triandra varied from 0.6 kg/m2 to as high as 1.276 kg/m2, whereas
for F. costata, it varied between 0.52 kg/m2 and 1.16 kg/m2.

Table 4. Descriptive statistics of the measured species AGB (kg/m2).

Species N * Minimum Maximum Average Stdev.

F. costata 80 0.524 1.160 0.709 0.115
T. triandra 80 0.600 1.276 0.884 0.125

Combined species 160 0.524 1.276 0.797 0.148

* N is the number of sampled plots.

3.2. The Performance of Landsat 8, Sentinel 2 and WorldView-2 Variables in Predicting Species AGB

The results in Table 5 provide the performance of the variables derived from the three sensors
in estimating species AGB. Overall, all the variables showed considerable potential in predicting
species AGB. However, the WorldView-2 sensor produced the best prediction accuracies, with the least
estimation errors (between 6.92% and 9.84%), followed by Sentinel 2 estimates, which were far better
than those obtained using the Landsat 8 sensor. Spectral bands from all the sensors also estimated
species AGB with the lowest accuracies, when compared to the use of indices and combined variables.
There were noticeable improvements in the estimation accuracy, from using spectral bands, to the
use of combined variables, for both individual species and combined species datasets. This was most
evident for Landsat 8 and Sentinel 2. For instance, Landsat 8 derived spectral bands produced an R2 of
0.55 (RMSE = 17.55% of the mean) when estimating F. costata AGB. When estimating for T. triandra, an
R2 of 0.52 was produced, with an RMSE of 19.88%. Landsat 8 bands also estimated combined species
with an R2 of 0.52 and an RMSE of 18.19%. When using indices, R2 improved to 0.68 for F. costata, 0.63
for T. triandra, and 0.65 for combined species, whereas the errors of estimation were reduced to 11.48%,
12.53%, and 13.5% for F. costata, T. triandra, and the combined species dataset, respectively.

Tests of significance according to the t-test also revealed that the three sensors had significant
differences in estimation accuracies using the different variables. Significant differences (α < 0.05)
were only observed between sensors, as well as between the variables used. However, although slight
differences between the two species were observed, the differences were not significant (α < 0.05).

Figure 3 shows the predictive accuracies of species AGB using optimal variables from the three
sensors. These graphs illustrate the relationships between measured and estimated AGB, using
combined variables, which were found to have better estimation accuracies, when compared to the use
of spectral bands or indices. The optimal variables include Landsat 8 NDVI, NIR, and SWIR; Sentinel
2 red edge bands (centered at 0.705, 0.74, and 0.783 µm) with derived indices, NIR, and SWIR, whereas
for the WorldView-2, it was NIR, red and red edge bands, and derived indices.
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Table 5. Sensor AGB predictive accuracies for F. costata, T. triandra, and combined species.

Remote Sensing Datasets F. costata T. triandra Combined Species

R2 RMSE (g/m2) RMSE (%) R2 RMSE (g/m2) RMSE (%) R2 RMSE (g/m2) RMSE (%)

Bands
Landsat 8 0.55 164.42 17.55 0.52 175.73 19.88 0.52 150.63 18.91
Sentinel 2 0.61 145.85 13.11 0.60 129.59 14.66 0.61 122.74 15.04

WorldView-2 0.73 93.59 8.97 0.71 97.50 9.22 0.72 78.42 9.84

Indices
Landsat 8 0.68 101.39 13.48 0.63 110.76 12.53 0.65 107.59 13.51
Sentinel 2 0.76 91.19 10.49 0.74 93.62 9.46 0.71 84.8 10.64

WorldView-2 0.79 55.44 7.82 0.77 64.17 7.26 0.75 64.47 8.09

Combined Variables
Landsat 8 0.71 94.3 9.07 0.69 91.14 10.31 0.71 97.63 12.25
Sentinel 2 0.79 64.16 7.64 0.77 66.83 7.56 0.74 81.85 10.27

WorldView-2 0.83 52.39 7.39 0.8 61.17 6.92 0.82 64.23 8.06

These results were based on the 70% sample set.
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3.3. Model Validation Results

Figure 4 provides the performance of the model in estimating species AGB using the independent
30% validation set. Overall, the SPLSR performed well in estimating species AGB and the results were
comparable to those produced using the 70% set. Therefore, only the validation results for optimal
variables for species pooled data were shown.
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3.4. Sensors Data Fusion Results in Predicting C3 and C4 Grass Species AGB

When all the bands and indices from the three sensors were used separately for the individual
species dataset, the maximum number of components was two. Therefore, a report for the component
with the lowest RMSEP and associated variables was provided. Figure 5 provides the most variables
selected after fusing the three datasets, at an individual species level and using species pooled data.
S2, L8, and WV2 represent Sentinel 2, Landsat 8, and WorldView-2 sensors, respectively. Overall,
the results indicated that the NIR, red edge, and SWIR bands were the most important bands across
sensors. When indices were used, the standard NDVI from Landsat 8 was found among the most
important indices of Sentinel 2 and WorldView-2, which included red edge-based indices. At an
individual species level, more variables were selected as important for estimating F. costata AGB,
whereas for the T. triandra and pooled species dataset, a few variables were selected. However, when
the variables selected from data fusion were applied in estimating C3 and C4 grass species AGB,
the results in terms of R2 and RMSE did not improve significantly; thus, they were not reported in
this study.
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Figure 5. The most important (a) bands and (b) indices for estimating (i) F. costata, (ii) T. triandra, and (iii) combined species AGB across sensors.
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3.5. The Potential of the Sensors in Predicting and Mapping C3 and C4 Grasses AGB

Figure 6 shows the spatial variations of species AGB, estimated using optimal variables of the
three multispectral sensors and species combined dataset. The combined species dataset has shown
that NDVI was the most influential in estimating AGB. However, the index was derived using different
sensors’ spectral bands. For the Landsat 8 (a), the AGB map was derived, using the standard NDVI,
whereas for Sentinel 2 (b), NDVI derived using red edge centered at 0.705 µm was used and the
NDVI using the red edge (centered between 0.705 and 0.745 µm) was also used for WorldView-2 (c).
Thus, NDVI derived using different spectral bands from the three datasets was used for species AGB
mapping across the study area.
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4. Discussion

Remote sensing of C3 and C4 grass AGB has remained a challenge, due to the lack of data
sources which have the capabilities to spatially characterize such subtle variations. The different
physiological, morphological, and phenological properties of C3 and C4 grasses influence AGB
variations. Previous reviews, for example, [6,15], have noted the differences in leaf anatomy between
C3 and C4 grasses, which influence their ability to scatter, reflect, or transmit incoming radiation.
Although these variations have been documented, not all sensors have the ability to discern such
variations and estimate species AGB with optimal accuracy. This has resulted in a lack of continuous
monitoring of their productivity. It is therefore of much importance to identify remote sensing
datasets to quantify and map the productivity of C3 and C4 dominated grasslands across vast scales.
Current developments in remote sensing offer new perspectives for C3 and C4 AGB monitoring
and modelling. It is also the focus of the remote sensing community to shift towards the use of
freely-available new generation sensors, which have emerged with better capabilities for improved
AGB estimation and monitoring. Similarly, the continuous monitoring of grassland areas is also a
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cause for research, especially in the light of climate change and its effects on food security, the carbon
cycle, and biodiversity.

4.1. The Performance of Landsat 8, Sentinel 2, and WorldView-2 Variables in Predicting Species AGB

It can be observed that all sensors constitute variables which have the potential to estimate C3 and
C4 grass species AGB. The availability of more bands from Sentinel 2 provides more spectral windows
which are influential, as well as enabling the computation of different indices which have the potential
to predict C3 and C4 grasses AGB. This has been reported by the findings of Addabbo et al. [43], which
highlighted that the novel spectral bands of Sentinel 2 allow the computation of new indices, which
offer additional information for vegetation analysis. The lower number of bands of the Landsat 8
sensor limits the number of variables with the potential to estimate AGB. Among the most important
variables for predicting C3 and C4 grasses AGB were spectral bands. For example, the Landsat 8
NIR and SWIR, as well as the red edge of Sentinel 2 and WorldView-2, contributed to species AGB
estimation. Thus, spectral bands of the new generation sensors have the capability to contribute to the
estimation of C3 and C4 grasses AGB.

In addition, the important variables across the three sensors were mostly located within the
NIR, red edge, and SWIR portions, as well as the corresponding indices. This was shown when
individual sensors were tested, as well as from the fusion of the three datasets. However, for Landsat
8, only the NIR and derived indices and SWIR bands were competitive enough among Sentinel 2
and WorldView-2 variables. The potential of spectral bands of previously-used sensors has not been
reported, as researchers were biased towards the use of derived indices, due to the broad spectral
channels, which were perceived to be insensitive to species biophysical properties. However, a few
studies reported the influence of the NIR band in C3 and C4 grass species monitoring using previous
Landsat data series, like the Thematic Mapper 5 (TM 5) [44]. The study has highlighted significant
differences in the NIR reflectance between C3 and C4 grass species using TM 5. In a different study,
Lu et al. [45] also reported the importance of NIR in estimating C3 and C4 grass species AGB using
AISA Eagle hyperspectral imagery in Japan. The contribution of the SWIR portions in AGB predictions
has been reported in grasslands ecosystems. The study by Chen et al. [46] reported the significance
of SWIR bands in predicting AGB in the semi-arid rangelands of Idaho. This might also encourage
future work to consider the use of SWIR-based indices, especially when using Landsat 8 and Sentinel
2 sensors.

Similarly, red edge bands and derived indices have been found to be sensitive to the biophysical
properties of species, hence they boost the prediction of species AGB, when compared with the
visible channels [17,27,32]. The contribution of NIR, SWIR, and red edge in this study might be
attributed to the varying concentration of leaf pigments (e.g., chlorophyll and water) between C3 and
C4. For example, NIR and red edge are closely related to chlorophyll [47,48], whereas SWIR is closely
related to water content [49]. These bands have also been reported to be closely related to species AGB
variations [33], hence their important contribution in AGB estimation was observed in this study. This
possibly indicates the variability in chlorophyll or water content between C3 and C4 species during
the summer period, as indicated by a different study.

Spectral bands have a low AGB predictive accuracy, when compared to the use of derived indices
and a combination of variables. Improved prediction accuracies using indices have been acknowledged
in estimating species AGB by previous studies [32,45,50]. These variables have been perceived to be
more sensitive to species characteristics, which improve their predictive accuracy, than individual
bands. However, it should be noted that the performance of Landsat 8 spectral bands was weak,
when compared to that of Sentinel 2 and WorldView-2. The slightly weaker performance of Landsat 8
bands in this study indicates the weaker performance of traditional bands in C3 and C4 dominated
grasslands. In addition, Landsat 8 spectral setting lacks unique bands like red edge, which weakens its
potential to predict species AGB. On the other hand, the Sentinel 2 and WorldView-2 sensors constitute
unique and important bands, which have the ability to extract the varying bio-physical characteristics
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of C3 and C4 species, which influence AGB. It should also be highlighted that the performance of
traditional indices based on the traditional bands, such as visible or NIR, were less important, when
compared to those indices that were derived using additional unique bands, such as red edge and NIR.
Substantial studies [43,51] have studied the competence of indices derived from red edge or additional
NIR, with those derived from traditional bands in characterizing the biophysical properties of species.
For example, the study by Addabbo et al. [43], which compared Landsat 8-based NDVI (using the red
and NIR) with Sentinel 2 red edge NDVI for characterizing different vegetation.

Most interestingly, the improved performance using vegetation indices and combined variables
was most apparent for Landsat 8, when compared to Sentinel 2 or WorldView-2. This may be explained
by the fact that Landsat 8 constitutes broad traditional bands, which are not detailed enough to
predict AGB, so the inclusion of more than individual bands increases its prediction accuracy. In
confirmation, vegetation indices have been the primary variables which have been preferred, over
the use of individual bands, to estimate AGB variations between C3 and C4 grasses using broadband
multispectral sensors [44,52–54]. Broadband indices have been identified to be more sensitive to
species AGB, which cannot be sensed by individual bands, thereby improving the model predictive
accuracy. So far, the application of Landsat data series in estimating C3 and C4 grasses AGB has been
very limited, except for a few studies which reported the derived indices. For example, the study by
Davidson and Csillag [55] in Canada reported the potential of the standard NDVI (R2 = 0.64) from a
Landsat TM 5-based Exotech Model radiometer, when compared to other indices. In a different study,
in the Kansas state of the United States of America, Peterson et al. [44] reported that although NDVI
was influential in estimating C3 and C4 grass species AGB, the index failed to significantly differentiate
variations in AGB between the two grass species. In this regard, mixed findings have been reported
from previously-used Landsat datasets.

Although the use of sensor fusion did not improve the estimation accuracies, it sheds more light
on the competence of variables derived from the freely-available sensors in C3 and C4 AGB estimation.
A previous sensors fusion approach has been widely applied in estimating forestry structural attributes
and these studies used multispectral and LiDAR data. These studies have reported an improvement in
forest AGB estimations [56,57]. The improved results were mainly attributed to the ability of LiDAR in
providing vegetation vertical profiles (e.g., height), rather than multispectral datasets. In this regard,
future work might consider the fusion of multispectral datasets used in this study with LiDAR.

4.2. The Potential of Landsat 8, Sentinel 2, and WorldView-2 to Predict and Map C3 and C4 Dominated
Grasslands AGB

One of the challenges faced by researchers in monitoring C3 and C4 AGB has been the ability
of available sensors to map subtle AGB variations. This has been shown by the scarcity of the
distributional maps of C3 and C4 AGB variations. Previously-used sensors were inadequate; they
provided unsatisfactory predictions, because of their coarse spatial resolution and broad spectral
channels. For example, the studies by Tieszen et al. [2] and An et al. [14] using AVHRR NDVI
predicted C3 and C4 AGB with coefficients of determination of 0.58 and 0.54, respectively, whereas
Rigge et al. [36] reported AGB overlaps, using MODIS NDVI in the Prairies of the United States of
America. Findings from this study have therefore shown improved estimations using the recently
emerged multispectral sensors compared to those that have been previously reported.

To the best of our knowledge, AGB maps for C3 and C4 grass species are rarely available.
So far, few studies have attempted to map C3 and C4 grasslands AGB using hyperspectral [45] and
climatic variables [58]. However, the use of hyperspectral images, which are associated with a high
acquisition cost and climatic data proved unsuccessful and did not receive enough attention in order
to understand the spatial variations of C3 and C4 AGB over large areas, especially in Africa, where
climatic observation networks are very poor and financial resources are limited. This has limited the
availability of AGB maps for C3 and C4 grasses. This study has therefore revealed a new opportunity
for estimating and mapping AGB in C3 and C4 dominated grasslands over large areas in a cost effective
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manner, especially for the developing world, where the acquisition of commercial satellites is difficult.
All three sensors showed great potential in mapping the spatial variations of species AGB. Researchers
now have opportunities to use freely-available Sentinel 2 and Landsat 8 or a combination of these
datasets in monitoring the productivity of C3 and C4 grass species for a variety of applications.

Findings from this study also reveal the anticipated performance and potential of new generation
sensors in mapping the AGB variations of C3 and C4 grassland areas [15]. The sensors thus contain
important abilities to monitor these grassland ecosystems, which was becoming almost impossible.
Although it was not as good as the WorldView-2, Sentinel 2 was better than Landsat 8. For example,
Sentinel 2 predicted species AGB with a better accuracy and showed better spatial variations compared
to Landsat 8. Recently, the study by Addabbo et al. [43] reported the improved efficiency of the S-2,
over that of Landsat 8. The study found statistically significance differences between the performances
of the two sensors, using derived NDVI. They also reported that within a particular area, Sentinel 2
sampled 3015 pixels, when compared to 345 pixels from the Landsat 8. This confirms the magnitude of
the Sentinel 2 10 m spatial resolution, in representing spatial variability.

The WorldView-2 was also confirmed to remain critical in predicting more accurately and mapping
C3 and C4 species AGB, than Sentinel 2 and Landsat 8. Within the same area, the potential application
of WorldView-2 in estimating and mapping C3 and C4 grass species canopy nitrogen, with satisfactory
accuracy, has also been shown [30]. The high spatial resolution and associated unique spectral bands
thus enable the sensor to capture the spatial variability in canopy characteristics, such as the leaf area
index and pigment concentrations, which are related to species AGB variations; this improved its
prediction accuracy. However, the operational application of the WorldView-2 might be hindered by
its acquisition cost, which places Sentinel 2 and Landsat 8 as promising datasets for the monitoring of
C3 and C4 grasses AGB, especially in data scarce environments.

Although reasonable predictive results were produced from this study, especially in relation to
those accuracies reported using broad-band multispectral datasets, the performance of the model in
predicting C3 and C4 species AGB cannot be ignored. Overall, the SPLSR produced good predictive
results for all the sensors, using different variables. However, the results from this study might be
considered inconclusive, since these sensors have been tested at a specific period. Snapshot AGB
maps for C3 and C4 dominated grasslands are inadequate. This is because the AGB for these grasses
varies over time, due to the influence of species phenology, and more importantly, changing climatic
conditions. Decision making and the implementation of policies require more details of species AGB
variations. In relation to the performance of the sensors, the ability of the sensor to predict and spatially
represent species AGB might also be influenced by the period considered. There is therefore the need
to show how these sensors (particularly the freely-available Sentinel 2 and Landsat 8 datasets) and the
SPLSR model perform in predicting C3 and C4 grasses AGB, as well as their consistency over time.

5. Conclusions

The present study has shown the feasibility of using the new generation sensors to estimate and
determine the subtle spatial variations of C3 and C4 grasses AGB in the temperate regions of South
Africa. The most important finding from this study was the performance of the freely-available Landsat
8 and Sentinel 2 sensors in predicting grass species AGB. The sensors predicted species AGB with a
high accuracy, which might be very useful in monitoring the productivity of C3 and C4 grasslands, for
various applications and their conservation. The sensors provide significant data sources to enable
the monitoring of C3 and C4 grass species productivity, across different ecosystems, especially for the
developing world, where the acquisition of commercial datasets is a major limitation. These results
are therefore encouraging for future efforts to continuously monitor and map C3 and C4 grasses’
productivity at a large geographical coverage, over time.
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