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Abstract
Rosette-forming glioneuronal tumor (RGNT) of the IV ventricle is a rare and recently recog-

nized brain tumor entity. It is histologically composed by two distinct features: a glial compo-

nent, resembling pilocytic astrocytoma, and a component forming neurocytic rosettes and/

or perivascular rosettes. Herein, we describe a 33-year-old man with RGNT arising in the

spinal cord. Following an immunohistochemistry validation, we further performed an exten-

sive genomic analysis, using array-CGH (aCGH), whole exome and cancer-related hotspot

sequencing, in order to better understand its underlying biology. We observed the loss of 1p

and gain of 1q, as well as gain of the whole chromosomes 7, 9 and 16. Local amplifications

in 9q34.2 and 19p13.3 (encompassing the gene SBNO2) were identified. Moreover, we

observed focal gains/losses in several chromosomes. Additionally, on chromosome 7, we

identified the presence of the KIAA1549:BRAF gene fusion, which was further validated by

RT-PCR and FISH. Across all mutational analyses, we detected and validated the somatic

mutations of the genesMLL2,CNNM3, PCDHGC4 and SCN1A. Our comprehensive molec-

ular profiling of this RGNT suggests that MAPK pathway and methylome changes, driven

by KIAA1549:BRAF fusion andMLL2mutation, respectively, could be associated with the

development of this rare tumor entity.
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Introduction
Rosette-forming glioneuronal tumor (RGNT) of the fourth ventricle is a very recent entity, rec-
ognized in the latest, 2007 edition, of the WHO classification of Central Nervous System
Tumors [1]. RGNT is composed by two distinct features: a predominant glial component,
whose morphology resembles pilocytic astrocytoma, and a neurocytic component forming
neurocytic rosettes and/or perivascular pseudorosettes. This rare tumor affects predominantly
adult females (61%), with mean age around 32 years, typically originating in the fourth ventri-
cle and/or aqueduct [1, 2]. Due to its usual indolent course, it is considered a WHO grade I
tumor [1].

Hitherto, less than 100 cases are reported in the literature [3], most of them as case reports
of MRI, histopathological and immunohistochemical findings [4–9]. There are few molecular
studies, with the only recurrent genetic alterations identified being PIK3CA [10, 11] or FGFR1
mutations [12].

Herein, we describe a 33-year-old man with RGNT arising in a peculiar location, namely
the spinal cord. We further performed immunohistochemistry and molecular analysis, using
array-CGH, whole exome and cancer-related hotspot sequencing, in order to better understand
its underlying biology.

Material and Methods
A 33-year-old male was operated on Barretos Cancer Hospital, to resect a tumor located in the
spinal cord. Following gross-total resection, part of the lesion was formalin-fixed and paraffin
embedded for standard H&E and immunohistochemistry staining, and the remaining tissue
was snap frozen for further molecular analysis. Additionally, peripheral blood was collected.
The individual in this manuscript has given written informed consent (as outlined in PLOS
consent form) to publish these case details. The local Ethical Committee of Barretos Cancer
Hospital has approved this study under the processes number 262/2009 and 408/2010.

Immunohistochemical analyses (streptoavidin-biotin peroxidase method) were performed
for specific markers, according to the S1 Table. The reactions were performed using the Ven-
tana System (Ventana Systems Inc.), following suppliers’ recommendations.

Microsatellite instability analysis in tumor and blood DNA was performed according to
Viana-Pereira et al [13]. For aCGH, two-color Comparative Genomic Hybridization microar-
ray was performed using default Agilent enzymatic labeling protocol. Four hundred nano-
grams of both tumor and blood (used as reference) DNA were digested by AluI and RsaI
restriction enzymes, and incubated with random primers. Blood DNA was labeled with cya-
nine-3, whereas tumor DNA was labeled with cyanine-5. Labeled DNAs were hybridized into
Agilent Human Genome CGH 8x60K microarray slide, and washed according to supplier’s
protocol. The slide was scanned and decoded by the software Feature Extraction v.10.7 (Agilent
Technologies). The signal intensities were log2 transformed, and the spots mapped to hg19.
Data were Lowess normalized, smoothing corrected, and CBS segmented. aCGH data can be
accessed using the Gene Expression Omnibus number GSE64891.

For known cancer-related hotspot mutational screening, Ion Torrent platform (Life Tech-
nologies) was used. The library was built according to the default protocol described by the
supplier. Ten nanograms of tumor DNA was amplified using Ion AmpliSeq Library kit 2.0
(Life Technologies) and Ion AmpliSeq Cancer Primer Pool. After sample tracking preparation
using Ion AmpliSeq Sample ID Panel, the positive Ion Spheres were enriched by Ion PGM
Template One Touch 200 kit and further sequenced in an Ion 316 chip, using Ion PGM
Sequencing 200 kit v2. The analysis was performed based on coverage and reads quality, and
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frequency of reference/variant bases in each position, using the software Ion Torrent Variant
Caller v.3.6.2.

Exome sequencing was performed on tumor and peripheral blood DNA. Briefly, exome
capture was carried out using the 50Mb Agilent SureSelect platform (Agilent Technologies),
and paired-end-sequenced on an Illumina HiSeq2000 (Illumina Inc.) with a 100bp read length.
Reads were mapped to the hg19 build of the human genome using bwa, and PCR duplicates
removed with PicardTools 1.5. Somatic single nucleotide variants were called using the
Genome Analysis Tool Kit v.2.4–9. Variants were annotated using the Ensembl Variant Effect
Predictor v.71 incorporating SIFT and PolyPhenpredictions, COSMIC v64 and dbSNP build
137 annotations.

In order to validate the mutations identified through Exome NGS, primers for all somatic
variants were designed and PCR [14] followed by direct sequencing was performed (S2 Table).
Additionally, the most relevant hotspots regions of PIK3CA were assessed using the oligonucle-
otide primers (S2 Table). The PCR reactions of PIK3CA were performed in a final volume of
15 μL, under the conditions: 7.2 μL HotStar Master Mix (QIAGEN), 5.6 μL H2O2 (QIAGEN),
0.3 μL each primer and 0.6 μL MgCl2 5 mM. PCR amplification was performed in a Veriti 96
Well Thermal Cycler (Applied Biosystems) with an initial denaturation step at 96°C for 15’,
then amplified for 40 cycles of denaturation at 96°C for 45s, annealing at 55.5°C for 45s, exten-
sion at 72°C for 45s and final extension at 72°C for 10’.

After amplification, the PCR products were firstly purified with EXO-SAP (GE Techonol-
ogy), and then submitted to a sequencing reaction using 1 μL of BigDye Terminator v3.1
(Applied Biosystems), 1.5 μL of sequencing buffer and 1 μL of each primer. The sequencing
reaction was followed by post sequencing purification with BigDyeXTerminator Purification
Kit following the manufacturer’s instructions. Direct sequencing was performed in 3500xL
Genetic Analyzer (Applied Biosystems).

For mRNA analysis, first-strand cDNA was synthetized from five hundred nanograms of
tumor RNA using SuperScript III First-Strand Synthesis SuperMix (Invitrogen), according to
the protocol provided by the supplier, using random hexamers. The nested PCR was performed
using 2 pairs of primers specially designed for detecting the fusion KIAA1549:BRAF, according
to Forshew et al. (2009) [15] (S2 Table). Finally, the PCR product was purified and sequenced.

KIAA1549:BRAF gene fusion was also evaluated by FISH, as previously described [16].
Briefly, FFPE sections were incubated at 56°C for 2 h, dewaxed in CitriSolv (Fisher), air dried,
and dehydrated. Pre-hybridization procedure was performed with reagents from the SPOT--
Light Tissue Pretreatment Kit (Invitrogen). Specimen were boiled in heat pretreatment solu-
tion for 50’, washed in PBS, digested with the enzyme reagent for 55’ at 37°C, washed in PBS,
dehydrated and air dried. The KIAA1549/BRAF probe mix (200ng of BRAF SR DNA–BAC
clone RP4-726N20—and 200ng of KIAA1549 SG DNA–BAC clone RP11-148L5) was applied
to the selected hybridization area, which was covered with a coverslip and sealed with rubber
cement. DNA co-denaturation was performed in the HYBrite (Vysis) at 85°C for 5’ and hybrid-
ization was allowed to occur at 38°C for 40 h. Post-hybridization washes were performed by
incubating in 2×SSC/0.3% NP-40 at 74°C for 3’ then in 2×SSC at room temperature for 2’, fol-
lowed by dehydration. Finally, DAPI/anti-fade (0.3ug/ml in Vectashield mounting medium)
was applied and the area covered with a coverslip.

Analysis was performed on epifluorescence microscope using single interference filter sets
for green (FITC), red (Texas red) and blue (DAPI) as well as dual (red/green) and triple (blue,
red and green) band pass filters. Fifty nuclei per specimen were analyzed for tandem duplica-
tion of KIAA1549 and BRAF, which was identified as presence of overlapping red and green
fluorescent signals.
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Results
The patient presented with progressive gait disturbance, thoracic spine pain and bladder dys-
function. Physical examination revealed weakness of the upper and lower extremities and spas-
ticity with clonus and exaggerated muscle stretching reflexes. A spinal MRI scan with
gadolinium revealed a contrast enhancing, expansive lesion centrally located in the cervical-
thoracic spinal cord (C6 to T3), and measuring 9.5x1.9x1.5cm, with extended seringomielin
and hemosiderin (Fig 1).

A C6-T4 laminectomy and gross-total resection was undertaken. The patient was dis-
charged after 18 days, and clinical examinations and MRI were performed every 6 months. In
the last follow up (January 23rd 2014, 52 months after the surgery), besides the latent paraple-
gia, with sensitive level up to T4, and urinary bladder dysfunction, the patient was alive with no
abnormalities.

Histopathological and immunohistochemical characterization
The histology revealed a WHO grade I RGNT typically found in the fourth-ventricle. This
tumor featured the usual biphasic neurocytic (Fig 2A) and glial (Fig 2A and 2B) architecture.
The neurocytic component consisted of a uniform population of neurocytes forming neurocy-
tic rosettes, characterized by a ring of neurocytic cells with small and monomorphic nuclei
with an eosinophilic and acellular neuropil core. Vascular pseudorosettes were also present
(Fig 2A inset). The glial component was dominant, and resembled pilocytic astrocytoma com-
posed of spindle to stellate in shape with elongate to oval nuclei and moderately dense chroma-
tin. Some cells superficially resembled oligodendroglia cells with occasional perinuclear halos.
Rosenthal fibers, hemosiderin deposits associated with thick-walled, and occasionally hyali-
nized vessels were observed. Immunoreactivity for synaptophysin (Fig 2C), neurofilament and

Fig 1. Imaging features of the RGNT. (A and B) Magnetic resonance images showing an expansive lesion between C6 and T3.

doi:10.1371/journal.pone.0137690.g001
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Fig 2. Pathologic and immunohistochemistry features of the RGNT. (A) HE showing the neurocytic and glial area (H&E 200x). Inset detailing the
neurocytic rosette with a neuropil core (H&E 1000x). (B) Glial component (H&E 200x). (C) Neurocytic component positive for synaptophysin (400x). (D)
Neurocytic component stained by MAP2 expression (200x) that highlights the neuropil of the neurocytic rosette in detail (400x). (E) Neurocytic area negative
for GFAP and glial area positive for GFAP (400x). (F) Ki67 showing low proliferation index in neurocytic area (200x).

doi:10.1371/journal.pone.0137690.g002
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MAP2 (Fig 2D) proteins were depicted in the neurocytic component, whereas the glial compo-
nent exhibited positivity for GFAP (Fig 2E) and S-100. Neurocytic component was found nega-
tive for GFAP (Fig 2E). Mitoses were not observed and the proliferation index labeled by Ki-67
expression was observed in approximately 3% of cells (Fig 2F). There was no necrosis, anapla-
sia or microvascular proliferation. Due to the rarity of this lesion, and its atypical location, the
case was further sent to an expert in neuropathology (B.W.S.), for a second opinion, who con-
firmed the initial diagnosis of RGNT.

Molecular profile
In order to better characterize the genetic alterations of this rare case, we performed an exten-
sive analysis of genetic instability, either at the chromosomal (aCGH) and the nucleotide level
(microsatellite instability), screened for the presence of mutations in 46 major cancer related
genes, and extended the analysis to whole exome sequencing.

Array-CGH showed loss of 1p and gain of 1q, as well as gain of the whole chromosomes 7, 9
and 16 (Fig 3A). Moreover, we observed focal gains/losses in the chromosomes 1, 2, 3, 6, 7, 11,
14, 17, 22 and X, and local amplifications in 9q34.2 and 19p13.3 (S3 Table). A higher level of
gain was observed at chromosome 7q34, encompassing the genes KIAA1549 through BRAF,
with breakpoints in those genes (Fig 3A–dashed arrow). RT-PCR was performed to confirm
that this genomic gain reflected the fusion of the genes KIAA1549:BRAF. The RT-PCR showed
a band of the expected size (approximately 800bp) (Fig 3B). To further verify the presence of
KIAA1549:BRAF gene fusion, the RT-PCR product was sequenced and the fusion between
exon 16 of KIAA1549 and exon 9 of BRAF gene was detected (Fig 3C). Finally, we performed
FISH to confirm the presence of the fusion (Fig 3D). As observed, the overlapping signals of
KIAA1549 (green) and BRAF (red) generated by the tandem duplication, observed as red-
green doublets or yellow spots, denotes the presence of KIAA1549:BRAF gene fusion (Fig 3D).
Of note, the positive pattern for KIAA1549:BRAF fusion was found only in the neurocytic com-
ponent, whereas the cells in the areas consistent with the glial component were negative.

The tumor exhibited a microsatellite stable (MSS) phenotype (data not shown). Previously
reported recurrent PI3KCA and FGFR1 hotspot mutations were not detected by direct
sequencing and Ampliseq Cancer. Somatic mutations were identified in the genesMLL2 (Fig
3E), CNNM3, PCDHGC4 and SCN1A (Table 1) by whole exome sequencing and validated by
direct sequencing.

Discussion
This study describes for the first time a comprehensive genetic characterization of a case of
RGNT of the fourth ventricle arising in the spinal cord. This is not the usual presentation, yet it
has been previously reported [17, 18]. The MRI images showed a relatively well-demarcated
lesion, with low and high intensities in T1 and T2, respectively, which corroborate findings of
other studies [8, 17, 18].

The presentation of this case could resemble other tumor types described in the literature,
such as glioneuronal tumor with neuropil islands (GNTNI), a WHO grade II/III that affects
the spinal cord in in 23% of cases [3]. GNTNI is an infiltrative astrocytoma with scarce micro-
nodules (islands of neuropil) or bigger and atypical islands delimitated by oligodendrocyte-like
cells that stains for synaptophisin or Neu-N. The glial component of GNTNI is composed pre-
dominantly by a astroglial fibrillary or gemistocytic component, and not by a pilocytic compo-
nent as find in RGNT, and this glial component can be atypical with increased mitotic activity,
microvascular proliferation and necrosis. In the present case, the morphological diagnosis of
RGNT at H&E-stained slides was further confirmed by immunohistochemistry. The
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neurocytic component was positive for synaptophisin, neuron specific enolase and MAP2, and
the glial component was positive for GFAP and S-100 protein. Furthermore, no mitotic activity
was observed. These morphological and immunohistochemistry differences were recognized
and utilized to rule out the diagnosis of GNTNI, and confirm the diagnosis of RGNT.

In order to interrogate the genetic abnormalities of this rare case, we analyzed the presence
of chromosomal and microsatellite instability. We found loss in 1p, gain in 1q, 7, 9 and 16.
There are two studies that evaluated the co-deletion 1p/19q, and no alterations were found [19,
20]. Interestingly, we observed loss of the entire short arm of chromosome 1. Of particular
interest was the observed gain of chromosomes 9 and 16, events not frequently described in
SNC tumors [21]. Additionally, we found focal amplification at 19p13.3, where the SBNO2
gene is located. This gene codifies a protein that exhibits a RNA helicase activity [22], and is
involved in anti-inflammatory responses, regulated by IL-10 in a STAT3-dependent way [23].
To date, there are no reports relating directly this specific gene to cancer development. Further
studies are needed to understand whether SBNO2 gene amplification leads to protein overex-
pression, and gain of activity in RGNTs.

Importantly, we observed a gain in the chromosome 7 encompassing the genes KIAA1549
and BRAF, with intragenic breakpoints in both genes. We performed RT-PCR to validate the
presence of a fusion, which was further confirmed by Sanger sequencing and FISH, which
highlighted a fusion between the exon 16 of KIAA1549 and the exon 9 of BRAF. The presence
of KIAA1549:BRAF fusion is found in 60% of pilocytic astrocytomas [16] and was not previ-
ously detected in RGNT in the literature [24–26]. Morphologically, the glial component of
both tumors are identical, and could explain the finding of KIAA1549:BRAF fusion, that is fre-
quently found in pilocytic astrocytomas. Interestingly, we observed the presence of the
KIAA1549:BRAF gene fusion only in the neurocytic component.

We further performed extensive mutation profiling, corroborating recent studies that
reported the absence of mutations in the BRAF, IDH1 and IDH2 genes [24, 27], and further
failed to identify the presence of PI3KCA gene mutations as suggested by Ellezan and collabo-
rators [10], nor FGFR1 gene mutations as suggested by Gessi and collaborators [12]. Impor-
tantly, whole exome sequencing identified somatic mutation in four genes—MLL2, CNNM3,
PCDHGC4 and SCN1A. Among these genes, we foundMLL2 to be of particular interest.

Fig 3. Molecular features. (A) Plot representing the whole genome, highlighting the KIAA1549:BRAF fusion
(dashed arrow), (B) Agarose gel representing: M. 100 bp ladder; 1. RT-PCR result using the pair of primers
for detecting KIAA1549:BRAF fusion; 2. the housekeeping geneGAPDH; 3. negative control. C) Direct
sequencing of the band of the Fig 3A.1, showing the fusion point of KIAA1549 (exon 16) and BRAF (exon 9).
D) FISH results of the glioneuronal portion of the tumor showing yellow signals, representing the overlapping
of KIAA1549 (green) and BRAF (red) signals (arrows). E) IGV visualization of exome NGS results (left) and
direct sequencing validation (right) ofMLL2 gene.

doi:10.1371/journal.pone.0137690.g003

Table 1. Somatic mutations validated by direct sequencing.

Chromosome Position Gene Refa Vara Aminoacid Zygosity Functional effect prediction

2 97483123 CNNM3 T G F370C Heterozygous Possibly damaging

2 166897773 SCN1A GGTCCGTCATTGGATAGTGC G b Heterozygous NAc

5 140866746 PCDHGC4 C T T669I Heterozygous Benign

19 36221307 MLL2 A G N1714S Heterozygous Possibly damaging

aRef represents the reference allele and Var represents the variant allele.
bFrameshift mutation.
cNA = Information not available

doi:10.1371/journal.pone.0137690.t001
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MLL2, mapped on chr19q13.12, is described to be required for the maintenance of basal tran-
scription machinery stabilization [28]. Loss-of-function mutations of this gene have been pres-
ent in the genetic landscape of meduloblastoma [29, 30], since it is able to change the gene
expression pattern by impairing H3K4me1/2 on genes enhancers [31].

In conclusion, our comprehensive molecular profiling of a RGNT case suggests the exis-
tence of a unique genetic pathway for the development of these tumors: KIAA1549:BRAF
fusion is a possible driver by constitutively activating MAPK pathway, [32] andMLL2muta-
tion may lead to profound changes in the transcriptome [33]. Whole genome sequencing stud-
ies of low-grade gliomas suggest that few genetic alterations are required for oncogenesis, and
there are some recurrent chromosomal abnormalities, depending on the histopathological sub-
type [33]. Taken together, these mechanisms may increase survival and/or tumorigenic capac-
ity of cells, leading to the development of this rare entity.
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