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Obsessive—compulsive disorder (OCD) is one of the most debilitating psychiatric conditions, having a dramatic
impact on patients’ daily living. In this work, we aimed to explore resting-state functional connectivity in OCD
patients, using an independent component analysis. Eighty individuals (40 patients and 40 healthy controls)
performed a resting state fMRI protocol. OCD patients displayed reduced functional connectivity (FC) in visual

and sensorimotor networks. In addition, patients displayed decreased FC between sensory networks and in-
creased FC between default-mode and cerebellar networks.

1. Introduction

Obsessive—compulsive disorder (OCD) is a psychiatric condition
characterized by the presence of obsessive thoughts and compulsions. It
has an estimated prevalence of 1-3% (Karno et al., 1988; Ruscio et al.,
2010) and constitutes one of the most debilitating psychiatric disorders
with a severe impact on patients’ daily life. While OCD patients are
typically aware of the nonsensical nature of their obsessions and com-
pulsions, they are not able to control these symptoms (Graybiel and
Rauch, 2000).

Meta-analytic aggregations of neuroimaging studies suggest that
OCD is characterized by marked neurobiological alterations in struc-
tural and functional modalities. Structurally, OCD is characterized by
consistent volumetric grey matter volume (GMV) alterations, including
increases in the left postcentral gyrus, middle frontal, putamen, tha-
lamus and culmen while displaying decreased GMV in occipital regions
in temporal and insular regions (Eng et al., 2015). Patients with OCD
display impairments in executive function domains [including response
inhibition (Menzies et al., 2007), interference (Schlosser et al., 2010)
and set-shifting (Shin et al., 2014)], visuospatial and verbal memory
(Shin et al., 2014), over-reliance on habits (Gillan et al., 2011) or
emotional processing (Thorsen et al., 2018). Neurobiologically, these
deficits are thought to be associated with abnormal functioning within
cortico-striato-thalamo-cortical (CTSC) loops (Milad and Rauch, 2012;
Thorsen et al., 2018), but also including the cerebellum and the parietal
cortex (Eng et al., 2015).

A recent review of studies examining seed-based functional
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connectivity (FC) during rest demonstrated consistent reduced con-
nectivity within and between frontoparietal (FPN), salience (SN), and
default-mode (DMN) networks (Guersel et al., 2018). Increased ampli-
tude of low-frequency fluctuation (ALFF) in the OFC, anterior cingulate
cortex (ACC) and reduced ALFF in cerebellum and parietal cortex
(Hou et al., 2012), as well as increased striatal-OFC FC (Jung et al.,
2013) has also been reported.

Model-free characterization of the resting-state FC among different
resting-state networks is considerably less explored. Among this pool of
studies, it has been reported that OCD is characterized by increased FC
between the caudate, putamen and the cerebellum (Vaghi et al., 2017);
on the other hand, reduced FC in the cerebellum, as well as in occipital
and temporal cortices has been reported (Hou et al., 2014; Moreira
et al., 2017). To the best of our knowledge, only four studies have ex-
amined resting-state FC using Independent Component Analysis (ICA)
in OCD (Cheng et al., 2013; Fan et al., 2017; Gruner et al., 2014; Weber
et al.,, 2014). From these, only one analyzed between-networks’ FC.
With this work, we aimed to complement the existing literature by
exploring the patterns of within and between resting-state networks’
FC, using an ICA approach.

2. Methods
2.1. Subjects

Forty OCD patients and 40 healthy controls (matched for sex, age
and education) participated in this study. All participants were right-
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handed and had no history of neurological or comorbid disorders. OCD
patients (all receiving medication) were characterized with a compre-
hensive clinical assessment (see Table S1). A semi-structured interview
based on Diagnostic and Statistical Manual of Mental Disorders, Fourth
Edition (DSM-IV)-TR and the Yale-Brown Obsessive-Compulsive Scale
(Y-BOCS, (Goodman et al., 1989)) were administered to establish the
OCD diagnosis. Anxiety and depression levels were assessed using the
Hamilton Anxiety (HAM-A) and Hamilton Depression (HAM-D) scales,
respectively. The study was conducted according to the Declaration of
Helsinki principles and was approved by the Ethics Committee of
Hospital de Braga (Portugal). The study goals were explained, and
written informed consent was obtained from each participant. Imaging
was performed using a clinical approved 1.5 T Siemens Magnetom
Avanto MRI Scanner (Siemens, Erlangen, Germany). The acquisition
and preprocessing parameters of structural and functional MRI se-
quences are detailed in File S1.

2.2. Independent component analysis and identification of resting-state
networks

Resting-state network (RSN) maps were analyzed voxel-wise
through a probabilistic independent component analysis (PICA) as im-
plemented in  Multivariate  Exploratory Linear  Optimized
Decomposition into Independent Components (MELODIC), distributed
with FSL (Beckmann and Smith, 2004). PICA is a fully data-driven
approach that enables the isolation of components based on the tem-
poral correlation of the corresponding areas, while maximizing the
spatial independence between components. Dual-regression analysis
was performed to estimate the subject-specific components that corre-
spond to the group-wise RSNs. Because the PICA approach may identify
noisy components corresponding to non-biological signal, such as
movement artifacts, the independent components were selected after
visual inspection of their spatial distribution (Horowitz-Kraus et al.,
2015). Specifically, components that were mainly present in regions
that do not generate the blood-oxygen-level-dependent (BOLD) signal
(white matter, ventricles or outside the brain) were excluded from the
analysis.

2.3. Statistical analysis

Statistical group comparisons were conducted using two-samples
tests, adjusted for confounding factors (sex and age). Intra-RSN FC was
compared between groups, using a non-parametric permutation pro-
cedure implemented in the randomize tool from FSL (Winkler et al.,
2014). Threshold-free cluster enhancement (TFCE) was used to detect
widespread significant differences and control the family-wise error
rate (FWE-R) at a = 0.05. 5000 permutations were performed for each
contrast. For the analysis of inter-RSN FC, the time-series of each RSN
were extracted and using the Fisher's Z-transformed Pearson correlation
coefficients, matrices of functional connectivity between pairs of RSNs
were created. Individual correlations were statistically compared
(@ = 0.05 with FDR correction) between groups.

3. Results

Twenty-two components were obtained from the PICA. Fifteen of
these components were found to be representative of the most typical
RSNs (Fig. 1a). OCD patients displayed reduced FC within the primary
visual (PVN), high visual (HVN) and sensorimotor (SMN) networks
(Supplementary Information). Specifically, for the PVN, there were
significant differences between groups in one large cluster (2465
voxels), with peaks on the left calcarine and the left lingual gyrus; for
the HVN, patients had decreased FC in six clusters with peaks in distinct
occipital subdivisions; for the SMN, OCD patients had significantly
decreased FC in one cluster comprising the paracentral and the sup-
plementary motor area of the left hemisphere (Fig. 1, Table S2).
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Regarding the inter-RSN FC, despite the fact that several patterns of
altered FC between distinct RSNs were observed in OCD patients, the
only findings remaining statistically significant after correction for
multiple comparisons (bold lines) were reduced PVN-SMN
(tzey = 5.73, p < .001) and increased DMN-cerebellar FC in OCD pa-
tients. The patterns of altered FC between different RSNs in OCD pa-
tients are graphically displayed on Fig. 1. No significant results were
obtained regarding the association between within/between FC and
clinical variables.

4. Discussion

In this work, we observed that OCD patients are characterized by
reduced FC within and between visual and sensorimotor networks, as
well as increased cerebellar-DMN FC.

Reduced FC within the visual network in OCD patients complements
our previous findings (Moreira et al., 2017) and highlights the re-
levance of sensorial-related deficits in several psychiatric conditions,
including maniac and depressed groups of patients with bipolar dis-
order (Shaffer et al., 2018). These results are in accordance with the
hypothesis that one of the mechanisms underlying the OCD phenotype
relies on the deactivation of occipital/parietal regions which are asso-
ciated with the visual-perceptual processing of incoming rich stimuli
(Gongalves et al., 2010). Previous research has highlighted that the
visual network is involved on the allocation of attentional (particularly,
visual) resources, such that an increased FC within this network is
thought to reflect a greater demand on the allocation of resources
(Horowitz-Kraus et al., 2015). In addition, the activity of these regions
was previously associated with the generation of somatic arousal,
possibly indicating that modulation through arousal is adaptive in order
to promote an easier processing of relevant visual information
(Gauthier et al., 1997). Altogether, this pattern of reduced FC within
and between these networks may play a relevant role for the patho-
physiology of the disorder, particularly with the generation of obsessive
thoughts.

In addition, there was a significantly increased FC between the DMN
and the cerebellar network in the group of OCD patients. Previous re-
ports have described abnormal DMN-cerebellum FC in distinct psy-
chiatric conditions, including major depression disorder, schizophrenia
or bipolar disorder, however such alterations were not previously es-
tablished in the case of OCD. Notwithstanding, such results reinforce
the role of the cerebellum for the pathophysiology of OCD - a region
with reciprocal connections with CSTC regions (Eng et al., 2015). Our
findings are inconsistent with a previously reported reduced cerebellar-
DMN FC in OCD patients (Xu et al., 2018). However, it is important to
highlight some important differences between these studies: first, the
abovementioned study relied on a seed-based analysis for the ex-
amination of cerebellum-cerebral FC patterns; second, our results were
obtained only with the dorsal division of the DMN. Considering this,
while it is reasonable to hypothesize that our findings may reflect a
compensatory reallocation or dedifferentiation between these networks
(Guo et al., 2015), additional studies are required to clarify this hy-
pothesis.

Our sample of OCD patients was under pharmacological treatment.
As such, it is relevant to highlight that our positive and null findings
may be importantly influenced by the medication itself. Thus, future
studies assessing drug-naive OCD patients are needed to tackle this
confounding effect.

In sum, our study offers evidence for the involvement of altered
sensorial-related patterns of brain FC, which may underline distinct
mood states, as suggested in other psychiatric conditions (Shaffer et al.,
2018).
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