環境中親電子物質によるシグナル伝達変動とその制 御に関する包括的研究 | 著者 | 熊谷 嘉人 | |-----|-------------------------------------| | 発行年 | 2018 | | URL | http://hdl.handle.net/2241/00158705 | ## 科学研究費助成事業 研究成果報告書 平成 30 年 5 月 16 日現在 機関番号: 12102 研究種目: 基盤研究(S) 研究期間: 2013~2017 課題番号: 25220103 研究課題名(和文)環境中親電子物質によるシグナル伝達変動とその制御に関する包括的研究 研究課題名(英文)Comprehensive study on environmental electrophiles-mediated signal transduction pathways regulated by reactive sulfur species 研究代表者 熊谷 嘉人 (Kumagai, Yoshito) 筑波大学・医学医療系・教授 研究者番号:00250100 交付決定額(研究期間全体):(直接経費) 172,700,000円 研究成果の概要(和文):本研究より培養細胞を環境中親電子物質に低用量曝露すると、センサータンパク質が特異的に修飾され、結果的にレドックスシグナルが活性化することが示された。それに対して、当該物質の曝露増加により、細胞内タンパク質は非特異的に修飾され、本シグナル伝達は破綻して細胞毒性が観察された。一方、CSEやCARS2からシステインパースルフィドが産生され、その分子内可動性イオウ原子が反応して、活性イオウ分子(RSS)を生じることが示唆された。RSSは環境中親電子物質を捕獲・不活性化して、イオウ付加体を形成することを見出した。また、RSSは環境中親電子物質のレドックスシグナル変動および毒性を制御することも分かった。 研究成果の概要(英文): Environmental electrophiles covalently bind to thiol groups in proteins to form protein adducts. In the present study, we found that exposure of cultured cells to environmental electrophiles such as naphthoquinones, methylmercury, cadmium and crotonaldehyde at lower concentrations activated redox signaling pathways through covalent modification of sensor proteins. However, exposure to these electrophiles at higher concentrations disrupted the redox signaling pathways and caused substantial cytotoxicity through non-selective covalent modification of cellular proteins. It was also found that while reaction of environmental electrophiles with reactive sulfur species (RSS) resulted in formation of their sulfur adducts, knockdown of cystathionine -lase, an enzyme to produce RSS, enhanced the modulation of redox signaling and toxicity in vitro and in vivo, whereas treatment with Na2S4 diminished these phenomena during exposure to environmental electrophiles. 研究分野: 環境医学 キーワード: 親電子物質 シグナル伝達 環境応答 化学修飾 活性イオウ分子 #### 1.研究開始当初の背景 環境中親電子物質は、生体内タンパク質のチオール基と共有結合し、発がん性や組織傷害等に関与することが知られているが、その分子メカニズムの詳細は分かっていない。一方、生体には環境の変化に的確に応答し、恒常性を維持する様々なシグナル伝達経路が存在する。これに対して、このような細胞内シグナル伝達の破綻が、がん、生活習慣病、自己免疫疾患の発症要因になることが理解されていた。 #### 2.研究の目的 本研究では、環境中親電子物質によるセンサータンパク質の化学修飾を起点とした、細胞生存、細胞増殖、毒性防御およびタンパク質の品質管理に係るレドックスシグナル伝達の活性化と曝露量増加に起因する当該シグナル系の破綻に由来する2面性を検討した。さらに、生体内で産生される硫化水素、パースルフィド/ポリスルフィドのような活性イオウ分子(RSS)が、環境中親電子物質の不活性化とそれに伴う当該シグナル伝達および有害性の制御分子であることを検討した。 #### 3.研究の方法 環境中親電子物質のモデルとして、大気中に存在するナフタレンの光分解あるいは生体内での代謝活性化で生成される 1,2-ナフトキノン(1,2-NQ)および1,4-ナフトキノン(1,4-NQ) マグロ等の食用魚類および米にそれぞれ蓄積するメチル水銀(MeHg)およびカドミウム(Cd) タバコの煙に含まれるクロトンアルデヒド(CA) ポテトチップ等の加熱食品に含有されるアクリルアミド(AA)を使用した。 まず、これら環境中親電子物質による細胞内タンパク質の化学修飾を検出するアッセイを確立した。つぎに、環境中親電子物質による異なる4つの細胞内レドックスシグナル伝達経路(PTP1B/EGFRシグナル、Keap1/Nrf2システム、HSP90/HSF1シグナル、PTEN/Aktシグナル)変動の曝露量の特異性を調べた。さらに、培養細胞および野生型とRSSの産生に関与するcystathionine γ-lyase(CSE)欠損マウスを用いて、環境中親電子物質による各種シグナル伝達変動および毒性発現における活性イオウ分子の制御を明らかにした。併せて、CSE欠損マウスを用いて、当該有害性に対するRSSを含有する植物成分の有効性を個体レベルで検討した。 ### 4. 研究成果 Biotin-PEAC₅-maleimide (BPM)アッセイにより、MeHg や Cd のような親電子性重金属だけでなく、NQ 類や関連親電子性有機物質の曝露量依存的なタンパク質の化学修飾を検出することが可能となった。また、アビジンピーズを用いた変法を使用することで、生体試 料中における環境中親電子物質によるセンサータンパク質の化学修飾も検出できた。 LC-MS/MS 解析により、1.2-NQ、1.4-NQ、MeHa、 Cd あるいは CA は、センサータンパク質であ る PTP1B、Keap1、HSP90 および PTEN の同じ (あるいは異なる)システイン残基を親電子 修飾することが示唆された。上記の環境中親 電子物質に加えて AA は、応答分子であるキ ナーゼ EGFR や Akt および転写因子 Nrf2 や HSF1 を活性化し、それぞれの下流遺伝子群の 発現誘導を亢進した。SH-SY5Y 細胞を MeHg に 低用量曝露すると、PTEN の S-水銀化の特異 的な化学修飾を介して、Akt およびその下流 転写因子である CREB のリン酸化増加および それに伴う抗アポトーシスタンパク質であ る BcI-2 の転写増加が見られた。一方、MeHg 曝露量の増加により、CREB の Cvs286 を介し た S-水銀化が生じて、CRE と修飾化 CREB と の相互作用は阻害され、結果的に Bcl-2 の発 現量は定常レベル以下となり、アポトーシス 様細胞死が観察された。同様のレドックスシ グナル伝達の逆 U 字カーブ応答は、マウス初 代肝細胞を 1,4-NQ に曝露時にも見られた。 また、環境中親電子物質の高用量曝露には活 性化した Nrf2 は殆ど消失して細胞死が見ら れた。以上の結果は、環境中親電子物質の低 用量曝露でレドックスシグナルは活性化し、 高用量曝露ではそれが破綻して毒性に繋が ることを示唆している。 先行研究より、MeHg に曝露した SH-SY5Y 細 胞中およびラット肝臓中から新規解毒代謝 物として(MeHg)2Sを同定している。この産生 には分子内に"可動性イオウ"を有するシス テインパースルフィド(CysSSH) グルタチ オンパースルフィド (GSSH) およびそれぞれ のポリスルフィドや硫化水素(H,S)のような RSS の関与が考えられた。研究分担者である 赤池との共同研究により、LC-MS による生体 試料中に存在する RSS β -(4-hydroxyphenyl) ethyl iodoacetamide (HPE-IAM)誘導体としてそれぞれ同時に定量 する安定同位体希釈法を確率した。種々の検 討を行い、MeHg は H₂S、GSSH、GSSS、ポリス ルフィド Na、S』だけでなく、タンパク質のシ ステイン残基に結合した可動性イオウ原子 と反応して(MeHg)。Sを生じることが分かった。 また、1,2-NQ、1,4-NQ、Cd および AA のよう な環境中親電子物質と RSS 産生系や Na₂S₄と の反応より、1,2-NQ、1,4-NQ、Cd および AA のイオウ付加体を同定した。さらに、風邪薬 アセトアミノフェンを投与したマウス尿中 からその親電子代謝物 NAPQI のイオウ付加体 の同定にも成功した。一連の研究成果は、従 来から知られていた親電子物質のグルタチ オン抱合体以外に、RSS による環境中親電子 物質の捕獲によるイオウ付加体が存在する ことを示唆している。 RSS は環境中親電子物質を捕獲することで 母化合物と比較して親電子性が顕著に低い イオウ付加体を形成することから、環境中親 電子物質曝露によるレドックスシグナル変 動および毒性発現に対する RSS の処置効果を 調べた。ウシ大動脈血管内皮細胞において Cd 曝露で観察される HSP90/HSF1 シグナルの変 動および細胞毒性は、RSS 産生酵素のひとつ である CSE のノックダウンで増加し、Na₂S₄ 処置では逆に減弱した。Cd 曝露でマウスの急 性肝傷害が見られるが、CSE 欠損でさらに増 悪し、Na₂S4処置あるいは Cd のイオウ付加体 として同定した CdS 曝露では殆ど観察されな かった。分取用逆相カラムを用いて 1,4-NQ と Na₂S₄ との反応液からイオウ付加体を単 離・精製し、その構造が 2-[(1,4-dioxonaphthalen-2-yl)-sulfanyl]-3-hydroxynap hthalene-1,4-dione(1,4-NQ-S-1,4-NQ-OH) であることを明らかにした。マウス初代肝細 胞を 1.4-NQ-S-1.4-NQ-OH に曝露すると、母 化合物である 1,4-NQ 曝露時で見られる PTEN/Akt/CREB シグナル変動および細胞毒性 は殆ど見られなかった。 ニンニクのヘキサン抽出画分には MeHg を (MeHg)2S に変換できる RSS 含有低分子が存在 することが明らかとなった。同様な RSS 含有低分子はタマネギにも含まれていた。そこで、MeHg を本抽出画分と同時曝露した結果、それぞれの環境中親電子物質の高用量曝露で観察される致死効果は優位に減弱された。一連の研究成果は、RSS が環境中親電子物質を捕獲・不活性化してレドックスシグナル変動および毒性を制御するリスク軽減因子であることを示唆している。 ## 5 . 主な発表論文等 (研究代表者、研究分担者及び連携研究者に は下線) 〔雑誌論文〕(計30件) *はCorresponding authorを示す。 全て査読有 - (1) Shinkai Y, Masuda A, Akiyama M, Xian M, *Kumagai Y. Cadmium-mediated activation of the HSP90/HSF1 pathway regulated by reactive persulfides/polysulfides. *Toxicological Sciences* 156: 412-421, 2017. DOI: 10.1093/toxsci/kfw268 - (2) Abiko Y, Shinkai Y, Unoki T, Hirose R, Uehara T, *Kumagai Y. Polysulfide Na₂S₄ regulates the activation of PTEN/Akt/CREB signaling and cytotoxicity mediated by 1,4-naphthoquinone through formation of sulfur adducts. *Scientific Reports* 7: 4814, 2017. DOI: 10.1038/s41598-017-04590-z - (3) Akaike T, Ida T, Fan-Yan Wei FY, Nishida M, Kumagai Y, Alam MM, Ihara H, Sawa T, Matsunaga T, Kasamatsu S, Nishimura A, Morita M, Tomizawa K, Nishimura A, Watanabe S, Inaba K, - Shima H, Tanuma N, Jung M, Fujii S, Watanabe Y, Ohmuraya M, Nagy P, Feelisch M, Fukuto JM, Motohashi H. Cysteinyl-tRNA synthetase governs cysteine polysulfidation and mitochondrial bioenergetics. *Nature Communications* 8: 1177, 2017. DOI: 10.1038/s41467-017-01311-y - (4) Akiyama M, Shinkai Y, Unoki T, Shim I, Ishii I, *Kumagai Y. Capture of cadmium by reactive polysulfides attenuates cadmium-induced adaptive response and hepatotoxicity. Chemcical Research in Toxicology 30: 2209-2217, 2017. DOI: 10.1021/acs. chemrestox.7b00278 - (5) Shinkai Y, Kimura T, Itagaki A, Yamamoto C, Taguchi K, Yamamoto M, *Kumagai Y, Kaji T. Partial contribution of the Keap1-Nrf2 system to cadmium-mediated metallothionein expression in vascular endothelial cells. Toxicology and Applied Pharmacology 295: 37-46, 2016. DOI: 10.1016/j.taap.2016.01.020 - (6) Unoki T, Abiko Y, Toyama T, Uehara T, Tsuboi K, Nishida M, Kaji T, *Kumagai Y. Methylmercury, an environmental electrophile capable of activation and disruption of the Akt/CREB/BcI-2 signal transduction pathway in SH-SY5Y cells. Scientific Reports 6: 28944, 2016. DOI: 10.1038/srep28944 - (7) Abiko Y, Sha L, Shinkai Y, Unoki T, Luong NC Tsuchiya Y, Watanabe Y, Hirose R, Akaike T, *Kumagai Y. 1,4-Naphthoguinone activates HSP90/HSF1 pathway through S-arylation of HSP90 in A431 cells: Negative regulation of the redox signal transduction pathway by persulfides/polysulfides. Radical Biology & Medicine 104: 2017. 118-128. DOI: 10.1016/j. freeradbiomed.2016.12.047 - (8) Abiko Y, Luong C N, *Kumagai Y. A Biotin-PEAC5-maleimide labeling assay to detect electrophiles. Journal of Toxicological Sciences 40: 405-411, 2015. DOI: 10.2131/jts.40. 405 - (9) Abiko Y, Yoshida E, <u>Ishii I</u>, Fukuto JM, <u>Akaike T</u>, *Kumagai Y. Involvement of reactive persulfides in biological bismethylmercury sulfide formation. <u>Chemical Research in Toxicology</u> 28: 1301-1306, 2015. DOI: 10.1021/acs. chemrestox.5b00101 - (10) Abiko Y, Puga A, *Kumagai Y. Covalent binding of quinones activates the Ah - receptor in Hepa1c1c7 cells. *Journal* of *Toxicological Sciences* 40: 873-886, 2015. DOI: 10.2131/its.40.873 - (11) Toyama T, Abiko Y, Katayama Y, Kaji T, *Kumagai Y. S-Mercuration of ubiquitin C-terminal hydrolase L1 through Cys152 by methylmercury causes inhibition of its catalytic activity and reduction of monoubiquitin levels in SH-SY5Y cells. Journal of Toxicological Sciences 40: 887-893, 2015. DOI: 10.2131/jts.40. 887 - (12) Toyama T, Shinkai Y, Yazawa A, Kakehashi H, Kaji T, *Kumagai Y. Glutathione-mediated reversibility of covalent modification of ubiquitin carboxyl- terminal hydrolase L1 by 1,2-naphthoquinone through Cys152, but not Lys4. *Chemical Biological Interactions* 214: 41-48, 2014. DOI: 10.1016/j.cbi.2014.02.008 - (13) Ida T, Sawa T, Ihara H, Tsuchiya Y, Watanabe Y, <u>Kumagai Y</u>, Suematsu M, Motohashi H, Fujii S, Matsunaga T, Yamamoto M, Ono K, Devarie-Baez NO, Xian M, Fukuto JM, <u>Akaike T</u>. Reactive cysteine persulfides and S-polythiolation regulate oxidative stress and redox signaling. *Proceedings of the National Academy of Sciences*, *USA* 111: 7606-7611, 2014. DOI: 10.1073/pnas.1321232111 - (14) Abiko Y, Mizokawa M, *Kumagai Y. Activation of the Keap1/Nrf2 pathway through covalent modification of the 2-alkenal group of aliphatic electrophiles in Coriandrum sativum L. Journal of Agricultural and Food Chemistry 62: 10936-10944,2014. DOI: 10.1021/jf5030592 - (15) Toyama T, Shinkai Y, Kaji T, *Kumagai Y. A convenient method to assess chemical modification of protein thiols by electrophilic metals. Journal of Toxicological Sciences 38: 477-484, 2013. DOI: https://doi.org/10.2131/jts.38.477 - (16) Abiko Y, *Kumagai Y. Interaction of Keap1 modified by 2-tert-butyl-1,4-benzoquinone with GSH: Evidence for S-transarylation. Chemical Research in Toxicology 26: 1080-1087, 2013. DOI: 10.1021/tx400085h - (17) *Kumagai Y, Abiko Y. Environmental electrophiles: protein adducts, modulation of redox signaling and interaction with persulfides/polysulfides. Chemical Research in - *Toxicology* 30: 203-219, 2017. DOI: 10.1021/acs.chemrestox.6b00326 - (18) Sawa T, <u>Kumagai Y</u>, <u>Akaike T</u>. Regulation of redox signaling by nitrated nucleotide and reactive cysteine persulfides. *Nitric Oxide: Biology and Pathobiology* 3: 231-235, 2017. https://www.sciencedirect.com/science/article/pii/B97801280427310 0017X - (19) Nishida M, Kumagai Y, Ihara H, Fujii S, Motohashi H, Akaike T. Redox signaling regulated by electrophiles and reactive sulfur species. Journal of Clinical Biochemistry and Nutrition 58: 91-98, 2016. DOI: 10. 3164/jcbn.15-111 - (20) *Kumagai Y, Abiko Y, Luong NC. Chemical toxicology of reactive species in the atmosphere: Two decades of progress in an electron acceptor and an electrophile. *Journal of Toxicological Sciences* 41: SP37-47, 2016. DOI: 10.2131/jts.41.SP37 - (21) Kanda H, Shinkai Y, *Kumagai Y. S-Mercuration of cellular proteins by methylmercury and its toxicological implications. Journal of Toxicological Sciences 39: 687-700, 2014. DOI: https://doi.org/10.2131/jts.39.687 - (22) Ono K, Akaike T, Sawa T, Kumagai Y, Wink DA, Tantillo DJ, Hobbs AJ, Nagy P, Xian M, Lin J, Fukuto JM. The redox chemistry and chemical biology of H₂S, hydropersulfides and derived species: Implication to their possible biological activity and utility. Free Radical Biology & Medicine 77: 82-94, 2014. DOI: 10.1016/j.freeradbiomed. 2014.09.007 - (23) *Kumagai Y, Kanda H, Shinkai Y, Toyama T. The role of the Keap1/Nrf2 pathway in the cellular response to methylmercury. Oxidative Medicine and Cellular Longevity; Article ID 84827, 2013. DOI: 10.1155/2013/84827 9 - (24) <u>熊谷嘉人</u>. 環境中親電子物質に対する 生体応答と捕獲・不活性化因子. 最新医 学「エピジェネティックスと環境科 学」;72: 77-81, 2017. http://www. saishin-igaku.co.jp/backnum/2017/m7 205.html - (25) <u>熊谷嘉人</u>、安孫子ユミ.環境中親電子物質のレドックスシグナル伝達変動および毒性発現とそれらを制御する活性イオウ分子.硫酸と工業:70,109-116,2017.http://www.ryusan-kyokai.org/pub/pdf/No70-8.pdf - (26) 澤智裕、<u>熊谷嘉人</u>、<u>赤池孝章</u>. たくさん 繋がる S. 実験医学「驚愕の代謝システム」: 32; 46-50, 2014. https://www. yodosha.co.jp/yodobook/book/9784758 103411/ - (27) <u>熊谷嘉人</u>、内田浩二.活性イオウ分子に よる環境中親電子物質の解毒代謝.細 胞工学 34: 358-363.2015. http://mol. medicalonline.jp/archive/search?joab6saikb&ye=2015&vo=34&issue=4 - (28) <u>熊谷嘉人</u>、安孫子ユミ.レドックスサイクルを介して酸化ストレスを生じる大気中成分.別冊「医学のあゆみ」レドックス UPDATE 312-317, 2015. https://www.ishiyaku.co.jp/search/details_1.aspx?bookcode=284420 - (29) <u>熊谷嘉人</u>. 活性酸素による化学修飾とレドックスセンサータンパク質. 酸化ストレスの医学; 改訂第2版:154-160, 2014. http://www.shindan.co.jp/books/index.php?menu=01&cd=211800&k bn=1 - (30) <u>熊谷嘉人</u>.酸化ストレスと親電子シグナル制御.医学のあゆみ「活性酸素 -基礎から病態解明・制御まで」;247:787-793,2013.https://www.ishiyaku.cojp/magazines/ayumi/AyumiArticle Detail.aspx?BC=286400&AC=13297 ## [学会発表](計33件) 全て招待講演 - (1) <u>Kumagai Y</u>: Electrophilic stress: Good or bad? National Taiwan University Biotech Medicine Industry Seminar 2018年 - (2) <u>熊谷嘉人</u>: 親電子ストレスを制御するレドックスシグナル伝達と活性イオウ分子. 第 39 回日本薬学会九州支部コロキウム 2017 年 - (3) <u>Kumagai Y</u>: The phase-zero reaction: capture and inactivation of electrophiles by persulfides. フォーラム 2017: 衛生薬学・環境トキシコロジー 2017年 - (4) <u>Kumagai</u> Y: Is environmental electrophile an essential item for exposome? 第 44 回日本毒性学会学術年会 2017 年 - (5) <u>熊 谷 嘉 人</u>: Environmental electrophiles: Modulation of redox signaling and interaction with persulfides/polysulfides. 第 90 回日 本細菌学会総会 国際シンポジウム 2017 年 - (6) <u>熊谷嘉人</u>:環境中親電子物質によるレドックスシグナル伝達の活性化と破綻. 第69回日本酸化ストレス学会学術集会 2016 年 - (7) 熊谷嘉人: 親電子物質/電子受容体で活性イオウ分子の役割を探る. 第12回レ - ドックスイノベーションシンポジウム 2016 年 - (8) 熊谷嘉人: フェーズゼロ反応: 活性イオウ分子による親電子物質の捕獲. 第89回日本生化学会大会2016年 - (9) 熊谷嘉人:環境中に存在する親電子物質 および電子受容体で活性イオウ分子の 役割を探る.オルガネラ研究会 2016 2016 年 - (10) 熊谷嘉人:メチル水銀による活性イオウ 分子の捕獲とそれに伴うレドックスホ メオスタシスの破綻.第43回日本毒性 学会学術年会2016年 - (11) Kumagai Y: The phase-zero reaction: caputure of electrophiles by reactive sulfur species. The 9th International Conference on the Biology, Chemistry, and Therapeutic Applications of Nitric Oxide. Satellite Symposium on Chemical Biology of Reactive Persulfide 2016 年 - (12) <u>Kumagai Y</u>: Reactive sulfur species as a regulator molecule for the phase-zero reaction to attenuate reactivity of electrophiles. The 9th International Conference on the Biology, Chemistry, and Therapeutic Applications of Nitric Oxide. The 16th Annual Scientific Meeting of the Nitric Oxide Society of Japan 2016 年 - (13) <u>Kumagai Y</u>: The chemical biology of electrophiles and reactive sulfur species. The special seminar for visiting professor of China Medical University 2016 年 - (14) <u>熊谷嘉人</u>: 親電子シグナルを制御する活性イオウ分子. 日本薬学会第 136 年会2016年 - (15) <u>Kumagai Y</u>: Role of Reactive Sulfur Species in Detoxification of Methylmercury: Phase Zero Reaction for Electrophile Trapping and Detoxification. Society of Toxicology 55th Annual Meeting Society of Toxicology and Japanese Society of Toxicology Mini-Symposium 2016 年 - (16) <u>熊谷嘉人</u>:環境中親電子物質による活性 イオウ分子の捕獲とそれに伴うレドッ クスホメオスタシスの撹乱. 第89回日 本薬理学会年会 日本薬理学会・日本毒 性学会共催シンポジウム 2016 年 - (17) Kumagai Y: Contribution of the Keap1-Nrf2 pathway and CBS/CSE to produce reactive sulfur species to protection against methylmercury. The 9th Congress of Toxicology in Developing Countries 2015 年 - (18) <u>Kumagai Y</u>: Chemical Biology of Electrophiles. CEPID-Redoxoma seminar in University of Sao Paulo 2015 年 - (19) <u>Kumagai</u> <u>Y</u>: Activation of the Keap1/Nrf2 pathway through covalent modification of the 2-alkenal group of aliphatic electrophiles in Coriandrum sativum L. The 7th International Congress of Asian Society of Toxicology 2015 年 - (20) 熊谷嘉人: 親電子物質の不活性化に関与する活性イオウ分子: フェーズゼロ反応の提案. 第 42 回日本毒性学会学術年会2015 年 - (21) <u>熊谷嘉人</u>:環境中親電子物質によるタンパク質の化学修飾を介したシグナル伝達活性化. 第 42 回日本毒性学会学術年会 2015 年 - (22) Kumagai Y: Environmental electrophiles-mediated modulation of redox signal transduction pathways and toxicity regulated by reactive sulfur species. 2015 International Conference on Industrial Hygiene and Occupational Medicine 2015年 - (23) <u>熊谷嘉人</u>:環境中親電子物質の化学修飾を介したレドックスシグナル伝達変動とそれを制御する活性イオウ分子.東京大学・分子予防医学セミナー 2015 年 - (24) <u>熊谷嘉人</u>:親電子物質のレドックスシグナル伝達変動とそれを制御する活性イオウ分子. 自然科学研究機構岡崎統合バイオサイエンスセンター心循環シグナル研究部門(生理学研究所)部門公開セミナー 2015 年 - (25) <u>熊谷嘉人</u>:環境中親電子物質の化学修飾を介したレドックスシグナル伝達変動とそれを制御する活性イオウ分子.第14回分子予防環境医学研究会大会2015年 - (26) <u>熊谷嘉人</u>: 親電子物質の反応性を制御する活性イオウ分子: フェーズゼロ反応の 提案. レドックスシンポジウム: 酸素生物学の誕生 2014 年 - (27) <u>熊谷嘉人</u>:メチル水銀によるタンパク質 の S-水銀化を制御する活性イオウ分 子. 第 41 回日本毒性学会学術年会 2014 年 - (28) 熊谷嘉人:環境中親電子物質のケミカルバイオロジー: 化学修飾を介したシグナル伝達の変動および毒性発現とそれらを制御する活性イオウ分子. 東北薬科大学創薬研究センターシンポジウム2014年 - (29) <u>Kumagai Y</u>: Activation of PTP1B/ EGFRsignal transduction pathway mediated by environmental electrophiles. 2014 Spring Annual - Convention of Pharmaceutical Society of Korea 2014年 - (30) <u>Kumagai Y</u>: Cooperative role of the Keap1-Nrf2 pathway and CBS/CSE in methyl mercury toxicity. The Environmental Response 2014年 - (31) <u>Kumagai</u> Y: Adaptive response and detoxification of the environmental electrophile regulated by the Keap1/Nrf2 pathway. International Conference on Nutrition and Physical Activity in Aging, Obesity and Cancer (NAPA2013) 2013 年 - (32) <u>Kumagai Y</u>: Role of the keap1/Nrf2 pathway in methylmercury-mediated neurotoxicity. The XIII International Congress of Toxicology 2013 年 - (33) <u>熊谷嘉人</u>:環境中親電子物質の有害性を 制御する活性イオウ分子. 第 24 回日本 生体防御学会学術総会 2013 年 #### 〔その他〕 ホームページ等 http://www.md.tsukuba.ac.jp/environment al_medicine/index.html http://www.md.tsukuba.ac.jp/environment al_medicine/kibanS/index.html ## 6. 研究組織 (1)研究代表者 熊谷 嘉人 (KUMAGAI, Yoshito) 筑波大学・医学医療系・教授 研究者番号:00250100 #### (2)研究分担者 赤池 孝章(AKAIKE, Takaaki) 東北大学・医学系研究科・教授 研究者番号:20231798 蕨 栄治(WARABI, Eiji) 筑波大学・医学医療系・講師 研究者番号:70396612 石井 功(ISHII, Isao) 昭和薬科大学・薬学部・教授 研究者番号: 90292953 西田 基宏(NISHIDA, Motohiro) 大学共同利用機関法人自然科学研究機構 (岡崎共通研究施設)・岡崎統合バイオサ イエンスセンター・教授 研究者番号: 90342641