

Polycrystalline thin-film transistors fabricated on high-mobility solid-phase-crystallized Ge on glass

著者(英)	K. Moto, K. Yamamoto, T. Imajo, Takashi
	SUEMASU, H. Nakashima, Kaoru TOKO
journal or	Applied physics letters
publication title	
volume	114
number	21
page range	212107
year	2019-05
権利	(C) 2019 Author(s).
	This article may be downloaded for personal
	use only. Any other use requires prior
	permission of the author and AIP Publishing.
	This article appeared in Appl. Phys. Lett.
	114, 212107 (2019) and may be found at
	https://doi.org/10.1063/1.5093952.
URL	http://hdl.handle.net/2241/00158700

doi: 10.1063/1.5093952

Polycrystalline thin-film transistors fabricated on high-mobility solid-phase-crystallized Ge on glass

Cite as: Appl. Phys. Lett. **114**, 212107 (2019); https://doi.org/10.1063/1.5093952 Submitted: 26 February 2019 . Accepted: 12 May 2019 . Published Online: 31 May 2019

K. Moto 🗓, K. Yamamoto 🗓, T. Imajo, T. Suemasu, H. Nakashima, and K. Toko

ARTICLES YOU MAY BE INTERESTED IN

Enhanced n-type β -Ga₂O₃ ($\overline{2}01$) gate stack performance using Al₂O₃/SiO₂ bi-layer dielectric Applied Physics Letters 114, 212106 (2019); https://doi.org/10.1063/1.5089627

Atomic layer deposition of energy band tunable tin germanium oxide electron transport layer for the SnS-based solar cells with 400 mV open-circuit voltage

Applied Physics Letters 114, 213901 (2019); https://doi.org/10.1063/1.5098766

Magnetically and optically tunable terahertz radiation from Ta/NiFe/Pt spintronic nanolayers generated by femtosecond laser pulses

Applied Physics Letters 114, 212405 (2019); https://doi.org/10.1063/1.5099201

Lock-in Amplifiers

... and more, from DC to 600 MHz

Polycrystalline thin-film transistors fabricated on high-mobility solid-phase-crystallized Ge on glass

Cite as: Appl. Phys. Lett. 114, 212107 (2019); doi: 10.1063/1.5093952 Submitted: 26 February 2019 · Accepted: 12 May 2019 · Published Online: 31 May 2019

K. Moto, ^{1,2} (b) K. Yamamoto, ^{3,a)} (b) T. Imajo, T. Suemasu, H. Nakashima, ⁴ and K. Toko ^{1,5,a)}

AFFILIATIONS

- Institute of Applied Physics, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
- ²JSPS Research Fellow, 8 Ichiban-cho, Chiyoda-ku, Tokyo 102-8472, Japan
- ³Interdisciplinary Graduate School of Engineering Science, Kyushu University, Kasuga, Fukuoka 816-8580, Japan
- ⁴Global Innovation Center, Kyushu University, Kasuga, Fukuoka 816-8580, Japan
- ⁵PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan

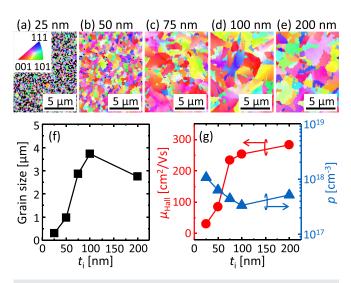
ABSTRACT

Low-temperature formation of Ge thin-film transistors (TFTs) on insulators has been widely investigated to improve the performance of Si large-scale integrated circuits and mobile terminals. Here, we studied the relationship between the electrical properties of polycrystalline Ge and its TFT performance using high-mobility Ge formed on glass using our recently developed solid-phase crystallization technique. The field-effect mobility $\mu_{\rm FE}$ and on/off currents of the accumulation-mode TFTs directly reflected the Hall hole mobility $\mu_{\rm Hall}$, hole concentration, and film thickness of Ge. By thinning the 100-nm thick Ge layer with a large grain size (3.7 μ m), we achieved a high μ_{Hall} (190 cm²/Vs) in a 55-nm thick film that was almost thin enough to fully deplete the channel. The TFT using this Ge layer exhibited both high $\mu_{\rm FE}$ $(170 \text{ cm}^2/\text{Vs})$ and on/off current ratios ($\sim 10^2$). This is the highest μ_{FE} among low-temperature ($< 500 \,^{\circ}\text{C}$) polycrystalline Ge TFTs without minimizing the channel region ($<1 \mu m$).

Published under license by AIP Publishing. https://doi.org/10.1063/1.5093952

Ge has attracted attention as the most promising candidate for post-Si materials because it has a higher carrier mobility than Si and is compatible with the conventional Si process. Ge metaloxide-semiconductor field-effect transistor (MOSFET) mobilities have exceeded those of Si-MOSFETs because of the development of device technologies including gate stacks.¹⁻⁶ However, leakage current in bulk Ge is inevitable because of the narrow bandgap (0.66 eV). Ge-on-insulator (GOI) technology is the most promising solution. High quality GOI structures have been obtained by mechanical transfer, oxidationinduced condensation,^{5,10} rapid-melting growth,^{11–14} and lamp annealing. 15,16 The GOI structure formed by these methods effectively suppresses the leakage current and improves the device performance of Ge-MOSFETs. These results demonstrate the potential of Ge transistors; however, their application is limited because these methods require a single-crystal wafer or high temperature process (>500 °C).

Research on low-temperature synthesis of polycrystalline Ge (poly-Ge) thin films on insulators has been conducted for decades. This enables monolithic integration of high-performance Ge thin-film transistors (TFTs) into Si-large-scale integrated circuits (LSIs) and flat


panel displays. Ge-TFTs have been established using poly-Ge formed by solid-phase crystallization (SPC), 17-20 laser annealing, 21 seed layer technique,²² and metal-induced crystallization.^{23–27} Poly-Ge generally has a high hole concentration p because of defect-induced acceptors and low Hall effect hole mobility μ_{Hall} due to grain boundary scattering. 18,28 Although the miniaturization of the channel region $(<1 \mu m)$ and the multigate structure have successfully reduced the leakage current and improved MOSFET mobility, the crystallinity of poly-Ge is insufficient to overcome the performance of Ge-TFTs over Si-MOSFETs. To improve the performance of Ge-TFTs, it is essential not only to enhance the crystallinity of poly-Ge but also to comprehensively study the relationship between its electrical properties and TFT characteristics.

SPC progresses in two steps: nucleation and subsequent lateral growth. Because the grain size is determined by the balance between the nucleation frequency and the lateral growth rate, there is a possibility of enlarging the grain size by devising growth conditions.¹⁸ We recently found that the densification of the amorphous Ge (a-Ge) precursor significantly enlarged the grain size of poly-Ge due to lateral

^{a)}Authors to whom correspondence should be addressed: yamamoto.keisuke.380@m.kyushu-u.ac.jp and toko@bk.tsukuba.ac.jp

growth promotion in SPC.²⁹ Moreover, the precursor densification reduced the trap-state density $(4.4 \times 10^{11} \, \mathrm{cm}^{-2})$ and energy barrier height $(6.4 \, \mathrm{meV})$ of the grain boundary, resulting in a μ_{Hall} of 340 cm²/Vs.²⁹ Additionally, μ_{Hall} was updated to 620 cm²/Vs by thickening a-Ge, postannealing at 500 °C, and inserting GeO₂ underlayer.^{30,31} This μ_{Hall} is the highest ever recorded for a thin film directly grown on an insulator at temperatures below 900 °C. In the present study, we fabricate poly-Ge TFTs using SPC-Ge and discuss the relationship between the film properties (thickness, μ_{Hall} and p) and TFT characteristics (field-effect mobility: μ_{FE} and on/off currents). We demonstrate the highest μ_{FE} among low-temperature (<500 °C) poly-Ge TFTs without minimizing the channel region.

The a-Ge layers were deposited on SiO₂ glass substrates using the Knudsen cell of a molecular beam deposition system (base pressure: 5×10^{-7} Pa). The initial film thickness of the a-Ge layer, t_i , ranged from 25 to 200 nm. The Ge layers were densified by heating the substrate at 125 °C during deposition.²⁹ The samples were then loaded into a conventional tube furnace in an N2 atmosphere and annealed at 450 °C for 5 h to induce SPC. Figures 1(a)-1(e) show the crystal orientation maps obtained by electron backscattering diffraction (EBSD). The EBSD images indicate that the grain size dramatically varies with t_i , while the crystal orientation is almost random for all t_i . Figure 1(f) shows that the highest grain size is obtained at $t_i = 100 \,\mathrm{nm}$. This behavior likely reflects the balance of the precursor density and the stress in the Ge film. The heating deposition densifies the precursor at $t_i > 50$ nm, while the precursor density remains low at $t_i \le 50$ nm.²⁹ For $t_i > 50 \,\mathrm{nm}$ where the precursor is densified, the grain size increases due to the lateral growth promotion. Conversely, in SPC, heterogeneous nucleation occurs at the film surface or substrate interface. The thin films have stress due to the difference in thermal expansion coefficients with the substrates, which retard the nucleation.³ The thicker film makes the surface stress more relaxed and then makes

FIG. 1. Initial film thickness t_i dependence of the grain size and electrical properties of the SPC-Ge layers. (a)–(e) EBSD images with various t_i values (25, 50, 75, 100, and 200 nm). The colors indicate the crystal orientation, according to the inserted color key. (f) Average grain size determined by EBSD analyses. (g) Hall hole mobility $\mu_{\rm Hall}$ and hole concentration p obtained by the Hall effect measurement with the van der Pauw method as a function of t_i .

surface nucleation more likely to occur, resulting in a smaller grain size. Reflecting the balance, the grain size is maximized at $t_{\rm i}=100$ nm. We used Hall effect measurements to evaluate the electrical properties of the SPC-Ge layers. All samples showed p-type conduction because the defects in Ge provide shallow acceptor levels that generate holes at room temperature. Therefore, larger grain sizes, that is, fewer grain boundaries, provide lower p, as shown in Figs. 1(f) and 1(g). Figure 1(g) also shows that $\mu_{\rm Hall}$ peaks at $t_{\rm i}=200$ nm, whereas the grain size peaks at $t_{\rm i}=100$ nm. This behavior is likely attributed to the carrier scattering near the Ge/SiO₂ interface. Because the interface scattering is weaker for the thicker film, $t_{\rm i}=200$ nm exhibits higher $\mu_{\rm Hall}$ than $t_{\rm i}=100$ nm.

We fabricated accumulation-mode metal source/drain (S/D) p-channel TFTs using SPC-Ge with different t_i values (Fig. 1). Figure 2 shows the process and structure. First, SPC-Ge on glass was isolated into a 55- \times 155- μ m² rectangle using a diluted H₂O₂ solution.² Then, sacrificial oxidation was performed by electron cyclotron resonance (ECR) plasma oxidation forming GeO₂ (1 nm thick). After removing the sacrificial oxide by wet treatment, photoresist was coated and patterned into S/D shape rectangles on both sides of the isolated Ge island. Pt and TiN (each 10 nm thick) as metal S/Ds were sequentially deposited using radio-frequency magnetron sputtering and patterned by removal of photoresist. Postmetallization annealing (PMA) was performed at 400 °C for 30 min in N₂ to form PtGe/Ge contacts. The PtGe/Ge contacts have a low hole barrier height and are suitable for accumulation-mode p-channel Ge-TFTs.³³ We used Al/SiO₂/Al₂O₃/ SiO₂/GeO₂ for the gate stack. GeO₂ (3 nm thick) was formed by ECR plasma oxidation at 130 °C and protected with an SiO₂ film (2 nm thick). Al₂O₃ (20 nm thick) was then deposited using atomic layer

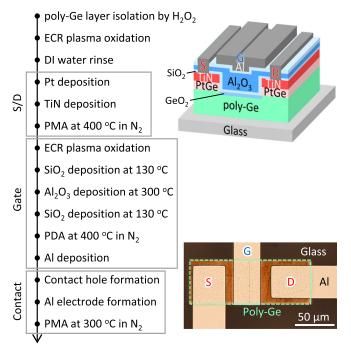
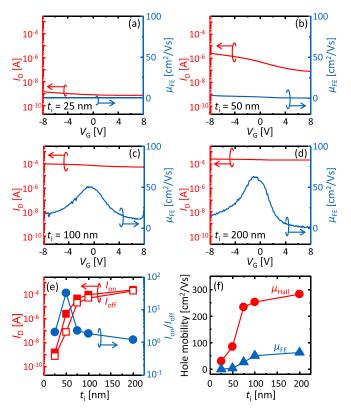


FIG. 2. Fabrication process flow (left) and schematic and an optical micrograph (right) of the p-channel SPC-Ge TFTs.


deposition at 300 °C. This Al_2O_3 film electrically isolates the sidewall of metal S/D and the gate electrode. To protect Al_2O_3 during gate electrode patterning, SiO₂ (5 nm thick) was deposited by ECR plasma sputtering at 130 °C. Subsequently, postdeposition annealing (PDA) was performed at 400 °C for 30 min in N₂. As a gate electrode, Al (200 nm thick) was deposited using vacuum evaporation and patterned by wet etching. A contact hole was opened and an Al electrode (100 nm thick) was deposited using vacuum evaporation and patterned by a lift-off process. Finally, contact annealing was performed at 300 °C for 30 min in N₂. The channel width and length (*W/L*) were 55 and 5–15 μ m, respectively (Fig. 2). Here, all processes including SPC were conducted below 450 °C.

We estimated μ_{FE} of the TFTs using the following equation:

$$\mu_{FE} = g_m \, \frac{L}{W} \frac{1}{C_{ox} \, V_D},\tag{1}$$

where transconductance g_{m} was obtained from the drain current $(I_{\rm D})$ -gate voltage $(V_{\rm G})$ characteristics. The gate oxide capacitance $C_{\rm ox}$ determined from the capacitance-voltage characteristics of the MOS capacitor with the same gate stack fabricated on the bulk Ge substrate, was 0.20 μ F/cm² corresponding to the equivalent oxide thickness of 17.7 nm. The drain voltage V_D was fixed at -0.1 V. Figures 3(a)-3(d)show that the $I_{\rm D}$ – $V_{\rm G}$ and $\mu_{\rm FE}$ characteristics vary significantly with $t_{\rm i}$. Figure 3(e) shows on current I_{on} , off current I_{off} , and on/off current ratio $I_{\rm on}/I_{\rm off}$ estimated from the $I_{\rm D}$ - $V_{\rm G}$ characteristics. $I_{\rm on}$ increases with increasing t_i , which reflects μ_{Hall} [Fig. 1(g)] and exhibits high values $(>10^{-4} \text{ A})$ at $t_i \ge 100 \text{ nm}$. I_{off} is determined by the relationship between $t_{\rm i}$ and the maximum depletion layer width $d_{\rm max}$, which can be estimated from p. For example, the d_{max} of Ge when $p = 3 \times 10^{17} \text{ cm}^{-3}$ is approximately 54 nm, assuming that the dielectric constant and intrinsic carrier concentration of Ge are 16 and 2.4×10^{13} cm⁻³ at room temperature, respectively. From the relationship between d_{max} and t_i , we found that the lower t_i provides the higher occupation of the depletion layer in the whole SPC-Ge layer, which decreases I_{off} [Fig. 3(e)]. Reflecting I_{on} and I_{off} $I_{\text{on}}/I_{\text{off}}$ reaches the maximum at $t_{\text{i}} = 50 \text{ nm}$. Figure 3(f) shows that $\mu_{\rm FE}$ is consistent with the trend of $\mu_{\rm Hall}$ reflecting the properties of SPC-Ge, while μ_{FE} is much lower than μ_{Hall} . This is likely because not only carrier scattering at the MOS interface but also large $I_{
m off}$ causes underestimation of $g_{\rm m}$ and $\mu_{\rm FE}$. To overcome this problem, a-Ge layer compatible with high μ_{Hall} (corresponding high I_{on}) and a thin film (corresponding low I_{off}) is desirable.

Considering the aspect ratio of the grain size and film thickness for $t_i \geq 50$ nm, the grain size is constant in the depth direction for each t_i. The influence of the carrier scattering near the Ge/SiO₂ interface should be identical at the same thickness. Therefore, for achieving high μ_{Hall} with a thin film, we thinned the $t_i = 100$ nm sample, which has the largest grain size [Fig. 1(f)], using chemical-mechanical polishing (CMP). Figure 4(a) shows that p is constant in the depth direction. According to d_{max} estimated from p, full depletion in SPC-Ge is obtained when the thinned film thickness t_{CMP} is below 55 nm. Conversely, μ_{Hall} decreases significantly for $t_{CMP} < 50 \text{ nm}$ [Fig. 4(b)], likely reflecting carrier scattering at the Ge/SiO₂ interface. 15,3 Therefore, we determined that $t_{\text{CMP}} = 55 \,\text{nm}$ is almost optimal for achieving both high $\mu_{\rm FE}$ and $I_{\rm on}/I_{\rm off}$. The $t_{\rm CMP}=55\,{\rm nm}$ sample showed a smooth surface [Fig. 4(b), root mean square value: 1.3 nm], and the same grain size as before CMP. This sample was processed into TFTs by the procedure shown in Fig. 2. Figure 4(c) shows the

FIG. 3. Electrical properties of p-channel SPC-Ge TFTs with various initial film thickness $t_{\rm i}$ values, where channel length $L=10~\mu{\rm m}$. (a)–(d) $I_{\rm D}$ - $V_{\rm G}$ and field-effect mobility $\mu_{\rm FE}$ characteristics at $V_{\rm D}=-0.1$ V. (e) On current $I_{\rm on}$, off current $I_{\rm off}$, and on/off current ratio $I_{\rm on}/I_{\rm off}$ and (f) $\mu_{\rm FE}$ and Hall effect mobility $\mu_{\rm Hall}$ as a function of $t_{\rm i}$.

typical p-channel transistor operation, i.e., I_D increases with increasing $V_{\rm G}$. Figure 4(d) shows high $I_{\rm on}/I_{\rm off}$ (10²) and $\mu_{\rm FE}$ (170 cm²/Vs) because of both the high $I_{\rm on}$ due to the high $\mu_{\rm Hall}$ and low $I_{\rm off}$ due to the thin thickness (55 nm) in SPC-Ge. The current TFT performance is the highest among simple poly-Ge TFTs formed on glass and will be further improved by nanofabrication processes such as miniaturization of the channel region and multigate structure. For TFTs fabricated on polycrystalline semiconductors, their variability is also important. Specifically, it is more sensitive in the case of devices with a channel length comparable to the grain size like this study. The cumulative distribution of measured $\mu_{\rm FE}$ s for different channel lengths (5, 10, and 15 μ m) in the same substrate is shown in Fig. 4(e). The experimental data show a clear increase in variability as the channel length decreases, which is in good agreement with the trends reported in Ref. 34 from both the theoretical and experimental viewpoints. Device variability will also be improved by device design optimization for the corresponding grain size.

In conclusion, we studied the relationship between film properties (thickness, $\mu_{\rm Hall}$, and p) and TFT characteristics ($\mu_{\rm FE}$ and $I_{\rm on}/I_{\rm off}$) using high-mobility poly-Ge layers formed on glass by SPC. Thicker $t_{\rm i}$ enabled higher $\mu_{\rm FE}$ because of higher $\mu_{\rm Hall}$, while it enabled larger $I_{\rm off}$ which led to poor $I_{\rm on}/I_{\rm off}$. These results indicated that both high $\mu_{\rm Hall}$ and thin $t_{\rm i}$ are essential to achieve both high $\mu_{\rm FE}$ and $I_{\rm on}/I_{\rm off}$. By thinning a 100-nm thick Ge layer with a large grain size (3.7 μ m), we achieved a high $\mu_{\rm Hall}$ (190 cm²/Vs) at a thin film (55 nm) that is almost

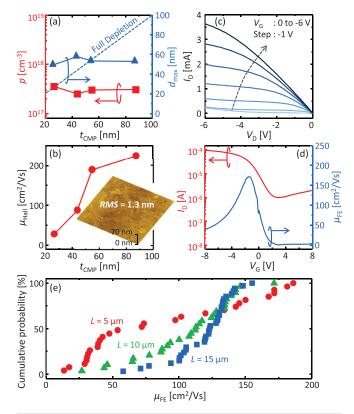


FIG. 4. (a) and (b) "In-depth" profiles of electrical properties for SPC-Ge layers for initial film thickness $t_{\rm i}=100\,{\rm nm}$. (a) Hole concentration p and maximum depletion layer width $d_{\rm max}$ estimated from p as a function of film thickness $t_{\rm CMP}$ thinned by using CMP. The dotted line shows the line when the Ge layer is fully depleted. (b) Hall hole mobility $\mu_{\rm Hall}$ as a function of $t_{\rm CMP}$. The inset in (b) shows the atomic force micrograph of SPC-Ge thinned to $t_{\rm CMP}=55\,{\rm nm}$ with a scan region of $10\times10~\mu{\rm m}^2$. (c) $l_{\rm D}$ - $l_{\rm D}$ characteristics and (d) $l_{\rm D}$ - $l_{\rm D}$ characteristics and field-effect mobility $\mu_{\rm FE}$ at $l_{\rm D}=-0.1\,{\rm V}$ for the SPC-Ge TFT thinned to $t_{\rm CMP}=55\,{\rm nm}$, where channel length $l_{\rm CMP}=10\,\mu{\rm m}$. (e) Cumulative distribution of $l_{\rm CMP}=10\,{\rm m}$ with different $l_{\rm CMP}=10\,{\rm m}$.

thin enough to fully deplete the channel. The TFT using this Ge layer exhibited high $\mu_{\rm FE}$ (170 cm²/Vs) and $I_{\rm on}/I_{\rm off}$ (10²). The $\mu_{\rm FE}$ value is the highest among low-temperature (<500 °C) polycrystalline Ge TFTs without minimizing the channel region (<1 μ m). The findings in the present study will contribute to the development of high-performance poly-Ge-TFTs that exceed Si-MOSFETs and lead to advanced three-dimensional LSIs and multifunctional mobile terminals.

This work was financially supported by a Grant-in-Aid for JSPS Research Fellows (No. 17J00544), the Murata Science Foundation, and JST PRESTO (No. JPMJPR17R7). The authors are grateful to Dr. T. Sakurai (University of Tsukuba) for assistance with the Hall effect measurements. EBSD measurements were conducted at the International Center for Young Scientists at NIMS.

REFERENCES

¹A. Nayfeh, C. O. Chui, T. Yonehara, and K. C. Saraswat, IEEE Electron Device Lett. 26, 311 (2005).

²D. P. Brunco, B. De Jaeger, G. Eneman, J. Mitard, G. Hellings, A. Satta, V. Terzieva, L. Souriau, F. E. Leys, G. Pourtois, M. Houssa, G. Winderickx, E. Vrancken, S. Sioncke, K. Opsomer, G. Nicholas, M. Caymax, A. Stesmans, J. Van Steenbergen, P. W. Mertens, M. Meuris, and M. M. Heyns, J. Electrochem. Soc. 155, H552 (2008).

³R. Pillarisetty, Nature **479**, 324 (2011).

⁴K. Yamamoto, T. Sada, D. Wang, and H. Nakashima, Appl. Phys. Lett. 103, 122106 (2013).

⁵S. Takagi, R. Zhang, J. Suh, S.-H. Kim, M. Yokoyama, K. Nishi, and M. Takenaka, Jpn. J. Appl. Phys. Part 1 54, 06FA01 (2015).

⁶A. Toriumi and T. Nishimura, Jpn. J. Appl. Phys. Part 1 57, 010101 (2018).

⁷G. Taraschi, A. J. Pitera, and E. A. Fitzgerald, Solid-State Electron. 48, 1297 (2004).

⁸Y. Moriyama, K. Ikeda, Y. Kamimuta, M. Oda, T. Irisawa, Y. Nakamura, A. Sakai, and T. Tezuka, Solid-State Electron, 83, 42 (2013).

⁹K. Yu, F. Yang, H. Cong, L. Zhou, Q. Liu, L. Zhang, B. Cheng, C. Xue, Y. Zuo, and C. Li, J. Alloys Compd. 750, 182 (2018).

¹⁰T. Maeda, K. Ikeda, S. Nakaharai, T. Tezuka, N. Sugiyama, Y. Moriyama, and S. Takagi, Thin Solid Films 508, 346 (2006).

¹¹J. Feng, G. Thareja, M. Kobayashi, S. Chen, A. Poon, Y. Bai, P. B. Griffin, S. S. Wong, Y. Nishi, and J. D. Plummer, IEEE Electron Device Lett. 29, 805 (2008).

¹²S. Hu, P. W. Leu, A. F. Marshall, and P. C. McIntyre, Nat. Nanotechnol. 4, 649 (2009).

¹³K. Toko, Y. Ohta, T. Tanaka, T. Sadoh, and M. Miyao, Appl. Phys. Lett. 99, 032103 (2011).

¹⁴T. Hosoi, Y. Suzuki, T. Shimura, and H. Watanabe, Appl. Phys. Lett. 105, 173502 (2014).

¹⁵K. Usuda, Y. Kamata, Y. Kamimuta, T. Mori, M. Koike, and T. Tezuka, Appl. Phys. Express 7, 056501 (2014).

¹⁶Y. Kamata, M. Koike, E. Kurosawa, M. Kurosawa, H. Ota, O. Nakatsuka, S. Zaima, and T. Tezuka, Appl. Phys. Express 7, 121302 (2014).

¹⁷T. Sadoh, H. Kamizuru, A. Kenjo, and M. Miyao, Appl. Phys. Lett. **89**, 192114 (2006).

¹⁸K. Toko, I. Nakao, T. Sadoh, T. Noguchi, and M. Miyao, Solid-State Electron. 53, 1159 (2009).

¹⁹A. Hara, Y. Nishimura, and H. Ohsawa, Jpn. J. Appl. Phys. Part 1 56, 03BB01 (2017).

²⁰S. Kabuyanagi, T. Nishimura, K. Nagashio, and A. Toriumi, Thin Solid Films 557, 334 (2014).

²¹H. A. Kasirajan, W.-H. Huang, M.-H. Kao, H.-H. Wang, J.-M. Shieh, F.-M. Pan, and C.-H. Shen, Appl. Phys. Express 11, 101305 (2018).

²²M. Asadirad, Y. Gao, P. Dutta, S. Shervin, S. Sun, S. Ravipati, S. H. Kim, Y. Yao, K. H. Lee, A. P. Litvinchuk, V. Selvamanickam, and J.-H. Ryou, Adv. Electron. Mater. 2, 1600041 (2016).

²³B. Hekmatshoar, S. Mohajerzadeh, D. Shahrjerdi, and M. D. Robertson, Appl. Phys. Lett. 85, 1054 (2004).

²⁴K. Toko, R. Numata, N. Oya, N. Fukata, N. Usami, and T. Suemasu, Appl. Phys. Lett. **104**, 22106 (2014).

²⁵K. Kasahara, Y. Nagatomi, K. Yamamoto, H. Higashi, M. Nakano, S. Yamada, D. Wang, H. Nakashima, and K. Hamaya, Appl. Phys. Lett. **107**, 142102 (2015)

²⁶T. Suzuki, B. M. Joseph, M. Fukai, M. Kamiko, and K. Kyuno, Appl. Phys. Express 10, 095502 (2017).

²⁷H. Higashi, K. Kudo, K. Yamamoto, S. Yamada, T. Kanashima, I. Tsunoda, H. Nakashima, and K. Hamaya, J. Appl. Phys. 123, 215704 (2018).

²⁸H. Haesslein, R. Sielemann, and C. Zistl, Phys. Rev. Lett. **80**, 2626 (1998).

²⁹K. Toko, R. Yoshimine, K. Moto, and T. Suemasu, Sci. Rep. 7, 16981 (2017).

³⁰R. Yoshimine, K. Moto, T. Suemasu, and K. Toko, Appl. Phys. Express 11, 031302 (2018).

31 T. Imajo, K. Moto, R. Yoshimine, T. Suemasu, and K. Toko, Appl. Phys. Express 12, 015508 (2019).

³²Y. Kimura, M. Kishi, and T. Katoda, J. Appl. Phys. **86**, 2278 (1999).

³³A. Dimoulas, A. Toriumi, and S. E. Mohney, MRS Bull. **34**, 522 (2009).

34A. W. Wang and K. C. Saraswat, IEEE Trans. Electron Devices 47, 1035 (2000).