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Abstract: Obesity causes various health problems, such as type 2 diabetes, non-alcoholic fatty liver
disease, and cardio- and cerebrovascular diseases. Metabolic organs, particularly white adipose
tissue (WAT) and liver, are deeply involved in obesity. WAT contains many adipocytes with energy
storage capacity and secretes adipokines depending on the obesity state, while liver plays pivotal
roles in glucose and lipid metabolism. This review outlines and underscores the relationship
between obesity and lysosomal functions, including lysosome biogenesis, maturation and activity
of lysosomal proteases in WAT and liver. It has been revealed that obesity-induced abnormalities
of lysosomal proteases contribute to inflammation and cellular senescence in adipocytes. Previous
reports have demonstrated obesity-induced ectopic lipid accumulation in liver is associated with
abnormality of lysosomal proteases as well as other lysosomal enzymes. These studies demonstrate
that lysosomal dysfunction in WAT and liver underlies part of the obesity-related pathology, raising
the possibility that strategies to modulate lysosomal function may be effective in preventing or
treating the metabolic syndrome.

Keywords: lysosome; cathepsin; adipose tissue; liver; lysosomal dysfunction

1. Introduction

Obesity increases disturbances in the metabolic, endocrine and immune systems in the body due
to over-nutrition, resulting in reduced life expectancy and/or increased health problems including
type 2 diabetes, non-alcoholic fatty liver disease (NAFLD), hyperlipidemia, hypertension, and cardio-
and cerebrovascular diseases [1–3]. Obesity induces numerous cellular stresses and inflammatory
signaling pathways by ectopic accumulation of fat in various tissues, leading to insulin resistance,
pancreatic β-cell dysfunction, and hepatic steatosis [3,4]. Among the metabolic organs, white adipose
tissue (WAT) and liver are especially implicated in energy imbalance and obesity-related pathology.
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WAT consists of several cell types: adipocytes, mesenchymal stem cells, fibroblasts, macrophages,
and other immune cells [5]. Adipocytes account for the majority of WAT and store excessive
energy in the form of triglyceride (TG). WAT also functions as an endocrine organ that secretes
ADIPOQ/adiponectin, leptin, and pro-inflammatory cytokines such as interleukin-6 (IL-6), tumor
necrosis factor α (TNFα), serpin family E member 1 (SERPINE1/PAI1) and CC motif chemokine
ligand 2 (CCL2)/monocyte chemoattractant protein-1 (MCP1) [5,6]. ADIPOQ activates AMP-activated
protein kinase (AMPK) in skeletal muscle and liver to enhance fatty acid metabolism and glucose
uptake, thereby improving insulin resistance [5,7]. In contrast, TNFα, IL-6, CCL2 and SERPIN1 are
associated with inflammatory reactions and insulin resistance and are positively correlated with
obesity [8–11]. The characteristics of WAT and its secretory profile vary depending on the size of
adipocytes. Hypertrophic adipocytes, which store a large amount of TG and are frequently observed
in obese individuals, secrete pro-inflammatory adipokines rather than anti-inflammatory adipokines
like ADIPOQ and recruit immune cells with pro-inflammatory function [3,5]. These infiltrating
immune cells then secrete more pro-inflammatory cytokines. Therefore, in obese WAT, the interaction
between hypertrophic adipocytes and infiltrating inflammatory cells becomes a vicious cycle, leading
to persistent and continuous low-grade inflammation.

The liver is the central metabolic organ that regulates key aspects of glucose and lipid
metabolism, including gluconeogenesis, fatty acid β-oxidation, lipoprotein uptake and secretion,
and lipogenesis [12,13]. NAFLD is a representative hepatic metabolic disease characterized by
accumulation of TG and free fatty acids (FFAs) in hepatocytes. NAFLD is classified into simple
fatty liver and more advanced non-alcoholic steatohepatitis (NASH), which develops into cirrhosis
and hepatocellular carcinoma with inflammation and fibrosis [14]. The prevalence of NAFLD in
developed countries is estimated at approximately 20% to 30%, of which 2% to 3% is NASH [15–17].
NAFLD/NASH is not a single disease but instead a syndrome that encompasses various pathological
conditions. Despite ongoing research on NASH/NAFLD, the detailed onset mechanisms and treatment
strategies for NASH/NAFLD remain unclear. One of the accepted onset mechanisms of NAFLD/NASH
is the “second-hit hypothesis” [18]. First, fatty liver progresses due to obesity (first hit). Second,
inflammation and fibrosis are triggered by various hepatocellular injury factors such as oxidative
stress and influx of FFAs from adipocytes (second hit), resulting in the progression to NASH. Recent
studies have suggested that more steps initiated from fatty liver are involved in the pathogenesis of
NASH/NAFLD and this has been called the “multiple hits hypothesis” [19,20]. Hypertrophic adipocytes
have been shown to leak lipids, which induces ectopic lipid accumulation in liver. Thus, a better
understanding of the close link between the characteristic changes in WAT and liver is important for
obesity-related pathology.

2. Overview of Lysosomes and Lysosome-Associated Diseases

Lysosomes are intracellular organelles common to eukaryotes that contain many hydrolytic
enzymes such as nucleases, glycosidases, lipases, and more than 20 types of proteases [21,22]. Since the
discovery of lysosomes by Christian de Duve in 1950, lysosomes have been shown to play an important
role in regulating and maintaining cell function, including via functions in endocytosis, exocytosis,
and autophagy [21–23]. Lysosomes are limited by a single phospholipid layer (7–10 nm) and have an
average diameter of 0.5–1.0 µm [24]. The lumen is maintained at approximately pH 4.5–5.0, which is
established by the vacuolar H+-ATPase (v-ATPase)—an ATP-driven proton pump.

Lysosomal proteins are divided into two groups: lysosomal membrane proteins and hydrolases.
Over 100 lysosomal membrane proteins have been described, many of which are highly glycosylated
toward the lumen to escape from degradation by hydrolytic enzymes. The roles of these lysosomal
membrane proteins involve the maintenance of acidic conditions in lysosomes; the transport of
metabolites, ions and hydrolases across the membrane; and the regulation of membrane fusion
events [25]. The lysosomal lumen contains approximately 60 hydrolases that can break down
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biopolymers/biomolecules (proteins, lipids, carbohydrates, etc.) into constituent units (amino acids,
phospholipids, sugars, and nucleic acids).

Recent reports showed that lysosomes function as a metabolic signaling hub by interacting
with the mechanistic target of rapamycin complex 1 (mTORC1) and transcription factors, such as
transcription factor EB (TFEB) [22,26]. TFEB is a member of the microphthalmia family (MiT family)
of basic helix-loop-helix leucine-zipper (b HLH-Zip) transcription factors and a master regulator of
lysosomal biogenesis and autophagy [27,28]. TFEB is normally phosphorylated in the cytoplasm
by the mTORC1 complex on lysosomal membranes. However, under starvation and lysosomal
stress conditions, TFEB is dephosphorylated and translocated into the nucleus, thereby inducing
gene expression. In the nucleus, TFEB directly binds to promoter regions that contain a coordinated
lysosomal expression and regulation (CLEAR) element, a common 10 base pair E-box-like palindromic
sequence and upregulates lysosome-related genes [29]. Indeed, TFEB overexpressing cells display
an increase in the expression of genes encoding lysosomal enzymes and membrane proteins and a
number of lysosomes [30]. Of note, TFEB exerts global transcriptional control on lipid catabolism via
PPARG coactivator 1 alpha (Ppargc1α)/PGC1α and peroxisome proliferator activated receptor alpha
(P parα) during starvation [31], indicating that a lysosomal regulator serves as a metabolic sensor.
These findings indicate the importance of investigating the involvement of lysosomal dysfunction in
metabolic organs.

Autophagy is a cellular process closely related to lysosomal function. Autophagy is an
intracellular lysosome-mediated degradation system that contributes to cell survival, maintenance, and
differentiation. Autophagy is generally classified into three types; macroautophagy, chaperone-mediated
autophagy (CMA), and microautophagy [32–34]. However, in this text, the term “autophagy” refers to
macroautophagy. In autophagy, intracellular proteins and organelles are surrounded by the isolation
membrane and fused to lysosomes to form autolysosomes. The contents in autolysosomes are then
degraded by hydrolytic enzymes in lysosomes [35,36].

Previous analyses of several autophagy-deficient mice have revealed that autophagy abnormalities
are involved in the onset of various diseases such as cancer, neurodegenerative diseases and metabolic
diseases [35,37]. At present, many autophagy-related diseases with polymorphisms/mutations in
autophagy genes in humans have been identified [38]. For example, mutation of the WDR45 gene
has been reported as a cause of static encephalopathy of childhood with neurodegeneration in
adulthood (SENDA), a neurodegenerative disease with iron deposits in the brain. The WDR45 gene
encodes the WIPI4 protein (a human homolog of yeast Atg18), which is essential for autophagosome
formation [39,40]. Other autophagy-related diseases are suspected to be associated with disturbed
autophagosome formation and these are extensively discussed elsewhere [35,36].

Lysosomal storage disease is a well-known group of autophagy-related diseases. Lysosomal
storage disease results from genetic mutation of lysosomal enzymes. In lysosomes with deleted or
inactivated enzymes, transported substrates cannot be appropriately degraded and instead abnormally
accumulate, leading to various diseases [41,42]. For example, Pompe disease, a metabolic myopathy
characterized by the deficiency of α-glucosidase, accumulates glycogen in lysosomes of cardiac muscle,
skeletal muscle and liver [43]. Moreover, Niemann-Pick disease type C is a neurodegenerative disorder
with mutation in the NPC1 or NPC2 (Niemann-Pick disease, type C1 or C2) genes, which encode
proteins involved in cholesterol transport. Mutation in NPC genes causes abnormal cholesterol
accumulation in lysosomes [44]. Despite differences in the degree of disease progression or the time of
onset, lysosomal diseases are often associated with severe symptoms.

MVB (multivesicular body) is a form of late endosomes, the contents of which are then transported
into lysosomes [45]. Interestingly, Zhao et al. highlighted that the MVB-lysosomal pathway contributes
to steatohepatitis through lysosomal degradation of Toll-like receptor 4 (TLR4), which is previously
reported to be important for the progression of NASH [46,47]. The authors revealed that transmembrane
BAX inhibitor motif-containing 1 (TMBIM1) facilitates MVB formation and promotes the lysosomal
degradation of TLR4, suppressing the inflammation in liver [46]. As is evident from this report,
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lysosome-related pathway can play a key role in metabolic diseases. Additionally, recent studies
have reported that lysosomal dysfunction occurs in metabolic disorders, indicating the need to better
understand lysosomal dysfunction in metabolic organs.

3. Lysosomal Proteases

The lysosomal proteases include cathepsin, legumain, napsin, and tripeptidyl-peptidase I
(TPP1) [48–50]. Cathepsin is a representative lysosomal protease family with many members, from
cathepsin A to cathepsin Z [51–53]. While cathepsin B, H, L, C, X, F, O and V are ubiquitously expressed
in almost all tissues, the expressions of cathepsin K (osteoclast) and cathepsin W (CD8+ lymphocytes
and natural killer (NK) cells) are limited to specific cells or tissues [53]. Cathepsins are generally
synthesized as pro-cathepsins, modified in the endoplasmic reticulum and Golgi apparatus and then
transported to lysosomes. In the acidic environment in lysosomes, pro-cathepsins are matured into
the active form either by cleavage by other enzymes or auto-modification by its own protease activity
(cathepsin maturation) [54].

Cathepsins are roughly classified into three types according to the type of amino acid in the
active center: serine proteases (cathepsin A and G), aspartic proteases (cathepsin D (CTSD) and E) and
cysteine proteases (cathepsin B (CTSB), L (CTSL) and many other cathepsins) [55,56]. CTSB, CTSL and
CTSD are the most abundant cathepsins in tissues [57]. CTSL only has endopeptidase activity, whereas
CTSB has endopeptidase and carboxydipeptidase activity [52,53,58]. Similar to other cathepsins, CTSL
is synthesized as an inactive form (39 kDa), transported to endosomes and lysosomes and converted
into the active form (25–30 kDa) [54,59–61]. CTSB is also synthesized as an inactive form (44 kDa) but
is converted into a 33 kDa single-chain form at the transport step. In lysosomes, this form is matured
into the active two-chain form composed of 24–27 kDa and 5 kDa polypeptides [54,62–65]. CTSB can
also exhibit stable enzyme activity even under more neutral conditions [66].

Previous studies using animal models demonstrated that CTSB-deficient mice show no obvious
phenotype, whereas CTSL-deficient mice display periodic hair loss and bone developmental disorder
and develop a progressive dilated cardiomyopathy in the heart [67–69]. Petermann et al. reported that
CTSL deficiency affects lysosomal function by increasing the number of lysosomes and changing the
morphology of lysosomes in the mouse heart, despite the absence of lysosomal storage accumulation [69].
Moreover, cardiomyocyte-specific exogenous expression of CTSL in CTSL-deficient mice resulted in
improved cardiac contraction, normal heart weight, and regular ultrastructure of cardiomyocytes [70].
These reports support the necessity of CTSL for lysosomal function. CTSL and CTSB double-deficient
mice exhibit postnatal cerebral atrophy and die at 2 to 4 weeks of age [71], indicating that the mutual
interaction of cathepsins in lysosomes maintains lysosomal function. In addition to the loss of
function studies described above, abnormal activation of cathepsins has been associated with various
pathological conditions, such as cancer [55], kidney disease [72], neurodegenerative disease [73],
and autoimmune diseases [74]. Notably, recent several studies have addressed the influence of
cathepsin abnormalities on obesity-related pathology in metabolic organs such as WAT and liver
(Table 1). Therefore, we focused on cathepsin abnormalities, especially CTSL, CTSB and CTSD, as a
mechanism of obesity-related lysosomal dysfunction in WAT and liver.
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Table 1. Involvement of lysosomal dysfunction in metabolic tissues.

Metabolic Organ Characteristics Results Reference

Adipose tissue (WAT) Upregulation of CTSB Increased lysosomal permeablization in adipocytes and
contribution to cell death Gornicka et al., 2012 [75]

Upregulation of CTSB Involvement in mediating the inflammatory response in
cholesterol trafficking Hannaford et al., 2013 [76]

Downregulation of DAPK2 Modulation of Lysosome-Mediated Remodeling Soussi et al., 2015 [77]
Downregulation of CTSL Autophagosome accumulation Mizunoe et al., 2017 [78]

Complementary upregulation of CTSB Inflammasome activation in obese WAT
Upregulation of CTSB Contribution to the pathogenesis of obesity-related inflammation Ju et al., 2019 [79]

Liver Downregulation of CTSB Autophagosome accumulation in liver from ob/ob mice Inami et al., 2011 [80]
Downregulation of CTSL

Downregulation of CTSL, CTSB patients with NAFLD Fukuo et al., 2014 [81]
Reduced lysosomal acidity

Dysfunction of CTSD maturation Defective lysosomal clearance of autophagosomes Wang et al., 2018 [82]
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4. Lysosomal Dysfunction in Obese Adipose Tissue

In this section, we outline the significance of lysosomal dysregulation in obese WAT mainly based
on our recent report. We recently demonstrated that in WAT of either high-fat diet (HFD)-induced
or genetically obese (ob/ob) mice, the levels of active CTSL (25–30 kDa) and its enzyme activity were
significantly decreased compared with control mice, while inactive CTSL (50 kDa) and its mRNA
expression levels were significantly increased [78]. These results indicated that obesity causes a decline
in CTSL maturation, resulting in the downregulation of CTSL activity. We also observed accumulation
of autophagosomes in both obese WAT and CTSL-knockdown 3T3L1 adipocytes [78], indicating that
lysosomal dysfunction due to decreased CTSL activity may contribute to autophagic abnormality in
obese WAT. These data are consistent with previous studies that showed that autophagy flux was
decreased in WAT of HFD mice and hypertrophied 3T3L1 adipocytes, resulting in induced expression
of inflammatory cytokines such as IL1B, IL6, and CCL2 [83,84]. Furthermore, Soussi et al. identified
death-associated protein kinase 2 (DAPK2) as a regulatory factor of lysosomes [77]. DAPK2 is expressed
mainly in mature adipocytes rather than stromal vascular cells in WAT, and DAPK2 mRNA levels are
strongly downregulated according to obesity status in human and mice and gradually recover after
bariatric surgery-induced weight loss [77]. The authors showed that DAPK2 modulates lysosome
remodeling and constitutive autophagy in adipocytes. Hence, lysosomal dysfunction in adipocytes,
followed by the destruction of autophagic clearance, may contribute to pathology in both obese WAT
in mouse and human.

Another study showed that expressions of CTSL and CTSB were increased in the fat interstitial
vascular cell fraction of epididymal WAT of obese Zucker rats instead of the mature adipocyte
fraction [76]. The authors also showed that rosiglitazone, a peroxisome proliferator activated receptor
gamma (PPARG)/PPARγ agonist that accelerates adipocyte differentiation, attenuated the expression
of precursor and mature forms of CTSL in the epididymal fat depot, but failed to alter the expression
of CTSB [76]. Thus, alterations of CTSL and CTSB expressions in WAT are very complicated, likely
depending on the degree of obesity status, type of food, timing of tissue sampling, or animal species.

The maturation of cathepsins is generally regulated by lysosomal pH, other proteases,
and endogenous cathepsin inhibitors such as cystatins, thyropins, and serpins, which are associated
with obesity [53]. For example, cystatin C, an endogenous cathepsin inhibitor secreted from WAT,
is significantly increased in serum of obese individuals [85]. Interestingly, p41 invariant chain (splicing
variant of CD74) of MHC class II selectively suppresses CTSL as an endogenous inhibitor [53,86].
This finding indicated that the p41 invariant chain may be associated with obesity-induced
downregulation of CTSL in WAT despite no direct evidence at present. In summary, although the exact
causes and mechanisms are still unclear, lysosomal dysfunction represented by downregulated CTSL
in WAT or adipocytes abrogates autophagy and can participate in obesity-related pathology.

In our previous study, we also identified the complementary activation of CTSB induced by the
downregulation of CTSL in obese WAT [78]. Activated CTSB was shown to induce the inflammasome,
which was also observed in 3T3L1 adipocytes overexpressing CTSB. In agreement with our results,
Gornicka et al. reported that HFD-feeding significantly enhanced the activity of CTSB and evoked
the inflammatory response and apoptosis in obese WAT [75]. In parallel, the authors demonstrated
that CTSB-deficient mice exhibited reduced lysosomal abnormality and cell death of adipocytes
and macrophage infiltration to WAT [75]. These data indicate the relationship between CTSB and
inflammatory response in obese WAT. In addition, Ju et al. reported that CTSB protein was significantly
increased in adipocytes of epididymal WAT during the immune response [79].

The inflammasome is a protein complex composed of pattern recognition receptors such as NLR
family pyrin domain containing 3/NLRP3, PYCARD/ASC (PYD and CARD domain containing), and
caspase 1/CASP1. The inflammation signal via the inflammasome is as follows. Initially, the NLRP3
receptor is activated by various stimuli and forms a complex of inflammasome with pro-CASP1 via the
adaptor protein PYCARD. The formation of the inflammasome allows cleavage of pro-CASP1 via an
autolytic action and its maturation into active CASP1. Finally, active CASP1 cleaves and maturates
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the precursor forms of IL1B and IL18 into mature forms, which are pro-inflammatory cytokines to
induce inflammatory reaction and macrophage infiltration [87]. In obese WAT, the NLRP3 receptor is
stimulated by metabolites (such as urate crystals, cholesterol crystals, FFAs, etc.), followed by activation
of the inflammasome complex [88,89]. Interestingly, a mechanism of inflammasome reaction involving
CTSB was also reported. CTSB is released through lysosomal membrane permeabilization (LMP),
which is caused by FFA or ceramides, and activates CASP1 by interacting with the inflammasome
complex [90,91]. The release of CTSB by LMP is a phenomenon observed during induction of
apoptosis [92]. Therefore, the influence of CTSB activation on the inflammasome reaction may
be associated with a crown-like structure characterized by infiltrated macrophages and apoptotic
adipocytes in obese WAT.

In addition to inflammasome activation, we found a relationship between CTSB overexpression
and decreased protein levels of perilipin 1 (PLIN1), a protein that coats lipid droplets in adipocytes.
PLIN1 downregulation is suspected to enhance the release of FFAs, probably resulting in migration
of macrophages to WAT (manuscript in preparation). Taken together, CTSL downregulation leads
to complementary CTSB activation that can contribute to obesity-induced inflammation reactions in
WAT (Figure 1). Thus, downregulation of a lysosomal enzyme is likely to evoke abnormal activation of
another enzyme, which contributes to lysosomal dysfunction.
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Figure 1. Lysosomal dysfunction in obese adipose tissue. In obese adipose tissue, various stresses
such as oxidative stress and lysosomal pH abnormality attenuate the maturation of cathepsin L (CTSL)
protein, leading to complementary activation of CTSB. Downregulation of CTSL protein causes the
accumulation of autophagosomes, resulting in suppression of autophagic clearance. Upregulation
of CTSB protein enhances inflammation by activating the inflammasome complex. These lysosomal
alterations consequently affect the function of white adipose tissue (WAT).

5. Lysosomal Dysfunction in Obese Liver

In recent years, many reports have suggested the involvement of lysosomal dysfunction and
obesity in the liver. Chronic inflammation and lysosomal dysfunction are known to coexist in the
obese liver. The protein expression levels and activity of CTSB and CTSL are reduced in primary
culture hepatocytes from genetically obese mice [80]. Inami et al. reported that the activity of both
CTSB and CTSL in autolysosomes was suppressed in ob/ob mice because of the decreased lysosomal
acidification [80]. Recently, Wang et al. reported increased expression of asparagine synthetase
(ASNS) due to endoplasmic reticulum stress and subsequent lysosomal calcium retention affected the
lysosomal acidification [82]. The authors also reported that steatohepatitis resulted in accumulation
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of the precursor form of CTSD, whereas the reduced mature form of CTSD was detected in both
C57BL/6 wild and db/db mice [82]. In addition, another study showed that CTSB, CTSD and CTSL
expressions were significantly suppressed in the liver from NAFLD patients, which correlated with
hepatic inflammation [81]. In agreement with these studies, it was uncovered that plasma CTSD levels
were reduced in children with NASH [93]. Conversely, Walenbergh et al. documented that adult
patients with NASH exhibited an increase of plasma CTSD levels compared to adults without hepatic
inflammation [94]. Furthermore, the authors underscored preventive effects of a CTSD inhibitor on
obesity-induced hepatic inflammation and disturbance in lipid metabolism in mice [95]. These findings
indicate that lysosomal dysfunction accompanied by suppression of expression or maturation of
cathepsin is involved in the onset of hepatic metabolic disorder and NAFLD.

Lipotoxicity is a condition in which excess lipid accumulation in non-adipose tissue disrupts
cell function and increases cell death [96,97]. Failure of packaging excess lipid into lipid droplets
causes chronic elevation of circulating fatty acids, which can reach toxic levels within non-adipose
tissues [96,97]. Such accumulated ectopic lipid provokes insulin resistance in skeletal muscle and liver,
leading to type 2 diabetes, fatty liver and heart disease [98,99]. In particular, saturated fatty acid-induced
lipotoxicity has been proven to be a mechanism in lysosomal dysfunction [100,101]. Saturated fatty
acid induced LMP, followed by BAX (BCL2 associated X, apoptosis regulator)-associated cell death.
LMP is a key mechanism by which chronic lipid overload promotes lysosome dysfunction and triggers
apoptotic cell death. Moreover, the fusion of autophagosomes with lysosomes was impaired in an
endoplasmic reticulum stress-dependent manner in cultured hepatocytes after saturated FFA treatment,
resulting in suppression of degradation of autophagosomes [102]. A potential mechanism for this
dysfunction may involve increases in intracellular lipids that alter the lipid composition of intracellular
membrane on both autophagosomes and lysosomes [103]. These findings indicate that obesity-induced
lipotoxity disrupts the hepatic lysosomal function and can trigger the onset or progression of NAFLD.

Lysosomal lipase (LIPA/LAL) deficiency (LAL-D) is another example of hepatic lysosomal
dysfunction associated with obesity. LAL-D is a genetic, chronic, and progressive metabolic disease
that is characterized by multiorgan damage and premature death due to uncontrolled accumulation of
cholesteryl esters (CEs) and TGs [104]. LAL is the lysosomal enzyme primarily responsible for the
hydrolysis of CEs and TGs in lipoproteins into free cholesterol (FC) and FFAs. LAL-D also includes
Wolman disease (WD) and CE storage disease (CESD) [105]. LAL-D patients exhibit pathological
phenotypes in liver, such as elevated ALT, enlarged liver fibrosis and/or cirrhosis, which account for 50%
of the reported liver-related deaths in patients younger than 21 years of age [106,107]. Du et al. reported
that LAL-deficient mice display progressive hepatosplenomegaly and massive TG accumulation in
liver [108]. In contrast, hepatocyte-specific LAL-deficient mice (Liv-Lipa−/−) show resistance to
diet-induced obesity despite a marked increase of CE concentrations [109]. Moreover, Cahova et al.
demonstrated that short-term HFD treatment induced activity of LAL and then increased production
of diacylglycerol, resulting in the rapid onset of hepatic insulin resistance [110]. The results from these
animal studies in determining how LAL-D participates in obese hepatic pathology are conflicting,
but hepatic LAL plays a fundamental role in preventing liver damage and maintaining lipid and energy
homeostasis. However, a recent study showed that hepatic LAL activity was decreased in a cohort of
adult NAFLD patients with more severe symptoms than in the remaining NAFLD population [111,112].
Taken together, these findings suggest that LAL-D is at least associated with NAFLD progression.

Nitric oxide 2 (NOS2), called “iNOS,” is also involved in obesity-related lysosomal dysfunction.
Qian et al. reported that lysosomal NOS2-mediated NO signaling disrupts hepatic lysosomal function,
contributing to obesity-associated defective hepatic autophagy and insulin resistance [113]. The authors
also reported that obesity promotes NOS2 localization to lysosomes and results in accumulated
lysosomal NO in the liver and that the overproduction of lysosomal NO exacerbates lysosomal
nitrosative stress with impairment of lysosomal function and autophagy. Collectively, these studies
indicate that abnormality of lysosomal enzymes other than proteases can also play an important role
in NAFLD pathology (Figure 2).
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Figure 2. Lysosomal dysfunction in obese liver. In obese liver, various stresses such as lipotoxicity
and endoplasmic reticulum (ER) stress alkalinizes the lysosomal pH, resulting in downregulated
activity of cathepsin L (CTSL), CTSB and CTSD. Downregulation of cathepsins induce autophagosome
accumulation due to impaired lysosomal clearance. Hepatic lysosomal lipase (LAL) is associated with
the progression of non-alcoholic fatty liver disease (NAFLD). These lysosomal abnormalities contribute
to the onset of NAFLD.

6. Conclusions

In this review, we highlighted the association between lysosomal function and obesity in WAT and
liver based on our study and those of others. In obese WAT and liver, lysosomal dysfunction systemically
causes blocked autophagy, chronic inflammation and insulin resistance. As described above, most
studies on lysosomal dysfunction in obese WAT focus on autophagy or cathepsins. However, in liver,
downregulation of enzymes other than cathepsins are also reported to be associated with obesity.
Together these studies indicate that lysosomal dysfunction in WAT and liver will be a therapeutic target
in obesity-related pathology and suggest that therapeutic strategies designed to modulate lysosomal
function may be beneficial in the prevention or treatment of the metabolic syndrome.
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