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Abstract 
 
Adsorption process is one of the most widely applied technologies for water reuse and 

wastewater treatment. It plays an important role in determining the distribution, migration, 

transformation and fate of water pollutants. Adsorption has been an indispensable unit operation 

in industrial application such as separation and purification, industrial catalysis and pollution 

control. Adsorption has long been favored by many researchers because of its low cost, fast 

kinetics, low energy for regeneration, insensitivity to toxic substances and complete removal of 

pollutants even from dilute solution. In the practical operation of full-scale adsorption process, 

a fixed-bed adsorption system is preferred. In such a system, adsorption of the solutes is a time- 

and distance-dependent process. The curvature and symmetry of the breakthrough curve are 

usually subjected to different adsorbent-adsorbate systems and operating conditions. How to 

accurately describe the breakthrough curve is still a problem that needs to be addressed urgently. 

The design and optimization of an adsorption process often require the development of a 

mathematical model that can predict the breakthrough curve. This study tries to address the 

following problems: (i) Revelation of mathematical characteristics of the breakthrough curves 

by adjusting model parameters; (ii) Description of the heterogeneous diffusion-limited process 

based on the fractal-like kinetics and (iii) Establishment of empirical breakthrough models 

using hyperbolic tangent and double exponential functions. 

In Chapter 2, maximum specific breakthrough rate μmax, lag time λ, inflection point ti and 

half-operating time t50 can reflect the curvature and symmetry of the breakthrough curves: 

Bohart–Adams, Thomas and Yoon–Nelson models represent the same symmetric breakthrough 

curve; Clark and dose-response models show an asymmetric breakthrough curve; and 

Wolborska model is not a sigmoidal curve. The physical meaning of q0m/vc0 and a0x/uc0 is the 

operating time required to reach 50% breakthrough. The graphic description of the 

breakthrough curves and rate profiles contributes to selecting the optimal model. 

In Chapter 3, the fractal-like kinetics or time-dependent rate coefficient is introduced into 

Bohart–Adams, Thomas and Yoon–Nelson models to describe the heterogeneous diffusion-

limited process in a fixed-bed column. The fitting performance of fractal-like breakthrough 
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models is validated by nitrate adsorption on chitosan-Fe(III) composite. Compared with the 

Bohart–Adams and Yoon–Nelson models (Adj. R2 = 0.9878 and χ2 = 1.37 × 10−3), the fractal-

like Bohart–Adams (Adj. R2 = 0.9989 and χ2 = 1.25 × 10−4) and fractal-like Yoon–Nelson (Adj. 

R2 = 0.9992 and χ2 = 8.86 × 10−5) models can better describe nitrate adsorption on chitosan-

Fe(III) composite. The fractal-like breakthrough models can describe asymmetric breakthrough 

curves due to introduction of the fractal-like exponent h, which extends application scope of 

Bohart–Adams, Thomas and Yoon–Nelson models. 

In Chapter 4, the hyperbolic tangent and double exponential models are proposed to 

simulate the dynamic behaviors in a fixed-bed column for the adsorption of a wide range of 

water pollutants. The parameters n, μmax and λ are introduced to hyperbolic tangent and double 

exponential models to better express the curvature and symmetry of the breakthrough curve. 

The hyperbolic tangent and double exponential models represent symmetric and asymmetric 

breakthrough curves, respectively. The fitting performance of empirical breakthrough models 

is evaluated by nitrate adsorption on chitosan-Fe(III) composite. It is found that the double 

exponential model has best fitting performance with the largest adjusted determination factor 

(Adj. R2 = 0.9977) and smallest reduced chi-squared value (χ2 = 2.54 × 10−4). The maximum 

specific breakthrough rate μmax, lag time λ, inflection point ti and half-operating time t50 

predicted by the double exponential model are 3.99 × 10−3 min−1, 29.7 min, 121.9 min and 155.7 

min, respectively. 

The practical significance of this study is to provide alternative methods for the modeling 

of continuous-flow fixed-bed adsorption. The description of mathematical characteristics of the 

breakthrough curves and rate profiles is beneficial to reveal the dynamic behaviors in a fixed-

bed column. The revelation of mathematical relationships between breakthrough models greatly 

reduces the workload. The fractal-like Bohart–Adams, fractal-like Thomas and fractal-like 

Yoon–Nelson models can describe heterogeneous diffusions-limited processes. The hyperbolic 

tangent and double exponential models are important supplements of the adsorption kinetics. 

This study may help readers to better understand the adsorption process in a fixed-bed column 

and provide useful information for the design of adsorption systems. 

Keywords: Adsorption; Model parameters; Modification; Fixed bed; Breakthrough curve  
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tb breakthrough time (min) 

ti inflection point (min) 

ts saturation time (min) 

TSS total sum of squares 

u linear flow velocity (cm min−1) 
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v flow rate (mL min−1) 
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ycal predicted value 
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βa 
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Chapter 1 Introduction 
 
1.1.  Adsorption principles 

In wastewater treatment, adsorption is a surface phenomenon that is generally defined as 

an enrichment of chemical species from aqueous solution on the solid surface (Worch, 2012). 

The adsorbate is attracted to the adsorbent surface due to the unbalanced forces, and thus the 

degrees of freedom and the surface free energy are reduced (Bonilla-Petriciolet et al., 2017). 

Adsorption plays an important role in determining the distribution, migration, transformation 

and fate of water pollutants such as heavy metals, inorganic nutrients and toxic organic matters. 

Adsorption method is one of the most widely used technologies for water reuse and wastewater 

treatment. It has long been favored by many researchers because of its low initial cost, simple 

design, facile operation, insensitivity to toxic substances and complete removal of contaminants 

even from dilute solution (Foo and Hameed, 2010). Adsorption has been an indispensable unit 

operation in industrial application including separation and purification, industrial catalysis and 

pollution control (Rouquerol et al., 2013). 

1.1.1.  Mass transfer 

During the adsorption process, the mass transfer of the adsorbates from aqueous solution 

to the solid surface continues until the adsorption equilibrium to be reached between the two 

phases. The affinity of the adsorbent for different adsorbates determines the distribution of 

solutes in solid/solution phases. As shown in Figure 1-1, there are four steps associated with the 

uptake of adsorbates by porous adsorbents such as bulk transport, film diffusion, intraparticle 

diffusion and adsorptive attachment (Tran et al., 2017; Weber Jr, 1984). If one step contributes 

dominantly to the total resistance and the other steps marginally increases the adsorption rate, 

this step is called a rate-controlling step (Tan and Hameed, 2017). 

In most cases, the bulk transport can occur rapidly after addition of the adsorbent and the 

first step is easily manipulated by mixing. Therefore, it does not control engineering design and 

its contribution to the mass transfer resistance is considered negligible. The adsorptive 

attachment usually occurs very quickly and thus is also not significant for design. The 

remaining two steps, either singly or in combination, are most commonly the rate-controlling 
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step (Weber and Smith, 1987). The film diffusion is the transport of the adsorbates to the 

exterior surface of the adsorbent through a boundary layer. The third step is the diffusion of the 

adsorbates within the pores of the adsorbent or along pore-wall surfaces, or both. A good 

understanding of the transport processes is essential to set rigorous and optimum criteria for 

adsorber design and operation, and to identify and control important system variables. 

1.1.2.  Types of adsorption 

In the actual wastewater treatment, there are two main driving forces during the solute 

adsorption, i.e. the hydrophobicity of solute and the affinity of the adsorbent for solutes (Çeçen 

and Aktas, 2011). The most important factor for the adsorption intensity is the solubility of a 

dissolved substance. A hydrophilic substance tends to the water system and shows a poor 

adsorption ability. In contrast, a hydrophobic substance tends to be adsorbed rather than staying 

in water. In particular, the hydrophobic part of the molecule is adsorbed, while its hydrophilic 

part tends to stay in water for complex organic contaminants with hydrophobic and hydrophilic 

groups. The affinity of adsorption is primarily caused by van der Waals attraction or chemical 

interaction with the adsorbent. In general, the adsorption can be divided into physical and 

chemical adsorption according to the type of interaction that occurs between the adsorbent and 

adsorbate (Bonilla-Petriciolet et al., 2017; Çeçen and Aktas, 2011; Rouquerol et al., 2013). 

The adsorption induced by van der Waals forces rather than sharing or exchange of 

electrons is called physical adsorption, which is independent of the electronic properties of the 

adsorbate and adsorbent molecules. In physical adsorption, multiple layers may be formed 

which have similar heats of adsorption. Compared with chemical adsorption, the adsorbate is 

less strongly attached to a specific site in physical adsorption and thereby physically adsorbed 

molecule can be free to move within the interface. 

In chemical adsorption, the adsorbate undergoes chemical interaction with the adsorbent. 

It involves the form of a chemical bond, i.e. an exchange of electrons between specific surface 

sites and solute molecules. Chemically adsorbed adsorbates are not free to move on the surface 

or within the interface. Chemical adsorption is characterized by a high adsorption energy since 

the adsorbate forms strong localized bonds at active centers on the adsorbent. Only a single 

molecular layer can be chemically adsorbed. Lower energies are usually associated with 
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physical adsorption, while higher energies are related to chemical adsorption. However, it is 

very difficult to distinguish between physical and chemical adsorption. The comparison of 

physical and chemical adsorption is listed in Table 1-1. 

1.2.  Fixed-bed adsorption 

The fixed-bed adsorption is a basic form of the dynamic operation. The fixed-bed adsorber 

is widely applied to the engineered adsorption processes because it can provide reliable 

information concerning the breakthrough time, loss of adsorption capacity during subsequent 

cycles, and acceptable flow rate (Yanyan et al., 2018). The solute adsorption is a time- and 

distance-dependent process in a fixed-bed column. During the adsorption process, each 

adsorbent particle can continuously hold the chemical species from the mobile phase before 

reaching the equilibrium state (Worch, 2012). This adsorption process proceeds successively, 

layer by layer, from the column inlet to the column outlet. However, due to the slow adsorption 

kinetics, there is no distinct boundary between loaded and unloaded adsorbent layers. The 

change in the concentration of target contaminant in the effluent over time is termed as the 

breakthrough curve (Chu, 2004). The shape of the breakthrough curve suffers from various 

factors such as mass transfer resistance, flow rate, equilibrium time and adsorption mechanisms. 

The most effective adsorption performance can be obtained when the shape of the breakthrough 

curve is as sharp as possible (Alberti et al., 2012). The study of the breakthrough curve can 

evaluate the performance of adsorbent particles, determine the mass transfer coefficient and 

understand the operating conditions of the fixed bed. 

As shown in Figure 1-2, in a single-solute adsorption case, a fixed-bed column can be 

divided into three zones (Worch, 2012): 

(i) Saturation zone 

The first zone is located between the adsorber inlet and the mass transfer zone (MTZ), and 

the adsorbent is already loaded with the adsorbate to the adsorbed amount q0, which is in 

equilibrium with the inlet concentration c0. In this zone, the available adsorption capacity is 

exhausted, and no more mass transfer from the liquid phase to the adsorbent particles takes 

place. Thus, the adsorption of contaminants reaches dynamic equilibrium at the solid/solution 
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interface;  

(ii) Mass transfer zone 

In the MTZ, the mass transfer from the liquid phase to the solid phase just occurs. Along 

the column, the concentration decreases from c = c0 to c = 0, and the adsorbed amount increases 

from q = 0 to q = q0. Shape and length of the MTZ are dependent of the adsorption rate and the 

shape of the equilibrium curve. 

(iii) Adsorption zone 

The adsorbent in this zone does not hold the adsorbates, and the fluid-phase concentration 

is c = 0. 

As shown in Figure 1-2, the MTZ moves toward along the adsorber with a velocity that is 

much slower than the water velocity. The strong affinity of the adsorbent for the adsorbate 

results in the great difference between the MTZ velocity and the water velocity. As long as the 

MTZ has not reached the adsorber outlet, the outlet concentration is c = 0. The adsorbate begins 

to occurs in the adsorber outlet when the MTZ reaches the end of the adsorber. The required 

time is referred to as the breakthrough time tb. As the adsorption progresses, the effluent 

concentration increases and the residual adsorbent capacity decreases. If the entire MTZ has 

left the adsorber, the effluent concentration equals c0, in which all adsorbent particles are 

saturated and no net adsorption takes place. This time is referred to as saturation time ts. Due to 

the asymptotic form of the breakthrough curve, the breakthrough time and the saturation time 

can not be determined exactly by the breakthrough models. Hence, the operating times 

at c/c0 = 0.05 and c/c0 = 0.95 are usually defined as the breakthrough time tb and the saturation 

time ts, respectively (de Franco et al., 2017). 

In general, the degree of curvature and symmetry of the breakthrough curve are subjected 

to different adsorbent-adsorbate systems and operating conditions such as initial concentration, 

flow rate, bed height, particle size and pH (Ataei-Germi and Nematollahzadeh, 2016; Jang and 

Lee, 2016; Yanyan et al., 2018). A good understanding of the breakthrough behavior of the 

adsorbates to be removed is the essential precondition for any fixed-bed adsorber design. 

Therefore, how to accurately describe the breakthrough curve is still a problem to be addressed 

urgently. 
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1.3.  Breakthrough models 

The appropriate design of an adsorption process requires the development of a 

mathematical model that can describe the dynamic adsorption behaviors and predict the 

breakthrough curve in a fixed-bed column (Shafeeyan et al., 2014). One approach has been to 

solve simultaneously the partial differential equations (PDEs) describing the mass and the heat 

balance (Sircar and Kumar, 1983). However, the simultaneous solution of PDEs for a given 

adsorption system, although more general and mathematically rigid, requires complicated 

numerical solutions. Thus, in order to simulate the breakthrough behavior of a fixed-bed column 

with a high degree of accuracy, the use of simpler and more tractable models that avoid the need 

for numerical solution appears more suitable and logical in practice (Chu, 2004). Many attempts 

have been made to develop simplified breakthrough models to reduce computational time and 

facilitate optimization studies. These simplified breakthrough models are primarily established 

on the basis of the description of mass transfer within adsorption systems and they can describe 

the experimental data satisfactorily for most practical design purposes. 

1.3.1.  Bohart–Adams model 

The Bohart–Adams model is initially used to describe the adsorption of chlorine on 

charcoal in a continuous-flow system and assumes that the rate of reaction is proportional to 

the residual adsorption capacity of the adsorbent and to the concentration of the adsorbate in 

the mobile phase (Bohart and Adams, 1920). The integral form of the Bohart–Adams model is 

expressed as: 

c
c0

=
exp(kBAc0t)

exp �kBAa0x
u � + exp(kBAc0t) − 1

 (1-1) 

Compared with the first two exponential terms in the denominator, if the last term is 

negligible, Eq. (1-1) reduces to 

c
c0

=
1

1 + exp �kBAa0x
u − kBAc0t�

 (1-2) 

1.3.2.  Thomas model 

The Thomas model is widely used to predict breakthrough curves at various bed depths, 

flow rates, and initial solute concentrations in a fixed-bed column (Yan et al., 2017). It assumes 
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that: (i) Plug flow behavior occurs during the adsorption process (Gong et al., 2015); (ii) 

Adsorption is limited by mass transfer with no axial dispersion at the solid/solution interface 

(Nandanwar et al., 2017); and (iii) The experimental data follows the Langmuir isotherm and 

second-order reversible reaction kinetics (Ataei-Germi and Nematollahzadeh, 2016). The 

Thomas model is appropriate to evaluate the adsorption process where external and internal 

diffusion resistances are extremely small, which can be written as: 
c
c0

=
1

1 + exp �
kTq0m
ν − kTc0t�

 (1-3) 

1.3.3.  Yoon–Nelson model 

The Yoon–Nelson model assumes that the rate of decrease in the probability of adsorption 

for each adsorbate is proportional to the probability of adsorption and the probability of 

breakthrough (Yoon and Nelson, 1984). It is a relatively simple model and does not require 

detailed data with respect to the characteristics of the adsorbates, the type of adsorbent and the 

physical properties of the adsorption bed (Soto et al., 2017). The Yoon–Nelson model can be 

expressed as: 
c
c0

=
1

1 + exp[kYN(τ− t)] (1-4) 

1.3.4.  Clark model 

In 1987, Clark develops a model to evaluate adsorption performance of granular activated 

carbon (GAC) for the removal of organic compounds in a fixed-bed column (Clark, 1987). It 

assumes that: (i) The adsorption process obeys the Freundlich isotherm; (ii) An ideal mass 

balance over the entire column is based on all the solutes are removed in the outlet; (iii) Liquid 

phase mass balance equation is established using the mass-transfer concept. 

c
c0

=
1

[1 + Aexp(−rt)]
1

n−1
 (1-5) 

1.3.5.  Dose-response model 

It has been proved that a comparatively larger deviation exists between the experimental 

data and the predicted values when the Thomas model is used to analyze the experimental data 

(Yan et al., 2001). Therefore, the dose-response model is proposed to minimize the error 

resulting from the Thomas model, which can be expressed as: 
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c
c0

= 1 −
1

1 + (bt)a (1-6) 

1.3.6.  Wolborska model 

The Wolborska model is based on the application of equations of mass transfer for 

diffusion mechanisms used for the low concentration breakthrough curve (Sana and Jalila, 

2017), It is originally used to describe p-nitrophenol adsorption on activated carbon in a fixed-

bed column, which can be given as (Wolborska, 1989):  

c
c0

= exp�
βac0

a0
t −

βa
u

x� (1-7) 

1.4.  Research problems 

In the last two decades, great progress has been made in the field of adsorption. Most 

researchers mainly focus on the development of novel adsorption materials, evaluation of 

adsorption performance, synergistic or competitive effects of multicomponent adsorption, 

revelation of adsorption mechanisms and regeneration of contaminants-loaded adsorbent. 

However, few attentions are paid to the development of continuous-flow breakthrough models. 

The Bohart–Adams, Thomas, Yoon–Nelson, Clark, dose-response and Wolborska models are 

widely employed to simulate a fixed-bed adsorption system in wastewater treatment due to 

simple mathematical expressions and good fitting performance. The previous work aims to 

compare fitting performance between breakthrough models and estimate the model parameters, 

but there are still many problems to be addressed, including (i) Mathematical characteristics of 

the breakthrough curves such as the curvature and symmetry; (ii) Mathematical relationships 

between breakthrough models; (iii) Effects of model parameters on breakthrough curve and rate 

profile; (iv) Establishment of fractal-like and empirical breakthrough models; and (v) Physical 

meanings of model parameters. 

1.5.  Research objectives and thesis structure 

This study aims to provide alternative methods to analyze a continuous-flow adsorption 

system through modifications of traditional breakthrough models and adaptation of some 

sigmoidal functions. The main objectives are: 
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(1) To intuitively reveal mathematical characteristics of breakthrough curve, including the 

degree of curvature and symmetry; 

(2) To reveal mathematical relationships between breakthrough models and thus reduce 

the calculation amount significantly; 

(3) To discuss effects of model parameters on breakthrough curves and rate profiles and 

thereby reveal physical meanings of some parameters or terms; 

(4) To establish fractal-like breakthrough models to describe heterogeneous diffusion-

limited adsorption processes and also propose some empirical breakthrough models to adapt to 

different adsorbent-adsorbate systems in a fixed-bed column based on hyperbolic tangent and 

double exponential functions; 

(5) To highlight mistakes and controversies with respect to application of Bohart–Adams 

and Wolborska models to avoid this situation where they are repeated in subsequent 

publications. 

In the first part of this study (Chapter 2), the main research contents include: (i) 

Mathematical relationships between traditional breakthrough models; (ii) Modifications of 

breakthrough models using the parameters μmax and λ; (iii) Effects of model parameters on 

breakthrough curves and rate profiles and (iv) Physical meanings of model parameters. In the 

second part (Chapter 3), this study establishes fractal-like breakthrough models through the 

introduction of the fractal-like concept into Bohart–Adams, Thomas and Yoon–Nelson models; 

The fitting performance of fractal-like breakthrough models is evaluated by the adsorption of 

nitrate on chitosan-Fe(III) composite; and the degree of curvature and symmetry of 

breakthrough curves are investigated by adjusting the fractal-like exponent h. In the third part 

(Chapter 4), this study establishes empirical breakthrough models based on hyperbolic tangent 

and double exponential functions and evaluate their fitting performance. The whole structure 

of this thesis is described in Figure 1-3. 
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Table 1-1 Comparison of physical and chemical adsorption. 

Category Physical adsorption Chemical adsorption 

Electron transfer or sharing No Yes 

Interaction van der Waals, hydrogen bonds Ionic or covalent bonds 

Coverage Mono- or multi-layer Mono-layer 

Nature of adsorption Nondissociative and reversible Often dissociative and irreversible 

Degree of Specificity  Low Very high 

Temperature-dependent uptake Decreases Increases 

Adsorption enthalpy 5–40 kJ mol−1 40–800 kJ mol−1 

Adsorption kinetics Fast Very variable, often slow 

Desorption Easy  Difficult 

Desorbed species Adsorbate unchanged Adsorbate may change 

Data from Bonilla-Petriciolet et al., 2017; Çeçen and Aktas, 2011; Rouquerol et al., 2013. 
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Figure 1-1 Schematic diagram of transport and reaction processes by porous adsorbents 

(Adapted from Tran et al., 2017; Weber Jr, 1984). 
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Figure 1-2 Traveling of mass transfer zone through a fixed-bed column and development of a 

breakthrough curve (Adapted from Worch, 2012). 
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Figure 1-3 Research route and framework of this thesis. 

Fractal-like breakthrough models Empirical breakthrough models 

Model establishment 

Fitting evaluation 

Curve characteristics 

Sigmoidal functions 

Model validation 

Model establishment 

Conclusions and future research 

Breakthrough models 

Chapter 2 Chapter 4 

Modification 

Chapter 3 

Traditional breakthrough models 

Mathematical relationships 

Model modification 

Curve characteristics 

Parameters meaning 

12 



13 
 

Chapter 2 Modification of breakthrough models and physical meanings 

of corresponding parameters in a fixed-bed column 
 
2.1.  Introduction 

The Bohart–Adams, Thomas, Yoon–Nelson, Clark, dose-response and Wolborska models 

receive widespread concern by many researchers due to simple mathematical forms and good 

fitting performance. Ever since these breakthrough models were developed, they have been 

successfully applied to water and wastewater treatment in a wide range of pollutants, including 

heavy metals (Shahbazi et al., 2011), inorganic anions (Sun et al., 2014) and dyes (Ataei-Germi 

and Nematollahzadeh, 2016). However, many researchers only focus on the fitting performance 

of these breakthrough models and the determination of the model parameters. The mathematical 

laws followed by the models themselves is usually ignored. 

Some crucial problems are to be addressed when the breakthrough models are fitted to the 

experimental data: (i) mathematical relationships between breakthrough models; (ii) physical 

meanings of model parameters; (iii) effects of model parameters on the breakthrough curve and 

rate profile; (iv) complete description of the breakthrough curve; and (v) establishment of new 

breakthrough models. In addition, a controversy concerning application of the Bohart–Adams 

and Wolborska models occurs in scientific literature. Once the controversy enters the literature, 

it is very difficult to eradicate it and is unavoidably repeated in subsequent publications. In 

order to avoid this situation, it is extremely necessary to highlight this controversy. 

2.2.  Mathematical relationships between breakthrough models 

In many published research papers (Darweesh and Ahmed, 2017; Gong et al., 2015; Jang 

and Lee, 2016; Nguyen et al., 2015), it is found that the breakthrough curves are not coincident 

and the error values are not identical when the Bohart–Adams, Thomas and Yoon–Nelson 

models are used to correlate with the experimental data in a fixed-bed adsorption system, 

implying that the three breakthrough models are separate and independent. But, it is not the 

case. In order to facilely observe mathematical characteristics of the Bohart–Adams, Thomas 

and Yoon–Nelson models, the three breakthrough models are rewritten as: 
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c
c0

=
1

1 + exp �kBAc0 �
a0x
uc0

− t��
 (2-1) 

c
c0

=
1

1 + exp �kTc0 �
q0m
νc0

− t��
 (2-2) 

c
c0

=
1

1 + exp[kYN(𝜏𝜏 − t)] (2-3) 

One can readily see that the terms kBAc0, kTc0 and kYN have the identical dimension of 

reciprocal time (min−1), while the terms a0x/uc0, q0m/vc0 and τ also have the same dimension of 

time (min). As a consequence, the following relationships are acceptable. 

kYN = kTc0 = kBAc0 (2-4) 

τ =
q0m
νc0

=
a0x
uc0

 (2-5) 

It follows that the Bohart–Adams, Thomas and Yoon–Nelson models are equivalent and 

represent a logistic function in mathematical nature. Thus, the breakthrough curves represented 

by the three breakthrough models are coincident and all error values are equal when the curve 

fitting is carried out. The significance of the revelation of this relationships consists in: (1) the 

physical meanings of the terms q0m/vc0 and a0x/uc0 are the operating time required to reach 50% 

breakthrough and kYN is numerically equal to a product of kBA (kT) and c0; (2) kYN and τ directly 

used to calculate kBA (kT) and a0 (q0) can significantly reduce workload instead of the complex 

curve fitting. The Yoon–Nelson model does not require detailed data with respect to the 

characteristics of adsorbates, the type of an adsorbent and the physical properties of a fixed-bed 

column, indicating that the parameters kYN and τ may be regarded as lumped parameters that 

embed some operating features. 

There are two controversies with respect to the Bohart–Adams model that need to be 

specifically pointed out. It is debatable to regard Eq. (2-1) as the bed depth service time (BDST) 

model initially proposed by Hutchins (Hutchins, 1973) in some published research papers 

(Kundu and Gupta, 2005; Uddin et al., 2009; Unuabonah et al., 2010; Yang et al., 2015). After 

reading the original paper carefully (Bohart and Adams, 1920), it is found that Eq. (2-1) actually 

belongs to the work of Bohart and Adams. On the other hand, some research papers give another 

form of the Bohart–Adams model (Jang and Lee, 2016; Wang et al., 2015; Yan et al., 2017): 
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c
c0

= exp �kBAc0 �t −
a0x
uc0

�� (2-6) 

It is not difficult to find that Eq. (2-6) is a further simplified form of Eq. (2-1) when the 

first term in the denominator is negligible compared with the exponential term. However, this 

simplified method changes the mathematical laws followed by Eq. (2-1). As shown in Figure 

2-1, Eq. (2-1) and Eq. (2-6) are derived from a standard logistic function y = 1/(1+exp(−t)) and 

an exponential function y = exp(t) respectively by the stretching and translation transformations 

in sequence. It is obvious that the breakthrough curve given by Eq. (2-6) is not an asymptotic 

S-shaped curve. Generally speaking, in order to obtain good fitting performance, distribution 

of the experimental data must approach the shape of the curve represented by the breakthrough 

model (Harter, 1984). Therefore, Eq. (2-6) is not appropriate for the description of the 

breakthrough curve within the whole adsorption time and thus kBA and a0 obtained from Eq. (2-

6) do not reflect an actual fixed-bed adsorption system. By contrast, it is observed from Figure 

2-1 that the breakthrough curve provided by Eq. (2-1) is an asymptotic S-shaped curve that it 

is centrosymmetric with respect to one point (a0x/uc0, 0.5) in rectangular coordinates. This type 

of the breakthrough curve can well reflect actual fixed-bed adsorption systems and describe the 

dynamic behaviors during the adsorption process. 

It can be clearly seen from Eq. (1-5) that the Clark model can also reduce to a logistic 

function (A = r = 1 and n = 2). Thus, the Clark model can be transformed to the Bohart–Adams, 

Thomas or Yoon–Nelson model through the appropriate variable substitution when n = 2. 

𝐴𝐴 = exp �
kBAa0x

u
� = exp�

kTq0m
v

� = exp(kYNτ) (2-7) 

r = kBAc0 = kTc0 = kYN (2-8) 

It follows that the Clark model can be seen as a generalized form of the Bohart–Adams, 

Thomas and Yoon–Nelson models. The Clark model may provide better fitting performance 

since an extra adjustable parameter n make the curve fitting more flexible. 

It is worth noting that Eq. (1-7) and Eq. (2-6) have the same mathematical structure. Thus, 

the Wolborska model can be also derived from an exponential function y = exp(t) by stretching 

and translation transformations. That is, the Wolborska model does not represent a S-shaped 
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curve. The parameters βa and a0 does not reflect an actual fixed-bed adsorption system, either. 

Consequently, the use of Eq. (1-7) and Eq. (2-6) should be avoided because they fail to describe 

the breakthrough curve completely. The revelation of the mathematical relationships between 

the breakthrough models contributes to the appropriate selection of the models and precise 

calculation of model parameters. 

2.3.  Modification of breakthrough models 

Similar to the bacterial growth curve (Zwietering et al., 1990), the breakthrough curve can 

be also divided into three phases (Figure 2-2): Lag, logarithmic and stationary phases. In the 

lag phase, the fresh adsorbents packed in a fixed-bed column contain large numbers of available 

adsorption sites and thereby hold the adsorbate molecules consecutively, leading to the very 

low effluent concentration; In the logarithmic phase, as the adsorption progresses, the decrease 

in adsorption sites results in the rapid increase in the effluent concentration; In the stationary 

phase, the adsorbent particles approach the saturation state gradually and thus the effluent 

concentration tends to a stationary value. The three phases of the breakthrough curve can be 

described by three parameters: Lag time λ, maximum specific breakthrough rate μmax and 

influent concentration c0. Herein, μmax and λ are defined as the slope of the tangent line at the 

inflection point of the breakthrough curve and the t-axis intercept of this tangent line, 

respectively. μmax can reflect whether the adsorption is favorable and λ represents the required 

operating time when the breakthrough curve begins to rise significantly. 

It is difficult to accurately calculate them if the parameters μmax and λ are not estimated 

directly in the equation. Therefore, in order to effectively estimate μmax and λ, all breakthrough 

models are modified by substituting the model parameters with μmax and λ. The detailed 

derivation processes are as follows. 

2.3.1.  Modified Yoon–Nelson model 

In order to introduce μmax and λ into the Yoon–Nelson model (Eq. (2-3)), let y = c/c0, and 

then the first and second derivatives with respect to t are given as: 
dy
dt

=
kYN ⋅ exp[kYN(τ− t)]

{1 + exp[kYN(τ− t)]}2 (2-9) 
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d2y
dt2

=
kYN

2 ⋅ exp[kYN(τ− t)] ⋅ {exp[kYN(τ− t)] − 1}
{1 + exp[kYN(τ− t)]}3  (2-10) 

The second derivative is equal to zero at the inflection point t = ti. 

d2y
dt2

�
t=ti

= 0 ⟹ ti = τ (2-11) 

The maximum specific breakthrough rate μmax can be obtained by calculating the first 

derivative at t = ti. 

μmax =
dy
dt
�
t=ti

=
kYN

4
 (2-12) 

The description of the tangent line through the inflection point is: 

y =
kYN

4
(t − τ) + 0.5 (2-13) 

The lag time is given as: 
kYN

4
(λ− τ) + 0.5 = 0 ⟹ λ = τ−

2
kYN

 (2-14) 

The half-operating time is written as: 

t50 = τ (2-15) 

Eq. (2-12) and Eq. (2-14) are rewritten as: 

kYN = 4μmax (2-16) 

τ = λ−
1

2μmax
 (2-17) 

Substitution of Eq. (2-16) and Eq. (2-17) into Eq. (2-3) leads to 

c
c0

=
1

1 + exp�4μmax(λ− t) + 2�
 (2-18) 

As mentioned above, the Bohart–Adams, Thomas and Yoon–Nelson models represent the 

same breakthrough curve according to Eq. (2-4) and Eq. (2-5). Thus, Eq. (2-18) also belongs to 

the modified Bohart–Adams and modified Thomas models. 

2.3.2.  Modified Clark model 

According to the above procedure, let y = c/c0, the first and second derivatives of the Clark 

model (Eq. (1-5)) with respect to t are given as: 
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dy
dt

=
Ar

n − 1
⋅ exp(−rt) ⋅ [1 + Aexp(−rt)]−

n
n−1 (2-19) 

d2y
dt2

=
Ar2

n − 1
⋅ exp(−rt) ⋅ [1 + Aexp(−rt)]−

2n−1
n−1 ⋅ �

A
n − 1

⋅ exp(−rt) − 1� (2-20) 

The second derivative is equal to zero at the inflection point t = ti. 

d2y
dt2

�
t=ti

= 0 ⟹ ti = −
1
r

ln �
n − 1

A
� (2-21) 

Substitution of Eq. (2-21) into Eq. (2-19) leads to 

μmax =
dy
dt
�
t=ti

= r ⋅ n−
n

n−1 (2-22) 

The description of the tangent line through the inflection point is: 

𝑦𝑦 = r ⋅ n−
n

n−1 �t +
1
r

ln �
n − 1

A
�� + n−

1
n−1 (2-23) 

The lag time is given as: 

𝑟𝑟 ⋅ n−
n

n−1 �λ+
1
r

ln �
n − 1

A
�� + n−

1
n−1 = 0 ⟹ 𝜆𝜆 = −

1
r
�ln �

n − 1
A

� + n� (2-24) 

The half-operating time is written as: 

t50 = −
1
r

ln�
2n−1 − 1

A
� (2-25) 

Eq. (2-22) and Eq. (2-24) are rewritten as: 

r = μmax ⋅ n
n

n−1 (2-26) 

𝐴𝐴 = (n− 1) ⋅ exp �λμmax ⋅ n
n

n−1 + n� (2-27) 

Substitution of Eq. (2-26) and Eq. (2-27) into Eq. (1-5) leads to 
c
c0

=
1

�1 + (n − 1) ⋅ exp �μmax ⋅ n
n

n−1(λ− t) + n��
1

n−1
 

(2-28) 

2.3.3.  Modified dose-response model 

According to the above procedure, let y = c/c0, the first and second derivatives of the dose-

response model (Eq. (1-6)) with respect to t are given as: 
dy
dt

=
ab ⋅ (bt)a−1

[1 + (bt)a]2 (2-29) 
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d2y
dt2

=
ab2 ⋅ (bt)a−2 ⋅ [(a + 1) ⋅ (bt)a − a + 1]

[1 + (bt)a]3  (2-30) 

The second derivative is equal to zero at the inflection point t = ti. 

d2y
dt2

�
t=ti

= 0 ⟹ ti =
1
b
�
a − 1
a + 1

�
1
a
 (2-31) 

The maximum specific breakthrough rate μmax can be obtained by calculating the first 

derivative at t = ti. 

μmax =
dy
dt
�
t=ti

=
b
4a
⋅ (a − 1)

a−1
a ⋅ (a + 1)

a+1
a  (2-32) 

The description of the tangent line through the inflection point is: 

𝑦𝑦 =
b
4a
⋅ (a − 1)

a−1
a ⋅ (a + 1)

a+1
a �t −

1
b
�
a − 1
a + 1

�
1
a
� +

a − 1
2a

 (2-33) 

The lag time is given as: 

b
4a
⋅ (a − 1)

a−1
a ⋅ (a + 1)

a+1
a �λ −

1
b
�
a − 1
a + 1

�
1
a
� +

a − 1
2a

= 0 (2-34) 

Eq. (2-34) is rewritten as: 

𝜆𝜆 =
1
b
�
a − 1
a + 1

�
a+1

a
 (2-35) 

The half-operating time is given as: 

t50 =
1
b
 (2-36) 

Eq. (2-32) and Eq. (2-35) are rewritten as: 

𝑎𝑎 = �λμmax + �1 + λμmax�
2

 (2-37) 

𝑏𝑏 =
1
λ
�
�λμmax + �1 + λμmax�

2
− 1

�λμmax + �1 + λμmax�
2

+ 1
�

1+ 1
�λμmax+�1+λμmax�

2

 (2-38) 

Substitution of Eq. (2-37) and Eq. (2-38) into Eq. (1-6) leads to 
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c
c0

= 1 −
1

1 + �t
λ �
�λμmax + �1 + λμmax�

2
− 1

�λμmax + �1 + λμmax�
2

+ 1
�

1+ 1
�λμmax+�1+λμmax�

2

�

�λμmax+�1+λμmax�
2 

(2-39) 

As mentioned above, the Wolborska model is not a S-shaped curve. As a result, it has no 

corresponding modified model. All breakthrough models in this study are showed in Table 2-1. 

It should be emphasized that modified breakthrough models are derived by variable substitution. 

Thus, the fitting curves are coincident and all error values are equal between the Bohart–Adams, 

Thomas, Yoon–Nelson, Clark, dose-response models and the corresponding modified 

breakthrough models. 

2.4.  Symmetry of breakthrough models 

In this study, the inflection point ti and half-operating time t50 are proposed to identify the 

symmetry of the breakthrough curve. Herein, ti and t50 are defined as the operating time required 

to reach one point where the shape of the breakthrough curve is converted from the concave to 

the convex and 50% breakthrough (c/c0 = 0.5), respectively. It is important to note that the 

above derivation processes also reveal the mathematical relationships between the defined four 

parameters and model parameters, which are listed in Table 2-2. 

The relative magnitude of ti and t50 can reflect the symmetry of the breakthrough curve. 

The Bohart–Adams, Thomas and Yoon–Nelson models can be derived from a logistic model. 

Thus, the three breakthrough models represent a symmetric breakthrough curve and ti and t50 

are equal. 

For the Clark and dose-response models, the magnitude of t50 − ti can be given as: 

t50 − ti =
1
r

ln �
n − 1

2n−1 − 1
� (2-40) 

t50 − ti =
1
b
�1 − �

a − 1
a + 1

�
1
a
� (2-41) 

It is obvious that the positive or negative value of t50 − ti only depends on the parameters 

n and a respectively. In the Clark model, the parameter n represents a Freundlich constant and 

the value of n lying in the range of 1–10 confirms the favorable condition for adsorption (Preethi 
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et al., 2017). A plot of t50 − ti as a function of n is described in Figure 2-3a. It is found that 1 < 

n < 2, t50 > ti; n = 2, t50 = ti; and 2 < n < 10, t50 < ti. Thus, the Clark model can describe an 

asymmetric breakthrough curve when n ≠ 2, and the breakthrough curve becomes more 

asymmetric when the parameter n deviates from 2. 

In the dose-response model, the influence of the parameter a on the breakthrough curve is 

shown in Figure 2-4. All breakthrough curves for different a values passes through one point 

(1/b, 0.5) and the shape of the curves is dependent of the parameter a value. The dose-response 

model does not represent a S-shaped curve but exhibit a parabola-like curve when a ≤ 1. The 

S-shaped curve occurs only at a > 1 and the degree of curvature becomes larger with the increase 

in a. It is observed from Figure 2-3b that a > 1, t50 > ti. Therefore, the dose-response model 

provides an asymmetric breakthrough curve. The breakthrough curve approaches a symmetric 

curve since ti is closer to t50 with the increase in a. 

2.5.  Breakthrough curve and rate profile 

The breakthrough curve and rate profile of the Yoon–Nelson model for different kYN are 

illustrated in Figure 2-5. All of the breakthrough curves pass through one point (τ, 0.5) and the 

degree of curvature increases with the increase in kYN (become steeper). Each rate profile is a 

symmetric Gaussian distribution shape concerning the vertical line t = τ and its shape is only 

dependent of kYN. The height decreases and the width increases with the decrease in kYN. As 

mentioned above, τ is a location parameter and thereby affects the location of the breakthrough 

curve and rate profile alone. The effects of kT (kBA) and q0 (a0) on the breakthrough curve and 

rate profile are consistent with that of kYN and τ, respectively because the Bohart–Adams, 

Thomas and Yoon–Nelson models are equivalent in mathematical nature. 

In the Clark model, one can readily see from Figure 2-6 that the parameter n can affect the 

curvature and location of the breakthrough curve. It becomes steeper with the decrease in n. 

The rate profiles for different n exhibit three types: (i) A symmetric Gaussian distribution shape 

(n = 2); (ii) An asymmetric quasi-Gaussian distribution shape with a widened right-hand side 

(1 < n < 2); and (iii) An asymmetric quasi-Gaussian distribution shape with a widened left-hand 

side (2 < n < 10). As mentioned above, the Clark model can be converted to the Yoon–Nelson 
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model. Thus, the effects of the parameters A and r on the breakthrough curve and rate profile 

are equivalent to that of kYN and τ, respectively. 

In the dose-response model, the effects of the parameters a and b on the breakthrough 

curve and rete profile are represented in Figure 2-7. The influence of a on the breakthrough 

curve has been discussed in detail (vide supra). The corresponding rate profile is an asymmetric 

quasi-Gaussian distribution shape with a widened right-hand side (Figure 2-7c). The increase 

in a leads to the increased height and reduced width, while the location of the peak is shifted to 

the left side. It can be clearly seen from Figure 2-7b and Figure 2-7d that the breakthrough 

curves and rate profiles are shifted to the right side by a certain distance with the decrease in b. 

The curvature of the breakthrough curves and the maximum specific breakthrough rate μmax 

also decrease correspondingly. The Bohart–Adams, Thomas, Yoon–Nelson, Clark and dose-

response models represent different types of the breakthrough curves and rate profiles, which 

provide more flexible selection for the modeling of a continuous-flow fixed-bed column. 

2.6.  Physical meanings of characteristic parameters 

In order to better understand the dynamic behaviors in a fixed-bed column, it is of prime 

importance to explain the physical meanings of model parameters correctly. In the Yoon–Nelson 

model, kYN and τ are the rate constant independent of time and the operating time required to 

reach 50% breakthrough, respectively. Many studies indicate that the values of kYN and τ are 

dependent of the operating conditions such as influent solute concentration, flow rate and bed 

height. Thus, both kYN and τ are more likely to be the lumped constants that are related to the 

physical processes and operating features. 

In the Bohart–Adams and Thomas models, kBA and kT are the rate constants independent 

of time. The physical meanings of a0x/uc0 and q0m/vc0 represent the operating time required 

to reach 50% breakthrough according to Eq. (2-5). The rate constant kBA (kT) and adsorption 

capacity a0 (q0) are also related to the physical processes and operating features. Moreover, 

the change in certain parameter of a0x/uc0 or q0m/vc0 without adjusting a0x/uc0 or q0m/vc0 does 

not alter adsorption performance. The most prominent advantage of using a0x/uc0 or q0m/vc0 

consists in the fact that one can readily see which group of the parameters affects adsorption 
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performance rather than examining the effect of each parameter. 

In the Clark model, the parameter n is the Freundlich constant, representing a measure of 

adsorption intensity (Carabineiro et al., 2011). Although the Clark model assumes that the 

adsorption process follows the Freundlich isotherm, the adsorption in a fixed-bed column 

differs from that in a batch reactor (Worch, 2012): In a batch reactor, the mass transfer driving 

force or the adsorption rate decreases due to the reduced concentration during the adsorption 

process, while the adsorbent in a fixed-bed column is always in contact with the influent 

concentration, resulting in a high driving force over the whole process. Thus, it is reasonable 

to directly calculate the parameter n instead of the n value obtained from the batch reactor 

when the Clark model is used to analyze the experimental data. Besides, the parameters A and 

r are given as (Clark, 1987): 

𝐴𝐴 = �
c0

n−1

cb
n−1 − 1� exp(rtb) (2-42) 

r = (n − 1)(KT/U0)νm (2-43) 

The parameter A is a dimensionless constant according to Eq. (2-42) and r is related to 

the mass-transfer coefficient KT. As discussed above, the Clark model can be also converted 

to the Yoon–Nelson model. As a result, A is considered as a location parameter and r is 

regarded as the rate constant. 

In the dose-response model, the operating time required to reach 50% breakthrough is 

exactly 1/b, which is not related to the parameter a. As a consequence, the half-operating time 

t50 only depends on the parameter b. As depicted in Figure 2-5a and Figure 2-7a, the effects of 

kYN and a on the breakthrough curve are similar. Thus, the parameter a is related to the rate 

constant. It is worth noting that these model parameters mentioned above are determined by 

the adsorption system itself, mainly depend on the affinity of the adsorbent for the adsorbate 

molecules and initial operating conditions. 

2.7.  Summary 

The Bohart–Adams, Thomas and Yoon–Nelson models provide the identical breakthrough 

curve and rate profile. The Wolborska model does not represent a complete sigmoidal curve. 
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The maximum specific breakthrough rate μmax, lag time λ, inflection point ti and half-operating 

time t50 can better reflect mathematical characteristics of the breakthrough curve. The modified 

breakthrough models may be important alternative methods for analysis of continuous-flow 

adsorption system. The physical meanings of q0m/vc0 and a0x/uc0 are the operating time 

required to reach 50% breakthrough, respectively. The dose-response model represents a 

sigmoidal curve only when the parameter a is more than unity (a > 1). 
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Table 2-1 Breakthrough models and the corresponding modified models. 

Name Equation Modified equation 

Bohart–Adams 
c
c0

=
1

1 + exp �kBAc0 �
a0x
uc0

− t��
 c

c0
=

1
1 + exp�4μmax(λ− t) + 2�

 

Thomas 
c
c0

=
1

1 + exp �kTc0 �
q0m
νc0

− t��
 c

c0
=

1
1 + exp�4μmax(λ− t) + 2�

 

Yoon–Nelson 
c
c0

=
1

1 + exp[kYN(τ− t)] 
c
c0

=
1

1 + exp�4μmax(λ− t) + 2�
 

Clark 
c
c0

=
1

[1 + Aexp(−rt)]
1

n−1
 

c
c0

=
1

�1 + (n− 1) ⋅ exp �μmax ⋅ n
n

n−1(λ− t) + n��
1

n−1
 

Dose-response 
c
c0

= 1 −
1

1 + (bt)a 

c
c0

= 1 −
1

1 + �t
λ �
�λμmax + �1 + λμmax�

2
− 1

�λμmax + �1 + λμmax�
2

+ 1
�

1+ 1
�λμmax+�1+λμmax�

2

�

�λμmax+�1+λμmax�
2 

Wolborska 
c
c0

= exp�
βac0

a0
t −

βa
u

x� Non-existence 

In the dose-response model, b = vc0/q0m. 
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Table 2-2 Mathematical relationships between model parameters and four parameters defined in this study. 

Models μmax λ t50 ti 

Bohart–Adams kBAc0

4
 

a0x
uc0

−
2

kBAc0
 

a0x
uc0

 
a0x
uc0

 

Thomas kTc0

4
 

q0m
νc0

−
2

kTc0
 

q0m
νc0

 
q0m
νc0

 

Yoon–Nelson kYN

4
 τ−

2
kYN

 τ τ 

Clark r ⋅ n−
n

n−1 −
1
r
�ln �

n − 1
A

� + n� −
1
r

ln�
2n−1 − 1

A
� −

1
r

ln �
n − 1

A
� 

Dose-response b
4a
⋅ (a − 1)

a−1
a ⋅ (a + 1)

a+1
a  1

b
�
a − 1
a + 1

�
a+1

a
 

1
b
 1

b
�
a − 1
a + 1

�
1
a
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Figure 2-1 Schematic diagram of stretching and translation transformations for different forms 

of the Bohart–Adams model. 
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Figure 2-2 Schematic diagram of the breakthrough curve and the corresponding parameters. 
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Figure 2-3 A plot of y as functions of parameters n and a for (a) Clark and (b) dose-response 

models (y = t50 –ti). 
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Figure 2-4 Effect of the parameter a on the breakthrough curve for the dose-response model. 
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Figure 2-5 Effects of the rate constant on (a) breakthrough curve and (b) rate profile for the 

Yoon–Nelson model (k1 > k2 > k3). 
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Figure 2-6 Effects of the parameter n on (a) breakthrough curve and (b) rate profile for the 

Clark model (n1 > n2 > n3). 
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Figure 2-7 Effects of the parameters a and b on breakthrough curve and rate profile for the 

dose-response model (a1 > a2 > a3 > 1 and b1 > b2 > b3). 
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Chapter 3 Fractal-like kinetics of adsorption on heterogeneous surfaces 

in a fixed-bed column 
 
3.1.  Introduction 

In order to gain insights into the dynamic behaviors in a fixed-bed column, the various 

breakthrough models have been proposed to describe the breakthrough curve under the specific 

operating condition. The most frequently used breakthrough models include the Bohart–Adams, 

Thomas and Yoon–Nelson models. The fitting curves provided by the three breakthrough 

models agree well with the experimental results under different experimental conditions such 

as influent solute concentration, flow rate, bed height, pH, temperature, adsorbent mass and 

particle size (Jang and Lee, 2016; Sheng et al., 2018; Witek-Krowiak et al., 2013). The three 

breakthrough models assume that the rate constant is independent of time. 

However, when the reactants are spatially constrained by either walls, phase boundaries or 

force fields on the microscopic level, it is found to be unsatisfactory (Kopelman, 1988). It is 

expected that the adsorption process at the solid/solution interface is of high heterogeneity. The 

rate of adsorption for porous adsorbents is related not only to the reaction rate on the active 

sites, but also to the external mass transfer and intraparticle diffusion (Figaro et al., 2009). The 

classical reaction kinetics is not applicable for the heterogeneous diffusion-limited process 

(Montagnaro and Balsamo, 2014). It is reported that the adsorption kinetics at the solid/solution 

interface can be described by the fractal-like approach in a real system with different types of 

surface sites (Haerifar and Azizian, 2014). It is worth noting that the fractal-like concept is not 

been discussed in a fixed-bed adsorption system. Inspired by this, the fractal-like concept or 

time-dependent rate constant is introduced into the Bohart–Adams, Thomas and Yoon–Nelson 

models to obtain the corresponding fractal-like breakthrough models. 

3.2.  Theoretical analysis 

In adsorption studies, some techniques such as surface protonation, chemical modification 

and thermal treatment are widely used to enhance the affinity and selectivity of the adsorbent, 

and thus most of the modified adsorbents have heterogeneous surfaces with different types of 
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adsorption sites (Loganathan et al., 2013). The interaction of energetic and geometric 

heterogeneity results in fractal-like kinetics (Kopelman, 1986). It represents a new insight into 

the adsorption behaviors at the solid/solution interface. The fractal-like adsorption kinetics 

indicates that the observed rate constant k is a time-dependent rate coefficient (Haerifar and 

Azizian, 2014; Kopelman, 1988), which can be expressed as: 

k = k0t−h  (0 ≤ h ≤ 1) (3-1) 

3.2.1.  Fractal-like Bohart–Adams model 

The Bohart–Adams model assumes that the adsorption reaction is not instantaneous and 

that the rate of the reaction is proportional to the residual adsorption capacity of the adsorbent 

and to the concentration of the adsorbate (Bohart and Adams, 1920). The decay rate of the 

concentration of the adsorbate in the outlet is given as: 
∂c
∂x

= −
kBAac

u
 (3-2) 

The decay rate of the residual adsorption capacity for a given amount of the adsorbent is 

given as: 
∂a
∂t

= −kBAac (3-3) 

Substitution of Eq. (3-1) to Eq. (3-2) and Eq. (3-3) leads to 

∂c
∂x

= −
kBA,0t−hac

u
 (3-4) 

∂a
∂t

= −kBA,0t−hac (3-5) 

Let a∗ = a/a0, c∗ = c/c0, x∗ = kBA,0t−ha0x/u and t∗ = kBA,0t−hc0t (where a0 (mg L−1) is the 

initially available adsorption capacity of the adsorbent and c0 (mg L−1) is the concentration of 

the adsorbate in the inlet), then: 
∂c∗

∂x∗
= −a∗c∗ (3-6) 

∂a∗

∂t∗
= −a∗c∗

t−h

1 − h
�

1
kBA,0c0

t∗�

h
1−h

 (3-7) 

or 
∂ ln c∗

∂x∗
= −a∗ (3-8) 
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∂ ln a∗

∂t∗
= −c∗

t−h

1 − h
�

1
kBA,0c0

t∗�

h
1−h

 (3-9) 

Integrating Eq. (3-8) and Eq. (3-9) at the boundary conditions of t∗= 0, a∗= 1 and x∗= 0, 

c∗= 1 leads to 

c∗ = exp(−x∗) (3-10) 

a∗ = exp �−kBA,0t−hc0 �
1

kBA,0c0
t∗�

1
1−h

� (3-11) 

Dividing Eq. (3-10) by Eq. (3-11) leads to 

c∗

a∗
= exp �kBA,0t−hc0 �

1
kBA,0c0

t∗�

1
1−h

− x∗� (3-12) 

Substitution of Eq. (3-12) into Eq. (3-6) leads to 

− ∂c∗

c∗2

∂x∗
=

a∗

c∗
= exp �x∗ − kBA,0t−hc0 �

1
kBA,0c0

t∗�

1
1−h

� (3-13) 

Integrating Eq. (3-13) at the boundary condition of x∗= 0, c∗= 1 leads to 

c∗ =
exp �kBA,0t−hc0 �

1
kBA,0c0

t∗�
1

1−h
�

exp �kBA,0t−hc0 �
1

kBA,0c0
t∗�

1
1−h

� + exp(x∗) − 1

 (3-14) 

When the last term in the denominator is negligible. Eq. (3-14) reduces to 

c∗ =
1

1 + exp �x∗ − kBA,0t−hc0 �
1

kBA,0c0
t∗�

1
1−h

�

 
(3-15) 

Substitution of c∗= c/c0, x∗= kBA,0t−ha0x/u and t∗= kBA,0t−hc0t into Eq. (3-15) leads to 

c
c0

=
1

1 + exp �kBA,0t−hc0 �
a0x
uc0

− t��
 (3-16) 

3.2.2.  Fractal-like Yoon–Nelson model 

The Yoon–Nelson model assumes that the rate of decrease in the probability of adsorption 



37 
 

for each molecule is proportional to the probability of adsorption and the probability of 

breakthrough (Yoon and Nelson, 1984), which is expressed as: 

−
dQ
dt

= kYNQP (3-17) 

where Q is the probability of adsorption (Q = 1 − P); P is the probability of breakthrough (P = 

c/c0); kYN (min−1) is the Yoon–Nelson rate constant independent of time. 

Substitution of Eq. (3-1) to Eq. (3-17) leads to 

−
dQ
dt

= kYN,0t−hQP (3-18) 

After separation of variables, Eq. (3-18) is rewritten as: 
dQ

Q(1 − Q) = −kYN,0t−hdt (3-19) 

Integrating Eq. (3-19) at the boundary condition of Q = 0.5 at t = τ leads to 

ln
Q

(1 − Q)
=

kYN,0

1 − h
�𝜏𝜏(1−h) − t(1−h)� (3-20) 

or 

ln
1 − P

P
=

kYN,0

1 − h
�𝜏𝜏(1−h) − t(1−h)� (3-21) 

Substitution of P = c/c0 into Eq. (3-21) leads to 

c
c0

=
1

1 + exp�
kYN,0
1 − h �𝜏𝜏

(1−h) − t(1−h)��
 

(3-22) 

3.2.3.  Fractal-like Thomas models 

The Thomas model is widely used to estimate the adsorption capacity and rate constant in 

a fixed-bed adsorption system. In Chapter 1, it has been demonstrated that the Bohart–Adams 

and Thomas models are mathematically identical and have interchangeable parameters (Chu, 

2010). In fact, the Bohart–Adams model is based on the bed height, while the Thomas model is 

based on the adsorbent mass. Herein, the fractal-like Thomas model is written as: 

c
c0

=
1

1 + exp �kT,0t−hc0 �
q0m
νc0

− t��
 (3-23) 
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3.3.  Materials and methods 

3.3.1.  Materials 

All chemicals used in this study were of analytical grade without further purification. 

Chitosan (Deacetylation degree = max. 80%; Viscosity = 20–100 mPa·s) was purchased from 

Tokyo Chemical Industry Co., Ltd., Japan. Acetic acid, ferric chloride (FeCl3), ammonia 

solution, hydrochloric acid, potassium nitrate (KNO3) and sulphamic acid were provided by 

Wako Pure Chemical Industries, Ltd, Japan. A certain amount of KNO3 was dissolved into 

deionized water to prepare 50 mg L−1 (as NO3
−-N) nitrate solution. 

3.3.2.  Adsorbent preparation 

6 g of chitosan powders were added to a beaker containing 300 mL of deionized water, 

followed by addition of 10 mL of acetic acid. The mixture solution was consecutively stirred 

by a magnetic stirrer for 2.0 h at room temperature. A certain amount of FeCl3 was added to the 

mixture solution until uniform solution appeared. The resultant solution was dropwise added 

into ammonia solution (approximately 8%) using a disposable syringe. The obtained spherical 

hydrogel beads were stabilized for 1.0 h, and then these hydrogel beads were sufficiently 

washed with deionized water to remove surface residuals and were dried in an oven at 55 °C. 

Next, the dried beads were soaked in a certain amount of deionized water for 2.0 h. Finally, 

chitosan-Fe(III) composite was obtained through separation, washing and drying at the same 

condition and then stored in sealed plastic bag for further study. 

3.3.3.  Fixed-bed adsorption 

Figure 3-1 shows a set-up diagram of nitrate adsorption in a continuous fixed-bed column 

system. The fixed-bed column was made of Pyrex glass tube with an inner diameter of 0.7 cm 

and a length of 60 cm. 3 g of chitosan-Fe(III) were packed in the column to yield the desired 

bed height (44 cm). The gauze was kept at the top and bottom of the column to stabilize the 

adsorbent and provide a uniform flow. The nitrate solution (50 mg L−1) was fed into the column 

from the bottom by a peristaltic pump at 6.1 mL min−1. The nitrate solution at the outlet of the 

column was collected at preset time intervals and the concentration of nitrate was measured by 

the ultraviolet spectrophotometry using a UV/vis spectrophotometer (UV–1800, Shimadzu, 

Japan). 



39 
 

3.4.  Results and discussion 

3.4.1.  Error equations 

The accurate estimation of the model parameters is very important to understand the 

breakthrough behaviors in a fixed-bed column. Error equations are statistics that quantify the 

error obtained from the correlation of experimental data by a mathematical model. The errors 

and model parameters can be determined by an iterative nonlinear regression (Alberti et al., 

2012). The linearization of the nonlinear equations may change the error distributions and 

violate some of the assumptions behind regression analysis (Ahmed and Hameed, 2018). 

Therefore, in this study, the nonlinear curve fitting is used to address all experimental data by 

Origin 9 software (OriginLab Corp., USA). The reliability of the fractal-like breakthrough 

models is validated by the adjusted determination factor (Adj. R2) (Hossein-Zadeh, 2015) and 

the reduced chi-squared value (χ2) (Ramos et al., 2016). The larger Adj. R2 and smaller χ2 values 

show better fitting performance, which can be expressed as: 

Adj. R2 = 1 − �1 − R2� �
n − 1
n − p

� (3-24) 

χ2 =
1
f
�ωi �yexp − ycal�

2
n

𝑖𝑖=1

 (3-25) 

3.4.2.  Fitting performance of fractal-like breakthrough models 

The Bohart–Adams, Thomas, Yoon–Nelson models and corresponding fractal-like 

breakthrough models are listed in Table 3-1. It is predicted that the three fractal-like 

breakthrough models should have better fitting performance due to the introduction of an extra 

adjustable parameter h. As mentioned above, the Bohart–Adams and Thomas models, and 

fractal-like Bohart–Adams and fractal-like Thomas models are equivalent in mathematical 

nature. The conclusions with respect to the Bohart–Adams and fractal-like Bohart–Adams 

models are also applied to the Thomas and fractal-like Thomas models. In other words, the 

fractal-like Bohart–Adams and fractal-like Thomas models represent the same breakthrough 

curve and rate profile. Herein, in order to report this study concisely, the Thomas and fractal-

like Thomas models are no longer further discussed. 

In this study, the adsorption of nitrate on chitosan-Fe(III) composite was used to evaluate 

the applicability of the fractal-like breakthrough models. It can be clearly seen from Figure 3-2 
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that the fitting curves provided by the fractal-like Bohart–Adams and fractal-like Yoon–Nelson 

models pass through all experimental data points with few deviations and that the predicted 

values agree well with the observed values. Moreover, as shown in Table 3-2, compared with 

Bohart–Adams model, the fractal-like Bohart–Adams model has larger adjusted determination 

factor (Adj. R2 = 0.9989) and smaller reduced chi-squared value (χ2 = 1.25 × 10−4), indicating 

that the fractal-like Bohart–Adams model is superior to the Bohart–Adams model. Similarly, 

the fractal-like Yoon–Nelson model also have larger Adj. R2 and smaller χ2 values (Adj. R2 = 

0.9992 and χ2 = 8.86 × 10−5). Therefore, the fractal-like Yoon–Nelson model has better fitting 

performance than the Yoon–Nelson model. In summary, the introduction of the fractal-like 

concept remarkably improves the fitting performance of the Bohart–Adams, Thomas and Yoon–

Nelson models. 

3.4.3.  Rate profile 

To date, more attention has been paid to the accurate determination of model parameters 

and error equations when the curve fitting is performed. In order to better understand the mass 

transfer process, it is essential to investigate the rate equations of Bohart–Adams, Thomas and 

Yoon–Nelson models and corresponding fractal-like models. The rate equations can be obtained 

by the first derivation of the fractal-like Bohart–Adams, fractal-like Thomas and fractal-like 

Yoon–Nelson models. 

d(c/c0)
dt

=
kBA,0t−hc0 �1 + ht−1 �a0x

uc0
− t�� ∙ exp �kBA,0t−hc0 �

a0x
uc0

− t��

�1 + exp �kBA,0t−hc0 �
a0x
uc0

− t���
2  (3-26) 

d(c/c0)
dt

=
kT,0t−hc0 �1 + ht−1 �

q0m
νc0

− t�� ∙ exp �kT,0t−hc0 �
q0m
νc0

− t��

�1 + exp �kT,0t−hc0 �
q0m
νc0

− t���
2  (3-27) 

d(c/c0)
dt

=
kYN,0t−h ∙ exp �

kYN,0
1 − h �𝜏𝜏

(1−h) − t(1−h)��

�1 + exp �
kYN,0
1 − h �𝜏𝜏

(1−h) − t(1−h)���
2  (3-28) 

It should be noted that the rate profiles of the Bohart–Adams, Thomas and Yoon–Nelson 

models are coincident due to the fact that the three breakthrough models represent the same 

breakthrough curve. Moreover, the fractal-like Bohart–Adams and fractal-like Thomas models 
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also have the same rate profile.  

It is commonly accepted that the adsorption process can be usually characterized by four 

consecutive steps: bulk transport, film diffusion, intraparticle diffusion and adsorptive 

attachment (Weber Jr, 1984), in which bulk transport and adsorption reaction can be fast 

accomplished, while film diffusion and intraparticle diffusion proceed slowly (Machado et al., 

2011). As shown in Figure 3-3, the rate profile consists of four stages: slow increase (I), fast 

increase (II), fast decrease (III) and slow decrease (IV). This behavior may be explained by the 

following considerations according to the mass transfer processes mentioned above: In stage I, 

the bulk transport occurs rapidly when the influent passes through a fixed-bed column. Large 

numbers of the solutes are transferred from bulk solution to the solid/solution surface and fast 

react with adsorption sites on the adsorbent surface, leading to the low effluent concentration 

and thus the breakthrough rate increases slowly with time. In stage II, as the adsorption 

progresses, the number of available adsorption sites on the adsorbent surface reduces gradually 

and the mass transfer resistance increases due to the decrease in concentration gradient at the 

solid/solution interface, resulting in the rapid increase in the breakthrough rate; Before stage III, 

it is secondary for the adsorption of the solutes on the internal surface of the adsorbent caused 

by intraparticle diffusion. As the adsorption further proceeds, the adsorption of the solutes on 

the external surface reduces, while the porous adsorbent can still hold the solutes continuously 

due to the intraparticle diffusion. The mass transfer mechanism is converted from film diffusion 

to intraparticle diffusion. Thus, the breakthrough rate decreases rapidly because of intraparticle 

diffusion; In stage IV, the breakthrough rate approaches zero when all adsorption sites of the 

porous adsorbent approximate to the saturation. 

3.4.4.  Effect of fractal-like exponent h on breakthrough curve and rate profile 

The effects of the parameter h on the breakthrough curves and rate profiles are described 

in Figure 3-4. According to Eq. (3-16) and Eq. (3-22), the operating times required to reach 50% 

breakthrough are exactly equivalent to a0x/uc0 and τ for the fractal-like Bohart–Adams and 

fractal-like Yoon–Nelson models, respectively regardless of the h values. Thus, all of the 

breakthrough curves will pass through one point for different h values. The breakthrough curves 

are stepper with the decrease in h. The shape of the breakthrough curves will become 
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asymmetric due to the introduction of the fractal-like exponent h and the trend of asymmetry is 

more distinct with the increase in h. As shown in Figure 3-4b and Figure 3-4d, the peak location 

of the rate profiles progressively shifts to the left with the increase in h. The introduction of the 

fractal-like exponent h makes the breakthrough curves and rate profiles asymmetric. Thus, the 

fractal-like Bohart–Adams, fractal-like Thomas and fractal-like Yoon–Nelson models can 

describe adsorption systems with asymmetric breakthrough curves. 

3.4.5.  Practical significance 

In general, the shape of the breakthrough curve is determined by that of the adsorption 

isotherm and is affected by the respective transport process in the column and in the adsorbent 

(Chu, 2004). If the intraparticle diffusion is the rate-controlling step, the breakthrough curve 

will be asymmetric (Worch, 2012). Besides, if the adsorption rate falls off more rapidly than 

the residual adsorption capacity of the adsorbent or the adsorbent consists of two or more 

constituents of unequal reactivity, the breakthrough curve is also asymmetric (Bohart and 

Adams, 1920). Thus, in a fixed-bed adsorption system, the breakthrough curve is usually 

asymmetric in the adsorption of water pollutants even for adsorption of individual solute 

(Rojas-Mayorga et al., 2015). Although the Bohart–Adams, Thomas and Yoon–Nelson models 

can well describe many fixed-bed adsorption systems, the three breakthrough models are not 

suitable to describe the experimental data with asymmetric distribution. The introduction of the 

fractal-like concept significantly improves fitting performance and the symmetry of the 

breakthrough curves and rate profiles are only dependent of the fractal-like exponent h. Since 

the Bohart–Adams, Thomas and Yoon–Nelson models can be regarded as special cases of the 

corresponding fractal-like models (h = 0), the fractal-like Bohart–Adams, fractal-like Thomas 

and fractal-like Yoon–Nelson models have more extensive application. Furthermore, the 

reasonable explanation of the rate profiles contributes to better understanding mass transfer 

behaviors in a fixed-bed column. The significance of this study is to provide new alternative 

models for analyzing the column adsorption data and to further understand the adsorption rate 

and mass transfer process. In recent years, most of the adsorption studies focus on the synthesis 

of various novel adsorption materials. The main purposes of these studies are to select optimal 

model and obtain model parameters when the curve fitting is conducted. Little attention has 
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been paid to the development of the breakthrough models. The fractal-like Bohart–Adams, 

fractal-like Thomas and fractal-like Yoon–Nelson models proposed in this study is an important 

supplement of the adsorption kinetics. 

3.5.  Summary 

The fractal-like Bohart–Adams, fractal-like Thomas and fractal-like Yoon–Nelson models 

with larger Adj. R2 and smaller χ2 values can more accurately describe nitrate adsorption on 

chitosan-Fe(III) composite. Introduction of the fractal-like concept results in the asymmetry of 

the breakthrough curve and rate profile. The shape of the rate profiles is similar to the Gaussian 

distribution shape. The mass transfer mechanism is converted from film diffusion to 

intraparticle diffusion at peak location of the rate profile. The decrease in the fractal-like 

exponent h leads to the stepper breakthrough curves and rapid adsorption rate. The fractal-like 

breakthrough models may be an alternative method for the analysis of fixed-bed adsorption 

systems. 
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Table 3-1 Bohart–Adams, Thomas and Yoon–Nelson models and the corresponding fractal-

like models. 

Models Equations Fractal-like equations 

Bohart–Adams 
c
c0

=
1

1 + exp �kBAc0 �
a0x
uc0

− t��
 

c
c0

=
1

1 + exp �kBA,0t−hc0 �
a0x
uc0

− t��
 

Thomas 
c
c0

=
1

1 + exp �kTc0 �
q0m
νc0

− t��
 

c
c0

=
1

1 + exp �kT,0t−hc0 �
q0m
νc0

− t��
 

Yoon–Nelson 
c
c0

=
1

1 + exp[kYN(𝜏𝜏 − t)] 
c
c0

=
1

1 + exp �
kYN,0
1 − h �𝜏𝜏

(1−h) − t(1−h)��
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Table 3-2 Parameters and errors obtained from the Bohart–Adams and Yoon–Nelson models and corresponding fractal-like models. 

Bohart–Adams 
χ2 Adj. R2 

Fractal-like Bohart–Adams 
χ2 Adj. R2 kBA 

(L mg−1 min−1) 
a0 

(mg L−1) 
kBA,0 

(L mg−1 min−(1−h)) 
a0 

(mg L−1) h 

3.09 × 10−4 2942.3 1.37 × 10−3 0.9878 1.66 × 10−3 2742.3 0.339 1.25 × 10−4 0.9989 
Yoon–Nelson 

χ2 Adj. R2 
Fractal-like Yoon–Nelson 

χ2 Adj. R2 kYN 
(min−1) 

τ 
(min) 

kYN,0 
(min−(1−h)) 

τ 
(min) h 

1.54 × 10−2 163.4 1.37 × 10−3 0.9878 0.498 152.3 0.690 8.86 × 10−5 0.9992 
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Figure 3-1 Set-up diagram of nitrate adsorption in a continuous-flow system. 

  

x = 44 cm 

v = 6.1 mL min−1 
u = 15.85 cm min−1 

c0 = 50 mg L−1 
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m = 3 g 
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Figure 3-2 Modeling of nitrate adsorption on chitosan-Fe(III) composite using Bohart–Adams, 

Yoon–Nelson, fractal-like Bohart–Adams and fractal-like Yoon–Nelson models: (a and c) 

breakthrough curve and (b and d) predicted versus observed values. 
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Figure 3-3 Schematic diagram of the rate profiles for different rate constants. 
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Figure 3-4 Schematic diagram for the effects of the fractal-like exponent h on (a and c) 

breakthrough curves and (b and d) rate profiles for different h values (0 < h1 < h2 < h3 < h4 < h5 

< 1). 
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Chapter 4 Prediction of breakthrough behaviors using hyperbolic 

tangent and double exponential models in a fixed-bed column 

4.1.  Introduction 

In order to more accurately describe the breakthrough behaviors in a fixed-bed column, 

the use of simple and tractable equations that avoid the need for numerical solution is likely to 

be more suitable and logical (Chu, 2004). Many attempts have been made to describe the 

breakthrough behaviors in a fixed-bed column and several theoretical and empirical models 

have been proposed for this purpose. The most widely used breakthrough models include the 

Bohart–Adams, Thomas and Yoon–Nelson models. The distribution of the experimental data 

often varies considerably for different adsorbent-adsorbate systems. The three breakthrough 

models only represent symmetric breakthrough curves and thus are not likely to adapt to all 

adsorption systems. In other words, the Bohart–Adams, Thomas and Yoon–Nelson models fail 

to describe asymmetric breakthrough curves well. Thus, developing some new breakthrough 

models may contribute to the description of more adsorption systems and the acquisition of 

more reliable parameters. Moreover, the traditional breakthrough models mainly focus on 

adsorption capacity and ignore the change in the adsorption rate during the adsorption processes. 

In this chapter, the mathematical relationships between model parameters (k, τ and n) and four 

parameters defined in Chapter 2 (μmax, λ, ti and t50) are also further discussed. 

This study mainly focuses on the establishment of the new breakthrough models and the 

more complete description of the breakthrough curves. The new breakthrough models are 

established on the basis of to the hyperbolic tangent and double exponential functions. 

Introduction of the parameter n into the new breakthrough models leads to the corresponding 

modified breakthrough models. The mathematical characteristics of the breakthrough curves 

and rate profiles are also discussed in detail. 

4.2.  Theoretical analysis 

4.2.1.  Mathematical characteristics of sigmoidal functions 

The sigmoidal functions considered in this study include the hyperbolic tangent and double 
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exponential functions. In order to establish empirical breakthrough models, it is necessary to 

understand mathematical characteristics of the two functions at first. 

(1) Hyperbolic tangent function 

The hyperbolic tangent function is expressed as: 

y = tanh(x) (4-1) 

The first and second derivatives of Eq. (4-1) with respect to x are given as: 
dy
dx

= 1 − tanh2(x) (4-2) 

d2y
dx2 = −2tanh(x) ⋅ [1− tanh2(x))] (4-3) 

The second derivative is equal to zero at the inflection point x = xi. 

d2y
dx2�

x=xi

= 0 ⟹ xi = 0 (4-4) 

The slope of the curve can be obtained by calculating the first derivative at x = xi. 

dy
dx
�
x=xi

= 1 (4-5) 

The description of the tangent line through the inflection point is: 

y = x (4-6) 

(2) Double exponential function 

The double exponential function is given as: 

y = exp[− exp(− x)] (4-7) 

The first and second derivatives of Eq. (4-7) with respect to x are given as: 
dy
dx

= exp[− exp(− x)] ⋅ exp(− x) (4-8) 

d2y
dx2 = exp[− exp(− x)] ⋅ exp(− x) ⋅ [exp(− x) − 1] (4-9) 

The second derivative is equal to zero at the inflection point x = xi. 

d2y
dx2�

x=xi

= 0 ⟹ xi = 0 (4-10) 

The slope of the curve can be obtained by calculating the first derivative at x = xi. 
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dy
dx
�
x=xi

= e−1 (4-11) 

The description of the tangent line through the inflection point is: 

y = e−1(x + 1) (4-12) 

According to the above information, the essential properties of the hyperbolic tangent and 

double exponential functions are depicted in Figure 4-1. One can readily see that the hyperbolic 

tangent function represents a symmetric sigmoidal curve with respect to one point (0, 0) and 

that the double exponential function is an asymmetric sigmoidal curve with respect to one point 

(0, e−1). The first derivative of the hyperbolic tangent function is symmetric with respect to a 

vertical line x = 0, which exhibit a Gaussian distribution shape. The first derivative of the double 

exponential function is an asymmetric quasi-Gaussian distribution shape with a widened right-

hand side. These mathematical characteristics are well consistent with the breakthrough curve. 

Thus, the hyperbolic tangent and double exponential functions can be used to establish new 

empirical breakthrough models. 

4.2.2.  Breakthrough models 

According to the above analyses, the hyperbolic tangent and double exponential functions 

represent an asymptotic sigmoidal curve, which are in good agreement with the shape of the 

breakthrough curve. Consequently, one very reasonable scenario is that the two functions 

through the appropriate mathematical transformations can be used to describe the breakthrough 

curve. In this study, based on the stretching and translation transformations, the two parameters 

k and τ are introduced into the two functions to establish the new breakthrough models. The 

hyperbolic tangent and double exponential models (Form I) are expressed as: 
c
c0

=
1
2

{1 + tanh[k(t − τ)]} (4-13) 

c
c0

= exp{− exp[k(τ− t)]} (4-14) 

The physical meanings of the parameters k and τ are explained in detail (vide infra). 

4.2.3.  Modified breakthrough models 

As mentioned above, the breakthrough curve has different degrees of curvature under 

different operating conditions. It is reported that this change in the curvature may be considered 
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simply by introducing n power law (Eris and Azizian, 2017). It can be seen from Figure 4-2 

that the curve become steeper with the increase in n. In other words, the larger n value can 

represent more favorable adsorption. Thus, introduction of a dimensionless parameter n into Eq. 

(4-13) and Eq. (4-14) leads to the modified hyperbolic tangent and modified double exponential 

models (Form I). 
c
c0

=
1
2n {1 + tanh[k(t − τ)]}n (4-15) 

c
c0

= 〈exp{− exp[k(τ− t)]}〉n (4-16) 

In order to more completely describe a breakthrough curve and reflect its subtle changes, 

the parameters μmax and λ are also used to modify the above empirical breakthrough models. 

The detailed derivation processes are as follows. 

(1) Hyperbolic tangent model (Form II) 

According to the derivation procedure of Chapter 2, the first and second derivatives of the 

hyperbolic tangent model (Eq. (4-13)) with respect to t are given as: 
dy
dt

=
k
2

{1 − tanh2[k(t − τ)]} (4-17) 

d2y
dt2

= −k2 ⋅ tanh[k(t − τ)] ⋅ {1 − tanh2[k(t− τ)]} (4-18) 

The second derivative is equal to zero at the inflection point t = ti. 

d2y
dt2

�
t=ti

= 0 ⟹ ti = τ (4-19) 

The maximum specific breakthrough rate can be calculated by substituting Eq. (4-19) into 

Eq. (4-17), which is given as: 

μmax =
dy
dt
�
t=ti

=
k
2
 (4-20) 

The description of the tangent line through the inflection point is: 

y =
k
2

(t − τ) +
1
2
 (4-21) 

The lag time is given as: 
k
2

(λ− τ) +
1
2

= 0 ⟹ λ = τ−
1
k
 (4-22) 

The half-operating time t50 is given as: 
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t50 = τ (4-23) 

Eq. (4-20) and Eq. (4-22) are rewritten as: 

k = 2μmax (4-24) 

τ = λ+
1

2μmax
 (4-25) 

Substitution Eq. (4-24) and Eq. (4-25) into Eq. (4-13) leads to 
c
c0

=
1
2

{1 + tanh[2μmax(t − λ) − 1]} (4-26) 

(2) Double exponential model (Form II) 

The first and second derivatives of the double exponential model (Eq. (4-14)) with respect 

to t are given as: 
dy
dt

= k ⋅ exp[k(τ− t)] ⋅ exp{ − exp[k(τ− t)]} (4-27) 

d2y
dt2

= k2 ⋅ exp[k(τ− t)] ⋅ exp{− exp[k(τ− t)]} ⋅ {exp[k(τ− t)]− 1} (4-28) 

The second derivative is equal to zero at the inflection point t = ti. 

d2y
dt2

�
t=ti

= 0 ⟹ ti = τ (4-29) 

The maximum specific breakthrough rate can be calculated by substituting Eq. (4-29) into 

Eq. (4-27), which is given as: 

μmax =
dy
dt
�
t=ti

= ke−1 (4-30) 

The description of the tangent line through the inflection point is: 

y = ke−1(t− τ) + e−1 (4-31) 

The lag time is given as: 

ke−1(λ− τ) + e−1 = 0 ⟹ λ = τ−
1
k
 (4-32) 

The half-operating time t50 is given as: 

t50 = τ−
1
k

ln ( ln 2 ) (4-33) 

Eq. (4-30) and Eq. (4-32) are rewritten as: 
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k = μmaxe (4-34) 

τ = λ +
1

μmaxe
 (4-35) 

Substitution Eq. (4-34) and Eq. (4-35) into Eq. (4-14) leads to 
c
c0

= exp{ − exp[μmaxe(λ − t) + 1]} (4-36) 

(3) Modified hyperbolic tangent model (Form II) 

The first and second derivatives of the modified hyperbolic tangent model (form I) Eq. (4-

15) with respect to t are given as: 
dy
dt

=
nk
2n ⋅ {1 + tanh[k(t − τ)]}n−1 ⋅ {1 − tanh2[k(t− τ)]} (4-37) 

d2y
dt2

=
nk2

2n ⋅ {1 + tanh[k(t− τ)]}n ⋅ {1− tanh[k(t− τ)]} ⋅ {n − 1 − (n + 1)tanh[k(t− τ)]} (4-38) 

The second derivative is equal to zero at the inflection point t = ti. 

d2y
dt2

�
t=ti

= 0 ⟹ ti = τ+
1
k

arctanh �
n − 1
n + 1

� (4-39) 

The maximum specific breakthrough rate can be calculated by substituting Eq. (4-39) into 

Eq. (4-37), which is given as: 

μmax =
dy
dt
�
t=ti

= 2k �
n

n + 1
�

n+1
 (4-40) 

The description of the tangent line through the inflection point is: 

𝑦𝑦 = 2k �
n

n + 1
�

n+1
�t − τ−

1
k

arctanh �
n − 1
n + 1

�� + �
n

n + 1
�

n
 (4-41) 

The lag time is given as: 

2k �
n

n + 1
�

n+1
�λ − τ−

1
k

arctanh �
n − 1
n + 1

�� + �
n

n + 1
�

n
= 0 ⟹ λ = τ+

1
k

arctanh �
n − 1
n + 1

� −
n + 1
2nk

 (4-42) 

The half-operating time t50 is given as: 

t50 = 𝜏𝜏 +
1
k

arctanh �2�1−1
n� − 1� (4-43) 

Eq. (4-40) and Eq. (4-42) are rewritten as: 

𝑘𝑘 =
μmax

2
�
n + 1

n
�

n+1

 (4-44) 

𝜏𝜏 = λ +
1
k
�
n + 1

2n
− arctanh �

n − 1
n + 1

�� (4-45) 
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Substitution Eq. (4-44) and Eq. (4-45) into Eq. (4-15) leads to 

c
c0

=
1
2n �1 + tanh �

μmax
2

�
n + 1

n
�

n+1

(t − λ) −
n + 1

2n
+ arctanh �

n − 1
n + 1

���
n

 (4-46) 

(4) Modified double exponential model (Form II) 

The first and second derivatives of the modified double exponential model (Form I) Eq. 

(4-16) with respect to t are given as: 
dy
dt

= nk ⋅ exp[k(τ− t)] ⋅ 〈exp{− exp[k(τ− t)]}〉n (4-47) 

d2y
dt2

= nk2 ⋅ exp[k(τ− t)] ⋅ 〈exp{− exp[k(τ− t)]}〉n ⋅ {nexp[k(τ− t)]− 1} (4-48) 

The second derivative is equal to zero at the inflection point t = ti. 

d2y
dt2

�
t=ti

= 0 ⟹ ti = τ−
1
k

ln �
1
n
� (4-49) 

The maximum specific breakthrough rate can be calculated by substituting Eq. (4-49) into 

Eq. (4-47), which is given as: 

μmax =
dy
dt
�
t=ti

= ke−1 (4-50) 

The description of the tangent line through the inflection point is: 

𝑦𝑦 = ke−1 �t − τ+
1
k

ln �
1
n
�� + e−1 (4-51) 

The lag time is given as: 

ke−1 �λ− τ+
1
k

ln �
1
n
�� + e−1 = 0 ⟹ λ = τ−

1
k
�1 + ln �

1
n
�� (4-52) 

The half-operating time t50 is given as: 

t50 = 𝜏𝜏 −
1
k

ln �
1
n

ln 2� (4-53) 

Eq. (4-50) and Eq. (4-52) are rewritten as: 

k = μmaxe (4-54) 

𝜏𝜏 = λ +
1

μmaxe
�1 + ln �

1
n
�� (4-55) 

Substitution Eq. (4-54) and Eq. (4-55) into Eq. (4-16) leads to 
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c
c0

= 〈exp �−exp �μmaxe(λ − t) + 1 + ln �
1
n
���〉n (4-56) 

The hyperbolic tangent and double exponential models and corresponding modified 

models (Form I and Form II) are listed in Table 4-1. According to the above derivation processes, 

the mathematical relationships between the model parameters (k, τ and n) and the four defined 

parameters (μmax, λ, ti and t50) are listed in Table 4-2. 

4.3.  Results and discussion 

4.3.1.  Mathematical chracteristics 

The transformation processes of the hyperbolic tangent model are depicted in Figure 4-3. 

It is obvious that it can be obtained by vertical translation, vertical stretching, horizontal 

stretching and horizontal translation transformations successively. As shown in Figure 4-4, the 

double exponential model can be obtained through horizontal stretching and horizontal 

translation transformations. During the transformation processes, the horizontal stretching 

transformation indicates that the parameter k does not affect the location of the breakthrough 

curve but influence its degree of curvature. The breakthrough curves become steeper with the 

increase in k. In contrast, the horizontal translation transformation indicates that the parameter 

τ determines the location of the breakthrough curve alone. Therefore, the physical meanings of 

the parameters k and τ represent the rate constant and the operating time required to reach the 

inflection point ti, respectively. It is worth noting that the hyperbolic tangent and double 

exponential models proposed in this study require no detailed data concerning the 

characteristics of the adsorbates, the type of the adsorbents and any operating conditions such 

as initial solute concentration, flow rate, bed height, particle size, pH and temperature. In other 

words, the parameters k and τ are more likely to be the lumped constants that are merely 

empirical, which are related to the physical processes and operating conditions. 

Mathematically speaking, the stretching and translation transformations do not change the 

symmetry of the curve. Thus, the hyperbolic tangent model represents a symmetric sigmoidal 

curve at the inflection point, while the double exponential model is an asymmetric S-shaped 

curve. The asymmetric breakthrough curve is ascribed to the fact that the adsorption rate falls 

off more rapidly than the residual adsorption capacity of the adsorbent and that the adsorbent 
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consists of two or more constituents of unequal reactivity (Bohart and Adams, 1920). 

The comparison of t50 with ti is necessary to understand the symmetry of the breakthrough 

curve. According to Table 4-2, t50 and ti is equal for the hyperbolic tangent model since its 

breakthrough curve is centrosymmetric. For the double exponential model and corresponding 

modified model, ti − t50 can be expressed as follows: 

ti − t50 =
1
k

ln(ln 2) < 0 (4-57) 

Eq. (4-57) indicates that the half-operating time t50 is always more than the inflection point 

ti. The negative value of ti − t50 is independent of any parameter, implying the double 

exponential model and corresponding modified model only represent an asymmetric 

breakthrough curve. Moreover, the breakthrough curve almost coincides for the double 

exponential model and corresponding modified model when the parameter n varies slightly 

around n = 1. For the modified hyperbolic tangent model, ti − t50 can be expressed as: 

ti − t50 =
1
k
�arctanh �

n − 1
n + 1

� − arctanh �2�1−1
n� − 1�� (4-58) 

As shown in Figure 4-5, conclusions can be drawn for the modified hyperbolic tangent 

model: 0 < n < 1, ti > t50; n = 1, ti = t50; and n > 1, ti < t50. As a consequence, the modified 

hyperbolic tangent model can also represent an asymmetric breakthrough curve (n ≠ 1). 

Predictably, the modified hyperbolic tangent model has better fitting performance because the 

adjusted parameter n makes the curve fitting more flexible. 

The rate profiles for the hyperbolic tangent and double exponential models are described 

in Figure 4-6. It is observed that the breakthrough rate is always more than zero at any time 

(dy/dt > 0). The rate profile provided by the hyperbolic tangent model is symmetric with respect 

to a vertical line t = τ, which exhibits a Gaussian distribution shape. By contrast, the rate profile 

offered by the double exponential model represents an asymmetric quasi-Gaussian distribution 

shape with a widened right-hand side. The curvature and location of the rate profile depend on 

the parameters k and τ, respectively. 

4.3.2.  Relationships between breakthrough models 

It is worth noting that both hyperbolic tangent and double exponential models contain the 

exponential term. Therefore, it is extremely essential to explore the mathematical relationships 
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between them and the Yoon–Nelson model. According to Eq. (4-13), the hyperbolic tangent 

model is rewritten as: 
c
c0

=
1
2
�1 +

exp[k(t− τ)] − exp[− k(t − τ)]
exp[k(t− τ)] + exp[− k(t − τ)]

� (4-59) 

Eq. (4-59) can simplify to 
c
c0

=
1

1 + exp[2k(τ− t)]
 (4-60) 

Let k* = 2k, and then Eq. (4-60) can reduce to 
c
c0

=
1

1 + exp[k*(τ− t)]
 (4-61) 

  It is not difficult to find that Eq. (1-4) and Eq. (4-61) have identical mathematical forms. 

As a result, the breakthrough curves and rate profiles will be coincident and all error equations 

are also equal when the hyperbolic tangent and Yoon–Nelson models are employed to analyze 

the same set of the experimental data. Besides, according to Eq. (4-14), the double exponential 

model can be rewritten as: 
c
c0

=
1

exp{exp[k(τ− t)]}
 (4-62) 

For small value of x, the following mathematical approximation is acceptable (Azizian, 

2004). 

exp(x) ≈ 1 + x (4-63) 

Eq. (4-62) can reduce to 
c
c0

=
1

1 + exp[k(τ− t)]
 (4-64) 

It is evident that the double exponential model can also reduce to the Yoon–Nelson model 

by the appropriate mathematical approximation. Explicating the mathematical relationships 

between hyperbolic tangent, double exponential and Yoon–Nelson models contributes to 

understanding the physical meanings of the model parameters and gaining insights into the 

dynamic behaviors in a fixed-bed adsorption system. Predictably, the double exponential model 

has better fitting performance than the hyperbolic tangent model since the breakthrough curve 

is usually asymmetric in the adsorption of water pollutants even for adsorption of individual 

solute in a fixed-bed adsorption system (Rojas-Mayorga et al., 2015). 
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4.3.3.  Validation of breakthrough models 

The fitting results of the hyperbolic tangent, double exponential and corresponding 

modified models are depicted in Figure 4-7. One can readily see that the fitting curves provided 

by the modified hyperbolic tangent model can better approach the experimental data and the 

predicted values are well consistent with the observed values. Moreover, it has larger Adj. R2 

and smaller χ2 values (Table 4-3). Thus, the modified hyperbolic tangent model is superior to 

the hyperbolic tangent model. The parameter n = 4.50 indicates that the breakthrough curve is 

asymmetric. The maximum specific breakthrough rate μmax, lag time λ, inflection point ti and 

half-operating time t50 predicted by the modified hyperbolic tangent model are 3.94 × 10−3 min−1, 

30.0 min, 132.9 min and 157.2 min, respectively. 

For the double exponential and modified double exponential models, the breakthrough 

curves are almost coincident and a plot of the predicted versus observed values is also almost 

coincident. As shown in Table 4-3, the residual parameters are almost equal except for the 

parameter τ. These results indicate that introduction of the parameter n few improves the fitting 

performance of the double exponential model. Compared with the hyperbolic tangent model, 

the double exponential model with larger Adj. R2 and smaller χ2 values can better describe the 

adsorption of nitrate adsorption on chitosan-Fe(III) composite. Therefore, the double 

exponential model is better than the hyperbolic tangent model. 

4.4.  Summary 

The empirical breakthrough models developed in this study can well describe the 

adsorption of nitrate on chitosan-Fe(III) composite. The double exponential model has better 

fitting performance than the hyperbolic tangent model. The parameter n significantly improves 

the fitting performance of the hyperbolic tangent model and scarcely affects that of the double 

exponential model. The maximum specific breakthrough rate μmax, lag time λ, inflection point 

ti and half-operating time t50 can more completely describe the breakthrough curve. The 

hyperbolic tangent model exhibits a symmetric Gaussian distribution shape of the rate profile, 

while the double exponential model represents an asymmetric quasi-Gaussian distribution 

shape with a widened right-hand side. These empirical models represent different types of the 
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breakthrough curves and thus they can describe the adsorption behaviors over a large range of 

waster pollutants and operating conditions. 
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Table 4-1 Empirical breakthrough models and the corresponding modified models. 

Model Form I Form II 

Hyperbolic tangent 
c
c0

=
1
2

{1 + tanh[k(t − τ)]} 
c
c0

=
1
2

{1 + tanh[2μmax(t − λ) − 1]} 

Double exponential 
c
c0

= exp{ − exp[k(τ− t)]} 
c
c0

= exp{ − exp[μmaxe(λ − t) + 1]} 

Modified hyperbolic tangent 
c
c0

=
1
2n {1 + tanh[k(t − τ)]}n c

c0
=

1
2n �1 + tanh �

μmax
2

�
n + 1

n
�

n+1

(t − λ) −
n + 1

2n
+ artanh �

n − 1
n + 1

���
n

 

Modified double exponential 
c
c0

= 〈exp{ − exp[k(τ− t)]}〉n c
c0

= 〈exp �−exp �μmaxe(λ − t) + 1 + ln �
1
n
���〉n 
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Table 4-2 Mathematical relationships between model parameters (k, τ and n) and defined four parameters (μmax, λ, ti and t50). 

Parameters Hyperbolic tangent Modified hyperbolic tangent 

μmax 
k
2
 2k �

n
n + 1

�
n+1

 

λ τ−
1
k
 𝜏𝜏 +

1
k

arctanh �
n − 1
n + 1

� −
n + 1
2nk

 

ti τ 𝜏𝜏 +
1
k

arctanh �
n − 1
n + 1

� 

t50 τ 𝜏𝜏 +
1
k

arctanh �2�1−1
n� − 1� 

Parameters Double exponential Modified double exponential 

μmax ke−1 ke−1 

λ τ−
1
k
 𝜏𝜏 −

1
k
�1 + ln �

1
n
�� 

ti τ 𝜏𝜏 −
1
k

ln �
1
n
� 

t50 τ−
1
k

ln ( ln 2 ) 𝜏𝜏 −
1
k

ln �
1
n

ln 2� 
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Table 4-3 Errors and parameters obtained from the hyperbolic tangent and double exponential models and corresponding modified models. 

Parameters Hyperbolic tangent  Modified hyperbolic tangent  Double exponential  Modified double exponential 

k (min−1) 7.73 × 10−3  5.94 × 10−3  1.09 × 10−2  1.09 × 10−2 

τ (min) 163.4  6.21  121.9  89.7 

n   4.50    1.42 

μmax (min−1) 4.00 × 10−3  3.94 × 10−3  3.99 × 10−3  4.00 × 10−2 

λ (min) 34.0  30.0  29.7  29.8 

ti (min) 163.4  132.9  121.9  121.9 

t50 (min) 163.4  157.2  155.7  155.6 

Adj. R2 0.9878  0.9960  0.9977  0.9976 

χ2 1.37 × 10−3  4.52 × 10−4  2.54 × 10−4  2.65 × 10−4 
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Figure 4-1 Schematic diagram of (a) hyperbolic tangent and (b) double exponential functions. 
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Figure 4-2 Schematic diagram for the effect of the parameter n on the breakthrough curve. 
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Figure 4-3 Transformation processes of the hyperbolic tangent model (a → b → c → d). 
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Figure 4-4 Transformation processes of the double exponential model. 
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Figure 4-5 A plot of y as a function of n for the modified hyperbolic model (y = ti – t50). 
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Figure 4-6 Rate profiles of hyperbolic tangent and double exponential models. 

 

 

  



71 
 

 

 

 

 

 

 

Figure 4-7 Modeling of nitrate adsorption on chitosan-Fe(III) composite using hyperbolic 

tangent, double exponential models and corresponding modified models: (a and c) 

breakthrough curve and (b and d) predicted versus observed values. 

  

a b 

c d 
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Chapter 5 Conclusions and future research 
 
5.1.  Conclusions 

In this study, maximum specific breakthrough rate μmax, lag time λ, inflection point ti and 

half-operating time t50 are defined to more completely reveal mathematical characteristics of 

the breakthrough curve such as the degree of curvature and the symmetry. The modified Bohart–

Adams, Thomas, Yoon–Nelson, Clark, and dose-response models established by substituting 

model parameters and operating conditions with μmax and λ provide alternative methods for the 

modeling of fixed-bed adsorption systems. The Bohart–Adams, Thomas and Yoon–Nelson 

models represent a logistic function in mathematical nature and thus provide the same 

breakthrough curve, rate profile and error values. The Clark model can be regarded as a 

generalized form of the above three breakthrough models (n = 2) and it can provide an 

asymmetric breakthrough curve (n > 1 and n ≠ 2). The dose-response model represents a 

sigmoidal curve only when the parameter a is more than unity (a > 1). The Wolborska model 

does not represent a complete sigmoidal curve and thus it is not suitable to describe the 

breakthrough curve within the adsorption time range. The revelation of mathematical 

relationships between the breakthrough models is beneficial to select the optimal model and 

reduce the calculated amount significantly. The graphic description of effects of model 

parameters on the breakthrough curves and rate profiles can more intuitively exhibit the curve 

characteristics. The physical meanings of the terms q0m/vc0 and a0x/uc0 are the operating time 

required to reach 50% breakthrough, and kYN is numerically equal to a product of kT (kBA) and 

c0. 

In Chapter 2, the Bohart–Adams, Thomas and Yoon–Nelson models usually assume that 

the rate constant is independent of the operating time. However, they are not suitable to describe 

the heterogeneous diffusion-limited process. In order to address this problem, the introduction 

of the fractal-like kinetics or time-dependent rate coefficient into Bohart–Adams, Thomas and 

Yoon–Nelson models results in the fractal-like Bohart–Adams, fractal-like Thomas and fractal-

like Yoon–Nelson models. The fractal-like Bohart–Adams and fractal-like Thomas models 

represent the same breakthrough curve and rate profile. Compared with the Bohart–Adams and 
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Yoon–Nelson models (Adj. R2 = 0.9878 and χ2 = 1.37 × 10−3), the fractal-like Bohart–Adams 

(Adj. R2 = 0.9989 and χ2 = 1.25 × 10−4) and fractal-like Yoon–Nelson (Adj. R2 = 0.9992 and χ2 

= 8.86 × 10−5) models can better describe nitrate adsorption on chitosan-Fe(III) composite. The 

fractal-like Bohart–Adams, fractal-like Thomas and fractal-like Yoon–Nelson models can 

represent an asymmetric breakthrough curve due to the introduction of the fractal-like exponent 

h, which is usually consistent with the adsorption of water pollutants. The decrease in the 

parameter h leads to the stepper breakthrough curves and rapid adsorption rate. 

In Chapter 3, it is extremely necessary to establish the empirical breakthrough models 

based on some sigmoidal functions because the existing breakthrough models are not likely to 

describe all adsorbent-adsorbate systems. The empirical breakthrough models developed in this 

study include the hyperbolic tangent, double exponential models and corresponding modified 

models. The hyperbolic tangent model represents a symmetric breakthrough model and the 

residual three empirical models represent an asymmetric breakthrough curve. These empirical 

models can describe nitrate adsorption on chitosan-Fe(III) composite well except the hyperbolic 

tangent model. The parameter n significantly improves the fitting performance of the hyperbolic 

tangent model and scarcely affects that of the double exponential model. These empirical 

breakthrough models represent different types of the breakthrough curves and thus they provide 

an alternative method for the modeling of fixed-bed adsorption systems. 

In Chapter 4, faced with different adsorbent-adsorbate systems, the degree of curvature 

and symmetry of the breakthrough curves tend to have significant differences. It is widely 

accepted that if the intraparticle diffusion is the rate-controlling step, the adsorption rate falls 

off more rapidly than the residual adsorption capacity of the adsorbent or the adsorbent consists 

of two or more constituents of unequal reactivity, the breakthrough curves are usually 

asymmetric. The appropriate design of an adsorption process requires the development of a 

mathematical model that can describe the dynamic adsorption behaviors and predict the 

breakthrough curve. The fractal-like and empirical breakthrough models proposed in this work 

may provide alternative methods for the modeling of these adsorption systems and they are 

important supplements of the adsorption kinetics. In particular, the fractal-like Bohart–Adams, 

fractal-like Thomas, fractal-like Yoon–Nelson and double exponential models can provide 
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asymmetric breakthrough curves, which can better describe the adsorption of a wide range of 

water pollutants. It should be noted that the fractal-like breakthrough models have the best 

fitting performance among numerous breakthrough models because the adsorption of water 

pollutants is often heterogeneous diffusion-limited adsorption process. 

5.2.  Future research 

A study of breakthrough models in a continuous-flow fixed-bed column is still a hot topic 

in the adsorption field. However, it is a difficult task to develop a mathematical model that can 

accurately describe the dynamic behaviors in a fixed-bed column. This work mainly discusses 

mathematical characteristics of the breakthrough curves and rate profiles, proposes the fractal-

like breakthrough models to describe heterogeneous diffusion-limited adsorption process and 

develops empirical breakthrough models to describe different adsorbent-adsorbate systems. 

However, there are still many problems to be addressed, including: 

(1) The fractal-like and empirical breakthrough models should be applied to the adsorption 

of a wide range of water pollutants and further validate the applicability of these models under 

different operating conditions; 

(2) New empirical breakthrough models are established to adapt to the complex and 

variable fixed-bed adsorption systems based on different types of sigmoid functions such as arc 

tangent and Gudermannian functions; 

(3) The mathematically rigid partial differential equations are established to describe the 

mass and heat balance in a fixed-bed column. 
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