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Abstract— In freemium games, the revenue from a player
comes from the in-app purchases made and the advertisement
to which that player is exposed. The longer a player is playing
the game, the higher will be the chances that he or she will
generate a revenue within the game. Within this scenario, it
is extremely important to be able to detect promptly when a
player is about to quit playing (churn) in order to react and
attempt to retain the player within the game, thus prolonging
his or her game lifetime. In this paper we investigate how
to improve the current state-of-the-art in churn prediction by
combining sequential and aggregate data using different neural
network architectures. The results of the comparative analysis
show that the combination of the two data types grants an
improvement in the prediction accuracy over predictors based
on either purely sequential or purely aggregated data.

I. INTRODUCTION
Games distributed using the freemium business model are

freely downloadable and playable. The main revenue for the
games comes from virtual goods that can be purchased by
players. Furthermore, many games include some form of
advertisement (e.g. banners) that serve as a supplementary
revenue stream.

In the freemium industry, similarly to other service indus-
tries such as telecommunications, the revenue that a player
can generate is proportional to the duration of the relationship
between the player and the game/service. Therefore, increas-
ing player retention (i.e. the duration of the period before a
player quits) is commonly considered an effective strategy
for increasing lifetime value [25].

This can be achieved in many ways, for example by
producing more content for players in end-of-content situ-
ations or by adjusting problematic sections in the game that
have shown to lead players to quit. Another possible way,
as shown by Milosevic[20], is to identify the players that
are likely about to stop to playing (i.e. churn) and target
them with a personalised re-engagement initiative before they
abandon the game.

This is challenging especially in non-contractual services
such as freemium games. For contractual services, such
as telephone subscriptions or newsletters, the churn event
is well defined, and corresponds to the moment when the
contract expires or is cancelled. However, for non-contractual
services, such as games or retail, there is not an explicit event
that signals that a user stops using the service.

The most common way, as described by Hadiji et al. [8],
is to define the churn time as the time of the last event
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produced by a player before being inactive for a certain
period of time. The duration of the inactivity may be very
different depending on the context: for example, if a player
does not return to a freemium game after one week it is
much more likely that he/she has churned compared to not
returning to a clothing retail shop after a week. Formalising
churn is therefore industry and time scale dependent and has
to take into account the applicability to the business.

Regardless of the churn definition, churn prediction is
currently actively researched in number of different in-
dustries including telecommunication providers [24], [9],
insurance companies [32], pharmaceutical companies [29]
and games [16].

Within games, a number of techniques have been em-
ployed for churn prediction ranging from a number of super-
vised learning models based on aggregated player data [8],
[27] to more recent works that try to leverage the dynamics
for the player behaviour by using temporal data [15].

The main reason to use this kind of data is that the changes
in the user behaviour leading up to the churn event are
potentially more predictive than aggregated data. Such an
assumption is supported by a number of other recent studies
on churn prediction in other industries [7], [18], [30].

However, since these temporal based methods focus on the
dynamics of the player behaviour in a limited time window,
they are unable to capture the baseline behavioural patterns
of the players and assume that a specific sequence of events
determines churn independently of the player’s history and
context.

Inspired by the work of Leontieva and Kuzovkin [17] on
combining static and dynamic features for classification, in
this paper we investigate how both sequential and historic
aggregated data about the player behaviour can be used in
churn prediction models. We evaluate a number of different
architectures than can be used to combine the two types of
data and we showcase the results in a comparative analysis
based on data from a commercial free-to-play game.

II. RELATED WORK

While the concept of customer churn has been used in
research for many years, the first examples of models for
churn prediction start to be published in the late nineties and
the early two thousands [19], [21]. In their works, Masand et
al. and Mozer et al. employ artificial neural networks (with
slightly different topologies and feature selection methods) to
predict whether a customer will cancel their telephone sub-
scription or not. Other methods, such as decision trees [14]
**FIND OTHER REF**, support vector machines (SVM)
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[31] and logistic regressions, have also been used extensively
for churn prediction [13], [9], [6], with many variations
detailed in [28].

All of the aforementioned methods for churn prediction
attempt to assess the likelihood of a customer to churn based
on their past behaviour expressed as a static summary of their
state. These models assume that conditions leading to a churn
event are based only on a given state of the customer rather
than the way customer reached that given state. This means
that, for instance, two players with the same average number
of hour played per day would be classified in the same way
event if one of the two is playing increasingly more while
the other is progressively stopping.

To capture this type of differences, the inputs to the model
need to incorporate a temporal dimension. This dimension
can be either approximated (e.g. incorporating trend and
standard deviation to the aggregated measure) or the model
can process the inputs as time series. Castro and Tsuzuki [4],
for instance, analyse a number of methods to approximate the
dynamics of the customer behaviour using different forms of
frequency based representations.

If a feature can be arranged into time-sequential bins (e.g.
hourly score, daily time played, monthly minutes on call), a
more complete representation of the dynamic behaviour can
be expressed in the form of a multi-variate time series, in
which each sample of customer behaviour is described as a
matrix with nt rows and nf columns, where nt is the number
of time steps/length of time-series and nf is the number of
features.

Prashanth et al. [24] present two different ways of pro-
cessing time series using machine learning models. In their
compararive study, in one of the case, they employ a long
short-term memory (LSTM) [11] recurrent neural network
using the data directly as time series.. In the other case they
flatten the multivariate time-series matrix into a single vector
with length nt · nf . By flattening the time-series, additional
static features such as days since last usage and age can be
appended to the vector. This vector is then used as input
to non-sequential models such as a random forest classifier
(RF) and a deep neural network.

A similar approach is used [14] where the static features
(e.g. user age) are repeated for each month for the sequential
models. While the performance of the different models is
comparable, in both papers the RF outperformed the LSTM
approach in terms of area under the curve (AUC). Another
architecture that allows using sequential data is Hidden
Markov Models which is used in [26].

One issue with framing churn prediction as a binary
classification problem is that we do not know if/when a
customer churns in the future. Because this information is
hidden in the future the data is said to be right-censored.
So, instead of framing the churn prediction as a binary
classification problem methods such as survival analysis
attempt to estimate the time to the next event of interest,
for instance the return of the customer or cancellation of
subscription.

Survival analysis is extensively used in engineering and

economics, and popular methods include Cox Proportional
Hazards Model [5] and Weibull Time To Event model [1].
Both methods have been also applied to churn prediction
alone and in combination with other classifiers [12], [23],
[18], [7].

A. Churn prediction in games
As well as in the other industries, within the games

context, the two main approaches for churn prediction consist
in either considering churn a classification problem or a
survival analysis problem.

In [23], Perianez et al. interpret churn prediction as a
survival analysis problem and focus on predicting churn for
high-value players using a survival ensemble model. One of
the first example of churn prediction as classification instead
is the 2014 article by Hadiji et al. [8].

In this work, the authors describe two different forms
of churn classification problems, in which the algorithm
is either trained to detect whether the player is currently
churned (P1) or whether the player will churn in a given
future period of time (P2). Furthermore, they compare a
number of classifiers based on aggregated gameplay statistics
on both tasks on datasets from five different games, showing
decision trees to be the most promising classifier.

In the same year, Runge et al. [27] present an article
investigating how to predict churn for high value players
in casual social games. In this paper, high value player are
defined as the top 10% revenue-generating players, the churn
definition is similar to the one labelled as P1 by Hadiji et
al. [8], and the period of inactivity used to determine churn
is 14 days.

A set of classifiers similar to [8] – with the addition of
support vector machines – is evaluated on the dataset from
two commercial games. For the feed forward neural network
and logistic regression models it was found that 14 days of
data prior to the churn event leads to the highest AUC.

Furthermore, to include a temporal component in the
model, sequences of the daily number of logins are processed
through a Hidden Markov Model (HMM). The output of the
HMM is then used as an extra input feature. The authors,
however, find the the inclusion of the temporal data using
HMM degrades the results and hypothesise this might be
due to data over-fitting.

A Hidden Markov Model is also used by Tamassia et
al. [30] in comparison with other supervised learning clas-
sifiers based on aggregated data. The comparative study,
conducted on data from the online game Destiny1, shows
an advantage in processing the player behaviour as temporal
data.

Kim et al [15] also investigate the predictive power of
sequential data by evaluating an Lon-Short Term Memory
(LSTM) Neural Network model in predicting churn for new
players. In this work, the input data to the LSTM corresponds
to a single time series containing the player score recorded
every 10 minutes over 5 days; churn is defined as having no
activity for 10 days after the first 5 days of observation.

1https://www.destinythegame.com/d1



The results show that the LSTM model is able to outper-
form both a one-dimensional convolutional neural network
on the same time series data and traditional learning models
(RF, Gradient boosting, logistic regression) in terms of AUC.
A similar result is achieved also by the LSTM based model
by YOKOZUNADATA in the churn prediction competition
article by Lee at al. [16].

Outside of the context of churn prediction in games,
Leontjeva and Kuzovkin [17] show in their article that a
hybrid LSTM network combining aggregated and time-series
data is capable of better churn prediction than methods using
only one of the two data types or classical ensemble methods.

These results combined with the aforementioned results
by the YOKOZUNADATA LSTM based model suggest that
there is potential for hybrid LSTM networks to leverage
the combination of aggregated an time-series data. For this
reason, in this article we present a comparative study of
multiple hybrid architectures of LSTM to evaluate the best
solution of the churn prediction problem.

III. METHODS

In this study, we compare a number of different hy-
brid LSTM architectures that combine time-series data with
aggregated data against commonly employed LSTM neu-
ral network and random forest algorithms. In this section,
we describe all the architectures, the algorithms and the
settings employed, while in the next section, we describe
the evaluation procedure. However, before describing the
algotihms, it is first necessary to define what definition of
churn will be used to label the data foe the algorithms
training and evaluation. This choice motivates what kind of
data is relevant and can be used and that, in turn, will also
determine what kind of architectures can be tested.

A. Churn definition

In freemium games the relationship between a player and
the game is typically non-contractual in nature because the
user can stop playing the game without any notice. In this
situation there is not clear churn event, like a customer
cancelling a subscription. For this reason, different research
works have slightly different definition of churn; however,
they all agree that a player can be considered churned if
inactive for a long enough period of time [16].

In this work, we define a churn event as the last event
generated by a player before a period of inactivity. The churn
prediction task, similarily to the P2 definition in [8], consists
in predicting whether churn event will accurr in the next
prediction period (e.g. the week following the prediction).
Figure 1 show a number of examples of patterns of player
activity and explains whether the players are considered
churned or not according to our definition.

A second aspect of the churn classification task that we
need to specify is at which players is this model targeted.
Kim et al. [15] describe a model aimed at predicting churn
for new players, while Runge et al. [27] and Perianez et
al [23] focus on high-value players.

Fig. 1. Depiction of the churn definition used to label the data. The
predictions are made the day after the last day of the observation period/first
day of the prediction offset. In this example user A, C and E are labelled as
churners because their churn dates – i.e. the last active day before a period
of inactivity (churn span period) – happen before the end of the prediction
window. Even though user B and D have a churn date, they are labelled
as non-churners because it happens after the prediction window. This is
not a problem since their churn will be detected at a later prediction when
it is appropiate to reengage them. User F is continuously active and does
therefore not churn either. Image curtesy of [10].

The churn definitions in this paper will follow the defini-
tions in the thesis of Heiberg-Iürgensen and Petersen [10].
Here a churn date is defined for each player as a date
followed by a given period of inactivity. If this churn date
happens in the observation period or in a prediction offset
window, the player is labelled as having churned. See Fig. 1
for a graphical overview.

Choosing an appropriate inactivity duration is a trade-off
between finding actual churners versus players just taking a
break. Even though playing sessions in mobile casual games
are generally not very long and ——WORD FOR NON-
COMMITTAL——, and are thus somewhat independent of
external factors, there are weekly playing patterns. Because
of the weekly variations, a minimum requirement for inac-
tivity duration should be at least one week, preferably two to
ensure the absence is significant. The maximum duration is
not clear cut and can be chosen from a business perspective.
If the cost of reengaging churning players is low, a short
inactivity period can be chosen, and vice-versa. In this paper
the churn span period, i.e. duration of inactivity before being
labelled as churner, is set to be 30 days.

In order to choose a reasonable observation period, a few
aspects have to be considered. While full sequences of each
player’s behaviour can be used, it is typically the behaviour
leading up to churn event that we need to capture (e.g.
getting stuck on a level). Additionally, given the fact that
our churn definition also allows the churn to happen inside
the observation period, a too long observation period will
not tell us whether the player is about to churn soon or
has already churned. It is therefore more viable to choose
a limited observation period, which speeds up training of
the sequential models. A similar argument can be made as
for the churn period – a minimum of two weeks should be



used to capture weekly variations. An observation period of
14 days is therefore used.

Lastly, in order to create actionable predictions, a sliding
prediction offset window from a given cut-off date (end of
observation period) is used in which the churn can happen,
similar to the P2 definition in [8]. This allows for preemptive
actions to be taken when a player about to churn, instead
of when he/she has already churned. The length of the
prediction offset window is 7 days.

B. Models

In order to test whether adding static player data to the
models improves the predictions, three models which only
use the sequential data are used as a baseline.

Baseline models: The first two baseline models are a
random forest classifier and a feed forward neural network.
Because these models can not handle sequential data, the
sequences are flattened into a single vector of length 10·14 =
140. The last baseline model consists of an LSTM, which
can handle sequential data.

The output dimension of the LSTM is set to 16. Heuris-
tically using a larger dimension did not improve the predic-
tions and typically cause the model to overfit.

For creating and training the neural network models
Keras2 is used. The random forest model and cross validation
split from scikit-learn3 are also used.

Stacked LSTM: In [2] a stacked LSTM is used for churn
prediction because such an architecture may extract features
of different timescales [22].

In this paper four LSTMs with 32 units each are stacked
upon each in a uni-directional way. The first three cells return
sequences that are used as input for the subsequent cell, while
the last layer returns a single activation which is then fed into
the output layer.

LSTM Activation + Aux:
LSTM Predict + Dense Aux: [17]
LSTM Hidden State:
Static in LSTM:

IV. EVALUATION

The data used in this paper is from a casual mobile pop
shooter game (see Fig. 2) and contains data samples from
2017-06-01 to 2019-03-04. However, because we can not
know whrther a player has churned until the inactivity period
and prediction offset period have passed, the latest data is at
least 30 + 7 = 37 days before the upper-bound date.

Two main distinctions are made: historic data, which
summarises the characteristics of the player, and temporal
data, which contain sequences of the player’s behaviour.

The temporal data consists of daily aggregations over the
observation period. Features which describe activity level are
typically very explanatory for churn but data which reflect
skill level can also improve the predictions [15], [24]. In total
10 different features are chosen. Examples of these features
are:

2https://keras.io/
3https://scikit-learn.org/stable/

Fig. 2. In-game screenshot from the mobile casual game Cookie Cats Pop,
a pop shooter game for Android and IOS.

• ACTIVITY: 1 if player was active, otherwise 0
• GAMESTARTED: number of times game/app was opened
• MISSIONSTARTED: number of missions started
• POINTSPERMISSION: average points per mission
• CONVERTED: 1 if in-app purchase, otherwise 0

One record therefore has 10 features that each have daily
entry for each of the last 14 days.

The historic data contain features to describe the charac-
teristics of the players and are chosen based on heuristics
of distinct player personas. These features include game-
specific metrics such as amount of in-game currency used,
game feature/event participation and booster usage, but also
aggregations of general playing patterns (e.g. number of
active days, minutes played per day and max level reached).
In total 22 features are used. This is expanded to 36 features
using one-hot encoding categorical features.

As argued in the previous section, we use an observation
period of 14 days, churn inactivity period of 30 days and
a prediction offset window of 7 days. Defining churn this
way yields a data set with 65% non-churners and 35%
churners. While methods such as over- or undersampling or
bootstrapping can be used to deal with class imbalances,
ensuring an even class distribution does not guarantee a better
result, especially in a churn setting and when using AUC as
the evaluation metric [3]. The class imbalance is therefore
small enough to not warrant any further action.

In order to gather a diverse data set, 8 sampling dates
are chosen, which are each 18 days apart. This ensures data
for every week day is included and that the observation
periods do not overlap, which also allows sampling a player
multiple times since it is assumed that the behaviour in each
observation period is independent. Each date has approxi-



TABLE I
MODEL RESULTS. NUMBER IN PARENTHESIS IS UNCERTAINTY ON LAST

SIGNIFICANT DIGITS. ASTERISK (*) INDICATES DENSE LAYER BEFORE

OUTPUT LAYER

Model AUC F1 score Accuracy
Baseline RF 0.8651 (7) 0.7233 (15) 0.7949 (8)
Baseline NN 0.8666 (8) 0.7416 (17) 0.7953 (8)
Baseline LSTM 0.8773 (6) 0.7460 (20) 0.8059 (8)
NN + Aux*
Stacked LSTM 0.8774 (6) 0.7465 (16) 0.8060 (7)
LSTM Activation + Aux 0.8823 (7) 0.7509 (17) 0.8094 (8)
LSTM Activation + Aux* 0.8824 (7) 0.7511 (15) 0.8095 (8)
LSTM Activation + Dense Aux 0.8824 (7) 0.7507 (15) 0.8096 (8)
LSTM Activation + Dense Aux*
LSTM Predict + Dense Aux 0.8812 (7) 0.7489 (30) 0.8090 (10)
LSTM Hidden State 0.8870 (6) 0.7549 (15) 0.8128 (9)
Static in LSTM
Static in LSTM + reg. 0.8864 (7) 0.7536 (22) 0.8121 (9)

0.0 0.1 0.2 0.3
Feature importance

converted_1 (140)
converted_12 (130)

activity_8 (120)
missionCompletedFraction_count_6 (110)
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pointsPerMission_5 (70)

missionFailed_count_12 (60)
missionFailed_count_14 (50)
missionFailed_count_5 (40)
gameStarted_count_7 (30)

activity_5 (20)
gameStarted_count_4 (10)

missionStarted_count_4 (9)
gameStarted_count_3 (8)
gameStarted_count_2 (7)

missionStarted_count_3 (6)
activity_2 (5)

missionStarted_count_2 (4)
activity_1 (3)

gameStarted_count_1 (2)
missionStarted_count_1 (1)

Fig. 3. Feature importance of the baseline random forest model. The 10
most important features are shown followed by every tenth feature. The
number in the parenthesis indicates the order of importance. The suffixed
number indicates number of days ago, where 1 is the most recent date.

mately 250000 records resulting in a total data set of about
2 millions records.

V. RESULTS

For testing the models 10 k-fold cross validation is used.

In the calculation of accuracy and f1 score for neural
network models, a threshold of > 0.5 for the output is used
to label a player as a churner.

Results are shown in Table I.

Feature importance for RF Fig. 3

VI. DISCUSSION

A. Binary classification

B. Player clustering

VII. CONCLUSION
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