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H-1083, Práter utca 50/A, Budapest, Hungary

Abstract—Precise automatic liver segmentation plays an im-
portant role in computer-aided diagnosis of liver pathology.
Despite many years of research, this is still a challenging task,
especially when processing heterogeneous volumetric data from
different sources. This study focuses on automatic liver segmen-
tation on CT volumes proposing a fusion approach of traditional
methods and neural network prediction masks. First, a region
growing based method is proposed, which also applies active
contour and thresholding based probability density function.
Then the obtained binary mask is combined with the results of
the 3D U-Net neural network improved by GrowCut approach.

Extensive quantitative evaluation is carried out on three
different CT datasets, representing varying image characteristics.
The proposed fusion method compensates for the drawbacks of
the traditional and U-Net based approach, performs uniformly
stable for heterogeneous CT data and its performance is com-
parable to the state-of-the-art, therefore it provides a promising
segmentation alternative.

Index Terms—liver segmentation, medical image segmentation,
convolutional neural networks, handcrafted features

I. INTRODUCTION

Liver segmentation is still a challenging task, due to the
variability of the organ’s shape and size, similar intensity
values among neighboring organs and tissues, such as the
heart, the stomach, the kidneys and the abdominal wall. On the
other hand, the liver has a crucial role in metabolic processes,
therefore it is essential to perform a fast and accurate diagnosis
in case of any disease. Moreover, with the improvement of
different medical imaging techniques, the focus is placed on
the application of non-invasive diagnostic methods, before
performing a painful, invasive examination (like biopsy). The
liver might have different pathologies, out of which liver
cancer is the fifth most commonly occurring cancer in men
and the ninth most commonly occurring cancer in women,
with over 840, 000 new cases in 2018 world-wide, according
to the World Cancer Research Fund. Therefore, a continuous
effort is required to develop efficient and automatic segmenta-
tion methods, which may support the diagnostic process and
facilitate the treatment decision-making.

Nowadays, Computed Tomography (CT) is a widely used,
modern, non-invasive imaging technique for liver-related dis-
ease diagnosis. There are many approaches, also available

in clinical applications, for the detection of the liver using
CT data, which requires varying amount of operator input.
Automatic methods do not depend on the operator’s skill
and these approaches are not as time-consuming as the in-
teractive ones. Semi-automatic methods are partly interactive
methods because they require user interaction throughout their
utilization. CT scans are preferred because of their beneficial
image characteristics, however, different medical institutions
may have different CT scanners, therefore, the developed
segmentation methods should be prepared to handle variations
in image features as well.

Besides handling heterogeneous data, our aim was to de-
velop a method which is able to handle previously unseen scan
types reliably. In real life cases, there might not be enough
data with annotated ground truth, to build a shape model or
to perform a thorough training process, therefore we propose
to fuse feature-based and learning-based techniques.

Previously, different segmentation approaches were pro-
posed for liver segmentation [1]. Earlier works mainly in-
cluded pixel-based methods, such as [2], [3], based on local
and global thresholding, region growing, atlas-based voxel
classification or edge detection. A statistical, voxel labeling
method was introduced in [2] which is based on feature
extraction, applying a multi-atlas registration procedure. The
advantage of pixel-based methods is that anatomical infor-
mation can be built into the process. It can be applied as
an atlas or a priori knowledge as well. In our work, we
applied region growing, similarly to [3]. Region growing is
shown to achieve good performance in the segmentation,
however it is sensitive to the initial seed selection, therefore a
sophisticated pre-processing is required. Graph-based methods
are also introduced for liver segmentation, [4] uses supervoxel-
based graph cuts.

Beside pixel-based techniques, the other main group con-
tains structure-based methods, including shape-based models
[5], [6], however they require a large training dataset to build
the model. As it was previously mentioned, our aim was
to build an approach, which is also appropriate for small
data sets, therefore, concerning feature-based methods, we
preferred pixel-based approaches throughout our work.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by SZTAKI Publication Repository

https://core.ac.uk/display/250580461?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Lately, learning-based techniques are often used for seg-
mentation purposes [7]–[10], however they require a large
amount of training data and usually perform more efficiently
on homogeneous inputs (i.e., the statistics of the unknown
samples should match that of the training dataset). These
bottom-up segmentation models usually do not integrate top-
down, context-based (i. e. anatomic) information and mainly
concentrate on low-level features. In a very recent work [11],
deep belief networks are introduced for liver segmentation. For
segmentation of medical images, convolutional neural network
(CNN) models are widely used, since CNNs can take 2D or
3D images as input and they are designed to better utilize
spatial and configural information. The 3D U-Net [8] is often
applied for volumetric medical data segmentation, extending
the traditional U-Net representation [7] into 3D. The model
can handle complex segmentation cases efficiently, therefore
it is also applied in our work.

In this paper we propose a fusion method, which com-
bines regional-based techniques and convolutional features.
The method starts with preprocessing, including determining
the abdominal region and thresholding based on probability
density function. Then the combination of active contour
and region growing methods are applied on the preprocessed
image. After some postprocessing steps, the result is combined
with the 3D U-Net’s prediction mask. Before the fusion, the
prediction masks are improved by removing most of the false
positive voxels using the GrowCut method [12].

The quantitative evaluation for the fusion method is per-
formed on 3 different databases, including 2 publicly avail-
able, VISCERAL [13] and SLIVER [1] databases, and also
on a private database. The results show that the proposed
fusion method is uniformly efficient on different databases and
achieves similar performance results when compared to the
state-of-the-art on the publicly available SLIVER database.

II. DEVELOPED SEGMENTATION METHODS

A. Liver segmentation using traditional techniques

1) Abdominal region: As a first step, the region of the
abdomen is obtained from the CT volume images to remove
several non-abdominal slices. This step is necessary, since our
presumption is that the middle slice of the volume is going
to include liver pixels. This presumption does not hold for
every original volume. For the extraction of the abdominal
region, maximum intensity projection (MIP) and thresholding
are used, inspired by [4].

2) Image preprocessing: Since the obtained abdominal
slices have low intensity variance among organs, preprocessing
is required. The actual slice is rescaled based on its maximum
value of Hounsfield unit and stored in a 16-bit image (Figure
2(a)). The noise is then reduced by median filtering, since it
preserves edges.

Our presumption at this point is that the liver is located in
the upper half of the image. To make sure that this presumption
is valid in every case (sometimes the input data is rotated), we
automatically examined the location of the spine in the axial
MIP image of the bone mask. If the spine was on the left

(a) (b)
Fig. 1. Probability density functions of pixel intensity values: (a) Low
contrast; (b) High contrast type.

side of the image, the liver was located in the lower half of
the image, so we had to rotate the volume with 180 degrees.
After this step, 2/3 of the lower right quarter is removed, since
this part of the image does not contain liver pixels.

The image is then thresholded using probability density
function (PDF). The density estimation is based on a normal
kernel function and is evaluated at equally-spaced points. The
input of the estimation is the upper left quarter of the image (a
sample image is shown in 2(a) with a red rectangle outlining
the upper left quarter), which contains most of the voxels of
the liver, excluding the pixels with lower intensity than 500.
One of the PDF peaks is expected to represent the intensity
range of the liver.

By analyzing the probability density function of the ab-
dominal regions, the regions can be classified as high contrast
(Figure 1(b)) or low contrast type (Figure 1(a)), as it was
also stated in [4]. The high contrast images have two or more
peaks in their probability density function, while in the low
contrast images only one peak is detected. For the high contrast
images, our analysis showed that the second peak represents
the intensity range of liver. The lower and upper boundary of
the threshold are determined by the location and the width
(half-height) of the proper peak, except in the cases when
the half height is larger than 7000, then half-prominence of
the peak is used. This thresholding method extracts the liver
area and removes most of the pixels of other organs (Figure 2
(b)). This step is followed by cavity filling and morphological
opening (Figure 2 (c)).

(a) (b) (c)
Fig. 2. Preprocessing of the input image: (a) Rescaled image; (b) PDF-based
thresholded image; (c) Preprocessed image.

3) Combination of region growing and active contour:
In this proposed segmentation step, first, the combination
of Chan-Vese active contour method [14] and morphological
operations are applied to further simplify the input image. The
initialization mask for the active contour is a simple rectangle



(for example the area defined by the red rectangle on Figure
2(a)) whose location is based on the orientation of the skeleton.
The iteration number is set to be large, since in some cases
the active contour does not reach the contour of the liver.
Then, we select the largest connected component from the
detection result and we keep the original intensity over this
region, setting the others to zero. This modified intensity image
will serve as a force field to drive the region growing process.

To make the established method automatic, the traditional
active contour’s energy function [15] is calculated on the
center slice of each axis in the filtered abdominal region:

Eimage = wlineEline + wedgeEedge + wtermEterm. (1)

Since in the abdominal region the liver is the largest organ,
we expect to find the pixel with maximum intensity of the
energy image located in the liver. From this seed point, 2D
region growing is applied on the middle slice. The region is
iteratively grown by comparing all unallocated neighboring
pixels to the region. The similarity measure δi(x) for pixel x
on slice i is defined as the difference between the intensity
value of pixel x and the grown region’s R mean intensity and
it is calculated for each neighboring pixel:

δi(x) = |Ii(x)−mean[I(Ri)]| , (2)

where Ii(x) is the intensity value of the current x neighbor-
ing pixel of the ith slice and mean[I(Ri)] is the mean intensity
of the R grown region in the ith slice. The pixel with the
smallest distance measured is added to the grown region. This
process stops when the intensity difference between region
mean and new pixel becomes larger than a certain threshold
(τ ). For the first layer (i = 1), the τ is automatically set
to the difference of the upper and lower boundary of the
threshold, determined in the PDF-based preprocessing step.
For subsequent layers, τ is calculated iteratively, using the
standard deviation σ of the region growing result’s intensity
in the previous ith slice:

τi+1 = 2.5 ∗ σ[I(Ri)] (3)

On the obtained liver mask of the middle slice, the next
external force is calculated, and the pixel with the maximum
value will be the seed point for the region growing in the next
slice iteratively. By performing this iterative region growing
process on each axis, we receive 3 matrices of label maps,
from which we generate a mask for liver by summing the 3
matrices. In the final binary 3D liver mask, a voxel will have 1
value, where at least one of the matrices’ voxels had the value
of 1 (logical OR function of the 3 matrices voxelwisely).

4) Postprocessing: The obtained region growing result may
contain holes and falsely detected tissues from neighboring
organs. A cavity filling step is applied to the image and mor-
phological opening operation with a sphere structure element
is used to smooth the contour of the object and to eliminate
thin protrusions. Lastly, the largest connected component is
saved as the binary mask of the liver.

B. Fusion method

In order to achieve better results, we attempt to fuse the
proposed algorithm with a convolutional neural network’s
(CNN) prediction mask. We carried out the experiments with
the 3D U-net [8] on CT and Magnetic Resonance Imaging
volumes. The obtained prediction masks were not very accu-
rate, containing high numbers of false positives scattered along
the body. By applying top-down, anatomical information, the
prediction masks were updated by removing the false positive
detections outside the abdominal region and by only keeping
the largest connected component. Figure 3 represents a typical
prediction map before and after the update.

(a) (b)
Fig. 3. 3D image of the prediction mask, (a) Before the update, (b) After
removing most of the false positive pixels.

In order to further increase the accuracy of the prediction
masks, the GrowCut method [12] is used. This method’s
advantage is that it only segments the marked object and dis-
connected, similarly colored, unmarked objects are considered
as background. For the GrowCut method, the initial foreground
label is the updated prediction mask (Fig. 3(b)) eroded with
a sphere structuring element (radius = 5) (shown as bright
white in Fig. 4(c)). The background label is set based on
the preprocessed image (Fig. 2(c)), which is further processed
by keeping only the largest connected component (Fig. 4(a)).
Then a bounding box is created around the remaining objects
of the preprocessed image (red in Fig. 4(b)), which will
separate the background (pale red in Fig. 4(c)) from the
unlabeled part of the image. The GrowCut method is applied
with these labels on the rescaled image (Fig. 4(c)).

(a) (b) (c)
Fig. 4. The process of labeling for GrowCut method: (a) Largest connected
component of preprocessed image; (b) The separating frame shown as red;
(c) Labels of the GrowCut method, pale red indicates the background label,
bright white represent the foreground label.



Then the result of GrowCut method (PM ) is fused with the
result of the previously described liver segmentation method
(M ) and after some morphological operations, we achieved
better results. The fusion of the results has the following form:

LiverMask = δ ×M + (1− δ)× PM, (4)

where δ = 0.5 was applied.
The resulting liver mask may include falsely detected heart

pixels, as the upper part of the liver, located close to the heart,
has very similar image characteristics. As a postprocessing
step, a previously introduced liver-heart separation step [3] was
used. The original method was based on the delineation of the
lung, which was improved by exchanging the time-consuming
3D region growing with binary image operations. We start
by determining the air-filled parts of the 3D abdominal re-
gion, applying binary thresholding between [−1024,−300]
HU (based on our experiments) (Fig. 5(b)). Then we erase all
the connected components of the obtained 3D binary volume,
which are: (i) connected to any of those volume borders that
the lungs are not connected to (red in Fig. 5(c)); (ii) not
connected to any volume borders (yellow in Fig. 5(c)). This
way we can produce a much faster segmentation of the lung,
than the proposed technique. Based on the lung mask, a surface
is defined, which connects the two lobes and separates the
heart (above the surface) and the liver (under the surface) [3].

(a) (b)

(c) (d)
Fig. 5. Illustration of the lung segmentation on a sample coronal slice:
(a) Original image; (b) Obtained binary mask of air-filled parts; (c) Filtered
regions (yellow and red blobs); (d) Result of the segmentation.

III. EXPERIMENTAL EVALUATION

The segmentation performance of the proposed algorithms
were evaluated by comparing with manual segmentations done
by experts and calculating 10 different measures, widely used
in the state-of-the-art: Precision, True Positive Rate (TPR),
False Positive Rate (FPR), Accuracy, Dice Similarity Coeffi-
cient (DSC), Volumetric Overlap Error (VOE) [%], Relative
Volume Difference (RVD) [%], Average Symmetric Surface
Distance (ASSD) [mm], Root Mean square symmetric Surface
Distance (RMSD) [mm], and Maximum symmetric surface
Distance (MaxD) [mm] [4].

A. Evaluation of the proposed traditional method

The traditional method, introduced in Sec. II-A, was tested
on several samples with various shapes, provided by the
SLIVER dataset [1] including expert segmentations for 20
abdominal CT scans (SLIVER train dataset). The number

of slices, in-plane resolution, and inter-slice resolution varied
between 64 and 394, 0.58 and 0.81 mm, and 0.7 and 5.0 mm,
respectively.

TABLE I
QUANTITATIVE RESULTS ON THE SLIVER DATASET FOR THE PROPOSED

TRADITIONAL ALGORITHM.

Metrics Results Metrics Results
Precision 0.96 VOE 11.09

TPR 0.92 RVD -3.09
FPR 0.00 ASSD 2.62

Accuracy 0.99 RMSSD 5.46
DSC 0.94 MaxD 42.93

As Table I shows, the proposed traditional approach
achieved quite good results on the SLIVER database, since
the average DSC index is 94%, the FPR is 0% on average,
and the FNR=1-TPR is lower than 10%. These last two
metrics are preferred to be as low as possible (lower than 5%)
considering the liver segmentation and consequent treatments.
Furthermore, precision and accuracy imply that we have an
almost perfect segmentation with values of 96% and 99%,
respectively. However, our proposed method still needs some
improvement. Large distance between the result and manual
segmentation can be observed in terms of ASSD, RMSSD, and
MaxD. This occurs occasionally because of the connection of
the liver and some neighboring tissues and usually because
of the undersegmentation happening at the vessels next to the
boundary of liver. Relative volume difference (RVD) shows
that on average our segmentations are 3% smaller than the
reference, which is also caused by not segmenting the vessels
next to boundary.

B. Evaluation of the fusion method

To increase the performance of the segmentation, we at-
tempted to fuse the proposed traditional method with neural
networks (Sec. II-B). As a first step, the 3D U-Net [8] was
trained and tested on a mixed dataset (mixed DS), then it
was also cross-validated on the SLIVER database. The mixed
DS included 60 volumes from the VISCERAL [13] and the
SLIVER databases, from which 6 CT volumes were randomly
chosen for testing, including 2 SLIVER, 2 VISCERAL and 2
contrast enhanced VISCERAL scans. The remaining 54 CT
volumes were used for training.

The obtained prediction masks were updated by removing
false positive voxels on the non-abdominal slices, and keeping
the largest connected component. Table II shows that the
added anatomical information improved the results signifi-
cantly, however this performance on the SLIVER database
(second column in Table II) is still lower compared to the
traditional method (Table I).

The comparison of the traditional, updated U-Net and the
fusion methods are included in Table III for two different
databases: the mixed DS and a private database. The private
database included 8 abdominal CT scans with ground truth
data. The results show that in case of large amount of training
data (Mixed DS), the updated prediction masks overperform



TABLE II
QUANTITATIVE RESULTS ON THE SLIVER DATASET AND ON THE MIXED

DATASET (DS) FOR THE 3D U-NET.

U-Net updated U-Net U-Net updated U-Net

SLIVER SLIVER Mixed DS Mixed DS

Precision 0.09 0.93 0.58 0.95

TPR 0.09 0.78 0.68 0.96

FPR 0.05 0.00 0.02 0.00

Accuracy 0.90 0.98 0.97 1.00

DSC 0.08 0.81 0.63 0.95

the traditional and the fusion method. Also, it can be seen,
that the fusion method made a great improvement on the
results comparing to the traditional method. However, in
case of a smaller database (Private database), the amount of
data is not enough to achieve sufficient training performance,
therefore, we used the 3D U-Net model trained on the mixed
DS. It is important to note, that the elements of the private
dataset originated from completely different scanners than the
VISCERAL or SLIVER dataset volumes, and have different
internal properties (variance, resolution, etc.). The evaluation
shows that the updated U-Net does not perform as good on
the new database as on the already seen data. This supports
the fact that trained CNNs have issues with new data with
new characteristics, unless there is enough to further train
the network with some of the new data. However, the pro-
posed fused solution does not have this drawback, thus it
can function without further training steps. Thus, the fusion
method improved the results of the prediction masks and the
traditional method and provided a more robust performance
on both datasets.

TABLE III
QUANTITATIVE COMPARISON OF THE PROPOSED METHOD, THE UPDATED

U-NET, AND THE FUSION METHOD.

Mixed DS Private database

Traditional
U-Net

Fusion Traditional
U-Net

Fusion

method method method method

Precision 0.88 0.95 0.93 0.94 0.78 0.90

TPR 0.87 0.96 0.90 0.85 0.80 0.88

FPR 0.01 0.00 0.00 0.00 0.02 0.01

Accuracy 0.98 1.00 0.99 0.99 0.97 0.99

DSC 0.86 0.95 0.91 0.89 0.79 0.89

VOE 24.42 9.12 16.39 19.57 32.62 19.36

RVD 3.38 0.75 -2.03 -9.51 1.95 -2.40

ASSD 6.81 1.80 3.37 4.24 7.94 5.13

RMSSD 12.29 3.11 5.86 8.83 12.10 9.21

MaxD 67.20 23.76 34.99 73.06 53.57 50.34

Figure 6 shows some representative slices of the fusion
method’s segmentation results from 3 SLIVER volumes com-
pared to the expert segmentation in the axial, coronal, and

sagittal directions, respectively (ground truth in red, segmen-
tation result in yellow). It can be seen that the proposed fusion
method’s results approximate the reference segmentations.

The liver is successfully separated from neighboring organs:
from the heart in Figure 6(d), (e), and (i); from the kidney
in Figure 6(c), (f), and (g). It can handle tumors inside
the liver efficiently (Figure 6(c)), but undersegments if the
tumor is close to the boundary (Figure 6(b), (e), (f)). Typical
undersegmentation occurs at the tip of the liver (Figure 6(a))
and also because of vessels (Figure 6(b), (g) and (h)).

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)
Fig. 6. 2D slices of segmentation results. Each column shows slices of one
case in the axial, coronal, and sagittal directions, respectively. The contour of
the ground truth is in red. The contour of the fusion method’s segmentation
result in yellow.

Table IV shows quantitative comparative results of our
proposed fusion method with fully automatic state-of-the-art
methods for the SLIVER train dataset. For our method to
be comparable, the 3D U-Net was evaluated on the SLIVER
dataset, using the leave-one-out cross-validation method. Due
to the limited training dataset, the segmented prediction masks
were unusable in 3 cases, thus, these were eliminated from
the evaluation. The compared methods - briefly mentioned in
the Introduction section - are selected to cover a complete
spectrum of the liver segmentation techniques: pixel-based
method [2], [4], shape-based models [5], [6] and learning-
based approaches [9]–[11]. The evaluation metrics show that
our approach achieves usually higher VOE value, however
for the RVD, ASSD, RMSSD, MaxD, the resulting values
are in the average range. The same can be claimed for the
compared DSC scores. The comparison shows that for the
SLIVER database the proposed fusion method’s performance
is comparable to the state-of-the-art, therefore together with
the stable performance on the other datasets, including het-
erogeneous volumetric data, and its good performance on
previously unseen data with different statistics, the proposed



TABLE IV
COMPARATIVE RESULTS WITH FULLY AUTOMATIC STATE-OF-THE-ART METHODS FOR THE SLIVER TRAIN DATASET.

Method Accuracy TPR FPR DSC VOE RVD ASSD RMSSD MaxD
van Rikxoort et al. (2007) [2] - - - - 12.5 1.8 2.4 4.4 32.4

Zhang et al. (2010) [6] - - - - 5.25 0.73 0.93 2.23 24.8
Wu et al. (2016) [4] - - - - 7.54 4.16 0.95 1.94 18.48
Dou et al. (2016) [9] - - - - 5.37 1.32 0.67 1.48 29.63

Esfandiarkhani et al. (2017) [5] - - - - 8.13 0.42 1.31 2.38 21.35
Ajani et al. (2018) [10] - - - 0.96 7.41 - - - -

Ahmad et al. (2019) [11] - - - 0.948 4.31 1.28 - - -
Fusion method 0.99 0.95 0.00 0.95 9.51 0.50 1.85 3.03 23.94

fusion method provides a promising and well-performing
segmentation alternative.

IV. CONCLUSION

This paper presented a fully automatic liver segmentation
method based on the fusion of traditional methods and neural
networks. The proposed ”traditional” method starts with a
preprocessing step, where the region of abdomen is determined
and then thresholded based on the probability density function
to remove most of the non-liver voxels. Active contour and
region growing techniques are applied to give a binary mask
of the liver, which is post-processed. To produce a better
segmentation, the proposed method is combined with the
output of 3D U-Net CNN model. First, the U-Net prediction
map is updated by adding anatomical information, eliminating
false positive voxels from the non-abdominal slices and only
keeping the largest connected component. For further increas-
ing the accuracy of the prediction masks, the GrowCut method
is applied. The updated prediction mask is finally fused with
the proposed traditional method.

Quantitative evaluation and comparison is performed on 3
different databases, including 2 publicly available databases
(VISCERAL and SLIVER) and also on a private database.
The obtained results confirm that the proposed fusion method’s
performance is comparable to the state-of-the-art and it gives
uniformly stable results for heterogeneous CT volumes, even
for unseen data with different statistics. It compensates for the
drawbacks of the two different methods in every case, thus
improving the results. In the future, we will concentrate on a
more sophisticated fusion of the traditional and convolutional
features, to integrate top-down information into the network
model to further enhance the segmentation performance.
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126688, and by the ÚNKP-18-4-PPKE-132 New National
Excellence Program of the Ministry of Human Capacities.
Andrea Manno-Kovacs was supported by the János Bolyai
Research Scholarship of the Hungarian Academy of Sciences.

REFERENCES

[1] Tobias Heimann, Bram Van Ginneken, Martin A Styner, Yulia Arzhaeva,
Volker Aurich, Christian Bauer, Andreas Beck, Christoph Becker, Rein-
hard Beichel, György Bekes, et al., “Comparison and evaluation of
methods for liver segmentation from CT datasets,” IEEE Trans. on
Medical Imaging, vol. 28, no. 8, pp. 1251–1265, 2009.

[2] Eva van Rikxoort, Yulia Arzhaeva, and Bram van Ginneken, “Automatic
segmentation of the liver in computed tomography scans with voxel
classification and atlas matching,” MICCAI Wshp. 3D Segmentation in
the Clinic: A Grand Challenge, pp. 101–108, 2007.

[3] Laszlo Rusko, Gyorgy Bekes, Gabor Nemeth, and Marta Fidrich, “Fully
automatic liver segmentation for contrast-enhanced CT images,” MIC-
CAI Wshp. 3D Segmentation in the Clinic: A Grand Challenge, vol. 2,
no. 7, 2007.

[4] Weiwei Wu, Zhuhuang Zhou, Shuicai Wu, and Yanhua Zhang, “Auto-
matic liver segmentation on volumetric CT images using supervoxel-
based graph cuts,” Computational and Mathematical Methods in
Medicine, vol. 2016, 2016.

[5] Mina Esfandiarkhani and Amir Hossein Foruzan, “A generalized active
shape model for segmentation of liver in low-contrast CT volumes,”
Computers in Biology and Medicine, vol. 82, pp. 59–70, 2017.

[6] Xing Zhang, Jie Tian, Kexin Deng, Yongfang Wu, and Xiuli Li,
“Automatic liver segmentation using a statistical shape model with
optimal surface detection,” IEEE Trans. on Biomedical Engineering,
vol. 57, no. 10, pp. 2622–2626, 2010.

[7] Olaf Ronneberger, Philipp Fischer, and Thomas Brox, “U-net: Convo-
lutional networks for biomedical image segmentation,” in International
Conference on MICCAI, 2015, pp. 234–241.
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