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This paper investigates the integration of a multimodal sensing system for exploring limits of vibrato tactile haptic feedback when
interacting with 3D representation of real objects. In this study, the spatial locations of the objects are mapped to the work volume
of the user using a Kinect sensor. The position of the user’s hand is obtained using the marker-based visual processing. The depth
information is used to build a vibrotactile map on a haptic glove enhanced with vibration motors. The users can perceive the
location and dimension of remote objects by moving their hand inside a scanning region. A marker detection camera provides the
location and orientation of the user’s hand (glove) to map the corresponding tactile message. A preliminary study was conducted
to explore how different users can perceive such haptic experiences. Factors such as total number of objects detected, object
separation resolution, and dimension-based and shape-based discrimination were evaluated. The preliminary results showed that
the localization and counting of objects can be attained with a high degree of success. The users were able to classify groups of
objects of different dimensions based on the perceived haptic feedback.

1. Introduction

Several computer interfaces have been designed to improve
the interaction between humans and computers. The tradi-
tional Graphical User Interface (GUI) combined with the
mouse and keyboard provided a vast improvement in com-
puters and allowed for tremendous growth in the computer
industry. Yet, the new trends in computer development
point toward ubiquitous portable devices that require dif-
ferent interface paradigms. Examples of Human-Computer
Interfaces are touch screens for tablets and cellular phones,
hand and body gestures for gaming platforms, and voice
recognition for hand-free devices.

Multimodal sensing interface (MMSI) allows humans to
interact with systems using several natural communication
modes.These modes are referred to as the five human senses:
sight, smell, touch, hearing, and taste. MMSIs move beyond
the command-based interface enabling powerful, flexible,
and more user-friendly interactive experiences.

This paper presents a design and implementation of
a multimodal sensor interface for haptic interaction and
exploration. The proposed system contains a 3D image

acquisition module to obtain depth data of test objects on
a scene. The MMSI includes the use of haptic feedback to
provide remote perception of samples analyzed, a tracking
and gesture recognition system for the hand of the user, and
a graphical interface to display simplified 3D models of the
observed scene.

The use of MMSI has several advantages according to
some researchers. It has been found that when a stim-
ulus excites several sensor modalities in synchrony, the
information perception process improves dramatically and
is less prone to errors, compared with the stimulation of
individual channels [1, 2]. Another advantage is the pos-
sibility of alternating between single modes and multiple
modes (multimode), offering the user alternatives. Properly
designed MMSIs are easy to learn and use and can adapt
to the requirements of users and situations. They offer the
possibility of expanding the use of computers in a new
spectrum of circumstances and users [1]. MMSIs are able
to adapt to individual differences such as temporary or
permanent handicaps [3].

The proposed design objective of the paper is to provide
an experimental platform in the areas of visual and haptic
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interaction research. A hand tracking and hand gesture inter-
face is used as the input modality. For the output modalities,
the visual display and haptic display provide overlapping of
data. These two modalities can be used independently or
concurrently to accommodate individual user.

Remote sensing of objects could allow users to detect
and avoid obstacles and enrich their perception. One of the
potential applications of MMSIs is its usage as a navigation
tool for visually impaired people. For example, Zöllner et
al. [4] developed navigation MMI for blind users using in a
depth camera attached to a helmet to measure the distance
of objects in front of the user. The system provided haptic
feedback using a wearable belt. Other authors have developed
techniques to remotely locate objects and people using 3D
image processing for partially or totally blinded people using
visual, auditory, and tactile feedback [5–8].

Many MMSIs systems rely on hand gestures as an input.
Several approaches have been proposed for hand gesture
recognition. Lee et al. used stereovision for gesture detection
[8], while Prisacariu and Reid [9] and Wang and Popović
[10] developed color based segmentation techniques for
bare hands and color gloves to deal with the background
segmentation problem using video cameras.

In this paper we extend and present the design of a
multimodal user interface based on a 3D sensor to gather
spatial position information (Microsoft Kinect) from a scene,
a haptic glove with vibrotactile feedback, and a hand locating
system (Figure 1) [11]. The user can perceive the shape,
location, and dimensions of the remote objects bymoving the
glove inside a scanning region. A marker detection camera-
based module provides the location of the user hand (glove)
for mapping the corresponding tactile feedback. Additionally
a Gesture Recognition Subsystem was implemented provid-
ing the option to interact and control active elements such as
computer interfaces or automated devices.

The rest of the paper is organized as follows. Section 2
shows a general description of the system with the associated
sensingmodality subsystems. Section 3 presents some discus-
sions about the 3D user hand positioning. Section 4 presents
hand posture measurement using retroreflective patterns;
Section 5 presents the methodology for reconstructing and
mapping the shape of the sensed depth image of the object
in the reachable workspace of the user; Section 6 presents
a design of haptic glove; Section 7 discusses the integration
of the proposed sensing system; Section 8 presents a user
study of our proposed system followed by discussion and
conclusions remarks.

2. System Overview

The conceptual diagram of our proposed MMSIs system is
shown in Figure 1. The system has three main components:
(a) Bracelet Location Subsystem which is wore around the
wrist of the user, (b)Depth Imaging Subsystem, and (c) haptic
glove. A Kinect camera captures images of the sample objects
placed within its field of view.

The diagram shown in Figure 1 can be further configured
into fourmain components as shown in Figure 2.There are (a)
Bracelet Location Subsystem (reflective bracelet + IR camera),

Kinect 3D
camera

Camera with IR �lter 
and IR strobe light

Wearable computer

Retrore�ective glove 
with vibration motors

Retrore�ective bracelet

Depth image

Figure 1: Overview of multimodal sensor interface for haptic inter-
action [12].

a video camera with embedded infrared illumination and the
optical filters provide an image of the reflective bracelet; (b)
Gesture Subsystem (globe + markers + IR camera), a gesture
recognition module maps a given gesture made by the hand
of the user to the graphical representation of the hand; and
(c)Depth Imaging Subsystem, a depth sensor (Kinect camera)
is used to provide the system with information about the
environment. In the depth image, distances between camera
and objects are encoded using different grey levels in a two-
dimensional image. The brighter regions represent objects
closer to the sensor. This information encodes a represen-
tation of obstacles in front of the user; (d) haptic glove:
the haptic feedback system consists of a series of dc micro-
motors attached to the user’s glove. The actuators generate
eccentric load vibration signals for every finger in the hand
and the palm. The vibrotactile sensation will be controlled
with the wearable computer. Several messages with variation
in intensity and rhythm can be used to encode feedback
information from the 3 previous subsystems. Combining
the environmental description (from the Depth Imaging
Subsystem)with the location and orientation of the user hand
(from the Gesture Recognition Subsystem), the haptic system
can provide a “virtual tactile screen” representing obstacles
present in the surrounding area.

In order to realize an experimental laboratory setup for
the proposed system, the original concept shown in Figure 1
was modified. Sensors, cameras, and infrared lighting ele-
ments were attached to a fixed platform to enable controlled
and repeatablemeasurements as shown in Figure 3.The setup
consists of a platform to sample objects, with a surface of
60 cm × 120 cm. On the top of the sampling table there is
a supporting fixture to support the cameras and electronic
elements.

The sensor support holds a Kinect camera to capture
images of the sample objects placed on the platform. In the
same figure the “object sampling region” is shown with the
green dashed lines. The Kinect depth sensor is inclined at
an angle with respect to the horizon, covering the sampling
region of the table within its field of view. Objects placed on
top of this region can then bemeasured and classified accord-
ing to basic geometrical shapes by the depth subsystem. On
the same supporting base where the Kinect depth sensor
is located, there is a greyscale camera from Point Grey. An
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Figure 2:Multimodal user interface subsystems. (a)Hand bracelet locator; (b) gesture recognition; (c) depth sensing; and (d) haptic feedback.
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Figure 3: Schematic of the experimental setup.

infrared LED ring light is used to provide coaxial illumination
for the camera (see Figure 4).

Attached below the Kinect sensor is a grayscale 2D
camera with an infrared LED ring light which provides
coaxial illumination. The field of view of this camera covers
the “haptic display and gesture region” areas. Within this
region, which is shown in the Figure 3 as red dashed lines,
the position of the wrist and fingers of the user can be
measured. This information can further be utilized as a part
of a gesture recognition module. The combined measure
for 3D reconstruction of the sensed object using Kinect
and the bracelet position subsystem using camera and IR
illumination is used in order to create haptic feedback.
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Details of the optical setup

Kinect RGB camera
Kinect IR camera
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IR bandpass �lter
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Table with obstacles Optical setup: Kinect camera
(for 3D capture) and PointGrey
camera (2D capture)

Figure 4: Images of the actual experimental setup [12].

Vibrotactile sensations are presented to the user as feed-
back data with the activation of the tactons on the glove.
Each motor can be activated and modulated independently
according to the required information to be displayed. By
moving the hand in a scanning direction within the haptic
region, it is possible to display haptic sensation corresponding
to different areas of the sampling region. Datameasured from
objects placed on the sample platform can be encoded as
tactile stimuli on the haptic display area.

3. Hand Bracelet Localization

Thehand bracelet and a set of image processing tools are used
to estimate the hand position in the 3D space. For the setup,
a single channel greyscale camera with embedded lighting
was used to obtain images of reflective markers on a bracelet.
Figure 5 shows images of two reflective bracelets.The camera
has a resolution of 752 × 480 pixels. A 4mm lens with m12
mount was used with the camera. A compact LED lamp
was used in combination with the camera. Lighting consists
of a coaxial array of high power infrared LEDs in a ring-
like distribution to control the illumination conditions. The
model selected operates at a wavelength of 880 nm.This light
source has the property of being invisible to the human eye,
providing at the same time consistent illumination for the
images to be capturedwith the camera.The imaging hardware
provides digital controls for the physical properties of the

camera. It is possible to adjust the gain of the camera to fixed
(or programmable) values, avoiding the autogain function
standard in most analog and digital cameras. Additionally,
higher S/N ratios can be achieved by synchronizing the
trigger of the camera and shutter time with the LED light.
This setup allows a reduction in the amount of light coming
from the environment and maximizing the amount of light
from the ring light.

A band-pass infrared filter was used with the camera to
improve the response of the system to the IR wavelengths by
eliminating light sources out of the wavelength range.The use
of coaxial lighting with the camera allows for a high reflection
ratio from the reflective tape with respect to the environment.
Most of the surrounding light will not be captured by the
system, making it robust and stable for use in day or night
conditions and indoors or outdoors.

A custom bracelet is used to obtain high contrast images
to locate the bracelet in space. For this purpose, several
bracelet designs covered with retroreflective tape were exam-
ined. Retroreflectors are surfaces that operate by returning
light back to the light source along the same direction of light
with aminimum scattering. A light ray is reflected back along
a vector that is parallel yet opposite in direction to the light
source.

Initial tests were performed with the imaging acquisition
subsystem to determine the best parameters for the image
acquisition. Figure 6(a) shows the image obtained using the
ambient light present in our laboratory. From the image it is
possible to obtain the glove (and markers). A considerable
amount of computing resources to achieve adequate seg-
mentation of the markers due to the cluttered background
will be required. As mentioned before, a technique like
background subtractionwould allow for a good segmentation
of the markers of the glove, but the required training and
reinitialization would make this approach inconvenient in
our case. Figure 6(b) shows the input image obtained with
the use of the LED coaxial ring light. The use of coaxial
illumination combinedwith retroreflectors increases the con-
trast of the reflector, simplifying the location of the markers
on the image. Figure 6(c) shows the result of reducing the
environmental light sources. This process is achieved by
combining 2 effects. Originally, (in Figures 6(a) and 6(b)) the
shutter time used in the camera was 16ms. The shutter time
refers to the time that the shutter remains open when taking a
new image. Along with the aperture of the lens, it determines
the amount of light that reaches the sensor.While Figure 6(a)
shows the effect obtained just by using the environmental
light, Figure 6(b) shows the effect of the environmental light
in addition to the light coming from the controlled LED ring
light. Considering that the LED light can be strobed for short
periods of time (Ex 0.5ms), we decided to limit the shutter
time of the camera to be the same as the strobe light duration
(0.5ms) and in synchrony with it (both camera and lighting).

The second tool used to improve the contrast of the image
was using an infrared filter on the camera. The Hoya R-72
infrared filter (which passes 720 nm and above) was used.The
camera is sensitive to both white light and infrared light. By
adding this IR band-pass filter to the optical setup, we could
virtually eliminate all the remaining effects coming from
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Re�ective bracelets

IR LED light IR �lter for the camera
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Light driver
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Figure 5: Image acquisition setup: USB camera, LED light, and IR filter from side view (a) and bottom view (b). Retroreflective markers are
used on the bracelets. Picture without strobe light (c) and with strobe light [12].

Gain 296
Shutter time 16 ms
Strobe on (time) 0 ms
IR �lter No

(a)

Gain 296
Shutter time 16 ms
Strobe on (time) 0.5 ms
IR �lter No

(b)

Gain 167
Shutter time 0.5 ms
Strobe on (time) 0.5 ms
IR �lter Yes

(c)

Figure 6: Different light and camera setting for image acquisition.Themarkers can be observed, but the contrast between the desired objects
(markers) and the background is low (a). Contrast improvement due to the strobe light (b). Contrast improvement due to the reduction of
shutter time combined with IR filter on the camera lens.
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(a) (b)

(c) (d) (e)

Figure 7: Different models for bracelet under test. Adjustable tilting platform to test response of reflective patterns under different incident
angles (a) and (b). Image of 3 patterns at 0 degrees (c) (between the incident angle and the normal vector), image obtained at 40 degrees, and
(d) image obtained at 80 degrees.

the surrounding light sources. The proposed optical setup
is useful to obtain high contrast images with a controlled
light source, additionally providing a very high S/N ratio (see
Figure 6(c)).

Retroreflectors, also called cataphotes, are devices or
surfaces that reflect light back to its source with a minimum
scattering of light. They are usually built using total internal
reflection corner cubes (usually found in bicycle reflectors)
or glass microspheres. Our designed gloves are covered with
markers using 3M Scotchlite reflective material made with
microscopic corner cubes. When used in combination with
collinear/coaxial cameras and light sources they provide
higher gains compared with the natural diffuse reflectivity of
the materials.

3.1. Hand Bracelet Design. The patterns on the bracelet act as
an invariant feature to provide information useful to compute
the distance between the bracelet and the camera. With this
invariant information, it is possible to calculate the position
of the bracelet (and the wrist of the user) in a 3D space
representation, working as a location accessory with the
glove; the goal of using the bracelet is providing data about
the location of thewrist of the user in any finger configuration
of the hand and in any orientation in space. We tested 3
variations of the bracelet using 3M retroreflective tape in 3
different patterns.

Figure 7(b) shows from left to right a compact model
design with 7mm diameter plastic ring segments with small
repeating patterns every 21mm along the length of the
bracelet. There is another model built with a tape roll

displaying a continuous pattern of 2.5 cm width. The last
model tested is built with a pattern of reflecting beads of 2 cm
in diameter with a constant separation of 2 cm. The image of
the bracelets was obtained at different angles of inclination
of the platform under the optical IR camera and lighting
while at the same time maintaining a “constant” distance
between the camera and the samples in every measure. A
simple image processing program was developed to measure
some “candidate features” to be selected as invariant in the
final bracelet design.

Figure 8 shows 2 screens of the test program developed
to measure the distance between 2 features in pixels on each
tested bracelet. Figure 8(a) corresponds to the initial position
with 0 degrees between the incidence light direction and the
vector normal to the support surface while Figure 8(b) is
the image observed when the angle of the platform is 80
degrees. In this Figure, the feature labeled (a.1) represents the
distance in pixels between the centroids of two consecutive
marker segments (the centermost ones). Feature labeled (a.2)
is the measure of the width of the second bracelet (in pixels).
Feature 3 is the distance between the centroids of the 2
centermost marker beads. There is a difference between
features pairs (a.1 b.1), (a.2 b.2), and (a.3 b.3), with the
difference being more evident in the case (a.2 b.2).

3.2. Hand Bracelet Localization. Given the pinhole camera
model [13] and the known size of its radius, using spherical
coordinates located at the camera frame, the objective is to
compute the distance 𝑟with respect to the camera (Figure 9).
The constant distance between consecutivemarkers of 21mm
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Figure 8: Measurements of “invariant features” in different models for the bracelet. Image at 0 degrees of inclination (a) and at 80 degrees of
inclination (b).
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Figure 9: Details considered for the calculation of distance 𝑟. The “constant” distance between 2 consecutive (and centermost) markers on
the bracelet (points 𝑎 and 𝑏) determines a unique angle Δ𝜃 for every distance 𝑟.
will be used to calculate the distance 𝑟 between the bracelet
and the camera. In Figure 9(b), points “𝑎” and “𝑏” represent
the centroids of these two consecutivemarkers observed from
the camerawhen the bracelet is at a distance 𝑟 (both points are
at a distance 𝑟 from the camera).

The length of the circular arc with radius “𝑟” between
points “𝑎” and “𝑏” is 𝑎𝑏 = 𝑟Δ𝜃. Considering that the angleΔ𝜃 should be a small angle (angle of the invariant feature)
compared with the field of view of the camera, it is useful
to approximate the arc to a rectilinear segment using the
simplification 𝑟 ≈ 𝐵/Δ𝜃. Additionally, these points can be
projected on the surface of the CCD sensor as (𝑎󸀠 and 𝑏󸀠).
Independently of the location of the bracelet in the field of
view of the camera, it is possible to associate the radius 𝑟with
the arc between points 𝑎 and 𝑏.

From the geometry, the angles 𝜌 and 𝜙 as a function of
the projection coordinates on the CCD can be determined. At
this point, an expression to compute angle Δ𝜃 as a function
of 𝜌 and 𝜙 is required. Given that the angles used are defined
using a spherical coordinate system, we have utilized the
spherical law of cosines to compute the angle Δ𝜃 resulting in
the following expression:

Δ𝜃
= cos−1 (sin𝜙𝑎 sin𝜙𝑏 + cos𝜙𝑎 cos𝜙𝑏 cos (𝜌𝑎 − 𝜌𝑏)) , (1)

where 𝜙𝑎, 𝜙𝑏, 𝜌𝑎, and 𝜌𝑏 are computed from the spherical
description [14]. For 𝜙𝑏 we use the coordinates of the project
images 𝑏󸀠𝑥 and 𝑏󸀠𝑦 instead of 𝑎󸀠𝑥 and 𝑎󸀠𝑦.

The location of the bracelet is used to determine the 3D
position of the wrist of the user’s hand. The following steps
are applied in order to transform the original image of the
user’s hand wearing the bracelet to obtain the 3D location of
the wrist (Figure 10).

Figure 10(a) shows the color image of the bracelet. Once
the image is captured by the system using the mentioned
optical parameters, the reflective sections respondwith a very
high contrast to the light stimuli as shown in Figure 10(c).
Blob analysis is used to find individual segments of markers
that belong to the bracelet. The sizes of the white regions are
measured to verify they are in the range of minimum and
maximum area values for these markers. Additionally, the
index obtained dividing the major-axis-length by the minor-
axis-length of every blob is used.This ratio allows for finding
blobs with similar length and with (a ratio close to 1), which
is a property of the bracelet segments.

In the next stage, bracelet segments are validated to see
if they belong to the bracelet’s vicinity. Every valid element
belonging to the bracelet should be close to another bracelet
element. With this evaluation, noisy areas, either too small
or too isolated, can be eliminated. To find the required
feature of interest from the remaining elements, the center
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(a) (b) (c)

(d) (e)

Figure 10: Screens of the image processing module to locate the bracelet. Bracelet under ambient light (a) and strobe light (b). Binary image
showing the elements corresponding to the bracelet (c). Computation of the distance between bracelet and camera and the 3D location with
respect to the camera frame {𝐶} and world frame {𝑊} (d). Using an orthogonal view with parallel projection, the estimated position of the
wrist of the user hand is computed (e).

of the containing region of interest is determined. The two
elements closer to the center of the region containing the
bracelet elements should correspondwith the two centermost
markers on the bracelet and they should be the elements
closest to the camera (as in Figure 9). These two elements are
shown in Figure 10(d) enclosed in two small green circles.
In Figure 10(e) an icon (small green hand) is placed to
indicate the position of the wrist (and the inferred position
of the hand) in a 3D volume. For this representation, parallel
projection is used and the hand location is presented in planes𝑋-𝑌, 𝑌-𝑍, and𝑋-𝑍.
4. Hand Posture Measurements

In combination with the use of the hand bracelet presented in
the previous section, a glove enhanced withmarkers (see Fig-
ure 11) was designed to provide the system with information

about the hand position and orientation and configuration of
the fingers [12, 15–17].Using a frame associatedwith the glove,
the proposed design is able to estimate the position of the
hand frame (𝐻) with respect to the world frame (𝑊). There
exist other approaches for recognizing the posture of the hand
of the user. For example, [18] has proposed an approach using
the RFID technology which offers a cheap and unintrusive
passive tags which can be easily attached to or interweaved
into user clothes, which can be read by RFID antennas. [19]
proposed a color patched wearable glove in which a color
camera can be used to classify various basic postures of the
hand. [20] proposed an approach for posture recognition of
hands using a network of calibrated cameras.

In our study, shapes of the marker pattern which are
used to describe the configuration of the hand are shown in
Figure 11. The figure shows the image of the hand bracelets
and a number of square, rectangular, and triangular markers.
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(a) (b)

Figure 11: Two marker patterns on the gesture glove [12].
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Figure 12: Effect of perspective transformation in the project image. A square image (a) can be mapped to a trapezoid type image [12].

In this paper, the second pattern was used where a known
square pattern was attached firmly on the back of the
manipulating glove. Figure 12 shows the image of this marker
under two different orientations of the hand.

The main objective of using a known pattern on the
glove is to provide a normalized template in order to simplify
image processing in locating the fingers [21]. Once the region
corresponding to the square is located on the image, a
novel approach which uses the four corners for defining

the trapezoidal shape can be easily obtained. In this paper,
these four noncollinear points are theminimum requirement
needed in order to compute the transformation matrix 𝐻
defined through projected images and homography [22].The𝑥, 𝑦 coordinates of the points of the trapezoid are related to
the four corners points of a normalized square by the matrix𝐻 with the equation 𝑃𝑑𝑠𝑡 = 𝐻𝑃𝑠𝑟𝑐.

Homography matrix𝐻 has 8 degrees of freedom, mean-
ing that in their computation only 8 of the 9 values are
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(a) (b) (c)

(d) (e) (f)

Figure 13: The original image of the hand is analyzed to locate the trapezoid (corresponding to the hand) (a), (b), and (c). The smaller black
square inside provides a reference to identify the corners. The corner points are used to estimate matrix 𝐻. Perspective “normalization” is
obtained after applying𝐻 inverse, (d), (e), and (f).

required to fill the matrix𝐻. With the 4 points of the corners
of the trapezoid the set of equations to compute matrix 𝐻
is complete. The inverse of the 𝐻 matrix can be used to
map the rotated spare marker back to its origin unrotated
configuration. In this way, it is convenient to locate the fingers
in an invariant configuration. Figure 13 shows this effect of
perspective rectification.

4.1. Positon and Orientation of the Hand. The Perspective
Projection is a transformation from a tridimensional space
to 2D. It can be represented by a 3 × 4 matrix 𝑃 (also called
camera matrix) such that 𝑥 = 𝑃𝑋, where𝑋 is a 4×1 vector of
homogeneous coordinates with the coordinates of a point in
the world and 𝑥 is a 3×1 vector of homogeneous coordinates
with point coordinates on the image plane. Camera matrix𝑃 can be decomposed in an extrinsic parameter matrix and
extrinsic parameters.𝑃matrix is defined as 𝑃 = 𝐾[𝑅 | 𝑡], where 𝐾 is the 3 × 3
intrinsic parameters matrix of the camera and [𝑅 | 𝑡] is the3 × 4 matrix of extrinsic parameters. Intrinsic parameters of
the camera are using the method of [23], to result in 𝑓𝑥 and

𝑓𝑦 which are the focal distances in 𝑥 and 𝑦 direction. 𝑐𝑥 and𝑐𝑦 are the principal point coordinates.
𝐾 = [[[

𝑓𝑥 0 𝑐𝑥0 𝑓𝑦 𝑐𝑦0 0 1
]]] . (2)

The extrinsic parameters contain information about the
position and orientation of a frame attached to the points
in the world coordinates (Figure 14). Assuming that images
obtained from a camera are subject to a homography trans-
formation, Zhang [23] proposed an algorithm to compute
the intrinsic and extrinsic parameters considering that the
homography𝐻 can be expressed as𝐻 = 𝐾[𝑅 | 𝑡].

The extrinsic parameter matrix can be written as the
description of the frame attached to the hand {𝐻}with respect
to the camera frame {𝐶}, by using homogeneous coordinates
𝐶
𝐻𝑇. The relative rotation matrix of the hand frame with
respect to the world frame can be easily defined.
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Figure 14: Extrinsic parameters represent the description of a frame attached to the hand {𝐻}. The corners of the hand trapezoid are used
to “rectify” the effect of perspective (b). Each finger has a location on the normalized hand (c). A frame is assigned to the trapezoid (d) and
extrinsic parameters are computed. Extrinsic parameters define the transformation 𝐶𝐻𝑇 in (e).
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Figure 15: Kinect images. Depth image of the chessboard used for calibration (a). Raw infrared image captured by the CMOS sensor of the
Kinect (b) (illuminated with the laser projector.) In (c), the laser projector has been blocked and the chessboard was illuminated using a
halogen lamp resulting in more even distribution of light.

5. Depth Image Processing

The Depth Imaging Subsystem utilizes a depth sensor
(Kinect-I sensor), for obtaining spatial information in a form
of (𝑥, 𝑦, and 𝑧) coordinates of a pixel representation of the
scene with respect to its reference coordinate frame. In order
to calibrate the sensor, a 9 × 6 chessboard was used under IR
imaging (Figure 15) [24].

A total of 25 images of the chessboard were used as the
input for the calibration algorithm.The calibration algorithm

results provide the focal length corresponding to the 𝑋 and𝑌 axes (𝑓𝑥, 𝑓𝑦), the coordinates of the principal point, and
the distortion coefficients. This information can be used to
rectify images obtained from the depth sensor to compensate
for the effects radial and tangential distortion of the lens. For
example, for the sensor used in our study, we have obtained
focal length (𝑓𝑥, 𝑓𝑦) of 581.69 and 589.72, respectively.

5.1. Locating the Reference Frame of Kinect Sensor. Depth data
obtainedwith theKinect is used to locate objects in theKinect
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Figure 16: Procedure to find the position and orientation of the
Kinect with respect to the world frame (𝑊𝐾𝑇). If frames 𝑊𝑆𝑇 and 𝑆𝐾𝑇
are known, then the transformation describing Kinect frame {𝐾}
with respect to world frame {𝑊} is given by 𝑊𝐾𝑇 = 𝑊𝑆𝑇 𝑆𝐾𝑇. Frame{𝑆} can be found by computing the extrinsic parameters with the
calibration board in the center of the test table.

reference frame {𝐾}. To find the description of these objects
in a different frame, the transformation relating Kinect frame
with respect to this reference frame is required. In this case,
the same world frame {𝑊} was used to describe the samples.
The definition of the world frame is arbitrary in this case
and can be defined, for example, as a frame attached to the
wearable head-gear shown in Figure 1. For the case study
of this paper, we have set the world frame to be a location
on the supporting table (see Figure 16). The Kinect frame
description with respect to the world frame is represented
by the transformation 𝑊𝐾𝑇. This mapping can be obtained
through the following relationship:𝑊𝐾𝑇 = 𝑆𝐾𝑇𝑊𝑆𝑇 (Figure 16).

The calibration algorithm was used to compute the
extrinsic parameters of frame {𝑆} which are the description
parameters of the frame attached to the chessboard {𝑆} with
respect to the Kinect frame {𝐾}. Figure 17(a) shows the
example image used for extrinsic parameters calculations.
Figure 17(b) shows the location of the 𝑋 and 𝑌 axes of the
frame {𝑆}. The extrinsic parameters describe transformation
𝐾
𝑆𝑇, defining frame {𝑆} with respect to Kinect frame {𝐾}. The
extrinsic parameters for the experimental results of this study
are computed as

𝐾
𝑆𝑇 = [[[[[[

0.99 −0.025 0.002 −38.792−0.014 −0.643 −0.765 −15.3730.020 0.765 −0.643 1701.310 0 0 1
]]]]]]

= [ 𝐾𝑆𝑅 𝐾𝑃𝑆org0 0 0 1 ] ,
(3)

where 𝐾𝑃𝑆org is the location of the origin of frame {𝑆} with
respect to {𝐾} and 𝐾𝑆𝑅 is the rotation matrix. To find 𝑆𝐾𝑇 we
apply the following relationship:

𝑆
𝐾𝑇 = [ 𝐾𝑆𝑅𝑇 − 𝐾𝑆𝑅𝑇 𝐾𝑃𝑆org0 0 0 1 ] , (4)

resulting in

𝑆
𝐾𝑇 = [[[[[[

0.99 −0.014 0.020 2.928−0.025 −0.643 0.765 −1312.490.0025 −0.765 −0.643 1083.310 0 0 1
]]]]]]

= [ 𝑆𝐾𝑅 𝑆𝑃𝐾org0 0 0 1 ] .
(5)

In our setup, Vector 𝑊𝑃𝑆org describes the position of the
origin of frame {𝑆} with respect to frame {𝑊}. Here, the
magnitude of the 𝑋 coordinate of the 𝑊𝑃𝑆org vector is 0, the𝑌 coordinate = 1375mm, and the 𝑍 coordinate = 75mm. Or,

𝑊
𝑆𝑇 = [[[[[[

1 0 0 00 1 0 1375.000 0 1 75.000 0 0 1
]]]]]]
= [ 𝑊𝑆𝑅 𝑊𝑃𝑆org0 0 0 1 ] , (6)

where we can now compute the matrix 𝑊𝐾𝑇 = 𝑆𝐾𝑇𝑊𝑆𝑇 as

𝑊
𝐾𝑇 = [[[[[[

0.99 −0.014 0.020 2.928−0.025 −0.64 0.765 62.5080.002 −0.76 −0.643 1158.310 0 0 1
]]]]]]

= [ 𝑊𝐾𝑅 𝑊𝑃𝐾org0 0 0 1 ] .
(7)

5.2. Object Localization. Here the objective is to identify and
isolate the regions of interest inside the depth image which
contains the objects. Once new samples of objects are placed
on the test table, a basic background subtraction operation
is carried out which allows for the elimination of the envi-
ronmental cluttering resulting in a depth image of the objects
of interest (Figure 18). Background subtraction has been
shown to be an effective approach for segmenting objects
in depth images [25]. It can also be used in a more general
application setup of the proposed system when integrated
with the wearable head-gear configuration of Figure 1 for
segmenting people as they move in front of the depth sensor
[26].

The grayscale images obtained from the depth sensor
are encoded to represent distances between objects and the
camera plane (Figure 19((a) and (b))). Due to the geometry
of the 3D sensor and the reflective properties of some of the
surfaces (i.e., matte or glossy surfaces), there are regions in
the image that cannot be measured properly. In the Kinect-I
image, the color white (RGB = 255, 255, and 255) is reserved
for pixels that cannot be quantified in depth. Binary masks
(shown in Figure 19((f) and (g))) are used to eliminate
undetermined values in the image such as the edges of the
testing table and the supporting structure using a binary
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Figure 17: Extrinsic parameters of a frame. The chessboard was placed in the center of the test table (a) as observed from the Kinect IR
camera. With the use of the calibration routine it was possible to compute the extrinsic parameters describing the position and orientation of
the frame attached to the calibration board. This frame (in the center of the test table) was named {𝑆} (b).
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Figure 18: 3D depth image reconstruction procedure. (a) Objects placed on the test platform are located with the Kinect sensor. Dimensions
of the objects are computed to describe them using parallelepiped or cylindrical volumes. In (b), a scaled representation of the objects is
used to build virtual volumes in the workspace of the user. The virtual models are used as an input of the haptic module to provide tactile
sensations when the virtual objects are penetrated by the hand of the user (c).

filter set to transform white pixels into black pixels. Masks
in Figure 19((f) and (g)) are combined and multiplied to the
difference image (Figure 19(c)) to eliminate noise edges of the
test table and structure.

Several stages of morphology operators (erosion, dila-
tion) are used to reduce the effect of noise in the regions of
interest [27]. Blob analysis is used to obtain enhanced images
of the regions of interest by filtering out regions that have
very small areas (considered noise in the depth image) [28].
Finally, a blob filter allows for the selection of connected

areas with significant areas whereas very small regions are
eliminated. The resulting blobs are mapped onto the original
depth image (green region in Figure 19(p)).

5.3. Object Description. In this stage of our case study, mea-
surements of height and a set of points describing the basic
shapes of objects are obtained [29]. The height of each test
object is considered one of the main descriptors. The point
(of the object) closer to the depth sensor is used to define the
height of the entire object. Figure 20 shows an overview of the
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Figure 19: Object localization algorithm. Detailed steps in the object segmentation process. From a background image (a) and image of
objects placed on the test table (b), it is possible to isolate the objects in the scene (p). Segmented objects are mapped back on the depth image
using connected components (green mask on (p)).

object description algorithm. The objective is to determine
the position of the corner (or edge) of the object closest to
the depth sensor. Figure 20(a) contains a mask of the depth
data corresponding to example object (the box). Histogram
equalization remaps (Figure 20(d)) an image in the entire
range (0–255), in order to increase the contrast in the image.
Pixels closer to the sensor have brighter values (e.g., the
corner of the box). The rest of the points have “darker”
grey values, meaning that they are farther away from the 3D
sensor.The exact location of the corner is found by applying a
local maxima operator to the example image in Figure 20(e).

Once the corner point is obtained, its 3D coordinate
description can be computed. Figure 20(e) shows the location
of the point 𝑃𝑎, which corresponds to the corner which is
closer to the Kinect sensor. The point 𝑃𝑎 can then be mapped
to the world frame {𝑊} (as mentioned before, for the general
application of the system as shown in Figure 1, the world

coordinate can be selected to be located on thewearable head-
gear module). As shown in Figure 21, a transformation 𝑊𝐾𝑇
can be used to find the coordinates of 𝑃𝑎, with respect to the
frame {𝑊}, using the following equation: 𝑊𝑃𝑎 = 𝑊𝐾𝑇𝑊𝑃𝑎.
From the position vector 𝑊𝑃𝑎 the “𝑧” coordinate has the
height of the sample object with respect to {𝑊}.

The last step for the object description is defining the
object’s top surface. This is accomplished by mapping the top
edges of the object to the world coordinate frame. A set of
points which have similar height to the main corner point is
used to define the top surface of the object. In Figure 20(f)
the height in world coordinates of the corner is computed
via the transformation𝑊𝐾𝑇. Figure 20(f) shows orange points
enclosing the edges of the top surface.

Any point on the surface of the sample object can be
entirely described in space with respect to the Kinect frame
using the information in the image.
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Figure 20: Object description algorithm. The color image (a), presented to illustrate one sample object, is not part of the processing. The
mask of connected components (b) obtained in the former stage is the initial input of this block used.The depth pixels corresponding to each
object are segmented using the mask (c). Histogram equalization (d) is used to find the brightest pixel in the image (e). The brightest pixels
in the object correspond to the corner (or edge) closer to the Kinect-I. This corner is used to describe the height of the object. The contour
in (c) is filtered to find other points with a similar height to the corner (f). The “corner” point and the points with similar height are used to
describe the top shape of the sample.
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Figure 21:The coordinates of a point in the sample can be described
with respect to the frame of the Kinect {𝐾}. Additionally, using
transformation 𝑊𝐾𝑇, this point can be described with respect to the
world frame {𝑊}.

Point 𝑊𝑃𝑎 can be expressed as

𝑊𝑃𝑎 = (𝑥𝑎𝑦𝑎𝑧𝑎) = (𝑧𝑎 tan 𝜌𝑧𝑎 tan 𝜉𝑧𝑎 ), (8)

where 𝜌 = tan−1((𝑎󸀠𝑥 − 𝑐𝑥)/𝑓) and 𝜉 = tan−1((𝑎󸀠𝑦 − 𝑐𝑦)/𝑓).
Figure 22 shows the geometrical diagram which was used to
extract these equations using similar triangles as the pinhole
cameramodel. Once the position vector is entirely defined for
the Kinect-I frame, the transformation 𝑊𝐾𝑇 (defined before)
can be used to describe the point with respect to the world
frame.

6. Design of a Haptic Glove

There exist various alternatives for introducing haptic feed-
back. For example, a design of exoskeleton mechanisms was
proposed in [30].This design allows the continuous feedback
of the contact forces to the tip of the fingers. In this study and
similar to other technologies such as [31], we have proposed
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Figure 22: Pinhole camera model for the Kinect-I sensor. The
coordinates of a test object can be obtained from the pinhole model
using simple trigonometric relations.

a haptic glove with the vibratory actuators for creation of
the sense of touch. The haptic glove was designed to provide
feedback to the user by activating vibrating elements (tactors)
placed on the glove. For the current design six motors were
attached to the glove. AUSB connectionwith the PCprovides
the input for a microcontroller board with 6 PWMoutputs to
set the vibration frequency of each motor. Figure 23 shows
the communication architecture for the motor control.

Considering a simple kinematic model of the hand, it is
represented using 6 elements (5 fingers and the dorsal aspect
of the hand). Being consistent with such hand description,
the 6 tactors are related to these elements and located on top
of each finger and on top of the hand. Figure 24 presents the
motors attached to the proximal phalanges (on the glove) and
the center of the back of the hand.

7. Sensor System Integration

With the data provided by the 3D and 2D subsystems, it is
possible to construct a map of haptic stimuli. This map of
vibrotactile sensations is presented to the user as feedback
data with the activation of the tactors on the glove when
the user moves his/her hand in a scanning motion along
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Figure 23: Haptic glove concept (a) and haptic glove control architecture (b). Feedback signals are sent to a six-channel motor control box.
The frequency and vibration rhythm can be independently controlled for each motor.
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Figure 24:Hardware elements used in the construction of the control box for the glove actuators. In (a) electronic boards from theMIROHOT
platform have been repackaged and reused to build the control box for the glove. In (b) the assembled control unit with 5VDC power and
connections to the glove actuators.

the haptic region. Data measured from objects placed on
the sample platform can be encoded as tactile stimuli on
the haptic display area. The haptic map can be represented
as a volumetric set created by the intersection of the virtual
objects set with the hand location set.

In the haptic map 𝐻map = 𝐴 ∩ 𝐵, where 𝐴 refers to
the union of all the test volumes representations, combining
position, and dimensions of every axis and 𝐵 refers to the vol-
ume occupied by the hand. Every time such an intersection in
inhabited, there will be a haptic message (active actuators). In
case the intersection is empty, the actuators are inactive.

Figure 25 illustrates the process of building the haptic
map. The position and dimensions of sample volumes on
the table (b) are computed by the system using the depth
image. Models created to represent the objects are virtually
represented in the workspace of the user (a). A graphic
representation with top and side views is displayed on a
monitor ((c), (d)). The gesture and bracelet modules provide

the system with the position of the hand. If the hand of the
user is out of the volumetric representation, (c) the motors
on the glove are set to off. Figure 25(e) illustrates what
happens in case the hand of the user intersects the volumetric
representation. In this condition, (g) motors are activated.
The haptic perception provides the user with information
about the position and dimensions of the objects on the table.

The system communicates its output via the haptic display
(haptic glove) and a graphical interface. In Figure 26 it can
be observed how a test sample is represented in dimensions
and location using an orthogonal representation. Figure 26(c)
shows the model of a box from the top view (𝑋-𝑌 plane). A
side view of the box is in Figure 26(c) using the projection on
the𝑍-𝑌plane.Theprojection on𝑍-𝑋plane is in Figure 26(d).
Additionally, the virtual representation of the samples can
be seen in Figure 26((b) and (b󸀠)) in orange. The mentioned
scale factor results in “deformation” in the haptic information.
The rectangle in Figure 26(c) is mapped as a trapezoid in
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Figure 25: Generation of the haptic signal. Objects on the test table ((b), (f)) are described and modeled with the depth system. They are
represented on a user screen with top and side view ((d), (h)). Virtual objects are represented in graphic form in (c) and in tactile form in the
tactile region (a). When the hand of the user touches or penetrates the virtual volumes (e) a vibration message is sent to the tactors on the
glove.
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Figure 26: Example of the graphical display of the complete system. A box (a) is represented with a top (c) and 2 side views ((d), (c󸀠)) in
the orthogonal projection. A scaled model of the box is represented with top and side view ((b), (b󸀠)). A model of the hand represents the
position of the hand in (b) in green.
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Figure 27: Twoobjects in the depth image (a) aremapped in the haptic display region ((b), (b󸀠)). In this case, the hand of the user is penetrating
the volume corresponding to the cylinder, receiving the tactile message.

Figure 26(b). Height and width are displayed without change.
In this particular example, the hand of the user is out of the
haptic volume.

In a second example (Figure 27), the hand of the user
penetrated the haptic representations of a cylinder (in red)
in Figure 27(b). Once more the effect of the scale factor
is evident in the mapping of the surface of the cylinder in
Figure 27(c) onto an oval shape in Figure 27(b). To activate
the tactors the two conditions required are the intersection of
the hand model and top silhouettes (Figure 27(b)) and that
the height of the hand is less than the height of the model
(Figure 27(b󸀠)).

Figure 28 shows an example of a user interacting with
our proposed multimodal haptic interaction environment.
On the right side the graphical interface presents models of
the samples on the table. In the center, the haptic display
provides cues of the position, orientation, and dimensions
of the samples. From the tactile feedback the user can “feel”
differences in position, height, width, and length.

8. Preliminary User Study

This section presents a user study of our proposed mul-
timodal sensing system for haptic interaction. A group
of 11 volunteer users of different genders and age groups
ranging from 9 to 50 years old (average age = 29.27 years)
were selected to evaluate the performance of our system
in controlled conditions. The individuals had no previous
training using the developed platform. For this study, four
tasks were developed with the goal of measuring the ability
of the users to solve a number of requirements based only on
the haptic feedback signal.

As part of the tasks the users were required to locate the
relative position and distinguish a number of different objects
placed on the test table. They were also asked to find the
minimum noticeable threshold distance between the objects,

Figure 28: A user is interacting with the proposed multimodal
haptic interaction environment. The environment allows the user
to perceive the position and dimensions of different objects using
haptic feedback.

identify the shape, and finally distinguish between several
geometrical features of objects such as height, width, and
length.

8.1. Procedure. Users were first oriented with the general
experimental setup. They were then seated in front of the
haptic area and also instrumented with the haptic glove and
bracelet locator (Figure 29). In order to evaluate aspects
related to the haptic feedback, the users were blindfolded
during the experiments. The study was divided into four
activities. Test objects were randomly selected from a pool
of 12 different objects (4 cylinders and 8 boxes with different
dimensions). The actuators of the haptic glove were con-
trolled by a 3V signal which at this voltage can generate an
unbalanced angular velocity of 12.000 rpm.

8.1.1. Task 1: Spatial Resolution Experiment. Two wooden test
blocks were placed close to each other on the test table.
Users were required to locate the blocks and count the
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Figure 29: Blindfolded users performing different tasks. In (a) a user is locating and counting the number of objects on the test platform. In
(b) a young user is able to recognize differences in dimensions and volume just by tactile feedback.
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Figure 30: Task 1. (a) Separated blocks are perceived as 2 objects by the depth system, (b), (c), and (d).The user is interacting with one of the
blocks (red rectangle in (d)) using one finger.

number of blocks that they could perceive through haptic
perception. In consecutive steps, distance between the blocks
was reduced in steps of 1mm until the users were not able to
distinguish any noticeable separation between the two blocks.
This distance was then recorded as the minimum threshold
distance required between the objects in order to distinguish
the objects individually. Figures 30 and 31 show screenshots
taken during Task 1. In Figure 30 the blocks are separated in
the initial stages of the test. In Figure 31 blocks are perceived
as a unique object.

8.1.2. Task 2: Spatial Location andObject Counting. Anumber
of objects were randomly selected and placed on the test
platform with more than 15 cm separation distance. Blind-
folded users were required to locate and count the number of
objects in their reachable workspace (Figure 32). Users had
no previous knowledge of the number of objects placed on
the table for each iteration. The time the users required to

scan the whole haptic volume was registered. The recording
of timewas terminatedwhen users indicated they finished the
volume scanning process.

8.1.3. Task 3: Shape-Based Recognition. A cylinder and a
parallelepiped block were placed on the platform. Users were
required to distinguish differences between the objects and
recognize their shapes. Figure 33 shows one of the users using
hand gestures to perform the test.

8.1.4. Task 4: Size-Based Discrimination. Users were required
to recognize the differences between two objects placed on
the platform. The Task was composed of 4 subtasks starting
with height, width, length differentiation, and, then, general
volume differentiation. For each subtask a new pair of objects
was tested. Figure 34 shows an example of one usermeasuring
the sizes of 2 cylinders.
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Figure 31: Task 1: when the distance between the blocks is under a minimum threshold they are perceived as one block by the user via tactile
feedback. In (a) the 2 blocks are side by side. They are represented in (e) and (e󸀠) as a unique block.
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Figure 32: Task 2: during the test, a number of objects were placed on the table to be located and counted by the user. The user is interacting
with the brown box in (a). The interaction is registered and labeled in red in (c) and (c󸀠).

8.2. Results. Task 1: it was found that the average minimum
threshold distance between objects to be identified as two
distinct objects was 19.55mm (with stdev = 3.11mm). This
distance was measured by having two identical blocks beside

each other. The average was computed from the responses of
the volunteers.

Task 2: the average time to complete this task was 58
seconds (stdev = 30 s). A total of 110 objects were placed on
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Figure 33: Task 3: two samples with different shapes and similar heights are presented to the user to be identified (a). Using one finger gesture
((c), (c󸀠)), the user scans the top silhouettes. In (d) and (d󸀠) the user is interacting with the parallelepiped volume.
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(c) (d) (e)
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Figure 34: Task 4: cylinders of different dimensions are presented to the user for recognition ((a), (b)). User is interacting with the haptic
representation of the cylinder with bigger diameter ((c), (c󸀠)) (in red).

the table for all the users. From this total, 103 objects were
properly located and detected resulting in a success rate of
93.64%. On the other hand, in 2 cases, objects were counted
several times by the same user resulting in a false detection
rate of 1.82% (Figure 35).

Task 3: only 3 users from the 11 were able to properly
identify the objects based on their shape. Four users (27.27%)
identified the cylindrical containers as boxes and vice versa.
The 4 remaining users reported not being able to distinguish
any difference between the samples. In total 8 users failed the
recognition test (72.72%) (see Figure 36).

Task 4: a total of 44 object pairs were compared based on
height, width, length, and total volume. All users were able to
find the difference between object pairs with 100% efficiency
for all subtasks (Figure 37).

9. Discussions and Conclusions

This paper presents a multimodal sensor interface system
for haptic interaction. The developed interface uses depth
images to model a set of real objects present in the scene. An
image processing module estimates the position orientation
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Figure 35: Results of Task 2: (a) time required per user to complete the Task and (b) 93.64% of the total of objects presented to the users were
detected properly.
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Figure 36: Results of Task 3: 27.27% of the users identified the
objects properly. 72.72% failed in the shape identification.

and configuration of the hand of the user to provide haptic
stimuli when the user interacts with virtual objects. The user
can perceive the relative position and dimensions of remote
objects in the scene scanning with a vibrotactile glove inside
the haptic display.

The bracelet location module provides an estimation of
the position of thewrist of the userwith an error in position of
22.07mm. When the error in position is contrasted with the
dimensions of the haptic interaction area (cube of 600mm
on each side) the error can be expressed as a percentage
(22.07mm/600mm = 3.66%).

On the other hand, the gesture detection module pro-
vided a simplified representation of the user’s hand. A
kinematic model for the hand was proposed based on the
relative position of reflective segments around a core pattern
associated with the back of the hand. To obtain information
about the orientation (rotation matrix) and location of the
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Figure 37: Results of Task 4: in all the subtasks users were able to
differentiate between samples with bigger and smaller dimensions.

hand (position vector), perspective transformations are used.
Making use of known patterns, it was possible to build a
system to recover 3D information from a scene having as an
input a 2-dimensional image.As a result, a 6-DOFdescription
of the hand was obtained.

Recovering pitch, roll, and yaw angles associated with
the hand frame description from perspective transformed
images imply more accuracy in the determination of the
rotation about the 𝑍 axis (yaw) and less accuracy in pitch
and roll angles. This effect was evident in the experiments
performed to obtain the error in these angles (e.g., average
error in yaw angle 𝛼 = 3.37∘).The roll and pitch average errors
were 5.59∘ and 7.80∘, respectively. It was also determined that
the glove design was able to provide position coordinates
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for the hand with a similar precision that was obtained for
the bracelet system. Error in position using only perspective
transformation matrix for the glove was 23.21mm.

One of the goals of the optical and lighting technique
used for both the bracelet and glove modules was to sim-
plify the image processing stages required to do adequate
segmentations of the elements of interest. The combination
of reflective markers, coaxial IR illumination, and IR filters
and the synchronization of short strobe pulses with shutter
time of the camera resulted in images with very high contrast
that virtually eliminated the necessity of resource-consuming
vision algorithms to obtain the foreground elements from
the image.The proposed technique allows the capture system
to tune to the target (glove) providing its own illumination.
This approach proved to offer stable results under cluttered
backgrounds and uncontrolled light conditions (ambient
light). It is important to mention some of the limitations of
the use of reflective surfaces in the proposed configurations.

The use of the bracelet and the marker-enhanced glove
allows the system to obtain a more accurate estimation of the
position information of the hand in different situations. The
use of both location mechanisms can be redundant when the
hand pattern is visible, yet in some hand orientations, the
coordinates from the hand pattern are not available due to
extreme angles of rotation (of the hand). In these cases, the
location data can be obtained from the bracelet. The bracelet
was designed to be visible even under extremewrist rotations,
providing a reliable method to estimate the position of the
hand in those cases when position cannot be computed from
the hand pattern.

As part of the depth image processing system, a complete
module was designed to transform depth data obtained from
3D images into models of the objects under examination.
In this module, the regions corresponding to the samples
were segmented by a combination of stages using image
arithmetic, background subtraction, and a set of morphology
and connected components filters to obtain the regions
of interest. Some descriptors were used to build models
of the samples from a set of simple geometrical volumes.
The modeled objects were used to build a virtual haptic
representation. The accuracy of the depth system to locate
and describe objects was measured. The average error in
the location of a set of samples around the workspace was
9.99mm on the 𝑋 axis, 13.84mm on the 𝑌, and 5.08mm on
the 𝑍 axis of {𝑊} (global coordinates). The small values of
error are the result of the calibration process used to reduce
the effect of distortion in the depth images and adequate
estimation of the transformation relating the position of the
elements with respect to the world frame and the model-
based representation used for the samples.

The performance of three of the four modules was
measured individually. When contrasting the error values
results in location of a point in 3D space, the smaller error is
related to the depth imagingmodule with an error in location
of 19.58mm (standard deviation = 8.20mm). The bracelet
location error was 22.07mm in position (standard deviation
= 11.55mm) and the glove location error was 23.21mm
(standard deviation = 16.06mm). The error values can be
considered in a similar range with small variations that can

be related to the accuracy of the camera calibration values
obtained for both subsystems. Additionally, it is important
to consider that error values are functions dependant on the
work distance. This distance, in the case of the 2D camera, is
around 1 meter (distance between the camera and the center
of the workspace). In the case of the 3D camera the distance
from the sensor to the center of the test table is 1.7m. With
this consideration, the error related to the depth camera is a
smaller proportion of the workspace (19.58mm/1700mm =
1.15%) compared with the error of the glove as a proportion
of the 2D camera workspace (23.21mm/1000mm = 2.23%).

Recognition by height, width, length, and volume was
100% effective. All users could classify objects pairs con-
sidering these parameters. Future improvements on the
platform include a 6-DOF model of the hand to increase
the accuracy of finger location and the activation of all
the tactors on the glove. Additional improvements can be
achieved by considering complex volume rendering. In this
study volumes are considered to be constant section geomet-
rical elements represented as parallelepiped and cylindrical
volumes. More geometrical volumes will be added in future
iterations increasing the set of primitives used for object
description and rendering.

The results of the experiments with users show that haptic
interaction can be used as a tool to provide an effective
representation of real objects in a scene. In most of the
activities, volunteers were able to locate the relative position
of the samples and compare them effectively with respect to
several criteria. The recognition of objects based on shape
can still be a subject of further improvements to increase
the effectiveness of the recognition. The results obtained also
suggest that the developed haptic display could also be used
to represent synthetic objects as part of a virtual scene.

From [7, 8] it was also anticipated that there will exist a
limit in shape recognition based on haptic feedback alone.
Additionalmodalities can be included in enhancing the shape
recognition task. Various approaches can be explored as a
part of the future work such as (a) study of various scale
factor, for example, (b) depth computation of models at after
update rate (current rate is set at 15 frames per second which
results in considerable amount noise along the boundaries of
objects) process, and (c) addition of textures to both inside
and outside surfaces of the objects. As such, different haptic
frequencies can be associated with different surfaces of an
object which could facilitate the contour recognition.
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