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Abstract

Psychological challenges, including traumatic events, have been hypothesized to increase

the age-related pace of biological aging. Here we test the hypothesis that psychological

challenges can affect the pace of telomere attrition, a marker of cellular aging, using data

from an ongoing longitudinal-cohort study of Kaqchikel Mayan women living in a population

with a high frequency of child mortality, a traumatic life event. Specifically, we evaluate the

associations between child mortality, maternal telomere length and the mothers’ hypotha-

lamic-pituitary-adrenal axis (HPAA), or stress axis, activity. Child mortality data were col-

lected in 2000 and 2013. HPAA activity was assessed by quantifying cortisol levels in first

morning urinary specimens collected every other day for seven weeks in 2013. Telomere

length (TL) was quantified using qPCR in 55 women from buccal specimens collected in

2013. Results: Shorter TL with increasing age was only observed in women who experi-

enced child mortality (p = 0.015). Women with higher average basal cortisol (p = 0.007) and

greater within-individual variation (standard deviation) in basal cortisol (p = 0.053) presented

shorter TL. Non-parametric bootstrapping to estimate mediation effects suggests that

HPAA activity mediates the effect of child mortality on TL. Our results are, thus, consistent

with the hypothesis that traumatic events can influence cellular aging and that HPAA activity

may play a mediatory role. Future large-scale longitudinal studies are necessary to confirm

our results and further explore the role of the HPAA in cellular aging, as well as to advance

our understanding of the underlying mechanisms involved.
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Introduction

Several lines of evidence support the hypothesis that exposure to stressors, including psychoso-

cial, energetic, and health challenges, can influence the pace of biological aging [1–4]. The bio-

logical mechanisms underlying this relationship, however, are still being investigated. Stress

has been hypothesized to exert its influence via several mechanisms, including the acceleration

of cellular aging through an increase in the pace of telomere length (TL) attrition [5].

Located at the ends of chromosomes, telomeres are repetitive nucleotide sequences that

protect chromosomal DNA from degradation. DNA degradation can result from incomplete

replication (end-replication problem) [6,7], as well as damage from oxidative stress [8]. Once

telomeres shorten past a critical length, cells undergo senescence [9]. While TL in human

peripheral blood cells has been reported to decline with chronological age, the pace of attrition

does not appear to be constant across the lifespan, with greater attrition observed both early

and later in life [8,10,11]. It has been proposed that exposure to stress can accelerate this typical

pattern of TL attrition [5]. Whether the effects of stress on TL attrition vary with age is not cur-

rently known.

The hypothalamic-pituitary-adrenal axis (HPAA) has been proposed as a possible physio-

logical pathway mediating the relationship between stressful life events and the rate of TL attri-

tion [12–17]. Stressors normally result in the activation of the HPAA which allows individuals

to respond to the challenges at hand. Challenges stimulate the adrenal secretion of cortisol

[18], resulting in the mobilization of metabolic energy to be used by the tissues involved in the

response to the stressors at hand [19,20]. While adaptive, this process involves a biological

cost. As metabolic resources are finite, energy mobilized to respond to a given challenge has to

be reallocated away from regular metabolic tasks, such as somatic maintenance, including telo-

mere maintenance and repair [21–23]. Thus, traumatic or frequent stress is hypothesized to

lead to greater telomere attrition and, consequently, accelerated biological aging. Numerous

cross-sectional studies (for example see: [24,25–28]) and a limited number of longitudinal

studies [29,30] provide support for this hypothesis. A number of psychosocial stressors, includ-

ing violence, financial hardship, divorce, unemployment, and caring for ill or elderly relatives,

as well as other challenges, such as energetic stress, have consistently been associated with

shorter telomeres (for review see: [5,31]). Yet, only a handful of studies have examined the role

of HPAA activity as a modulator of TL in humans, and their results are equivocal [12–17].

While some of these studies reported negative associations between markers of HPAA activity,

such as cortisol, and TL [12,13,15,17], others have not found any significant associations

[14,16]. Therefore, whether the HPAA is directly involved in mediating the effects of stress

on the pace of cellular aging is still a matter of much debate. Some of these inconsistencies

between studies may be explained by methodological differences. These differences include

the use of different biological matrices to assess cortisol levels (i.e., urine, saliva, blood), as well

as variation in the number of specimens and the frequency with which they were collected, all

of which can affect a study’s results. Specifically, HPAA activity varies dramatically within

individuals as a result of various confounding factors, such as circadian rhythms, food con-

sumption and physical activity [32,33]. We have previously argued that the use of first morning

urinary cortisol allows for a tighter control of these confounders than cortisol quantification in

other matrices such as saliva and blood [34]. Additionally, basal HPAA activity and responsiv-

ity varies markedly within and between individuals [35,36]. Thus, the single cortisol measure-

ment frequently used in cross-sectional studies is not adequate to accurately assess HPAA

activity [35]. Along the same lines, accurately assessing telomere attrition requires multiple TL

measurements across time, which cross-sectional studies lack. Therefore, longitudinal cohort

studies that include the repeated collection of biological specimens from participants can
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provide critical information regarding the role of HPAA activity as a mediator of the link

between stress and TL attrition.

Taking into account these methodological issues, here we take advantage of an ongoing lon-

gitudinal-cohort study of Kaqchikel Mayan women to test the hypothesis that maternal expo-

sure to child mortality, a traumatic life event, across a 13-year period is associated with age-

related declines in TL. We also investigate whether HPAA activity plays a role in this relation-

ship. We chose this stressor because child mortality is particularly high in this Mayan popula-

tion (approximately 50% of women in this cohort experienced the death of one or more

children). Consistent with the hypothesis that traumatic life events play a role in cellular aging,

we predict that women who experienced the traumatic life event of child mortality will present

shorter TL, and that this link will be significantly associated with the activity of their HPAA.

Materials and methods

Study population and participants

The analyses are based on a cohort of 107 Kaqchikel Mayan women initially recruited in the

year 2000 for the Society, Environment and Reproduction (SER) study [37,38]. SER is a natu-

ralistic, longitudinal study focused on the relationship between “naturally occurring” stress

and women’s reproductive function. All participants are Kaqchikel Maya with at least 5 gener-

ations of traceable ancestors, which reduces genetic variability within our sample. Variation in

terms of lifestyle (i.e., diet, physical activity, education, and socio-economic status) is lower in

our population than that usually found among women living in urban communities of indus-

trialized populations. This homogeneity reduces the potential confounding effects of cultural

and lifestyle factors. Women in our study population did not smoke. This is particularly

important, as previous studies have shown a negative influence of cigarette smoking on telo-

mere length [26].

Of the 107 SER participants originally recruited in the year 2000, 94 volunteered to partici-

pate in the current study and provided urinary biospecimens and a buccal epithelial cell sam-

ple, as well as a bioelectrical impedance measurement (to gauge percent body fat [39]) in the

year 2013. Of the 94 women, 19 were excluded from our sample because critical demographic

information was missing for 2013 (e.g., no information on parity or child mortality) [40].

These exclusions resulted in a sample size of 75 women. For the present study, women who

were pregnant or in postpartum amenorrhea in 2013 (n = 20) were further excluded from

analyses because HPAA activity has been shown to differ between these reproductive stages

and cycling women [41–43]. This resulted in a final sample of 55 women. The average age of

the 55 participants in 2013 was 39.8 ± 5.8 years (average ± sample SD; range: 29–53 years)

(Table 1).

Table 1. Characteristics of the study population. Values are average ± sample SD (range).

Traits Study Population

(n = 55)

Did not experience the loss of a child

(n = 30)

Experienced the loss of a child

(n = 25)

Age in 2013 (years) 39.8 ± 5.8

(29–53)

38.4 ± 6.0*
(29–53)

41.5 ± 5.0*
(31–53)

Total number of children 5.6 ± 2.1

(1–10)

5.3 ± 1.7

(3–10)

5.9 ± 2.4

(1–10)

Average first morning urinary cortisol (log-10) 1.32 ± 0.18

(0.84–1.73)

1.31 ± 0.18

(1.04–1.62)

1.33 ± 0.18

(0.84–1.73)

SD first morning urinary cortisol (log-10) 0.22 ± 0.07

(0.09–0.39)

0.22 ± 0.08

(0.09–0.39)

0.23 ± 0.07

(0.11–0.38)

* p < 0.05 for comparison between groups.

https://doi.org/10.1371/journal.pone.0177869.t001
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Procedures

Ethics. Data collection in the year 2000 was approved by the University of Michigan’s

Institutional Review Board. Data collection in 2013 and data analyses were approved by Simon

Fraser University’s Ethics Review Board and the University of British Columbia’s Clinical Eth-

ics Review Board. Informed consent was obtained orally from illiterate individuals and in writ-

ing from literate ones. In all cases the consent document was read in Kaqchikel Mayan, the

local language, by a female research assistant to each prospective participant and signed by the

participants with a cross, finger print or name initials, according to their individual prefer-

ences. The University of Michigan’s Institutional Review Board approved the 2000 consent

procedure and study protocols, and Simon Fraser University’s Ethics Review Board approved

the ones used in 2013. The authors assert that all procedures contributing to this work comply

with the ethical standards of the relevant national and institutional committees on human

experimentation and with the Helsinki Declaration of 1975, as revised in 2008.

Assessment of exposure to child mortality. Child mortality was assessed via comparison

of demographic interviews administered in 2000 and 2013. Trained local, bilingual female

research assistants administered the interview in Kaqchikel (one of two local languages), and

recorded all of the answers by hand. This interview included questions about age, number of

children born to a woman, family income and child mortality. Child mortality included all

post-natal deaths, but not miscarriages or stillbirths as we did not have complete information

regarding these two types of child mortality. Of the children who died, most did so after 6

months of age, mainly from infection-related illnesses, which induced diarrhea, vomiting and

fever. Based on the demographic information, we created a binomial variable to identify

women who experienced the death of at least one child between 2000 and 2013 (n = 25) and

those who did not (n = 30). Two of the women in our sample, one in each group, were post-

menopausal.

Telomere length assessment. TL was measured in cells recovered from buccal epithelial

specimens collected in 2013. A buccal specimen was collected from each participant using an

SK-1 Isohelix Buccal Swab (Cat. No: SK-1S) by rubbing the swab firmly against the inside of

the right cheek for 1 minute. Swabs were then stored with an Isohelix Dri-Capsule (Cat. No:

SGC-50), which is designed to ensure long-term buccal DNA stability at room temperature for

over three years [44,45]. Buccal samples were stored at room temperature in a dark, dry cabi-

net for approximately 2 months, then transported at room temperature from the field site to

our laboratory where they were similarly stored for 6 months until analysis.

Genomic DNA was extracted from buccal samples using the DDK DNA Isolation Kit (Iso-

helix Ltd, Kent, UK). DNA quality was checked by running extracted genomic DNA from a

subsample of buccal samples for 1 hour on a 0.8% agarose gel with a Hind III ladder. DNA

from buccal samples was found to be of sufficient quality, with high molecular weight DNA

observed in all tested samples. DNA samples were quantitated using the NanoDrop 2000

UV-Vis Spectrophotometer (Thermo Scientific, Wilmington, USA) and diluted to 10ng/uL in

10mM Tris, 0.1mM EDTA buffer. Quantitative PCR (qPCR) was used to measure average rela-

tive TL (T/S ratio) as previously described [46]. Briefly, quantification of the amplification of

telomeric repeats relative to a single-copy gene, 36B4, was performed using SYBR green. The

36B4 gene, which encodes acidic ribosomal phosphoprotein PO, is located on chromosome

12. The telomere primers were designed to allow for amplification of the smallest possible

amplicon (76bp). Consequently, the qPCR amplification (CT value) and the amount of primer

binding sites in the genomic DNA template were proportional [47]. The primer sequences

(written 50!30) were: tel 1, GGTTTTTGAGGGTGAGGGTGAGGGTGAGGGTGAGGGT; tel 2,

TCCCGACTATCCCTATCCCTATCCCTATCCCTATCCCTA; 36B4u,
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CAGCAAGTGGGAAGGTGTAATCC; 36B4d, CCCATTCTATCATCAACGGGTACAA. Standard

curves and control samples were generated from whole blood DNA [46].

Sample identifiers were blinded to the experimenter and, thus, sample groups were ran-

domly distributed among the runs. During preparation, samples were distributed in a non-

replicated order across each plate, with each sample replicate always run on an independent

plate. To monitor reproducibility, samples were run in triplicate within each 96-well plate,

with at least two independent replicates. For the current study samples, 28 sets of 96-well T

and S plates were completed. Across the 28 sets of plates, the average R2 was 0.995 (± 0.003).

CT values were excluded if the standard deviation among triplicates was greater than 0.20. Fur-

thermore, if the coefficient of variation between the two independent replicates was greater

than 0.15, two additional independent replicates were performed. Independent replicates were

then averaged to generate an average relative TL for each sample (T/S ratio), the ratio of the

number of telomere repeat copies (T) to the number of 36B4 gene copies (S). As the efficiencies

of the T plates (77.8% ± 6.4%) were consistently lower than those of the corresponding S plates

(85.6% ± 3.4%), we used the Pfaffl method [48] to calculate T/S ratios, which takes into account

this variation in plate efficiency. The average intra-plate coefficient of variation for CT was

0.33% (±0.07%) and for T/S values was 6.28% (±0.97%). The average inter-plate coefficient of

variation was 5.23% (±3.56%).

T/S ratio and the average TL of a given sample have previously been shown to be propor-

tional [47]. While the ‘gold standard’ for TL measurement is Southern blot of the terminal

restriction fragment (TRF), the qPCR-based method has several advantages, including the abil-

ity to use smaller amounts of DNA and its high reproducibility, which have led to a recent

increase in its use [49–51]. The reproducibility of our qPCR methodology was previously vali-

dated by blind comparison of measurements obtained using qPCR and the flow fluorescence

in situ hybridization (flow-FISH) technique (r = 0.96; [46]).

Assessment of hypothalamic-pituitary-adrenal axis activity. Basal HPAA activity was

determined by quantifying free unconjugated cortisol levels in first morning urinary (FMU)

biospecimens collected every other day over a period of seven weeks in 2013. FMU cortisol

provides an integrative measure of basal HPAA activity and is less likely to be affected by diur-

nal confounders than cortisol quantified in other matrices such as serum and saliva [34,52].

Participants provided, on average, 19 ± 1.90 FMU samples each (average ± sample SD; range:

13–22). This sampling collection protocol permitted us to determine an average level of FMU

cortisol for each individual and monitor day-to-day variation in urinary free cortisol levels

within- and among-individuals [35]. Upon waking, participants collected their first urinary

voids into sterile, inert plastic containers provided by our research team the night before the

collection day. Within 4 hours of being produced, specimens were aliquoted into 2 ml cryo-

vials, and stored at -10˚C in the field. Within six months of their collection, samples were

shipped on dry ice to our laboratory and archived at -80˚C until analysis. FMU cortisol was

quantified using a previously validated enzyme immunoassay (EIA) array (Quansys Biosci-

ences, Logan, UT) [53], with a lower limit of detection of 0.5ng/ml. All samples were run in

duplicate and intra- and inter-assay coefficients of variation were 6.7% and 12.0%, respectively.

The cortisol concentration of each sample was corrected for specific gravity using refractome-

try to adjust for variation in hydration state [54,55].

Statistical analyses. We fit a linear multivariate regression model using JMP (version 12,

SAS Institute) to describe buccal TL as a function of the predictor variables. Specifically, we

included child mortality, age, the interaction between child mortality and age, average FMU

cortisol and intra-woman standard deviation (SD) of daily FMU cortisol (markers of HPAA

activity) as predictors. Whereas average FMU cortisol is reflective of basal HPAA activity, SD

cortisol reflects within-woman variability in HPAA activity among days. Higher SD in FMU
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cortisol may indicate that an individual has a more sensitive or reactive HPAA, or possibly,

that an individual has been exposed to more challenges (e.g., psychosocial stress, infection,

energetic stress, etc.). All FMU cortisol concentrations were log-10 transformed to normalize

data distribution.

Previously we showed that increased parity is associated with reduced telomere shortening

in women in our study population [40]. To account for this effect of parity, we included total

number of children born to a woman as a covariate in our model. We also included percent

body fat as a covariate in the model to account for mothers’ body composition as a potential

confounding factor. Percent body fat was not a significant covariate (p> 0.424). As excluding

percent body fat from the model did not change the estimates or significance for the other

parameters, we excluded it to avoid over-fitting [56]. Thus, our final linear multivariate regres-

sion model was: buccal TL ~ age + child mortality group + age�child mortality group + average

FMU cortisol + within-woman SD in FMU cortisol, with number of children born to a

woman entered as a covariate. This final model included our effects of interest while adjusting

for known, available confounders. The significance level was set at 0.05.

To evaluate whether HPAA activity (average FMU cortisol and within-woman SD in FMU

cortisol) mediated the associations between 1) child mortality variable and buccal TL and 2)

the child mortality x age interaction and buccal TL, we used a non-parametric, bias-corrected

and accelerated (BCa) bootstrapping procedure in R (Version 3.3.1, 2016 R Development Core

Team, Vienna, Austria) to estimate the mediation effect [57–60]. The bootstrapping procedure

has been recommended for regression-based mediation because mediation effect estimates are

generally not normally distributed unless sample size is very large [61]. Briefly, for each of

10,000 bootstrapped samples, two models were fit: the first including all of the variables in

our final linear multivariate regression model (Model 1, Fig 1), and the second excluding aver-

age FMU cortisol and within-woman SD in FMU cortisol (Model 2, Fig 1). The differences

between the estimated main effects of child mortality group in the two models and between

the estimated effects of the child mortality group by age interaction in the two models were

computed. These differences, if significantly different from 0, would suggest a mediatory role

for HPAA in the associations between buccal TL and experiencing child mortality and

between buccal TL and the interaction between experiencing child mortality and age [59].

Results

The average age of the 55 participants in 2013 was 39.8 ± 5.8 years (average ± sample SD;

range: 29–53 years) (Table 1). Women in the group who experienced child mortality were, on

average 3 years older than those in the group who did not experience this life event (p = 0.040)

(Table 1). Average log-10 transformed FMU cortisol was 1.32 ± 0.18 across seven weeks in

2013, and the average within-woman standard deviation (SD) of daily log-10 transformed

FMU cortisol across seven weeks in 2013 was 0.22 ± 0.07 (Table 1). The 55 participants had an

average of 5.6 ± 2.1 children (Table 1). Average and SD FMUC cortisol and total number of

children were not significantly different between the two groups (all p’s> 0.05).

Our final linear multivariate regression model explained 26% of the variation in buccal TL

(p = 0.018) (Table 2). The relationship between maternal age and buccal TL was significantly

associated with the experience of losing a child (age x child mortality interaction: p = 0.025). In

women who did not experience child mortality, buccal TL was not significantly associated

with age (B = 0.004, SE = 0.011, p = 0.716; Fig 2A), after adjusting for total number of children.

In contrast, in women who experienced child mortality, buccal TL was negatively associated

with age (B = -0.039, SE = 0.015, p = 0.015; Fig 2B), after adjusting for total number of children.

Average FMU cortisol was negatively associated with buccal TL (B = -0.773, SE = 0.276,
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p = 0.007), after adjusting for total number of children. A similar negative trend was observed

for SD of FMU cortisol (B = -1.327, SE = 0.667, p = 0.053). In other words, women with higher

and more variable FMU cortisol levels exhibited shorter buccal TL (Fig 3A and 3B,

respectively).

In evaluating whether HPAA activity (average and SD FMU cortisol) mediated the associa-

tions between the child mortality and buccal TL, we found that 95% of the bootstrap estimated

Fig 1. Mediation model. The two models compared to examine whether HPAA activity mediates the main

effect of child mortality group and the interaction effect of child mortality and age on telomere length, including

total number of children as a covariate (dotted lines).

https://doi.org/10.1371/journal.pone.0177869.g001

Table 2. The relationships between buccal telomere length and child mortality, age, and basal HPAA

activity, adjusted for number of children born to each woman. Final linear multivariate regression model:

buccal TL ~ age + child mortality group + age:child mortality group + average FMU cortisol + within-woman

SD in FMU cortisol + number of children born to a woman (covariate) (R2 = 0.26, p = 0.018).

Variable B Std Error p-value

Intercept 2.400 0.515 < 0.0001

Covariate

Number of children born to a woman 0.057 0.026 0.033

Predictor Variables
a Age in 2013 0.004 0.012 0.716

Child mortality 1.689 0.752 0.029
b Age in 2013 * Child mortality -0.043 0.018 0.025

Average log10 first morning urinary cortisol -0.773 0.276 0.007

Standard deviation log10 first morning urinary cortisol -1.327 0.668 0.053

a Effect of age on buccal TL in women who did not experience child mortality is 0.004
b Effect of age on buccal TL in women who experienced child mortality is 0.004–0.043 = -0.039

https://doi.org/10.1371/journal.pone.0177869.t002
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differences in the main effect of child mortality fell below 0, while 95% of the bootstrap esti-

mated differences in the child mortality by age interaction effect fell above 0. Therefore, the

estimates for both the main effect of experiencing child mortality and the child mortality by

age interaction differed significantly between the model that included the HPAA activity vari-

ables and the model that excluded these variables, suggesting that HPAA activity may act as a

mediator of the effect of child mortality on TL.

Discussion

The rate of age-associated decline in TL is often assumed to be relatively consistent among

individuals across time [62]. Nonetheless, exposure to various insults, including social,

Fig 2. Relationships between buccal telomere length, child mortality and maternal age. a) Increasing chronological age was significantly associated

with shorter buccal telomere lengths in women who experienced the death of one or more children (slope = -0.039, p = 0.015), b) but not in women who had

not experienced child mortality (slope = 0.004, p = 0.716), after adjusting for all other predictors and covariates. The lines in each graph represent the

estimated relationship between buccal telomere length and age for a woman with average values for all of the other predictors and covariates in the model.

https://doi.org/10.1371/journal.pone.0177869.g002

Fig 3. Relationships between buccal telomere length and HPAA activity. Regardless of child mortality exposure, shorter buccal telomere lengths were

also a) significantly associated with higher first morning urinary cortisol levels (slope = -0.773, p = 0.007) and b) marginally associated with higher within-

woman variation (standard deviation) in first morning urinary cortisol levels (slope = -1.327, p = 0.053), after adjusting for all other predictors and covariates.

The lines in each graph represent the estimated relationship between buccal telomere length and average first morning urinary cortisol and within-woman

standard deviation in first morning urinary cortisol levels, respectively, for a woman with average values for all of the other predictors and covariates in the

model.

https://doi.org/10.1371/journal.pone.0177869.g003
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environmental and physiological challenges, have been hypothesized to accelerate this process

[5,24,25,27,28,31,63–66]. The evidence supporting this hypothesis, however, has been mixed,

with some studies supporting this association [12,13,15,17], while other studies have not

[14,16]. Furthermore, the mechanisms involved in the putative effects of stress on the pace of

cellular aging are still being investigated. Our results show a link between experiencing a trau-

matic challenge–child death–and maternal age-related TL loss, which is consistent with the

original hypothesis regarding the effects of stress on the pace of cellular aging. Our analyses

are consistent with the prediction that HPAA activity is involved in the mechanism mediating

the association between stress and cellular aging.

Interestingly, the age-associated decline in TL was only observed in women who experi-

enced child mortality. The lack of an obvious association between age and TL in those who did

not experience this traumatic event may be explained by the limited age range of the women

in our study (29 to 53 at follow-up in 2013). While TL is generally expected to decrease with

age (for review see: [67,68]), within the age range of the women in our sample, this decline was

anticipated to be minimal. Indeed, in human peripheral blood cells, TL attrition follows a

biphasic pattern, accelerated in early childhood and in old age, with a possible period of rela-

tive quiescence during adulthood [8]. The age range of the women in our sample during the

period that we observed them (average age in 2000 = 25.37 years; average age in 2013 = 38.37

years) falls within the period of hypothesized relative quiescence. This overlap may explain

why the women who did not suffer child mortality did not exhibit a statistically significant

age-associated TL decline. The maintenance of TL during this period of adulthood in women

may be explained by protective factors associated with women’s reproductive physiology and

pregnancy that may mitigate TL shortening. Ovarian cycling is accompanied by regular

increases in circulating levels of estradiol. Estradiol is known to promote telomerase activity

and reduces oxidative stress levels [69–72], two factors that can protect TL. Pregnancy is

accompanied by even higher and more prolonged increases in circulating estradiol levels.

Thus, parity may exert additional protective effects on TL. Furthermore, pregnancy has been

argued to confer protection against the age-related decline in the regenerative capacity of vari-

ous maternal tissues [73]. These effects have been observed in a variety of tissues, including the

liver, central nervous system, and heart, in a number of vertebrate species, ranging from mice

to humans [73]. Several mechanisms have been proposed as potential mediators of these effects

including the parabiotic-like effects of microchimeric fetal cells on the regenerative capacity of

maternal tissues, as well as those of pregnancy-related maternal hormones, like estradiol and

prolactin [73]. In mice models, for example, elevated prolactin induces an increase in neural

precursor cells leading to an increase in newly generated oligodendrocytes, which are involved

in the remyelination of axons in experimentally demyelinated animals [73]. These protective

effects associated with reproduction, could be linked to, and perhaps help explain, the quies-

cence period in TL attrition in women during their reproductive years, particularly in high fer-

tility populations such as the one we study. Consistent with this hypothesis, in our study

population the total number of children born to a woman is positively correlated with TL [40].

The existence and extent of the protective effects of pregnancy on aging and the period of rela-

tive quiescence in TL attrition during women’s reproductive years is still being investigated

and debated. Future research is needed to further examine these effects as well as any other fac-

tors that may affect the pace of TL attrition in women across different life stages (e.g., pre-

puberty vs. adulthood vs. post-menopause).

The negative association we observed between child mortality and age-related variation in

maternal TL during a woman’s reproductive years is consistent with the hypothesis that the

putative protective effects of maternity on aging [40,73] can be overcome by the stress elicited

by exposure to traumatic events. Our results parallel those of other studies showing that
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traumatic events are linked to the pace of telomere attrition across the human lifespan. Shalev

et al. [30], for example, showed that exposure to violent events during childhood exacerbated

telomere attrition in children between the ages of five and ten. In post-menopausal women,

major life stressors, such as loss of household, major financial difficulties or death of a family

member or friend, were associated with greater telomere attrition over a one-year period [29].

Our results extend these findings, showing that traumatic events are associated with shorter

TL even in the life stage during which TL seems to be the most stable.

A role for the HPAA?

To our knowledge, this is the first study to use a longitudinal design to evaluate the role of

HPAA activity as a potential mechanism through which traumatic life events may affect the

age-associated variation in TL. Consistent with our prediction, our results showed that women

with higher FMU cortisol levels presented shorter TL. In terms of mediating mechanisms,

there is evidence suggesting that exposure to high circulating cortisol leads to increased oxida-

tive stress [74], which preferentially damages the telomere region of the chromosome [64,75].

Additionally, previous work has shown that in vitro exposure of human T lymphocytes to cor-

tisol can reduce the activity of telomerase [76], an enzyme that protects telomeres from short-

ening by adding back telomeric DNA [77]. Consistent with these observations, Epel and

colleagues found that caregivers, who have greater levels of perceived stress, showed reduced

telomerase activity at baseline and in reaction to an acute stressor compared to a non-caregiver

group [78]. Similarly, higher fasting morning serum cortisol levels have been reported to be

associated with reduced telomerase activity in a randomized mindfulness intervention study

[79]. Another potential mechanism through which cortisol may influence telomere attrition

involves increased division and proliferation of cells in tissues with high levels of cell turnover

[80–82]. Rapid cell turnover can lead to increased TL shortening through the end-replication

problem [6,7]. Our observation that HPAA activity was associated with TL may have been

facilitated by our use of buccal epithelial cells to assess TL, because these cells have a rapid

turnover rate. Together, our results and those of previous studies discussed above are consis-

tent with the hypothesis that high levels of HPAA activation may influence cellular aging via

oxidative stress and telomerase pathways and increased cell turnover.

Of note, we observed a trend towards a negative correlation between intra- individual varia-

tion (SD) in basal FMU cortisol and TL while accounting for variation in total number of chil-

dren. The functional significance of intra-individual variability in HPAA activity has not

received due attention in the literature. This variability has been argued to provide a measure

of how often the HPAA is activated (i.e., the level of physiologic stress to which an individual

is exposed) and may also reflect past exposure to stress [35,83]. Thus, the observed trend sug-

gesting a negative link between within-individual basal cortisol SD and TL is also consistent

with the hypothesis that life challenges may affect cellular aging through changes in HPAA

activity.

The estimated mediating effects of average and SD FMU cortisol on the association between

experiencing child mortality and TL were not large. This may be due to a variety of factors,

including our relatively small sample size and our choice of HPAA activity measurement. In

this study, we evaluated HPAA activity using FMU cortisol, an integrated measure of cortisol

secretion across the night. Alternative HPAA measures, including the pattern of cortisol reac-

tivity to and recovery from a stress challenge or diurnal cortisol profiles may provide more

information as to the role of HPAA activity in cellular aging. Future studies that evaluate other

aspects of HPAA activity and their potential to mediate the relationships between stressful life

events and cellular aging are needed.
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Limitations

Inherent to all observational studies, we cannot rule out the possibility that the relationship

observed between child mortality and TL in mothers could be explained by unmeasured fac-

tors not considered in our analyses. Socioeconomic status could potentially influence both

maternal TL and child mortality risk [84]. At the time of the study, however, our rural, indige-

nous study population was socioeconomically quite homogenous compared to industrialized

communities. Thus, it is unlikely that this variable alone could explain our results.

Mothers who experienced child mortality were, on average, 3 years older than those who

did not. This difference is to be expected as the probability of losing a child should be directly

proportional to a woman’s age (in this population the more time goes by, the more children a

woman is likely to have and the greater the chances that one of her children may die). Thus,

even though the age ranges were the same between the two groups, the group of women who

experienced child mortality had fewer younger women than the group of women who didn’t.

It could be argued that the link we observed between child mortality and TL may be attributed

to this difference in average age. However, as age was included in our model as a predictor var-

iable, the effect of age is accounted for in our analyses.

Maternal body condition could also potentially confound the relationship between child

mortality and TL. However, when percent body fat was included in our initial model as a

covariate to account for body condition, it was not associated with TL, nor did its exclusion

from the model change the estimates or significance of any of the other model parameters.

Other measures of body condition that were not measured, however, could still act as potential

confounding factors. Further, as some of our qPCR reaction efficiencies were slightly lower

than other studies that used qPCR to quantify TL [85,86], the results should be taken with

caution.

We were not able to determine the specific date at which the traumatic event (child death)

occurred for each woman, limiting our ability to assess the temporal influence of stress on TL

shortening. This may be of particular interest when considering previous work suggesting that

the time between exposure to stressful life events and TL measurement may have an impact on

the strength of the association between the two variables [26]. More recent events may also

have stronger effects on basal HPAA activity than past events. Future studies should also

endeavour to assess the temporal nature of traumatic stressful events as well as HPAA activity

closer to the time of the event. Despite these limitations, the present study offers novel infor-

mation that contributes to our understanding of the role that life events may have on cellular

aging. Larger epidemiological studies of women of different ethnicities will be necessary to

replicate our analyses and confirm our results.

Conclusions

Our results are consistent with the hypothesis that traumatic life events can affect the pace of

cellular aging in women of reproductive age, and suggest that maternal HPAA activity may

mediate this association. Additional large-scale longitudinal studies are necessary to confirm

and further explore the effects of other traumatic life events on cellular aging and the role of

the HPAA. These studies should incorporate the collection of multiple biological markers of

stress physiology and cellular aging to further elucidate the biological mechanisms involved.
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