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Abstract

Maternal overnutrition and obesity during pregnancy can have long-term effects on offspring

physiology and behaviour. These developmental programming effects may be mediated by

fetal exposure to glucocorticoids, which is regulated in part by placental 11β-hydroxysteroid

dehydrogenase (11β-HSD) type 1 and 2. We tested whether a maternal high-fat, high-

sucrose diet would alter expression of placental 11β-HSD1 and 2, thereby increasing fetal

exposure to maternal glucocorticoids, with downstream effects on offspring physiology and

behaviour. C57BL/6J mice were fed a high-fat, high-sucrose (HFHS) diet or a nutrient-

matched low-fat, no-sucrose control diet prior to and during pregnancy and lactation. At day

17 of gestation, HFHS dams had ~20% lower circulating corticosterone levels than controls.

Furthermore, there was a significant interaction between maternal diet and fetal sex for cir-

culating corticosterone levels in the fetuses, whereby HFHS males tended to have higher

corticosterone than control males, with no effect in female fetuses. However, placental 11β-

HSD1 or 11β-HSD2 expression did not differ between diets or show an interaction between

diet and sex. To assess potential long-term consequences of this sex-specific effect on fetal

corticosterone, we studied locomotor activity and metabolic traits in adult offspring. Despite

a sex-specific effect of maternal diet on fetal glucocorticoids, there was little evidence of

sex-specific effects on offspring physiology or behaviour, although HFHS offspring of both

sexes had higher circulating corticosterone at 9 weeks of age. Our results suggest the exis-

tence of as yet unknown mechanisms that mitigate the effects of altered glucocorticoid

exposure early in development, making offspring resilient to the potentially negative effects

of a HFHS maternal diet.
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Introduction

Adult physiology and behaviour are influenced by early life environment, including maternal

diet and stress during pregnancy [1–5]. For example, maternal overnutrition and/or obesity

during pregnancy can have long-term effects on metabolic and cardiovascular traits in adult

offspring [1,4]. Maternal consumption of a high-fat diet and/or obesity also affect offspring

mental health in humans as well as behaviour in animal models [2,3,6,7], including voluntary

locomotor activity [8,9]. Similarly, early postnatal nutrition influences voluntary physical

activity in adulthood [10]. However, whether effects of early life environment on metabolic

and cardiovascular traits are caused, at least in part, by programming effects on physical activ-

ity has received little attention [11].

Developmental programming of adult physiology and behaviour may be mediated by fetal

exposure to glucocorticoids [12,13]. The transfer of glucocorticoids from maternal to fetal cir-

culation is regulated in part by 11β-hydroxysteroid dehydrogenase type 2 (11β-HSD2) [13].

This enzyme, which is highly expressed in the placenta, inactivates glucocorticoids into metab-

olites (corticosterone to 11-dehydrocorticosterone in rodents and cortisol to cortisone in

humans) that have lower affinity for their cognate receptors [13]. Conversely, 11β-HSD1, also

present in the placenta, regenerates glucocorticoids from metabolites, thereby restoring activ-

ity [14]. Placental 11β-HSD2 activity is generally reduced by maternal malnutrition [13,15,16].

However, while a low protein diet decreased 11β-HSD2 activity near the end of pregnancy, it

had the opposite effect earlier in pregnancy [17]. Similarly, maternal stress generally reduces

placental 11β-HSD2 activity [5,18,19], although some studies have found the opposite pattern

[5]. The effects of maternal overnutrition and/or obesity on placental 11β-HSD2 activity have

received less study [20], although a high-fat diet decreases placental 11β-HSD2 expression and

enzymatic activity in mice [21,22].

We hypothesized that a maternal high-fat, high-sucrose diet would alter expression of pla-

cental 11β-HSD1 and 2, thereby increasing fetal exposure to maternal glucocorticoids, with

downstream effects on offspring voluntary energy expenditure. We tested this hypothesis in a

mouse model of maternal obesity by measuring the voluntary locomotor activity of adult off-

spring [8,9]. We also assessed the effects of the diet manipulation on pregnancy and other

aspects of offspring programming frequently measured in other studies. In particular, we mea-

sured placental phosphorylation of protein kinase B (Akt) as a measure of insulin signaling

[23–25] and placental expression of nutrient transporters [23,26], as well as metabolic traits of

the offspring including food intake, energy expenditure and glucose tolerance [8]. Because lep-

tin can affect 11β-HSD2 activity [27] and because glucocorticoids may regulate leptin expres-

sion [28], we also measured leptin in the maternal and fetal circulations.

Methods

All work was carried out in accordance with the guidelines of the Canadian Council on Animal

Care and approved by the SFU University Animal Care Committee and the UBC Animal Care

Committee (protocols 1094 and A13-0006, respectively). C57BL/6J mice were purchased from

the Jackson Laboratory (stock # 664) and were group-housed in individually ventilated cages

(50 air changes/hour; max. 5 mice per cage) with Enrich-o’Cobs bedding (Andersons Lab Bed-

ding, Maumee, OH) on a 12:12 hour light:dark cycle, at constant temperature (21 ± 1˚C), 50%

humidity, with water and food available ad libitum. At 8–11 weeks of age, females were placed

on either a high-fat, high-sucrose diet (HFHS; 45% kcal fat, 35% carbohydrate (including 17%

kcal sucrose), 20% kcal protein, 4.73 kcal/g, D12451, Research Diets, New Brunswick, NJ) or a

nutrient-matched low-fat, no-sucrose control diet (CON; 10% kcal fat, 70% kcal carbohydrate

(corn starch and maltodextrin), 20% kcal protein, 3.85 kcal/g, D12450K, Research Diets).

Effects of maternal diet on glucocorticoids, metabolism and behaviour

PLOS ONE | https://doi.org/10.1371/journal.pone.0174030 March 16, 2017 2 / 20

postdoctoral fellowships to EHC and KLS. The

funder had no role in study design, data collection

and analysis, decision to publish, or preparation of

the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0174030


One group of females was euthanized during pregnancy. These females were kept on the

experimental diets for 13 weeks prior to being paired with a male for one night, checked for

vaginal plugs, and kept on their experimental diet until euthanized at day 17 of pregnancy

(where the day the vaginal plug was observed = day 0). If no vaginal plug was observed and/or

if female weight had not increased by ~1g one week after mating, females were paired again.

Because not all females became pregnant when first paired, females euthanized during preg-

nancy had been on the experimental diet for 13–17 weeks at the start of pregnancy.

Pregnant females were euthanized by cervical dislocation within 2.5 minutes of moving

their home cage, and immediately blood sampled by cardiac puncture. Fetal blood was col-

lected into heparinized tubes following decapitation as quickly as possible after euthanization

of the mother. Placentae were either stored in RNAlater (Ambion, Foster City, CA), or placed

on dry ice and then stored at -80˚C for protein extraction. Fetal sex was determined by PCR

[29]. In this experiment, 19 HFHS and 20 CON females were paired, but 7 of each diet did not

become pregnant within 17 weeks on the experimental diet, and 1 CON female carried only 2

fetuses and so was excluded from analyses.

To assess the long-term consequences of the maternal diet on the offspring, another group

of females was allowed to deliver and rear their pups, remaining on the experimental diet

throughout pregnancy and lactation. Because a number of females lost first litters to cannibal-

ism or neglect (described below), only the offspring of second litters were studied. To match

the timing of the second pregnancy to that of the females euthanized during pregnancy

(described above), females were kept on the experimental diets for 9–10 weeks prior to being

paired with a male, such that their first pregnancy started after 10 weeks on the experimental

diet, and their second pregnancy started after ~ 13 weeks on the experimental diet. Offspring

were weaned at three weeks of age and maintained on breeding chow (Prolab RMH 2000

5P06, 23% kcal fat, LabDiet, St. Louis, MO) until 6 weeks of age, when they were gradually

switched to normal chow (5001, 13.5% kcal fat, LabDiet), i.e., remaining breeding chow was

left in the food hopper, but was topped up with normal chow.

Offspring of two cohorts were studied, with some improvements in experimental pro-

tocol for the second cohort. In the first cohort, some females were nursing their first litter

while pregnant with their second litter, whereas in the second cohort the male was re-

moved before the birth of the first litter, and not returned until a week after the first litter

had been euthanized (soon after birth). In the first cohort, litter size was not standardized,

whereas in the second cohort, litter size was standardized at birth to a maximum of 6. In

the first cohort, 6 females per diet were paired with males, but one of the HFHS females

cannibalized her first and second litters and so was not included. In the second cohort, 10

females per diet were paired, but one CON female cannibalized her first and second litters,

one HFHS female died during the birth of her first litter and one HFHS female was never

observed to produce a litter.

Glucose tolerance

Glucose tolerance was measured in a subset of dams (N = 5/ diet) three days before pairing,

and in offspring at 15–18 weeks of age. Glucose tolerance tests were performed after a 5 hour

fast on unanesthetized animals [30,31]. Mice were given an intraperitoneal injection of 20%

glucose at a dose of 2 g D-glucose/kg body weight [32], and blood sampled from the saphenous

vein at 0, 15, 30, 60 and 120 minutes after injection. Blood glucose levels were measured using

an AlphaTRAK 2 glucometer (Abbott, Illinois). A blood sample taken immediately prior to

glucose challenge was frozen for measurement of plasma triglycerides. All injections were per-

formed between 12 and 1 pm.
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Voluntary activity

Voluntary locomotor activity during the dark phase was measured in offspring at 16–19 weeks

of age using angled running wheels (15.5 cm diameter) that were monitored wirelessly (Wheel

Manager software, Med Associates Inc., VT, USA). In the first cohort, offspring were provided

with a running wheel while group-housed to allow habituation, and three days later were single

housed for activity measurements throughout the subsequent four nights. In the second cohort,

mice were single-housed upon addition of the running wheel, habituated to the running wheel

for three days, followed by four nights of activity measurement.

Metabolic and body composition phenotyping

Food and water intake, energy expenditure, oxygen consumption, carbon dioxide production,

respiratory exchange ratio and spontaneous physical activity were measured in mice housed

individually in metabolic cages, as previously described [33]. Whole animal body composition

was measured by quantitative magnetic resonance (QMR) analysis, as previously described

[33]. Body composition was measured post-mortem for dams and while alive for adult

offspring.

Serum analytes

Kits were used to measure circulating levels of corticosterone (07120103, MP Biomedicals, as

described in [34]), leptin (90030, Crystal Chem), IL-6 (M6000B, R&D Systems) and triglycer-

ides (Sigma-Aldrich).

Quantitative PCR

Tissue was homogenized in buffer RLT using pestles and Qiashredders, and total RNA was

extracted using the RNeasy Mini kit (Qiagen, Ontario, Canada). RNA concentration was deter-

mined using a Nanodrop spectrophotometer (Thermo Fischer Scientific Inc., Waltham, MA).

A reference sample was prepared by combining samples and was included in every assay to

account for variation between assays. In addition to the mRNA levels of Hsd11b1 and Hsd11b2,

we also measured Slc38a2, Slc27a4, Slc2a1, genes encoding neutral amino acid, long-chain fatty

acid and glucose transporters, respectively, expressed in the placenta [23,26,35] and β-actin as a

housekeeping gene. Primer sequences are shown in Table 1. The qScript 1-step SYBR Green

qRT-PCR kit (Quanta Biosciences Inc. Gaithersburg, MD) was used to reverse-transcribe and

amplify each sample for 40 cycles. At each cycle, the amount of fluorescence was quantified

using a miniOpticon (Bio-Rad, Hercules, CA), and the cycle at which the signal rose above a

fixed threshold (Ct) was determined. Each sample was analysed in duplicate. We used the

method of Pfaffl [36] to calculate mRNA expression levels relative to the reference sample, e.g.,

Table 1. Primer sequences used for quantitative PCR.

Gene Forward Reverse

β-actin CAGGTCATCACTATTGGCAACGAG ACGGATGTCAACGTCACACTTCAT

Hsd11b1 GAGGAAGGTCTCCAGAAGGTA ATGTCCAGTCCGCCCAT

Hsd11b2 GGCTGGATCGCGTTGTC CGTGAAGCCCATGGCAT

Slc38a2 CATGGCTAATACTGGAATTGCTC CCTTATGTCCCAACTGTTCGTA

Slc27a4 TTCTTGCCTGAGCTGCAC CCGAGCATCCAGATAGAACAG

Slc2a1 AGTTCGGCTATAACACTGGTG GTGGTGAGTGTGGTGGATG

https://doi.org/10.1371/journal.pone.0174030.t001
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a value of 1.5 indicates a sample has 50% more of a particular transcript than the reference sam-

ple, correcting for β-actin.

Western blotting

Protein extraction and Western blotting were performed as described previously [37]. Mem-

branes were incubated overnight at 4˚C with a primary antibody solution containing antibodies

against actin and one protein of interest. Primary antibodies were as follows: actin (CLT9001,

Cedarlane), Akt (9272S, New England Biolabs), phospho-Akt (Ser473; 4060S, New England Bio-

labs), 11β-HSD1 (AB39364, Cedarlane), 11β-HSD2 (AB80317, Cedarlane). Membranes were

visualized using the Odyssey infrared imaging system (Li-Cor Biosciences, Lincoln, NE) which

allowed simultaneous quantification of the protein of interest and actin using secondary anti-

bodies that fluoresced at different wavelengths.

Statistical analyses

All statistical analyses were performed using general linear models (proc GLM) or repeated

measures analyses (proc MIXED) in SAS, Version 9.3 (SAS Institute Inc., Cary, NC). Repeated

measures analyses were used for all placental, fetal and offspring traits where there were multi-

ple offspring per dam (with dam as a random factor), since the dam was the unit of replication.

Models initially included a maternal diet by offspring sex interaction term to test for sex-spe-

cific effects [38] and this term was removed if not significant (P < 0.05). Where a diet by sex

interaction was significant, the effect in males and females was tested using the ESTIMATE

statement.

Results

Maternal traits

As expected, females on a HFHS diet gained more weight than females on the CON diet, such

that they were significantly heavier at the time of first pairing (F1,15 = 12.32, P = 0.0032) and were

~15% heavier prior to becoming pregnant with their second litter (Fig 1A). Three days before mat-

ing for the first litter, HFHS females had higher fasting blood glucose levels (F1,8 = 9.19, P = 0.02;

Fig 2) and reduced glucose tolerance measured as the area under the curve (AUC, F1,8 = 16.45,

P< 0.01) or the positive incremental area under the curve (i.e., the area under the curve, but

above the baseline level, piAUC, F1,8 = 13.81, P< 0.01; Fig 2). However, fasting triglyceride levels

did not differ between diets (HFHS: 0.48 ± 0.06 mmol/L; CON: 0.39 ± 0.05 mmol/L; F1,7 = 1.32,

P = 0.29). Among females paired with males for only one night, such that the timing of pregnancy

was known, HFHS females weighed more at the beginning of pregnancy (F1,22 = 6.37, P = 0.02;

Fig 1B), but CON females tended to gain more weight between pairing and day 17 of gestation

(F1,21 = 3.11, P = 0.09, controlling for number of conceptuses, F1,21 = 21.33, P< 0.0001). As a

result, although HFHS females tended to be heavier at day 17 of gestation (Fig 1B), this difference

was not significant (F1,22 = 2.69, P = 0.12). HFHS females euthanized at day 17 of gestation had

greater fat mass, but not greater lean mass, than CON females, as measured by QMR (Table 2).

Consistent with weight gain, HFHS females consumed more calories at the beginning of preg-

nancy, whereas CON females caught up by day 17 (Fig 3). Because the two diets were equal with

respect to the proportion of calories obtained from protein (20%), protein consumption through

pregnancy paralleled caloric consumption.

Among females euthanized at day 17 of gestation, HFHS females had 20% lower circulating

corticosterone levels and 63% higher leptin levels than CON females, although the latter
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difference was marginally non-significant (P = 0.054; Table 2). Circulating IL-6, a measure of

systemic inflammation, did not differ between diets (Table 2).

Fetal and placental traits

There was no difference between diets in the number of conceptuses at day 17 or in the fetal

sex ratio (Table 2). There was no effect of diet on fetal weight, placental weight or the fetal-to-

placental weight ratio, including the number of conceptuses as a covariate in the models

(Table 2).

There was no interaction between maternal diet and fetal sex (i.e., no difference in the effect

of maternal diet between the sexes) and no significant effects of maternal diet or fetal sex on

fetal circulating leptin levels (Table 2). However, there was a significant interaction between

maternal diet and fetal sex on fetal circulating corticosterone levels (F1,18 = 8.59, P = 0.009),

whereby HFHS male fetuses tended to have higher plasma corticosterone than CON male

fetuses (t18 = 1.96, P = 0.07), with no effect of maternal diet in female fetuses (t18 = -1.55,

P = 0.14) (Fig 4A). Among HFHS fetuses, males tended to have higher corticosterone than

females (t18 = -2.03, P = 0.06), whereas the opposite pattern occurred in CON fetuses (t18 =

2.12, P = 0.05). When maternal corticosterone was added to the model as a covariate, maternal

corticosterone was significantly correlated with fetal corticosterone (F1,21 = 6.37, P = 0.02), and

the interaction between maternal diet and fetal sex remained significant for fetal corticosterone

Fig 1. Effect of maternal diet on weight gain prior to and during pregnancy. (A) Weight gain prior to pregnancy (N = 6 per diet in first cohort and 30 per

diet in second cohort) and (B) during pregnancy (N = 12 per diet) in females fed a high-fat, high-sucrose (HFHS, solid symbols) or low-fat, no-sucrose (CON,

open symbols) diet. Values are least squares means ± standard error. Analyses of pre-pregnancy weight gain included effects of cohort; the diet by cohort

interaction term was not significant at any time point and so was removed from the models.

https://doi.org/10.1371/journal.pone.0174030.g001
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(F1,18 = 8.35, P = 0.01), again with HFHS male fetuses having higher corticosterone than CON

male fetuses (t18 = 3.08, P = 0.007), with no effect in female fetuses (t18 = -0.11, P = 0.91) (Fig

4B).

While HFHS dams had lower circulating corticosterone than CON, their male fetuses had

higher corticosterone than those of CON dams. This contrasting pattern suggested sex-specific

changes in 11β-HSD1 and/or 11β-HSD2 expression. However, there was no significant inter-

action between maternal diet and fetal sex, and no significant effects of maternal diet or fetal

sex, on 11β-HSD1 or 11β-HSD2 mRNA levels, or 11β-HSD1 protein levels (P > 0.1 in all

cases) (Fig 5). We could not detect 11β-HSD2 by Western blotting, consistent with much

higher quantitative PCR Ct values (i.e, lower expression) for 11β-HSD2 than for 11β-HSD1, as

well as previous reports that 11β-HSD2 expression decreases towards the end of gestation

[14,39].

As a measure of insulin signaling and Akt activity, we measured placental protein levels of

phosphorylated Akt (Akt-S473) and total Akt by Western blotting. There was no significant

interaction between maternal diet and fetal sex on either trait, or on the ratio of phosphory-

lated to total Akt. There was no effect of maternal diet on the levels of phosphorylated Akt, but

HFHS placentae had significantly higher total Akt, and as a result had a significantly lower

ratio of phosphorylated to total Akt (Table 2). There was no effect of maternal diet on the

mRNA levels of genes encoding amino acid, fatty acid or glucose transporters (Table 2). We

measured placental IL-6 by ELISA to assess inflammation, but found no significant interaction

Fig 2. Glucose tolerance prior to mating. Values for HFHS females (solid symbols) and CON females

(open symbols) are least squares means ± standard error (N = 5 per diet).

https://doi.org/10.1371/journal.pone.0174030.g002
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between maternal diet and fetal sex, and no significant effects of maternal diet or fetal sex

(Table 2).

Offspring perinatal traits

Of the first litters that were not euthanized immediately after birth, all pups had died by the

next day in 6 of 9 HFHS litters, whereas only 1 of 12 first CON litters were completely lost

(Fisher’s Exact Test P = 0.02). As a result, subsequent first litters from the second cohort were

euthanized on the day of birth.

The number of pups at birth in the second litters was significantly lower in HFHS dams in

the first cohort, but not in the second cohort (Table 3). When the two cohorts were combined,

the diet by cohort interaction was marginally non-significant (F1,24 = 4.06, P = 0.06). Con-

versely, birth weight did not differ between diets in either cohort (Table 3). There was no dif-

ference in the number of days between mating and birth in either cohort (Table 3).

Table 2. Physiological and reproductive traits among females euthanized at day 17 of gestation.

HFHS CON F DF P Terms in model in addition to diet

N 12 12

Fat mass (g) 8.1 ± 0.6 5.6 ± 0.6 9.55 1, 22 0.0053

Lean mass (g) 19.8 ± 0.2 19.9 ± 0.2 0.32 1, 22 0.58

Serum corticosterone (ng/mL) 751 ± 36 937 ± 36 13.20 1, 22 0.0015

Serum leptin (ng/mL) 174 ± 24 107 ± 23 4.17 1,21 0.0540

Serum IL-6 (pg/mL) 6.8 ± 2.5 2.9 ± 2.7 1.16 1,71 0.32

Number of conceptuses 7.5 ± 0.4 7.2 ± 0.4 0.29 1, 22 0.60

Fetal sex ratio

(% males)

47 ± 6 53 ± 6 0.56 1, 22 0.46

Fetal weight (mg)2 809 ± 37 852 ± 37 0.70 1, 21 0.41 Fetal sex: F1,22 = 8.14, P = 0.0096; Number of conceptuses: F1,21 =

3.47, P = 0.085

Placental weight (mg)2 111 ± 3 112 ± 3 0.00 1, 21 0.95 Fetal sex: F1,22 = 26.39, P < 0.00016; Number of conceptuses: F1,21

= 3.29, P = 0.085

Fetal: placental weight ratio2 7.5 ± 0.4 7.7 ± 0.4 0.15 1, 21 0.70 Fetal sex: F1,22 = 5.90, P = 0.02; Number of conceptuses: F1,21 =

0.36, P = 0.55

Fetal leptin (ng/mL)2 0.9 ± 0.3 0.5 ± 0.3 0.96 1,

343
0.33 Fetal sex: F1,34 = 0.02, P = 0.90

Placental pAkt (arbitrary units)4 1.02 ± 0.03 1.01 ± 0.03 0.22 1,22 0.65 Fetal sex: F1,12 = 7.67, P = 0.027

Placental total Akt (arbitrary units)4 1.10 ± 0.05 0.94 ± 0.05 4.91 1, 22 0.04 Fetal sex: F1,12 = 0.10, P = 0.76

pAkt: total Akt ratio 0.95 ± 0.04 1.11 ± 0.05 6.31 1, 22 0.02 Fetal sex: F1,12 = 3.63, P = 0.08

Slc38a2 mRNA 1.4 ± 1.4 1.2 ± 1.4 0.18 1, 19 0.67 Fetal sex: F1,6 = 3.54, P = 0.11

Slc27a4 mRNA 1.1 ± 1.9 0.6 ± 1.9 0.48 1, 20 0.50 Fetal sex: F1,7 = 8.89, P = 0.027

Slc2a1 mRNA 0.6 ± 1.3 1.2 ± 1.4 2.51 1, 20 0.13 Fetal sex: F1,7 = 0.31, P = 0.60

Placental IL-6 protein (pg/ ±g total

protein)

0.28 ± 0.03 0.31 ± 0.03 0.59 1, 22 0.45 Fetal sex: F1,15 = 0.16, P = 0.69

1 Plasma was pooled between dams and therefore the sample size was reduced.
2 The interaction between sex and diet was initially included in the model, but was not significant and so was removed.
3 Plasma was pooled between fetuses of different dams for measurement of fetal leptin, and this analysis did not use repeated measures analysis.
4 Corrected for actin.
5 The relationship between the number of conceptuses and fetal and placental weight was negative.
6 Male conceptuses were heavier and had heavier placentas.
7 Male conceptuses had lower values.

https://doi.org/10.1371/journal.pone.0174030.t002
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Offspring postnatal growth

In the first cohort, there was no interaction between sex and maternal diet on postnatal growth

at any age (P > 0.4 in all cases). Offspring from HFHS dams were heavier at weaning (3 weeks

of age) but not 6 and 10 weeks of age (Fig 6A and 6B). In the second cohort, there was also no

interaction between sex and maternal diet on postnatal growth at any age (P > 0.15 in all

cases), but in contrast to the first cohort, offspring from HFHS dams were not heavier at 3

weeks of age (Fig 6C and 6D). The diet by cohort interaction was significant at 3 weeks of age

(F1,24 = 7.87, P = 0.01). In the first cohort, litter size at birth was lower in HFHS dams but we

did not standardize litter sizes, and so the difference in mass at weaning could be due to litter

size rather than maternal diet. To test this, we added litter size at weaning as a covariate to the

analyses of the first cohort, but it was not a significant covariate and the effect of diet remained

significant. In the second cohort, body composition at euthanasia (at 19–24 weeks of age) was

analysed by QMR. There was no significant interaction between sex and maternal diet for fat

or lean mass (P> 0.65 in both cases), and no significant effect of maternal diet for either trait

(Table 3).

Offspring food consumption and metabolic traits

HFHS and CON offspring were all weaned onto the same chow diet. Food consumption at

5–6 weeks of age did not show a significant interaction between sex and maternal diet in either

cohort (P > 0.48 in both cases), but food consumption was significantly higher in HFHS

Fig 3. Caloric intake during pregnancy. Values for HFHS dams (solid symbols; N = 12) and CON dams

(open symbols; N = 11 due to missing data for one mouse) are least squares means ± standard error.

https://doi.org/10.1371/journal.pone.0174030.g003
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Fig 4. Fetal corticosterone levels. (A) Fetal (day 17) corticosterone levels in HFHS dams (solid bars; N = 12 dams) and CON dams (open bars; N = 12

dams). Values are least squares means ± standard error from a repeated measures analysis including effects of diet, fetal sex, and the diet by fetal sex

interaction and dam as the random subject. (B) Correlation between fetal and maternal corticosterone in HFHS (solid symbols, black lines) and CON (open

symbols, gray lines) male (squares, solid lines) and female (circles, dotted lines) fetuses. The regression lines have a shared slope because there was no

significant interaction between maternal corticosterone and fetal sex, or between maternal corticosterone and maternal diet; there was only an interaction

between fetal sex and diet.

https://doi.org/10.1371/journal.pone.0174030.g004

Fig 5. Placental 11β-HSD expression. (A) 11β-HSD1 protein, (B) Hsd11b1 mRNA and (C) Hsd11b2 mRNA from HFHS dams (solid

bars; N = 12 dams) and CON dams (open bars; N = 12 dams). Values are least squares means ± standard error from a repeated

measures analysis including effects of diet, fetal sex, and the diet by fetal sex interaction, with dam as the random subject.

https://doi.org/10.1371/journal.pone.0174030.g005
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Table 3. Peri- and postnatal traits of offspring.

HFHS CON F DF P Terms in model in addition to diet

N

First cohort 5 6

Second cohort 8 9

Litter size at birth

First cohort 6.6 ± 0.4 8.3 ± 0.3 11.29 1, 9 0.0081

Second cohort 7.8 ± 0.4 7.9 ± 0.4 0.07 1, 15 0.80

Birth weight (g)

First cohort 1.31 ± 0.03 1.25 ± 0.02 2.04 1, 8 0.19 Litter size: F1,8 = 1.54, P = 0.25

Second cohort 1.31 ± 0.02 1.31 ± 0.02 0.04 1,14 0.84 Litter size: F1,14 = 6.77, P = 0.02

Time between mating and birth (days)

First cohort 23.0 ± 1.4 22.8 ± 1.3 0.01 1, 9 0.93

Second cohort 21.8 ± 0.4 21.8 ± 0.4 0.00 1, 15 0.96

Food consumption at 5–6 weeks (g/ day/ mouse)2

First cohort 3.77 ± 0.12 3.41 ± 0.12 4.44 1, 8 0.07 Sex: F1,9 = 9.08, P = 0.01; Week (5 vs. 6): F1,9 = 3.00,

P = 0.12

Second cohort 4.46 ± 0.11 4.12 ± 0.10 5.36 1, 15 0.04 Sex: F1,12 = 1.12, P = 0.31; Week (5 vs. 6): F1,13 = 2.39,

P = 0.15

Voluntary locomotor activity (1000s of wheel rotations)2

First cohort 15.9 ± 2.0 20.7 ± 1.9 3.11 1, 9 0.11 Sex: F1,10 = 56.4, P < 0.00015; Night: F3,30 = 9.4,

P = 0.0002

Second cohort 16.9 ± 1.1 16.5 ± 1.1 0.08 1, 15 0.78 Sex: F1,15 = 65.2, P < 0.00015; Night: F3,48 = 4.9,

P = 0.005

Traits measured in second cohort only

Fasting triglyceride at 15–18 weeks

(mmol/L)2
0.23 ± 0.02 0.24 ± 0.02 0.16 1, 15 0.69 Sex: F1,15 = 5.97, P = 0.034

Preference for HFHS diet at 17–22

weeks3
0.941 ± 0.008 0.952 ± 0.007 1.06 1, 15 0.32 Sex: F1,15 = 6.60, P = 0.024

Metabolic traits at 18–23 weeks

Food intake (g/hour)2

Dark phase 0.19 ± 0.02 0.17 ± 0.02 0.40 1, 13 0.54 Sex: F1,6 = 2.90, P = 0.14

Light phase 0.06 ± 0.01 0.05 ± 0.01 0.02 1, 13 0.88 Sex: F1,6 = 0.88, P = 0.38

Water intake (mL/hour)2

Dark phase 0.29 ± 0.02 0.29 ± 0.02 0.00 1, 13 0.99 Sex: F1,6 = 12.37, P = 0.014

Light phase 0.09 ± 0.01 0.08 ± 0.01 0.53 1, 13 0.48 Sex: F1,6 = 5.21, P = 0.064

Energy expenditure (kcal/hour)2

Dark phase 0.36 ± 0.02 0.37 ± 0.01 0.16 1, 13 0.70 Sex: F1,6 = 1.72, P = 0.24

Light phase 0.26 ± 0.01 0.27 ± 0.01 1.05 1, 13 0.32 Sex: F1,6 = 0.08, P = 0.78

Spontaneous physical activity (counts/hour)2

Dark phase 2512 ± 883 3193 ± 826 0.35 1, 13 0.57 Sex: F1,6 = 3.93, P = 0.09

Light phase 527 ± 160 815 ± 150 1.86 1, 13 0.20 Sex: F1,6 = 10.03, P = 0.02

Oxygen consumption (mL/hour)2

Dark phase 73 ± 3 74 ± 3 0.18 1, 13 0.68 Sex: F1,6 = 1.60, P = 0.25

Light phase 53 ± 2 55 ± 2 1.16 1, 13 0.30 Sex: F1,6 = 0.15, P = 0.72

Carbon dioxide production (mL/hour)2

Dark phase 67 ± 4 68 ± 3 0.07 1, 13 0.80 Sex: F1,6 = 3.67, P = 0.10

Light phase 46 ± 2 48 ± 2 0.50 1, 13 0.49 Sex: F1,6 = 0.00, P = 0.98

Respiratory exchange ratio2

Dark phase 0.91 ± 0.02 0.91 ± 0.02 0.05 1, 13 0.82 Sex: F1,6 = 13.69, P = 0.014

Light phase 0.87 ± 0.01 0.86 ± 0.01 0.24 1, 13 0.63 Sex: F1,6 = 0.41, P = 0.54

(Continued)
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offspring in the second cohort and tended to be higher in the first cohort (Table 3). However,

in the second cohort, food consumption was also measured in metabolic cages at 18–23 weeks

of age, at which point there was no effect of maternal diet (Table 3). At 17–22 weeks of age, off-

spring were offered both the HFHS and CON experimental diets to assess diet preference, and

all mice strongly preferred the HFHS diet (~95% of food consumed by mass was HFHS), but

there was no effect of maternal diet, although males had a stronger preference for the HFHS

diet than females (Table 3).

At 15–18 weeks of age, fasting glucose and glucose tolerance, as measured by AUC or

piAUC, did not show a significant sex by maternal diet interaction in either cohort (P> 0.05

in all cases). The effect of maternal diet was not significant for any trait in either cohort

(P> 0.18 in all cases) (Fig 7). Fasting triglyceride levels were measured in the second cohort

only, and did not show a significant sex by maternal diet interaction (F1,14 = 1.73, P = 0.21), or

an effect of diet (Table 3).

At 18–23 weeks of age, a number of metabolic traits were measured in the second cohort,

including food intake, water intake, energy expenditure, oxygen consumption, carbon dioxide

production and the respiratory exchange ratio, and none of these traits showed an effect of

maternal diet (Table 3) or an interaction between maternal diet and offspring sex (P > 0.05 in

all cases).

Offspring stress response and voluntary locomotor activity

In the second cohort, the response to stress was assessed in offspring at 9 weeks of age by mea-

suring circulating corticosterone levels after 3 and 10 minutes of restraint stress. In a repeated

measures analysis with dam as the random subject, the interactions between maternal diet, sex

and time were not significant (P> 0.15 for all), but there was a significant effect of maternal

diet, with HFHS offspring having higher circulating corticosterone (F1,11 = 5.64, P = 0.04; Fig

8). Circulating corticosterone did not differ between the sexes (F1,9 = 1.07, P = 0.33; Fig 8).

Consistent with the lack of interaction between diet and time, the difference in corticosterone

levels between 3 and 10 minutes did not show an interaction between maternal diet and sex

(F1,8 = 1.26, P = 0.29), or an effect of diet (F1,11 = 0.05, P = 0.83).

Voluntary locomotor activity was measured by use of running wheels over 4 nights in off-

spring at 16–19 weeks of age. There was no sex by maternal diet interaction and no effect of

Table 3. (Continued)

HFHS CON F DF P Terms in model in addition to diet

Fat mass (g)2 5.2 ± 0.2 5.1 ± 0.2 0.01 1, 15 0.92 Sex: F1,15 = 37.98, P < 0.00014; Age: F1,73 = 16.69,

P < 0.0001

Lean mass (g)2 21.3 ± 0.3 21.2 ± 0.2 0.02 1, 15 0.90 Sex: F1,15 = 244.84, P < 0.00014; Age: F1,73 = 0.58,

P = 0.45

1 Also significant by non-parametric Wilcoxon and Kruskal-Wallis tests.
2 Food consumption at 5–6 weeks was measured in 17 mice from 5 HFHS dams and 22 mice from 5 CON dams in the first cohort, and 32 mice from 8 HFHS

dams and 41 mice from 9 CON dams in the second cohort. Voluntary locomotor activity was measured in 27 mice from 5 HFHS dams and 29 mice from 6

CON dams in the first cohort, and 43 mice from 8 HFHS dams and 44 mice from 9 CON dams in the second cohort. Food intake, water intake, energy

expenditure, spontaneous physical activity, oxygen consumption, carbon dioxide production and the respiratory exchange ratio were measured in a subset

of 11 HFHS mice (from 7 dams) and 12 CON mice (from 8 dams) in the second cohort only.
3 Food preference calculated as (HFHS diet consumed) / (CON + HFHS diets consumed).
4 Males higher than females.
5 Females higher than males.

https://doi.org/10.1371/journal.pone.0174030.t003
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Fig 6. Postnatal growth in offspring. Postnatal growth in males (A, C) and females (B, D) from the first (A, B; N = 5 HFHS dams, 28 pups, 6

CON dams, 43 pups) and second cohorts (C, D; N = 8 HFHS dams, 44 pups, 9 CON dams, 53 pups). Although the diet by sex interaction was not

significant at any age, data for each sex are presented separately for clarity, and values are least squares means ± standard error from repeated

measures analyses including effects of diet, sex, and the diet by sex interaction with dam as the random subject. Asterisks denote ages at which

effect of diet is significant (P < 0.05).

https://doi.org/10.1371/journal.pone.0174030.g006
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Fig 7. Glucose tolerance in offspring. Glucose tolerance in males (A, C) and females (B, D) from the first (A, B; N = 5 HFHS dams, 24 pups, 6

CON dams, 26 pups) and second (C, D; N = 8 HFHS dams, 16 pups, 9 CON dams, 16 pups) cohorts. Although the diet by sex interaction was not

significant, data for each sex are presented separately for clarity, and values are least squares means ± standard error from repeated measures

analyses including effects of diet, sex, and the diet by sex interaction with dam as the random subject.

https://doi.org/10.1371/journal.pone.0174030.g007

Effects of maternal diet on glucocorticoids, metabolism and behaviour

PLOS ONE | https://doi.org/10.1371/journal.pone.0174030 March 16, 2017 14 / 20

https://doi.org/10.1371/journal.pone.0174030.g007
https://doi.org/10.1371/journal.pone.0174030


maternal diet in either cohort (P > 0.1 in all cases). The effect of sex was highly significant in

each cohort (P < 0.0001 in each cohort), with females more active than males (Table 3). In the

second cohort, spontaneous physical activity (sensu [40]) was measured at 18–23 weeks of age

by means of infrared beam breakage by animals moving within metabolic cages. Results were

similar to those obtained with running wheel use, i.e., no effect of maternal diet, but females

showed greater activity, a difference that was significant in the light phase and marginally non-

significant in the dark phase (Table 3).

Discussion

Fetal glucocorticoid levels and offspring behaviour

We tested whether a maternal HFHS diet would alter fetal exposure to glucocorticoids and result

in programming effects on the behaviour and physiology of adult offspring. We observed a sig-

nificant interaction between maternal diet and fetal sex on fetal circulating corticosterone, such

that HFHS male fetuses had higher plasma corticosterone than CON male fetuses, but there was

no effect of maternal diet on female fetuses. Maternal corticosterone was much higher than fetal

Fig 8. Stress response in offspring. Corticosterone levels after 3 and 10 minutes of restraint stress in HFHS

(solid symbols, solid lines) and CON (open symbols, dotted lines) male (squares) and female (circles) offspring

from the second cohort (N = 6 HFHS dams, 11 pups, 7 CON dams, 12 pups). Lines connect measurements of

individual mice at 3 and 10 minutes of restraint stress.

https://doi.org/10.1371/journal.pone.0174030.g008
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corticosterone, reflecting the 11β-HSD2 barrier, although maternal and fetal corticosterone levels

were significantly correlated, suggesting that the barrier was incomplete [13]. Although we had

hypothesized that aberrant fetal exposure would be due to altered placental 11β-HSD expression,

we observed no effect of maternal diet on 11β-HSD1 or 11β-HSD2 expression. Elevated cortico-

sterone in male fetuses may therefore have been due to altered 11β-HSD expression earlier in

pregnancy, or to altered fetal glucocorticoid production and/or metabolism. A previous study of

the same strain of mice fed a diet with a higher fat content found reduced 11β-HSD2 activity in

association with elevated maternal corticosterone [21], in contrast to the reduced maternal levels

that we observed. Other studies of the same strain of mice have found that a higher fat diet either

reduces 11β-HSD2 mRNA expression [22] or has no effect [26]. A maternal low-protein diet did

not affect placental 11β-HSD2 expression or activity in mice [41], in contrast to other species.

Despite a sex-specific effect of maternal diet on fetal glucocorticoids, there was little evi-

dence of sex-specific effects on offspring behaviour or physiology. We found that circulating

corticosterone levels were higher in offspring of HFHS dams in both sexes at 9 weeks of age,

consistent with the increased activity of the offspring HPA axis previously observed in associa-

tion with altered fetal glucocorticoid exposure [18]. However, this effect was not sex-specific.

Maternal physiology and pregnancy

Studies of developmental programming use a wide variety of dietary manipulations in differ-

ent animal models. We do not know of another study to use our diets, and therefore character-

ized our model in terms of its effects on maternal physiology and frequently studied offspring

traits. Females on the HFHS diet were ~15% heavier and had ~45% higher fat mass during

pregnancy than control mice on the nutrient-matched CON diet. Whereas maternal glycaemic

control is often not reported in such studies [42], we found that HFHS females were hypergly-

cemic and had impaired glucose tolerance. HFHS females had lower glucocorticoid levels than

controls during pregnancy, which has also been observed in obese human pregnancy [43]. In

contrast, a previous study of the same line of mice fed a higher fat diet found that it increased

maternal levels of corticosterone during pregnancy, and increased the frequency of maternal

cannibalism [21]. Despite observing the opposite pattern with respect to maternal glucocorti-

coid levels, we also observed increased loss of first litters shortly after birth in HFHS females,

suggesting that our HFHS diet was a stressor for the female.

HFHS females tended to have higher leptin levels than controls during pregnancy, as previ-

ously reported in mice [22,35,44,45] and rats [42], as well as in obese human pregnancy [46].

In contrast to this trend in maternal leptin levels, we found no effect of maternal diet on fetal

circulating leptin, consistent with previous observations in sheep and rats [47]. Potentially as a

result of lower glucocorticoid and higher leptin levels, HFHS females increased their caloric

intake through gestation less than CON females, such that there was no difference in caloric

intake and a reduced difference in body mass towards the end of gestation. This behavioural

response may have protected fetuses from overnutrition/ overgrowth, avoiding the increase in

fetal/ birth weight observed in some studies [35,45].

While leptin and glucocorticoids affect placental function [5,13,46,47], we observed no effect

of maternal diet on the placental expression of nutrient transporters or on insulin signaling as

measured by levels of placental phosphorylated Akt, although total Akt levels were increased

slightly by the HFHS diet. The placenta is thought to integrate maternal and fetal signals to match

nutritional supply and demand to the extent possible [24,48] via modulating the expression and

activity of nutrient transporters [23,35,45]. We speculate that the mothers’ altered caloric intake

was adequate to protect the fetuses from overgrowth and/ or that our dietary manipulation was

not sufficiently severe to warrant changes in gene expression. However, the effects of maternal
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diet on nutrient transporter expression have been found to vary through gestation [22,23,26] and

thus we cannot rule out the possibility that nutrient transport was altered earlier in pregnancy.

Inflammatory cytokines are elevated in obese human and rodent pregnancy [6]. A high-fat

diet has been observed to elevate circulating IL-6 levels in pregnant mice in some studies

[44,49] but not others [35], and we found no such effect.

Postnatal offspring growth and metabolism

We observed few consistent effects of maternal diet in postnatal offspring. Offspring of HFHS

dams were heavier at weaning in the first cohort but not in the second cohort, and there was

no difference at 6 weeks of age or older in either cohort. Food consumption was higher in

HFHS offspring at 5–6 weeks of age, but not in older mice. Fasting glucose, glucose tolerance

and other metabolic traits were not affected by maternal diet in either cohort. While the pro-

gramming effects of maternal overnutrition have received substantial attention, a lack of effect

of a maternal high-fat diet on offspring food consumption, post-weaning body weight, and gly-

caemic control is not unusual [42,50,51]. In some cases a postnatal metabolic challenge is

required to reveal programming effects [50], and potentially we would have observed more

substantial programming effects had we weaned offspring onto the HFHS diet.

Conclusions

To our knowledge, ours is the first study to examine the effects of a maternal high-fat, high-

sucrose diet on fetal glucocorticoid levels. We found a sex-specific effect of maternal diet on

fetal glucocorticoid levels, but little evidence of programming consequences of this diet for

adult offspring. Offspring of HFHS dams had higher circulating corticosterone as young

adults, but this effect was not sex-specific. Although sex-specific programming effects are fre-

quently reported in the literature, few studies explicitly test for a sex by diet interaction as we

did [38].
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