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Abstract

The packaging of DNA inside a nucleus shows complex structure stabilized by a host of

DNA-bound factors. Both the distribution of these factors and the contacts between different

genomic locations of the DNA can now be measured on a genome-wide scale. This has

advanced the development of models aimed at predicting the conformation of DNA given

only the locations of bound factors—the chromatin folding problem. Here we present a maxi-

mum-entropy model that is able to predict a contact map representation of structure given a

sequence of bound factors. Non-local effects due to the sequence neighborhood around

contacting sites are found to be important for making accurate predictions. Lastly, we show

that the model can be used to infer a sequence of bound factors given only a measurement

of structure. This opens up the possibility for efficiently predicting sequence regions that

may play a role in generating cell-type specific structural differences.

Author summary

The three-dimensional folding of DNA inside the nucleus into specific conformations is

necessary for the proper functioning of cells. These structures can be measured by chro-

mosome conformation capture methods (Hi-C) that report the number of times that each

pair of genomic sites are found in proximal location in a cell population experiment. A

number of protein complexes that bind to the DNA have been discovered to be responsi-

ble for the stabilization of such conformations. However, identifying the precise relation

between the positioning of binding proteins and the resulting structures is still an open

problem. Here we present a maximum-entropy method able to predict Hi-C contact

probabilities from a sequence of binding factors without the need of performing any poly-

mer simulations. We envision that this method will allow experimentalists to efficiently

calculate the expected structural effect of altering the sequence of binding factors. In

addition, we also show that our model is capable of solving the inverse problem, namely

predicting the underlying sequence of binding factors from a set of observed contact

probabilities.
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Introduction

In higher-complexity organisms, the packaged molecule of DNA inside the nucleus of a cell

consists not only of the DNA polymer but also a large number of DNA-associated protein and

RNA complexes that together form what is known as chromatin. These complexes bind to the

DNA by either sequence affinity or by interactions with other bound factors [1], and their

presence is known to be correlated with the 3D conformation of the DNA polymer [2]. They

impact the structure of the DNA on many length scales: from the packing of nucleosomes at

the smallest scale (*200 basepair) to the stabilization of loops and genomic domains on much

larger scales (*10-100 kilobasepair). As a result, they regulate a host of important cell func-

tions from DNA replication to gene expression [3, 4]. Developing models that can predict how

chromatin folds given only the locations of bound factors is of key importance to better under-

stand how they regulate such processes by shaping DNA structure.

The average structure of DNA over a population of cells can be measured genome-wide

using a high-throughput DNA sequencing method known as Hi-C [5]. Briefly, contacting sites

in the genome are cross linked; then the DNA is fragmented and the contacting pairs are

sequenced. These sequenced pairs are then used to construct a contact map at a given spatial

resolution that gives the number of times any pair of sites along the genome were found to be

in contact. Analysis of the contact maps have shown that chromatin can be classified into

structural types such as A/B compartments [5, 6] or topologically associated domains (TADs)

[7] just from the spatial distribution of contacts.

These structural features are known to be strongly correlated with different types of DNA-

bound factors. The locations of these bound factors along the genome constitute a form of

sequence that helps drive the folding of the DNA—similar to the specific sequence of amino

acids that drives a protein to fold. High throughput methods can provide the binding locations

of such factors on a genome-wide scale [8]. Interestingly, despite tens to hundreds of different

chromatin associated factors, clustering of their binding locations shows that there are only

few unique bound states [9–13] (similar to the grouping of amino acids into just hydrophobic

and polar types). With the richness of this structural and sequence data for chromatin, predic-

tive models that aim to solve the chromatin folding problem—namely predicting the structure

of DNA inside a cell given only the locations of the DNA-bound chromatin factors—are now

being developed.

Recent modeling efforts have used polymer-based models whose parameters can be

tuned to reproduce experimental observations, such as the contact map from Hi-C. One set

of approaches tries to find the best 3D polymer structure that is consistent with the con-

straints imposed by the Hi-C contact map [14–19]. Other methods include bound factors

by adding sequence-specific interactions to a given polymer model for the DNA [20–33].

These approaches have been successful in showing how interactions between factors

together with topological constraints may be responsible for the observed chromatin struc-

tures. Challenges involve continuing to improve the physics of the interacting polymer

model using data-driven methods and the time-consuming process of carrying out the poly-

mer simulations.

Complementing the polymer simulation methods are purely statistical approaches that aim

to predict a contact map instead of a full 3D structure. Sexton et al. [34] developed a statistical

model based on site-specific scaling factors that could predict a matrix of expected counts.

Other work included sequence information by fitting a pairwise interaction model for the

DNA-bound factors that could then predict the probability of contact between pairs of sites

given only the sequence at those locations [35]. However it did not include an important effect

that is present in polymer simulations, namely the role of neighbors.
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A growing body of experimental evidence supports the importance of the local sequence

neighborhood of bound factors in mediating contacts between pairs of genomic sites [36]. In

particular the probability of contact between two sites i and j at a certain genomic distance

apart is altered if some site k in the neighborhood of j is attracted to i. Sites k and i will spend a

fraction of the time in contact, thus altering the effective polymer distance between i and j (see

S1 Fig). Here, our aim is to take such effects into account and predict the probability of two

sites being in contact (i.e. the contact map) given a local sequence neighborhood. The results

presented in the following sections demonstrate how these probabilities can be modelled by

a maximum entropy distribution. In addition, by formulating the problem in a Bayesian fash-

ion, we are not only able predict probabilities of contact from an experimentally measured

sequence of bound factors, but also predict the probability of a site having a particular bound

factor using only the measured local Hi-C contact map

Results

Maximum entropy model

Fig 1 shows a schematic of our model and resulting calculation. First, the genome is discretized

into non-overlaping sites of fixed size. A particular chromatin state σk is assigned to to each

site k based on the bound chromatin factors there. As mentioned in the introduction, only a

few bound states exist and for simplicity we classify each site into only one of two possible

sequence states corresponding to active/euchromatic and inactive/heterochromatic DNA,

respectively labeled as spin-up (σk = 1) and spin-down (σk = −1) analogous to the physics of

ferromagnets (see Fig 1(A) and Materials and methods for details).

With respect to structure, Fig 1(A) and 1(B) shows two sites i and j separated by a genomic

distance, d = |j − i|, that have a certain chance of forming a contact that we assume is deter-

mined by the sequence neighborhood,~s, situated around them. Hi-C data gives an estimate of

this chance by reporting the number of times nij that this pair formed contacts, and hence the

likelihood that their sequence neighborhood will form a contact (Fig 1(B)). We denote this

probability of contact as Pðcj~s; dÞ which depends on the genomic distance d between sites and

sequence neighborhood~s (here c indicates that the two sites are in contact; c is therefore one

of the values of the random variable z: z = c if contact and z ¼ �c otherwise). The neighborhood

~s is a vector containing N sites built from the union of sequence windows situated around the

contacting sites i and j and thus depends on d (see Fig 1(B) and 1(C), Materials and methods

and S2 Fig for further details).

Using Bayes’ rule we can rewrite Pðcj~s; dÞ as

Pðcj~s; dÞ ¼
Pð~sjc; dÞPðcjdÞ

Pð~sjdÞ
; ð1Þ

where Pð~sjc; dÞ and Pð~sjdÞ are the probability of observing the given sequence neighborhood

~s given that it has formed a contact and regardless of contact, respectively. P(c|d) is the

sequence-independent probability of contact at a separation d and can be estimated directly

from the Hi-C experiments. In principle, Hi-C data could also be used to directly estimate

Pð~sjc; dÞ since the contact map gives the number of times that a given neighborhood was

found to form a contact (see Fig 1C). Similarly, Pð~sjdÞ could be estimated from the frequency

of occurrence of that sequence neighborhood in the genome. However, because the number of

different sequence neighborhoods goes as 2N, even for modest N there is not enough data to

make accurate estimates.

To overcome this we utilize the principle of maximum entropy to calculate probability

distributions, Pð~sjc; dÞ and Pð~sjdÞ, that reproduce a few reliably estimated statistics of~s
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extracted from experimental Hi-C data [37, 38]. The statistics we use to constrain both of the

above distributions are the average spin hσki at a given position k in the neighborhood (which

represents the average chromatin state at that neighbourhood postion) and the average spin-

spin correlation hσkσli between sites k and l in the neighborhood (which represents the average

correlation between the chromatin states at the two neighbourhood positions). The averages

denoted by h�i are calculated over their respective ensembles of sequence neighbourhoods

f~sgd that surround pairs of sites at a distance of contact d = |j − i|. The ensembles for both dis-

tributions can be extracted by scrolling along the sequence of binary states in the genome.

When characterizing Pð~sjc; dÞ, each neighbourhood has a weight equal to the number of con-

tacts nij observed between sites i and j; when characterizing Pð~sjdÞ, each neighbourhood has

a unit weight for every time it appears in the genome (as shown in Fig 1 and Materials and

methods). With the above statistics as constraints, the maximum-entropy distribution can be

found using the method of Lagrange multipliers [37–39] and has the form of a Boltzman distri-

bution for the Ising model at kBT = 1,

Pð~sj�Þ ¼
e
P

k
hkskþ

PP
l>k

Jklslsk

Zð~sj�Þ
; ð2Þ

where hk and Jkl are Lagrange multipliers that constitute the fitting parameters of the model.

The partition function Zð~sj�Þ is a normalization constant obtained by summing the numerator

of Eq 2 over all possible~s neighborhoods, Zð~sj�Þ ¼
P

~s
exp ð

P
khksk þ

PP
l>kJklslskÞ. In the

above, we use “|�” to summarize in a single notation two different conditions at each distance

of contact, namely Pð~sjc; dÞ and Pð~sjdÞ (“�” substitutes “c, d” or “d”). For neighborhoods of

size up to N * 23, exact enumeration can be used to evaluate Eq 2 in minimal time. Beyond

that, one would need to estimate this distribution by Monte Carlo sampling [40]. We have

thus restricted our neighbourhoods to a maximum size N = 20 so that we can conveniently cal-

culate Eq 2 by enumerating the 2N possible neighbourhoods at a given d (see Materials and

methods).

Fig 1. Schematic of model for predicting chromatin contacts from sequence. (A) The DNA was discretized into

sites of finite size and the bound-factor sequence at each site was categorized into one of two bound states (spin-up or

spin-down). The probability of contact, Pðcj~s; dÞ, between two sites separated by a genomic distance, d = |j − i|,
depends on the sequence neighbourhood~s situated around them (shown as gray line). (B) Hi-C data measures the

number of times pairs of sites were found in contact (shown as heat map above). For each pair of sites i and j at a given

genomic distance d = |j − i|, one can extract a local sequence neighborhood~s around the sites. (C) Schematic of data

used for fitting the maximum-entropy model. The collection of all sequence neighborhoods at a given genomic

distance d was extracted by scrolling along the genome. The statistical weights associated to each neighborhood were

given by either the number of times they were observed in contact from Hi-C (left column), or occurrence in the

genome (right column). These weights were implemented in the calculation of the statistical averages used as

constraints on the maximum entropy distributions, Pð~sjc; dÞ and Pð~sjdÞ respectively.

https://doi.org/10.1371/journal.pcbi.1005956.g001
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At a given genomic distance d the distribution in Eq 2 can be fit to reproduce the experi-

mental statistics hσki and hσkσli calculated from the sequence ensemble at that distance (see

Materials and methods). We now detail how we applied this method to estimate these distribu-

tions and ultimately the contact probability, Eq 1, from real experimental sequence and struc-

tural data.

Model parameters

As a test of the method, we used the measured structure and sequence data for Drosophila Mel-
anogaster. For structure, we used a Hi-C contact map from Drosophila embryos, generated

using sites that were 10 kilobasepair (kbp) in size [41]. For sequence, we used our own binary

classification (spin-up or spin-down) of the measured Drosophila chromatin-associated

factors at each 10 kbp site, which was based on the “chromatin colors” classification [11]

(see Materials and methods). To avoid overfitting the model, we divided the data from Dro-
sophila chromosomes 2 and 3 into a training set used for fitting and a test set for prediction

(see Materials and methods).

For genomic distances ranging from d = 10 kbp to 800 kbp in 10 kbp steps, we used the

above maximum-entropy method to estimate the two conditional probability distributions,

Pð~sjc; dÞ and Pð~sjdÞ. Fig 2(A)–2(D) shows that the fitted distributions successfully predicted

the experimental statistics hσki and hσkσli on the test data. They also captured three-point cor-

relations hσkσlσmi (see Fig 2(E) and 2(F)) despite not having incorporated them into the fit. In

Fig 2(G) and 2(H) we also see that the predicted sequence neighborhood probabilities Pð~sj�Þ
from the model agreed with their frequencies as seen in the data. Thus these second-order

maximum-entropy distributions seemed to be adequate approximations to the true distribu-

tions (first-order maximum-entropy distributions were also tested and failed to reproduce

experimental statistics, see S3 Fig and S1 Text).

Inspection of the associated fit parameters hk and Jlk as a function of genomic distance, d,

showed that they naturally clustered into two groups (through both K-means and Principal

Fig 2. Spin statistics of model versus experiment. Spin statistics at three different contact distances, d. Top row is for

models conditioned on contact, Pð~sjc; dÞ, whereas the bottom row is for models that are regardless of contact, Pð~sjdÞ.
(A, B) Site average statistics, hσki. (C, D) Pairwise correlation statistics, hσlσki. (E, F) Three body correlation statistics,

hσkσlσmi. (G, H) The probability of~s from the model versus the observed frequency from contact maps (G) and from

the genome (H). For reference the insert compares experimentally measured spin-vector probabilities from training

versus testing data.

https://doi.org/10.1371/journal.pcbi.1005956.g002
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Component Analysis), with a transition from one to the other occurring at d� 390 kbp (see

S4 Fig and S1 Text). Averaging the parameters within each group together we found that hhki

of the two sites in contact were positive (especially for the group above transition). Positive val-

ues for hk favour the spin-up active/euchromatic state and thus, the above finding shows that

contacting sites had a tendency to be in the such a state. Interestingly, the sites in between the

contacting sites had an inactive/heterochromatic preference (i.e. negative values for hhki) in

the group below the transition, and no chromatin preference in the group above. Therefore at

short genomic separations, a heterochromatic region between contacting sites favored contact.

We also found that the interaction terms hJlki for the neighbors between contacting sites were

ferromagnetic for the group below the transition (i.e. hJlki> 0 which favors sites l and k to be

in the same state) and were antiferromagnetic for the group above (i.e Jkl< 0 which favours l
and k to be in opposite states). Thus at short genomic distances, the sequence between the con-

tacting sites was favored to be homogeneous, whereas at longer distances heterogeneity or a

more random sequence seemed to be the case (see S4 Fig and S1 Text).

Contact map prediction

We used the fitted maximum entropy distributions, Pð~sjc; dÞ and Pð~sjdÞ at each distance, d,

along with Eq (1) to make predictions for distance-normalized contact maps Pðcj~s; dÞ=PðcjdÞ
on the test data from Drosophila chromosomes 2 and 3 (red heat maps in Fig 3). Each (i, j)
pair had an associated~s from which we could then evaluate Eq 1 using the fitted distributions.

(We normalized by P(c|d) so as to remove the strong decay with distance of the probability of

making a contact). These were then correlated to the normalized experimental Hi-C contact

maps nij/hn(d)i of the test data (blue heat maps in Fig 3), where hn(d)i is the average number

of Hi-C contact counts at a given distance d, that also decays strongly with distance. The

Fig 3. Contact prediction in test set. Diagonal elements of contact maps (shown as heat maps) from the 5 Mbp test

regions situated at the ends of chromosomes 2 and 3 of Drosophila melanogaster. The maps span genomic distances

from 10 kbp to 800 kpb for sites that are 10 kbp in size. (The midline of each contact map corresponds to i = j).
Predicted contact maps (red heat maps) and the experimentally measured maps (blue heat maps) from

Schuettengruber et al [41] Hi-C data. Both the experimental and predicted maps were distance normalized as

described in the main text. The column on the right shows the predicted versus experimental contact likelihood for

each pair of sites in the test data as a scatter plot.

https://doi.org/10.1371/journal.pcbi.1005956.g003
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correlations with the Drosophila chromosomes were 0.39 (chromosome 2L), 0.53 (chromo-

some 2R), 0.53 (chromosome 3L), and 0.40 (chromosome 3R). These correlations are remark-

able given that only a binary model for the sequence was used. The areas of discrepancy in Fig

3 may be due to the fact that the binding factors were measured from different cell lines than

the Hi-C ones, so it is possible that in those regions the actual underlying sequence that gener-

ated the observed contact counts may be different than what was used in making the

prediction.

Structural changes due to sequence mutation

The fitted maximum-entropy model that can predict contact maps from chromatin sequence

provides an opportunity to also predict structural changes that might arise due to mutations

in the underlying sequence of bound factors. We thus set to identify which genomic locations

are expected to disrupt the local structure the most in the event that their chromatin state is

flipped. This analysis was performed in genomic regions where the locally-predicted contact

probabilities agreed the most with experimental measurements (correlation between predicted

and experimental distance-normalized probabilities of contact c> 0.6). The chromatin state,

σ, of each of these well-predicted locations was individually inverted and the correlation, c0,
between the newly predicted probabilities and the experimental ones was calculated (see

Materials and methods for details). We interpret the change in correlation Δc = c0 − c to be a

measure of structural-sensitivity to chromatin sequence mutations for that position.

In Fig 4 we show histograms of Δc for genomic locations categorized by genomic feature.

Regardless of genomic feature, the vast majority of sites had a negative Δc after their chromatin

state was inverted, indicating that the local predicted structure tended to depart from the

experimental structure when the sequence state was mutated. In Fig 4A we found that the inac-

tive/heterochromatic (spin down) sites were significantly more structurally sensitive than the

active/euchromatin (spin up) sites (average Δc was -0.11 for spin-down whereas -0.04 for spin-

up sites). In other words, a change from inactive to active DNA tended to produce a greater

structural change than the opposite. In Fig 4B we classified genomic sites into three non-over-

lapping categories: sites where no genes were present, sites that contained gene promoters, and

“gene body” sites corresponding to locations occupied by genes but with no promoters. We

found that sites with no genes were the most structurally sensitive, followed by “gene body”

sites and lastly, the least structurally sensitive were sites containing promoters (average Δc
was -0.15 for no genes, -0.10 for “gene body” and -0.06 for promoter sites). These findings

highlight that non-coding regions of the genome have the greatest capacity to alter DNA struc-

ture, whereas mutations in gene rich regions are less likely to cause significant alterations to

structure.

Predicting sequence from structure

Here we show that it is possible to solve the inverse problem, namely, given a Hi-C map of

contact counts, {nij}, and a model for the probability of a sequence neighborhood~s to be in

contact, determine the probability of each site k to be in a particular sequence state (σk = 1 or

σk = −1). We denote this probability as P(σk|{nij}) where {i, j} is the set of all contacting pairs

that contain genomic site k in their sequence neighborhood. By applying Bayes’ rule we can

write it as

PðskjfnijgÞ ¼
PðfnijgjskÞPðskÞ

PðfnijgÞ
; ð3Þ

where P(σk) is a prior on the sequence state at site k, and P({nij}) the probability of the data that
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simply acts as a normalization constant. As we show in S1 Text, Eq 3 can be rewritten as

PðskjfnijgÞ ¼
PðskÞ

1� M

PðfnijgÞ

Y

i;j

X

~s

Pðnijj~s; dÞPð~sjdÞdsk0 ;sk
; ð4Þ

Fig 4. Structural changes by chromatin mutation. Single site chromatin mutations were performed by inverting the

chromatin state of genomic locations where the correlation between the experimental and model-predicted probability

of contact was initially high (correlation c> 0.6). The change in correlation with experimental probabilities after

mutation Δc was measured for different non-overlapping genomic classifications. (A) Spin-up and spin-down sites. (B)

Sites that did not contain genes, sites that had promoter regions and “gene body” sites that contained genes but no

promoters.

https://doi.org/10.1371/journal.pcbi.1005956.g004
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where Pðnijj~s; dÞ is the probability of observing a particular number of counts between sites i
and j given their sequence neighborhood,~s, k0 is the position of genomic site k in that neigh-

borhood, and M is the the number of {i, j} pairs. We take Pðnijj~s; dÞ to be a Gaussian distribu-

tion N ðl~s ;d; z
2

~s;dÞ with mean equal to the average number of counts for a given sequence~s,

l~s ;d ¼ lðcj~s; dÞ, which is proportional to the probability of contact Pðcj~s; dÞ that can be evalu-

ated from Eq 1. The variance, z
2

~s;d can be estimated from the Hi-C data (see S1 Text for more

details).

Using just the observed Hi-C counts nij for the test data and our prior fitted maximum

entropy models for Pðcj~s; dÞ and Pð~sjdÞ, we calculated the probability of each site in the test

set being spin-up. Fig 5 shows this probability as a function of genomic location along the

four test chromosome regions. Applying a threshold to these probabilities (P(σk = 1) = 0.5),

we predicted a sequence with a percent agreement with the original test sequence of 78%

(chromosome 2L), 72% (chromosome 2R), 77% (chromosome 3L) and 77% (chromosome

3R). Thus structure alone can yield an important amount of information about the underly-

ing sequence of bound chromatin factors. We feel that this could have significant impact in

determining important regions for regulating structure. In particular, if the maximum

entropy model is reliably capturing the essential aspects that connect sequence to structure

and if one believes that these aspects are conserved across different cell types, one could use

a fitted model from one cell type to predict sequence in another for which only structural

information is known.

Discussion

Our results demonstrate that a model for the probability of contact between two genomic sites

given just their neighborhood of bound factors can be estimated using a maximum-entropy

method. The resulting model did well at predicting the contact map of a test set using only

sequence information.

This model connects sequence to structure and thus offers the capability of testing the

structural effect of mutating the chromatin sequence. Our analysis highlights that the alter-

ation of DNA conformation by mutating chromatin sequence is particularly strong in sites

Fig 5. Prediction of bound factors from contact map. Sequence of bound factors as a function of site along the four 5

Mbp test regions at the end of chromosomes 2 and 3 in Drosophila. In blue are shown the locations of spin-up

sequence sites, σk = 1 as classified from the experimental measurements of bound factors. The predicted probability of

each site being spin-up, σk = 1 using the inverse method is shown in red.

https://doi.org/10.1371/journal.pcbi.1005956.g005
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containing no genes, while only minimal alterations to structure tend to occur when mutating

active gene-rich regions.

Although we applied our fit model to data from Drosophila embryos, we envision that it

could be useful in predicting contact maps from sequence data taken from other cell types

from the same species (e.g. different developmental times or from mutated cell lines), or

potentially other nearby species where the contact model might expect to hold.

We also showed how a fitted model connecting sequence to structure could be used to solve

the inverse problem, namely that a sequence of bound factors could be predicted using just

measured counts from a Hi-C contact map and a model for the probability of contact given

sequence. One could imagine that making such sequence predictions from Hi-C measure-

ments on individual cell lines may be more efficient than carrying out the potentially tens to

hundreds of experiments needed to map the locations of all the bound factors.

The classification of the genome into chromatin states used to fit our model was based on

the occupation patterns of specific binding factors rather than structure. Therefore, we con-

sider the possibility that other classifications may have a greater ability to predict structure

from sequence than the one presented. Future work will consider other possible ways of defin-

ing sequence states from data for the purpose of predicting structure through this maximum

entropy scheme, which may help to further elucidate the biological mechanisms behind chro-

matin folding.

Despite the great variety of DNA-binding chromatin factors identified so far this method is

able to reproduce DNA contact maps from binary classifications that group all of the observed

marks into only two classes. It is therefore tempting to speculate that at the> 10 Kbp scale,

once DNA-bound factors are positioned on the genome, they tend to behave alike when it

comes to generating DNA contacts. If correct, this would imply that the utility of such variety

of chromatin marks is not entirely related to stabilizing complex DNA structures where a large

number of different architectural elements is required. Instead, our findings favor the idea that

the observed diversity of chromatin states is primarily related to alternative functions other

than creating complex large-scale structures, such as the programming of chromatin states at

different developmental times, or genetic regulation.

Overall our model has the potential for efficiently making predictions about chromatin

structure depending on whether such structural or sequence data are available.

Materials and methods

DNA contact maps

DNA contact maps were obtained from the publicly available Hi-C experiments done by

Schuettengruber et al [41] (GSE61471), performed on 3000-4000 Drosophila melanogaster
embryos, 16-18 hours after egg laying. The contact map is an array whose elements are the

number of times a particular pair of genomic sites were found to be in contact. The contact

map we used defined sites to be of a fixed size (10 kilobasepair (kbp)) and were non-overlap-

ping across the genome. The counts, nij, at a particular pair of sites i and j in the contact map

were determined by counting up all sequenced pairs from the Hi-C measurement that fell into

those sites. We normalized the contact map using the ICE method [6] so that total number of

counts along each row across the contact map was the same. This removed potential biases

between sites due to the Hi-C protocol.

Binary chromatin sequence classification

For every 10 kbp site, k, in the genome, we classified the genomic distribution of its DNA-

bound factors into two possible chromatin sequence states corresponding to bound states that
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are associated with euchromatin (active DNA regions), σk = 1, and heterochromatin (inactive

DNA regions), σk = −1. In order to make these sequence assignments, we used the “chromatin

colors” classification of the Drosophila melanogaster genome by Filion et al [11] (GSE22069)

which categorizes the distribution of bound factors into five different bound states (black,

blue, yellow, green and red) based on the DamID binding profiles of 53 different chromatin

marks in the embryonic Drosophila melanogaster cell line Kc167 (8-12 hours). We then

grouped the five “chromatin colors” into just a spin-up and spin-down state based on the bio-

logical functions of their associated DNA-bound factors: spin-down = black and blue, corre-

sponding to inactive/heterochromatin and spin-up = yellow, green and red that correspond

active/euchromatin. The color data gives the coordinates of the regions of the various colours.

In order to assign a particular sequence state to each of our 10 kbp sites, we took the dominant

color group (either active, or inactive) to be the unique sequence state of that site.

Training and test data sets

For the purpose of validating our model, we divided the Drosophila melanogaster autosomal

chromosomes, 2 (comes as 2L and 2R) and 3 (comes as 3L and 3R) into a training set and test

set. The training dataset consisted of genomic locations 2L: 1Mbp-17.02Mbp, 2R: 1Mbp-

15.15Mbp, 3L: 1Mbp-18.55Mbp, 3R: 1Mbp-21.91Mbp. The testing dataset consisted of geno-

mic locations 2L: 17.02Mbp-22.02Mbp, 2R: 15.15Mbp-20.15Mbp, 3L: 18.55Mbp-23.55Mbp,

3R: 21.91Mbp-26.91Mbp.

Extracting sequence neighborhoods

We constructed sets of sequence neighborhoods f~sgd for genomic distances between pairs

d = |j − i| ranging from d = 1 to d = 80 in units of the site size, 10 kbp. For a pair of sites i and j in

the genome separated by d, we took the particular sequence neighborhood,~s, to be the union of

sequence windows centered around each site. Specifically, we took 10 sites centered around site i
and 10 sites centered around site j to create a neighborhood size of N = 20 (see S2 Fig) where the

given sequence neighborhood consists of sites~s ¼ ðsi� 4; . . . ; si; . . . ; siþ5; sj� 5; . . . ; sj; . . . ; sjþ4Þ.

For distances, d< 11, it was not possible to take sequence windows of size 10 sites centered on

each site, so for these cases, we defined the neighborhoods as~s ¼ ðsi� 4; . . . ; si; . . . ; sj; . . . ; sjþ4Þ

which had a size N = d + 9 (S2 Fig). For a fixed genomic distance between sites d, we then scrolled

through all pairs of sites, {i, j} in both the training and test regions of the genome extracting their

corresponding neighborhoods~s. Since the directionality (left-right) of the sequence neighbor-

hood should not influence the contact probability between i and j, we also added the inverted

sequence for each~s to the collection of neighborhoods. Each genomic distance, d, thus had its

own unique ensemble of sequence neighborhoods spin-vectors for both the training and test

data.

Calculating sequence neighborhood statistics

The maximum entropy distributions, Pð~sjc; dÞ and Pð~sjdÞ, were constrained to match several

statistics of the extracted sequence neighborhood ensembles. The statistics used are hσki and

hσlσki. For the distribution Pð~sjc; dÞ, these statistics were calculated as weighted averages of

the extracted ensemble of sequence neighborhoods, where for each neighborhood we used as a

weight the number of times, nij, that its contacting sites i and j were observed to be in contact.

For Pð~sjdÞ the above statistics were calculated as weighted averages where the weight of

each sequence in the ensemble was equal to the number of times it appeared in the genome.
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Fitting the maximum entropy distributions

The parameters hk and Jlk in

Pð~sj�Þ ¼
e
P

k
hkskþ

PP
l>k

Jklslsk

Zð~sj�Þ
ð5Þ

were fit to reproduce the experimental statistics hσkiexp and hσkσliexp by following the method

described by Tkačik et al. [42] that we summarize next. The term “|�” simultaneously denotes

the two conditions that we characterized at each distance of contact: The probability of observ-

ing~s given contact Pð~sjc; dÞ and the probability of observing~s regardless of contact Pð~sjdÞ.
We therefore fit a set of parameters {hk, Jlk} for each of the two conditions denoted by |� and

for each distance of contact d.

Briefly, given one of the two conditions above, we used the corresponding collection of

spin vectors and their associated weights (as described in the previous section) to calculate

the experimental statistics hσkiexp and hσkσliexp. Then we implemented the following iterative

scheme:

1. Start with random guess for hk and Jlk

2. Use Eq 5 to calculate Pð~sj�Þ for every possible~s and obtain hσkimodel and hσkσlimodel.

3. Check for convergence, |hσkimodel − hσkiexp|< � and |hσkσlimodel − hσkσliexp|< �, where � is

the error tolerance (we used � = 0.0001). If it hasn’t converged yet, continue.

4. Update hk as Δhk = α(hσkiexp − hσkimodel) and Jlk as ΔJlk = α(hσkσliexp − hσkσlimodel), where α
is a small learning rate (we used α = 0.025). Go back to step 2.

This scheme is guaranteed to converge towards a unique solution regardless of the initial

choice of hk and Jlk.

Structural changes due to sequence mutation

First, we identified the sites k for which the local predicted contact map was in good agreement

with the experimental contact map. The local contact map consists of only the subset of geno-

mic pairs of sites {i, j} whose contact probability Pðcj~s; dÞ is influenced by the state of site k (ie.

k is one of the spins in the neighborhood~s of i and j). At each genomic site, we calculated the

correlation c between the local predicted distance-normalized contacts, Pðcj~s; dÞ=PðcjdÞ, and

the local experimental distance-normalized contacts counts, nij/hn(d)i), and selected the best

correlating locations of the genome (c> 0.6) for further analysis. Next, at each of these selected

locations the chromatin state was flipped and the correlation c0 between predicted and experi-

mental distance-normalized counts was measured. We then defined Δc = c0 − c as a measure-

ment of structural disruption due to sequence mutation at a given site.

Supporting information

S1 Text. Supplementary methods. Supplementary methods are provided detailing the fit of a

first-order maximum-entropy model, the inspection of model parameters and the prediction

of chromatin states from contact maps.

(PDF)

S1 Fig. The effect of neighboring chromatin on DNA contacts. Top scheme illustrates

how that the probability of contact between two sites i and j may be altered if i interacts

favorably with another neighboring site k: Some of the time i and k will be in contact,
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therefore increasing the probability of contact between i and j. The scatter plot shows experi-

mental evidence of this effect by looking at sites bound by the favorably-interacting DNA

binding protein BEAF. In the plot, i and k are bound by BEAF, and j is not bound by BEAF

except for when j = k. The y-axis represents the observed probability of i and j being in con-

tact with respect to the background probability of contact of two sites at a distance |j − i|
apart (irrespectively of whether BEAF is present). The x-axis represents the distance between

i and j divided by the distance between k and i. The line plot is an analytic fit to the data

using an ideal chain as a model for the polymer with an energy of interaction E between i
and k as a fit parameter.

(TIF)

S2 Fig. Schematic of how the neighborhoods~s of the contacting sites (i, j) were built

from the genomic distribution of chromatin states. First, the genome was binned into

10Kbp sites that could either be in a spin-up or spin-down state. (A,B) If d = |j − i| < 12,

we defined the neighborhoods as~s ¼ ði � 4; . . . ; i; . . . ; j; . . . ; jþ 4Þ. (C) For d� 12

we defined the neighborhoods as the union of the ten neighbors surrounding both i and

j~s ¼ ði � 4; . . . ; i; . . . ; iþ 5; j � 5; j; . . . ; jþ 4Þ thus keeping them at a maximum size of

N = 20.

(TIF)

S3 Fig. Spin statistics of first-order maximum entropy model versus experiment. Spin sta-

tistics at three different contact distances, d. Top row is for models conditioned on contact,

Pð~sjc; dÞ, whereas the bottom row is for models that are regardless of contact, Pð~sjdÞ. (A, B)

Site average statistics, hσki. (C, D) Pairwise correlation statistics, hσlσki. (E, F) Three body

correlation statistics, hσkσlσmi. (G, H) The probability of~s from the model versus the

observed frequency from contact maps (G) and from the genome (H). For reference the

insert compares experimentally measured spin-vector probabilities from training versus test-

ing data.

(TIF)

S4 Fig. Inspection of model parameters. (A) Average number of structures (2S) stored in the

probability distributions of neighbors given contact between i and j, Pð~sjc; dÞ, and irrespectively

of contact, Pð~sjdÞ, as a function of distance of contact d = |j − i|. (B) Kullback-Liebler diver-

gence between probability distribution of neighbors given contact and irrespectively of contact

as a function of distance. (C) Kullback-Liebler divergence between the contacting distributions

at different distances of contact minus Kullback-Liebler divergence between the background

distributions: DD½Pð~sjc; d1ÞjjPð~sjc; d2Þ� ¼ D½Pð~sjc; d1ÞjjPð~sjc; d2Þ� � D½Pð~sjd1ÞjjPð~sjd2Þ�.

Blue indicates low values whereas red indicates high values. (D) A vector concatenating the

difference between energetic coefficients for neighborhoods in contact and background,

Dhd
k ¼ hc;d

k � hbg;d
k and DJd

kl ¼ Jc;d
kl � Jbg;d

kl , was built at every distance of contact. K-means cluster-

ing of the set of coefficient vectors naturally separated them into two clusters, one for d< 390

Kbp and another for d� 390 Kbp. (E) Average of energetic coefficient vectors in K-means clus-

ter 1. Blue indicates negative values whereas red indicates positive values. (F) Average of ener-

getic coefficient vectors in K-means cluster 2. Blue indicates negative values whereas red

indicates positive values. (G) Principal Component Analysis was applied to the set of energetic

coefficient vectors. PC1 separates vectors into two two clusters, delimited at 390 Kbp, the same

distance that separates K-means clusters. (H) Coefficient vectors projected into PC1 highlight

the differences between the coefficients in the two clusters. Blue indicates negative values

whereas red indicates positive values.

(TIF)
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