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Major Field: ENTOMOLOGY 

 

Abstract: Sugarcane aphid (SCA), Melanaphis sacchari Zehntner, is a significant 

economic pest in grain sorghum in the Southeastern US and Southern Great Plains. A 

collaborative project led by Oklahoma State University was tasked with developing an 

effective scouting plan for SCA. A stratified sampling protocol was used to collect SCA 

data from 299 fields from six states (OK, KS, TX, AR, LA, MS), over two years (2016-

2017). Using a nested analysis of variance (NANOVA) and Taylor’s (1961) power law 

the within field sampling variance and dispersion pattern was defined. Results from these 

analyses revealed two significantly different geographical regions: a southern and a 

northern. Results show that in either sampling region three consecutive plant samples 

should be taken per stop within 30m of one another. Additionally, whole plant 

enumerative sampling was used to define where within the plant canopy sugarcane aphids 

were distributed. Results from that study showed the middle of the canopy may be the 

best area to extract the two-leaf sample unit. Three enumerative sampling plans for 

estimating population density and classification of a threshold were developed. Due to 

large sample sizes, these sampling protocols gave evidence that a binomial sequential 

sampling plan would be the best option for a rapid scouting tool. To develop the binomial 

sequential sampling tool tally threshold regressions were analyzed to define the 

relationship between the mean SCA per leaf and proportion of plants infested. After the 

fitness and practicality of the model was considered, tally thresholds of 50 and 100 

aphids per plant were selected. Wald’s sequential probability ratio test (SPRT) was used 

to determine stop lines for both sampling plans, which ranged from 10-24 plant samples 

per sampling event, with an average of 11 plant samples per sampling event, depending 

on state, action threshold, and error level. The binomial sampling plans were validated 

using 48 externally sampled fields analyzed with resampling for validation of sampling 

plans (RVSP) software. An in-field sampling tool was developed using the tally threshold 

of 50 SCA. This sequential binomial sampling plan for SCA will enable time-efficient 

scouting, expeditiously determine if, and when an action threshold is reached, and 

prevent unnecessary insecticide applications. 
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CHAPTER I 
  

 

INTRODUCTION 

 

Sorghum bicolor (L.) Moench, also known as sorghum or milo, is one of the five 

most important grain crops in the world (Food and Agriculture Organization 2008). In the 

United States alone, sorghum is a billion-dollar industry where around four million bushels 

of sorghum are grown on more than two million hectares annually (Elliott et al. 2017). In 

2013, the sorghum industry was shaken when reports of sugarcane aphid (Melanaphis 

sacchari Zehnter) (SCA) arose as a major pest of grain sorghum on the Gulf Coast of Texas 

(Bowling et al. 2016). After initial reports, infestations of M. sacchari moved as far east as 

Kentucky and as far north as central Kansas (Colares et al. 2015), resulting in severe 

economic damage to sorghum in 17 states in the U.S. by 2015 (Bowling et al. 2016).   

In response, multidisciplinary scientists have developed resistant varieties of grain 

sorghum, initiated altered cultural techniques, and provided chemical control options. Yet, 

there is still no research-based method to determine when an insecticide application was 

warranted, which resulted in poorly timed or unnecessary applications of insecticide. In 

2015, Oklahoma State University was granted the opportunity to lead a multi-state 

collaborative project to define the spatial and temporal distribution of M. sacchari within 
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commercial grain sorghum, as well as develop reliable, research-based, sampling protocols 

designed to quickly determine when the action threshold had been met.  

To build the sampling plan, the first step was defining M. sacchari’s dispersion 

pattern within a field. Using a systematic sampling protocol, 299 sorghum fields were 

sampled in Kansas, Oklahoma, Texas, Arkansas, Louisiana, and Mississippi. These sampling 

data were analysed to determine the spatial within-field sampling variance of M. sacchari by 

conducting a nested analysis of variance (NANOVA) and used Taylor’s Power Law (Taylor 

1961) to assign an aggregation factor. Taylor’s Power Law defined two significantly 

different colonization patterns that were designated by geographic location and showed that 

the sampling pattern should begin at the field edge. The “southern” region included South 

Texas and Arkansas, while the “nothern” regions included Northern Texas, Oklahoma, and 

Kansas.  The NANOVA analyses revealed that multiple samples of three plants in a row 

within 30 meters of one another accounted for between 80-98% of the within-field count 

variance. 

In addition to defining sampling location within a field, multiple regression analyses 

were run to determine where within the sorghum canopy the two-leaf sample unit should be 

taken. To run these analyses, the canopy was divided into thirds catagorized as the upper, 

middle, and lower canopy using whole plant enumeration counts that were taken within every 

sampling event listed above. To better understand the relationship between the upper, middle, 

and lower canopy and the total aphid population per plant, state and growth stage were also 

included in the analysis. Results from this study showed that regardless of the state or growth 

stage, the middle of the plant canopy had a trend of being most predictive of the whole plant 

population. However, due to correlation, more models are needed to improve the confidence 
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of the results, the studies results are powerful enough to suggest the two-leaf sample for any 

of the developed sampling protocols should come from the middle of the plant canopy.  

After defining “how” and “where” to sample, enumerative sampling plans were 

developed for M. sacchari in commerical grain sorghum. The first enumerative sampling 

plan developed was Green’s (1970) fixed precision minimum sample size protocol for 

defined high, medium, and low economic thresholds, as well as sliding average aphid per 

plant curve. The results showed that at a precision level of 0.10 both the northern and 

southern region would require hundreds of samples to determine if a population was at a 

critcal mean. At 0.25 the northern region still required over 100 samples; whereas, the 

southern region at a higher mean per plant intensity needed as few as 41 plant samples.  

Next, two enumerative sequential sampling plans were developed for population 

density estimation, and population catagorization based on high, medium, and low economic 

thresholds. Green’s (1970) formula was used to develop the stop-lines for population density 

estimation which had similar results to the fixed precision minimum sample size calculation. 

This sequential sampling protocol was validatated using 50 external sampling events using 

resampling for validation of sampling protocols (RVSP) software (Naranjo and Hutchison 

1997). The average results of the validation where higher in plant samples than Green’s 

formula predicted, but overall the data seemed to match when the average sample number 

(ASN) curves were evaluated.  

Lastly, for catagorization of a population above or below an economic threshold, 

Wald’s (1947) stoplines for a negative binomial population distribution were used. Based on 

Wald’s models, a minimum sample size from 20 plants would be needed before a decision 
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could be made, and similar to the other two sampling plans described, many samples were 

needed, especially if taken from the northern region, to make a treatment decion. The three 

enumerative sampling plans that were developed were not practical for use on a management 

level because they required too many samples to achieve an acceptable level of precision. 

Although, in the southern region, a sequential sampling protocol may be practical at high 

densities, these models largely demonstrated the need for a binomial sequential sampling 

protocol.  

A sequential binomial sampling plan was developed to expedite monitoring for 

treatable M. sacchari intensities. First, predictive tally threshold models were evaluated for 

goodness-of-fit using linear regression. After carefully considering model fitness and 

practicallity, tally thresholds of 50 and 100 aphids per plant were selected to best predict the 

mean SCA per field. Wald’s sequential probability ratio test (SPRT) was used to generate 

stoplines for sampling events (Wald 1947). Both sampling plans were then validated using 

resampling for validation of sampling plans (RVSP) software (Naranjo and Hutchison 1997) 

that provided the operating characteristic and average sample number (ASN) for 48 

externally sampled fields. Averages were collected from the 500 sampling itterations, with 

four different action thresholds, and two error rates. The ASN ranged from 10-24 plant 

samples with an average of 11 plant samples.  

As this project moves forward, consultants and producers will be introduced to the 

new sampling system that will be integrated into a smartphone application designed to fit 

varying regions and yield projections. This scouting system will provide a substantially more 

efficient and reliable SCA scouting tool for the end user. Providing user-friendly monitoring 
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systems will improve the likelihood of producer monitoring resulting in the elimination of 

unwarranted insecticide use, and the preservation of environment and effective chemistries.  
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CHAPTER II 
 

 

REVIEW OF LITERATURE 

 

Sorghum 

 
Sorghum bicolor (L.) Moench (Poales: Poaceae), commonly referred to as 

sorghum or milo is drought and heat tolerant and is considered one of the five most 

important crops in the world (Sorghum Checkoff 2017). Like that of its closest relatives, 

corn, sugarcane, and switchgrass, sorghum is a C4 grass which allows it to be grown in  

many different environmental extremes (Soreng et al. 2015). Sorghum is grown in most 

countries around the world with the United States being the number one producer of 

sorghum exports (FAO 2008).  

Within the United States, sorghum is grown from south Texas to South Dakota in 

what is commonly referred to as the “sorghum belt” (National Sorghum Producers 2016 , 

Sorghum Checkoff 2017). From 2014-2016, an average of 2.74 million hectares of 

sorghum were harvested in the United States and  Kansas, Texas, Oklahoma, Colorado 

and South Dakota were the top five production states (USDA National Agricultural 

Statistics Service 2017).  
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 In the United States, sorghum is used for livestock feed, ethanol production, and 

for human consumption (Carter et al. 1989, Sorghum Checkoff 2017). There are four 

main categories of sorghum grown in the United States: grain, forage, sugar/sweet, and 

biomass sorghum. Grain sorghum is the most common variant of sorghum grown in the 

U.S (Carter 2017). In the U.S., grain sorghum is used mainly as a livestock feed, but 

worldwide, sorghum grain is exported for human consumption where it is milled into an 

antioxidant rich, gluten free flour for breads, pasta, and beer (Sorghum Checkoff 2017). 

Forage sorghum is grown solely for livestock feed and can be grazed, baled, or 

chopped for silage (Sorghum Checkoff 2017). Sugar sorghum, also called sweet 

sorghum, is grown as a source of sorghum syrup predominately in the southern U.S., but 

production extends into Wisconsin and Minnesota (Wittgreve 2017). This sorghum syrup 

was previously the most popular household sweetener but today serves mainly as an 

additive to some livestock grain or is used to produce whiskey (Sorghum Checkoff 2017). 

Like biomass sorghum, the sorghum syrup-byproduct is used to produce bio-fuel 

(Sorghum Checkoff 2017). 

Sorghum Production in Oklahoma 

 
Worth around $3.1 billion annually, cow-calf production is the largest agricultural 

commerce in the state of Oklahoma followed by hog production ($831.2 million) and 

broiler production ($561.6 million) (USDA National Agricultural Statistics Service 2018, 

Bertone 2018). Of the non-livestock agricultural commodities, grain sorghum falls just 

outside the top ten crop commodities produced in Oklahoma and is worth $75 million 

annually ( USDA National Agricultural Statistics Service 2018). Nationwide, Oklahoma 

fluctuates between the third, fourth or fifth highest producer of grain sorghum, making 
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grain sorghum a highly valued commodity in the state (USDA National Agricultural 

Statistics Service 2017).  

 Grain sorghum in Oklahoma is predominately a dry-land cropping system that can 

have up to two plantings per growth season (National Sorghum Producers 2016, Lofton 

2019). Sorghum can be double-cropped following winter wheat but is more commonly 

grown as a full-season summer crop in rotation with other summer crops such as 

soybeans, corn, or cotton. Planting dates range from mid-April to the first week of July, 

with anything planted later than 1 June considered “late-planted” (Hawkins et al. 2017). 

The most common seeding rates recommended for Oklahoma range from 60,000 to 

250,000 seeds per hectare, typically on 76.2cm rows (Hawkins et al. 2017). Sorghum, 

provides a slightly lower return in Oklahoma ($840.00/ha) compared to other summer 

crops like cotton ($1,307.50/ha), and corn ($1,343.90/ha), but slightly more than soybean 

($737.50/ha), making profit margins tight ( USDA National Agricultural Statistics 

Service 2018). For this reason, input levels vary dramatically depending on projected 

commodity prices and producer goals. Independent of forecasted commodity prices, 

producers tend to invest the highest percent of the input budget on a high yielding variety 

with good insect and disease resistance (Luper et al. 2009). Another crucial input is 

fertility. The first fertilizer application is a preplant application, a critical part of seedbed 

preparation to ensure stand establishment, followed by a second side-dress fertilizer 

application in the late vegetative to early flowering stage intended to support the plant 

during grain fill (Hawkins et al. 2017).  

Producers decisions on pesticide applications depend on pest intensity and cost of 

treatment (Luper et al. 2009). Weed pests pose a significant challenge for grain sorghum 
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production. A pre-emergent herbicide that prevents weed germination in the seed bed is 

crucial to ensuring the highest yield possible (Hawkins et al. 2017). Because commercial 

grain sorghum has no transgenic herbicide resistance traits, herbicide applications during 

the growing season are not common (Luper et al. 2009). The only other herbicide 

treatment is post-harvest to reduce johnsongrass stands, a major weed pest in grain 

sorghum (Luper et al. 2009). Beyond seedling stage, sorghum has very little disease 

pressure in Oklahoma. A fungicide seed treatment coupled with an established beneficial 

crop rotation generally is all that is needed (Luper et al. 2009, Hawkins et al. 2017). The 

main insect pests that may require an insecticide application in grain sorghum include 

aphids, sorghum midge, and headworms (Royer et al. 2018), and will be discussed in 

further detail. 

 The timing of grain sorghum harvest in Oklahoma largely depends on 

environmental conditions. If fall precipitation is too frequent and a killing frost is 

delayed, a harvest-aid is often necessary to dry down the residual plant material of a 

mature sorghum plant in order to harvest (Luper et al. 2009). Grain is harvested with a 

combine using a wheat header. Many farmers, to avoid excessive wear to the machinery, 

strategically place the corn header higher on the plant and process the heads, leaving the 

remaining stalk in the field. For this reason, varieties that produce tall, even height plants 

with elongated peduncles are more popular (Luper et al. 2009).    

Important Arthropod Pests of Sorghum in Oklahoma (General Review)  

 Grain sorghum in Oklahoma is host to several economically important arthropod 

pests. After the seed is planted and through early growth stages, economically important 

pests include aphids, chinch bugs, cutworms, grasshoppers, lesser cornstalk borer, white 
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grubs, and wireworms (Royer et al. 2018). Most of these pests cause damage by feeding 

directly on the seed, roots, or emerging seedling. Grain sorghum treated with a 

neonicotinoid seed treatment before planting can reduce the chances of these pests rising 

to treatable levels; however, in exceptionally favorable environmental conditions all pests 

mentioned can cause severe yield loss.   

 Foliar and vegetative pests include aphids, chinch bug (especially in late planted 

crop during dry years), grasshoppers, lesser cornstalk borer, southwestern corn borer, and 

spider mites (Royer et al. 2018). These pests are generally considered sporadically 

economically important in Oklahoma.  Most annual minor pests in the vegetative growth 

stages like spider mites have comparatively high economic thresholds due to the plants’ 

ability to outgrow most vegetative damage. Others, like the lesser cornstalk borer, can 

cause severe damage when present in large numbers but do not regularly occur and need 

favorable environmental conditions to rise to treatable levels (Royer 2018). 

 Pests that infest sorghum from flowering through seed-fill can always become 

major economic pests at the proper intensity. Pests such as false chinch bugs, stink bugs, 

leaf-footed bugs, and sorghum webworms that feed directly on the panicle and seed can 

be devastating under outbreak conditions. However, because they rarely exceed 

established treatment thresholds, they are seldom controlled with insecticides in sorghum. 

Two of the most important direct pests (pests that feed directly on the developing grain) 

include the sorghum midge and the headworm complex. Sorghum midge, Contarinia 

sorghicola (Coquillett) (Diptera: Cecidomyiidae), is a tropical to sub-tropical pest that 

has been known to be a major pest especially in the more southern regions of the U.S. 

(Michaud 2013). The fly causes damage by laying eggs in the flowering sorghum head 
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that then develop into tiny larva that consume the entire fruit (Royer 2018). Due to the 

nature of the feeding by sorghum midge, scouting and timely insecticide application is 

necessary especially in states like Texas and Louisiana where intensity exceeds treatment 

thresholds annually (Royer 2018).  

Referred to commonly as  “headworms” this pest complex is comprised of three 

lepidopteran species including corn earworm, Helicoverpa zea (Boddie) (Lepidoptera: 

Noctuiidae); fall armyworm, Spodoptera frugiperda (J. E. Smith) (Lepidoptera: 

Noctuiidae); and occasionally, sorghum webworm, Nola sorghiella Riley (Lepidoptera: 

Nolidae) (Matocha et al. 2008, Royer et al. 2018). Like sorghum midge, these species 

also feed directly on the developing grain head causing significant yield loss in high 

enough intensity. As with most migratory pests, intensity varies from year to year, but an 

insecticide treatment for headworms is warranted annually in Oklahoma and much of the 

southern region of the U.S. (Royer 2018). 

Aphid Pests of Grain Sorghum 

 
Aphid pests (Hemiptera: Aphididae) of grain sorghum include corn leaf aphid, 

Rhopalosiphum maidis (Fitch); greenbug, Schizaphis graminum (Rondani); sugarcane 

aphid, Melanaphis sacchari (Zehntner); and yellow sugarcane aphid, Sipha flava 

(Forbes).  

Rhopalosiphum maidis has a dark-blue to black head with a blue-green abdomen 

and black legs, cornicles, and antenna. R. maidis is an annual, early colonizer of the grain 

sorghum whorl and is not known to cause significant economic damage in grain sorghum 

(Royer et al. 2018). R. maidis arrives on sorghum in early spring and stays in vegetative 

growth of corn and sorghum throughout the growing season. Ten or more generations can 
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occur during a growing season (Royer et al. 2018). R. maidis is known to reproduce both 

asexually and sexually. Most of the sexual reproduction occurs in early spring and late 

fall when it’s cool and it reproduces asexually all summer long when populations are at a 

peak (Michels and Matis 2010). R. maidis is confirmed to overwinter in Texas but 

migrates into Oklahoma in the early spring. 

  Rhopalosiphum maidis is known to transmit several viruses to corn making it a 

more substantial pest in that crop than in sorghum (Royer et al. 2018). In fact, to the 

opposite effect, R. maidis has been studied as an early food source for many natural 

enemies resulting in increased biological control of S. graminum by natural enemies 

(Kring and Gilstrap 1986, Michels and Matis 2010). Today, based on high observed 

levels of parasitism and predation, it is thought that R. maidis may have a similar impact 

on low populations of M. sacchari as well (Hewlett et al. 2019). Overall, this aphid may 

colonize and feed on sorghum whorls but has not shown to cause damage and has been 

reported as an early food source for natural enemies that help reduce intensities of 

damage causing insects like S. graminum and M. sacchari (Kring and Gilstrap 1986, 

Michels and Matis 2010).  

Sipha flava  is an easily distinguishable aphid with bright yellow color and short 

black hair-like spines in rows down its abdomen (Blackman and Eastop 2017). In 

addition to these stand-out features S. flava has yellow legs, antenna, and cornicles, and 

the cornicles are so small they are almost invisible to the naked eye. S. flava arrives on 

the lower leaves of sorghum in late spring early summer and each female can produce up 

to 58 clonal offspring (Royer et al. 2018). Besides grain sorghum, S. flava can reproduce 
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on many native North American grasses because it is believed to be indigenous to North 

America (Blackman and Eastop 2017).  

Sipha flava causes the most damage to early stage sorghum (V1-V4) on the first 

or lower leaves (Blackman and Eastop 2017). When S. flava has been feeding, the leaves 

turn an inimitable purple followed by lasting chlorosis. If the population continues to feed 

and grow damage can result in leaf death and senescence (Blackman and Eastop 2017). 

Yet, in Oklahoma S. flava consistently arrives on grain sorghum in the late stages of 

vegetative growth leading to very little cumulative damage to the plant. For this reason, 

S. flava is not considered an economic pest in grain sorghum in Oklahoma (Blackman 

and Eastop 2017).  

Schizaphis graminum commonly referred to as “greenbug”, was historically a key 

pest of wheat after its initial outbreak in Virginia in 1882 (Brewer et al. 2019). While 

sorghum was a known host for S. graminum, it did not become a prominent pest of 

sorghum until 1968 (Royer et al. 2015). Today, S. graminum is still a frequent colonizer 

on many grain crops but largely, thanks to host-plant resistance and insecticide seed 

treatments, is an occasional pest on sorghum throughout the central Great Plains (Brewer 

et al. 2019).  

Schizaphis graminum is described as a light green aphid with a dark green stripe 

down its abdomen, legs are light green with dark green tarsus and dark green cornicles. 

Unlike S. flava and R. maidis, S. graminum overwinters in Oklahoma on winter wheat 

(Royer et al. 2018). Once winter wheat senesces, the winged morphs migrate to sorghum 

in the late spring and early summer. S. graminum damage to sorghum has a similar 

appearance to rust, causing reddish-yellow freckling on the surface or ventricle side of 
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the leaf. Although S. graminum is no longer an annual economic pest of grain sorghum, 

monitoring populations is still important. Economic thresholds for S. graminum in 

sorghum are based on growth stage and require sampling 25-50 plants for both the aphid 

and the parasitized mummies (Blackman and Eastop 2017, Royer et al. 2018, Brewer et 

al. 2019).  

Sugarcane Aphid (Melanaphis sacchari) 

Description and Biology 

 

 Melanaphis sacchari  is often decribed as being crème to “lemon” (Singh et al. 

2004) in color with dark brown cornicles, antennae, legs, and tarsi (Bowling et al. 2016). 

Alate, or winged adults, similar in color with the addition of a black patch or pattern on 

the dorsal scleritis (Eastop 1955, Blackman and Eastop 2000). A colony is primarily 

made up of parthenogenic, viviparous,  apterous and alate females (David and Sandhu 

1976) ranging between 1.1-2.0mm long (Blackman and Eastop 2000). A single adult 

female can produce as many as 96 nymphs in 37 days (Blackman and Eastop 2000). 

Immature females (nymphs) grow through four instars in 4.3 to 12 days before becoming 

reproductive (Royer 2016). 

Although aphids typically go through ten to thirty generations of asexual clones in 

a year, perhaps over 30% of aphid species also have a single sexual cycle at the end of 

summer as fall approaches (Dixon and Kundu 1998, Caillaud et al. 2002b). Using 

photoreceptors between the antennae called ocelli, aphids respond to seasonal changes 

like cooler temperatures and shorter photoperiods (Dixon and Kundu 1998, Caillaud et al. 

2002b). Species that have a single sexual cycle are referred to as portraying cyclical 

parthenogenesis (Ogawa and Miura 2014). They can be monoecious (one host) or 

heteroecious (two different hosts).  Evolutionarily, cyclical parthenogenesis is 
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hypothesized to have originated around 200 million years ago and is considered to be a 

more primitive reproduction method than the strictly clonal parthenogenesis seen in later 

evolving species (Delmotte et al. 2002, Ogawa and Miura 2014). Species associated with 

a sexual cycle thought to originate from the more northern latitudes in order to produce 

an egg, which serves as an overwintering survival strategy.  

The shorter photo-phase of an oncoming fall triggers endocrine system signals 

that enable the aphid to produce male and female sexual morphs. Typically, males are 

produced in the first generation followed by oviparous females coming later as hormone 

titer continue to become more intense (Ishikawa et al. 2012). These sexual morphs mate 

and produce a very cold hardy egg that then hatches a “fundatrix” or “stem-mother” in 

the spring, when conditions are more favorable (Ogawa and Miura 2014). This fundatrix 

female is asexual and goes on to produce more viviparous females.  At this time, there is 

no evidence that M. sacchari undergoes cyclical parthenogenesis in North America, thus 

it functions as a viviparous parthenogenic aphid with an anholocyclic lifecycle that 

remains on its grass hosts all year long (Nibouche et al. 2014, Bowling et al. 2016).  

Wing development for aphids is a fundamental survival tactic that allows the 

insect to disperse and further the continuation of its life cycle. It is thought that 95% of 

aphid species have the ability to generate winged morphs (Braendle et al. 2006).  

Including elements of morphological, behavioral, chemical physiological change, the 

winged morph is collective a response to the environment that is thought to be brought on 

by both exocrine and endocrine hormone signals triggering gene-expression (Braendle et 

al. 2006, Ishikawa et al. 2013, Zera 2016).  As biotic or abiotic stresses increase, the 

mother aphid produces some offspring with the capacity to develop wings. This winged 
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morph is then able to relocate and continue asexual reproduction. Though the exact 

mechanism is still unknown, researchers believe the aphid responds to environmental 

stimuli through mechanoreceptors and olfactory receptors that sense stresses like 

overpopulation and reduced plant nutritional value (Hardie et al. 1996, Caillaud et al. 

2002a, Guo et al. 2016). These stimuli activate neurosecretary brain cells, which trigger a 

cascade of signals that result in hormone expression. Hormone expression is thought to 

cue development of winged morphs within the viviparous female.  When the migrating 

alatae land on a suitable host crop, they will begin producing nymphs to perpetuate the 

lifecycle. M. sacchari is believed to overwinter on plant hosts in southern latitudes then 

migrates to northern latitudes during summer where it recolonizes sorghum (Brewer et al. 

2019, Bowling et al. 2016, Blackman and Eastop 2000).These northern migrations are 

completed by the alate or winged morphs (Bowling et al. 2016, Blackman and Eastop 

2000).  

Population genetics structure and world distribution 

 The host shift by M. sacchari that occurred from sugarcane to sorghum in the 

U.S. generated speculation that there may be more complexity to the species lineage than 

what is expected of a presumably clonal species.  Aphids as a whole display varying 

levels of host specificity with less than one percent of aphid species being generalists 

(Peccoud et al. 2010).  M. sacchari undergoes apomictic parthenogenic reproduction 

meaning the oocyte replicates mitotically resulting in two diploid daughter cells 

(Bermingham and Wilkinson 2009). Although this method of reproduction is highly 

efficient, it results in restricted genetic recombination, which in turn limits geneticists 

ability to define clear lineages and make definitive conclusions on why this aphid became 
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such a severe pest in sorghum in 2013 due to highly clonal lineages (Nibouche et al. 

2015).   

Early reports of M. sacchari in grain sorghum speculated that it was a different 

race of aphid entirely, previously described by the name Melanaphis sorghi (Theobald) 

(Brewer 2013). This hypothesis stemmed from earlier work which described M. sorghi as 

the same species as M. sacchari, but was exclusively host specific to sorghum varieties 

(Remaudiere 1996). A world-wide population genetics study (Nibouche et al. 2014) was 

conducted consequently following the first reports of M. sacchari being a major pest of 

grain sorghum in the U.S. Authors concluded that there were five distinct multi-locus 

lineages (MLLs) displaying robust correlation to geographic location. The aphid 

haplotypes where broken down as follows: MLL A-West  and East Africa, MLL B-

Australia, MLL C-South America, the Caribbean, East Africa, and the Indian Ocean, 

MLL D-the United States, and MLL E-China (Nibouche et al. 2014). Though this study 

gave conclusive evidence to geographic evolution, the author admits to its limitations on 

solving the host specialization question. 

In 2014, Nibouche et al. (2014) demonstrated that two haplotypes were associated 

primarily with sugarcane, while the third haplotype was only present on wild type 

sorghum, Sorghum bicolor spp. verticilliforum (L.) Moench (Poales: Poacea). This study 

provided strong evidence of genetic differences in population structure based on host 

preference. In the follow-up study (Nibouche et al. 2015), these computationally 

observed genetic differences were tested using laboratory transfer experiments. Based on 

differences in survivorship they exhibited when grown on the two host plants, the 

sugarcane and sorghum haplotypes remained consistent. However, a third haplotype 
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arose that exhibited no significant difference in development when reared on either 

sorghum or sugarcane and was coined the “intermediate” haplotype (Nibouche et al. 

2015). Combined, these two studies portray a story of evolution based on species fitness 

in a given environment and supports evidence to a second hypothesis of a host shift rather 

than new invasion of a more virulent race of M. sacchari. However, the findings in 2014 

and 2015 seem to have only been the beginning of the story since the latest study 

(Nibouche et al. 2018) found evidence for the introduction of a new genotype cluster 

(MLL F) within the defined haplotypes previously described. Like many evolutionary 

narratives, especially in highly clonal species, there can be multiple paths to genetic 

variance led by both immigration of new genotypes and mutations of the existing 

population (Milgroom 2017).  

History, Distribution, and Current Pest Status in the U.S. 

 

 Originally described by Zehntner in 1897, M. sacchari is an evolutionarily 

opportunistic species that’s pest status seems closely affiliated with the domestication and 

spread of its two predominate crop hosts; sugarcane, Saccharum officinarum L. (Poales: 

Poacea) and sorghum. (Singh et al. 2004). M. sacchari, also reported as Aphis sacchari 

and Longiunguis sacchari, has been found on a wide range of grasses in 25 countries 

across Asia, Africa, North America, and South America (Singh et al. 2004).   

 Melanaphis sacchari’s presence was first reported in Florida in 1922 (Wilbrink 

1922) and was considered a minor pest of sugarcane by 1977 (Summers 1978, Denmark 

1988). In 2013, it was reported infesting sorghum in the Gulf Coast of Texas. (Bowling et 

al. 2016, Armstrong et al. 2015, Colares et al. 2015a, Nibouche et al. 2014). Following 

this initial finding, sugarcane aphid was discovered infesting grain sorghum in all of 
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Texas, Louisiana, Oklahoma and Mississippi. During the following year (2014) the heavy 

infestation of sugarcane aphids moved eastward into Kentucky and north into central 

Kansas (Colares et al. 2015a, Armstrong et al. 2015). By 2015, the aphid spread to 17 

states and 400 counties in the United States (Bowling et al. 2016). M. sacchari is not the 

first invasive exotic species of aphid, an important example being Russian wheat aphid, 

Diuraphis noxia (Mordvilko) (Hemiptera: Aphididae), nor is this the first aphid that 

“switched” hosts to become a pest of a crop that was not previously affected. Schizaphis 

graminum switched from its first reported economic host, wheat, to sorghum (Harvey and 

Hackerott, 1969) 

There are three historically based stages of naturalization well summized and 

defined by (Colares et al. 2015) the epidemic stage: this is described by the wide 

geographical distribution, tremendous population numbers, and severe crop damage; 2) 

the attenuation stage: infestations become more limited to certain geographical ranges, 

and the severe outbreaks become more sporatic; finally 3) the endemic stage: when the 

outbreaks that cause severe economic damage become rare due to the onset of natural 

ememies adapting to this new prey, a cycle only to be disrupted by a sudden change in 

environment due to natural or cultural events (Colares et al. 2015a).  It is only with sound 

integraded pest management strategies like host plant resistance, chemical and cultural 

control, that stage three can be attained.  

Infestation Patterns and Harvest Difficulty 

Melanaphis sacchari colonizes new locations when alates (winged forms) are 

wind disseminated by seasonal wind patterns moving from south Texas and Mexico 

towards more northern latitudes (Blackman 2000, Bowling 2016). The infestation pattern 
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on the plant can vary greatly from geographical location and growth stage. Aphids begin 

an infestation by landing on the host then colonizing the underside of the lower leaves 

where they increase rapidly from flowering to grain-fill until they have consumed the 

entire plant (Armstrong et al. 2015). Lab observations have described M. sacchari 

feeding as intermediate all the way through to sexual maturity (Armstrong et al. 2015, 

Elliott et al. 2015). 

Melanaphis sacchari causes yield loss on all the sorghum variants including 

grain, forage, sugar, and ethanol producing (Singh et al. 2004, Armstrong et al. 2015, 

Bowling et al. 2016, Sorghum Checkoff 2017). Yet, M. sacchari has been reported as less 

physically damaging to the photosynthetic capabilities of the plant when compared to 

some of its counterparts like S. graminum. It requires many more aphids feeding for a 

longer period to achieve the same chlorotic symptoms expressed by S. graminum in 

sorghum (Bayoumy et al. 2016). However, as a result of high quantities of honeydew 

produced by M. sacchari, sooty mold, caused by various Ascomycete fungi begins to 

grow on all the leaf surfaces in some cases covering them completely (Royer et al. 2016). 

Sooty mold covering the leaves leads to complications with harvest machinery and may 

lower photo synthetic capabilities for the plant (Bowling et al. 2016, Royer 2016).  

Current Integrated Pest Management of M. sacchari 

Cultural Control 

Cultural control research is limited at this time; however, it is recommended that 

producers, without over-wintering populations, plant as early as possible and reduce the 

amount of johnsongrass around their field (Royer 2014, Buntin 2015). Earlier planting 

dates allow the sorghum plant to be further developed when the sugarcane aphid arrives 
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lowering the number of times insecticide applications must be made if at all. Removing 

or limiting the amount of johnsongrass will help remove a secondary host for the aphid to 

reside in before moving onto the planted sorghum. Most important to properly controlling 

M. sacchari populations is to scout and monitor populations as often as possible once the 

aphid has been reported in the area (Royer 2014, Buntin 2015, Bowling et al. 2016, 

Brewer and Gordy 2016). Developing a research-based population estimation protocol is 

critical to uniting the front against high infestations of sugarcane aphid.  

Melanaphis sacchari was demonstrated in the field to colonize and proliferate on 

15 different varieties of sorghum, at varying rates, and johnsongrass (Armstrong et al. 

2015). Besides sorghum and sugarcane, M. sacchari’s early perceived suitable hosts 

consisted of many members of the grass family (Poales: Poaceae). They initially included 

corn Zea maize L., teff grass, Eragrostis tef (Zucc.) Trotter, winter wheat, Triticum 

aestivum L., rye, Secale cereal L., barley, Hordeum volgare, L., and proso millet, 

Panicum miliaceum, L. Because M. sacchari can use so many grass species in the same 

tribe as hosts, there is a large economic incentive to identify tolerant varieties that reduce 

yield loss. Fortunately, Armstrong et al. (2015) demonstrated, when infested at the 3-4 

leaf vegetative stage in the greenhouse, M. sacchari aphids currently infesting sorghum in 

the U.S. not only failed to colonize, but experienced 100% mortality in all but the species 

closely related to sorghum like johnsongrass. 

Bayoumy et al. 2016 screened S. graminum resistant sorghum lines for M. 

sacchari resistance, hypothesizing that they may have some cross-resistance. This 

hypothesis was corroborated in a greenhouse study when different lines holding the trait 

‘PI 550610’ showed robust signs of antibiosis against M. sacchari. The resistant lines 
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were used as a starting point for future screening (Armstrong et al. 2015). In another lab 

study, sorghum lines with ‘PI 550610’ gene showed varying levels of antibotic resistance 

to immature M. sacchari while delaying development and slowing the reproductive rate 

in comparison to a susceptible variety (Bayoumy et al. 2016). However, there are 

currently large inconsistancies surrounding the definition of tolerance in regards to this 

pests economic injury level as well as field variety screenings are varing greatly with the 

geographic location and the growth stage upon infestation  (Bayoumy et al. 2016, 

Armstrong et al. 2015). This inevitably will be a ongoing endeavour not far from what 

was seen in the 10 years of variety selection to control the populations of S. graminum. 

Biological Control 

 Grower response to a new invasive species such as M. sacchari often includes 

over application of insecticides, which potentially impedes natural enemy establishment 

(Stern et al. 1959). If chemical control can be confined to the most efficient intervals for 

control, there is the potential for natural enemies to become a greater contributing factor 

for M. sacchari control. As M. sacchari infestations increased in intensity, Kansas 

researchers documented increases in natural enemy numbers, similar to that reported for 

S. graminum in the field (Colares et al. 2015b). Native species like Hippodamia 

convergens (Guerin-Meneville) (Coleoptera: Coccinellidae), Colemegilla maculata 

(DeGeer) (Coleoptera: Coccinellidae), a complex of Chrysopid species that includes 

Chrysoperla carnea (Stephens) (Neuroptera: Chrysopidae), and Orius insidiosus (Say) 

(Hemiptera: Anthocoridae), are identified as potential contributors for natural control of 

M. sacchari under low-density populations. In a greenhouse study that compared the 

feeding and development of these four predators on S. graminum, M. sacchari, and 
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Ephestia. Kuehniella (Zeller) (Lepidoptera, Pyralidae), the four natural enemies that were 

adapted to S. graminum consumed and developed just as well, if not better, on M. 

sacchari (Colares et al. 2015a).  

Chemical Control 

Currently there are two commonly recommended foliar insecticides for M. 

sacchari on sorghum. The most efficacious insecticide is Sivanto® (Bayer CropScience, 

Leverkusen, Germany, 17.09% flupyradifurone) a sub-group 4D (IRAC 2018) insecticide 

that is recommended at a rate of four ounces per acre rate and has a pre-harvest interval 

time of twenty one days (Royer 2014, Buntin 2015, Bowling et al. 2016, Brewer and 

Gordy 2016). The other insecticide is Transform® (Corteva, Indianapolis, IN, 50% 

sulfoxaflor) which is a sub group 4C (IRAC 2018) insecticide that is recommended at a 

rate of one fluid ounce per acre and has a pre-harvest interval of fourteen days (Royer 

2014, Buntin 2015, Bowling et al. 2016, Brewer and Gordy 2016). This insecticide is not 

currently fully labeled and needs a Section 18 Emergency Use Exemption (EPA 1111) in 

the state to be legal to apply. Products containing the organophosphate insecticides 

chlorpyrifos and dimethoate have also shown to have activity on M. sacchari, but 

because they require long per-harvest intervals, are less target specific and less 

efficacious, thus they are not as widely recommended (Buntin 2015). Pyrethriod 

insecticides are not recommended and have been shown to actually flare sugarcane aphid 

populations (Royer 2014, Buntin 2015, Bowling et al. 2016, Brewer and Gordy 2016). 

Insecticidal seed treatments have also proven to be effective in controlling M. sacharri 

populations for up to 40 days (Royer 2014, Buntin 2015). The three top registered 
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neonicotinoid seed treatments are products containing any one of the following active 

ingredients thiamethoxam, clothianidin, or imidacloprid (Buntin 2015).    

Monitoring, Sampling Strategies, and Economic Thresholds 

  

 Integrated pest management is a multi-disciplinary, individualized production 

management system that works within an agroecosystem to combine biological, cultural, 

mechanical and chemical control in order to maintain a pest population below economic 

threshold (Norris et al. 2003, Stern et al. 1959). This concept can be thought of as a 

triangle with base and mid-layers made up of biological control components including; 

natural enemies, host plant resistance, and cultural techniques like tillage, irrigation, 

refuges, and planting dates (Stern et al. 1959). The smallest part of the triangle, at the 

very top, would be chemical control; which is to be used efficiently and sparingly (Norris 

et al. 2003). The foundation of a successful integrated pest management system is 

appropriate scouting and monitoring of pest populations. Accurately monitoring pest 

populations determines when the pest has met the economic threshold and whether or not 

chemical application is necessary (Stern et al. 1959, Norris et al. 2003a). The economic 

threshold is a research based population density at which action should be taken to deter 

the population from reaching the economic-injury level where yield loss occurs (Stern et 

al. 1959).  

Currently, there is no research-based method to determine when a field has M. 

sacchari pressure that exceeds an economic threshold (ET). Early sampling 

recommendations for M. sacchari were rudimentary and based spray decisions on a 

percent of plants with substantial honeydew on them (Catchot et al. 2015). Two more 

recent M. sacchari sampling protocols are based on an intensity per-leaf economic 
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threshold or by a growth stage “threshold”. The per-leaf threshold sampling protocol 

directs the scout to estimate the aphid intensity on an upper most and lower-most leaf on 

ten randomly selected plants, in four different locations within a field (Biles 2018). If the 

average M. sacchari per leaf is more than 50, the recommendation is to chemically treat 

within three days (Biles 2018, Gordy et al. 2018). This sampling method seems to be 

based on published research by Szczepaniec (2018) done exclusively in the High Plains 

of Texas. While the research objectives were largely to determine and yield-based 

economic threshold, no sampling protocol was discussed (Szczepaniec 2018). This leaves 

the question of why ten samples from four stops of ten plants are needed.  

Another newly developed “threshold” based sampling plan based on growth stage 

was even more perplexing. The sampling plan recommends treatment if 20-30% of plants 

(based on a two-leaf sample of an upper-most and lower-most) are infested with 50 or 

more M. sacchari (Biles 2018, Gordy et al. 2018). Additionally, this sampling plan, while 

binomial, is not sequential and requires four stops of ten randomly selected plants making 

a total of 40 plant samples (Biles 2018, Gordy et al. 2018). Multiple other scouting 

protocols and recommended thresholds exist ranging from 40-60 samples, 20-30% 

infested with 25-125 sugarcane aphids per leaf or per plant (Royer 2015, Gordy et al. 

2019, Royer 2016, Armstrong et al. 2017, Sorghum Checkoff 2017). Yet, there remains 

no refereed study that encompasses multiple states, sites, and growth stages to produce a 

rapid classification protocol for determining of an ET has been met for M. sacchari. 
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Sampling Strategies   

Defining Dispersion Patterns 

Sampling protocols used for population monitoring are most constructive when 

they integrate the biology of the monitored pest with the protocol. The first step to 

developing a sampling protocol of any kind is to define the statistical dispersion pattern 

of the organism sampled. There are three statistical categories of  dispersion in insects; 

aggregated, random, and regularly distributed (Norris et al. 2003, Pedigo and Buntin 

1994). Aggregated or clumped populations, like that of aphids, are pests that occur in 

patches that are distant from other population clumps within an area. Sampling data for 

this special distribution would be described as a large number of zeros with a few 

samples having sizable population numbers (Pedigo and Rice 2006, Norris et al. 2003). 

Aggregated populations often require many samples to obtain adequate information on 

the population.  

 Random- or Poisson-distributed insects are described as having their population 

mean equal to the population variance (Norris et al. 2003, Pedigo and Buntin 1994). In 

this population distribution, finding one individual likely indicates another individual 

may be near, but not cohabitating. Random distributions are not very common in nature 

but can be found in some Coleopteran and Lepidopteran species (Pedigo and Buntin 

1994). 

Regular distribution is even more rare in nature than random and is classified by a 

population where every sample unit has the same number of individuals. Regularly 

distributed populations which are typically found in insects that have a repulsion factor 

such as cannibalism and are typically predators of other insects (Pedigo and Buntin 

1994). These individuals are usually equally spaced across a landscape. By finding an 
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individual, there is a good chance another individual will be within a calculated proximity 

to the last depending on biological need (Norris et al. 2003).  

In order to statistically define an insect’s dispersion pattern, there are multiple 

indices that can be used. A widely used index for negative binomial populations, like 

most aphid species, is the k index or common k. A common k value, calculated by the 

formula k=m2/(s2-m) where s2 is the variance and m is the mean, is a constant given to an 

insect population with a negative binomial probability distribution, to define where the 

population lies on an aggregation index or scale (Bliss and Owen 1958, Elliott 1977).   

On the common k scale, k values less than two indicate highly clumped populations 

where as a value greater than eight indicates an almost Poisson distribution.  

While a common k index is indicative of how clumped a population is and is 

relatively easy to calculate once the probability distribution has been defined, a common 

k does have its disadvantages that may disrupt the reliability when used in a sequential 

sampling protocol. One of the main disadvantages is that a common k index can vary 

with mean density. For an aphid like M. sacchari, this may not portray the dispersion 

accurately during large outbreaks or when population intensity is very low (Pedigo and 

Buntin 1994). To put this in perspective, for M. sacchari, the common k value could 

change quickly based on when, where, and how the samples are obtained during a 

growing season; potentially changing the optimum sample size and start and stop points 

for the sequential sampling protocol on a weekly or even daily basis depending on 

environmental conditions (Pedigo and Buntin 1994). The goal of an effective sequential 

sampling protocol is that it is reliable and consistent, for this reason a common k may not 
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be the best aggregation factor to apply to a pest like M. sacchari whose population means 

can vary so dramatically. 

To overcome the lack of consistency present in the common k, two empirical 

models were developed: Lloyd’s mean crowding (1968) that uses Kuno’s formula (1969) 

for defining sampling start and stop lines (Lloyd 1967, Kuno 1969); and the more robust 

and popular Taylor’s Power Law (1961) that uses Green’s formulas (1970) to develop 

optimum sampling size and sampling stop lines (Green 1970, Elliott 1977, Pedigo and 

Buntin 1994, Pedigo and Rice 2006). Like probability distributions, empirical models 

were developed to classify quantitatively an insect’s population distribution within a 

given area. What makes empirical models stronger, in some cases, than probability 

distributions are their density independence. Empirical models can be more consistent 

spatially and temporally than probability distributions in populations with highly variable 

means because of being independent of the mean (Pedigo and Buntin 1994, Young and 

Young 1998).   

As mentioned above, Taylor’s power law is the most used empirical model for 

defining dispersion of highly aggregated populations (Taylor 1961). Taylor described that 

for most animals, including insects, there is a linear relationship between the base-10 log 

transformations of the mean and variance (Pedigo and Buntin 1994, Pedigo and Rice 

2006). In other words, for every mean, regardless of size, there is a relationship to 

variance around that mean for any given sample set. This can be represented with the 

thinking formula s2=αmb where s2 is the variance, m is the mean, α is the considered the 

“sampling factor” a representative of the sampling unit or sampling scale, and ƅ is the 

aggregation factor associated with the animal population (Pedigo and Buntin 1994).  
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Aggregation factors using Taylor’s Power Law are measured as ƅ=1 is a random 

distribution, ƅ=0 is a regular dispersion and ƅ>1 is a clumped dispersion (Elliott 1977, 

Leather 2009).  Being able to better define highly aggregated populations made 

developing optimum sample sizes and sequential sampling protocols more consistent. 

Enumerative Sampling Plans: Fixed Sample Size or Sequential Sampling 

 Enumerative sampling, in which every individual is counted, can be a highly 

reliable method of estimating a critical density or a total population density. When 

enumerative sampling is being conducted, there are two definitive ways of sampling: 

using a fixed sample size, or sequentially sampling using calculated stop-lines. For fixed 

sampling size calculations, Green’s (1970) formula for minimum sample size estimation 

is calculated using the formula n=αmƅ-2/Dexp where n is the estimated minimum samples, 

α and ƅ are coefficients from Taylor’s power law, m is the mean/critical 

density/economic threshold, and Dexp is the desired level of precision (Green 1970, Elliott 

et al. 2003). While this formula provides the minimum number of required samples to 

estimate a mean at a given precision level, it is often considered impractical due to high 

sample sizes needed.  For this reason, sequential sampling plans are more commonly 

used. They are more practical in that the sample size varies on the intensity of the 

population. In extremely high or low populations, this sampling method is often more 

efficient in application.  

 There are two main objectives for enumerative sequential sampling: to estimate a 

population density in a given area, or to classify a population as above or below a critical 

density. When estimating a population density, cumulative insect counts are used to 

determine when a stop-line, at a fixed precision level, has been exceeded. The widely 
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used sequential sampling stop-line for population density estimation was defined by 

Green (1970). The formula for these stop-lines is: 

logTn = 
𝐥𝐧 (

𝑫𝟐

𝒂
)

𝒃−𝟐
+

𝒃−𝟏

 𝒃−𝟐
𝒍𝒏 

Where Tn = the cumulative number of aphids sampled, n= the total number of samples, 

D2 = desired precision level, and a and b = Taylor’s power law parameters mentioned 

above. While sequential sampling for population density estimation can be very 

beneficial, especially in the scientific arena, in certain species it may be impractical at the 

field level due to how many cumulative insects must be recorded.  

 The last enumerative sampling plan is sequential sampling for classification of a 

population as above or below a critical density. This type of sampling is often used for 

applied purposes to make a treatment decision. The stop-lines calculated in this type of 

sampling predict upper and lower boundaries where treatment is necessary when the 

cumulative number of individuals passes the upper line, and no treatment is required 

when the cumulative number of individuals is below the lower line. If the cumulative 

number of individuals is neither above the upper line nor below a line, the sampler would 

continue to sample until a line is crossed. This method of sampling usually decreases the 

amount of time needed to determine if a population is above or below a critical density 

especially at very high or very low intensities because the count will cross an upper or 

lower stop-line quickly. At population densities around the critical density, more samples 

may have to be taken. There are multiple formulas to develop these stop-lines, but Wald’s 

(1947) sequential probability ratio test (SPRT) is the best fitting model for known 
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distributions like M. sacchari’s. Wald’s SPRT stop-lines for aggregated population 

distributions are calculated using the following formulas: 

d1= (b*n) + h1                           

 d2 = (b*n) + h2 

b = k * (
𝒍𝒏(

𝒒𝟐
𝒒𝟏

)

𝒍𝒏(
𝒑𝟐∗𝒒𝟏
𝒑𝟏∗𝒒𝟐

)
)      h1 = (

𝒍𝒏(
𝜷

𝟏−𝜶
)

𝒍𝒏(
𝒑𝟐∗𝒒𝟏
𝒑𝟏∗𝒒𝟐

)
)      h2 = (

𝒍𝒏(
𝟏−𝜷

𝜶
)

𝒍𝒏(
𝒑𝟐∗𝒒𝟏
𝒑𝟏∗𝒒𝟐

)
)                

Where p1= (m1/k), p2= (m2/k), q1=(1+p1), and q2 = (1+p2). Where k = common k and m2 

and m1 = the ET and 1/3-1/2 of the ET. In the top, corresponding equation, d1 =the upper 

stop-line, d2 = the lower stop-line, and n = the number of plant samples. On a basis of 

practicality, enumerative sequential sampling can be ideal for insect populations where 

relative densities stay low. However, in species like M. sacchari where the population 

sizes can be very high (in the thousands of aphids), these sampling protocols may not be 

ideal.  

Binomial Sequential Sampling Plans 

 While enumerative sequential sampling is predominately for research objectives, 

binomial sequential sampling is almost always for monitoring pest populations in an 

agronomic setting (Pedigo and Buntin 1994). Binomial sampling is declaring if the 

sample unit is “infested” or not based on the presence or absence of an individual or 

group of individuals rather than enumerating every individual on the sample unit (Pedigo 

and Buntin 1994, Pedigo and Rice 2006). Binomial sampling programs are often used in 

commercial agriculture IPM programs because they are very efficient in terms of time 

and sampling cost.  
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Although binomial sampling plans are highly efficient in determining when an ET 

has been met for direct pests, these are used more frequently for indirect pests such as M. 

sacchari (Pedigo and Buntin 1994). Unlike direct pests, indirect pests do not cause 

economic damage to the fruit itself but cause yield loss to the crop by reducing the crops 

ability grow and develop normally. An indirect pest then can have more individuals per 

sample unit before causing damage. For this reason, indirect pests aren’t typically 

sampled using a classical presence or absence of an individual pest, but by developing a 

tally threshold. A tally threshold is an intensity that is predictive of the population mean 

by way of proportion of sample units infested.  

 To visualize this concept further, the thinking formula for binomial sampling 

plans are described as PT–m relationships, where “PT” is proportion infested with >T 

individuals, and T being the established tally threshold, while m is the mean of the total 

population.  In the case of the M. sacchari, the tally threshold values would be derived 

from using the regression model described by Giles et al. (2000) that is ln(-ln[1-PET]) 

=a+ bln(m) where a and b are the predetermined coefficients from the Taylor’s Power 

Law log base-10 regression. The T-value selected would be the value with the best 

goodness-of-fit judged by the r2.  

 After determining the best-fit tally threshold, stop-lines would be calculated using 

Wald’s SPRT formula (Wald 1947). Instead of a relationship between cumulative 

individuals and number of plant samples, the relationship would be amongst the percent 

of plant samples infested with T individuals and number of plants inspected. Both 

enumerative and binomial sequential sampling plans for classification revolve around a 

defined critical density or mean per plant, the largest difference being no counting is 
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necessary in binomial sampling. The greatest benefit to binomial sequential sampling is 

the reduction in time necessary to sample by eliminating the need to enumerate every 

aphid on the leaf or other sample unit.  

Economic Injury Levels and Economic Thresholds for M. sacchari 

Recently, the first peer reviewed study was published that determined economic 

injury level (EIL) based action thresholds (Gordy et al. 2019). In this study, aphid 

populations were placed into two categories: high population growth rate and low 

population growth rate. Using the population growth rate regression equations, in 

addition to commodity price and treatment costs, the authors determined the EIL to range 

from 37-102 M. sacchari per leaf. Adjusting to aphid intensity growth observations led to 

ET’s that range from 19-137 aphids per leaf with the author suggesting an ET of 40 M. 

sacchari per leaf to be the best fit across multiple environments and production costs 

(Gordy et al. 2019). This study concludes with a statement about the need for a binomial 

sequential sampling plan to quickly determine when thresholds are met, ultimately 

leading to the need for this study.  
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CHAPTER III 
 

 

WITHIN FIELD AND WITHIN PLANT CANOPY DISTRIBUTION PATERNS OF 

MELANAPHIS SACCHARI (ZEHNTNER) IN COMMERCIAL GRAIN SORGHUM 

Abstract 

 Sugarcane aphid Melanaphis sacchari (Zehntner) is an introduced aphid species 

that became a substantial economic pest of grain sorghum in the United States. From 

previous invasions of aphid pests, we know effective monitoring and early detection are 

important keys to management, but such information is currently lacking in this species. 

In this study, 281 sampling events in 134 geographic locations across Kansas, Texas, 

Oklahoma, and Arkansas were used to evaluate within field and within plant canopy 

distribution patterns of the sugarcane aphid. Based on the results from a nested analysis 

of variance (NANOVA), the best sampling method to account for the most variance 

amongst aphid counts is by evaluating three consecutive plants in a row using a two-leaf 

sample unit. The consecutive sampling of three plants, or stops, should occur within a 

30m radius of one another beginning at an edge and moving in an inverted “U” shape into 

the field. Lastly, analysis of within canopy distribution patterns revealed that leaves 

occupying the middle of the plant were most predictive for estimating aphid population 

intensity per plant. By increasing sampling precision, we can increase likelihood of early 

detection therefore leading to better management of this pest.  
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Introduction  

 Sorghum, Sorghum bicolor L. (Moench) (Poales: Poaceae) is a drought and heat 

tolerant grass crop, and one of the five most important crops in the world (Sorghum 

Checkoff 2017). The United States is the leading producer of grain sorghum, producing 

nearly 12 tons of grain sorghum over the last decade that generated billions of dollars in 

economic revenue (Food and Agriculture Organization 2008, Elliott et al. 2017, U.S. 

Dept. of Agriculture 2017 ). Sugarcane aphid Melanaphis sacchari (Zehntner) 

(Hemiptera: Aphididae) is a subtropical aphid that was introduced into the U.S. on or 

before 1922 (Wilbrink 1922). Once considered to be a minor pest of sugarcane (Summers 

1978, Denmark 1988, White et al. 2001), it became an important economic pest of 

sorghum in the U.S. after 2013 when it was discovered in large numbers on grain 

sorghum in Louisiana, Texas and Oklahoma (Brewer 2013, Armstrong et al. 2015). Yield 

losses from sugarcane aphid infestations ranged from 45 to 181 kg/ha (Bowling et al. 

2016). Sugarcane aphid rapidly expanded its range, spreading east to Kentucky and north 

to Kansas (Armstrong et al. 2015, Colares et al. 2015). By 2015, the aphid was reported 

in 17 states and 400 counties in the United States (Bowling et al. 2016). The sugarcane 

aphid remains a pest at some level in grain and forage sorghum in most sorghum 

producing states (Lagos-Kutz et al. 2018).  

 The objectives of this study were to elucidate the within-field aphid count 

variance per sample universe and define within-plant distribution patterns of sugarcane 

aphid in commercial grain sorghum. The importance of achieving these objectives is to 

obtain information necessary to design sampling protocols that effectively detect, 

estimate abundance, and monitor this pest.  
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In order to accomplish these objectives, a “Russian-doll” approach was used 

(Chong and Graham 2013, Rimmer et al. 2018) to examine M. sacchari’s within-field 

distributions and finally evaluating aphid distribution patterns within an individual plant’s 

canopy. Two hypotheses were tested: H1: sugarcane aphid distribution patterns within the 

sample universe are different based on geographic location and H2: whole plant 

enumeration could determine where within the plant canopy the total aphid intensity per 

plant could best be predicted. By understanding the sugarcane aphid’s distribution 

patterns at each level, sampling plans can be constructed that are more predictive and 

lead to more accurate and efficient management decisions.  

Materials and Methods 

Systematic Sampling Protocol 

Data were collected from commercial sorghum fields in Kansas, Oklahoma, 

Texas, and Arkansas during the 2016 and 2017 growing seasons. To qualify as an eligible 

sampling location, the field had to be a commercial sorghum field measuring at least 16.3 

ha.  Every sampling event was labeled as a “Field” and analyzed independently, even if 

the same field was sampled multiple times during the growing season. Growth stage was 

recorded with every sampling event and was placed into one of five categories: 

vegetative (1), boot to early flower (2), late flower to milk (3), milk to soft dough (4), and 

hard dough to black layer (5).  

Enumerative sampling was conducted using a stratified sampling protocol to 

identify infestation patterns. To maintain consistency among data sets from multiple 

states, every collaborator was trained to use the sampling protocol either personally or by 

video. All samples were collected in a sampling universe that consisted of a 90m x 90m 
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grid, divided into nine 30m x 30m cells (Ch. 3: Appendix Figure 12). The sampling 

universe was then referred to as a “field” and individual fields, that were sampled 

multiple times, were referred to as “locations”. 

 The systematic sampling grid was placed on the edge of a field and sampling 

began in the first row of grain sorghum uninterrupted by excessive weeds, or cross-hatch 

planting, commonly referred to as the first true row. Each cell contained two randomly 

selected stops in which two leaves on three consecutive plants where examined, totaling 

six plant samples per cell. The sample unit per plant consisted of two 90% green leaves; 

one leaf pulled from the upper and one leaf from the lower part of the canopy. Aphids 

were completely enumerated on each of the two leaves per plant and recorded separately. 

In addition to the 54 two-leaf plant samples per field, six of the sampled plants were 

randomly selected for whole-plant enumeration. Aphids were enumerated on each leaf, 

with at least 90% green leaf area, on the entire plant. Counts began with the lowermost 

leaf and concluded with either the upper most leaf or the flag leaf if present. Each leaf 

was labeled beginning with the bottom leaf as number one, the second leaf as number 

two, and continuing until the last leaf as number x.   

Statistical Analysis  

 The first analysis conducted but not discussed heavily till chapter four were 

regression analyses performed to determine the dispersion pattern of M. sacchari. Using 

the method described in chapter four, Taylor’s power law revealed two sampling regions 

based on significantly different b values: a northern region consisting of north Texas, 

Oklahoma, and Kansas, and a southern region consisting of south Texas and Arkansas. In 
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an earlier study, Elliott et al. (2017) indicated that there might be two separate 

aggregation factors based on geography. The evidence provided in these two studies led 

to the use of regions in addition to the individual states for the rest of this study.  

A nested analysis of variance (NANOVA) was conducted using PROC NESTED 

(SAS 9.4). The data were classified into independent variables by state, by individual 

field, by column number within the sampling grid, cell number within the column, stop 

number and plant number within the cell. The dependent variable was total number of M. 

sacchari per plant. All states were analyzed individually, within designated regions, and 

as one data set.  

Assessments of within-plant canopy distribution of M. sacchari were also 

characterized using a modified technique described by Lampert (1989). Leaves from 

every plant were assigned into a canopy category of upper (3), middle (2), and lower (1) 

position. The upper two leaves having 90% or more green surface, including the flag leaf, 

was assigned into the upper canopy. The lowest two leaves having 90% or more green 

surface area were assigned into category 1, and any leaf with at least 90% green surface 

area that fell between categories 1 and 3 were assigned into category 2. Because there 

were variable numbers of leaves assigned into category 2 (due to plant size and growth 

stage) growth stage was recorded for each sampling event. Lastly the data were 

categorized by state and region.  

PROC REG (SAS 9.4) was used to run regression analyses for model fitness 

regressing canopy position to total M. sacchari per plant. Similar models were analyzed 

using multiple independent variables like canopy position and state, canopy position and 
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growth-stage, and canopy position, growth-stage, and state combined vs. total M. 

sacchari per plant.  In addition to the standard regression relationships a fixed effects 

model was used to evaluate the relationship between canopy position and total number of 

M. sacchari per plant within growth stages and states. This model was performed by 

region.  

Results and Discussion  

Stratified Sampling Protocol 

 

From 2016 to 2017, complete enumeration of M. sacchari was completed on 

15,174 two-leaf samples and 1,644 whole plant counts from 281 sampling events (fields) 

at 134 different locations across Kansas, Oklahoma, Texas and Arkansas (Table 1).  All 

five growth stages were represented across all four states. 

Table 1: Summary of sampling data from all states and years 2016 and 2017 

 

Sampling Locations Fields 

Number of Whole 

Plant Counts 

State 2016 2017 Total 2016 2017 Total 2016 2017 Total 

Kansas 7 10 17 7 10 17 0 60 60 

Oklahoma 25 28 53 59 81 140 354 486 840 

North Texas 12 5 17 51 17 68 306 102 408 

South Texas 14 19 33 17 19 36 102 114 216 

Arkansas 8 6 13 14 6 20 84 36 120 

Total 66 68 134 148 133 281 846 798 1644 

Sampling summary including locations, sampling events (Fields), and number of whole 

plant counts for both 2016 and 2017 years.  
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Nested Analysis of Variance 

 The nested analysis of variance (NANOVA) was used to determine where, within 

the sampling universe, does most of the sampling count variance occur. Understanding 

and accounting for the amongst counts variance provides critical insight into best means 

of sampling. The (NANOVA) was analyzed by combining sampling events by region 

(Table 2). Within the northern region, over 73% of the total variance within the sampling 

universe was accounted for by sampling the upper and lower leaves of three plants in a 

row. An additional 12% of the variance was attributed to the two samples of three within 

a 30X30 meter cell. As a result, just by sampling three consecutive plants in two stops 

within a cell, over 85% of the total aphid count variance being accounted for. Zero 

variance was seen amongst counts in cells or columns. An additional 12% variance was 

accounted for when each field and state is sampled independently bringing the total 

variance accounted for up to 97%. To summarize, in the northern region, most count 

variance can be attributed to sampling two sets of three plants in a row within a 30m 

radius per field. This gives rise to the concept that M. sacchari’s distribution within a 

field is so highly clumped that the largest amongst sample count differences in this region 

are amongst the sorghum plants themselves. Furthermore, this finding may suggest that 

sampling a field in one area may be enough, even if the field is larger than 16.2 hectares. 
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Table 2: Nested analysis of variance (NANOVA) results by region 

Comparison 
NRa: Variance Accounted 

for in % 

SRb: Variance Accounted 

for in % 

Amongst States 2.69 0.00 

Amongst Fields 11.82 27.65 

Amongst Columns 0.00 7.81 

Amongst Cells 0.00 9.35 

Between Samples 12.11 35.09 

Amongst Plants 73.38 20.11 

Total Variance 100 100 

Demonstrates percent of variance accounted for by strata. Northern region, consisting of 

Kansas, Oklahoma, and North Texas=NRa; Southern region, consisting of South Texas 

and Arkansas=SRb. 

Within the southern region the highest amount of sample variance was accounted 

for by the two samples of three consecutive plants within a 30m radius. Sampling in this 

manner resulted in over 55% of the aphid count variance being accounted for. Unlike the 

northern region there was approximately 17% variance accounted for amongst cells and 

columns indicating that where the samples are taken in relation to an edge of the field is 

an important factor to consider. Lastly sampling fields independently resulted in an 

additional 28% total variance amongst fields. Based on the NANOVA analysis, samplers 

located the southern region should sample each field independently, sample two stops of 

three plants in a row, and cover at least 90m of distance within a field beginning at an 

edge and working inward.  

The nested analysis allows for deduction of how to effectively account for 

sampling variance within a given sampling universe. The conclusion from this analysis is 

that samplers in both regions benefit from taking two samples of three plants in a row 

within a 30m proximity of one another per field. To account for more variance in the 

southern region, being sure to sample beginning at an edge and moving into the field can 
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only increase precision. By following these guidelines, the chances for early detection 

and more precise monitoring can be improved.  

Within Canopy Distribution 

 The within canopy relationships were further clarified by analyzing whole plant 

enumeration samples. In order to make all plant samples relatable across multiple grain 

sorghum varieties with varying numbers of leaves, the plant canopy was partitioned into 

three categories: upper, middle, and lower. The “upper” and “lower positions” were 

defined as the two 90% green upper and lower most leaves. Anything between the two 

upper-most and two lower-most leaves was classified as the “middle” canopy position.  

All plants with only one middle position leaf were excluded from the data set leaving a 

total of 790 plants in the analyses.  

In the first analysis, the upper, middle, or lower canopy position was regressed 

against the M. sacchari total per plant (Table 3). This analysis did not consider region, 

state, or growth stage. The results of this analysis showed that best fit model was the mid 

canopy position with an r2 of 0.9131. The lowest relationship to the total plant density 

belonged to the lower canopy position which had a r2 of 0.6554. This analysis 

demonstrates that overall, without accounting for the region, state, or growth stage of the 

sorghum, the total data trend reveals that the middle of the plant canopy across all states, 

growth stages, and both regions is the most predictive of the total plant aphid intensity.  
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Table 3: Within canopy distribution regression analysis results 

Position 

Number of 

Plants MSE F-Statistic/p-value R2 

Upper 790 7.304 2201.48/<0.0001 0.7364 

Middle 790 4.195 8276.38/<0.0001 0.9131 

Lower 790 8.351 1498.65/<0.0001 0.6554 

Relationships between the within canopy position of M. sacchari colonies and the total 

number of M. sacchari on the entire plant regardless of state and growth stage. All values 

with p= <0.05 are considered significant. Best fit models, determined by r2 value, are 

shown in bold. 

 The second analysis evaluated which region of the plant canopy is more 

predictive of the total plant aphid intensity by state. The results of this analysis showed, 

again, that across all states, despite the growth stage, the middle position of the plant 

canopy is most predictive of the total plant M. saccharii density (Table 4). Similarly, 

when the variable of state is removed, looking at all five growth stages, the middle 

position of the plant canopy continues to be the most predictive of the total plant density 

by r2 value (Table 5).  The multiple regression model including state, growth stage, and 

canopy position as predictors of the total M. sacchari density per plant showed that out of 

the 50 significant relationships, 22% of the time the middle was most predictive followed 

by the upper canopy at 10% and the lower 8% (Ch. 3: Appendix Table 12).  
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Table 4: Within canopy distribution regression analysis incorporating state 

Region State Position 

Number 

of Plants MSE 

F-Statistic/p-

value R2 

Northern Kansas Upper 25 1.474 2.65/0.1171 0.1034 

Middle 25 1.051 27.37/<0.0001 0.5434 

Lower 25 1.455 3.32/0.0815 0.1261 

Northern Oklahoma Upper 243 6.035 705.28/<0.0001 0.7453 

Middle 243 3.870 2271.36/<0.0001 0.9041 

Lower 243 9.447 180.46/<0.0001 0.4282 

Northern North 

Texas 

Upper 222 4.101 367.42/<0.0001 0.6255 

Middle 222 3.118 796.15/<0.0001 0.7835 

Lower 222 2.180 1857.96/<0.0001 0.8941 

Southern South 

Texas 

Upper 125 8.379 484.20/<0.0001 0.7974 

Middle 125 5.516 1278.20/<0.0001 0.9122 

Lower 125 10.206 286.30/<0.0001 0.6995 

Southern Arkansas Upper 93 12.810 145.43/<0.0001 0.6151 

Middle 93 5.158 1366.97/<0.0001 0.9376 

Lower 93 11.281 213.83/<0.0001 0.7015 

Relationships between the within canopy position of M. sacchari colonies and the total 

number of M. sacchari on the entire plant separated by state, regardless of growth stage. 

All values with p= <0.05 are considered significant. Best fit models, determined by r2 

value, are shown in bold. 
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Table 5: Within canopy distribution analysis incorporating state and growth stage 

Growth 

Stage 

Canopy 

Position 

Number of 

Plants MSE 

F-Statistic/p-

value R2 

Vegetative Upper 90 10.403 333.25/<0.0001 0.7911 

Middle 90 4.345 2326.77/<0.0001 0.9636 

Lower 90 10.255 345.48/<0.0001 0.7970 

Boot to 

<50% 

flower 

Upper 116 2.754 440.75/<0.0001 0.7945 

Middle 116 2.473 573.68/<0.0001 0.8342 

Lower 116 3.266 280.21/<0.0001 0.7108 

>50% 

flower to 

Milk 

Upper 207 7.463 554.38/<0.0001 0.7300 

Middle 207 2.885 4875.82/<0.0001 0.9597 

Lower 207 7.391 569.21/<0.0001 0.7352 

Milk to Soft 

Dough 

Upper 143 6.058 238.80/<0.0001 0.6288 

Middle 143 4.116 681.81/<0.0001 0.8286 

Lower 143 5.108 393.18/<0.0001 0.7360 

Hard Dough 

to Black 

Layer 

Upper 243 7.234 654.78/<0.0001 0.7384 

Middle 243 2.448 1331.21/<0.0001 0.8516 

Lower 243 10.893 159.07/<0.0001 0.4068 

Relationships between the within canopy position of M. sacchari colonies and the total 

number of M. sacchari on the entire plant separated by state and growth stage. All values 

with p= <0.05 are considered significant. Best fit models, determined by r2 value, are 

shown in bold. 

 

Overall, based on these analyses the middle position of the plant canopy is the 

most predictive position within the plant canopy regardless of region, state, and growth 

stage when all were evaluated independently. Although this general trend of middle 

position importance, continued when all the predictor variables were included, there were 
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few significantly different scenarios. Some states, at certain growth stages showed a 

different canopy position to be most predictive (Ch. 3: Appendix Table 1).  

It is important to consider that these models could be biased towards the middle 

position canopy since only two upper-most and lower-most leaves were considered for 

the other two positions, making many of the leaves in some growth stages the middle. 

Plants with only five leaves were removed from the analysis so every position had a 

minimum of two leaf representation. The maximum number of leaves on a plant was 12 

with an average of 9.5 leaves at growth stages 2-4, which had the most 90% green leaves. 

The correlation issue in this initial model is more than likely amplifying a trend that may 

not be as strong as this data suggests. This fundamental issue will lead to future models 

that will remove bias by either randomly selecting two leaves from the middle of the 

canopy or combing the upper and lower canopy positions.   

Even with correlation bias due to more leaves existing in the middle of the 

canopy, these results are still very important for practicality since the accepted manner of 

sampling for sugarcane aphid is to take an upper most and lower most leaf. These data 

suggests that this arbitrary two leaf sampling unit, though meant to be representative of 

the whole canopy distribution, may not be as representative as once presumed, and could 

be leading to a misinterpretation of the population intensity present. The inaccurate 

sampling unit being used may contribute to the idea that this aphid’s population “blows-

up” when really sampling has just not been representative of the true intensity per plant. 

Moving forward, perhaps a combination of two middle leaves, an upper and a middle, or 

any other combination including a middle leaf may be more representative of the 

intensity per plant.  
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Conclusions 

 This study allowed for understanding of the within field colonization patterns of 

the grain sorghum pest M. sacchari. Better understanding of how this pest colonizes a 

field can lead to a research-based approach at sampling to determine population intensity. 

Using the statistical and empirical models in this study, suggested that sugarcane aphid 

aggregation patterns vary by field and geographic location, and could influence the 

constructs of effective sampling plans that are developed for M. sacchari. In our study, 

aggregation patterns were different in fields located in Kansas, Oklahoma, and northern 

Texas than fields from Arkansas and South Texas. This study found that the best means 

of sampling a field regardless of region is to take two samples of three plants in a row 

within a 30m radius. If in the southern region it is beneficial to begin at a field edge and 

working into the center. This study indicated that while there are few scenarios that are 

statistically significantly different when all variables are considered, the trend is that a 

middle leaf in the plant canopy may increase predictability as a sample unit. When these 

results are integrated into a sampling plan at a field level there is no doubt that more 

effective measurements of intensity will be obtained leading to better management 

decisions.  
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CHAPTER IV 
 

 

ENUMERATIVE SAMPLING PLANS FOR MELANAPHIS SACCHARI (ZEHNTNER) IN 

COMMERCIAL GRAIN SORGHUM: FIXED SAMPLE SIZE AND SEQUENTIAL 

SAMPLING PLANS FOR POPULATION ESTIMATION AND CLASSIFICATION 

 

 

Abstract 

 Sugarcane aphid, Melanaphis sacchari (Zehntner) (Hemiptera: Aphididae) has 

been an economic pest of grain sorghum in the United States since 2013. Integrated pest 

management techniques, including host plant resistance, planting dates, and insecticide 

treatments have been developed to effectively manage the pest. Presumably, the capacity 

to determine effectiveness and reliability of these tools depends on a researcher’s ability 

to monitor sugarcane aphid populations in the field. Yet, no research-based sampling 

plans have been developed to reliably estimate or classify sugarcane aphid intensities. 

The objective of this study was to develop three common enumerative sampling plans for 

sugarcane aphid in grain sorghum and evaluate their in-field practicality.  Using 134 

grain sorghum fields from four states, Taylor’s power law regressions identified two 

clumped, but significantly different aggregation factors based on geographic location. 
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The aggregation patterns identified in Kansas, Oklahoma, and northern Texas 

(identified as northern sampling regions) were like each other but different from patterns 

recorded in southern Texas and Arkansas (identified as southern sampling regions. 

Enumerative and sequential sampling plans using fixed precision levels of 0.10 and 0.25 

for three action levels (low, medium and high) were developed and evaluated for each 

region. A fixed sample size curve was also developed. Sequential sampling models for 

population density estimation and population intensity classification using a cumulative 

number of aphids vs. the number of plants sampled method were developed. With one 

exception, the number of samples required to monitor this aphid with an acceptable level 

of precision far exceeded a realistic number for use in an applied sampling construct. 

This study provides evidence for the need of a binomial sequential sampling plan that 

quickly and efficiently classifies these populations at critical densities.  

Introduction 

 Melanaphis sacchari (Zehntner), (Hemiptera: Aphididae) commonly referred to 

as the sugarcane aphid, has been a moderate to severe economic pest of commercial grain 

sorghum since 2014 (Bowling et al. 2016). Since the first report of M. sacchari’s damage 

to grain sorghum in 2013, a substantial effort has been put forth to develop sustainable 

integrated pest management techniques for sugarcane aphid. While host plant resistance 

and insecticides are able to gain control of the pest at identified regional thresholds 

(Brewer et al. 2019), there is still no effective way to determine the density of a 

population, or classify a population’s intensity relative to a treatment threshold.  

 Before developing a sampling plan, it is critical to define the population’s 

statistical dispersion pattern (Pedigo and Buntin, 1994). There are several different 
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formulas for accomplishing this, one of the most widely accepted methods is to use the 

empirical model called Taylor’s power law (Taylor 1961). Taylor’s power law (TPL) is a 

robust empirical model for defining mean to variance relationships that often relate to 

dispersion pattern. TPL does not rely solely on the mean of a sample universe to define 

the population, therefore, it is less variable over time and space (Pedigo and Buntin, 

1994). TPL assigns a slope value (𝑏) to the linear relationship between the mean and 

variance of multiple sampling universes (Elliott 1977). This allows for a more reliable 

measure of spatial distribution over a multi-dimensional environment.  

Since the mid-19th century, enumerative sampling, whether by a fixed sample size 

or sequential sampling for population estimation/classification, has been used by 

scientists to estimate and monitor insect populations (Moon and Wilson, 2009; Pedigo 

and Buntin, 1994). There are two main reasons for sampling insects: to determine a 

density within a given environment or to classify a population below, at, or above a 

critical density (Pedigo and Rice, 2006). Scientists interested in monitoring important 

insect population densities for research typically require a higher precision level, usually 

around 0.10 (Moon and Wilson, 2009). Although less common than sequential sampling 

for population classification, sequential sampling for estimation of a population density is 

used in some species depending on the biology and abundance in the environment 

(Pedigo and Rice, 2006).  

On the contrary, for pest management decisions population density or population 

classification estimations can be set at a lower precision level, usually around 0.25, for 

practicality because lowering precision often lowers the sample size as well. For 

monitoring efficiency, sequential sampling plans are usually preferred over fixed sample 
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size plans because the required minimum sample size is adaptable based on population 

intensity within the sampling universe. Therefore, sequential sampling plans usually 

require less samples to provide enough information to make an action decision especially 

in sampling universes where the intensity is well above or below the critical density 

(Norris et al. 2003). The common critical density used in integrated pest management is 

an economic or action threshold based on an economic injury level (Moon and Wilson, 

2009).  

 Elliott et al. (2017) presented preliminary research on sugarcane aphid 

distribution in part of its geographic distribution range. Yet, sugarcane aphids overwinter 

in some areas and then migrate extensively over a wider geographic expanse each year. 

This led to the idea that a more robust data set was needed to accurately characterize its 

spatial distribution in order to effectively monitor this aphid. The objective of this study 

was to develop the three most common enumerative sampling plans, (fixed sample size, 

sequential sampling for population density prediction, and sequential sampling for 

population classification) for M. sacchari in grain sorghum. The first step of this study 

was to define the aggregation factor or factors of M. sacchari. The study ended with 

developing sequential sampling stop-lines for classification of this aphid at multiple 

economic thresholds.  

Materials and Methods 

Systematic Sampling Protocol 

 For this study the 134 sampling events were conducted in commercial grain 

sorghum fields measuring at least 16.2 hectares in size in Kansas, Oklahoma, Texas, and 

Arkansas using the stratified sampling protocol, described in depth in chapter 2. Each 
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sampling event consisted of aphid counts collected in situ from 54 two leaf samples per 

plant, within a 90m x 90m gridded sampling universe. In addition to the 134 sampling 

events previously mentioned, 50 additional external sampling events, collected in a 

similar fashion, were taken from sorghum fields in Kansas, Oklahoma, Texas, Louisiana, 

and Mississippi and used to validate the sequential sampling for population estimation 

models.  

Defining Dispersion Pattern and Aggregation Factors 

 Taylor’s (1961) empirical model (s2 = amb) was used to estimate M. sacchari’s 

aggregation in sorghum fields using PROC REG in SAS 9.4 (SAS Institute 2013). In the 

equation, s2 = the variance, m= the mean density and a and b are constants. The intercept 

(a) and slope (b values) from TPL are interpreted as a sampling factor and index of 

aggregation respectively. The index of aggregation (b) determines the aggregation type 

ranging from highly clumped (b<1) to randomly distributed (b=1) (Taylor, 1961). TPL 

regressions were calculated for each state, within designated regions, and combined into 

one overall data set utilizing 

log (S2) = log α + ƅ log (𝒙̅)      (1) 

 TPL aggregation factors were compared by state using equation 2 for the standard 

z-test slope comparison:  

(Z= 
b1-b2

√SEb1
2+SEb2

2
)         (2) 
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Where b is the TPL slope and SEb is the standard error of these slopes. The regional 

comparisons were also tested using a dummy variable regression conducted by using 

PROC REG in SAS 9.4.  

Fixed Minimum Sample Size Estimation at a Fixed Precision 

  Green’s (1970) formula (3) was used to define the minimum number of samples 

needed to estimate a population at a disclosed mean achieving a certain level of precision 

(Green, 1970). 

n = 
𝒂𝒎𝒃−𝟐

𝒄𝟐                             (3) 

Where n is the sample size, m is the sampling mean, a and b are TPL parameters, and c2 

are the fixed precision levels of 0.10 and 0.25. For this estimation, the means used in the 

formula were proposed economic thresholds per plant using a two-leaf sample (Gordy et 

al. 2019). To build minimum sample size curves with fixed precision, the mean in 

equation 3 was replaced with n = number of aphids per sample resulting in a relationship 

between the number of samples required for n number of aphids per sample.  

Sequential Sampling for Population Estimation 

 Predicted stop-lines for fixed precision population estimation were generated 

using equation 3 described by Green’s (1970) formula at precision levels of 0.10 and 

0.25. 

logTn = 
𝐥𝐧 (

𝑫𝟐

𝒂
)

𝒃−𝟐
+

𝒃−𝟏

 𝒃−𝟐
𝒍𝒏                   (4) 
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Where Tn = the cumulative number of aphids sampled, n = the total number of samples, 

D2 = desired precision level, and a and b = TPL parameters mentioned above. Stop-lines 

using Green’s fixed-precision sequential sampling formula were validated using 

Resampling for Validation of Sampling Plans (RVSP) developed by Naranjo and 

Hutchison (1997). In total 50 previously mentioned externally sampled fields were used 

to validate the sequential sampling for population estimation developed by equation 4. 

Each field was “sampled” with replacement over 500 iterations from which average 

sample sizes and average precision levels based on the two desired precision levels were 

calculated. Using the RVSP data output per field, min, mean, and max sample size and 

precision curves were developed spanning a range of sample sizes.  

Aphid Population Classification by Sequential Sampling 

 Unlike sequential sampling for population estimation, sequential sampling for 

classification is used to determine if (yes or no) the population intensity is above a critical 

density. For insects classified as pests like M. sacchari, this critical density is typically an 

economic threshold (ET). The stop-lines generated for this purpose are used to classify 

the pest population as above or below an ET in order to make a treatment decision to 

prevent intensities from reaching the economic injury level (EIL) where economic loss 

occurs. To estimate classification, stop-lines for negative binomial populations equations 

6 & 7 developed by Wald (1947) were used. A negative binomial distribution was 

assumed due to the populations being highly aggregated, but not confirmed. Before stop-

lines could be developed, Wald’s stop-lines require a common k to be calculated. A TPL 

adaption of the common k equation (Wilson and Room, 1983) was used to develop an 
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overall common k by generating a k value per sampling event then taking a total average. 

The adapted k formula (equation 5) is listed below.  

k = 
𝒎

(𝒂𝒎(𝒃−𝟏)−𝟏)
                (5) 

Where m = the data mean calculated in the typical manner, and a and b are TPL 

parameters mentioned above.  

d1= (b*n) + h1        d2 = (b*n) + h2                      (6) 

b = k * (
𝒍𝒏(

𝒒𝟐
𝒒𝟏

)

𝒍𝒏(
𝒑𝟐∗𝒒𝟏
𝒑𝟏∗𝒒𝟐

)
)      h1 = (

𝒍𝒏(
𝜷

𝟏−𝜶
)

𝒍𝒏(
𝒑𝟐∗𝒒𝟏
𝒑𝟏∗𝒒𝟐

)
)      h2 = (

𝒍𝒏(
𝟏−𝜷

𝜶
)

𝒍𝒏(
𝒑𝟐∗𝒒𝟏
𝒑𝟏∗𝒒𝟐

)
)      (7) 

Where m2 and m1 = the ET and 0.33 of the ET as suggested by published EIL’s (Gordy et 

al., 2019), p1= (m1/k), p2= (m2/k), q1=(1+p1), and q2 = (1+p2). Where k = common k, an 

aggregation factor calculated in equation 6, and in equation 4, d1 =the upper stop-line, d2 

= the lower stop-line, and n = the number of plant samples.  

Results and Discussion 

Aggregation Factors  

According to Taylor (1961), b values that are less than one describe a regular 

distribution, around one meaning a randomly distributed population, and a b greater than 

one is considered to be aggregated (Pedigo and Buntin, 1994; Taylor, 1961). For this 

study, data from each state were analyzed individually by regressing the log-mean to log 

variance (Table 6). The b values from each state ranged from 1.82 (Oklahoma) to 1.66 

(South Texas and Arkansas). All values were clumped. 
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Table 6: Taylor’s power law regression results by region and state 

Aggregation factor analysis results using Taylor’s Power Law. Categorized by location, 

number of sampling events (n), alpha and beta coefficients (Log α, Log ƅ) with standard 

error (SE), T-test values with p-values, and goodness of fit score (r2). Aggregation factor 

is determined by the slope (Log b); values lie between 1 and 2: 1 being classified as a 

random distribution, and 2 being classified as very highly aggregated distribution. 

 A z-test was performed on the b-values from the TPL analyses. Results from the 

z-test indicated that slopes (b-values) derived from fields in Oklahoma, Kansas, and 

North Texas were not significantly different (z = 0.50527, df= 1 p=0.3085). Likewise, 

there was no significant difference in b-value between south Texas and Arkansas (z = 

0.00738, df=1, p > 0.5000). States with no significant differences in slope were combined 

and re-analyzed (Table 6). The northern region’s (Kansas, Oklahoma, and north Texas) 

combined b-value (b = 1.76) and the southern region’s (south Texas and Arkansas) b 

value (b = 1.65) were significantly different (z= 1.8432, df=1, p=0.0329). To confirm that 

there was a significant difference in TPL values between the northern and southern 

region, a dummy variable regression analysis was also performed and confirmed that the 

two region’s aggregation factor were significantly different from one another (t = -1.89, 

df =1, p = 0.0507). 

 In theory, TPL values are associated with different species in an environment 

(Pedigo and Buntin 1994). However, it is not entirely uncommon for an aphid species, 

State/Region n Log α± SE T, p-value Log ƅ± SE T, p-value 
r
2

 

Northern 

Region 

207 2.58±0.054 47.62,<.0001 1.76±0.026 67.10,<.0001 0.96 

Southern 

Region 

53 2.56±0.164 15.62,<.0001 1.65±0.043 38.41,<.0001 0.97 

Kansas 17 2.54±0.185 13.74,<.0001 1.72±0.075 22.84,<.0001 0.97 

Oklahoma 131 2.82±0.061 46.45,<.0001 1.82±0.030 61.88,<.0001 0.97 

North Texas 59 2.13±0.117 18.16,<.0001 1.773±0.060 29.75,<.0001 0.94 

South Texas 33 2.66±0.188 14.15,<.0001 1.66±0.051 32.31,<.0001 0.97 

Arkansas 20 2.32±0.346 6.72,<.0001 1.66±0.084 19.70,<.0001 0.96 
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being very highly clumped, to have different b-values based on environmental conditions. 

In the Southern Great Plains, Giles et al. (2000) reported different b-values for greenbug 

distribution in winter wheat that were dependent on the time of year (fall vs. spring). In 

fall following wheat emergence, most greenbugs likely migrate to wheat from other 

hosts, whereas in spring, greenbugs originate from both overwintered populations in 

wheat and migrating populations from other hosts.  

Elliott et al. (2017) found that M. sacchari in Texas sorghum displayed an 

aggregation factor value that was significantly different from Kansas, Oklahoma, 

Louisiana, and Arkansas. They suggested that differing TPL values reported potentially 

related to differing overwintering strategies ( Brewer and Gordy, 2016) from southern 

states/regions to northern states/regions and could result in a need for different sampling 

protocols for a northern and a southern region. Although these results did not arrive at the 

same separation by states, they did suggest that there were differences in aggregation 

patterns based on geography. One explanation for the incongruity between the two 

studies may be reflected in the number and location of sampling events that this study 

encompassed relative to the data collected by Elliott et al. (2017). This study included 50 

sampling events split between south Texas and northern Texas, while the study reported 

by Elliott et al. (2017) included 17 sampling events from Texas and did not indicate their 

locations within the state. Additionally, this study included 2x sampling events from 

Arkansas collected over two years compared to those that originated from Arkansas by 

Elliott et al. (2017). The greater number of sampling events collected over two different 

years may account for the slight divergences in results.  
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Furthermore, spatial distribution separation between regions may be explained by 

over wintering patterns. Bowling et al. (2016) provided observational evidence that 

sugarcane aphid can overwinter on alternate hosts below 32° latitude and indicated that 

reports of seasonal patterns of detection over several years were consistent with the 

explanation that M. sacchari populations build in overwintering areas of North America 

and expand northward through wind-aided movement. Another study by Michaud et al. 

(2018) demonstrated in growth chambers that while M. sacchari can have relatively high 

survival rates at temperatures as low as -4 degrees Celsius, cultivated sorghum as well as 

M. sacchari’s common weed host johnsongrass, cannot. Therefore, the ability to 

overwinter successfully is not necessarily based on the biology of the aphid, but on the 

survival of a suitable host. Differences in statistical distribution patterns of M. sacchari 

seem to coincide with the presence of a living host all winter long.  

Additionally, cultivation differences may aid in differences seen between regions. 

In the southern region, sugarcane aphid is locally present on surviving johnsongrass when 

grain sorghum is planted in late March and April. Melanaphis sacchari presumably 

moves from the surrounding johnsongrass, using short directed flights into the vegetative-

stage grain sorghum. This type of local movement into the field from the edge could be 

what drives the less clumped aggregation factor seen in the b-value from the southern 

region.  

In contrast, M. sacchari has been reported to arrive, at the earliest, in late June to 

early July in the northern region when early planted sorghum is already at late vegetative 

or early flowering growth stages (Backoulou et al. 2018). Unlike the southern region, 

there are no living hosts available for the aphid to survive by the time cultivated sorghum 
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is a viable host. Therefore, M. sacchari in the northern region is deposited randomly in 

the environment as a result of long undirected flights where the aphid was swept up in 

long distance wind patterns (Brewer et al. 2019). The result of these undirected 

depositions are small colonies building in pockets throughout the field rather than 

building from the edge. These differences in deposition and colonization could account 

for the differences in clumping within the field.  

 (Parry, 2013) outlined four “basic rules” in the areal transport process for cereal 

aphids. They include: (1) uplift at the source, (2) transportation in the atmosphere, (3) 

deposition leading to initial distribution following transportation, and (4) subsequent 

local movement. Wallin and Loonan (1971) summarized observation patterns of dispersal 

for the aphid vectors of barley yellow dwarf virus via jet-streams in North America 

(Wallin and Loonan 1971); however, little is known about the local and long-distance 

migration patterns for sugarcane aphid in North America. Other studies have shown 

highly clumped, low intensity populations increase variability of TPL b values for the 

same species (Lepš 1993). Yet, sampling for this study was intentionally conducted 

during the early stages of sugarcane aphid colonization when population intensities were 

at, or below the current recommended treatment thresholds to ensure a functional 

sampling protocol. To remedy the possibility of high variance in the TPL values, samples 

that represented wide-ranging population intensities (0.7 to 550 aphids per leaf) were 

included in all data sets. This robust data set leads to the conclusion that the aggregation 

differences reported herein between the southern and northern regions are robust.  
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Minimum Sample Sizes at a Fixed Precision 

 Minimum sample sizes at fixed precisions were calculated for a high, medium, 

and low economic thresholds (ET) based on recent data which reports the economic 

injury level and corresponding ET’s per leaf, for fast and slow growing populations, 

across a similar geographic region (Gordy et al. 2019). All models developed for this 

study were based on a per plant average of aphids collected from a two-leaf sample. 

Gordy et al. (2019) reported ETs based on a per leaf average; therefore, we doubled the 

ETs reported by Gordy et al. (2019) to develop the models. Minimum samples sizes for 

the northern region were reported for ET’s of 200, 150, and 75 M. sacchari per plant 

based on a two-leaf sample at both 0.10 and 0.25 precision levels (Table 7).  

Table 7: Minimum Sample Size in northern and southern region at high, moderate, and 

low economic thresholds at precision levels of 0.25 and 0.10 

 

Likewise, minimum sample sizes for the southern region were reported for ET’s 

of 100, 80, and 50. The minimum sample size required to estimate aphid intensities for 

both regions at a fixed precision of 0.10 ranged from 258 to 472 plant samples. The 

minimum sample sizes required for a fixed precision of 0.25 ranged from 41 to 53 in the 

 

Using Green’s (1970) formula, minimum sample size values are reported at fixed 

precision levels. NR= Northern region, SR= Southern Region, and ET= Economic 

threshold.  
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southern region and 60 to 76 for the northern region (Table 7). Over the range of ETs, the 

northern region required 21 to 23 more samples at a fixed precision of 0.25 and 116-143 

more plant samples at a fixed precision of 0.10 compared to the southern region (Table 7)  

 In addition to minimum samples sizes at fixed precisions calculated for specific 

ETs, a fixed sample size curve was developed over a range of per plant averages (Figure 

1). At extremely low intensities of aphids per plant, the sample size necessary at a fixed 

precision of 0.10 is well over 1000 samples in both regions. At the lower precision of 

0.25, the number of required samples at low intensities exceeded 200 plant samples for 

both the northern and the southern region. Similarly, to what was reported in Table 2, the 

northern region requires more samples than are required for the southern region to 

achieve the same mean and precision level (Figure 1).  

It is not surprising that the northern region required more samples because a 

significantly higher degree of clumping occurs in the northern region compared to the 

southern. Yet, at very low intensities (25 M. sacchari per plant or less), the northern and 

southern region seem to be more similar than in higher intensity populations. This is also 

Figure 1: Fixed sample size curves for both regions at 0.10 and 0.25 precision 
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reflected in the TPL a intercept being very similar: 2.58 for the northern region, and 2.56 

for the southern. The low intensity similarities could be due to two things; very low 

intensities have higher levels of unavoidable sampling error (Elliott et al. 2003), or the 

southern region may have more representatives of the “fast” development rate 

populations as described by Gordy et al. (2019) resulting in larger differences at higher 

intensities. Overall, at all treatable intensities, these minimum samples size models 

suggest that in the northern region substantially more samples than in the southern region 

are required to meet the same level of fixed precision.  

Sequential Sampling for Population Estimation 

 Using Green’s (1970) equation 3, fixed precision stop-lines were calculated to 

estimate population density for both the northern and southern regions (Figure 2). Like 

the trend observed with the fixed sample size model, more samples were required to 

reach a stop-line for the northern region at both tested precision levels. In the northern 

region, a sampler would need a cumulative aphid count >1000 to reach a stop line from 

20 plant samples at a 0.25 precision level. In contrast, a sampler would reach the first 

stop line, at a precision level of 0.25, when the cumulative aphid count reached just under 

300 from the same number of plant samples. In both the northern and the southern region, 

the 0.10 precision level stop line was substantially higher than the 0.25 precision stop-

line. This model suggests, again, that at very low M. sacchari densities the sampler would 

need to take well over 80 or 100 samples to obtain a high level of precision. The high 

number of samples needed to reach a stop line for a precision level of 0.10 in aphids is 

not unprecedented for aphids being a relatively small insect and having a negative 

binomial distribution (Elliott et al. 2003). 
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Figure 2: Green’s (1970) fixed precision sequential sampling stop-lines for population 

density estimation 

 

 

 

Average validation results of this model (Table 8) suggested that many more plant 

samples could be required to estimate the population density than the model initially 

suggested. The northern and the southern region would require sample sizes in the 

hundreds to achieve either level of precision. Fitting the model better than the average 

sample size, the validation model predicted average precision for each region was always 

below the desired precision.  
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Table 8: Resampling for validation of sampling plans (RVSP) average data output over 

500 iterations 

Region N 
Desired 

Precision 

Observed mean 

Intensity 
(per plant) 

Average Predictions for Fixed Precision-

Sequential Sampling Plan Across 500 

Iterations 

Precision (D) 
Average sample 

Size 

Mean Min. Max Mean Min. Max 

Northern 25 0.1 58.5 0.09 0.08 0.1 914 200 978 

Northern 25 0.25 58.5 0.22 0.15 0.3 147 124 178 

Southern 25 0.1 142.5 0.1 0.08 0.11 582 190 642 

Southern 25 0.25 142.5 0.23 0.13 0.31 95 76 121 

Average estimations for precision and average sample size based on 25 independent 

validation data sets per region. Validation sampling iterations based on Green’s (1970) 

formula for sequential sampling for population estimation. Desired precision was 0.10 or 

0.25 and minimum sample size was set to 10.  

 

The minimum, mean, and maximum sample size prediction and precision curves 

(Figures 3 and 4) align with the calculated fixed-precision model better than the total 

averages. These figures represent the more realistic range of data across multiple 

population densities. A reason there could be slight discrepancy between the stop-lines 

estimated by Green’s and the average validation output was the use of the “with 

replacement” option when running the 500 sampling iterations. Used commonly (Naranjo 

and Castle 2010, Naranjo and Hutchison 1997, Tran and Koch 2017), the replacement 

option skews the field data slightly in order for the iteration to continue in highly 

clumped populations with many zeros.  
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Figure 3: Northern region average sample number and precision curves from RVSP 

output 

 

 

Figure 4: Southern region average sample number and precision curves from RVSP 

output 
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 In summation, the validation results seemed to confirm the results of the model 

calculated using Green’s formula to estimate population density at fixed precision levels. 

As for application of this sequential sampling model for population estimation, only in 

the southern region could this model be deemed efficient due to lower sample sizes. Even 

so, having to count hundreds of aphids before reaching a stop-line may take too much 

time for most producers and lead to estimates that introduce a large amount of sampling 

error. In the northern region enumerative sequential sampling to estimate population 

density due to high sample sizes and high cumulative aphid counts, seems unreasonable 

for an applied sampling protocol.  

Wald’s (1947) Sequential Probability Ratio Test (SPRT) Stop-Lines 

 The common k derived from equation 4 was used to describe aggregation of 

insects was calculated for the northern region (0.579057) and southern region (1.888831) 

was more incongruent than TPL previously suggested. The stop-lines show that at 5% 

and 10% alpha and beta error in both regions the minimum sample size to cross and 

upper or a lower stop-line would be at 20 plant samples (Figures 5 and 6). To be expected 

the highest threshold (200 aphids per plant) requires the most cumulative aphids to reach 

a treatment threshold. However, true to the other two sampling plans described in this 

paper, fields in the southern region require much lower cumulative aphids to reach a 

treatment threshold than those in the northern region regardless of ET. At the high ET of 

100, the southern region only requires 1000 cumulative to reach a treatment threshold 

within 20 plant samples. In comparison at an ET of 75 aphids per plant, the northern 

region requires 2300 or more aphids to reach a treatment threshold in the same 20 plant 
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samples. This variation in cumulative aphid requirements can be attributed to the 

significant differences in aggregation seen in both the TPL and common k values.  

 

Figure 5: Wald’s (1947) SPRT stop-lines for classification of M. sacchari at treatable 

and non-treatable levels for the northern region. The upper and lower limits of the 

stop-lines are dashed at 5% and solid at 10% alpha and beta error. If cumulative aphids at 

a given number of plant samples is above the upper limit insecticidal treatment is 

warranted at that threshold. If the minimum sample size of 20 plants had less than the 

lower limit of cumulative aphids, no treatment is warranted at that economic threshold. 

Note the variation in y-axis at different economic thresholds.  
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Figure 6: Wald’s (1947) SPRT stop-lines for classification of M. sacchari at treatable 

and non-treatable levels for the southern region. The upper and lower limits of the 

stop-lines are dashed at 5% and solid at 10% alpha and beta error. If cumulative aphids at 

a given number of plant samples is above the upper limit insecticidal treatment is 

warranted at that threshold. If the minimum sample size of 20 plants had less than the 

lower limit of cumulative aphids, no treatment is warranted at that economic threshold. 

Note the variation in y-axis at different economic thresholds.  

While often used for binomial sequential sampling (Giles et al. 2000, Pedigo and 

Buntin 1994, Prager et al. 2014, Severtson et al. 2016), Wald’s (1947) sequential 

sampling probability ratio (SPRT) stop-lines for enumerative sequential sampling plans 

can be utilized as well (Carvalho et al. 2007, Peng and Brewer 1996). In fact, for insects 

that fit a known distribution pattern (random, aggregated, or regular) Wald’s SPRT is 

preferred over Iwao’s (1985) confidence interval method (Pedigo and Buntin 1994). 

Based on M. sacchari’s TPL value and adjusted common k value, the population 

 

 



69 
 

distribution is aggregated. It is for this reason Wald’s SPRT stop-lines for negative 

binomial distributions was deemed the best fit model to classify intensities above or 

below the selected ETs.  

 As was seen in the sequential sampling for population estimation, only in the 

southern region does this sequential sampling plan seem moderately applicable in a field 

scouting situation. The northern region still required more sampling at higher cumulative 

counts than may be plausible at the field level when accounting for time and accuracy of 

counts well over 1000. Twenty samples, the minimum number of samples required, is 

still pushing the higher end for efficient sampling protocols.  

Conclusions 

This study provided three different enumerative sampling protocols to monitor M. 

sacchari in grain sorghum. The first protocol was a fixed sample size plan that provided 

the minimum required number of samples needed to reach a mean, pre-selected intensity 

at 0.10 and 0.25 precision. Essentially, the number of samples required to estimate a 

population at a given mean was too high for practical application for either research or 

scouting purposes at a 0.10 precision level. At a 0.25 precision level, fixed sample sizes 

were reasonable for either region, for research application, when M. sacchari intensities 

were high. Only in the southern region at high intensities or using a high economic 

threshold would the fixed sample size plan at a 0.25 precision level align with current 

practices for scouting (Szczepaniec, 2018) and be practical for application at a field level.  

 The second enumerative sampling plan developed in this study was the sequential 

sampling to estimate population density within a field at a fixed precision level.  While 
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the calculated stop-lines for fixed precision at the 0.25 level seemed practical at a 

research level, the validation of this plan demonstrated higher required sample sizes then 

originally predicted and high variation in precision depending on field intensity.  

 The third protocol was sequential sampling for classification of a population using 

economic thresholds. This sampling plan, similarly, to the other two sampling plans 

showed that in the southern region these stop-lines may be practical for in-field use. 

However, the sequential sampling for classification, like the other two sampling plans, 

did not appear practical for use in the northern region.  

 Overall, this study was a testament to how important defining 

distribution/aggregation patterns can be and how much they can affect the outcome of a 

sampling plan. Although both regions have definitively aggregated populations, as aphids 

often do, the difference in the northern vs the southern region resulted in only the 

southern region having a sampling plan that could be practical for field use. To that 

effect, even in the southern region, at threshold level population intensities the sampler 

would still have to take between 20-40 plant samples and keep track over well over 1000 

cumulative aphid counts. If cumulative aphid counts are done with high accuracy this 

would take even an experienced sampler a very long time. The time needed to estimate or 

classify a population in this way would be costly in an integrated pest management 

program (Babu and Reisig 2018). This study, although providing insight to what it would 

take to precisely estimate a field population, provides evidence to why a binomial 

sequential sampling plan to classify a population may be ideal for the monitoring and 

management of M. sacchari.  
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CHAPTER V 
 

DEVELOPMENT OF BINOMIAL SEQUENTIAL SAMPLING PLANS FOR SUGARCANE 

APHID IN COMMERCIAL GRAIN SORGHUM 

Abstract 

Sugarcane aphid, Melanaphis sacchari Zehntner, is a significant economic pest in 

grain sorghum in the Southeastern US and southern Great Plains. A collaborative study 

led by Oklahoma State University was conducted to develop an effective scouting plan 

for M. sacchari that allows growers and consultants to quickly determine when an 

economic threshold has been met. From 2016-2017, M. sacchari was sampled from 

commercial sorghum fields that included more than 331 sampling events over 140 

locations in six states (OK, KS, TX, AR, LA, MS). Tally threshold regressions were 

analyzed to define the relationship between the mean M. sacchari density per leaf and 

proportion of plants infested. After the fitness and practicality of the model was 

considered, tally thresholds of 50 and 100 aphids per plant were selected. Wald’s 

sequential probability ratio test (SPRT) was used to determine stop lines for both 

sampling plans, which ranged from 10-24 plant samples per sampling event, with an 

average of 11 plant samples per sampling event, depending on state, action threshold, and 

error level. The binomial sampling plans were validated using 48 externally sampled 

fields analyzed with resampling for validation of sampling plans (RVSP) software. An in-

field sampling tool was developed using the tally threshold of 50 M. sacchari.  
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This study demonstrated that a control decision for M. sacchari with low error 

could be made with an average of 11 samples in sorghum fields across all states and 

action thresholds. Most importantly, this study provided a dynamic sampling plan for M. 

sacchari in sorghum that is operational for any location, yield goal, or treatment plan.   

Introduction  

In 2013, Melanaphis sacchari became a severe economic pest of grain sorghum 

and scientists from several disciplines responded to identify and develop management 

tools for this pest (Bowling et al. 2016, Armstrong et al. 2017, Brewer et al. 2019). Host 

plant resistance, adaptions in cultural practice, and chemical control have shown to 

reduce the destruction M. sacchari can cause. However, there has been no research-

based, rapid scouting plan to determine when M. sacchari is above or below an economic 

threshold (ET).  

Sampling plans are typically designed for detection of an organism, for estimating 

population density of an organism or for making decision about whether pest abundance 

is above or below a critical threshold (Moon and Wilson 2009). A sampling plan that 

combines early detection and objective monitoring of pest infestation levels is essential 

for administering effective control (Hodgson et al. 2005). A sequential sampling plan 

offers a flexible, statistically precise, and temporally efficient method for classification of 

insect density as it relates to a threshold density (Moon and Wilson 2009). Such plans are 

available for aphids in other crops (Naranjo and Hutchison 1997, Giles et al. 2000, 

Hodgson et al. 2005, Pedigo and Rice 2006, Severtson et al. 2016). Integrating a 
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binomial, or presence/absence, component to a sequential sampling plan increases the 

speed of sampling by removing the need to enumerate the individual aphids on a sample 

unit (Pedigo and Buntin 1994). Binomial sequential sampling plans are regarded as ideal 

for scouting with intent to make a treatment decision due to their fast and reliable nature 

(Pedigo and Rice 2006). 

Early sampling recommendations for M. sacchari were rudimentary and control 

decisions were based on a percent of plants with substantial honeydew on them (Catchot 

et al. 2015). Two more recent M. sacchari sampling protocols are based on an intensity 

per-leaf economic threshold or by a growth stage “threshold”. The per-leaf threshold 

sampling protocol directs the scout to estimate the aphid intensity on an upper most and 

lower-most leaf on ten randomly selected plants, in four different locations within a field 

(Biles 2018). If the average M. sacchari per leaf is more than 50, the recommendation is 

to chemically treat within three days (Biles 2018, Gordy et al. 2018). This sampling 

method is based on published research by Szczepaniec (2018) done exclusively in the 

high-plains of Texas. While the research objectives were largely to determine a yield-

based economic threshold, no sampling protocol was discussed (Szczepaniec 2018). This 

leaves the question of why 10 samples from four stops of ten plants are needed.  

Another newly developed “threshold” based sampling plan incorporated growth 

stage. The sampling plan recommends treatment if 20-30% of plants (based on a two-leaf 

sample of an upper-most and lower-most) are infested with 50 or more M. sacchari (Biles 

2018, Gordy et al. 2018). This sampling plan, while binomial, is not sequential and 
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requires four stops of ten randomly selected plants making a total of 40 plant samples 

(Biles 2018, Gordy et al. 2018). Additionally, it is not adjustable to variable economic 

thresholds. Multiple other scouting protocols and recommended thresholds exist ranging 

from 40-60 samples, 20-30% infested with 25-125 sugarcane aphids per leaf or per plant 

( Brewer and Gordy 2016, Royer 2016, Armstrong et al. 2017, Elliott et al. 2017, 

Sorghum Checkoff 2017 Royer, 2018). Despite these recommendations, there remains no 

refereed study of a sampling protocol that encompasses multiple states, sites, and growth 

stages to produce a rapid classification protocol for M. sacchari.  

The lack of a rapid decision tool in an integrated pest management program can 

result in yield loss caused by undetected aphid intensities that well exceed the economic 

injury level (EIL) or unnecessary chemical treatment when aphid intensities are well 

below an established economic threshold (ET) (Ahuja et al. 2015). The objective for this 

study was to develop a research-based, binomial sequential sampling plan for M. 

sacchari, that is adapted for multiple growth stages of sorghum over a broad geographical 

area. Such a tool can help producers determine when an ET had been met in order to 

make a treatment decision quickly with high precision.   

Materials and Methods 

 Throughout the 2016 and 2017 growing seasons data were collected from 281 

sampling event that took place at 134 locations across Kansas, Oklahoma, Texas, and 

Arkansas. All samples were collected from commercial sorghum fields using a stratified 

sampling protocol in a 3x3 cell grid scaling 90m X 90m. Within each 30m X 30m cell, 
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three adjacent plants within a row from two randomly selected stops were examined.  

Each plant sample consisted of a complete enumeration of M. sacchari from two leaves. 

Each sampling event consisted of 54 plant samples. A complete description of the 

standardized sampling procedure is outlined in chapter two.   

 In addition to the 281 sampling events described above, an additional 48 sampling 

events were used for validation of the sampling protocol. These added data sets were 

externally sampled in Kansas, Oklahoma, Texas, Louisiana, and Mississippi. Fields 

sampled in Louisiana and Mississippi where completed using the stratified sampling 

protocol described above. The fields sampled in Kansas, Oklahoma, and Texas were done 

using a modified version of the sampling plan with inverse “U” shaped pattern instead of 

a grid. In all sampling events, three consecutive plants within a row were enumerated per 

stop, and stops were within 30m of one another. Each sampling event began at an edge of 

the field and moved inward. All sorghum growth stages were represented in the data sets 

used for development and validation. 

Development of a Tally Threshold and Binomial Sequential Sampling Plan  

 Using equation one (Pedigo and Buntin 1994, Giles et al. 2000) relationships 

between the proportion of infested plants with ≥T aphids (PT) and the mean (m) number 

of aphids per plant based on a two leaf sample were evaluated for fitness using the 

coefficient of determination (r2)  (Table 9). The parameters for α and ƅ for ln(m) and ln 

(1-PT) were derived from regression (PROC REG, SAS 9.4).  

Ln(m) = α + ƅln (-ln [1-PT])      (1) 
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 To calculate stop lines for the binomial sequential sampling plan were based on 

Wald’s sequential probability ratio test (SPRT) was used (equation 2) (Wald 1947, 

Alyousuf 2018).  Tally thresholds of 50 and 100 were used due to a relatively high r-

squared value from regression analysis and the visual ease of identification of 50 and 100 

or more aphids (Morgan et al. 2014, Gordy et al. 2018, Szczepaniec 2018).  

TU (n) = Bn + A                                  (2) 

TL (n) = Bn – C 

B = ln [(1-P0 ) / ( 1-P1 ) ] / ln [ P1 ( 1-P0 ) / ( P0 ( 1-P1))] 

A = ln [(1 – β) / α] / ln [ P1 ( 1-P0 ) / P0 (1-P1))] 

C = ln [ β / ( 1-α) ] / ln [ P1 ( 1-P0 ) / P0 (1-P1))] 

In equation (2) n = total number of plant samples; T(n) = the total number of plants 

infested with at least T aphids; P1 (upper parameter) and P0 (lower parameter) were set at 

a maximum of ±0.15 of  action thresholds set at 0.2, 0.3, 0.4, and 0.5 for T = 50 and 0.1, 

0.2, 0.3, and 0.4 for a T = 100.  Where B = slope and A and C are the upper and lower 

intercepts. Type I and type II error were calculated equally at α and β or 5% and 10% 

probability, with a type I error being defined as treatment when the actual aphid intensity 

is below the economic threshold and type II error being defined as no treatment when the 

actual aphid intensity is above the economic threshold.  
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 After stop lines were developed, the binomial sequential sampling plan was 

validated using Resampling for Validation of Sampling Plans (RVSP) software at T=50 

and T= 100 (Naranjo and Hutchison 1997). Parameters for validation iterations were set 

the same as the development of the stop lines with P1 (upper) and P0 (lower) boundaries 

at ±0.15 for all action thresholds and T values. Alpha and beta error were set at 0.05 and 

0.10 for each test. Software preformed 500 iterative samplings on all 50 of the externally 

sampled fields described above. Average sample number (ASN) and operating 

characteristics (OC) were determined for all action thresholds at each tally threshold. 

ASN and OC curves were generated in Microsoft Office Excel by plotting the RVSP 

output per sampling event against the proportion of infested plants with T number of 

aphids.  

Results 

Tally Threshold Determination 

 Melanaphis sacchari population intensity ranged from 0.01-1109.11 aphids per 

plant in the development set, and 0.32-2415.74 aphids per plant in the validation data set. 

In total, fifteen different regression models were initially evaluated ranging from a tally 

of 1 to 250 aphids per plant (Table 9). The tally thresholds (T) that best fit the regression 

model between proportion infested with T aphids and the mean number of aphids per 

plant were T = 160, 165, and 170 (r2=0.90). The least fit model was T = 1 (r2=0.78). After 

evaluating the initial tally threshold models, values were selected for re-evaluation based 

on having goodness of fit and by having a value that was practical for scouting. A ceiling 

mean number of aphids per plant was set at ≤ 215 aphids (Table 10). By limiting the 
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mean number of aphids per plant, we removed all fields that had aphid densities that were 

well beyond any realistic economic injury level (EIL). The remaining fields in the data 

set were ones that were at or approaching any reported economic threshold as to make 

decision making more realistic and useful for the sampler (Brewer and Gordy 2016, 

Szczepaniec 2018). After re-analyzing the data with the mean aphids per plant limitation 

the best fit model was a tally threshold value of 160 (r2=0.85).  The tally threshold of one 

aphid was, again, the least fit model (r2=0.52). 

Table 9: Predicted relationship between the proportion of plants infested with selected 

tally thresholds (T) of M. sacchari and the mean intensity of M. sacchari per plant 

TA NB α±SE ƅ±SE MSEC 

r
2

 

1 250 2.58±0.10 1.43±0.05 1.06 0.78 

5 217 3.69±0.09 1.27±0.04 0.83 0.83 

10 187 4.24±0.10 1.18±0.04 0.74 0.85 

25 139 4.92±0.11 1.05±0.04 0.73 0.84 

50 106 5.35±0.11 1.00±0.04 0.63 0.86 

75 94 5.65±0.12 0.97±0.04 0.58 0.86 

100 84 5.84±0.12 0.94±0.04 0.50 0.88 

150 70 6.02±0.10 0.87±0.04 0.41 0.89 

155 68 6.04±0.11 0.84±0.04 0.44 0.87 

160 67 6.12±0.11 0.89±0.04 0.42 0.90 

165 65 6.11±0.10 0.87±0.04 0.40 0.90 

170 65 6.13±0.10 0.87±0.04 0.40 0.90 

175 65 6.13±0.11 0.86±0.04 0.40 0.89 

200 61 6.20±0.11 0.86±0.04 0.40 0.89 

250 58 6.38±0.13 0.85±0.05 0.44 0.86 

Table shows results of regression analysis of log of PT by log of the mean where PT is the 

proportion of plants infested with T aphids, and the mean is the average intensity per 

plant by sampling event of 54 two plant samples. A= the number of aphids present to be 

considered infested; B= number of sampling events; C= mean standard error.  
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Table 10: Predicted relationships between the proportion of plants infested with selected 

tally thresholds (T) of M. sacchari and the mean (limited to ≥215) intensity of M. 

sacchari per plant 

T n α±SE ƅ±SE MSE r
2 

1 147 2.55±0.10 1.01±0.08 1.04 0.52 
50 96 5.24±0.14 0.97±0.05 0.63 0.81 
75 84 5.60±0.15 0.94±0.05 0.57 0.81 
100 74 5.76±0.15 0.92±0.05 0.50 0.82 
150 60 5.90±0.15 0.83±0.05 0.40 0.83 
160 55 6.00±0.15 0.84±0.05 0.37 0.85 
200 51 6.03±0.16 0.81±0.05 0.39 0.82 

Table shows results of regression analysis of log of PT by log of the mean where PT is the 

proportion of plants infested with T aphids, and the mean is the average intensity per 

plant, limited to averages no greater than 215 SCA, by sampling event of 54 two plant 

samples. A= the number of aphids present to be considered infested; B= number of 

sampling events; C= mean standard error 

To evaluate which tally thresholds should be developed further, simple scatter 

plots were made comparing proportion infested with T number of aphids to the field 

average number of aphids per plant based on the two-leaf sample (Figure 7). The addition 

of a logarithmic trendline provided better visualization of which tally thresholds would 

relate to potential thresholds by providing a point of reference for where percent of plants 

infested with T aphids meets an average aphid intensity per plant. For example, if an 

economic threshold was determined to be an average of 100 aphids per plant, the sampler 

could determine that threshold was met when 30% of plants inspected had 50 or more 

aphids, whereas with a high T value just over 10% had to be deemed infested to be 

considered at a treatable level. The models selected were based on a two-leaf sampling of 

54 plants per sampling event. If a tally threshold of 160 aphids per plant was considered, 

a treatment decision could be made in as few as 6 plants. Because it was decided to 
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require a minimum sample size of 10 plants before a decision could be made, sampling 

plans for 150 and 160 aphids per plant were discontinued and efforts were continued to 

develop plans using tally thresholds of 50 and 100 aphids per plant.   

 

Figure 7: Empirical relationship curves with varying T-values. Empirical relationship 

curves between the proportion of plants infested with 50,100,150, and 160 or more M. 

sacchari and the average number of M. sacchari per plant.  
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Calculations of Wald’s SPRT Stop-Lines  

Once tally threshold values (50 and 100) were selected for further development, 

stop lines were calculated for them at varying action thresholds (Figures 8 and 9) using 

equation 2 from materials and methods. The action thresholds chosen for the tally 

threshold of 50 aphids per plant relate to mean aphid intensities per plant of 25 (20% 

infested), 75 (30% infested), 100 (40% infested), and 150 (50% or higher infestation). 

The action thresholds chosen for the tally threshold of 100 aphids per plant relate to the 

mean aphid intensities per plant of 25 (10% infested), 75 (20% infested), 100 (30% 

infested), and 150 (40% or higher infestation). These tally thresholds assimilated as many 

data points as possible over a range of aphid population intensities and accommodated 

the variable action thresholds listed in each state. This allowed for construction of a more 

dynamic and adjustable sampling protocol as economic thresholds change (Brewer and 

Gordy 2016).  
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Figure 8: : Decision stop-lines for tally threshold of 50 at varying ATs.Decision stop 

lines at an action threshold of 0.2,0.3, 0.4, anf 0.5 for a tally threshold of 50 or more 

aphids per plant. Calculated using equation 2 Wald’s SPRT (1949). Type one and type 

two error are reported at levels 0.10 and 0.05.  

Figure 9: : Decision stop-lines for tally threshold of 100 at varying ATs. Decision 

stop lines at an action threshold of 0.2,0.3, 0.4, and 0.5 for a tally threshold of 100 or 

more aphids per plant. Calculated using equation 2 Wald’s SPRT (1949). Type one and 

type two error are reported at levels 0.10 and 0.05.  
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Validation of Sampling Protocols  

The results from the validation software (RVSP) were promising due to low 

variability in average sample number (ASN) despite changes in both error levels and 

action thresholds (Table 11). Despite dramatic differences in geographic location and 

action thresholds, the number of samples necessary to make a treatment decision fell well 

below the number required for other sampling protocols even at very low error rates. At a 

type I and type II error level of 0.10 for both tally thresholds the range for ASN over 500 

sampling iterations was between 10 and 12 plant samples with 11 samples being the most 

frequent across all action thresholds.  For a type I and II error level of 0.05 for both tally 

thresholds the ASN in 500 sampling iterations ranged from 10 to 15 samples with 11 

remaining the most common ASN across all action thresholds. The highest probability of 

not treating was 91% determined by the average operation characteristic (OC) in tally 

threshold of 100 at action thresholds 0.3 and 0.4. The lowest probability of not treating 

based on the average OC was 70% at the lowest action threshold and T of 100 (Table 11).  

All operation characteristic averages and average sample number curves can be examined 

in figures 10 and 11.  
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Table 11: RSVP Wald’s SPRT validation of Binomial Sequential Sampling Plans 

Tally 

Threshold 

(total M. 

sacchari/plant) 
Action Thresholds 

Average Statistics for 500 Sampling 

Iterations 
           OC            ASN 

0.10 

(n=47) 
 0.05   

(n=46) 
           0.10 

(n=47) 
0.05 

(n=46) 
100 0.1  0.71 0.70 12 15 
100 0.2  0.84 0.86 11 11 
100 0.3 0.91 0.90 11 11 
100 0.4 0.91 0.91 10 11 
50 0.2 0.74 0.76 11 12 
50 0.3 0.86 0.86 11 12 
50 0.4 0.87 0.87 11 11 
50 0.5 0.89 0.89 10 10 

Table portrays predicted values of the 500 sampling iterations created by the RVSP 

validation software on 50 external sampling events. Where OC stands for operating 

characteristic or the probability of not treating, and ASN stands for average sample 

number or the number of plants the sampling would have to evaluate on average 

 

Discussion 

 This study developed two dynamic binomial sequential sampling protocols that 

use the presence or absence of 50 and 100 M. sacchari per plant. The protocols are 

consistent with sampling methods recommended by Brewer and Gordy (2016), Biles 

(2018), and Gordy et al. (2018) (e.g. enumeration of a two-leaf sample unit to predict the 

average number of aphids per plant). The biggest differences between the sampling 

protocols developed for this study and those recommended by Biles (2018) are that the 

former was developed over a large geographic area, requires fewer samples to make a 

treatment decision, is adaptable to a variety of action thresholds, and specifies how to 

sample across that large geographic area. Regarding the very low average number of 
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samples required, this may be explained by the variation in means per sampling event 

being so polarized. Very high aphids per leaf or very low aphids per leaf was observed 

and reflected in both the data used to build the sampling plan and to validate it. The low 

representation over all sampling events of intensities close to threshold, could explain 

why eleven samples is enough to make a treatment decision. Additionally, the NANOVA 

in Chapter III demonstrated that there is low variance in aphid counts between cells, since 

there are six samples per cell, by essentially sampling two cells, one may be sampling 

enough to confirm a treatment decision.  
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Figure 10: Operation characteristic and average sample number curves for T=50 

Operation characteristic and average sample number (ASN) curves for tally threshold of 

50 aphids or more. Varying action thresholds (AT) and alpha and beta error are included 

per graph pair. Both curves are based on 500 computer generated sampling iterations 

using 48 externally sampled fields.  
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Figure 11: Operation characteristic and average sample number curves for T=100. 

Operation characteristic and average sample number (ASN) curves for tally threshold of 

100 aphids or more. Varying action thresholds (AT) and alpha and beta error are included 

per graph pair. Both curves are based on 500 computer generated sampling iterations 

using 48 externally sampled fields. 
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These sampling protocols were developed from data spanning two growing 

seasons from six states, which is a highly robust data set compared with data used to 

develop binomial sequential sampling plans for row crop pests used today (Giles et al. 

2000, Hodgson et al. 2005, Severtson et al. 2016). Also, the sampling protocol described 

in this study requires fewer samples to make a treatment decision compared with 

currently recommended sampling protocols for M. sacchari (Brewer and Gordy 2016, 

Biles 2018, Gordy et al. 2018). Based on the RVSP validation analysis, a treatment 

decision could be made with a minimum of 10 samples and a maximum of around 22 

plant samples (Figures 10 and 11, Table 11). Even if the maximum number of samples 

was required in a field with an aphid intensity very close to threshold, the user of this 

protocol would sample only one half of the plants that the other protocols currently 

require. Because this sampling recommendation requires three consecutive plants per 

stop, the minimum sample number needed would be twelve plants (four stops of 3 plants) 

which only increases the precision of a treat/don’t treat decision.  

Secondly, this study not only provides two decision-based sampling protocols 

using two separate tally thresholds, but also includes four action thresholds per sampling 

protocol. The extensive range in action thresholds from 10% infested to 50% infested, or 

a plant average of 25-150 aphids, allows the user to adjust the sampling protocol to 

accommodate varying ET’s, depending on the year, location, cost of treatment, 

commodity price, and personal yield goals. The protocol developed was built or validated 

using over 300 sampling events from more than 140 different sites across six states and 
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included data from all growth stages. The strong relationships seen within the models of 

percent infested with “T” aphid’s vs mean number of aphids per plant allows for 

confidence that either sampling protocol to determine precisely if an insecticide treatment 

is needed anytime during the growing season, across multiple states, and for multiple 

action thresholds.      

Lastly, based on previous within field distribution data reported in Chapter IV, we 

can recommend best practices when scouting to increase precision. Using the data from 

this study combined with our previous study that describes within field and within plant 

distribution patterns, a sampling program is recommended to determine when an action 

threshold has been met. First, begin sampling at the edge of a field which should be no 

larger than 16.2-hectares, based on previously examined variance components. If field is 

larger than 16.2-hectares, additional samples will be necessary for every 16.2-hectares. 

One plant sample should include two 90% green leaves from the mid canopy, excluding 

the upper and lower-most two leaves.  Simultaneously, determine if these two leaves 

have 50 or more aphids combined, and keep track of all plants that have more than 50 

aphids. These models are built upon the relationship of aphid numbers from two leaves 

and the proportion of plants that had 50 or more aphids in order to predict a plant average 

intensity. For this reason, two leaves should be evaluated simultaneously to match the 

relationships analyzed. Repeat this process on the next two consecutive plants to make a 

stop that comprises three plants in a row. Each stop should be spaced 30m of the previous 

stop using a sampling pattern in the shape of an inverted “U”. A decision could be made 
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after a minimum of four stops are made. An example of the field guide has been included 

in the appendix (Ch. 5: Appendix Figure 13).  

Moving forward, the binomial sequential sampling protocol that estimates 

presence or absence of a T = 50 or more aphids per plant appears to be the best choice. It 

is congruent with recommendations that already exist in the literature and extension 

publications (Brewer and Gordy 2016, Biles 2018, Gordy et al. 2018, Szczepaniec 2018), 

so there is a higher chance for quick adaption by end users. Other T values could be used, 

but a recent study that evaluated how humans can visually sense numbers found that 

adults were able to easily identify black dots as being roughly fifty with low error 

margins compared to clumps of 80 or more (Morgan et al. 2014). The study concluded 

that while variables like texture, blurriness, contrast, and aggregation played a part in 

people’s ability to number sense, people could usually identify roughly 50 dots with less 

than 10% error (Morgan et al. 2014). In conclusion, the integration of this binomial 

sequential sampling protocol, using the presence or absence of 50 or more M. sacchari, 

into existing integrated pest management systems will result in faster, more reliable 

treatment decisions. Thus, lowering the amount of unnecessary insecticide application 

saving time and money for producers.  
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CHAPTER VI 

 

CONCLUSIONS 

 

The objectives of this study were to: 

1. Elucidate the within-field aphid count variance per sample universe and define 

within-plant distribution patterns of sugarcane aphid in commercial grain 

sorghum. 

2. Develop the three most common enumerative sampling plans, (fixed sample size, 

sequential sampling for population density prediction, and sequential sampling for 

population classification) for M. sacchari in grain sorghum. 

3. Develop a research-based, binomial sequential sampling plan for M. sacchari, that 

is adapted for multiple growth stages of sorghum over a broad geographical area. 
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For the first objective, nearly 300 sampling  events occurred in 134 grain sorghum fields 

sampled in Kansas, Oklahoma, Texas, Arkansas, Louisiana, and Mississippi. Taylor’s 

Power Law defined two significantly different dispersion patterns identififed by their 

mean to variance relationship. The regions were designated by geographic location; the 

“southern” region included South Texas and Arkansas, while the “nothern” regions 

included Northern Texas, Oklahoma, and Kansas.   

The nested analysis of variance (NANOVA) demonstrated that multiple samples of 

three plants in a row within 30 meters of one another be used because it accounted for 80-

98% of the within-field count variance.  Lastly the within-plant canopy distribution 

results from this study showed that regardless of the state or growth stage, the middle of 

the plant canopy tended to be most predictive of the whole plant population. Due to 

correlation, more models are needed to improve the confidence of the results. Yet, the 

studies results are powerful enough to suggest the two-leaf sample for any of the 

developed sampling protocols should come from the middle of the plant canopy.  

This study provided three different enumerative sampling protocols to monitor M. 

sacchari in grain sorghum. The first protocol was a fixed sample size plan that provided 

the minimum required number of samples needed to reach a mean, pre-selected intensity 

at 0.10 and 0.25 precision. Essentially, the number of samples required to estimate a 

population at a given mean was too high for practical application for either research or 

scouting purposes at a 0.10 precision level. At a 0.25 precision level, fixed sample sizes 

were reasonable for either region, for research application, when M. sacchari intensities 
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were high. Only in the southern region at high intensities or using a high economic 

threshold would the fixed sample size plan at a 0.25 precision level align with current 

practices for scouting (Szczepaniec, 2018) and be practical for application at a field level.  

 The second protocol was an enumerative sampling plan developed was the 

sequential sampling to estimate population density within a field at a fixed precision 

level.  While the calculated stop-lines for fixed precision at the 0.25 level seemed 

practical at a research level, the validation of this plan demonstrated higher required 

sample sizes then originally predicted and high variation in precision depending on field 

intensity.  

 The third sampling protocol was sequential sampling for classification of a 

population using economic thresholds. This sampling plan, similarly, to the other two 

sampling plans showed that in the southern region these stop-lines may be practical for 

in-field use. However, the sequential sampling for classification, like the other two 

sampling plans, did not appear practical for use in the northern region.  

 To fulfill the third objective, a sequential binomial sampling plan was developed 

to expedite monitoring for treatable M. sacchari intensities. First, predictive tally 

threshold models were evaluated for goodness-of-fit using linear regression. After 

carefully considering model fitness and practicallity, tally thresholds of 50 and 100 

aphids per plant were selected to best predict the mean SCA per field. Wald’s (1947) 

sequential probability ratio test (SPRT) was used to generate stoplines for sampling 

events. Both sampling plans were then validated using resampling for validation of 
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sampling plans (RVSP) software (Naranjo and Hutchison 1997) that provided the 

operating characteristic and average sample number (ASN) for 48 externally sampled 

fields. Averages were collected from the 500 sampling itterations, with four different 

action thresholds, and two error rates. The ASN ranged from 10-24 plant samples with an 

average of 11 plant samples.  Moving forward the developed stoplines for a 

presence/absence of 50 or more aphids will be used to creat a smart-phone application 

that will help producers and other samplers quickly determine when M. sacchari 

populations are above or below threshold.  
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APPENDICES 
 

CHAPTER III 

 

AP Figure 12: Stratified sampling grid used to collect counts of M. sacchari in sorghum. 

 

Figure illustrates example sampling event. Arrows indicate walking paths to first and 

second stops per cell; stars indicate plants evaluated; circled stars indicate whole plant 

enumeration. Distance to stops and whole plant enumerations were randomly selected 

and changed each sampling event. 
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AP Table 12: Within canopy distribution analysis using multiple regression.  

State 

Growth 

Stage 

Canopy 

Position 

Number 

of Plants MSE 

F-Statistic/P-

Value R2 

Kansas 5 Middle 25 1.052 27.37/<0.0001 0.5434 

Oklahoma 1 Middle 11 0.657 7.97/0.0199 0.4696 

2 Middle 21 1.313 58.67/<0.0001 0.7554 

2 Lower 21 2.010 14.22/0.0013 0.4281 

3 Upperb 77 1.701 845.90/<0.0001 0.9186 

3 Middlea 77 4.258 72.01/<0.0001 0.4898 

3 Lowerb 77 3.788 110.71/<0.0001 0.5962 

4 Upper 36 1.420 79.21/<0.0001 0.6997 

4 Middle 36 1.981 24.11/<0.0001 0.4149 

5 Uppera 98 8.990 312.12/<0.0001 0.7648 

5 Middleb 98 5.725 910.30/<0.0001 0.9046 

5 Lowerc 98 13.810 76.96/<0.0001 0.4450 

North 

Texas 
2 Upper 69 1.954 64.78/<0.0001 0.4916 

2 Middle 69 1.746 97.98/<0.0001 0.5939 

2 Lower 69 1.440 175.69/<0.0001 0.7239 

3 Upper 48 0.7067 51.82/<0.0001 0.5297 

3 Middle 48 0.962 6.78/0.0124 0.1284 

3 Lower 48 0.984 4.49/0.0396 0.0889 

4 Upper 61 5.376 98.63/<0.0001 0.6257 

4 Middle 61 4.620 154.47/<0.0001 0.7236 

4 Lower 61 3.071 424.09/<0.0001 0.8779 

5 Upperb 42 5.754 74.73/<0.0001 0.6513 

5 Middleb 42 3.378 292.82/<0.0001 0.8798 

5 Lowera 42 2.353 646.03/<0.0001 0.9417 

South  1 Upperb 54 9.211 328.22/<0.0001 0.8632 

Texas 

 

 

 

 

 

 

 

 

 

 

 

 

1 Middlea 54 4.733 1387.93/<0.0001 0.9639 

1 Lowerb 54 12.373 158.72/<0.0001 0.7532 

2 Upper 14 4.191 68.62/<0.0001 0.8511 

2 Middle 14 4.572 55.74/<0.0001 0.8229 

2 Lower 14 6.487 21.66/0.0006 0.6434 

3 Upper 19 6.457 26.91/<0.0001 0.6129 

3 Middle 19 3.002 186.15/<0.0001 0.9163 

3 Lower 19 5.727 38.82/<0.0001 0.6954 

4 Upper 18 3.817 55.46/<0.0001 0.7761 

4 Middle 18 3.276 81.00/<0.0001 0.8351 

5 Upper 20 7.953 51.56/<0.0001 0.7416 

5 Middle 20 9.958 26.43/<0.0001 0.5949 

5 Lower 20 11.916 13.03/0.0020 0.4199 
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State 

Growth 

Stage 

Canopy 

Position 

Number 

of Plants MSE 

F-Statistic/P-

Value R2 

       

Arkansas 1 Upperd 11 18.284 6.16/0.0349 0.4063 

 

1 Middlea 11 4.693 221.13/<0.0001 0.9609 

1 Lowera 11 5.030 191.28/<0.0001 0.9551 

3 Upperb 29 16.665 45.42/<0.0001 0.6272 

3 Middlea 29 5.690 594.33/<0.0001 0.9565 

3 Lowerc 29 14.618 67.13/<0.0001 0.7132 

4 Upperb 10 11.000 6.79/0.0313 0.4592 

4 Middlea 10 7.198 26.53/0.0009 0.7683 

4 Lowera 10 9.110 13.56/0.0062 0.6290 

5 Upper 43 5.269 101.62/<0.0001 0.7125 

5 Middle 43 3.386 304.35/<0.0001 0.8813 

5 Lower 43 2.964 409.53/<0.0001 0.9090 

      

Results of the multiple-regression analysis using state, growth stage, and position within 

the plant canopy, as predictors for the total aphids per plant, only models at or above a p-

value of 0.05 were included in the table. In addition, the fixed-effects model results were 

included to show what states and growth stages had canopy positions that were 

significantly different (<0.05) from one another. Canopy positions that are denoted with a 

lower-case alphabetical superscript with different letters are significantly different from 

one another. All other models without a letter by the canopy position were not 

significantly different from one another.  
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CHAPTER V 

 

 

AP Figure 13: Sample field scouting tool. Front and back of pocket field scouting tool 

using binomial sequential sampling protocol with presence or absence of 50 sugarcane 

aphids per two leaves combined at the 50% infested action threshold. Red line on the top 

figure represents  
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