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ABSTRACT 

Since the publication of Shelton’s original work [1] on lateral web dynamics in 1968, 
the cambered1 web has attracted the attention of researchers. Shelton, himself, felt it was 
a natural “next step” in lateral dynamics. It is not only interesting as a theoretical 
challenge. It is the simplest case of an important class of lateral handling problems 
known as baggy2 webs. However, despite considerable effort by many people, it is still 
considered by many authorities in the field to be an unsolved problem. 

In a companion paper, presented at this conference [2], concepts based on mass flow 
were used to resolve difficulties with uniform web models that included shear 
deformation. This paper will show that these ideas, when combined with methods 
introduced by Linda Sievers [3], can resolve one of the most significant issues with 
cambered web models – the question of the 4th boundary condition.  

The 4th boundary condition refers to one of the two relationships at the downstream 
end of a web span (the other two are at the upstream end). For uniform webs in a steady 
state without shear, this is a settled issue. Shelton found that it was zero moment and 
verified it experimentally. The other relationship at the downstream end, called the 
normal entry rule, is well known and generally accepted. It specifies that the web 
centerline will be normal to the roller axis.  

In dynamic uniform web models, the 4th boundary condition takes the form of a 
relationship between curvature and acceleration that obligingly defaults to the zero-
moment condition when the time-based terms decay to zero. 
                                                           

1 A web that has constant lateral curvature in its relaxed state. It forms an arc when 
laid flat on a floor. 

2 A web that has slack lanes when running under tension. A cambered web is the 
simplest example. In the worst cases, the web is so deformed that relaxed samples will 
not even lay flat. The usual strategy for dealing with it is to increase tension to “pull out” 
the baggy lanes, but the required level may be so high that it either damages the web or 
causes other problems, such poor winding conditions.    
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In 2002, Richard Benson published a paper [4] that is similar in some respects to the 
method discussed here. Although there is no mention of mass flow, he found and applied 
a key relationship that enforces its effects. He found the relationship by assuming that the 
rotational velocity of the bending angle of the web must match the pivoting velocity of 
the roller at the downstream end of a span. Using this, he developed a cambered web 
model similar to the one described here. However, he incorrectly concluded that camber 
has no effect on lateral behavior because he overlooked its effects on the boundary 
conditions. 

Benson also derived an acceleration equation for uniform webs that correctly 
incorporates shear. 

NOMENCLATURE 

A cross sectional area of web 
E elastic modulus 
G shear modulus 
h thickness of web 
I area moment of inertia 
L span length 
n Shear factor for Timoshenko beam 
N Side force 
s Laplace variable 
t time 
T tension in units of force 
Vo   web velocity in machine direction 
x distance along length of web 
y lateral displacement of web 
y0 lateral web displacement at upstream roller, relative to ground 
yL lateral web displacement at downstream roller, relative to ground 
z lateral displacement of roller relative to ground 
θL angle between web plane and plane of roller motion at entry to roller 
θ0 angle between web plane and plane of roller motion at exit of roller 
β boundary defect angle 
γ angle of roller axis 
ρ density 
ϕ bending angle (rotation of cross section or face angle) 
ψ shear angle 
χ shape angle (slope of relaxed web) 
0 subscript indicating value of variable at x = 0 
L subscript indicating value of variable at x = L 

INTRODUCTION 

Outline of the Method 

This paper will develop a cambered web model using the following key ideas. 

1) Recognition that the slope of the centerline is the sum of bending and shear angles 
plus the slope of the relaxed curve of the web. This may seem trivial, but it has not 
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been obvious to many of the earlier researchers and it is central to the method used 
here. 

2) Use of the calculus of variations (either Hamilton’s principle or virtual work) to 
generate the 4th order ordinary differential equation defining the elastic curve of the 
web. 

3) Solution of the ODE of step 2 for lateral position – an equation with four unknown 
coefficients and three hyperbolic functions of position x along the span,  

4) Application of boundary conditions (bending angle and lateral position at the 
upstream end; bending angle and lateral position at the downstream end) to the 
equation of step 3 to solve for the four coefficients.  

5) Conversion of the equation for the elastic curve of step 4 to a 2nd order time-based 
ordinary differential equation by converting slope and curvature at the downstream 
end to velocity and acceleration using, 
a) The normal entry equation (velocity) 
b) The mass transfer equation (acceleration) 

6) Careful development of boundary conditions that takes account of the fact that the 
shape angle is discontinuous at rollers. 
Shelton [1] was the first to apply beam theory to the analysis of lateral web dynamics 

and pioneered many of the methods we still use today. He developed both steady state 
and dynamic models based on Euler-Bernoulli theory. These were verified by 
experiment. He also developed a steady state model that correctly incorporated shear, but 
was unsuccessful with efforts to develop a dynamic shear model 

Sievers [3] was the first to make steps 1, 2 and 4 central features of beam modeling.  

MODELING THE CAMBERED WEB 

The Elastic Curve 

The first step is to define the slope of the web as the sum of bending, shear angles 
plus the slope of the relaxed web shape. Thus, 

 dyL
dx

φ ψ χ= + +  , {1} 

where, ϕ is the bending angle, ψ is the shear angle and χ is the shape angle of the relaxed 
web and, 

 ( )d f x
dx

χ=  , {2} 

where f(x) is the lateral displacement of the relaxed web – the nonuniformity. 
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Figure 1 –Relationships between Slope, Shear, Bending Angle and Shape Angle 

The next step is to define the elastic strain energy for the web, Π. 

 
2 21 1 12

2 2 20

L d GA dyEI T dx
dx n dx
φ ψ

     ∏= + +∫         
  {3} 

In this equation, E is the modulus of elasticity, I is the area moment of inertia, G is 
the shear modulus, A is the cross sectional area and T is the tension. The factor, n, comes 
from Timoshenko beam theory and accounts for the fact that the shear stress is assumed 
to be a uniform average value across the width of the web. For a rectangular profile, it is 
approximately 1.2. 

Using {1} to eliminate ψ and applying the method of virtual work to Π yields for the 
variation with respect to ϕ3. 

 ( ) ( )2 21 1 0
2 20 0

L L GAEI dx y dxx x xnx
δ δφ φ δφ φ χφ φφ

   ∂ ∂
∏ = + − − =∫ ∫   

∂   ∂    
  {4} 

Integrating {4} by parts (twice for the first integral on the right), 

 
2

020 0

L Ld d GA dyEI EI dx
dx n dxdx

φ φδ δφ δφ φ χφ
     ∏ = − + − − =∫         

  {5} 

The variation with respect to y is, 

 ( ) ( )2 21 0
2 20 0

L LGA Ty y dx y y dxy x x x xny yx x
δ δ φ χ δ

   ∂ ∂
∏ = − − + =   ∫ ∫

   ∂ ∂   
  {6} 

Integrating both integrals of {6} by parts twice, 

 
2 2

02 200

L LGA dy dy GA d y d d d yy T y T dxy n dx dx n dx dxdx dx

φδ δ φ χ δ χ
        ∏ = − − + − − − + =  ∫            

  {7} 

                                                           
3 For convenience in notation, ϕx is used to represent dϕ/dx and yx represents dy/dx. 
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Variation with respect to χ isn’t needed because there is no energy associated with it 
by itself. Its effects are recognized in the other variations. 

The variations δϕ and δy in {5}and {7} must be zero at x = 0 and x = L. At other 
values of x they are arbitrary. Therefore, for δΠϕ = δΠy = 0, the quantities inside the 
brackets under the integrals must be zero. These are the equations that govern the shape 
of the elastic curve of a nonuniform web. 

 
2

1 02
d y d dnT

dx dxAG dx

φ χ + − − = 
 

  {8} 

 
2

02
d AG dyEI

n dxdx

φ
φ χ + − − =  

  {9} 

These equations can be expressed as a single 4th order equation in y by first 
differentiating {9}. Then, expressions for dϕ/dx and d2ϕ/dx2 are calculated using {8} and 
substituted into {9}. The result is, 

 
4 2 312
4 2 3

d y d y d
K

adx dx dx
χ− =   {10} 

where, 

 TK
EIa

=   {11} 

and 

 1 Tna
AG

 = + 
 

  {12} 

Additionally, it can be shown that shear force, N, moment, M and bending angle, ϕ, 
are, 

 
2 3 2
2 3 2

d d y dN EI EI a
dx dx dx

φ χ 
 = = −
  

  {13} 

 
2

2
d d y dM EI EI a
dx dxdx

φ χ 
 = = −
  

  {14} 

 
3 2

3 2
EI dyd y da
AG dxdx dx

φ χ χ
 
 = − + − 
 

  {15} 

Cambered Web 
The arc of a cambered web can be approximated as a shallow parabola, 

 ( )
( )2

2

x xo
f x

Rw

−
=   {16} 
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where xo is a constant that controls the x-location of the center of the arc and Rw is the 
radius of curvature. So, for a cambered web, 

 
4 22 04 2

d y d yK
dx dx

− =   {17} 

and, 

 
3

3
x xEI d y dy oa

AG dx Rwdx
φ −
= + −   {18} 

 
2 3

2 3
d d y

N EI EIa
dx dx

φ
= =   {19} 

 
2 1
2

d d yM EI EI a
dx Rwdx

φ  
 = = −
  

  {20} 

The moment equation makes sense when it is realized that, the curvature term 
a(d2y/dx2) includes the purely geometric effect of the relaxed curvature of the web. So, to 
calculate the bending moment, the fixed curvature, 1/Rw, must be subtracted from it. 

The solution to {17} is the familiar result, 

 ( ) ( )( ) sinh cosh1 2 3 4y x C Kx C Kx C x C= + + +   {21} 

It may seem strange that {17}is the same as for a uniform web. Where did the 
camber go? It is partly the victim of the underlying approximations of beam theory. They 
are implicit in the definitions of energy that got us here. The effects of camber, which 
intuition tells us must exist, will be evident in the effects of the boundary conditions on 
the coefficients of {21} – primarily the moment and bending angle equations {20} and 
{18}.  

Boundary Conditions for the Elastic Curve 
 As in the uniform web model, the interaction of the web with rollers is greatly 

simplified. The width of the contact zone in the process direction is assumed to be zero.  
Lateral positions at the upstream and downstream rollers will provide two of the four 

required boundary conditions. Following the example of the uniform web, the bending 
angles are chosen for the other two. 

So, the boundary conditions for the cambered web (including shear deformation) are, 

 
0 0

3 3
0 03 30 0

y y y yx x L L

n ndy d y dy d yEIa EIa L LAG AGdx dxx x Ldx dxx x L
χ φ χ φ

= == =

+ − = + − =
= == =

 {22} 

where, 

 ( ) ( ) ( ) ( )0 00

x L xdf x df xo oand L Ldx dxR Rx x Lw w
χ χ χ χ

− −
= = = = = =

= =
  {23} 
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Equations {21} and its derivatives are substituted into the four equations of {22} 
which are then solved simultaneously for C1, C2, C3 and C4.  

The Static Equation of Web Shape 
Inserting values {22} into {21} and collecting terms, 

 ( ) ( ) ( ) ( ) ( ) ( )( ) 00 4 5 0 60y x y y y g x L g x g xLL φ χ φ χ= + − + + + +        {24} 

where, 

 

( )
( ) ( )

( )

cosh( ) cosh( ) cosh( ) sinh( ) 1
( )4 sinh( ) 2 cosh( 1

cosh( ) 1 cosh( ) 1 sinh( ) sinh( ) sinh( )
( )5 [ sinh( ) 2 cosh( 1 ]

sinh( ) sinh( ) sinh( ) c
( )6

Kx KL KL Kx Kax KL
g x

KLa KL KL

KLa Kx Kax KL Kx KL Kx KL
g x Ka KLa KL KL

Kx KL KL Kx KLa
g x

+ − − − −
=

− −

− − − − − − +
=

− −

− + − −
=

( )
( )

osh( ) 1 ( )(cosh( ) 1)
[ sinh( ) 2 cosh( 1 ]

KL Kx Ka L x KL
Ka KLa KL KL

− − + − −
− −

 {25} 

Three other equations that will be needed later are the first, second and third 
derivatives of {21} at x = L. 

 ( ) ( ) ( )( ) 1 02 0 30
hdy x y y L h hLLdx LL

φ χ φ χ= − + + + +         {26} 

 ( ) ( ) ( )
2 ( ) 31 2 0002 2

gg gd y x y y LLL L Ldx LL
φ χ φ χ= − + + + +         {27} 

 ( ) ( ) ( )
3 ( ) 31 2 000 3 2 23

ff fd y x y y LLL L L Ldx L
φ χ φ χ   = − + + + +      {28} 

where, 

 

( )
( )

( )( )
( )

( )( )
( )

sinh( ) 1
1 sinh( ) 2 cosh( ) 1

1 1 cosh( ) sinh( )
2 sinh( ) 2 cosh( ) 1

1 1 cosh( )
3 sinh( ) 2 cosh( ) 1

KLa KL a
h

a KLa KL KL

a KL KLa KL
h

a KLa KL KL

a KL
h

a KLa KL KL

−
=

− −  

+ − +
=

− −  

− −
=

− −  

  {29} 

 

( )
( )

( )
( )

( )
( )

2 2 cosh( ) 1
1 sinh( ) 2 cosh( ) 1

cosh( ) sinh( )
2 sinh( ) 2 cosh( ) 1

sinh( )
3 sinh( ) 2 cosh( ) 1

K L a KL
g

a KLa KL KL

KL KLa KL KL
g

a KLa KL KL

KL KL KLa
g

a KLa KL KL

−
=

− −  

−
=

− −  

−
=

− −  

  {30} 
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( )

( )
( )

( )
( )

3 3 sinh( )
1 sinh( ) 2 cosh( ) 1

2 2 1 cosh( ) sinh( )
2 sinh( ) 2 cosh( ) 1

2 2 cosh( ) 1
3 sinh( ) 2 cosh( ) 1

K L a KL
f

a KLa KL KL

K L KL KLa KL
f

a KLa KL KL

K L KL
f

a KLa KL KL

=
− −  

− +
=

− −  

−
=

− −  

  {31} 

Note that the constants of {25}, {29}, {30} and {31} are the same as for a uniform web.  
In the models where shear is insignificant (nT/AG = 0), a = 1 and that in turn causes 

h1 = h3 = 0 and h2 = 1. This reduces {26} to, 

 ( )
L

dy x
Ldx L

χφ +=  {32} 

THE TIME EQUATIONS THAT CONVERT THE STATIC WEB SHAPE TO A 
DYNAMIC EQUATION4 

The Velocity Equation 
There is no reason why the velocity equation for uniform and nonuniform webs 

should not be the same. So, 

 dy dy dzL L LVo Ldt dx dt
γ
 
 = − +  
 

 {33} 

The first group of terms on the right side is the lateral velocity due to the interaction 
of surface velocity of the roller and the slope of the web. The quantity inside the 
parenthesis is called the entry angle. The last term is the lateral velocity of the roller 
itself. The velocity term on the left is the lateral velocity of the web relative to ground. It 
is important to remember that {33} is true only at x = L and should not, therefore, be 
differentiated with respect to x. 

The Acceleration Equation 
Following the example of uniform web analysis [2], the mass transfer concept is 

used to develop an acceleration equation. In the discussion of qualitative behavior that 
follows, it will be assumed that shear deformation is negligible. 

Figure 2 (a) shows the downstream end of a cambered web running under tension 
between parallel rollers. It is reasonable to expect that tension will stretch the web in a 
manner that will straighten it. The drawing shows it as straight, but it could have some 
residual curvature. It is also reasonable to assume that the web will have higher tension 
on the short edge (left) than on the long edge. In other words, there will be a net moment 
(negative in this example) on the web that reduces its camber.  

                                                           
4 There are many places where derivatives of y apply only at x = 0 or x = L. In those 

cases, partial derivatives evaluated at those locations will be written as ordinary 

derivatives with subscripts 0 and L. For example, dyy Lwill be written as
x dxx L

∂
∂ =

 . 
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Consideration of mass flow makes it clear that this cannot represent a steady state. 
The tension profile will cause mass to increase on the left-hand side and decrease on the 
right. So, a boundary defect, β, will develop and change with time.  

Figure 2 (b) shows the effect of mass flow on the shape of the relaxed web. 

Figure 2 (c) shows the modified edge of the web after it is returned to the line of 
contact of the roller. It is apparent that original face (before the boundary defect 
developed) is offset from the roller axis by the boundary defect angle β. 

Thus, the effect of the shape change can be approximated by defining the bending 
angle boundary condition as the boundary defect angle β plus the roller angle applied to 
the original reference shape. So, 

 L Lφ β γ= +  {34} 

The pivoting motion of the roller is not necessarily in the plane of the web span, so 
γL is the projection of the roller angle onto the plane of the web. 

 
 
 
 
 
 
 
 
 
 
 

(a) Cambered web 
                    under tension               (b) Effect of mass transfer     (c) Altered web returned 
                                                              on relaxed shape after            to line of contact 
                                                              time dt. 

 
 
         

 

               (d) Steady state 

Figure 2 – Effect of Mass Flow on Downstream Boundary for Cambered Web (without 
Shear) 

Figure 2 (d) shows the web after it has moved to the right, under the influence of β. 
It eventually reaches a position where the curvature of the web (while it is running, under 
tension) is the same as for the relaxed web. At that point, the moment will be zero, β will 
be zero and the entry angle will be zero. So, the web will be in a steady state. 

The boundary defect angle β can be calculated as follows.  
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Analysis of the Effect of Mass Transfer (Includes Shear Deformation) 

 

Figure 3 – Relationship between Slope and Bending with Shear 

The calculation of β is the same as for a uniform web, except for the definition of 
moment. The effect of  

 dx V dtm o mε=  {35} 

where εm is the increment of strain due to σm and Vo is the transport velocity. 
The rate of change of the boundary defect angle β can now be calculated, using {35}. 

 1 2
/2

dx Vd m m o
dt dt W W

εβ
= =  {36} 

Next, we calculate β in terms of the moment. This can be done by finding an expression 
for curvature in terms of εm. The negative moment M is first expressed in terms of the 
stress profile as, 

 
2 2/2 2
6 6/2

W W h W h Ey m mM y h dyo m WW

σ εσ σ − − =− + = =∫  
 −

  {37} 

The moment for a cambered web is by definition, 

 
2 231

2 212
d y d yW hL LM EI a E

Rwdx dx

 
 = − =  
 

 {38} 

Equating {37} to {38} and solving for the curvature, 

 
2

1 -2 -22
d y m mLa

R EW Wwdx

σ ε 
 − = =  
 

  {39} 

Using equations {36} and {39} , 

 
2

1
2

d yd LV aodt Rwdx

β  
 = − −  
 

 {40} 
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Taking the time derivative of {34} and substituting {40}, 

 
2

1
2

d y dd L L LV aodt R dtwdx

γφ  
 =− − +  
 

  {41} 

This is the mass transfer equation for a cambered web. 

The Acceleration Equation 
The acceleration equation is derived by first taking the time derivative of the shape 

equation for slope {26}. 

 ( ) ( )10
0 02 3

hdy dy dyd d dL L h hL Ldt dx L dt dtdt dt
φ χ φ χ

 
 = − + + + + 
 

  {42} 

Then,  dϕL/dt is replaced using {41} and the cross derivative is replaced using the time 
derivative of the velocity equation {33}. The result is, 

 ( )
2 22

12 01 12 2 32 22
d y d zdhd y dy ddyL LoL L LV a h V h ho oR dt dt L dt dtdt dtwdx

φγ    
    = − + − + − − +          

  {43} 

This is the acceleration equation for a cambered web with shear. It is the same as for a 
uniform web, except for the 1/Rw term. 

The meaning of β 
Equating values of φL, from {34} and {1}, 

 
dyL

L L Ldx
γ β ψ χ− = − − −   {44} 

Substituting the right side of {44} for the entry angle in the velocity equation {33} yields, 

 ( )dy dzL LVo L Ldt dt
β ψ χ= − − − +   {45} 

Thus, the lateral velocity is zero only when β = -ψL - χL and it can be shown, using {26} 
and {41}, that the time derivative of {45} is equivalent to the acceleration equation {43}. 

THE MULTI-SPAN DIFFERENTIAL EQUATION FOR A CAMBERED WEB 

A differential equation for lateral displacement at the downstream end of a cambered 
web may be created by first solving the slope equation {26} for ϕL and substituting the 
result into the curvature equation {27}. Then, the velocity equation {33} and the 
acceleration equation {43} are used to replace the first and second order spatial 
derivatives with time derivatives. 

The resulting cambered web model is, 
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( ) ( ) ( )

( ) ( )

22 21 0 1 2
30 1 2 1 2 1 22 2

2
2 2130 3 2 2 2 2

dy h h Vd y dy da o oL Ly y g h h g h g a V hoL dt dt R dtwdx

g aV g ad dz d zaV ox o L L Lo g h h g V hL odt dtR dtw

φ
τ ττ

γ
φ γ

τ τ τ

= − − + − − − −

 
 + − − + + − + + 
 

  {46} 

In transfer function form, 

 

( )
( )

( ) ( )
( )

( )
( ) ( )

( )

( )
( ) ( )

( )
( ) ( )

( )

( )

1
1 2 2 12

3 3 2 2 3
0 01 12 2

2 1 1 2 2 1 2 1 1 2 2 12 2

21 2 2 2
1 12 2

2 1 1 2 2 1 2 1 1 2 2 12 2

3 2 3 2

h as g h g h V aoVoh s g h g h
y s y s sL a as a g h s g h g h s a g h s g h g h

V aoV s h ag s g so
s z sL La as ag h s g h g h s ag h s g h g h

Vx aoV g h h go Rw

τ τ τ φ

τ ττ τ

τ τγ

τ ττ τ

τ

− + − − + −
= +

+ − + − + − + −

− + +
+ +

+ − + − + − + −

− − −

+

( ) ( )

2
2

12
2 1 1 2 2 12

ho

Rw
as a g h s g h g h

τ τ
+ − + −

  {47} 

Except for the last term, equation {47} is the same as found for a uniform web and, 
as would be expected, the last term disappears when Rw = ∞. 

THE REFERENCE SHAPE FOR A CAMBERED WEB AND ITS EFFECT ON 
BOUNDARY CONDITIONS 

Orienting the Reference Configuration 
In the derivation of the differential equation {46} there is a problem that has been 

glossed over. We readily accept that a uniform moving web may be modeled as a static 
rectangular sheet because material that leaves the span is replaced by an identical piece 
that moves in behind it. Analysis of the effects of mass flow has changed that a bit, but a 
strategy was found that allows us to continue to treat the reference shape as a static 
rectangle. In the case of a cambered web, it is less clear how the reference shape should 
be modeled.  

The reference shape enters into the differential equation only as a contribution to 
slope. So, the solution isn’t affected by the absolute position or orientation of it. The 
O.D.E. makes a rigid body adjustment that correctly positions the solutions, provided that 
the entry and exit shape angles are correctly specified in the boundary conditions. This 
requires an adjustment when crossing rollers because the shape angle is discontinuous, as 
is apparent in Figure 4. 
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Figure 4 – Possible Reference Shapes for Cambered Web Analysis 

In this diagram, 

 1 1 1 2 2 02
01 1 02 2

x L x x L xo o o
L LR R R Rw w w w

χ χ χ χ
− −

=− = =− =   {48} 

The constant, xo, can be set to zero for all spans. 

Specifying φ0 
The first two terms of {47} depend on the previous span. The upstream lateral 

displacement, y0, is equal to yL from the previous span. That connection is obvious and 
straightforward, since lateral position is the primary variable of interest. However, the 
meaning of ϕ0 is less clear. It helps to expand on it a bit. 

First, we evaluate the boundary defect of the previous span, β*. 

 
** * * * *dyL

L L Ldx
φ ψ χ β γ= − − = +   {49} 

where the stars indicate values in the previous span. So, {49} becomes 

 
** * * *dyL

L Ldx
β ψ γ χ= − − −   {50} 

Expression {50} is the boundary defect for the downstream end of the previous span. 
The slope of the relaxed web, χ, must correspond to the span in which it is used. So, 
before it can be applied to the upstream end of the current span, *

Lχ  must be changed to 

0χ . Therefore, the expression for φ0 becomes, 

 * *
0 0 0Lφ β χ χ γ= + − +   {51} 

The shear, ψ, may be calculated from equation {52} using {28}, 
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3

3
d yEIn La

AG dx
ψ =−   {52} 

STEADY STATE SOLUTION 

If all the time-dependent terms in {46} are eliminated, the steady state solution is 
found to be, 

 ( )
( ) ( )

23 2 3 22 2
0 0

1 11 2 1 2 2 1 2 2 1 2

L g h h gg L h Lxoy yL L Rwg h h g g h h g R a g h h gw
γ φ

− 
 = + + − −
 − − − 

  {53} 

The following quantities will be needed, 

 ( )01 3 1
0

2 2 2

y yh h Lx L xo o
L LR R Lw wh h h
φ γ φ

− −  = + − − −
 
 

  {54} 

 ( ) ( ) ( ) ( ) ( ) ( )( ) 0000 4 5 6y x y y y g x L g x g xLL φ χ φ χ   = + − + + + +      {55} 

The reference curve is defined by equation {16}. 

A TYPICAL STEADY STATE SOLUTION 

A typical steady state result is shown below. This corresponds to Swanson’s Run 4 
described in the next section: Rw = -150 m, L = 1.52 m, T = 17.8 N, φ0 = xo/Rw, and γL = 
γ0 = 0. 

The results make sense. At x = L. 

 
2

1
, 0 , 0 0.012

d y dyL La M and radianL L Ldxdx Rw
φ β γ= = = = + =   {56} 

Note, that in the steady state, the boundary defect β does not decay to zero. It takes a 
value that rotates the end of the web to meet the required moment and slope at the roller 
(zero in both cases). 

And yL = 2.57 mm (toward the long side of the relaxed curve). 



15 

 

Figure 5 – Steady State Solution for Swanson’s Run #4 

COMPARISON WITH RON SWANSON’S TESTS 

Ron Swanson reported results of a sophisticated test of a cambered web at the 2009 
IWEB conference [5]. His machine employed an inline slitting mechanism that cut long 
sections of with constant camber from an initially straight web. Cambered sections were 
separated by straight sections for comparison. The chord length of the cambered sections 
ranged from 9 to 14 meters with radii ranging from 150 to 400 meters. The test span 
length was adjustable from 1.52 to 3.05 meters.  Other web parameters were, 

Web material PET 
Thickness 50 μm 
Width 0.1524 m 
Modulus 4482 MPa 
Speed 0.127 m/s 
Roller diameter 75 mm 

Table 1 – Web Parameters 

The test span of the machine was preceded by a displacement web guide that held the 
edge position constant. The rollers at the ends of the span were fixed and parallel. As a 
cambered section entered the test span there was an initial disturbance, but the web could 
achieve a steady state before reaching the end. Rollers were aluminum with an 8 μm 
finish. 

Initial results were not very interesting. The cambered sections seemed to run almost 
exactly like the uniform sections. There was no significant lateral displacement at the 
downstream end. 

It was discovered, however, that when the rollers in the test span were covered with 
high friction tape, the web developed a lateral offset of several millimeters at the 
downstream end in the direction of the long side. 

Model outputs are compared with Swanson’s results in Table 2. Only those test runs 
that produced significant offsets were compared. Results were as follows. 
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Table 2 – Comparison with Swanson’s Tests 

An important piece of input data is not available in Swanson’s results. There is no 
value for ϕ0. An assumed value of zero was used to get the data of Table 2 (xo = 0), but 
there is no way of knowing if this is correct. To get some idea of the effect of non-zero 
values of ϕ0, its value was adjusted until the model agreed with the test data. The results 
are shown in Table 3.   

 

Table 3 – Values of ϕ0 that Would Produce Agreement with the Tests 

The values of ϕ0 found this way ranged from 0.0021 radians (0.12 degree) to 0.005 
radians (0.3 degree). This shows that the results are very sensitive to ϕ0 and would have 
been difficult to observe by eye. 

Swanson evaluated the relative importance of traction at the upstream and 
downstream ends by running tests in which only one end was taped. This indicated that it 
was more important to have traction downstream rather than upstream. On the other 
hand, it was noticed that there was some evidence of circumferential slipping on one end 
of the upstream roller (shown in Figure 20 of the Swanson paper). 

Covering Covering y(L) y(L) % diff Φo ΦL Side Force
Run Rw (m) Span (m) Upstream Downstream T(N) Exp. (mm) Model (mm) Diff./model Model Model Model (N)

4 -150 1.52 3M 5461 3M 5461 17.8 1.478 2.566 42.4 0 0.010076 -0.616
5 -150 1.52 3M 5461 3M 5461 35.6 0.302 2.537 88.1 0 0.01007 -0.645
6 -150 1.52 3M 5461 3M 5461 53.4 0.064 2.51 97.5 0 0.01007 -0.673
7 -150 1.52 Tesa 4863 Tesa 4863 17.8 1.295 2.566 49.5 0 0.010076 -0.616
8 -150 1.52 Tesa 4863 Tesa 4863 35.6 0.919 2.537 63.8 0 0.01007 -0.645
9 -150 1.52 Tesa 4863 Tesa 4863 53.4 0.63 2.51 74.9 0 0.01007 -0.673

13 -300 1.52 3M 5461 3M 5461 17.8 0.813 1.283 36.6 0 0.005038 -0.308
14 -300 1.52 3M 5461 3M 5461 35.6 0.114 1.269 91.0 0 0.005366 -0.322
17 -400 3.05 Tesa 4863 Tesa 4863 17.8 1.364 3.731 63.4 0 0.007613 -0.132
18 -400 3.05 Tesa 4863 Tesa 4863 35.6 1.24 3.592 65.5 0 0.007611 -0.152
19 -400 3.05 Al Tesa 4863 17.8 1.4 3.731 62.5 0 0.007613 -0.132
20 -400 3.05 Al Tesa 4863 35.6 1.052 3.592 70.7 0 0.007611 -0.152
24 150 1.52 3M 5461 3M 5461 17.8 -1.44 -2.566 43.9 0 -0.01008 0.616
25 150 1.52 3M 5461 3M 5461 35.6 -0.302 -2.537 88.1 0 -0.01007 0.645
26 150 1.52 3M 5461 3M 5461 53.4 -0.0762 -2.51 97.0 0 -0.01007 0.673

Covering Covering y(L) y(L) y(L) Φo ΦL Force
Run Rw (m) Span (m) Upstream Downstream Exp. (mm) Model (mm) Model Model Model Model

4 150 1.52 3M 5461 3M 5461 17.8 1.478 1.476 -0.00221 0.010100 -0.737
5 150 1.52 3M 5461 3M 5461 35.6 0.302 0.304 -0.00588 0.010040 -0.952
6 150 1.52 3M 5461 3M 5461 53.4 0.064 0.064 -0.00517 0.010046 -0.93
7 150 1.52 Tesa 4863 Tesa 4863 17.8 1.295 1.295 -0.00258 0.010060 -0.757
8 150 1.52 Tesa 4863 Tesa 4863 35.6 0.919 0.919 -0.00335 0.010570 -0.82
9 150 1.52 Tesa 4863 Tesa 4863 53.4 0.63 0.63 -0.00397 0.010052 -0.871
13 300 1.52 3M 5461 3M 5461 17.8 0.813 0.814 -0.000942 0.005032 -0.372
14 300 1.52 3M 5461 3M 5461 35.6 0.114 0.114 -0.00239 0.005025 -0.447
17 400 3.05 Tesa 4863 Tesa 4863 17.8 1.364 1.364 -0.00253 0.007610 -0.161
18 400 3.05 Tesa 4863 Tesa 4863 35.6 1.24 1.24 -0.0027 0.007608 -0.178
19 400 3.05 Al Tesa 4863 17.8 1.4 1.4 -0.00249 0.007610 -0.161
20 400 3.05 Al Tesa 4863 35.6 1.052 1.052 -0.00292 0.007608 -0.18
24 150 1.52 3M 5461 3M 5461 17.8 -1.44 -1.44 0.002282 -0.010064 0.741
25 150 1.52 3M 5461 3M 5461 35.6 -0.302 -0.302 0.004629 -0.010051 0.887
26 150 1.52 3M 5461 3M 5461 53.4 -0.0762 -0.076 0.005143 -0.010050 0.929
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CONCLUSIONS 

It has been shown how the mass transfer concept can be applied to nonuniform webs 
and the specific case of the cambered web has been worked out in detail. 

Steady state results agree qualitatively with Swanson’s 2009 results [5] and are of the 
correct order of magnitude. 
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