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CHAPTER 1

INTRODUCTION

As technology improves with the passing of time, the field of arithmetic maintains

relevance for modern and future advances in processing and computation. At the core

of digital arithmetic lies the fundamental operation of addition that enables improve-

ment for datapath blocks [1]. And, implementations of more advanced functions rely

on addition. This means that improvements to adder designs provide advancement to

other critical areas in processor design. Therefore, the improvement of digital arith-

metic design becomes crucial as feature sizes diminish to keep up with technological

demands.

Addition of two strings of bits makes up the fundamental operation of any digital

circuitry. Counting provides the basis for mathematics, and ,therefore, addition pro-

vides the basis for computation. Adders allow circuits to increment signals, change

address locations, and perform arithmetic using hardware among other functions.

These adders make up the backbone of digital circuitry. They are partially responsi-

ble for the rapid advancement of technology in the modern era.

Carry Propagate Addition (CPA) becomes more important as more complex arith-

metic algorithms are considered. The adder circuit is utilized in subtraction, multi-

plication, and division, among other functions. As large implementations gain more

utility, more adders are often included in the design. It is, therefore, critical that op-

timization begins at the most fundamental levels of operation and then improved in

higher levels of hierarchy. An emphasis on these bottom layers of hierarchy provides a

bottom-up approach for optimization, but allows the engineer freedom to spend more
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time in the important top levels of design. Thus, optimization of the adder design

provides improvement throughout any arithmetic design. As this design optimization

occurs, the designer can focus on more important aspects of specific implementation

while avoiding the time-draining tasks of lower level design.

Because adders are near the bottom of design hierarchy, they tend to be affected

more by diminishing transistor size than higher level designs. However, these changes

propagate as adders are used in the next level of hierarchy. Smaller transistor sizes

may change the constraints of digital arithmetic design. For example, some addition

algorithms may change due to smaller voltage thresholds and incomplete voltages

swings [1]. Other designs may be optimized differently for area, power, or delay

due to performance changes. Thus, fundamental designs should be reconsidered and

re-optimized as transistor sizes continually decrease in feature size.

Early in the exploration of digital arithmetic, dedicated and novel architectures

dominated advancement; however, recent improvements have led to advancements in

fusing multiple designs or paradigms to create hybrid blocks [2]. These hybrid designs

often take the benefits from two or more designs and seek to offset disadvantages

by providing a well-rounded approach that enables solving key issues related to its

implementation. Within Very-Large Scale Integration (VLSI) architectures, using

hybrid designs can help simplify blocks to make certain blocks more regular and

modular [1].

In fast adder designs, as well as general digital design, architectures are optimized

for area, power, and delay. Generally, area and delay tend to exhibit a trade-off effect.

This means that larger architectures tend to have more capability in decreasing delay

due to more complex algorithms. However, area and power tend to be more directly

related. This is reasonable as the circuit is more spread out with potentially longer

and more connections.

Hybrid designs often combine components of each comprising design in such a way
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that multiple variants can be tried and tested quickly. This provides a framework such

that effects on area, delay, power, and constraints can be quickly estimated during the

design process. Building upon this, a vigilant designer can optimize implementation

for a specific desired result. Such modularity introduces regularity and more possi-

bilities for customization in high levels of design flow. One important contribution to

this area is the use of hybrid design in forming carry-propagate adders [2].

Carry-lookahead addition [3] revolutionized the digital adder design by increasing

the speed of carry calculation by computing carries in parallel. Designers realized

that a prohibiting factor in circuitry speed was the time needed for Ripple Carry

Adders (RCA) to generate [4]. The carry signal is needed for calculation with more

significant bits, therefore speeding this small portion of the design up could easily

improve the overall design [5]. By finding ways to create a carry bit quickly, carry-

propagate designs are able to calculate both the sum and carry bits of any multi-bit

adder quickly. These designs utilize simple logic, but often require more space. The

speed of these designs often outweighs the space and power constraints.

This thesis presents an implementation of hybrid adder design that utilizes the

concepts of prefix addition and carry increment addition against a proven standard

of modern addition called the Spanning Tree Adder [2]. Comparisons are made in

area, power, and delay using ARM-based 12SOI GF45nm SOI technologyin order to

develop an understanding of the advantages, disadvantages, and constraints of specific

design choices.

This thesis is organized as follows: Chapter 2 provides insight on the impor-

tance and the background of spanning tree architecture and carry increment addition.

Chapter 3 presents the design of a 64-bit hybrid adder that utilizes carry increment

addition and a spanning tree architecture. Chapter 4 shares the synthesized results

of the design and provides a brief analysis of this design compared to others. Finally,

conclusions are presented.
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CHAPTER 2

BACKGROUND

Carry-propagate adder design is generally optimized based on delay associated with

the sum and carry outputs. Early adopters of digital arithmetic realized that carry-

propagate addition is useful, but comes at the cost of large delay [4]. That is, the

propagation of the carry signal from one cell to another throughout the entire adder

created much of this delay [4].

An early solution to digital addition is called the Ripple Carry Adder (RCA) [4],

seen in Figure 2.1. The RCA is formed as a concatenation of bitwise full adder cells.

Each carry bit and sum bit are calculated respectively as:

sk = ak ⊕ bk ⊕ ck ,

ck+1 = ak · bk + ak · ck + bk · ck . (2.1)

The delay of each full adder in the RCA can be approximated using gate delay,

∆. Since the carry signal goes through 5 gates in its calculation, it is denoted as 5∆.

The sum bit goes through 6 gates, so it is 6∆. Ripple Carry Adders are named from

the need for carry signals to “ripple” as the output of one cell to the input of the next

cell.

As RCAs become larger, the ripple effect grows. Each cell depends on every cell

before it to calculate both the sum and carry bits. In modern architectures requiring

32 and 64 bit implementations, large delay in RCAs becomes problematic. Therefore,

a need arises to minimize the delay in formulating the carry signal so that each full

adder may output both signals more quickly. The answer to this problem was the
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Carry Lookahead Adder (CLA) [3].

Carry lookahead algorithms are carry-propagate adders (CPA) that minimize the

delay by reducing the amount of time it takes for carry bits to be output by each cell

in parallel. Consequently, breaking designs into smaller blocks or utilizing “divide

and conquer” algorithms reduces unwanted delay by parallelizing carry structures [4].

For example, turning a 64 -bit adder into 8 connected 8 -bit adders greatly reduces the

need for certain carry signals and, thereby, reducing the critical path or worst-case

delay. These pieces of the “tree” work less dependently on each other and heavily

utilize the ideas of carry lookahead generation and propagation to calculate accurate

outputs without producing carry bits for each input bit.

Carry lookahead adders, as shown in Figure 2.2, are a form of carry propagate

adders that are able to look ahead at the carry signal faster than the RCA. CLAs use

two concepts to speed up carry calculation. The first concept is carry propagation.

This determines if a carry is passed from one cell to another. By viewing the full adder

in Figure 2.1, it becomes apparent that a carry signal is propagated when either (or
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both) of the input signals are ‘1’ and pass a 1 as the output of the AND-gate of the

first half adder. The propagate signal only passes the previous carry signal to the

next cell, as shown in reffa.fig. This means that if the carry in is ‘1’, the carry out

will also be ‘1’. However, a carry signal can also be generated, even if it does not

propagate through the cell. This occurs when both input signals are ‘1’ and pass

that as the output of the first AND-gate. The generate and propagate signals are

determined by the following Boolean equations [3]:

gk = ak · bk ,

pk = ak + bk . (2.2)

Generate and propagate signals ensure that the parts of the tree integrate. Both

of these scenarios are noticeable when considering the possibilities of the output, ck+1

in the full adder circuit. When combined, these equations can be used to calculate

the carry signal more quickly as:

ck+1 = gk + pk · ck . (2.3)

Furthermore, generate and propagate signals can be grouped to provide expedient

and consolidated calculation as:

gi:j = gi:k+1 + pi:k+1 · gk:j ,

pi:j = pi:k+1 · pk:j . (2.4)

Grouped signals determine the generation or propagation of carry signals be-

tween any two given intermediate points. This proves useful in various algorithms

by eliminating unneeded calculation. Furthermore, these signals can be combined

with Equation 2.4 to determine various carry signals. The usage of the combined

grouped equations differs according to the carry-propagate algorithm used in each

specific implementation. Thus, it is important to understand particular fast adder al-

gorithm choices. Among the more popular fast adder designs are carry-skip adders [7],

carry-select adders [8], and carry-increment adders [9].

6



a
11:8

b
11:8

RCA C
in

s3:0s
7:4

2−1 MUX

a
15:12

b
15:12

RCA C
in

RCA C
in

RCA C
in

RCA C
in

2−1 MUX

a7:4 b7:4

RCA C
in

C
in

3:0
b

3:0

c
0

s
11:8

s
15:1216

c

0

1 1

0

1

0

a

RCA2−1 MUX
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Carry-select adders,as seen in Figure 2.3, prove useful through drastic improve-

ments in speed from the RCA. The algorithm uses multiple RCAs in conjunction to

quickly output sum and carry signals. As the least significant RCA calculates the

first sums and carries, two RCAs, hard coded with a ’0’ bit and a ’1’ bit respectively,

calculate both possibilities for the carry out of the first adder. Each of the hard coded

adders send the sum outputs to a 2-1 multiplexer. As the carry out signal from the

first adder becomes ready, it is used as the select signal for the multiplexer, effec-

tively choosing which of the two equivalent carry-in values is used. Simultaneously,

the hard coded adders create the group generate and propagate signals. The adder

hard-coded with 0 creates the grouped generate signal while the other creates the

grouped propagate signal. Consequently, the grouped generate and propagate signals

are used to generate c8 as:

c8 = g7:4 + p7:4 · c4 . (2.5)

More bits may be added to the design by concatenating the more segments. This

works seamlessly because each block outputs a carry-out signal that is primed to be

used as the select signal of the next multiplexer. For large implementations, this leads

to sum bits that become ready quickly and only wait on the proper carry-in bits to

select which sum can be used. However, each block requires multiple RCAs. This

means that area and total power dissipation increase.

7



000

a7:4 b7:4

s
7:4

s
11:8

s
15:12

b
15:12

a
11:8

b
11:8

a
15:12

p7:4 s7:4s11:8s15:12 p11:8p15:12

RCA C
in

s3:0

RCA C
in

RCA Cin

C
in

3:0
b

3:0

c
0

16
c

0 0 0

a

RCARCA RCA RCA

Figure 2.4: 16-Bit Carry-Increment Adder (Adapted from [6])

The carry-increment idea is an algorithmic enhancement of carry-select adders

using the ideas from the carry-lookahead concept [9]. Carry-increment adders are

often chosen for their moderate boost in speed and considerable improvement in

power compared to many other fast adders. A carry-increment adder can be seen in

Figure 2.4.

The carry-increment adder incorporates the sum and carry bits within a dual half-

adder structure, as shown in Figure 2.5, simplifying the hard-coded 0 or 1 into the

carry-in signal 1. This new unit, called the Dual Half Adder (DHA) [6], generates the

sum and carry bits for each position, such that:

s0k = ak ⊕ bk ,

s1k = ak ⊕ bk = s0k ,

c0k+1 = ak · bk ,

c1k+1 = ak + bk . (2.6)

Therefore, the carry-increment algorithm [9] uses the DHA structure so that carry-

out or ck+1 can be selected between two values inside a multiplexor or mux. That is,

the following relationship holds:

ck+1 = cin · c0k+1 + cin · c1k+1 . (2.7)

1The superscript denotes the intended hard-coded carry in
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Using this carry-out equation and redundant forms of Boolean logic produces sim-

pler carry-select logic that requires less hardware and eliminates the need for the

multiplexing as seen in the carry-select algorithm.

ck+1 = c0k+1 + pk:k−r · cin . (2.8)

Each of the fast-adder designs features distinct advantages and disadvantages in

their unique usage of the carry lookahead concept. These differences lay the frame-

work for modular usage of various carry lookahead designs in hybrid addition. For

this work, carry-increment adders are used to maintain low delay and improved power

dissipation and area compared to the carry-select adders commonly used in spanning

tree designs.

The carry-increment algorithm is often realized in its 8 bit variation by using

multiple smaller, parallelized adders simultaneously. A 4-bit Ripple Carry Adder is

used to generate the least significant 4 sum bits as well as a carry out. At the same

time, another 4-bit ripple carry with cin = 0 is used to create intermediate sum bits

for the most significant 4 sum bits of the overall adder.

The algorithm relies on parallelization to quickly output sums while minimizing

the critical path. Intermediate sum bits s04, s
0
5, s

0
6, and s07 are all input into consecutive

half adders. The first intermediate sum is half added with the carry out bit from

earlier. Each sum bit is the accurate final sum for the adder while each carry out bit

is input as the carry in for the next half adder.

The carry-out bit is combined with the group propagate signal for the four most-
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significant inputs using an AND-gate and then compared using an OR-gate with the

carry out from the intermediary ripple-carry adder. This process generates sums

quickly and passes the carry for an 8 -bit block more quickly than the standard 8 -

bit ripple carry adder, allowing for faster calculation in any further adders. Beacuse

the carry out bits are provided already, larger implementations can be achieved by

attaching modular circuitry without the need for the initial 4-bit RCA.

The proposed design in this thesis utilizes the carry-increment algorithm; how-

ever, the design is brought together topologically using a spanning-tree architecture.

An example of a spanning tree architecture can be seen in Figure 2.6 [2]. This hy-

bridization combines the low delay and power of carry-increment with the utility and

efficiency of spanning tree. The proposed architecture allows carry generation and

propagation to flow unidirectionally. It also works to decrease delay as all inputs are
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grouped and consolidated to develop the carry signals needed for each addition. This

spares the strain of dealing with many input signals in architecture.

An advantage of spanning tree architectures is the regularity of signal consolida-

tion and reduction. As a design produces carry signals in only one direction, the

complexity of design facilitates minimization [2]. Furthermore, these carry signals in-

tegrate or “span” the various branches of the tree so that certain aspects of the design

maybe be parallelized. These grouped signals can be transformed by combinational

logic or Manchester carry chains [1], Figure 2.7, to produce intermediate signals that

interact with the carry in bit of each cell as:

ck+1 = gk:0 + pk:0 · cin . (2.9)

In the Spanning Tree topology, pass-logic circuitry called Manchester carry chains

are used to continually group signals so that intermediate inputs may interact with

various carry signals to produce a valid carry output. Manchester carry cells are

chained together to consolidate signals and develop the final output of the carry

lookahead algorithm. These Manchester carry chains make up the backbone of the
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spanning tree, as they only allow forward calculation of the generate and propagate

signals. As the calculation occurs only forward, previous portions of the circuit do

not need to wait on future calculations and may output more quickly with potentially

less wiring. The speed provided from Manchester carry chains proves useful in smaller

feature sizes.
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CHAPTER 3

IMPLEMENTATION

The spanning-tree architecture design connects 8 blocks of 8 -bit adders together us-

ing carry bits, c8, c16, c24, c32, c40, c48, and c56 to create a 64 -bit adder. And, the

implementation of the 64 -bit adder is subdivided into separate 8 -bit modules. Conse-

quently, the implementation of a 64 -bit spanning tree adder with the carry-increment

algorithm is sectioned into identical 8 -bit branches for regularity. Each branch con-

sists of four (4) parallelized 2 -bit carry-increment adders with interdependent carry

lookahead chains as shown in Figure 3.1. The spanning bit is calculated with the

most-significant portion using Equation 2.9 and passed to the next block.

This design is implemented in two synergistic parts. A modified carry-increment

algorithm is utilized to generate intermediate sums while the spanning tree is used

to turn inputs a and b into usable grouped signals that can interact with provided

carry inputs to create internal carry bits and the carry out bit. As the carry bits

are created, the intermediate sum values become ready for incrementation to provide

accurate results. Half adders are broken up into 2 -bit intervals to make full usage of

the carry signals provided in the Manchester carry portion of the spanning tree and

to allow for faster computation of the sum outputs.

Since the spanning tree architecture produces the four (4) most-significant carry

bits more quickly than a simple 4-bit ripple carry adder, this hybridization saves

valuable time in the carry-increment process. The carry-increment algorithm provides

a suitable replacement for the standard carry-select algorithm used in many spanning

tree architectures as it remains similar in terms of delay while often improving overall

13
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Figure 3.1: 8-Bit Spanning Tree Adder with Carry-Increment Addition

power.

As input signals enter each branch, generate and propagate signals are created

using combinational logic to realize Equation 2.2. The gi and pi signals are then

grouped in two bit intermediate group generate signals, g1:0, g3:2, g5:4, and g7:6, and

intermediate propagate signals p1:0, p3:2, p5:4 and p7:6. These grouped signals are much

more manageable and are used to form the carry lookahead portion of the spanning

tree concept. However, the intermediate group signals can not yet be used to realize

(Equation 2.9) as they simply determine the generation and propagation of a carry

respective to the two grouped signals and not from the least significant bit to the

current bit. Using the provided signals at this point would not provide accurate

outputs. While final grouping could be achieved combinationally, the timing cost

would be high and preparation of the intermediate groupings is left to the Manchester
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carry chains in order to keep delay low.

The temptation may arise to realize all group signals using dynamic logic as with

the original implementation in [2]. While this accomplishes much in terms of speed,

care must also be taken to create outputs with full voltage swing. In small tech-

nologies, this proves particularly crucial. Smaller threshold voltages lead to smaller

margins for error in output voltage swing. Initial signal grouping utilizes static logic

while only one Manchester carry chain is placed in each 8 -bit branch to finally con-

solidate all grouped signals. This balances speed with complete output accuracy.

The exception to the Manchester carry chain is the generation of the internal carry

bit, c2. As the signals g1:0 and p1:0 are already of the form (Equation 2.9), this carry

bit can be computed without the need for Manchester carry chains. The carry bit is

then calculated using additional logic as soon as these two grouped signals become

ready. However, both signals are still needed for the Manchester carry chain in order

to create the fully grouped signals.

Manchester carry chains consolidate intermediate grouped signals to provide us-

able ”full group” signals. The design uses pass logic to perform the functions:

g3,0 = g3:2 + p3:2 · g1:0 ,

p3,0 = p3:2 · p1:0 ,

g5,0 = g5:4 + p5:4 · g3:0 ,

p5,0 = p5:4 · p3:2 · p1:0 ,

g7,0 = g7:6 + p7:6 · g5:0 ,

p7,0 = p7:6 · p5:4 · p3:2 · p1:0 . (3.1)

The Manchester carry design is grouped together in a 4-bit output implementation

as larger combinations tend toward instability and diminished voltage swing. The pass

logic in the Manchester carry chain can be replaced with additional logic as in the
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Figure 3.2: 64-Bit Spanning Tree Adder with Carry-Increment Addition

case of the previous grouping circuitry; however, this causes extra delay.
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The final step of the carry lookahead stage is the construction of carry bits for

use in the second stage of carry increment. Corresponding full group signals are

combined with the carry in bit of each 8 -bit module to determine carry values for c4,

c6, and cout bits. Signals c4 and c6 are used in the carry increment algorithm while

cout is passed as the cin of the next branch. This stage is where the spanning-tree

architecture becomes useful. As each branch relies on the cout of the previous branch,

a carry tree is formed in only the forward direction without the need for backward

propagation. In addition, each internal carry bit is calculated as:

c2 = g1:0 + p1:0 · cin ,

c4 = g3:0 + p3:0 · cin ,

c6 = g5:0 + p5:0 · cin ,

c8 = g7:0 + p7:0 · cin . (3.2)

The beginning of the carry-increment algorithm occurs in parallel with the carry-

lookahead algorithm so that minimal calculation occurs after the carry bits are ready.

As a 4 -bit ripple carry adder outputs the sum after carry-lookahead execution, two

2 -bit ripple carry adders are used in parallel instead. These adders generate interme-

diate sum bits, s0k for use in carry incrementation. The carry-in and carry-out values

of each adder are accounted for in the carry-lookahead algorithm. Thus, the carry

in of each adder is set to 0 and the carry out is disconnected. Including these would

have the effect of doubling the carry out value for each 2-bit adder. This process is

used for four 2-bit blocks intermediate outputs simultaneously to represent each 8-bit

branch.

Finally, the intermediate sum bits and the prepared carry lookahead outputs un-

dergo incrementation. Each carry signal is paired with corresponding intermediate

sum bits and enters a 2-bit half adder. Each of the half adders form the final step of
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the carry-increment algorithm.

Sum bits for each signal are generated and the carry outputs are disconnected as

any useful carry signals have already been generated and passed to the next branch.

This demonstrates the advantage of hybridizing the carry-increment algorithm with

spanning tree architecture. The final combinational logic from the carry-increment

algortihm is not needed since the spanning tree quickly outputs the carry out for

each blocks, thereby diminishing logic levels needed and improving delay. The sum

bits from each half-adder are output as the final sum bits for each branch and the

complete design. Each sum bit is subsequently found as:

sk = s0k ⊕ ck . (3.3)

Additional 8 -bit branches are connected modularly by connecting carry out signals

between branches as described above and supplying the corresponding a and b inputs.

Connecting carry signals are found as:

c8 = g7:0 + p7:0 · cin ,

c16 = g15:8 + p15:8 · c8 ,

c24 = g23:16 + p23:16 · c16 ,

c32 = g31:24 + p31:24 · c24 ,

c40 = g39:32 + p39:32 · c32 ,

c48 = g47:40 + p47:40 · c40 ,

c56 = g55:48 + p55:48 · c48 ,

c64 = g63:56 + p63:56 · c56 . (3.4)

More 8-bit blocks may be concatenated as needed. A modular 64-bit design can be

seen in Figure 3.2. Results and analysis are provided for the 64-bit variation below.
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CHAPTER 4

RESULTS AND ANALYSIS

System on Chip (SoC) design flow for the proposed adder design is realized in Fig-

ure 4.1. First, Hardware Description Language (HDL) and test vectors are writ-

ten,and then the logic is verified. Power files were generated from the verification

software. The design was synthesized and results were obtained [10]. Each design

flow step is detailed below.

To design the proposed architecture, HDL is first implemented, where HDL is

a text-based code used to describe and design hardware. HDL is heavily used in

both academia and commercially due to its ease in design and simulation [1]. The

programmer is able to implement a desired hardware implementation by describing

the logic functions of the associated design. This description takes on a code-like

structure and the developer can quickly create testable models.

Two commonly used HDLs are Verilog and VHDL. The proposed implementation

is created using Verilog. 8 -bit blocks were created as Verilog modules and combined

together to form the 64 -bit design. Within each block, logic components are created

using submodules that represented the desired logic for each component. Appropriate

inputs and outputs are added to the design along with internal signals called “wires”.

Because the carry out bits from each block spanned between modules, these connect-

ing signals were designated as wires. After compilation, the design logic is verified

using ModelSim® software.

After creating the design in HDL, the logic must be tested. Mentor Graphics

Corporation (MGC) ModelSim® is a software that receives Verilog files as an input
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Figure 4.1: VLSI System on Chip (SoC) Design Flow

along with a file containing test values as input for the Verilog design. These test

vectors are carefully chosen to show critical inputs and outputs of the design. Critical

inputs may be those representing greatest delay or certain internal conditions that

must be checked for the design. For the proposed implementation, vectors are chosen

to determine proper operation at values for each bit as well as the critical delay con-

dition and proper carry conditions between blocks. Further test vectors are created

to ensure that the most significant bits were output correctly after going through the

carry lookahead portion of the spanning tree. When the Verilog and test vector files

are ready, simulation demonstrates the various outputs across time for the design us-

ing the test vectors. The outputs are carefully verified to determine correct operation

of the proposed design. During this step, files can be generated that represent power

conditions in the design. These files are called Value Changed Dump (VCD) files,

and prove useful in determining accurate power or energy readings for the synthesized

design.

VCD files determine the quantity of vector changing, and therefore a relatively
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accurate power model, that the Verilog design goes through with the test vectors pro-

vided. However, this file also includes a large amount of information for large designs

or vectors. It can be converted into a consolidated formatted called the Switching

Activity Interchange Format file. This file contains the switching information for the

design signals along with signal duration. While a layout can be synthesized from

only the Verilog code, the power results of the layout tend to be much more accurate

when using the SAIF file.

Standard cells are the building blocks of synthesized implementations. While the

Verilog model describes the logic of the design, the standard cells are used to create

the layout. These cells usually utilize predetermined height and width characteristics

to lay the design out in a standard format [1]. A benefit of using standard cells

is that they exploit regularity to quickly “place and route” a given design. What

could take days or weeks in custom logic design can take minutes in standard cell

implementation. The disadvantage of this is that the design may not be completely

optimized in the same way a custom design might be. Standard cell supply lines and

input/output signals often use the same metal between cells for the sake of regularity.

However, standard cells need direction to be placed.

Standard cells can be used alongside HDL files to create layout for a given design.

This process is known as synthesis. Synthesis places the needed components and

gates as standard cells and routes them together using lines of metal. The placement

and routing may be internally optimized for area, delay, or power. Based on this

optimization, results can be obtained from the design so that the designer may un-

derstand the associated constraints. The implemented design is ultimately optimized

for delay. While the results are viewable at this point, some other considerations are

also necessary.

The first major consideration for obtaining results is that of the topographical

model versus Wire Load Model (WLM). WLM model synthesizes a rudimentary de-
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sign based on the concept that the load comes from the wires. This looks at the

design from an overall perspective. While WLM remains an option for large technol-

ogy feature sizes, it overlooks the fine detail needed for small transistor technologies.

Topographical mode includes considerations for cell interconnects and looks at the

nuanced details of each cell for more realistic results.

Finally, it is important to understand technology sizing options. An admirable

goal is to develop the design and obtain results for the smallest technology possible.

This is so the design keeps up with modern constraints and the fast pace of industry.

The proposed design was first designed in 14nm technology. However, synthesis would

only correctly place layout using WLM mode. As these results were inaccurate, the

design was resynthesized using a 45nm process in topological mode and compared to

a design of the same technology size.

The 64-bit adder design is designed using RTL-level Verilog and synthesized in a

Global Foundries 12SOI 45nm technology using an ARM standard-cell library. All

designs are synthesized using Synopsys’ Design Compiler (DC) topographical mode,

optimized for minimum delay. DC topographical mode is desirable over the typical

wire load model (WLM) in order to ensure a stronger correlation to the area, power

consumption, and delay of a post-layout physical implementation. Even more accu-

racy is achieved in using topographical mode over WLM when synthesized in smaller

technologies due to circuit density compared to wire size. After synthesis, the design

is compared to a spanning tree adder design utilizing the carry-select algorithm as

in [2]. Results for 45nm area, power, and delay are shown in Table 4.1.

# Cells Area [um2] Delay [ps] Power [mW]

Proposed Architecture 1099 1601.43 146.29 0.8445

Carry-Select Spanning Tree 1253 1983.83 135.70 1.0100

Table 4.1: Results for the Proposed 64-Bit Design in 45nm Technology
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As carry-increment emphasizes relatively low delay and improved power, the re-

sults of Table 4.1 are somewhat expected. The low delay of the proposed design keeps

computation fast while reducing the area and dissipated power of the circuit. While

the proposed design is slower than the compared design by about 9.4ps (a 7% differ-

ence), the total power dissipation of the carry-increment design is improved by 16.4%

compared to the carry-select design. Additionally, the proposed design features 154

less cells and an overall area improvement of 19.3%. The delay stays comparable to

the other design while area and power greatly improve.

As the design creates internal carry signals for every other bit, more capabilities

are added by implementing this design. Pairing this with a decrease in power provides

a robust, but low-cost option for 64-bit addition. As carry signals are often needed

for other functions, this could prove useful in other implementations

Area and power improvements in 45nm for the proposed design are due to the

extra ripple carry adders needed for the carry-select algorithm. As each block of

4 bits needs a 2:1 multiplexer and two 4-bit ripple carry adders, the device area

quickly accrues. These adders compute in parallel with both each other and the

carry lookahead. The result is accumulated more quickly.

For this work’s implementation, much of the calculation can occur in linked half

adders, which explains the similar delay without the cost of power dissipation. Much

of the critical path for both designs lies within the carry lookahead portions of each

branch. Additional area can be attributed to the usage of multiple internal carry bits

compared to the smaller amount of capability in the carry-select adder. This area

disadvantage may be counteracted by using larger branches in a spanning tree, but

come at the cost of delay.
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CHAPTER 5

CONCLUSIONS

As device sizes tend to decrease, it becomes more important to look at the building

blocks of commonly used designs. General improvements to basic digital arithmetic

units can have large impacts when considered cumulatively. Additionally, modular

designs such as hybrid adders allow for fast and scalable implementations in quickly

changing environments. Modules for these hybrid designs hold differing advantages

in terms of desired constraints such as area, delay, and power.

Design choice becomes a matter of advantage in time versus advantage in power.

These choices should not be made lightly, however. As adder circuitry is used often

in modern processing, these advantages accumulate on a large scale.

It should be noted that highly customized results may be obtained through the

usage of differing branches in modular spanning tree designs. The designer may

choose to optimize for a particular constraint as in this paper, but a balance may

be found by the use of alternation or hybridization. For example, a spanning tree

architecture that alternates between blocks of carry-increment algorithm and carry-

select algorithm could provide a balanced performance boost in both power and speed

respectively.

Results for the proposed design show an encouraging improvement in total power

while remaining competitive in speed. As device power becomes more important in

smaller technologies, these results prove more useful. Further combining of fast adder

algorithms with spanning tree architecture may show improvements for application-

specific implementations, but the proposed design provides a baseline for general
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performance enhancement.

25



BIBLIOGRAPHY

[1] N. Weste and D. Harris, CMOS VLSI Design: A Circuits and Systems Perspec-

tive. USA: Addison-Wesley Publishing Company, 4th ed., 2010.

[2] T. Lynch and E. E. Swartzlander, Jr., “A spanning tree carry lookahead adder,”

IEEE Transactions on Computers, vol. 41, pp. 931–939, Aug 1992.

[3] A. Weinberger and J. L. Smith, “A one-microsecond adder using one-megacycle

circuitry,” IRE Transactions on Electronic Computers, vol. EC-5, pp. 65–73,

June 1956.

[4] M. D. Ercegovac and T. Lang, Digital Arithmetic. San Francisco, CA, USA:

Morgan Kaufmann Publishers Inc., 1st ed., 2003.

[5] S. Winograd, “On the time required to perform multiplication,” J. ACM, vol. 14,

pp. 793–802, Oct. 1967.

[6] J. E. Stine, “Basic adder structures and the lookahead concept.” ECE4243 Lec-

ture Notes, 2019.

[7] M. Lehman and N. Burla, “Skip techniques for high-speed carry-propagation in

binary arithmetic units,” IRE Transactions on Electronic Computers, vol. EC-10,

pp. 691–698, Dec 1961.

[8] O. J. Bedrij, “Carry-select adder,” IRE Transactions on Electronic Computers,

vol. EC-11, pp. 340–346, June 1962.

26



[9] A. Tyagi, “A reduced area scheme for carry-select adders,” in Proceedings., 1990

IEEE International Conference on Computer Design: VLSI in Computers and

Processors, pp. 255–258, Sep. 1990.

[10] K. Price and J. E. Stine, “Using carry increment adders to enhance energy savings

with spanning-tree adder structures.” Submitted to 2019 Midwest Symposium

on Circuits and Systems, 2019.

27



VITA

Kyle Price

Candidate for the Degree of

Master of Science

Thesis: USING CARRY INCREMENT ADDERS TO ENHANCE ENERGY
SAVINGS WITH SPANNING-TREE ADDER STRUCTURES

Major Field: Electrical Engineering

Biographical:

Personal Data: Born in Alamosa, Colorado, United States of America on June
8, 1995.

Education:
Received the B.S. degree from Texas A&M-Texarkana, Texarkana, Texas,
United States of America, 2017, in Electrical Engineering

Received the B.S. degree from Texas A&M-Texarkana, Texarkana, Texas,
United States of America, 2017, in Mathematics

Completed the requirements for the degree of Master of Science with a
major in Electrical Engineering from Oklahoma State University in May,
2019.

Experience:
Graduate Research Assistant - VLSI Computer Architecture Research Group
OSU
January 2018 - May 2019


