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ABSTRACT 

There are two levels of web instability in web lines.  The first level of web instability 
is called web troughs.  Web troughs are due to the instability of webs that occur in free 
web spans.  Web troughs have been shown to be predictable using traditional buckling 
theory. Closed form expressions have been developed and verified in the lab that predict 
when web troughs will result from roller misalignment and roller taper.  Web troughs can 
be a nuisance in web processes where the web must be planar.  The troughs themselves 
may not damage the web but can be responsible for reductions in web quality after 
processing that can result in lost profit. 

The next level of instability is called web wrinkles.  Web wrinkles are due to the 
instability of webs that are transiting rollers.  When webs transit rollers they assume the 
shape of a sector of a cylindrical shell.  A cylindrical shell of web is much more stable 
than the web in free spans.  Compressive stresses which are two to three orders of 
magnitude larger than those required to induce web troughs are necessary to buckle the 
cylindrical shell.  This paper will demonstrate that web wrinkles are a post buckling 
phenomena that result from web troughs.  The source of the high compressive stresses 
needed to buckle the web into wrinkles on rollers will be shown.  We will show how web 
wrinkles can be predicted and we will show experimental verification for the cases where 
a misaligned or tapered rollers were the source of the troughs and wrinkles.  Web 
wrinkles can damage the web as a result of inelastic deformation, fold-overs, and in the 
worst case may cause full separation or failure of the web.  When web wrinkles can be 
predicted, they can also be prevented. 

NOMENCLATURE 

a span length 
Amn amplitude coefficient for buckled shape 
As area of a beam which reacts shear, 5bh/6 for a web 
b web width 
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fyi, fyj lateral web forces at upstream and downstream rollers, respectively 
D plate bending stiffness, defined in expression (1) 
[D] constitutive matrices relating stress to strain 
E modulus of elasticity 
G shear modulus 
h web thickness 
I web area moment of inertia, hb3/12  
m number of half waves in buckled shape in the x direction 
Mi, Mj web bending moment at upstream and downstream rollers, respectively 
n number of half waves in buckled shape in the y direction 
P,Q constitutive parameters, defined in expression (54) 
R roller radius 
T total web tension, units of force 
vi, vj lateral web deflection at upstream and downstream rollers, respectively 
w out of plane web deflection 
 
εx,εy x and y direction strains 
ε1, ε2 principal strains 
γxy shear strain 
ν Poisson’s ratio 
φ a shear parameter 
σe equivalent stress, defined in expression (3) 
σex equivalent stress, defined in expression (25) 
σx,σy stresses in x and y directions, positive when induces tension 
σycr  y direction stress required to induce troughs or wrinkles in the web 
σ1, σ2 principal stresses  
θi, θj slope of web at upstream and downstream rollers, respectively 
θcr misalignment or slope of a downstream roller required to induce 

troughs 
τxy shear stress in web 

INTRODUCTION 

Webs undergoing transport can be considered as a series of plate and shell structures 
as shown in Fig. 1.  Webs are often studied as membranes but when investigating 
instability their small finite bending stiffness must be considered.  To successfully 
transport a web through a machine the web must be subjected to tension.  This tension is 
responsible for forcing the web to conform to the rollers in the shape of a sector of a 
cylindrical shell. The rollers are supported on low friction bearings on their axes of 
symmetry.  The tension in the web induces normal contact forces between the shells and 
the surfaces of the rollers.  If the tension and friction are sufficient the tangential 
velocities of the web and the roller surfaces will be essentially equal. 

The boundary conditions for webs might appear to depend on the frame of reference 
of the observer.  To a first observer traveling with the web it would appear to be a moving 
boundary condition problem as plates become cylindrical shells and shells become plates.  
To a second observer standing to the side of a process machine the plates and shells 
appear to be of fixed dimensions and have steady state boundary conditions, even though 
the web is moving through the machine.  The dynamic forces associated with moving 
boundary conditions are typically small for webs due to little mass and for the discussion 
herein will be assumed negligible.  With this in mind the boundary conditions will be 
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defined in the frame of reference of the second observer.  The plates are supported at two 
opposing ends by rollers.  The two remaining edges of each plate appear unsupported.  
The shells are given contact support by the roller surfaces but this support will not prevent 
buckling instability of the shell. 

 

Figure 1 – A Web in Transport through a Process Machine 

When discussing the stability of a web, one or more behaviors may exist. The first 
and most desirable behavior would be a stable web.  In this case there would be no out-of-
plane deformation of the plates and the shells would have the shape of perfect cylindrical 
sectors.  The second behavior is described as troughs.  Troughs are out-of-plane 
deformations of the web plates.  Web troughs may or may not be acceptable in sections of 
a process machine depending on whether a process is taking place that requires the web to 
be flat.  The third behavior is called wrinkling.  Wrinkling is defined as the instability of 
the web shells.  Wrinkling is rarely acceptable under any circumstances as the result is 
either inelastic deformation of the web or fracture of the web which interrupts the process.  
Experiments which will be discussed herein have shown that wrinkling of the web shells 
on rollers is always precipitated by troughs in the free spans (i.e. the plates of web 
between rollers).  It will be shown that troughs can be predicted by linear plate buckling 
theory. It will also be shown that to predict wrinkling requires the use of nonlinear post-
buckling analysis. These analyses are required to determine what compressive stresses are 
induced in the webs shells by the free spans of web which have already buckled into 
troughs. 

WEB TROUGH FAILURE THEORY 

Web Troughs in Isotropic Web 
Web troughs are due to instabilities of the web plates between rollers.  It may be 

assumed that the web was initially stable but due to compressive stresses in the y direction 
that troughs have resulted.  An isotropic plate of web, having a width b, spans the distance 
a between two rollers as shown in Fig. 2. 

Velocity 

Shells 

Example 
Web Tension 
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Figure 2 – Isotropic Span of Web between Rollers 

The deflection equation for an isotropic plate of thickness h, including the effects of 
membrane forces, is [1]: 

 

( )
34 4 4 2 2

x y4 2 4 2 2 22
w w w w w EhD 2D D h h 0 where D=

x y y x y 12 1-x
∂ ∂ ∂ ∂ ∂+ + − − =σ σ
∂ ∂ ∂ ∂ ∂ ν∂

 {1} 

A solution is sought for the out-of-plane deformation w (in the z direction) of the form: 

 
mn

m x n yw sin sinA a b
π π   =    

   
 {2} 

where m and n are the half wave numbers in the x and y directions, respectively and Amn is 
the maximum amplitude of out-of-plane deformation for a given buckled shape.  It should 
be noted that by selecting the displacement form {2}, the out-of-plane deformation is 
forced to vanish on all four boundaries of the web span when m and n are forced to be 
positive integers.  While this appears appropriate on the boundaries that contact the 
rollers, no such kinematic constraint exists on the free web boundaries (y=0,b).  
Observations of troughs in the laboratory demonstrate that the free edge deformations 
appear negligible compared to the out-of-plane deformations associated with the troughs.  
From surface equilibrium no σy stress can exist at the free boundaries and thus troughs 
would be expected to dissipate near those boundaries which agree with observations.  The 
combination of the absence of troughs and that web tension acts to restrict the out-of-
plane deformation w supports the assignment of the simple support boundary condition to 
these boundaries (y=0,b).  The moments at the boundaries are related to the second 
derivative of the deformation w which per expression {2} will vanish on the boundaries as 
long as m and n are defined as positive integers.  Thus the selection of a simple support at 
these boundaries (y=0,b) is most appropriate.  The validity of the assumed form of 
deformation will be verified later herein by test. 

σy 

x 

y 

a 

b σx σx 

σy 
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In this analysis it will be assumed that the σx stress is positive and thus tensile which 
restricts the half wave number in the x direction (m) to be unity. If expression {2} is 
substituted into expression {1} and if that expression is solved for σy a relationship for 
the critical buckling stress is produced of the form: 

 ( )22 2 2 4 2e x
eycr 2 2 2 2

b a n b D  where 
a b n a h

+ +σ σ π
σ = − =σ  {3} 

With this expression for a plate of given dimensions and material the critical compressive 
stress in the y direction can be determined as a function of the half wave number in the y 
direction (n) and the tensile stress in the x direction (σx).  Increasing the values of these 
parameters both serve to increase the magnitude of σycr and thus stabilize the web. To 
determine the value of n which is correct for a given value of σx requires consideration of 
minimum energy.  For given values of a, b and n, note expression {3} is a linear 
relationship between σycr and σx.  In Fig. 3, expression {3} has been plotted for the case 
of a square web (b=a) and fixed positive integer values of n.  Note that non-integer values 
of n would appear to violate the boundary conditions for the deformation (w) at the 
boundaries of the web.  Also, note the intersection of the n=3 and n=4 lines that occurs 
when σx=143σe.  The n=3 line should be used as the critical relation for the y stress for 
tensions less than the intersection point while the n=4 line should be used when the 
tension is greater than the intersection point.  For a given value of tension (σx) the failure 
criterion will be the line that has the smaller magnitude of σycr, hence resulting in the 
minimum energy.  If it is assumed momentarily that n is continuous, the energy can be 
minimized  by taking the derivative of {3} with respect to n, setting the result to zero and 
solving for n: 

 
1/4

x

e

bn 1
a

 σ
= + σ 

 {4} 

When expression {4} is substituted into {3} an expression is obtained for the critical 
stress that will cause troughs to occur in an isotropic web: 

 2
e eycr e x2 σ = − + σ + σσ σ 

 
 {5} 

Substitution of typical web values for h, a, σx, E, and ν into this expression demonstrates 
that the σe term is 4 orders of magnitude smaller than σx. Thus expression {5} simplifies 
to: 

 

( )
x

eycr x 2
Eh2

a 3 1

σπ
σ ≈ − = −σσ

− ν

 {6} 

Note that web tension which induces the σx stress in the web acts to stabilize the web (i.e. 
the more σx stress is applied allows the web to accept a more negative σy stress prior to 
producing troughs).  The wavelength of these troughs will be: 
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1/4

x

e

b 2a
n / 2

1

λ = =
 σ

+ σ 

 {7} 

Expression {5} is also shown in Fig. 3 and agrees with the piecewise linear solutions 
nicely, note the greatest disagreement is in the vicinity of the intersections.  Expressions 
{6} and {7} are valid for web spans with various a and b dimensions but note the 
expressions are only dependent on the span length a. 
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Figure 3 – Instability of Isotropic web Panels (b=a). 

In applying expression {6} it will be noted that very little y direction compressive 
stress may be needed to induce instability.  When the σy stresses become more negative 
than the critical buckling stress from expression {6} the web has buckled and developed 
troughs, thus tension field behavior has begun. 

Web Troughs in Orthotropic Webs 
The deflection equation for an orthotropic plate including the effects of membrane 

forces is [2]: 

 4 4 4 2 2
1 3 2 x y4 2 4 2 22

w w w w wh h 0D 2D D
x y y x yx

∂ ∂ ∂ ∂ ∂+ + − − =σ σ
∂ ∂ ∂ ∂ ∂∂

 {8} 

where: 

 
( ) ( )

3 33 yx
1 2 3 1 k kxy

xy yx xy yx

E h GhE h          2  D D D D D    D 1212 1 12 1
= = = + =ν

− −ν ν ν ν

 {9} 
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and Ex and Ey are the moduli of elasticity in the x and y directions and G is the shear 
modulus.  The Poisson’s ratios are perhaps best defined by the constitutive relations 
between strain (ε) and stress (σ) in the x and y directions: 

 yx y y xy xx
x y xyxy

x y y x

1      
GE E E E

ν σ σ ν σσ= − = − =γε ε τ  {10} 

If expression {2} is substituted into expression {8} using m=1: 

 2 4 2
31 2

eo x y
2 11 2

an an anDD D2 0
b b bD DD D

       + + + =σ +σ σ     
       

 {11} 

where 2
1 2

eo 2
D D

a h
π=σ .  Solving this expression for the σy stress yields: 

 22 4
31 2

y eo x
2 11 2

ban anDD D2
b b anD DD D

        = − + + + σσ σ               

 {12} 

Similar to the derivation for the isotropic web it is assumed momentarily that n is 
continuous,  that the strain energy will be minimized  by taking the derivative of {12} 
with respect to n, setting the result to zero and solving for n: 

 
1

2 2 2 41 x 1 x4
22 2 2

D ha D hab bn
D a Da D

 π + σ σ
= = + 

 π π 

 {13} 

Note if D2 approaches D1 that expression {13} simplifies to the isotropic form {4}.  The 
wavelength of the troughs in an orthotropic web will be: 

 
1/42

1 x
22 2

b 2a
n / 2 D ha

D D

λ = =
 σ

+  π 

 {14} 

Substituting expression {13} into the expression for σy {12} yields the buckling stress 
σycr for an orthotropic web: 

 
2 2 2 2

1 2 x 2 3 1 x
ycr 2 2 2

1 x

D D ha D D D ha
2
a h D ha

 π + σ + π π + σ π  σ = −
π + σ

 {15} 

Substitution of typical web values for h, a, σx, Ex, νxy, and νyx into our expression for n 
shows the π2D1 term is three to four orders of magnitude smaller than the ha2σx term.  
This simplifies the half wave number to: 
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 ( )
11
42 4 xy yx xx

2 y

3 1hab 2n b
D ah Ea

 − ν ν σ σ  ≈ = 
   ππ    

 {16} 

This also allows a simplification of the critical buckling stress: 

 
( )

x y
ycr

xy yx

Eh
a 3 1

σπ
σ ≈ −

− ν ν
 {17} 

Note the similarity between expression {17} for the orthotropic web and expression {6} 
for the isotropic web.  It appears that the greatest impact of orthotropic web properties is 
that the modulus in the cross machine direction Ey must be used in the instability 
calculations. 

DISTURBANCES WHICH INDUCE WEB TROUGHS 

For the web between rollers to become unstable and produce troughs, negative σy 
stresses comparable to those given in expressions {6} and {17} must be applied.  
Disturbances which are common in web lines include misaligned rollers and rollers that 
may have unintentional taper in diameter.  How these disturbances induce negative σy 
stresses in the web will now be examined. 

Webs in Spans with Misaligned Rollers 
A common problem in web process lines is the steering of webs by misaligned 

rollers.  If a roller that is initially parallel to an upstream roller is slowly misaligned the 
web will be steered laterally an amount vj for a misalignment θj as shown in Fig. 4.  As 
the misalignment is further increased a critical value will be reached and troughs will 
appear.  If the misalignment is increased yet further a second critical value will be 
surpassed and wrinkles will be induced into the web material on the rollers. 

The material upstream of the misaligned roller behaves similarly to an end loaded 
cantilever beam provided that friction forces are sufficient to enforce the boundary 
conditions.  Shelton discussed the concept of normal entry and exit conditions of webs 
entering and leaving rollers [3].  Webs approach or enter rollers normal to axis of rotation 
of that roller.  A misaligned roller has a misaligned axis of rotation and the web will enter 
that roller normally to that misaligned axis, refer to Fig. 4.  The analogy to the end loaded 
cantilever is that the moment in this span increases linearly from zero at the misaligned 
roller to a maximum value at the upstream roller.  Thus the σx in the web just upstream of 
the misaligned web is uniform while at the upstream roller a linear variation in σx stress 
associated with the maximum moment exists.  Shelton was first to deduce this. 
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Figure 4 – A web span between rollers i and j 

Przemieniecki developed stiffness matrices for beams stiffened by tension and shear 
effects [4].  The stiffness matrix for this beam is: 

 
( ) ( ) ( ) ( )

( )
( )

( ) ( )
( )

( )

( ) ( ) ( ) ( )

( )

+ + − − +
+ φ + φ + φ + φ

  + φ − φ
+ + − − −  + φ + φ+ φ + φ  = 

  − − − − + − −
  + φ + φ + φ + φ 
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3 2 3 2
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12EI 6T 6EI T 12EI 6T 6EI T
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f 4 EI 2 EI6EI T 2Ta 6EI T Ta
10 a 1 15 10 a 1 301 1M a a

f 12EI 6T 6EI T 12EI 6T 6EI T
5a 10 5a 101 1 1 1a a a aM

26EI T
101a

( )
( ) ( )

( )
( )

 
 
 
   
   θ   

  
  
   θ  

− φ + φ − − − + + φ + φ+ φ 

i

i

j

j

2

v

v

EI 4 EITa 6EI T 2Ta
a 1 30 10 a 1 151a

 {18} 

where φ is defined as the shear parameter:   

 
2

s

12EI
GA a

φ =  {19} 

and As is the area of the cross section subject to shear. For the rectangular cross section of 
a web the area subject to shear is: As=5bh/6.  It is assumed the web is a beam and that it is 
supported by rollers at i and j in Fig. 4 and that the web is traveling from left to right and 
that the roller at position j is misaligned to some degree θj.  This will induce a shear force 
and therefore some lateral deformation v into the span.  At the upstream roller it will be 
arbitrarily assumed that vi is zero without loss of generality.  The rotation at i will be non-
zero due to the shear deformation and equal to: 

θj,vj 

θj 

a 

b 

vi=0 

σx σx 
Direction of Web Travel 
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 yj
i

s

f
GA

=θ  {20} 

Shelton determined that the moment in the web just prior to a downstream roller is zero 
under steady-state conditions [3].  Thus with knowledge that Mj is zero the fourth 
equation in the stiffness matrix {18} can be solved for vj as: 

 ( ) ( ) ( ) ( )

( )

2
s j yj yj s j

j 2
s

a Ta 4A G f 1 30EI f 2 A G 4
v

3A G 60EI Ta 1

  θ − + φ + − φ + θ + φ  =
 + + φ 

 {21} 

With vi assumed zero and θi and vj known, the third expression in the stiffness matrix 
{18} yields an expression relating fyj, and thereby the shear in the web F, to the 
misalignment of the downstream roller θj: 

 ( ) ( )
( )( ) ( )

2 2 2 4 2
s

yj j2 2 4 2
s s

A G 240E I 3T a 1 8EITa 13 3
f F

240E I Ta 2A G T 1 8EIa 15A G T 2 3

 + + φ + + φ = = θ
 + + + φ + − − φ 

 {22} 

This expression has bounds of validity that include limiting the downstream roller 
misalignment θj to values that will prevent web edge slackness at the upstream roller and 
the assumption that the lateral force fyj does not exceed the force which can be sustained 
by friction between the web and roller. 

Expression {22} can be used to determine the shear stress τxy in the web.  The 
average shear stress was determined by dividing the shear by the cross section area.  The 
second principal stress will be negative (compressive) and can be determined using the 
expression: 

 
2

2x x
2 xy2 2

σ σ σ = − + τ 
 

 {23} 

If this principal stress is equated to the critical stress from expression {17} the critical 
rotation to induce troughs in the web can be determined: 
 

 ( )( ) ( )( )( )
( ) ( )( )avg

6 2 2 4 2 3

cr, ex6 2 2 4 2 2 3

6 5b E h a T 5bGh 3T 1 a b Eh 25bGh T 6 4

5G 5b E h 9a T 1 2a b EhT 13 3
τ

+ + + φ + + φ −
θ = σ

+ + φ + + φ

 {24} 

where:  

 
ex ycr ycr

T
bh

 σ = σ σ − 
 

 {25} 

and where σycr can be substituted from the isotropic expression {6} or the orthotropic 
expression {17}.  At this rotation of the downstream roller troughs would be expected 
across much of the web width.  Troughs should first appear at the center of the web where 
the flexural shear stress is maximum, 1.5 times greater than the average value.  If the 
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maximum shear stress is inserted into expression {23}, the principal stress can again be 
equated to the critical buckling stress to provide an expression for the critical rotation to 
predict the onset of troughs: 

 ( )( ) ( )( )( )
( ) ( )( )max

6 2 2 4 2 3

cr, ex6 2 2 4 2 2 3

4 5b E h a T 5bGh 3T 1 a b Eh 25bGh T 6 4

5G 5b E h 9a T 1 2a b EhT 13 3
τ

+ + + φ + + φ −
θ = σ

+ + φ + + φ

 {26} 

The second principal stress in expression {23} is nearly but not quite aligned with the y 
direction.  The amount α that the principal stress is misaligned from the y axis can be 
determined from the expression ( )

x

2tan 2 τ
α =

σ
.  The values of shear stress τ required to 

buckle a web are often two to three orders of magnitude less than the machine direction 
stress, thus the misalignment α is negligible. Equating the principal stress in expression 
{23} with the critical buckling stress is not exact and is an assumption whose legitimacy 
will be proven in the verification tests. As stated earlier a misaligned roller causes the web 
to behave as an end loaded cantilever beam.  The σx stress will be a bending term which 
will vary linearly with x and y plus a constant term due to web tension.  Expressions {6} 
and {17} were developed for constant values of σx and σy throughout the domain of the 
plate.  Also note that expression {6} and {17}) are dependent on the span length a but 
independent of the web width b.  Thus expressions {6} and {17} are applicable to sub 
widths of the original span, perhaps as narrow as b/n. 

To demonstrate the efficacy of expressions {24} and {26} a test was setup with an 
isotropic polyester web, an orthotropic newsprint web and an orthotropic spunbond 
nonwoven web.  The properties for these webs are given in Table 1. 

 

Web Material h (µm) b (cm) Ex 
(MPa) 

Ey 
(MPa) 

νxy νyx G 
(MPa) 

polyester film 23.4 15.24 5000 5000 .3 .3 1920 

newsprint 71 15.7 4340 2760 .3 .19 1430 

polypropylene 
non-woven 127 10.6 55.1 8.27 .3 .04 6.67 

Table 1 – Web Material Properties used in Verification Tests 

The experimental setup is shown in Fig. 5. In these tests the polyester web would travel 
from left to right.  The web was subjected to constant tension that was measured just 
upstream of the test section.  The roller at the right is supported by a yoke and the 
alignment of the yoke θj is precisely controlled with an end micrometer.  The nominal 
radii of the rollers are all 3.68 cm (1.45 in).  The yoke sits atop a mechanical slide such 
that the span length a was easily manipulated.  At the beginning of a test the axis of 
rotation of the downstream roller could begin aligned with the axis of rotation of the 
upstream roller and the web would pass through this section completely planar with no 
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indication of instability.  Then the yoke and thus the axis of rotation of the downstream 
roller was slowly misaligned until troughs appeared as shown in Fig. 5.  The angular 
misalignment θj at which the troughs appeared was then recorded. Then the misalignment 
would be increased further until a wrinkle formed in the web on the misaligned roller and 
that misalignment was recorded as well. 

In Figs. 6, 7, and 8 the test results are compared to the model results.  Expressions 
{24} and {26} both capture the trends of the data quite nicely. Expression {24} which 
was developed using an assumption of an average shear stress distribution provides the 
best estimation of the test results. 

 

Figure 5 – Experimental Setup for Testing the Roller Misalignment needed to Induce 
Troughs and Wrinkles 
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Figure 6 – Predicted and Tested Misalignments required to Produce Troughs in a 
Polyester Web when the web tension T was 54.7 N (12.3 lbs) 
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Figure 7 – Predicted and Tested Misalignments required to Produce Troughs in a 
Newsprint Web when the web tension T was 66.7 N (15 lbs) 
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Figure 8 – Predicted and Tested Misalignments required to Produce Troughs in a 
Nonwoven Web when the web tension T was 6.67 N (1.5 lbs) 

Webs in Spans with a Downstream Tapered Roller 
Diametral taper of rollers is a common occurrence resulting from the manufacturing 

processes for rollers.  Only minor amounts of taper are needed to induce troughs in webs.  
A web approaching a tapered roller will still follow the normal entry rule.  In Figure 9 a 
diagram of a tapered roller is shown with the taper somewhat over emphasized such that it 
can be seen. 
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Figure 9 – A Tapered Roller 

The origin of the y coordinate is at the lateral center of the roller and would have been the 
location of the center of the web had the roller not been tapered.  The tapered roller can 
have but one angular velocity (ω) but the surface velocity of the roller will vary with the 
roller radius.  A linear taper will be assumed in this case such the roller radius can be 
described as: 

 or(y) my R= +  {27} 

The velocity across the roller width and the average velocity are: 

 o avg oV(y) r(y) (my R )      V R= ω = + ω = ω  {28} 

Assuming no slippage this variation in velocity across the web width will induce a strain 
and a stress into the web: 

 
md

avg
md

avg o o

V(y) V my Emy(y)       (y) E (y)
V R R

−
ε = = σ = ε =  {29} 

The variation in stress across the web width induces a steering moment on the web: 

 
b b

2 32 2
j

b b o o
2 2

Emhy mEhbM (y)hydy dy
R 12R− −

− −
= −σ = =∫ ∫

 {30} 

This moment will steer the web toward the edge of the tapered roller that has the highest 
diameter as shown in Figure 10. 

Average radius of roller Ro 
r Roller radius 

y 

position across the 
web 
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Figure 10 – A Web encountering a Tapered Roller 

After applying the boundary conditions for vi, θi, θj and the moment Mj {30} to the 
stiffness matrix presented earlier {18} the 3rd and 4th rows can be solved for fyj and then 
set equal to one another.  The result can be solved for the web deflection at the 
downstream roller vj: 

 2 23
x sx

j 2o x s

60E I (5GA a Ta )(1 )mhb Ev
6R [60E I Ta (1 )](T GA )

− + − + φ
= ⋅

+ + φ +
 {31} 

The shear force fyj can be determined by solving the 3rd and 4th rows of the stiffness 
matrix can be solved for the lateral deformation vj and then set equal to one another.  The 
result can be solved for the lateral force in the web at the downstream roller which is also 
the shear force in the web: 

 23
s xx

yj 2o x s

GA [10E I T a (1 )]mhb Ef
R a [60E I Ta (1 )](T GA )

+ ⋅ + φ
=

+ + φ +
 {32} 

This shear force fyj can now be used to form the maximum shear stress in the principal 
stress relation set equal to the critical buckling stress from expressions {6} or {17}: 
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yj2x x
2 ycr xy

3fT T
2 2 2bh 2bh 2bh

 σ σ   σ = σ = − + τ = − +          

 {33} 

If fyj is input to expression {33}, the result can be solved for m which is the critical taper 
that will cause troughs to form in the web: 

 
2

x so
cr ex2 2

x s x

60E I Ta (1 ) (T GA )2aRm
3b E GA 10E I Ta (1 )

 + + φ + = σ
 + + φ 

 {34} 
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where σex is found in expression {25} and I is the area moment of inertia of the web 
(hb3/12). 

To demonstrate the efficacy of expression {34} a test was setup with an isotropic 
polyester web.  The properties of this web were given in Table 1.  The experimental setup 
is shown in Fig. 11.  To conduct these tests several rollers were machined with intentional 
taper with a nominal radius of 3.68 cm (1.45 in.).  Web tension has a stabilizing influence 
on the trough buckling stress as was shown in expressions {6} and {17}.  In these tests 
web tension would be set high and then slowly reduced until troughs appeared. 
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Figure 11 – Experimental Setup for Testing the Roller Taper needed to Induce Troughs 
and Wrinkles 
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Figure 12 – Critical Roller Taper Required to Trough a Polyester Web in a Web Span 
50.8 cm in Length 
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Figure 13 – Critical Roller Taper Required to Trough a Polyester Web in a Web Span 
76.2 cm in Length 

0

0.0002

0.0004

0.0006

0.0008

0.001

0 30 60 90 120

Tension (N)

m
cr

 (c
m

/c
m

) test
Expr (34)

a=101.6 cm

 

Figure 14 – Critical Roller Taper Required to Trough a Polyester Web in a Web Span 
101.6 cm in Length 

WEB WRINKLE FAILURE THEORY 

Much larger compressive stresses are required to buckle the shells that separate the 
flat web sections.  As web tension increases, the width of the flat web sections becomes 
less than b due to Poisson contraction. After the flat web sections have developed troughs 
their projected width reduces even further.  As a web with troughs approaches a roller the 
amplitude of the troughs dissipate per expression {2} and the deformed web width must 
become compatible to the width of the web on the rollers, also less than b but due only to 
web tension and Poisson contraction.  Thus the web shells will assume some compressive 
stress, the levels of which will be discussed later. 

Shell Buckling of Isotropic Webs 
The axial buckling stress of cylindrical shells or sectors thereof of radius R was 

historically a topic of perplexity in the field of mechanics.  Timoshenko developed the 
failure algorithm [5]: 

 

( )ycr 2

Eh

R 3 1
σ = −

− ν

 {35} 
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The confusion was that extensive testing of metal cylindrical shells supported the 
conclusion that these shells truly buckled at stresses ranging from 15 to 60% of the 
theoretical value {35} depending on R/h. It was concluded that small imperfections in the 
tested shells and the end constraints were responsible for the reduction.  This was later 
shown by Weingarten[6] who proved that expression {35} was accurate for cylindrical 
shells composed of polyester film that were internally stabilized by pressure.  The webs 
that wrap rollers simulate sectors of cylindrical shells that are internally pressurized.  The 
internal pressure is due to web tension and can be predicted using the hoop stress 
expression for a thin wall pressure vessel (P=x h/R).  Expression {18} has proven to be 
accurate for predicting the buckling stress of web shells as will be shown later. 

SHELL BUCKLING OF ORTHOTROPIC WEBS 

In Figure 15 an element of a thin orthotropic cylindrical shell is shown.  

 

Figure 15 – Nomenclature for the Instability of a Cylinder 

The constitutive expressions in expression {10} can be written in terms of stresses 
and if multiplied by the shell thickness h will yield expressions relating the membrane 
forces to the strains.  When an axisymmetric structure is subject to axisymmetric loading 
the circumferential strain εx becomes –w/R and thus the membrane forces can be written: 

 x x
x x yx y yx y

xy yx xy yx

E h E h w
N R1 1

  = + = − +ε ν ε ν ε  −ν ν −ν ν  
 {36a} 
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 {36b} 

If expressions {36} are compared and if Maxwell’s expression xy yx

x yE E
ν ν

=   is employed it 

can be found that: 
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 y yx
x x y xy x

y

N w wh E hN E NR RE

 ν
= − = −  ν

  

 {37} 

In Figure 15 the membrane forces {37} shown on the strip jk yield a component of 
force in the z direction, the magnitude of which per unit length is: 

 x
y xy x

1 wN E hNR R R
 = −ν  

 {38} 

Summing all z direction loads per unit length of strip jk yields: 

 2y xy
yx 2 2

N w wdE h NR dyR

ν
− +  {39} 

where the last term represents the component of transverse load due to the membrane load 
Ny acting through the out-of-plane deformation w.  Thus the differential equation for the 
bending of the strip jk is: 

 4 2y xy
y2 x4 2 2

Nw w wd dD E h NRdy dyR

ν
= − +  {40} 

The deformation w will be referenced to the middle surface of the cylinder after the 
uniform compression Ny is applied.  Thus w will be replaced by: 

 y xy

x

RN
w w

E h
ν

⇒ +  {41} 

and the differential equation becomes: 

 4 2
y2 x4 2 2

w w wd dD E h 0N
dy dy R

− + =  {42} 

The cylindrical shell is expected to buckle into axisymmetric modeshapes that can be 
represented by the waveform: 

 n yw A sin
b
π

= −  {43} 

Inserting expression {43} into {42} and eliminating like terms yields: 

 ( )( )
( )

2 3 4 4 2 2 2 2 2
y x y xy yx

2 4
xy yx

R h n E 12b hb E R n N 1
0

12R b 1

π + + π − ν ν
=

− ν ν

 {44} 

Solving expression {44} for Ny yields: 
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( )
3 2 22 yx

y 2 2 2 2
xy yx

h n Ehb EN
R n 12b 1

π
= − −

π − ν ν

 {45} 

Thus an expression has been produced that relates the axial load per unit length to the half 
wave number n.  The goal is to determine the minimum value of Ny associated with any 
buckled shape.  A new variable λ is substituted for nπ/b in expression {45}: 

 
( )

3 2
yx

y 2 2
xy yx

h EhEN
12 1R

λ
= − −

− ν νλ

 {46} 

In the interest of developing a closed form solution for the critical buckling stress it 
will be assumed that λ is a continuous variable.  The value of λ which will be associated 
with the minimum value of the membrane force Ny, which is just sufficient to induce 
instability, is found by equating the derivative of expression {46} with respect to λ equal 
to zero. 

 
( )

3
y yx

2 3
xy yx

N h E2hE 0
6 1R

∂ λ
= − =

∂λ − ν νλ

 {47} 

There are four roots to this equation, only one of which is real and positive: 

 ( )x xy yx4
y

3E 1n 2
b Rh E

− ν νπ
λ = =  {48} 

Substituting this root back into expression {46} yields the critical buckling load: 

 
( )

2 x y
ycr

xy yx

E EhN
R 3 1

= −
− ν ν

 {49} 

Thus the critical stress required to buckle a sector of an orthotropic cylinder is: 

 
( )

x y
ycr

xy yx

E Eh
R 3 1

σ = −
− ν ν

 {50} 

where the associated half wave number n can be found using expression {48}.  This 
number should be truncated to an integer in keeping with the definition of the half wave 
number.  Also note for isotropic conditions that expression {50} simplifies to expression 
{35}.  At the beginning of this section it was noted that the σy stress required to wrinkle a 
web was much larger than that required to trough a web.  To form an estimate of this 
expression {35} can be divided by expression {6} to yield: 
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− νσ
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σ π σσπ
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 {51} 

Substituting common values for span length a, roller radius R, web modulus E, and 
the stress due to web tension σx it can be found that the σy stresses required to wrinkle a 
web can easily be 100 to 200 times greater than the σy stresses required to induce troughs 
in the web.  What is the source of these larger σy stresses required to induce wrinkles? 
This will be the topic of the next section. 

TENSION FIELD BUCKLING 

The first calculations of tension field buckling were made for thin webs of aluminum 
used in aircraft structure [7].  These thin webs buckle or trough at low shear levels but the 
webs are surrounded by axial stiffeners which are various extruded shapes.  After 
buckling the web can accept much higher shear levels because these shears develop 
tensile stresses in the direction of the troughs or buckles that are reacted by compressive 
stresses in the axial stiffeners that surround the panel.  In the case of a web traveling 
through process machinery the axial stiffeners are the shells of web that form when the 
web wraps a roller.  As shown in Figure 1 each free span of web is bounded at their 
upstream and downstream edges by a web shell stiffener but there are also two edges 
which are free. 

After web troughs precipitate per expressions {6} or {17} some form of post 
buckling analysis must be employed to study how the free spans with troughs induce 
compressive stresses in the web shells.  For thin webs the value of the flat web buckling 
stress predicted by expressions {6} or {17} is both small from an absolute sense and 
small relative to the shell buckling stress predicted by expressions {35} or {50}. In 
tension field theory it is assumed that no compressive stress can be reacted by a web 
panel. 

A method which was proposed by Miller and Hedgepeth [8] has been adapted in 
commercial finite element codes. Their method is based upon altering the constitutive 
relations between stress and strain for two dimensional finite elements: 

 
[ ]

x x

y y

xy xy

D

   σ ε      σ = ε   
   τ γ      

 {52} 

There are three potential stress states in tension field behavior.  In one of these states, 
the element is taut which means that both principal stresses are larger than zero.  In this 
case the [D] matrix is that which is associated with plane stress: 

 

( )
2

taut 12 1

1 0
ED 1 0     used when 0 and 

1 0 0 1 2

 ν
ε = ν ε > ν > −  ε− ν  − ν 

 {53} 
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The second state is one in which a particular finite element has buckled and it is 
assumed the second principal stress σ2 is zero.  A new [D] matrix is employed of the 
form: 

 ( )
( )

2
1

1
buckled

x y xy

1 2 1 2

used when 0 and 2 1 P 0 Q
ED 0 2 1 P Q     
4

Q Q 1 P  and Q

ε
ε > ν < − +

ε = −  ε − ε γ
  = =  ε − ε ε − ε

 {54} 

The final state is one in which an element has gone completely slack and thus both 
principal stresses are zero (σ1=σ2=0).  Now a [D] matrix is employed of the form: 

 
slack 1

0 0 0
D 0 0 0     used when 0

0 0 0

 
 = ε < 
  

 {55} 

Use of these constitutive relations requires iterative analysis.  Loads are applied in 
several load steps.  During the first load step taut behavior is initially assumed in all 
elements followed by computations of Cartesian strains and principal strains within each 
element.  Then the principal strains are reviewed using the strain criterion specified in 
expressions {53,54,55} to determine which behavior (taut, wrinkled, or slack) should 
have existed in that element.  In a second iteration computations would be carried out 
using the [D] matrix which was appropriate for that element. Further iteration is needed 
because the [Dbuckled] matrix is dependent on strains that were computed in a previous 
solution. Thus iteration must be performed until some level of convergence in P and Q is 
attained.  After convergence is obtained for one load step the computations proceed to a 
next load step which now can begin with an initial state with the [D] matrices for all 
elements that were converged in the previous load steps.  As loads increase elements that 
were previously taut may become wrinkled and those that were wrinkled could become 
slack and thus the principal strain criteria in expressions {53-55} must be continually 
reviewed for each element.  Again for wrinkled elements, iterative solutions are required 
until convergence in P and Q in expression {54} are obtained. 

Prediction of Wrinkles due to Misaligned Rollers 
Experiments on webs in spans where a downstream roller is initially aligned and then 

slow misaligned always follow a pattern.  Initially the web is flat and remains so until the 
critical misalignment to induce troughs is attained.  Further misalignment will result in the 
troughs becoming deeper and reducing the projected width of the web mid-span between 
rollers.  Yet further misalignment will finally induce wrinkles in the shells of web material 
on the rollers.  To capture the behavior from trough formation to the onset of wrinkling 
finite element models were developed using the tension field elements described 
previously.  In these models the web in the entering free spans would be modeled with the 
wrinkle membrane elements which can either exhibit taut, wrinkled or slack behaviors 
depending on the ratio of the principal strains (53-55).  The elements representing the 
shells of web on the rollers were capable only of exhibiting taut elastic behavior.  The 
exiting free span was modeled with taut elastic elements as well.  A typical model is 
shown in Fig. 16. 
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Figure 16 – Typical Finite Element Model used in Roller Misalignment Wrinkling 
Analysis 

To ensure accuracy in the modeling special attention had to be given to constraints 
and kinetic boundary conditions.  The objective of the modeling was to study compressive 
principal stresses that would develop in the elastic elements used to represent the web on 
the misaligned roller.  A pin constraint was provided at the center of the model as shown.  
The applied surface tractions σx and fy should cancel one another on the two x faces 
leaving the reactions at the pinned node to be zero.  Note the mesh is symmetric about a 
vertical axis of symmetry passing through the pin constraint. This was done to ensure that 
the x direction stress was as uniform as possible in the region of the misaligned roll to 
sustain Shelton’s zero moment kinetic boundary condition at the misaligned roller.  Each 
line of nodes crossing the upstream roller in an x direction was given a multipoint 
constraint which would lock the y direction deformations of those nodes together. These 
multipoint constraints, shown as groups of triangles above, enforce normal entry of the 
web to a roller but they also allow the Poisson contraction of the web due to the applied 
tensile stress σx in the x direction.  This type of analysis is nonlinear and thus the loads 
are incremented in time steps. As shown in the plot in Fig. 16 the level of stress σx due to 
web tension would be raised to a desired level in the first few load steps. 
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Figure 17 – Model Results 

Then the fy loads would be raised from zero to a test value. After executing the model 
the compressive principal stresses in the elastic elements on the misaligned roller were 
reviewed.  If those stresses were less than the classic shell buckling stress given by 
expression (35), a factor which multiplied the fy forces would be increased and the finite 
element computations would be conducted again.  Whenever the compressive principal 
stress in the elements on the roller became essentially equal to the predicted buckling 
stress (35) 

 the computations would cease.  The lateral deformations of the nodes in the web on 
the misaligned roller would then be used to estimate θcritical, the misalignment of the roller 
required to induce wrinkling in the web on that roller. 

The results of such modeling are shown in Fig. 17 for a polyester web 15.24 cm (6 
in) wide with a free entering span 76.2 cm (30 in) long.  The web thickness and material 
properties were identical to that mentioned earlier for the trough tests.  The roller 
diameter was 7.37 cm (2.9 in).  In this example the web was subject to a tension of 73.7 N 
(16.56 lb).  A contour map of the second principal stresses is shown for the web on the 
upstream roller, the entering span and the web on the misaligned roller.  Note the pocket 
of compressive stress that has formed in the elastic elements at the entry to the misaligned 
roller.  To quantify these stresses a chart has also been in included in Fig. 17.  In this case 
the shell buckling stress per expression (35) is -1.92 MPa (-278 psi).  The fy forces were 
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increased until the minimum principal stress and the shell buckling stress were equal as 
shown in Fig. 17.  At this level of tension and lateral force the misalignment θj was found 
to be 0.0245 radians.  With a model created for a given entry span of length a the analysis 
was repeated for various web tension levels. 

Using the same experimental apparatus described in Fig. 5 several wrinkle 
experiments were conducted on the web described above.  Two additional models were 
meshed similar in all aspects to the model described above except that the entry span 
length was shortened to 15.24 cm (6 in) and 45.7 cm (18 in). Analyses and tests were 
conducted at multiple web tension levels. 
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Figure 18 – Comparison of Wrinkling Predictions with Test Results on 23.4 m 
Polyester Film 

The results are shown in Fig. 18 with the agreement between experimental tests and 
the finite element method being acceptable.  Note that the calculations shown in Fig. 17 
and the supporting text are shown as the “Example” calculation in this figure. 

Prediction of Wrinkles due to Tapered Rollers 
The analysis is similar to that of the misaligned rollers but now the boundary 

conditions for the tapered roller are enforced as shown in Figure 19.  Again the elements 
with a white background are the elements that can assume the wrinkle membrane behavior 
and the elements in gray are elements that can assume only elastic behavior.  A notable 
difference from the misaligned roller model is the additional sets of lateral forces.  This 
arrangement imposes constant moment in the web between the entry and the exit of the 
tapered roller.  The coupling constraints are used again to enforce normal entry and exit 
to the upstream and downstream rollers.  They are also used at the entry to the tapered 
roller as shown to enforce normal entry to the tapered roller as well. 

In these analyses the machine direction stress was brought to a fixed level in a few 
load steps and then the lateral forces fy would be slowly increased until the second 
principal stress became equal to the critical shell buckling stress from expression (35).  
An example will be given for a 23.4 µm polyester web with a span length of 76.2 cm (30 
in) and a web width of 15.24 cm (6 in). In this example the web tension was increased to 
58.9 N which exerted a uniform stress of 16.5 MPa on the web.  The lateral forces were 
then increased until the second principal stress equaled the buckling stress as shown in 
Figure 20.  In this case the shell buckling stress per expression (35) is -1.92 MPa (-278 
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psi) for a polyester web with the properties shown in Table 1 passing over rollers whose 
nominal radii were 3.68 cm (1.45 in).  The machine or x direction stresses have become 
non-uniform as a result of the lateral forces and are shown in Figure 21.  These stresses 
can be integrated over the width of the web using expression (30) to obtain the moment 
Mj, about 104.1 N-cm in this case.  Then using expression (30) again the equivalent roller 
taper m that would have induced this moment can be found, about 0.00113 cm/cm in this 
example. 

Using the experimental apparatus shown earlier in Figure 11 wrinkle test data was 
collected using a 23.4 µm polyester web which was 15.24 cm wide.  The wrinkle test data 
and the finite element model results have been superimposed on the earlier trough test 
data and the closed form algorithm for troughs given by expression (34) in Figures 22, 23, 
and 24 for span lengths of 50.8, 76.2, and 101.6 cm.  In total the agreement is quite good.  
The example case is shown Figure 23. 

 

Figure 19 – Finite Element Model of a Web Encountering a Tapered Roller 
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Figure 20 – Second Principal Stress in Web at Entry to the Tapered Roller for a Span 
Length of 76.2 cm and a Web Tension of 58.9 N 
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Figure 21 – Machine Direction Web Stress as the Web Contacts the Tapered Roller (Line 
A-B) for a Span Length of 76.2 cm and a Web Tension of 58.9 N 
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Figure 22 – Troughs and Wrinkles in a 23.4 mm Polyester Web in a Web Span of 
50.8 cm 

 

Figure 23 – Troughs and Wrinkles in a 23.4 mm Polyester Web in a Web Span of 
76.2 cm 
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Figure 24 – Troughs and Wrinkles in a 23.4 mm Polyester Web in a Web Span of 
101.6 cm 

Prediction of Wrinkles due to Holes in Webs 
Perhaps producers of paper would wonder why one would want to transport a web 

with holes in it, perhaps converters of webs would wonder why not? Converting 
operations often require shapes to be cut in webs and then the web must be handled in 
process machines, preferably without wrinkles.  Often wrinkles form due to web non-
uniformities rather than roller alignment or taper problems that have been previously 
examined.   In this case the propensity of a web with a centrally located hole to wrinkle 
will be studied.  The problem was first studied in the laboratory.  A hole of diameter 1.27 
cm (1/2 in) was bored centrally in a roll of 20.1 µm (0.00079 in) thick polyester film with 
a width of 30.5 cm (12 in).  The roll was unwound and the web was transported through a 
test section in a span of 71.1 cm (28 in) long over rollers with a radius of 5.08 cm (2 in).  
One observation was that the hole did cause troughs to form about the hole and wrinkles 
to form on the downstream roller.  The troughs extended upstream and downstream from 
the hole as seen in Figure 25.  As the hole neared the downstream roller two troughs on 
either side of the hole would form a wrinkle on the surface of the downstream roller. A 
second observation was that the level of web tension affected the distance between the 
hole and the downstream roller when the wrinkles would first appear on the downstream 
roller. 
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Figure 25 – Troughs and Wrinkles due to a Circular Void in the Web 

At low values of web tension the hole had to travel close to the downstream roller 
before wrinkles appeared and if low enough they might not appear at all.  At high values 
of web tension the distance between the hole and the downstream roller was much larger 
when wrinkles formed on the downstream roller.  Typically two wrinkles would form, one 
on either side of the hole as shown in Figure 25. 

Data collection then began.  At fixed values of web tension the machine direction 
distance between the hole and the point of contact of the web with the downstream roller 
was recorded when a wrinkle formed.  Also the distance between the two wrinkle 
initiation points on the roller was recorded.  The distances L and W that were recorded 
are perhaps made clearer in Figure 26. 
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Figure 26 – Distances recorded at the Onset of Wrinkling 

Nonlinear finite element analyses of the type described earlier for wrinkles due to 
roller misalignment and to roller taper were conducted.  Higher order elements were used 
in this analysis which allowed the modeling of the hole boundaries with precision.  In 
Figure 27 a schematic of the finite element model is shown. Note that the center line of 
the web was prevented from deforming in the cross machine direction.  In these analyses 
the σx machine direction stress was increased linearly until negative cross machine 
direction stresses of the amplitude of the critical shell buckling stress (35) was attained. 
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Figure 27 – Schematic of Finite Element Model 

A plot of the second principal stresses can be seen in Figure 28.  The case being 
modeled is the experimental test case described earlier.  In this instance the downstream 
edge of the 3.68 cm (1/2 in) hole is 10.2 cm (4.0 in) from the contact line between the 
web and the downstream roller.  The contact line is denoted by the line A-B in the stress 
plot.  Note the chart of these stresses as well in the figure.  This polyester had a Young’s 
modulus of 4892 MPa  (710,000 psi), Poisson’s ratio was assumed to be 0.3 and for the 
web thickness and roller radius of these tests the shell buckling stress was found to be -
1,170 KPa (-170 psi) using expression (35).  Note the finite element solution shows the 
principal stress becomes minimum and equal to the shell buckling in two locations which 
border the hole when the applied MD σx level in Figure 27 was 32.1 MPa (4660 psi). 

Finally in Figure 29 a comparison of the experimental test results and the finite 
element results are shown.  The agreement is quite good especially on the comparison of 
the L dimension.  The agreement on the W dimension is good and could have been 
improved further by increasing the finite element mesh density.  Note the example case 
presented in Figure 28 is tagged as Example in the finite element data presented in 
Figure 29. 
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Figure 28 – Finite Element Output of the Principal Stress with a Chart of those Stresses 
on Line A-B at an applied σx Stress Level of 32.1 MPa 

 

0

5

10

15

20

0 10 20 30 40 50

Machine Direction Stress σx (MPa)

L(
cm

) 

test
Finite Element Example 

σ2 
(MPa) 
1.81 
1.20 
0.60 
0.00 
-0.60 
-1.20 
-1.81 

A 

 

 

E

 

B 

-1400
-1200
-1000

-800
-600
-400
-200

0
200

0 8 16 24 32

CMD Location from Web Edge (cm)

Pr
in

ci
pa

l S
tre

ss
 (K

Pa
) Finite Element

Shell Buckling Stress (35)



528 

 

Figure 29 – Test Results and Finite Element Prediction of the Proximity of the Hole to the 
Downstream Roller at Wrinkle Formation (L) and the Distance between Wrinkles (W) 

CONCLUSIONS 

Three examples have been presented where it was shown that the existence of troughs 
in web spans were a necessary precursor to web wrinkles being formed on rollers.  For the 
case of the web approaching a misaligned or tapered roller closed form expressions were 
developed to predict the occurrence of troughs.  Nonlinear finite element analysis using 
membrane tension field elements were used to study the compressive CMD principal 
stresses that form as the web contacts a roller after the web in the free spans has troughed.  
No closed form expression for troughs due to holes in webs was presented and may not 
exist but in fact this could be studied using linear finite analysis and elastic elements.  
Whenever the second principal stress becomes more negative than that given by 
expressions {6} and {17}, troughs could be forecast.  Regardless of the source of the 
troughs once they appear negative CMD second principal stresses will be created in the 
web as it enters the downstream roller.  These negative principal stresses will become 
more negative if whatever the source that produced the troughs to begin with becomes 
larger.  In the case of the misaligned roller the critical misalignment given by expressions 
{6} or {17} was required just to make troughs appear.  At that point the negative CMD 
principal stresses in the web on the downstream roller were small. Additional roller 
misalignment was required to produce CMD principal stresses that were more negative 
than the shell buckling stress given by expressions {35} if the web is isotropic or {50} if 
it be orthotropic. At that amount of misalignment web wrinkles will occur.  Similarly it 
was found that a certain amount of roller taper was required to produce a trough but a 
much higher level was required to produce a wrinkle.  In the final case it was difficult to 
find conditions where a hole in the web would not result in troughs but the hole and the 
troughs that surrounded it had to be within a certain distance within the downstream roller 
to produce a wrinkle.  In this case the hole and the web tension act together to create the 
disturbance and higher values of web tension will be able to create wrinkles with the hole 
further away from the downstream roller.  If the web tension was low enough the hole 
could either get quite close to the downstream roller before wrinkles were created and yet 
lower web tensions resulted in no wrinkles forming.  Conclusions that can be drawn from 
these analyses include: 
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• Troughs can be predicted in free spans given means for predicting the 
compressive σy stresses due to a disturbance and the critical buckling stresses 
given in expressions {6} and {17}. 

• The nonlinear finite element analyses using the Miller-Hedgepeth wrinkle 
membrane elements enable the accurate calculation of the negative CMD 
principal stresses in the web at the entry to the downstream roller. 

• The shell buckling criteria given in expressions {35} and {50} are accurate 
predictors for wrinkles. 

Perhaps the greatest contribution of this work is that it presents a systematic method 
for studying the formation of troughs and wrinkles in webs.  Troughs form for many 
reasons in webs.  The examples presented herein are based on machine or web 
imperfections.  It is common in web process machinery to locally add moisture or to 
locally increase temperature both of which can result in trough formation [9].  Once it is 
understood that wrinkle formation is dependent on trough formation one can seek to 
eliminate the source of troughs to eliminate wrinkles. 
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