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Abstract 

 

Reading medical images to detect and diagnose diseases is often difficult and has 

large inter-reader variability. To address this issue, developing computer-aided detection 

and diagnosis (CAD) schemes or systems of medical images has attracted broad research 

interest in the last several decades. Despite great effort and significant progress in 

previous studies, only limited CAD schemes have been used in clinical practice. Thus, 

developing new CAD schemes is still a hot research topic in medical imaging informatics 

field. In this dissertation, I investigate the feasibility of developing several new innovative 

CAD schemes for different application purposes. First, to predict breast tumor response 

to neoadjuvant chemotherapy and reduce unnecessary aggressive surgery, I developed 

two CAD schemes of breast magnetic resonance imaging (MRI) to generate quantitative 

image markers based on quantitative analysis of global kinetic features. Using the image 

marker computed from breast MRI acquired pre-chemotherapy, CAD scheme enables to 

predict radiographic complete response (CR) of breast tumors to neoadjuvant 

chemotherapy, while using the imaging marker based on the fusion of kinetic and texture 

features extracted from breast MRI performed after neoadjuvant chemotherapy, CAD 

scheme can better predict the pathologic complete response (pCR) of the patients. 

Second, to more accurately predict prognosis of stroke patients, quantifying brain 

hemorrhage and ventricular cerebrospinal fluid depicting on brain CT images can play an 

important role. For this purpose, I developed a new interactive CAD tool to segment 

hemorrhage regions and extract radiological imaging marker to quantitatively determine 

the severity of aneurysmal subarachnoid hemorrhage at presentation and correlate the 
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estimation with various homeostatic/metabolic derangements and predict clinical 

outcome. Third, to improve the efficiency of primary antibody screening processes in 

new cancer drug development, I developed a CAD scheme to automatically identify the 

non-negative tissue slides, which indicate reactive antibodies in digital pathology images. 

Last, to improve operation efficiency and reliability of storing digital pathology image 

data, I developed a CAD scheme using optical character recognition algorithm to 

automatically extract metadata from tissue slide label images and reduce manual entry 

for slide tracking and archiving in the tissue pathology laboratories.   

In summary, in these studies, we developed and tested several innovative approaches to 

identify quantitative imaging markers with high discriminatory power. In all CAD 

schemes, the graphic user interface-based visual aid tools were also developed and 

implemented. Study results demonstrated feasibility of applying CAD technology to 

several new application fields, which has potential to assist radiologists, oncologists and 

pathologists improving accuracy and consistency in disease diagnosis and prognosis 

assessment of using medical image. 



1 

Chapter 1: Introduction 

 

1.1 Background 

Computer-Aided Detection and Diagnosis, known as CAD, involves the 

application of computerized analysis to assist the radiologist in more accurately and 

efficiently reading and interpreting different medical images. CAD popularity is growing 

in the last two decades and is becoming an important area of research in medical imaging 

informatics field, which aims to assist clinicians (i.e., radiologists and pathologists) in 

reading and interpreting medical images for disease detection and diagnosis. 

Traditionally, the clinicians are subjected to do the interpretation process and not always 

make the optimal use of the data acquired by an imaging device [1, 2]. However, there is 

a number of limitations for the clinicians to do the image processing and feature or pattern 

analysis in reading medical images because (1) human eye and brain may not be able to 

reliably detect and compare many image features among different images in a large scale 

dataset, and (2) there is large intra- and inter-reader variability in reading and interpreting 

medical images due to the different training and clinical practice experience of different 

clinicians, [3-5]. In order to address these issues or challenges, many researchers have 

been working to develop and apply image processing techniques and CAD systems 

aiming to assist clinicians (i.e., radiologists and pathologists) to more accurately read and 

diagnose medical images. CAD systems with the help of medical image processing 

techniques are able to modify the image presented to the readers in different ways such 

as enhancing the abnormalities or segmenting a specific lesion and presenting information 

regard the lesion to assist radiologists in reading medical images. For example, computer-
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aided detection (CADe) systems are developed to detect and mark regions of 

abnormalities to alert radiologists to pay more attention to look and analyze these regions 

during image interpretation, while computer-aided diagnosis (CADx) aims to assist 

clinicians in diagnosis of diseases and staging of disease severity or types. Some 

integrated CAD schemes use CADe to detect and identify the abnormal regions and then 

used CADx to provide quantitative information and analysis of the detected regions. CAD 

systems have been widely investigated and developed using variety of image modalities 

such as conventional digital X-ray images (i.e., mammography), magnetic resonance 

imaging (MRI), computed tomography (CT), ultrasound and digital pathology (DP) 

images to detect and diagnose many diseases including cancers such as breast, brain, lung, 

colon cancer and etc. Different tasks such as segmentation of region of interest and 

abnormalities (i.e., tumor, hemorrhage, cells), classification of malignant and benign 

lesions and prediction of treatment response can be conducted using CAD schemes. 

For example, in CAD of breast cancer, Dheeba et al proposed a CAD scheme for 

detecting breast cancer in mammograms using particle swarm optimized wavelet neural 

network [6], Sun et al, applied a three-class classification approach by using a two-stage 

classifier combined with support vector machine (SVM) learning algorithm to classify 

breast tumors detected on mammograms [7], Song et al investigated and compared the 

efficiency of CAD systems for MRI and other breast imaging modalities in the assessment 

of tumor extent, lymph node status in patients with invasive breast cancer [8], Yuan et al 

applied a multimodality CAD scheme that combines image information from full-field 

digital mammography (FFDM) and dynamic contrast-enhanced magnetic resonance 

imaging (DCE-MRI) for breast tumor or lesion classification [9]. These studies 
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demonstrated that applying CAD systems of different types of medical images using the 

advanced image processing and machine learning technologies may play an important 

role to automatically segment, detect, and classify abnormalities to help more accurately 

and robustly diagnose human diseases using medical images.  

 

1.2 Medical Imaging Modalities  

The overall aim of medical imaging can be summarized under several general 

headings. Human with cancer or other diseases who need immediate treatment requires 

medical imaging to help clinicians make correct diagnosis and select optimal treatment 

options. Imaging modalities play an important role in all aspects of disease treatment, 

including screening, detection, diagnosis, image-guided biopsy, treatment planning, 

outcome assessment and follow-up examinations [10]. Different imaging modalities are 

used for different disease, mammography is used as the standard techniques for breast 

cancer patients, colposcopy images are used for cervical cancer patients, CT images 

detect the lung cancer and digital pathology images are used by pathologists for detecting 

tumor cells and diagnosing tissue specimens. In this dissertation, I developed and 

evaluated CAD schemes of three different image modalities including MRI of breast, CT 

images of brain and digital pathology images of cell and tissue specimens. The basic 

imaging characteristics are described in the following subsections. 

 

1.2.1 Magnetic Resonance Imaging (MRI) 

Mammography and ultrasonography are the standard imaging techniques for the 

detection and characterization of breast tumors, while mammography conceives tissue 
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density differences and ultrasonography demonstrates the difference between solid 

masses and cysts. Mammography sensitivity, when performed optimally, is between 69 

and 90% [11] while the specificity ranges from 10-64% [12].  Observer error, suboptimal 

technique, and large heterogeneity of the tumor and surrounding fibro-glandular tissue 

are the cause of low sensitivity and specificity of mammography.  

Although mammography is well recognized as the most cost-effective imaging 

modality for breast cancer screening and early detection, the performance (including both 

sensitivity and specificity) of screening mammography is not satisfactory [13,14] in 

particular for younger women with dense breast tissues. As a result, other new imaging 

modalities have also been developed and tested for improving breast cancer screening 

and detection. Among them, dynamic contrast-enhanced breast magnetic resonance 

imaging (DCE-MRI) has shown superior sensitivity in detecting mammography-occult 

cancers and is recommended by the American Cancer Society as an adjunct screening 

tool to mammography for women at an elevated breast cancer risk (e.g. >20–25% of 

lifetime risk) since 2007 [15]. Currently, breast DCE-MRI has been playing an important 

role in the clinical management of breast cancer in screening, diagnosis and assessment 

of treatment efficacy [16, 17].  

 

1.2.2 Computed Tomography (CT) 

Computed tomography (CT) is a medical imaging procedure that uses ionizing 

radiation to produce cross-sectional images of the human body. The method by which x-

rays are produced within a CT scanner is similar to general X-ray radiography. However, 

CT scanners have the capability to produce three-dimensional images unlike the two-
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dimensional planar X-ray projection images seen in most radiography studies. Computed 

tomography plays a very important role in diagnoses of many diseases and has been used 

in a variety of medical imaging procedures because of its unique ability to offer clear 

images of bone, muscle, blood vessels, and different types of tissue. Where other imaging 

techniques are much more limited in the types of images they can provide, the role of CT 

in the clinical setting is extensive. It can be used to plan certain surgeries, guide biopsies, 

measure bone mineral density, detect injuries to internal organs, and has proven to be a 

valuable tool for the diagnosis and treatment of many musculoskeletal disorders. CT 

imaging is even used for the diagnosis and treatment of certain vascular diseases. 

Probably the most important aspect of CT however, is its role in cancer detection, 

diagnosis and assess treatment efficacy. It allows physicians to accurately detect and 

locate different types of cancers and plays an important part in radiation treatment 

planning process. The importance of CT technology is without a doubt a vital aspect for 

the diagnosis of diseases and treatment of patients. As the advancements in developing 

new CT imaging technology and novel imaging procedures (i.e., thin slice, low dose and 

perfusion imaging), patient care will continue improving. 

 

1.2.3 Digital Pathology (DP) 

Pathology provides a ground-truth in disease diagnosis. In order to improve 

efficacy of disease diagnosis, digital pathology has been attracted broad research interest 

and developed quickly in medical imaging field. Specifically, instead of visually 

examining pathological specimens under optical microscopes, digital pathology creates 

an image-based information environment enabled by computer technology that enables 
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the acquisition, management and interpretation of pathology information generated from 

digitized images of tissue specimens placed on the glass slides. Whole slide scanner 

technology has been increasingly used in the pathology laboratories and a large number 

of tissue slides are being scanned and processed in recent years. It is well known that 

useful information is in pathology images and digital pathology has the potential to help 

improve efficiency of clinical workflow and provide potential of quantitative feature 

analysis to improve diagnostic accuracy. Additionally, it can also reduce the need for 

storing large number of glass slides on-site and the risk of the physical slides getting 

broken or lost. All images and data can be stored digitally in the computer database, which 

can also be much easy to retrieve by physicians for disease diagnosis and conducting 

research or educational purpose by medical researchers. 

 

Due to colorless and transparency of a large number of cells, histological sections 

have to be stained in some ways to be visible. Different staining techniques such as non-

specific, staining most of the cell in the same way, or selectively staining of particular 

chemical groupings of molecules within cells and tissues are available and used in clinical 

practice. Staining process work by using a dye and counterstain which dye stains some 

of the cell’s components as a bright color and counterstain stains the rest of the cell in a 

different color. Acidic dyes react with cationic or basic components in cells. Proteins and 

other components in the cytoplasm are basic and will bind to acidic dyes. 

The most commonly used stain in histology is called Hematoxylin and Eosin 

(H&E). H&E contains two dyes of hematoxylin and eosin which eosin act as an acidic 

dye, which is negatively charged and stains the basic structures into red or pink. 
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Hematoxylin act as a basic dye and is used to stain acidic structure into a purplish blue. 

Thus, the nucleus is stained purple in the H&E staining process. Figure 1 demonstrated 

an example of H&E staining. 

 

 

Figure 1. H&E staining example. 
 

1.3. Machine Learning 

Machine learning is a field that focuses on the construction of algorithms to make 

predictions based on training data. A machine learning task aims to identify (to learn) a 

function f that maps the input domain X (of data) onto output domain Y (of possible 

predictions) [18]. Functions f are chosen from different function classes, dependent on 

the type of learning algorithm that is being used. Mitchell defines "learning" as follows: 

"A computer program is said to learn from experience E with respect to some class of 

tasks T and performance measure P, if its performance at tasks in T, as measured by P, 

improves with experience E" [19]. The performance measure P tells the researchers 
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quantitatively how well a certain machine learning algorithm is performing. For a 

classification task, the accuracy of the system is usually chosen as the performance 

measure, where accuracy is defined as the proportion for which the system correctly 

produces the output. Experience E that machine learning algorithms undergo are datasets. 

These datasets contain a set of examples that are used to train and test these algorithms. 

 

Machine learning can be accomplished using either a supervised or an 

unsupervised approach. In supervised learning, the system receives a dataset with 

different example parameter values and decisions/classification, from which it infers a 

mathematical function, which automatically maps an input signal to an output signal. 

Thus, it figures out what it is supposed to do. The supervised learning method was used 

in all the studies mentioned in this dissertation. 

Unsupervised learning, on the other hand, means that the system acts and observes 

the consequences of its actions, without referring to any predefined type cases other than 

those previously observed. This is pure 'learning by doing' or trial-and-error. Compared 

to supervised learning, unsupervised methods typically perform poorly in the beginning, 

when they are untuned, but as they tune themselves, performance increases. It can be 

argued that using unsupervised learning, a classifying system should be able to set up 

hypotheses that no human can figure out, due to their complexity. If unsupervised 

methods were used for the studies in this dissertation, the machine learning systems 

would have to find out the learner stage hypothesis all on its own, which would probably 

require much more training data than is available.  

To evaluate classifier performance given by a machine learning scheme, either a 

special testing dataset or a cross validation technique may be employed. A test dataset 
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contains pre-classified data different to those in the training dataset, and is used only for 

evaluation, not for training. If data are scarce, it is sensible to use cross-validation in order 

not to waste any data, which could be useful to enhance classifier performance; all data 

are used both for training the classifier and for testing its performance. 

More data do not necessarily mean better classifier performance. Even though the 

classifier becomes better on the training set it could actually perform worse on the testing 

data. This is due to the overfitting of the classifier transfer function, so that it fits too 

tightly to the training data and the border between classes is jagged rather than smooth, 

unlike how it usually should be. 

Although a large number of machine learning classifiers have been developed and 

are currently available, my studies mainly selected and used following machine learning 

algorithms or classifiers, which are Support Vector Machines, k Nearest Neighbor, 

Artificial Neural Network and Decision Tree. The basic learning concept and 

characteristics of these machine learning classifiers are described briefly as below: 

1.3.1 Support Vector Machines 

Support Vector Machines (SVMs) are one of the most popular classification 

algorithms to perform supervised classification over the dataset [20]. The aim of SVM is 

to find the most optimal classification function that differentiates between units of classes 

in training data. With a linearly separable dataset, the most optimal classification function 

can be decided by constructing a hyperplane which maximizes the margin between two 

datasets and thus creates the largest possible distance between datasets. Figure 2 

demonstrates the visualization of SVM strategy.  
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Figure 2. Creating the optimal separating hyperplane with the use of support vectors to 

classify the two classes.   

 

The idea behind SVMs is that by finding the maximum margin, which represents 

the most optimal hyperplane and has the best generalization ability that it can reach. This 

results in the best classification performance for both the training data as well as future 

data. Thus, a Support Vector Machine is strictly not a machine, but a simple and powerful 

algorithm. 

 

1.3.2 K Nearest Neighbor 

k-Nearest-Neighbor classification, or kNN, is another popular machine learning 

algorithm that localizes a group of k objects in a training case that has the closest 

proximity or similarity to the test object, and then assigns a label derived from the 

prevalence of a class in the closest proximity. Three important components are needed 

for this algorithm: a group of labeled objects; a proximity metric; and the number k of 

nearest neighbors [21]. A popular proximity metric that is used for kNN classification is 

"Euclidian Distance" [22]. Other metrics exist for defining the distance between instances 
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of a dataset. Examples include the Minkowsky, Camberra or Chebychev metrics [23] 

although often weighing strategies are used that alter the voting influence for more 

accurate results. 

 

1.3.3 Artificial Neural Network 

Neural networks have gained widespread recognition as an effective machine 

learning algorithm by outperforming many algorithms such as Support Vector Machines 

in various relevant applications such as pattern recognition [20, 24]. A neural network is 

an architecture that comprises of units named neurons. These architectures usually consist 

of three different layers: the input layer which contains the input feature vector; the output 

layer that consists of the neural network response; and the hidden layer that contains the 

neurons that connect to both the input and output. An example of a neural network is 

illustrated in Figure 3. This artificial neural network, called a Feed-forward neural 

network, only allows signals to travel from input to output. 

 

Figure 3. An example of Neural Network design consisting of 3 layers of Input, Hidden 

and Output Layer. 
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Artificial neural networks consist of three fundamental characteristics: the 

network architecture; input and activation functions; and the weight of input connections. 

The network architecture and functions are chosen at the initial stage and remain the same 

during training. The performance of the neural network is reliant on the value of the 

weights. The weights are tuned during training so that a certain output is achieved. ANN 

can be trained using a multitude of different training programs [25]. A very prominent 

training method is the back-propagation algorithm [26]. Other techniques include the 

weight-elimination algorithm that automatically infers the network topology, and genetic 

algorithm that tries to derive the network architecture and train its weights through 

competition and evolution of GA-chromosomes through multiple generations [27- 29]. 

 

1.3.4 Decision Tree 

The Decision tree algorithm comprises of trees that categorize data by looking at 

feature values. Every node in a decision tree depicts a feature that has to be classified, 

and the tree branches depict values that are considered by such a node. A survey of 

existing work on decision tree construction is done by Murthy [30], who describes the 

use of decision trees in multiple disciplines such as statistics, pattern recognition and 

machine learning. One of the most popular decision tree algorithms in literature is the 

C4.5 algorithms by Quinlan [31], an improved version of the earlier decision tree 

algorithm by Quinlan, the ID3 [32.]. C4.5 uses a divide and conquer strategy to grow a 

tree, selecting one feature with a minimum of two outcomes that divides the set of samples 

most effectively. When all instances in a certain set belong to one class, or the set size is 

too small, a label is assigned to a decision tree leaf equal to the most popular class label 

[21]. An example of a decision tree is illustrated in Figure 4.  
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Figure 4. Example decision tree.  

 

The highest decision node is called the root node. The feature that can sort the 

data most effectively is chosen as the root node. This strategy is duplicated for each sub-

division of the training data, until all data is divided into specific class batches. 

Determining which feature sorts the training data most effectively can be done through 

many techniques such as the "Gini Index" [33] "Information Gain" [34], or the "ReliefF 

Algorithm" [35]. Even though each of these techniques differs from the other, a survey 

of decision tree algorithms by Murthy showed that no single best method exists for 

determining the best sorting feature [30]. However, for a specific dataset, comparing 

individual techniques may provide useful insights for the choice of sorting feature. 

In order to build right sized trees, Breiman et al. [33] proposed "pruning", a 

technique that is used to reduce the complexity of decision trees by removing sections of 

a tree that provide little information for the classification of instances. To prevent 

overfitting training data, two common approaches can be used: (1) stopping the training 

algorithm before a perfect fit is reached; and (2) pruning the decision tree. A survey of 
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popular pruning methods is presented by Elomaa, who concludes that no single best 

pruning method exists [36].  

 

1.4 Active Learning 

Semi-supervised learning is another machine learning class beside supervised and 

unsupervised learning. As mentioned earlier, in supervised learning, we learn a mapping 

from observation to predicted output from a set of (input, output) pairs: each training 

input has an associated output. In unsupervised learning, there are no known outputs, and 

the goal is to discover structure in the set of (input) points. To take advantages of both 

learning approaches, the semi-supervised learning includes a set of (input, output) pairs 

with the labeled truth and another separate set of unlabeled (input) data. The goal is then 

to use the structure of the unlabeled data points to learn a better mapping than what we 

would get from labeled data alone. In a supervised machine learning task, we need to 

obtain labeled data to train a model. In most medical imaging related studies, obtaining 

the large image dataset with verified label (ground truth) is quite difficult and expensive 

in terms of time or labor of the clinicians. Thus, the researchers may choose to label a 

subset of the available data, but the choice of the subset will affect the quality and 

performance of the final machine learning model or classifier. The question, then, is how 

to optimally select the subset of data that will achieve the best model performance. The 

importance of active learning emerges in applications that deal with large amounts of 

data; since labeling such data can be very costly and exhausting. Active learning is an 

iterative machine learning algorithm in which the main issue is to evaluate the 

informativeness of an unlabeled instance. The active learner is a classifier that is initially 
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trained on a few labeled instances. Then, iteratively, by its knowledge derived from the 

labeled data it requests a label for one of the instances of the unlabeled pool of data. 

Successful active learning should lead to a significant reduction of the amount of training 

data needed for a supervised learning task with no significant reduction of the machine’s 

performance over a machine trained with a fully-labeled dataset. We indicate most of 

supervised machine learning algorithms as passive learning in terms of fully-labeled 

training data. The efficiency of active learning has been qualified by two approaches. The 

more common approach is the reduction of training data required to reach a certain level 

of performance. The other approach is to increase the performance of the model for a 

certain amount of training data [37].  

The applicability of either of these approaches depends on the established image 

datasets. Active learning has been studied in many different contexts [38] that provide a 

comprehensive literature review on the subject. For example, application of speech 

recognition [39] employed active learning to select a limited subset of utterances to 

transcribe from a large amount of un-transcribed utterances. It reduced the number of 

utterances needed for transcribing by 60% to achieve the same recognition accuracy 

obtained using random sampling. Another application of active learning is in message 

filtering. For instance, in spam filtering applications, trustworthy labels for messages can 

be costly to acquire. Sculley reports that online active learning can significantly reduce 

labeling and training costs while maintaining high levels of filtering performance [40]. 

Active Learning has been also employed for the task of classification for documents or 

media like images, audio and videos. For the classification of media not only the 
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annotation can be very time consuming and tiring can also be mentally challenging (i.e., 

sexual child abuse). Figure 5 illustrates the active learning cycle in this problem domain. 

 

Figure 5. Active learning cycle for image classification task. The cycle starts by 

labeling few examples as initial seeds then active learner model is created. By applying 

query strategy on the unlabeled pool of data, the active learner asks the human 

annotator for the label of the most informative example. The new labeled example will 

then be added to the training set. 

 

1.5 Objective of Studies 

As previously mentioned, CAD systems of medical images have been developed and 

tested for different tasks such as segmentation and detection of abnormalities, diagnosis 

of diseases, prediction of prognosis and assessment of treatment efficacy to help provide 

physicians new quantitative image feature analysis or decision-making supporting tools 

in current and future clinical practice. Despite great research effort, many technical and 

clinical challenges remain in developing CAD schemes and expanding CAD application 

in many different clinical application fields. The goal of this dissertation is to investigate 

several new and novel CAD concepts and approaches, as well as to develop and test 
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feasibility of applying these CAD approaches to several new clinical applications using 

breast MRI, brain CT and digital pathology images. The study hypothesis is that by 

developing these new CAD schemes, we can identify new quantitative imaging markers, 

provide clinicians new visual-aid or decision-making supporting tools to better read and 

interpret medical images, and improve efficacy of using digital pathology technology in 

the clinical practice. Developing and implementing these new CAD schemes or tools can 

have potential to help improve accuracy and consistency of the clinicians in disease 

detection, diagnosis, and patient management and treatment. 

1.6 Organization of Dissertation   

To test the study hypothesis described in previous subsection, I have conducted 

many studies in the last several years in University of Oklahoma and Roche Company. 

In this dissertation, I report four applications of developing CAD schemes using three 

medical imaging modalities (MRI, CT and Digital Pathology images) to segment disease 

regions (ROIs) and apply different machine learning algorithms to perform the 

classification tasks (Chapter. 2,3,4,5) and an application of developing optical character 

recognition scheme to help convert analog information to digital information and 

realizing storage of digital cell or tissue specimen images in pathology laboratory 

(Chapter 6). Specifically, in Chapter 2, a new quantitative global breast MRI feature 

analysis scheme was developed to predict tumor response to the neoadjuvant 

chemotherapy using breast MRI images acquired pre-therapy. In Chapter 3, a new 

quantitative image processing and feature analysis method was developed and evaluated 

to predict the pathologic complete response of breast cancer patients who underwent 

neoadjuvant chemotherapy using images acquired post-therapy. In Chapter 4, a 
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computer-aided detection tool was developed to segment and quantify intracranial 

radiologic markers using brain CT images. In Chapter 5, a computer-aided detection 

scheme was developed to automatically identify the non-negative digital pathology slides 

for IHC assay development. In Chapter 6, a new CAD scheme with optical character 

recognition algorithm and graphical user interface named Tissue Slide Reader was 

developed and tested. Last, in Chapter 7, a summary of these new CAD schemes and their 

future application potentials are discussed, which generate the conclusion of this 

dissertation including the future work of this candidate. 
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Chapter 2:  Developing a New Quantitative Global Breast MRI 

Feature Analysis Scheme to Assess Tumor Response to Chemotherapy 

 

2.1 Introduction 

Among the existing imaging modalities of breast cancer detection, diagnosis, and 

prognosis assessment, dynamic contrast enhancement (DCE) breast magnetic resonance 

imaging (MRI) has superior capability and performance. For example, one review article 

analyzed five prospective clinical studies and revealed a comparison result in which the 

cancer detection sensitivities were 40% and 81% for mammography and breast MRI, 

respectively [41]. Another large clinical study involving 2809 women with elevated 

breast cancer risk also reported that using breast MRI enabled detection of 79% (41/52) 

mammography-occult cancers [42]. Hence, using breast MRI could detect a significantly 

greater number of cancers than mammography. As a result, breast DCE-MRI has been 

recommended by the American Cancer Society as an adjunct screening tool to 

mammography for women with lifetime breast cancer risk greater than 20–25% since 

2007 [15]. In addition, breast MRI has played an important role in classifying breast 

tumors (ie, ductal carcinoma in situ [DCIS] or invasive ductal carcinoma [IDC] with and 

without metastasis positive lymph nodes [43]) and evaluate the tumor response to 

chemotherapy by comparing two sets of breast MR images acquired pre- and post-

chemotherapy [17].   

In current practice, advanced stage breast cancer patients with large breast lesions 

are treated with neoadjuvant (preoperative) chemotherapy before surgery. Based on the 

tumor response to the neoadjuvant chemotherapy, a breast cancer patient may receive 
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breast-conserving surgery instead of mastectomy [44-46] or avoid the surgery due to the 

pathological complete response (pCR) [47, 48], which would improve the life quality of 

breast cancer patients. Tumor response to the chemotherapy is typically evaluated by 

comparing tumor size and kinetic feature variation using breast MRI examinations taken 

pre- and post-chemotherapy based on the RECIST guideline [49]. However, due to the 

large heterogeneity of breast tumors, the response to the neoadjuvant chemotherapy 

varies widely in different patients [50]. Hence, in order to assist clinicians in making an 

optimal treatment plan for the individual patients early and/or reduce the toxicity or other 

side effects of the patients who do not receive significant benefit from the neoadjuvant 

chemotherapy, developing a new clinical marker that allows more accurate prediction or 

assessment of tumor response early may have high clinical impact. For that purpose, we 

developed and tested a new quantitative kinetic image feature analysis-based CAD 

scheme using breast MR images acquired before the patients participated in the 

neoadjuvant chemotherapy to predict tumor response to the neoadjuvant chemotherapy 

[51]. From the segmented breast lesions, the scheme computed kinetic image features of 

the lesions and assessed the likelihood of tumor response to the neoadjuvant 

chemotherapy using a multi feature-based artificial neural network. 

Despite encouraging results in our preliminary study, application of the scheme 

can be limited or less robust due to the difficulty in accurately defining and/or segmenting 

the breast lesions, in particular the subtle and/or diffuse lesions without a solid lesion 

boundary. Recently, studies reported by several groups [52,53] demonstrated that the 

global background parenchyma enhancement (BPE) features extracted from the entire 

breast MR images can be used to assess breast cancer risk [52] and improve accuracy in 



21 

classifying between malignant and benign breast lesions [53]. Hence, based on previously 

published works, the objective of this study was to develop a new quantitatively global 

kinetic image feature analysis-based CAD scheme without lesion segmentation and test 

the feasibility of applying this new scheme to assess tumor response to the neoadjuvant 

chemotherapy. 

 

2.2 Materials and Methods 

2.2.1 DCE-MRI Image Dataset 

The study protocol including an image data collection and data analysis method 

was approved by our Institutional Review Board. In this retrospective study, the image 

data were collected from the existing cases stored in the clinical Picture Archiving and 

Communication System (PACS). The informed consent of the patients was waived. The 

dataset includes the deidentified breast MR images acquired from 151 breast cancer 

patients. Each patient had two sets of breast DCE-MRI examinations taken before and 

after neoadjuvant chemotherapy. The average time difference between two MRI 

examinations is around 5 months (or 157 days). All MRI examinations were performed 

using a 1.5T GE Excite MRI scanner in 2008 and 2010. In each MRI examination, five 

sets of axial images were scanned and acquired. The first one is a pre-contrast scan of 

two breasts. Approximately 3 minutes after intravenous administration of 0.1 mmol/kg 

body weight OptiMARK gadolinium, four sets of post-contrast scans started to acquire 

four sets of new axial images. Each image slice has 512 × 512 pixels with a pixel size of 

0.6445 × 0.6445 mm and a slice thickness of 4 mm. 
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Among the 151 patients, 63 were assigned to the complete response (CR) group 

and 88 were categorized as the partial response (PR) group. According to RECIST 

guidelines, in the CR group the kinetic enhancement signals (or contrast-enhanced pixels) 

inside the tracked breast tumors depicting the first set of breast MR images acquired pre-

chemotherapy become undetectable in the second set of breast MR images acquired post-

chemotherapy, while in the PR group the contrast-enhanced pixels inside the tumor 

regions decrease by more than 30% between the post- and pre-chemotherapy breast MR 

images. Figure 6 shows three examples of two matched breast MR image slides acquired 

pre- and post-chemotherapy of three patients. In one CR case (Fig. 6 a, b), the contrast-

enhanced pixels almost disappear inside the target tumor region depicted on the post-

chemotherapy breast MR image. In the first PR case (Fig. 6 c, d) a solid tumor has contrast 

enhanced pixels surrounding a tumor boundary and a big necrotic center region. After 

neoadjuvant chemotherapy, although the tumor diameter was reduced or “partially 

responsive,” the central necrotic region of the tumor also disappears and the active 

contrast enhancement volume increases after the neoadjuvant chemotherapy. The second 

PR case (Fig. 6 e, f) shows the lesions with diffused enhancement on breast MR images 

acquired pre- and post-chemotherapy. 
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Figure 6: Three examples of showing two matched breast MR image slides acquired 

from pre- and post-chemotherapy of one CR case (a) and (b), one PR case with solid 

contrast enhanced tumor (c) and (d), and one PR case with the diffused lesion 

enhancement (e) and (f). 

 

In this dataset, the age of the patients ranged from 25 to 76 years old. The average 

age and standard deviation are 47.4±11.2 and 49.2±10.4 for CR and PR patient groups, 
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respectively, which indicate that the majority of women whose breast DCEMRI 

examination images were selected in this study are relatively younger (<50 years old).  

Table 1 summarizes the basic tumor characteristics between the CR and PR case 

groups. The majority of tumors were diagnosed as invasive ductal carcinoma (IDC) with 

or without associated DCIS. Finally, the axial view of the breast MR images acquired 

pre-chemotherapy of each patient was used and analyzed in this study. The goal of this 

study was to use the global kinetic image features computed from the pre-chemotherapy 

breast MR images only to build a machine-learning classifier or model to assess tumor 

response to the neoadjuvant chemotherapy.  

 

Table 1: Distribution of Tumor Subtypes in Both CR 

Tumor characteristics CR PR 

Number of solid tumors 25 43 

Average size of solid tumors 

Number of diffused tumors 38 45 

Tumor pathology subtypes 

Invasive ductal carcinoma (IDC) 26 27 

IDC and DCIS 28 45 

Invasive lobular carcinoma (ILC) 2 1 

ILC and DCIS 2 1 

Infiltrating carcinoma 0 1 

Invasive mammary carcinoma 0 3 

Poorly differentiated carcinoma 5 10 
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2.2.2 Quantitative Global Kinetic Image Feature Computation 

In order to automatically compute global contrast enhancement features, we 

applied a CAD scheme of breast MR images that has been developed and to segment the 

breast region depicted on each breast MR image by removing all pixels in the air 

background and behind the chest wall or pectoralis muscle. The details of this CAD 

scheme have been reported in our previous publication [51]. In brief, the CAD scheme 

uses the following four image processing and feature computation steps: 1) applying a 

threshold method to remove all pixels in the air background of each image; 2) detecting 

the chest wall depicted on each breast MR image to remove all pixels behind the chest 

wall (Figure. 7); 3) performing image registration and subtraction of two sets of matched 

breast MR image slices acquired in two breast MRI scans performed pre- and post-

injection of gadopentate dimeglumine (Gd-DTPA) contrast agent; and 4) computing a set 

of relevant kinetic image features from segmented breast regions depicted on each 

subtraction image. By applying this CAD scheme to all breast MR image slides, we are 

able to yield the global breast contrast enhancement image features of the whole breast 

volume. 
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Figure 7: An example to show chest wall detection and breast region segmentation, in 

which (a) shows an original image slice marked by two CAD scheme detected lines to 

segment between two breasts and chest regions, and (b) shows the final segmented 

breast regions, which are used to compute the BPE features. 

 

Our CAD scheme initially computed a set of 10 kinetic or contrast enhancement 

image features from the subtraction images of two sets of registered images acquired pre- 

and post-injection of contrast agent (as shown in Table 1). Specifically, these features 

include: F1: the average contrast enhancement value (EV), which is simply computed as 

an average of the pixel value of all pixels inside the segmented breast volume; F2: 

standard deviation and F3: skewness of the contrast enhancement values, which are two 

features that measure the heterogeneity of contrast enhancement of the pixel values; F4: 

the maximum contrast enhancement value inside the whole breast volume. In addition, 

CAD scheme sorted the contrast enhancement values from the maximum to the minimum, 

which are computed from the whole breast volume, and then computed two new features: 

F5: the average contrast enhancement value among the pixels listed in the top 1%, and 

F6: in the top 5% of the sorting list. In a previous study, using these two average contrast 
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enhancement values could have higher discriminatory power to assist classifying between 

malignant and benign breast lesions than using the average or the maximum contrast 

enhancement value computed from the whole breast regions [54]. In addition, the CAD 

scheme also computed four features representing the bilateral differences (or the absolute 

subtraction) of two feature values computed from the left and right breast regions (F7–

F10). 

 

2.2.3 Feature Analysis and Performance Assessment 

Next, from the initial feature pool of 10 contrast enhancement image features 

(Table 2), we aimed to select optimal image features and build a machine-learning 

classifier to assess the likelihood of the breast tumors being completely responsive to the 

neoadjuvant chemotherapy (CR). For this purpose, we used a publicly available data 

mining and machine-learning software platform, Weka [55], to perform feature selection 

and classifier training and testing tasks. A similar optimization process has been applied 

and tested in our previous study [51]. In brief, we used a specific machine-learning 

classifier, the “Attribute Selected Classifier,” which integrates an artificial neural network 

(ANN) as the base classifier and a Wrapper Subset Evaluator (WSE) to guide feature 

selection from the initial pool of 10 features. This integration takes a search algorithm 

and evaluator next to the base classifier, which makes the feature selection process 

transparent and the base classifier operates only in a reduced optimal feature space [56]. 

 

 



28 

 

Table 2: Description of 10 computed global kinetic image features. 

Feature Description Feature Description 

F1 Average enhancement value 

(EV) 

F6 Average EV of top 5% 

F2 Standard deviation of EV F7 Bilateral average EV difference 

F3 Skewness of EV F8 Bilateral STD EV difference 

F4 Maximum EV F9 
Bilateral difference of average 

EV of top 1% 

F5 Average EV of top 1% F10 
Bilateral difference of average 

EV of top 5% 

 

Due to the limited dataset size of 151 cases, the classifier was trained using a 

leave-one-case-out (LOCO) method to maximally use all available training cases and also 

minimize the testing bias [57]. In addition, to avoid bias in feature selection, the feature 

selection process was embedded inside the LOCO training and testing iteration loops. In 

each LOCO training and testing process, one case was selected as an independent testing 

case and the remaining 150 cases were used as training cases. The WSE guided feature 

selection method was applied to all 150 training cases to search for optimal features from 

the entire feature pool and train an ANN-based classifier. The trained ANN was then 

applied to one independent testing case and generated a classification score for the testing 

case (ranging from 0 to 1). The higher score indicates a higher probability of the tumor 

responding to the neoadjuvant chemotherapy or being classified into the “CR” class. This 
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LOCO process was repeated 151 times. As a result, 151 classification scores were 

independently generated for all 151 cases in our dataset. In the different LOCO training 

and testing iteration cycles, the potentially different image features may also be selected 

from the initial pool of features and used to build the ANN. 

We then used the area under a receiver operating characteristic (ROC) curve 

(AUC), which was computed using a publicly available maximum likelihood-based ROC 

curve fitting program (ROCKIT, http://www-radiology.uchicago.edu/krl/, University of 

Chicago), as an evaluation index to assess performance of the image features or ANN-

generated classification scores associated with the tumor response to the neoadjuvant 

chemotherapy. The P-values were also computed by the ROCKIT program when any two 

sets of image feature data and/or ANN classification scores were used as input data of the 

ROCKIT program. All statistically significant differences were defined as P < 0.05. We 

compared the discriminatory power of using each individual features (as listed in Table 

1) and the classification scores generated by the multi feature based machine-learning 

classifier (ANNs) using the LOCO validation method. In addition, we applied an 

operation threshold of T = 0.5, which is the middle point of the ANN-generated 

classification scores to generate a confusion matrix from which we computed the overall 

classification accuracy as well as the predictive values of both the “CR” and “PR” classes 

of our scheme in assessing the tumor response to the neoadjuvant chemotherapy. 
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2.3 Results 

When applying each of 10 individual image features computed in our initial 

feature pool (Table 2) to associate with or classify cases between the CR and PR groups, 

Table 3 shows and compares the computed AUC values. The AUC values ranged from 

0.542±0.047 to 0.734±0.043. Among them, the average contrast enhancement value of 

entire breast volume or regions (F1) and standard deviation (F2) have the highest 

discriminatory power, with AUC >0.7. 

 

Table 3: AUC values of applying 10 individual features (given in Table 1) to classify 

between CR and PR group of cases. 

Feature AUC P-value 95% CI 

F1 0.734±0.043 F6 0.623±0.046 

F2 0.723±0.043 F7 0.572±0.047 

F3 0.695±0.508 F8 0.613±0.046 

F4 0.581±0.047 F9 0.542±0.047 

F5 0.596±0.047 F10 0.542±0.048 

 

Table 4 summarizes the percentage of each of 10 features selected during the 151 

LOCO training and testing iteration cycles in building the ANN-based classifier. Despite 

high AUC values of F2, it was not selected much during LOCO training and testing 

iteration cycles because of high correlation with other features (e.g., its correlation 

coefficient with F1 is 0.984). The top four selected features that were selected 90% times 

in 151 LOCO iteration cycles were the average enhancement value of the entire breast 

area (F1), average of bilateral enhancement value difference between left and right breasts 
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(F7), standard deviation of bilateral enhancement value difference between left and right 

breast (F8), and average of bilateral enhancement value of the top 5% difference between 

left and right breast (F10). This indicates that these four features played the most 

important interaction role in developing our ANN based classification model. Three of 

these features were computed from the bilateral asymmetry of the contrast enhancement 

features computed between the left and right breasts. Although using each individual 

image feature may only have limited discriminatory power (or AUC values), developing 

a multiple feature fusion-based ANN classifier enabled yielding a significantly higher 

assessment performance with AUC = 0.83±0.04 than using each feature individually (P 

< 0.05). Figure 8 shows and compares five ROC curves generated using the classification 

scores generated by the ANN-based classifier and each of four commonly selected image 

features. 

 

Table 4: A list of 9 image features that were selected in LOCO training and testing 

iteration cycles to test 151 testing cases in our dataset. 

Feature Percentage Feature Percentage 

F1 100%(151/151) F6 60%(91/151) 

F2 36%(55/151) F7 100%(151/151) 

F3 0%(0/151) F8 100%(151/151) 

F4 11%(16/151) F9 56%(85/151) 

F5 62%(93/151) F10 90%(139/151) 
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Figure 8:  Comparison of 5 ROC curves generated using the classification scores of the 

ANN-based classifier (solid curve) and other four individual features (dashed curve). 

 

As an example, Table 5 presents the computed feature values and ANN-generated 

classification scores of three cases (as shown in Fig. 6). The CR case has the highest 

classification score. Except feature F10 of case 3, the trend between ANN-generated 

classification scores and other feature values are also demonstrated. Table 6 shows a 

confusion matrix that was obtained by applying an operation threshold of 0.5 to the 

classification scores generated by the ANN-based classifier. The overall assessment 

accuracy of these two groups of 151 CR and PR cases was 82%, in which 124 cases were 

correctly classified into “CR” and “PR” classes, while the remaining 27 cases were 

incorrectly classified. The predictive values of “CR” and “PR” case groups are 86.0% 

(43/50) and 80.2% (81/101), respectively. 
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Table 5: Feature Values of Three Cases with Images Shown in Figure 6. 

Feature Case 1 (up) Case 2 (middle) Case 3 (bottom) 

F1 0.29 0.39 0.6 

F7 0.32 0.66 1 

F8 0.37 0.6 0.76 

F10 0.48 0.83 0.42 

ANN 0.996 0.254 0.045 

 

 

Table 6: A confusion matrix of prediction scores generated using an ANN-based 

classifier that was trained using 4 selected image features. 

                        Prediction Result  

  Actual Cases 
CR PR 

CR 43 20 

PR 7 81 

 

2.4 Discussion 

Since breast MRI is the most popular imaging modality used in current clinical 

practice to assess breast tumor response to neoadjuvant chemotherapy [47, 48], 

developing and applying breast MRI image feature analysis based on the quantitative 

image feature analysis or CAD schemes to assess complete response of the breast tumors 

to the neoadjuvant chemotherapy has been attracting research interest [58, 59]. In this 

Chapter, we report our latest progress to develop and test new quantitative image feature 

analysis schemes to predict breast tumor response to neoadjuvant chemotherapy. Our 

study has a number of unique characteristics. First, we tested the feasibility of whether, 

with the help of automated segmentation of breast regions depicted on the breast MR 
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images acquired before pre-chemotherapy, applying a new CAD scheme and machine-

learning classifier optimized using the quantitative global kinetic breast MR image 

features had potential to generate a useful clinical image marker in assessing tumor 

response to neoadjuvant chemotherapy. Our study results support the hypothesis that the 

global background parenchymal enhancement (BPE) of breast MRI carries useful clinical 

information, which may be used to assess breast cancer risk [52] and classify between 

malignant and benign breast MRI examinations [53]. In this study we demonstrated that 

using BPE-related image features could also effectively assess tumor response to 

neoadjuvant chemotherapy.  

 

Second, unlike many previously developed CAD schemes of breast MR images, 

including our own scheme [51], which computed and used the kinetic image features only 

from the segmented tumor regions, the CAD scheme developed in this study does not 

segment the targeted tumors from the breast MR images. As a result, the new CAD 

scheme is much simpler and probably also more robust to be applied to the different breast 

MR images with diverse clinical patterns because the automated tumor segmentation 

process is not only often complicated, but also difficult and/or not robust, in particular for 

segmenting the diffusive tumors depicted on breast MR images. Although the maximum 

contrast enhancement typically occurs inside a malignant breast tumor as measured by 

feature F4, the study results showed that using F4 did not yield the highest classification 

performance, as comparing several features computed from the global breast MR images 

including average contrast enhancement (F1) and standard deviation of the contrast 

enhancement (F2), which indicates that tumor response to the neoadjuvant chemotherapy 
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depends more on the overall contrast enhancement patterns generated from both tumor 

and background parenchymal tissues. 

 

Third, besides computing the global BPE features from the entire breast MR 

images, we also computed bilateral image features asymmetry between left and right 

breasts. We observed that, unlike in assessing breast cancer risk [60], the computed 

kinetic enhancement feature difference between two bilateral breast MR images is 

relatively bigger and classification performance of using such a single feature is lower 

than using the global BPE features. However, these features are still very useful to build 

a highly performing multi feature fusion based classifier. When embedding a WSE inside 

a LOCO-based cross-validation method to select optimal features and optimize the ANN 

classifier, three bilateral BPE kinetic features asymmetry were among the four mostly 

selected image features. The results indicate that the applied machine-learning method 

was effective, which enables selecting and optimally fuse non-redundant image features 

and eliminate the redundant (or highly correlated) features (i.e., features F1 and F2). 

 

Fourth, this was a retrospective study. We applied our CAD scheme to a relatively 

diverse image database randomly collected from the existing clinical database. The 

dataset is relatively balanced in which there are no statistically significant differences in 

patients’ age (P = 0.445) and solid tumor sizes (P = 0.509) between the CR and PR patient 

groups. Hence, our study results support a recently emerged Radiomics concept that 

hypothesized that quantitative image features enabled phenotyping many useful 

biological or gene-expression processes of cancer development and prognosis [61], which 
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provides a simple approach to improve decision-making in cancer treatment at low cost 

[62]. There are also several limitations to this study. For example, 1) this is a laboratory-

based retrospective study using a relatively small data size (with 151 cases). Thus, the 

robustness of our study results needs to be further tested in future studies with large and 

diverse image datasets. 2) Due to our small dataset, our CAD scheme was only trained 

and applied to classify cases into CR and PR groups. 3) To make our CAD scheme simple, 

the scheme does not involve a nonrigid image registration algorithm in an attempt to 

register MR image slices acquired pre- and post-contrast enhancement scans. However, 

due to the lack of ground truth, no accurate nonrigid image registration algorithm is 

available to date. This issue needs to be further developed and investigated. 4) This is a 

single-institution study. The guidelines of neoadjuvant chemotherapy for breast cancer 

patients may vary at different medical institutions. Thus, whether our CAD scheme can 

be optimally applicable to images acquired from other medical institutions also needs to 

be tested in future studies.  

 

In conclusion, in this study we developed and tested a new CAD scheme based 

on the quantitative global kinetic breast MR image feature analysis. From our study we 

demonstrated the feasibility of identifying a new image feature based clinical marker to 

assess breast tumor response to the neoadjuvant chemotherapy. Our study results support 

the new concept of Radiomics [61, 62], in which the high association or supplementary 

information between the quantitative radiographic image features and genomic 

biomarkers can be found. As a result, although many genomic biomarkers have been 

performed in the effort to associate breast tumor response with neoadjuvant 
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chemotherapy, our study suggests that the quantitative image features computed from 

breast MR images also enable providing highly discriminatory information, which can be 

more easily extracted from the existing diagnostic breast MR images and yield high 

clinical impact and cost-effectiveness. 
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Chapter 3: Prediction of Pathological Complete Response to 

Neoadjuvant Chemotherapy Using Quantitative Breast MR Images 

Feature Analysis 

3.1 Introduction 

Although neoadjuvant chemotherapy is now increasingly used as the first line 

treatment in patients diagnosed with locally advanced breast cancer in order to downstage 

tumor, optimize surgical outcomes and reduce risk of cancer recurrence [63], it also faces 

several clinical challenges. A recent international survey reported that up to 27% of new 

breast cancers are currently treated with neoadjuvant chemotherapy [64]. Due to the large 

heterogeneity of breast tumors, response to neoadjuvant chemotherapy varies 

significantly among the breast cancer patients. In the clinical practice, up to 30% of 

patients underwent neoadjuvant chemotherapy may have pathological complete response 

(pCR) without residual invasive cancer [65]. Studies have also showed that patients with 

pCR had favorable prognosis and/or quite long term disease-free survival (DFS) [66, 67]. 

However, due to the lack of accurate prognostic markers, the majority of pCR patients 

still undergo aggressive surgical interventions, which generates overtreatment and 

unnecessary side effects to the patients. In order to overcome this clinical challenge of 

avoiding or minimizing overtreatment, as well as help establish new personalized cancer 

treatment paradigm, identifying and developing new prognostic clinical markers 

including the imaging markers has been attracting broad research interesting in recent 

years [49, 68]. 

In medical imaging field, dynamic contrast enhanced breast magnetic resonance 

imaging (DCE-MRI) is a routinely used imaging modality to assess breast tumor response 
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to neoadjuvant chemotherapy [68, 69]. A recent clinical trial (NRG-BR005) launched 

within National Clinical Trials Network aiming to explore feasibility of eliminating 

surgery after successful neoadjuvant chemotherapy indicated the need for accurate and 

robust prognostic markers to improve clinicians’ decision-making as it pertains to 

surgical and chemotherapy recommendations [70]. Currently, tumor response to the 

neoadjuvant chemotherapy is typically estimated by the comparing change of the tumor 

size extracted from dynamic contrast enhanced breast magnetic resonance imaging 

(DCE-MRI) examinations of pre and post chemotherapy [44] based on the response 

evaluation criteria in solid tumors (RECIST) guidelines [71]. Accuracy of predicting pCR 

using DCE-MRI and RECIST criteria still remains lower with approximately 50% 

negative predictive value [72]. A recent ACRIN 6657 Trial involving 138 cancer patients 

treated with neoadjuvant chemotherapy reported that the correlation between longest 

diameter of tumors measured from MRI and final pathology size of tumors was 

surprisingly low (r = 0.33). Combining MRI, clinical examination, and mammography 

yielded the highest pCR prediction performance with the area under ROC curve, AUC = 

0.76 [73]. Thus, in order to increase accuracy in predicting pCR using the image features 

or markers extracted from DCE-MRI, more research effort and progress are needed.   

In this study, we hypothesized that using a machine learning approach to optimally 

combine both kinetic and texture based image features computed from DCE-MRI may 

help yield significantly higher performance or accuracy in predicting pCR of breast 

cancer patients underwent neoadjuvant chemotherapy. In order to test our hypothesis, we 

investigated and evaluated a new quantitative image processing and feature analysis 

method to predict pCR. Specifically, we first used a computer-aided detection (CAD) 
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scheme to automatically remove chest wall and segment breast region depicting on breast 

MR images acquired after performing the neoadjuvant chemotherapy and compute a set 

of kinetic and texture-based image features. Next, a random selection method was used 

to generate new dataset from the initial dataset. Last, three different machine learning 

algorithms were trained and tested using ten-fold cross validation method to predict pCR 

of breast cancer patients underwent neoadjuvant chemotherapy. Four parameters were 

computed from the result of the prediction to assess the performance of using all features. 

Figure 9 demonstrates the diagram for this study. The details of our study and 

experimental results are reported in the following sections.  
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Figure 9: The diagram of subsequent steps in this study. 

              

3. 2 Materials and Methods 

3.2.1 Breast MR Image Dataset 

A retrospectively collected breast DCE-MRI dataset was collected and used in this 

study. The dataset includes images acquired 154 breast cancer patients underwent 

neoadjuvant chemotherapy. Each patient had two subsequent breast DCE-MRI 

examinations taken before and after the neoadjuvant chemotherapy. The average time 

difference between two examinations is 157 days. After neoadjuvant chemotherapy, each 

patient underwent a surgical intervention procedure. Based on the pathologic examination 

reports, the dataset was then divided into two groups of “pathologic complete response” 

(pCR) cases and “non-pathologic response” (non-pCR) cases. Among the 154 patients, 

53 patients were assigned to the pCR group in which no invasive cancer cells or residual 
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malignant lesions were detected in the pathological tests, while other 101 cases were 

assigned to the non-pCR group in which the residual cancer cells were detected and 

reported in the pathological test reports. 

In this dataset, the mean and standard deviations of the patient’s age are 50±9.1 and 

49±11.1 for the groups of pCR and non-pCR cases, respectively. Each MRI examination 

in the originally recorded data include five sets of axial view and two sets of sagittal view 

images acquired before and after the neoadjuvant chemotherapy using a 1.5T GE Excite 

MRI scanner. The five sets of axial view include one acquired pre-injection of 

gadopentate dimeglumine (Gd-DTPA) contrast agent and four series of post injection of 

the contrast agent. From the breast DCE-MRI examination performed after neoadjuvant 

chemotherapy, the first two MR image scanning series namely, the pre- and the first post-

contrast agent injection, were used and analyzed in this study. Each image slice has 

512×512 pixels with the pixel size of 0.58 mm in each direction and slice thickness of 2.6 

mm.   

3.2.2 Image Processing and Feature Computation 

In order to develop a new quantitative imaging marker or prediction model to predict 

pCR cases, this study involves following steps. In brief, a computer-aided detection 

(CAD) scheme developed and reported in our previous studies [51, 74] was first applied 

to automatically detect the chest wall and segment breast region depicted on breast MR 

images. Our CAD scheme include three image processing and feature computation steps 

namely, (1) segmenting breast region by detection of chest wall and removing all regions 

behind the chest wall; (2) applying image registration and subtraction method on the two 

sets of matched breast MR images acquired pre- and the first post-injection of the contrast 
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agent to generate a new set of contrast enhanced image maps; and (3) computing a set of 

image features from the generated image maps. Next, a multi-feature fusion based 

machine learning method was applied to select optimal features and build prediction 

model. Last, the statistical data analysis method was used to assess the performance of 

the CAD scheme and pCR prediction model. The details of each step are presented as 

follows. 

A. Breast region segmentation and image registration 

Our CAD scheme used a region blobbing algorithm to remove any pixels in the air 

background of each image. A series of algorithms including Otsu’s thresholding method, 

morphological operation and region growing algorithms were applied to detect the chest 

wall by generating a separation line and remove any regions (or pixels) behind the chest 

wall from the breast MR images. The area surrounded between the separation line and 

breast skin were defined as the segmented breast region and were used to generate a map 

to be applied on the breast MR images. Next, an image registration algorithm was applied 

to perform a simple subtraction method on two series of the MRI scans acquired before 

and after the injection of the contrast agent. A new series of contrast enhancement image 

maps were generated that include the segmented and registered breast regions. Figure 10 

demonstrates an example of the breast region segmentation process and the generated 

new contrast enhancement image map. 
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Figure 10: An example of the breast region segmentation steps and generating the 

contrast-enhanced image map including (a) the original image, (b) separation line, (c) 

generated mask and (d) the breast region segmented on the contrast-enhanced map. 

B. Image feature computation 

After image segmentation and subtraction to generate the contrast-enhanced image 

maps, CAD scheme computed a total of 38 features including both texture and kinetic 

features from the generated contrast-enhanced images. Among the initial feature pool of 

38 features, 28 were texture-related features computed in three-dimensional (3D) space 

of image maps, which include 17 features derived from gray level co-occurrence matrices 

(GLCM) and 11 features computed from the gray level run length method (GLRLM). 

The GLCM method characterizes the texture of an image by calculating how often pairs 

of pixel with specific values in a specified spatial relationship occur in an image, while 

the GLRLM method measures the size of homogeneous runs for each gray level in the 

image.  
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From the GLCM matrix, CAD scheme computed following texture features, which 

include energy, contrast, homogeneity and correlation as previously defined by Haralick 

et al [75] as: 
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2𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1
    (1) 

Contrast = ∑ ∑ (𝑖 − 𝑗)2𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1
𝑔𝑖𝑗                      (2) 

 Homogeneity =  ∑ ∑
1

1+(𝑖−𝑗)2

𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1
𝑔𝑖𝑗               (3) 

     Correlation = 
∑ ∑ (𝑖𝑗)𝑔− 𝜇𝑥𝜇𝑦

𝑁𝑔
𝑗=1

𝑁𝑔
𝑖=1

𝜎𝑥𝜎𝑦
              (4) 

 

where 𝑔𝑖𝑗 is the ith and jth entry of the GLCM representing a gray-tone intensity 

in the matrices and 𝜇𝑥 , 𝜇𝑦   and 𝜎𝑥 , 𝜎𝑦  are the mean and standard deviation of the 

probability matric, respectively.  

In these features, energy illustrates the textural uniformity of the image, contrast 

measures the difference between the lowest and highest voxels gray tones, homogeneity 

computes the diagonal elements within the displacement vector of the GLCM, and 

correlation describes the linear dependency on the neighboring gray tone intensities. The 

remaining GLCM texture features included entropy, autocorrelation, cluster prominence, 

cluster shade, cluster tendency, dissimilarity, inverse variance, difference entropy, 

maximum probability, sum average, sum entropy, and variance. 

CAD scheme also extracts and computes 11 texture features from the Gray Level Run 

Length matrices (GLRLM) of the segmented breast region in each slice [76]. The 
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computed GLRLM features include (1) Short Run Emphasis (SRE), (2) Long Run 

Emphasis (LRE), (3) Gray Level non-Uniformity (GLN), (4) Run length non-uniformity 

(RLN), (5) Run Percentage (RP), (6) Low Gray Level Run Emphasis (LGRE), (7) High 

Gray Level Run Emphasis (HGRE), (8) Short Run Low Gray Level Emphasis (SRLGE), 

(9) Short Run High Gray Level Emphasis (SRHGE), (10) Long Run Low Gray Level 

Emphasis (LRLGE), and (11) Long Run High Gray Level Emphasis (LRHGE). 

 

In addition to two types of texture features, CAD scheme also computed MRI kinetic 

features that are divided into two groups namely, computed from the whole breast region 

and the bilateral difference between left and right breast region. The computed kinetic 

features include: average enhancement, standard deviation, maximum intensity, the 

average enhancement of top 10 percent and average enhancement of top 5 percent. Table 

7 shows the summary of the computed image features. The similar kinetic features 

computed from breast MR images have been applied to assist breast cancer diagnosis 

(i.e., classification between malignant and benign cases) [53] and prediction of breast 

tumors to neoadjuvant chemotherapy [74].  
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Table 7: Summary of 38 computed features including texture (GLCM, GLRLM) and 

kinetic features. 

Feature 

number 

Feature group Description 

1-17 GLCM a 

Contrast, Correlation, Energy, 

Homogeneity1, Homogeneity2, 

Entropy, Autocorrelation, 

Cluster Prominence, Cluster 

Shade, Cluster Tendency, 

Dissimilarity, Inverse Variance, 

Difference Entropy, Maximum 

Probability, Sum Average, Sum 

Entropy, Variance 

18-28 GLRLM b 

SRE, LRE, GLN, RLN, RP, 

LGRE, HGRE, SRLGE, 

SRHGE, LRLGE, LRHGE 

29-33 
Kinetic for the 

Background parenchymal area 

Average intensity, standard 

deviation, maximum pixel 

intensity, average value of top 

1%, and average value of top 

5% of pixel values 

34-38 
Kinetic for absolute 

bilateral difference of BP area 

Average intensity, standard 

deviation, maximum pixel 

intensity, average value of top 

1%, and average value of top 

5% of pixel values 
a GLCM: Gray-Level Co-Occurrence Matrix, b GLRLM: Gray-Level Run Length Matrix 

 

3.2.3 Machine Learning Models and Data Analysis 

In order to fuse multiple features to yield the improved predictive performance than 

using single feature, we applied machine learning methods to build the optimal predictive 

model. Although many different machine learning models have been investigated and 

applied in CAD of medical images, we selected two classification models or classifiers 

that represent different machine or statistical learning concepts aiming to predict pCR of 
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each case underwent neoadjuvant chemotherapy. These two models are 1) fine gaussian 

support vector machine (FGSVM), and 2) weighted K- nearest-neighbor (KNN). In these 

two learning models, the fine gaussian SVM builds a single global optimization function 

to make the finely-detained distinctions between two classes using Gaussian kernel scale; 

while the weighted KNN model builds many local regions based optimization functions 

to distinguish two targeted classes based on the similarity of the local neighbors. 

 

However, the image dataset used in this study is unbalanced between the two 

categories of pCR and non-pCR (53 vs. 101 cases). In order to reduce case election bias 

and more effectively train machine learning models using the balanced image datasets in 

two categories, we applied a computer program to randomly select 53 non-pCR cases 

from the dataset to create a new sub-dataset of 106 cases (53 pCR cases vs. 53 non-pCR 

cases). This computer programs controlled random process is repeated 50 times to 

generate 50 sub-datasets. Using each sub-dataset of 106 cases, we applied a ten-fold cross 

validation method to train and test performance of each machine learning model. This 

training and cross-validation process was repeated 50 times by using 50 sub-datasets to 

assess robustness of the model performance.  

In each ten-fold cross validation, 53 pCR and 53 pCR cases were randomly and 

individually segmented into 10 subgroups. In each training and testing, 9 subgroups were 

used to train the classification models. The remaining subgroup of cases was used as an 

independent dataset to test the classification model and generate the prediction scores. 

After completing this 10-fold cross validation cycle, each case in this dataset has a 

classification ranging from 0 to 1. The higher score indicates the higher likelihood or 
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probability of the case being pCR. Using the classification scores, a publicly available 

receiver operating characteristics (ROC) curve fitting program (ROCKIT, http://www-

radiology.uchicago.edu/krl/,University of Chicago) was applied to compute the area 

under ROC (AUC), which is used as an evaluation index to assess and compare 

performance of each machine learning model. Finally, mean and 95% confidence interval 

of each machine learning model using all 50 datasets were computed. 

3.3 Result 

 

CAD scheme used the new 50 generated datasets based on statistical bootstrapping 

concept to build 2 different classification methods including fine gaussian SVM 

(FGSVM) and Weighted KNN models using all 38 features. Each dataset was used to 

build different machine learning classifier to predict the result of pathology. Table 8 

illustrate the 95% confidence interval (CI) value of the computed AUC value from the 

ROC curve of these classification. It shows that using FGSVM or WKNN both gives high 

95% CI and mean value.  

 

Table 8: Comparison of 95% confidence interval (CI) and mean value of computed 

AUC using different classification methods. 

Classification method AUC (95% CI, mean value) 

FGSVM [0.66, 0.7], 0.68 

WKNN [0.68, 0.71], 0.69 

 

Table 9 demonstrate the highest accuracy, sensitivity and specificity computed 

from the two classification methods using all feature pools. Results show that using fine 

gaussian SVM as the classification to train and test the dataset, yield the highest accuracy, 
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positive predictive value (PPV) and negative predictive value (NPV)of 62% and 80%, 

respectively.  

Table 9: Comparison of three parameters of accuracy, sensitivity and specificity in 

three different classification method. 

Classification method Accuracy PPV NPV 

Fine Gaussian SVM 67% 62% 80% 

WKNN (k=10) 59% 62% 58% 

 

3.4 Discussion 

Neoadjuvant chemotherapy is the first step for treating breast cancer patients with the 

aim of shrinking larger tumor [44, 77-78]. A significant fraction of the patients’ response 

completely to the chemotherapy and the tumors are vanished, while some patients only 

have partial or no response to the neoadjuvant chemotherapy. Although it is 

understandable for patients who have complete response shown in breast MRI acquired 

post-therapy to not undergo for surgery, but the complete disappearance of the tumor or 

malignant cells can only be determined by a comprehensive pathology examination. The 

pathological analysis will be performed on many breast tissue specimens that was 

removed by the surgery to examine whether there are the remaining malignant tumor 

cells. Since patients who have the pCR reported higher survival rate [79], prediction of 

pCR without aggressive surgery is a research topic attracted broad interest in current 

clinical research field of breast cancer. Thus, identifying non-surgical or non-invasive 

imaging markers to predict pCR play important role to omit the unnecessary and 

aggressive surgery for the breast cancer patients with pCR to the neoadjuvant 

chemotherapy. 
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In this study, we developed and tested a new CAD scheme to investigate the 

association of MRI image features computed from the DCE-MRI scans performed after 

neoadjuvant chemotherapy in predicting the pCR of breast cancer. We demonstrated that 

using texture features along with the kinetic image feature computed from breast MRI 

after performing neoadjuvant chemotherapy carry useful information for predicting the 

pathologic response. It was shown in this study that fine gaussian support vector machine 

classifier can predict pCR with higher accuracy compared to other classifiers. To the best 

of our knowledge, the prediction of pCR for patients receiving neoadjuvant chemotherapy 

from the breast MR images using the fusion of kinetic and texture features has not yet 

been investigated.  

However, there are some limitations to our work. First, the number of the dataset 

is limited, and it is tried to perform our CAD scheme on a larger dataset to validate the 

performance of our CAD scheme. Second, different definition of pathological complete 

response should be added to investigate the different subtype of the tumors. In conclusion, 

we demonstrated that image features including kinetic and texture features extracted from 

breast MR images acquired after performing neoadjuvant chemotherapy can help in 

predicting pathological response to neoadjuvant chemotherapy. Finding of this study can 

be helpful in selecting patients undergoing surgery for the pathologic analysis. 
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Chapter 4: Implementation of a Computer-aided Detection Tool for 

Quantification of Intracranial Radiologic Markers on Brain CT 

Images 

 

4.1 Introduction 

Spontaneous, non-traumatic aneurysmal subarachnoid hemorrhage (aSAH) is most 

commonly due to ruptured cerebral aneurysm with an annual incidence of ~30,000 per 

annum in the US and affects middle-aged population with higher incidence among 

women and is associated with significant morbidity in survivors [80, 81]. This category 

of hemorrhagic stroke results in high individual and societal socioeconomic burden [82, 

83]. It is important for the clinicians to develop and implement an optimal personalized 

treatment and rehabilitation strategy for respective patients to help them recover quickly 

and also counsel families accurately regarding futility of care in patients with severe/near 

fatal aSAH. For this purpose, imaging plays an important role [84, 85] in current clinical 

practice. This calls for development of more effective radiological imaging based clinical 

markers that have higher discriminatory power to predict or assess prognosis of the stroke 

(aSAH) patients. However, due to the large number of images (CT or MRI), as well as 

the use of the subjective assessment methods, there are few quantitative studies in aSAH 

population [86, 87], which is not only labor-intensive (time-consuming), but also 

inconsistent due to the large inter-reader variability. 

In order to more accurately and quantitatively predict or assess the prognosis of 

aneurysmal subarachnoid hemorrhage patients, we developed and tested a new interactive 

CAD tool to automatically detect, segment and quantify two radiological image markers 
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namely, the volume and distribution of brain hemorrhage and ventricular cerebrospinal 

fluid regions depicting on brain CT images. The same interactive CAD schemes have 

been developed and tested in our previous studies for different types of medical images 

including mammograms [88 - 90], breast MRI [74], abdominal CT images [91]. In this 

study, our CAD scheme segments brain skull and assigns pixels into normal brain tissue, 

blood and fluid. To further increase accuracy in quantification of the image markers, we 

designed and implemented a graphic user interface (GUI) into the CAD scheme, which 

allows users to visually examine segmentation results and guide CAD scheme to 

automatically correct errors. Thus, unlike the qualitative features that were assessed and 

provided by the clinicians (e.g., radiologists) with established neuroradiological scales, 

namely Mod Rotterdam scale and Helsinki scale [92, 93], using our CAD enables to 

extract and compute quantitative image features. The overall goal of this study is to 

provide the clinicians a new computer-assisted tool to accurately and robustly measure 

these two clinical markers in the clinical settings using the brain CT images under 

potentially large variation of CT image characteristics and/or noise levels.  

Currently, this new interactive CAD has now been installed in the clinical and 

research settings in Department of Neurology, the University of Oklahoma Health 

Science Center (OUHSC) to conduct further clinical tests and studies. To report the study 

of developing this new interactive CAD scheme and results of testing the feasibility of 

using this interactive CAD scheme in our medical imaging laboratory and OUHSC 

clinical site, the organization of this Chapter is as follows: Section II and III describe the 

image dataset and the proposed CAD scheme applied over image datasets used in this 

study, respectively. Section IV summarizes our experimental results and Section V 
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discusses the observation and conclusions that we can make from our study results, 

respectively. 

 

4.2 Materials  

An image dataset of brain CT images including 96 patients who met the inclusion 

criteria was assembled. Each patient had the series images of axial view with image slides 

number between 30-60 slides. Of the 96 patients, 65 (68%) were female and 31 (32%) 

were male. In this dataset, mean and standard deviation of the patients’ age are 51.8±12.4 

and 51.2±13.2 for female and male, respectively, indicating that the majority of patients 

with brain hemorrhage were selected in this study are relatively older, i.e., >50 years old. 

Among our patients, different discharge disposition such as home, rehab and expired had 

been recorded. 

 

4.3 Methods 

We developed and tested a new CAD scheme to automatically segment brain tissue 

by removing brain skull and detecting brain hemorrhage and ventricular cerebrospinal 

fluid regions depicting on brain CT images. Once a case of brain CT examination is 

loaded into the program, an automated process steps are applied. There are five main 

image processing steps including: (1) applying region growing algorithm with adaptively 

adjusted threshold to remove brain skull and segment brain regions, (2) using 

thresholding algorithm to detect normal brain tissue, blood and fluid regions, (3) examine 

the segmentation result and applying the needed correction; and (4) computation of image 

features. The schematic overview of the entire segmentation workflow is presented in 
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Figure 11 and the details of each image processing steps are described in the following 

sections. Additionally, to avoid a “black-box” type approach and increase the confidence 

of the users to accept or consider CAD results, we also developed and implemented an 

easy-to-use graphic user interface (GUI), which make this CAD scheme an interactive 

CAD scheme.  
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Figure 11: Flow chart of subsequent steps of the brain segmentation 
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4.3.1. Brain region segmentation 

Brain region segmentation is an important step for the CAD scheme to automatically 

remove brain skull and segment brain tissue. Our CAD scheme first asks the user to create 

a seed point on brain tissue and apply the region growing algorithm to segment brain 

region and remove brain skull. Our CAD scheme uses a thresholding algorithm to 

differentiate regions from brain tissue and brain skull. 

 

4.3.2. Normal brain tissue, blood and fluid regions detection   

Second, in order to sign each pixel inside the segmented brain region into three 

categories or classes namely, normal brain tissue, blood and fluid, our CAD scheme 

applies a thresholding algorithm with two different values (TH1 > TH2) to detect desired 

regions. Since blood region is more enhanced in brain tissue, pixels with CT number 

above TH1 are segmented as blood region, while pixels with CT number less than TH2 

are segmented as fluid region. Pixels with CT number between TH1 and TH2 are 

classified as normal brain tissue. In the GUI window, the segmented normal brain tissue, 

blood and fluid regions are demonstrated in gray, light gray and black color, respectively. 

 

4.3.3 Segmentation examination and correction  

 

Although our CAD scheme enabled to achieve high accuracy in brain and ROI 

segmentation, errors do happen in a small fractional of image slices (e.g. ≤ 5 – 10%). In 

order to solve this practically operational issue and optimally compensate potential 

impact of CT image noise variation on different cases, users can visually examine 

segmentation results slice-by-slice to make sure that the segmentation results and the 
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correspondingly computed volumes of brain tissue, blood and fluid are satisfactory or 

acceptable. Figure 12 demonstrates an example of the process of our scheme 

segmentation. For this purpose, we designed and implemented a number of function 

buttons for the interactive correction which are listed below.  

 

1) Correction button – In the first step of brain region segmentation, if the segmentation 

has error (i.e., part of the brain is missing), the user can click a correction button, the 

scheme automatically corrects the error by mapping the new boundary condition 

based on the brain segmentation results in the adjacent CT slices.  

 

2) Removing false regions – CAD scheme has a function to allow the users convert the 

blood or fluid located in the irrelevant regions in to normal brain tissue region. An 

automatically converting process will be applied to the ROI created by the user. 

 

3) Morphological operations – This function button allows to perform morphological 

operations only inside the ROIs defined by the user to fill in the holes inside the blood 

or fluid regions.  
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Figure 12: An example of process of our CAD scheme. (a) Original image, (b) Skull 

removal and brain segmentation (c) Brain normal tissue, Blood and Fluid region 

detection which can be seen in gray, light gray and dark gray colors, respectively. (d) 

Removing false regions by creating a boundary around the ROI, (e) Final image ready 

for feature computation. 

 

4.3.4 Feature computation 

Finally, once the user satisfies with the results of each region segmentation, the 

CAD scheme computes total of 6 image features from the segmented regions, which are 

volume of total cranial, brain tissue, blood, fluid and ratio of blood volume over total 

cranial volume, and ratio of fluid volume over total cranial volume. These quantitative 

image features are displayed in the GUI window and then automatically saved into an 

Excel datasheet. 
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4.4 Results 

Under the IRB-approved data collection and study protocol, we have 

retrospectively acquired and assembled an initial testing image dataset involving pre-

contrast image series of 96 brain CT scanning cases in this study. Each case was of 

patients with non-traumatic aSAH of different clinical and radiological grades regarding 

to the disease severity. We applied our interactive CAD scheme to process dataset and to 

compute 6 image features as described above. Table 10 summaries minimum, maximum 

and average of the computed image features. The ratios range from 0.12% to 13.46% in 

this dataset, which indicates a big variation in the quantitatively assessed blood volumes 

among different patients in this dataset.  

 

 

Table 10: Summary of minimum, maximum and average of the quantitative image 

features. 

Features Minimum Maximum Average ± STD 

Brain Volume 958.62 1492.53 1156.2 

Blood Volume 0.92 94.92 18.11±18.29 

Ventricles Volume 5.52 91.63 27.67±16.28 

Tissue Volume 1079.58 1629.44 1296.29±139.03 

Ratio of Blood 

Volume over 

Brain Volume 

0.12% 13.46% 2.4%±2.57% 

Ratio of Blood 

Volume over 

Ventricles Volume 

0.82% 9.47% 3.51%±1.81% 
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Figure 13 shows an example of the interactive region segmentation steps and 

results. An original CT slice is displayed on the left. The image in the middle shows the 

result generated by the CAD scheme in the first automatic processing step, which shows 

the errors including missing a part of brain region (on the top) and detection of non or 

irrelevant blood ROIs or pixels due to the unavoidable CT image noise when using the 

regular threshold on CT number. After taking the interactive correction steps, the right 

image shows the final segmentation results in segmentation and quantification of brain 

region, as well as blood and fluid regions. The bottom part of the figure also shows the 

updated computation results.  

 

Figure 13: An example of brain segmentation using the correction tool to correct 

missing brain tissue area. Left image shows the original CT image, middle image is the 

segmented brain region missing one top bran tissue region and right image shows 

corrected image with both automatically and manually for all segmented regions. At the 

bottom of each image, 4 features were computed. Left column is related to total whole 
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series, middle column is related to middle image and right column is the features for 

corrected image. It can be seen by every changes value of computed features differ. 

 

We then analyzed the association between these features and the 

neuroradiological scales, namely Mod Rotterdam scale and Helsinki scale, commonly 

used in current clinical practice to assess severity and prognosis of stroke patients with 

aSAH. Table 11 and Figure 14 demonstrate the relationship or correlation coefficient 

between the computed image features (or segmented volumes) and the validated clinical 

evaluation indices (Mod Rotterdam and Helsinki sales). Among these relationships, ratio 

of blood volume over brain volume shows the highest correlation value with both Mod 

Rotterdam scale and Helsinki scale of 0.64 and 0.62, respectively.  

Specifically, the fit of the linear regression line equation for ratio of blood volume 

over brain volume and Mod Rotterdam scale was  

y = 0.0146x + 0.0032 

and the linear regression line equation for ratio of blood volume over brain volume and 

Helsinki scale was  

y = 0.0067x + 0.0006 

with R2 = 0.41 and R2 = 0.39, respectively. Therefore, for a computed ratio of the blood 

volume over brain volume of 0.04, Mod Rotterdam scale and Helsinki scale were 2 and 

4, respectively. 

 

Table 11: Correlation Coefficient between the computed image features and the clinical 

features. 

                                      Helsinki Scale 
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                                             Clinical Features                                           Mod Rotterdam 

Scale Computed Image Features 

Brain volume -0.04 -0.02 

Blood Volume 0.61 0.6 

Ventricles Volume -0.04 -0.02 

Tissue Volume 0.01 0.03 

Ratio of Blood Volume over Brain Volume 0.64 0.62 

Ratio of Ventricles Volume over Brain Volume -0.03 -0.02 

 

 

Figure 14. Scatter plots of ratio of blood volume over brain volume with Mod 

Rotterdam scale and Helsinki scale. Solid line is the linear regression line. 

 

4.5 Discussion 

Based on the imaging informatics concept, we in this study developed and 

demonstrated a new interactive CAD scheme/tool to help detect, segment and quantify 

brain volume, hemorrhage and CSF regions depicted on cranial area of brain CT images. 
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Our scheme cannot only automatically segment brain volume, the blood and CSF regions 

with a relatively high accuracy and computational efficiency, it also provides the unique 

interactive functions for the clinical researchers or users to conveniently examine and 

make correction (if necessary). This new ICAD scheme has been repeatedly tested by 

research assistants in our medical imaging (or CAD) laboratory. The testing results have 

been visually examined. Although CT image quality (signal-to-noise ratios) vary greatly 

among the brain CT image dataset, we found that using this interactive CAD scheme and 

GUI tool enabled users to adaptively process brain CT images and yield satisfactory 

results for the purpose of accurately and robustly segmenting and quantifying brain 

hemorrhage and ventricular cerebrospinal fluid depicting on the non-contrasted brain CT 

images. The preliminary feedback from the clinical researchers has also be encouraging, 

which indicated that using this new ICAD tool was much more user friendly and less 

cumbersome than other “black-box” type automated tools that have been previously 

tested for this type of studies to quantify various intracranial components or radiologic 

markers.  

 Thus, our study convinced our hypothesis that for this type of task aiming to 

accurately quantify two image based clinical or radiological markers using brain CT 

images of the stroke patients with spontaneous aSAH, accuracy and users’ confidence on 

the CAD-generated quantitative data is the most important if the such type of CAD 

scheme can be eventually accepted in the clinical practice to quantify image based 

markers to predict or assess prognosis of the aSAH patients. The interface of the 

interactive functions of our ICAD scheme have been modified or optimized based on the 

feedback of the clinical and research users. The scheme has now been installed in the 
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clinical and research settings and used by medical students or clinical researchers for 

conducting the related clinical studies to investigate several homeostatic derangements 

that occur after aSAH and correlate them with the clinical outcome. 

After installing this interactive CAD scheme and GUI tool in the Department of 

Neurology of OHHSC, the clinical researchers have used this ICAD scheme to evaluate 

the relationship between glycemic gap (GG) determined stress-induced hyperglycemia 

(SIH), modified Graeb score (mGS) and estimated intracranial blood and cerebrospinal 

fluid volumes, which have reported encouraging results in two papers recently published 

in two clinical oriented journals [94,95]. Specifically, volume of blood, CSF, and brain 

tissue (in ml) is estimated using this software program. Intracranial volume is determined 

as a combined volume of the above three parameters. Intracranial blood volume is 

expressed as a ratio of (blood volume to intracranial volume) × 1000. Such a ratio is used 

to obtain amount of intracranial bleeding in reference to respective individual’s 

intracranial volume. Similarly, total of blood volume and CSF estimates fluid volume and 

is expressed as (blood volume + CSF to intracranial volume) × 1000 to provide 

quantitative estimation of hydrocephalus.  

In the clinical study of OUHSC, the researchers retrospectively assembled a brain 

CT image dataset involving 187 patients over a 5-year period, which meet the inclusion 

criteria for the study. Among them, 38 patients (20.3%) expired during hospitalization, 

while 9 patients (4.8%) were discharged to an inpatient hospice facility. A GG of 26.7 

mg/dl was considered as the optimum threshold for SIH which resulted of ninety-four 

(50.3%) among the study cohort that had SIH. Baseline characteristics including patient 

demographics are enumerated in Table 12. 



66 

 

Table 12: Patients demographics information. 

Radiological feature 

SIH (GG 

≥ 26.7 

mg/dl) 

Mean/median (in ml) 

95% 

CI/IQR 

p value 

Intracranial blood 

volume (in ml per 

1000 ml cranial 

cavity) 

Yes 39.6 33.6–45.5 
0.0002 

No 25.3 20.6-29.9 

Intracranial blood 

and CSF volume (in 

ml per 1000 ml 

cranial cavity) 

Yes 79.1 71.9-86.2 
0.027 

No 63.1 56.2-70.1 

Modified Graeb score 
Yes 4.0 2.0-7.0 0.002 

No 2.0 0.0–6.0 

 

Data analysis results indicated using this GG threshold, patients with SIH had 

14.3 ml/1000 ml more intracranial blood volume and higher mGS as compared to those 

without SIH [39.6 ml (95% confidence interval, CI, 33.6 to 45.5) vs. 25.3 ml (95% CI 

20.6 to 29.9), p = 0.0002] (Figure 15a, Table 12). Also, patients with third ventricular 

blood on admission CT scan were more likely to develop SIH [67/118 (56.8%) vs. 27/69 

(39.1%), p = 0.023].  
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Figure 15: Box plots show significant difference among patient developing stress-

induced hyperglycemia regarding to their respective intracranial hemorrhage volume (a) 

and degree of hydrocephalus (b) using quantitative estimation. 

 

Similarly, those with SIH had, on an average, 16/1000 ml of more intracranial 

blood + CSF volumes as compared to those without SIH [79.1 ml (95% CI 71.9 to 86.2) 

vs. 63.1 ml (95% CI 56.2 to 70.1), p = 0.027] (Fig. 15b; Table 12). Also, linear regression 

analyses showed strong relationship between volume of intracranial blood and 

intracranial blood + CSF with mGS. Hence, the present study, using unbiased SIH 

definition and objective CT scan parameters, reports “dose-dependent” radiological 

features resulting in SIH. Such findings allude to a brain injury-stress response-

neuroendocrine axis in etiopathogenesis of SIH. 

 

Based on our initial tests, our next short-term goal is to expand the retrospective 

database to include over 300 stroke patients with aSAH. We are now planning to apply 

this new ICAD scheme to process all of these cases and compute the cerebral hemorrhage 

and/or ventricular cerebrospinal fluid related image (clinical or radiologic) markers. The 
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detailed statistical data analysis study to assess the association between these image-based 

markers and prognosis of the aSAH patients will follow. Although reporting the 

comprehensive data analysis of this database of over 300 aSAH patients is beyond the 

scope of this technology development study, this technology development based study is 

an important step and successfully demonstrated its feasibility or clinical utility in order 

to make the contribution of helping clinicians more effectively conduct quantitative 

studies to investigate and address the important clinical issues or questions in the future.      
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Chapter 5: Computer-Aided Antibody Screening for IHC Assay 

Development 

 

5.1 Introduction 

Immunohistochemistry (IHC) is an important and commonly used method for 

cancer diagnosis in pathology, which is used to visualize certain antigen (protein) as the 

target in cellular (tissue) samples using monoclonal or polyclonal antibodies. In most 

cases, the antibody is conjugated to an enzyme, which catalyzes a color-produced reaction 

that enables the detection of the antigen. Alternatively, the antibody can be conjugated to 

a fluorochrome to detect the presence or absence of the marker.  

 

Thus, identifying the right antibody that can conjugate specifically to the targeted 

disease is the most important task in the whole IHC assay development process. To 

achieve this, a large amount of antibodies need to be screened, which is conventionally 

performed by pathologists through manual slides reviewing. Usually, slides stained by 

3,3´-Diaminobenzidine (DAB) with hemotoxylin (HTX) counter stain are used, where 

the presence of specific DAB stain indicates the desired reaction of the antibody. It is 

known that 30%~50% of the antibodies under screening can be non-reactive to the target, 

resulting in slides with little DAB stain (i.e, negative slide).   

 

The purpose of this study is to develop a new CAD scheme to automatically identify 

the non-negative slides and thus reduce the pathologists’ manual reading time, which 

aims to eventually improve the efficiency of antibody development. We focused on using 
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both low and high resolution digital pathology images to extract image features in a two-

step scheme to optimize algorithm efficiency and accuracy, especially for the challenging 

cases where the desired specific DAB stain was very weak or sparse on the slide. We also 

experimented with different machine learning algorithms, including hand-crafted and 

convolutional neural network (CNN) based feature extractions.  In addition, the algorithm 

was integrated to a web-based image management platform to facilitate easy deployment 

to the clinical users.  

 

5.2 Materials  

Two digital pathology image datasets with 285 and 279 slides were 

retrospectively assembled as training and testing dataset, respectively. Each dataset was 

divided into two groups namely, negative vs. non-negative groups. The negative group 

included images with little DAB stain and non-negative group included images with 

partial or pure background DAB stain. The training dataset included 126 negative and 

159 non-negative slides, while the testing dataset included 130 negative and 149 non-

negative slides, respectively. Figure 16 demonstrates several sections of the images 

namely, the field-of-view (FOV) examples of negative and non-negative slides, which 

shows that the problem is not trivial, as DAB stain can present in negative slide (Fig.16 

(b)), and specific DAB stain can be very sparse in non-negative slide (Fig.16 (e)).  
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Figure 16: Examples of FOV images (a-c) from negative and (d-f) non-negative slide. 

 

5.3 Methods 

In the study, our CAD scheme first applied color deconvolution to the low 

resolution whole slide image and extracted histogram based image features. The color 

deconvolution method developed by Nie et al [96] was used to unmix the digital 

pathology image into single stain images. As the result, three new images (i.e., HTX, 

DAB and total Absorbance of all the stains) were generated, which were used for feature 

computation. Different machine learning algorithms including linear supported vector 

machine, (LSVM), k-nearest neighbors (KNN) were built using the training dataset 

through a ten-fold validation method. Next, as the initial classification process, the trained 

models were tested over the testing dataset. The classification results showed that LSVM 
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achieved the highest area under ROC curve (AUROC). Therefore, we used the LSVM 

score to derive the cutoff points for identifying slides that need further analysis. The 

lower- and upper-cutoff points were defined such that there were no misclassified slides 

from the training dataset with a LSVM score that is lower(higher) than the lower(upper)-

cutoff points.  

In the next step, whole slide images that needed further analysis were divided into 

non-overlapping tiles at high resolution. Color deconvolution was applied to each tile and 

more sophisticated image features were extracted. We experimented with histogram 

based features, as well as features derived from the intermediate layers of pre-trained 

convolutional neural network (CNN), such as AlexNet. Based on these extracted features, 

whole slide image representation was derived utilizing a Bag-of-Words (BoW) model. 

Specifically, image tiles from the training dataset were clustered into a predefined number 

of clusters; and the centers of the clusters collectively form a visual words vocabulary. 

For each tile in a whole slide image, a visual word was assigned by identifying the cluster 

that the tile belongs to. Thus, each whole slide image can be represented by the histogram 

of the occurrence of each visual word in the vocabulary.  Finally, the second classifier is 

trained using the BoW whole slide image representation to perform the negative vs. non-

negative prediction. The schematic overview of the entire classification workflow is 

presented in Figure 17. 
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5.4 Results 

Figure 18 shows several example results of applying the color deconvolution 

method on the low resolution whole slide image.  

 

Figure 18: The graphical user interface developed for showing color deconvolution 

results. a) low resolution negative image, b) HTX generated from the negative image, c) 

DAB generated from the negative image, d) low resolution non-negative image, e) HTX 

generated from the non-negative image and f) DAB generated from the non-negative 

image. 

 

For the initial classification, different machine learning algorithms were applied 

to build prediction or classification models using the training dataset. The trained models 

were then tested by the independent testing dataset. Table 13 shows a list of machine 

learning classifiers and their performance on the testing dataset. Among them, linear 
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SVM shows higher accuracy of 82% with AUROC of 0.86. The sensitivity and specificity 

of the linear SVM were 80% and 84%, respectively.  

 

Table 13: Comparison of prediction performance using different machine learning 

models. 

Machine Learning Model Accuracy Sensitivity Specificity 

Linear SVM 82% 80% 84% 

Fine Tree 70% 68% 72% 

Fine KNN (K=1) 75% 74%     76% 

Medium KNN (K=10) 75% 68% 85% 

RusBoosted Tree 68% 65% 70% 

Boosted Tree 57% 55% 57% 

 

Figure 19 shows the histogram plot of the initial classification result using linear SVM 

model for the negative and non-negative slides of the training dataset. Results indicated 

that the cutoff points are -1.5 and 2.75 for negative and non-negative slide, respectively. 

Any slide with a linear SVM score between the two cutoff points was identified as a slide 

which needed further investigation.  
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Figure 19: The histogram plot of the linear SVM scores in the initial classification. 

Negative and non-negative slides are shown as blue and orange, respectively. 

 

From the training dataset out of 285 cases, and from testing dataset out of 279 cases, 

244 and 218 cases were between the two cutoff points, respectively. In our scheme, a total 

of 180 tiles of 500x500 pixels were generated from each high resolution whole image to 

apply the final classification. The tile selection was performed by first computing the 

mean DAB intensity value of each tile. Then, different percentiles of the mean DAB 

intensity values were calculated such that half of which were evenly distributed between 

the 80th~99th percentiles, and others were evenly distributed between the 20th~80th 

percentiles. For each selected percentile, a same number of tiles with mean DAB intensity 

value closest to the percentile were selected, resulting in the final 180 tiles to represent 

the whole slide image, and the majority of which had relatively high mean DAB 

intensities. The rationale behind this tile selection approach is based on the assumption 

that tiles with relatively higher mean DAB intensity values in each slide are more relevant 
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for differentiating negative vs. non-negative slides, which was found true though our 

experiments.  

The stain intensity histogram based features and features derived from the 

intermediate layer of the pre-trained AlexNet network were extracted for each tile to 

derive the BoW representation for the whole slide image. Different number of clusters 

including 30, 35, 40, 45 and 50 were tested to evaluate the prediction performance. Using 

the training dataset, 21 different machine learning classifiers were built, trained and tested 

over testing dataset, including Fine K-Nearest Neighbor (KNN), Medium KNN, Coarse 

KNN, Cosine KNN, Cubic KNN, Weight KNN, Linear SVM, Quadratic SVM, Cubic 

SVM, Fine Gaussian SVM, Medium Gaussian SVM, Coarse Gaussian SVM, Ensemble 

Boosted Tree, Ensemble Rusboosted Tree, Fine Tree, Medium Tree, Coarse Tree, 

Ensemble Subspace Discriminant, Ensemble Subspace, Ensemble Bagged Tree and 

Linear Discriminant. Table 14 and 15 show a performance comparison of different 

number of clusters using the trained models using the histogram-based features and neural 

network generated features, respectively. For each cluster number, the results for the best 

classifier with accuracy value above 70% are reported. 
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Table 14: Comparison of the best classification performance using different number of 

clusters over histogram based features. 

Machine Learning Model - # of 

clusters 
Accuracy Sensitivity Specificity 

EBGT* - 30 74% 83% 66% 

CGSVM** - 35 76% 88% 66% 

EBGT - 40 80% 85% 74% 

CGSVM - 45 77% 91% 67% 

Ensemble Subspace KNN - 50 80% 82% 76% 

  

 

 

Table 15: Comparison of the best classification performance using different number of 

clusters over neural network based features. 

Machine Learning Model - # of 

clusters 
Accuracy Sensitivity Specificity 

Ensemble Subspace Dis - 30 81% 84% 77% 

Ensemble Rusboosted Tree - 35 84% 80% 89% 

EBGT- 40 83% 91% 73% 

Ensemble Subspace Dis - 50 81% 82% 79% 

 

Results from Table 14 indicate that although using Ensemble Bagged Tree (EBGT) 

classifier with number of clusters of 40 achieved higher accuracy, using Coarse Gaussian 

SVM (CGSVM) classifier yielded the highest sensitivity of 91% and AUROC curve 

value of 0.88. While EBGT showed better accuracy for using the histogram-based 

features, Ensemble Rusboosted Tree classifier showed better performance for using 

neural network generated features. Also using EBGT classifier for neural network 

generated features achieved overall highest performance in accuracy, sensitivity and 
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AUROC with the value of 83% and 91% and 0.91, respectively. It is worth mentioning 

that, superior sensitivity is preferred for this particular application, because non-negative 

slides identified by the CAD scheme will be sent to pathologist for further review. Thus, 

including a small number of misclassified negative slides is more acceptable than missing 

non-negative slides that may contain important information regarding reactive antibodies.  

 

5.5 Discussion 

Primary antibody development for IHC assay is to identify the antibody that is 

conjugated specifically to the target antigen. For this purpose, the first question to answer 

is whether the antibody under study is conjugated to the tissue in general regardless of 

the staining specificity, which is the problem addressed in this study. In comparison to 

the widely known IHC scoring applications for clinical diagnosis, such as Ki67 and 

human epidermal growth factor receptor 2 (Her2), etc., where a quantified score needs to 

be derived through calculating the percentage of positively stained tumor cells, our study 

and CAD scheme focus on differentiating reactive vs. non-reactive antibodies at whole 

slide level. Therefore, our focus is naturally formulated as a binary classification problem 

namely, differentiating non-negative vs. negative slide. Under such formulation, the 

ground truth available to us is the whole slide level labels, which lead to our strategy of 

employing slide and tile level image features to derive the whole slide representation for 

building the classification model. Cell level image features, although potentially more 

descriptive in local regions, are not considered in this explorative work due to the fact 

that cell level ground truth is not well defined for this general application. The experiment 
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results demonstrated that the proposed CAD scheme achieved encouraging results 

without the need of computationally expensive cell level analysis.  

On the other hand, tile selection seems to play an important role in the proposed 

scheme. In fact, we examined the scheme using all the tiles from each whole slide image, 

which showed inferior performance in classifying the slides comparing to using only 180 

tiles. This could be due to the fact that using all the tiles from a whole slide image results 

in employing too many tiles with sparse DAB stains in non-negative slide, which often 

have similar appearances as the tiles in negative slides.  Using presented tile selection 

criteria in this study, better classification performance was achieved, which confirmed 

our assumption that tiles with relatively higher DAB intensity level were more 

representative for identifying reactive vs. non-reactive antibodies through whole slide 

assessment.  

However, despite the encouraging results, this is a preliminary study with several 

limitations. First, this study used a small image dataset which may not sufficiently 

represent the image diversity in this application. Second, by finding that using all the tiles 

in the whole may not be the optimal approach. Thus, there exits great room for future 

investigation on tiles selection to derive a better representation of the whole slide. 

Moreover, CNN based features were explored as is, more research work is needed to 

design a training scheme that enables fine tuning the network parameters to further 

improve the performance for this particular application. Our next step includes 

investigating the non-negative slide and automatically excluding pure background 

staining cases, which will further reduce the manual reviewing time by pathologists.  
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Chapter 6: Developing a CAD-based Slide Label Reader to Improve 

Efficacy of Storing Digital Pathology Images 

6.1. Background 

The pathology discipline has its basis in over 150 years old tradition of using 

microscopes to review and diagnose tissue samples. Tissue samples are collected by 

surgeons or other clinicians and sent to the pathology laboratory for analysis. The largest 

hospital in each county is equipped with a pathology laboratory that receives tissue 

specimens or bodily fluid from other departments or hospitals. The technicians in 

pathology laboratory processes the material and creates glass slides with pieces of the 

specimens and finally, a pathologist reviews the content on the glass slide and dictates a 

report that is sent back to the referring physician. 

The typical tissue specimens arrive at the pathology laboratory in a plastic box 

filled with formalin. A pathologist or laboratory technician performs a grossing 

examination of the specimen. This examination consists of measuring, sketching, and 

sometimes taking photos of the specimen. Small pieces of tissue are cut out for further 

analysis, see Figure 20(up left). These pieces are further processed in a sequence of 

chemical solutions by an automatic processing machine and then embedded into paraffin 

blocks (Fig. 20 up right). From these paraffin blocks, small sections of tissue are sliced 

using a microtome. The microtome enables to create micrometer thin sections, which are 

placed on warm glass slides where it will be immediately fixed (Fig. 20 down left). At 

this stage, the resulting sections are almost transparent. In order to reveal the tissue 

structures, the glass slides are stained with different colors that attach to different types 



82 

of structures. For each specimen, this process can result in a large set of glass slides (Fig. 

20 down right).  

 

Figure 20. The process of producing glass slides. (up left) Small pieces of tissue are 

selected for processing. (up right) Pieces of tissue embedded in paraffin block. (down 

left) Paraffin block are cut with a cryostat microtome and being prepared for staining. 

(down right) Tray of glass slides ready for review. 

 

Finally, the pathologist reviews the content of the glass slides with a microscope 

and dictates a report. This work is typically organized as a sequential production line in 

multiple steps, consisting of different kinds of processing and selection steps as in Figure 

21. If the patient has given written consent, the glass slides and the embedded blocks are 

stored for future research and follow-up purposes.  
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Currently, in the pathology laboratory in USA, more than 50,000 glass slides 

(range of 14,000 to 100,000 cases/specimens) are being stained per year and the scale is 

increasing. Since slides are glass based, it is very easy to get damaged and break and 

storing and archiving is not an easy task (Figure 22). Also, the information regards each 

slide is paper based and slides are reviewed manually by the microscope.  

 

Manual data entry is currently a bottle neck in the laboratory operations and 

carries the risk of data damage, loss and error. Besides the time consuming process, prone 

to errors, subject to human resource fluctuations and expensive to scale are the limitations 

of using manual data entry. Different approaches such as training the employees with the 

importance of the data and using software tool can reduce manual data entry errors. 

Figure 21. The histopathology laboratory workflow. 

Figure 22. Storing glass slide is not an easy task. 
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Currently, using software tools to import data into computer systems is playing an 

important rule to help the archiving and tracking the information from each glass slide. 

 In the pathology laboratory, every tissue glass slide has labels which have been 

created by staining machines such as Benchmark Ultra or Autostainer (Figure 23).  

  

 

 

 

Each label has meta data information related to that glass slide. Clone name, 

development, target name, detection method, tissue type, staining date, dilution factor, 

immunogen, AR field, autostainer and slide numbers are a number of metadata being 

mentioned on the slide label. Each glass slide with the label is scanned with the iScanHT 

scanner machine. Figure 24 demonstrates two examples of tissue glass slides with two 

different slide label platform.  

Figure 23. Two example of staining machines used in pathology laboratories. 

Benchmark Ultra (left) and Autostainer (right). 
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Figure 24. Two examples of glass slide tissues with different labels platform. Ultra 

label (left) and autostainer label (right). 

  

In order to reduce the manual work for slide tracking and archiving in the 

pathology laboratory and transferring all hard copy into a digital copy, a software tool 

with graphical user interface is designed to automatically extract metadata from tissue 

slide label images and store the information in the archive in digital form. 

 

6.1.2. Methodology 

Two types of tissue slides stained by Ultra and Autostainer platforms were 

scanned by iScanHT scanner and the label images are automatically extracted. Figure 25 

demonstrates the interface window and the description of a different section of this 

interface is given as follow: 
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Figure 25. Graphical user interface window. 

 

I. Generate Label 

iScanHT scanner will scan the microscope slide and save the file as a tiff file which 

includes both tissue and label part of the glass slide. In order to process the labels, a 

generating algorithm is applied to create a .png file and extract the labels from the glass 

slide. By selecting the “Generate Label” the program asks the user to select the folder that 

contains different projects and start generating labels. A simple algorithm is used to select 

the labels region on the glass slide and save the ROI as a .png file. Since the workplace 

that we designed this software for is using a shared drive, loading and saving files from 
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the shared drive is taking a long time. With this key, user is able to put the program to 

work overnight and generate all the labels at one time. 

II. Process  

Different challenges with labels quality were faced during meta data information 

extraction process. Examples of challenges including, rotation of the label, stain leaked 

over the text part, scratch on the text part are shown in Figure 26. 

        

Figure 26. Examples of the challenges with labels. Rotation, scratch on text part 

and stain over text. 
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Due to requests of the pathologist and challenges with the labels, different processing 

algorithms are designed to extract meta data information. Processing algorithms include: 

1) individual process to be applied over labels individually and extract information one 

by one, 2) batch process to be applied over all the labels and extract information for all at 

once, 3) batch process with the library to be applied over a selection of the labels with 

having a set of similar meta information, and 4) is the easy mode which is only reading 

the information which is not similar among labels. The details of each process are being 

described in the following sections. 

a)  Individual Process 

As mentioned before, the individual process is processing each label individually and 

one by one. By pressing the “Load Label”, user is able to select the desired project folder 

containing labels and start the process. First, the program used a neural network based 

image classification algorithm to identify the label type and decide to choose the ultra or 

autostainer methods for extracting meta data information. Next, a set of pre image 

processing algorithms were applied to generate a better quality of the image and prepare 

image for text reading. Afterward our trained optical character recognition algorithm was 

applied to identify the texts in each label image. Based on the label type, each text will 

be assigned to a specific item for meta data information and the results will be shown in 

the information panel. Pressing the “Next” key allow users to go through each label 

individually and process the result one by one. Although using this process is time 

consuming but the accuracy of the result is high since the user is able to go through each 

label and check the result. Finally, the “Save” key allows users to export and save their 

extracted metadata into a csv file. This csv file later is used for uploading into a digital 
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pathology platform where the tissue slide images were hosted. Figure 27 shows the keys 

for individual process. 

 

Figure 27. Individual process panel 

b)  Batch Process 

      This key processes all the images of a project at the same time and the results 

will be saved automatically into a csv file. By pressing the “Batch process” key, the 

interface ask user to select a folder to contain the labels and start processing all the labels 

at the same time. The process steps are similar to individual process, starting with a neural 

network to identify label type, using a set of –pre image processing to increase the label 

quality and then applying optical character recognition algorithms to extract text and 

assign each text item to a specific meta data information. The end of the process will be 

shown with a message box of “Operation Completed”. Using batch process is much more 

efficient than individual process due to taking less time than individual process and 

availability to work overnight.  

c) Batch process with library 

     In pathology labs, in the process of generating slide tissues, there will be glass 

slides with similar information such as tissue and target. The batch process with the 

library process is designed based on projects that have similar tissue or target information. 

The process is similar to batch processing with an additional step. By pressing the batch 
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process with a library key, a new window (library selection, Figure 28) is shown to the 

user to select the desired target and tissue. Pathologists prepared a list of the most 

common target and tissue items and these lists are stored in the program library. When 

user choose “Target” or “Tissue” key, the library related to it will be loaded to program 

and ask users what target or tissue name is desired (Figure 29).  

 

 

Figure 28. Library selection window for target and tissue. 
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User is allowed to select as many target or tissue desired. This process helps the 

program to have a reference for target and tissue information and if there is scratch or 

stain over text, program is able to retrieve the information based on the references selected 

by the user from the library. As an example, Figure 30 demonstrates a label with 

difficulties in reading the tissue information. Due to the difficulties in reading the 

information, optical character recognition is not able to extract the correct information 

from the image for tissue information. Using the tissue library and selecting some 

references, program gives a score to the possibilities of each selected library. The 

reference with the highest score will be selected as the final result. The correct answer for 

tissue information for figure 10 is 158261_PL, the first result from OCR will be 

158261_PI. If user select different references such as “PL”, “PLC” as tissue library, 

program will give scores to each reference based on the similarity with the result of the 

OCR. Since OCR got the tissue as “PI”, the reference of PL will receive higher scores 

more than “PLC” and the program will give “158261_PL” as the final result. 
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Figure 30. Example of missing text on label resulting difficulties in generating correct 

information. 

d) Easy mode 

      Due to the requests of the pathologist, “Easy mode” process was designed to 

make the progress faster. For this process, user is having a specific project containing 

different labels with similar information in different sections and only one meta data is 

different. As an example, there will be projects defined to have similar label types, 

development, detection method, target, tissue, stain date, dilution facto and immunogen 

and only clone name is different. With this information entered into the program, program 

will read only the information that is not given and less time will be put over processing. 

By selecting the “Easy mode”, the name selection window will show up and allow user 

to decide what are the similarities among the labels. Pathologists provided a list of all 

common meta data information for each item which can be updated in the future. By 

selecting each key from “Select Information” panel, a list of all available information will 
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be shown and allow user to select one item which is going to be similar among all labels. 

Figure 31 shows the “Select Information” panel and an example of one of the information 

selected. 

 

 

Figure 31. By pressing “Easy mode” key, a window with “select formation” panel will 

show (left) and by selecting each item, a list of all available item will be shown (right). 
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III. Quality Control: 

In order to allow user to easily check the result of the interface and the extraction 

of the meta data, a quality control section is added to the program. This panel allows user 

to visually see the label processed and show the result of each meta data. Figure 32 

demonstrates the quality control panel with the keys implemented. “Load” key will load 

all the labels in a project and the slide bar allow user to go through each label and enter 

any correction needed in the main information panel. In the end, user is able to save the 

updated information and update the previously generated csv file. 

 

 

Figure 32. Quality control panel with the keys and slide bar. 

 

6.1.3 Conclusion 

This tool was tested over 277 tissue slide labels with different challenges 

including label damage, rotation, stain over texts, etc. Label type identification achieved 

100% accuracy and all labels correctly identified as Ultra or Autostainer label. The 

individual screening method took one hour as the user visually examined the results 

during the process through the tool’s user interface and received the higher accuracy. 

Batch Processing is more efficient since it only took one minute to process the dataset 

with an error rate of 15%. Further improvement can be achieved by developing a 

dedicated quality control interface used at the end of batch processing.   
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Chapter 7: Conclusion and Future Work 

7.1 Summary 

To improve efficacy of disease diagnosis and treatment, a recent precision 

medicine initiative calls for developing a new disease treatment strategy that takes 

individual variability into account [97]. In response to this initiative, the researchers in 

medical imaging informatics field hypothesized that developing and applying computer-

aided detection and diagnosis (CAD) schemes can play an important and unique role to 

help establish the new precision or personalized medicine paradigm. Besides the 

conventional CAD schemes that focus on detecting suspicious lesions and serve as “a 

second reader” to help radiologists detect more cancers in cancer screening environment, 

new and novel CAD schemes have been developed in recent years, which have 

demonstrated their capability and advantages to much broad clinical applications, such as 

predicting short-term risk of cancer development, classifying between malignant and 

benign lesions, determining disease severity and types, predicting disease prognosis, 

assessing efficacy of treatment and clinical outcome (i.e., disease-free or progression-free 

survival).  

 In the previous chapters of this dissertation, I present and report several new CAD 

schemes, which were developed and evaluated in my PhD studies. In Chapters 2 and 3 I 

present and discuss new CAD schemes of breast MRI acquired pre- and post-neoadjuvant 

chemotherapy of breast cancer patients to predict radiographic complete response and 

pathologic complete response of breast cancer patients to the therapies. In Chapter 4 I 

present and discuss a new interactive CAD scheme to detect, segment and quantify 

severity of aneurysmal subarachnoid hemorrhage (aSAH) of stroke patients using brain 
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CT images.  In Chapter 5 I present and discuss another CAD schemes of digital pathology 

images using both histogram-based features computed from low resolution images and 

convolution neural network (CNN) generated features computed from the high resolution 

images to identify the ROIs in which tissues or cells are responsive to the specific 

antibody stains. In Chapter 6 I present and discuss a unique and efficient CAD scheme 

with optical character recognition algorithm to identify the label type between ultra and 

autostainer of pathology images to facilitate the efficiency of digital pathology image 

storage. 

The effort and contribution of my PhD research work include (1) developing and 

testing new image processing algorithms to segment regions of interest (i.e., breast areas 

in MRI, blood or aSAH regions in brain CT images, and antibody-responsive regions or 

cells in digital pathology images), (2) selecting optimal image features from the initially 

large feature pool, (3) training and cross-validating machine learning models or classifiers 

to minimize bias and overfitting, and (4) developing and implementing interactive CAD 

schemes with easy-to-use graphic user interface to increase the flexibility of the using 

CAD scheme and confidence of the clinicians to accept CAD-generated results. Through 

these studies, we published following papers in which I am a co-author during the period 

of my PhD studies. 

A. Journal Papers 

1. Aghaei F, Tan M, Hollingsworth AB, Qian W, Liu H, Zheng B, Computer-aided 

breast MR image feature analysis for prediction of tumor response to 

chemotherapy, Medical Physics 2015; 42:6520-6528. 
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2. Aghaei F, Tan M, Hollingsworth AB, Zheng B, Applying a new quantitative 

global breast MRI feature analysis scheme to assess tumor response to 

chemotherapy, Journal of Magnetic Resonance Imaging, 2016; 44:1099-1106. 

3. Tan M, Aghaei F, Wang Y, Zheng B, Developing a new case based computer-

aided detection scheme and an adaptive cueing method to improve performance 

in detecting mammographic lesions, Physics in Medicine and Biology 2017; 

62:358-376. 

4. Wang Y, Aghaei F, Zarafshani A, Qiu Y, Qian W, Zheng B, Computer-aided 

classification of mammographic masses using visually sensitive image features, 

Journal of X-ray Science and technology 2017; 25:171-186. 

5. Yan S, Wang Y, Aghaei F, Qiu Y, Zheng B, Applying a new bilateral 

mammographic density segmentation method to improve accuracy of breast 

cancer risk prediction, International Journal of Computer Assisted Radiology and 

Surgery, 2017; 12; 1819-1828. 

6. Yan S, Wang Y, Aghaei F, Qiu Y, Zheng B, Improving performance of breast 

cancer risk prediction by incorporating optical density image feature analysis: An 

assessment, Academic Radiology 2017; S1076-6332(17)30364-1. 

7. Danala G, Patel B, Aghaei F, Heidari M, Li J, Wu T, Zheng B, Classification of 

breast masses using a computer-aided diagnosis scheme of contrast enhanced 

digital mammograms, Annals of Biomedical Engineering, 2018; 46:1419-1431. 

8. Santucci J, Ross S, Greemert J, Aghaei F, Ford L, Hollabaugh K, Conwell B, Wu 

D, Zheng B, Bohnstedt B, Ray B, Radiological estimation of intracranial blood 

volume and occurrence of hydrocephalus determines stress-induced 
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hyperglycemia after aneurysmal subarachnoid hemorrhage, Translational Stroke 

Research 2019; 10:327-337. 

9. Ray B, Ross SR, Danala G, Aghaei F, Nouh CD, Ford L, Hollabaugh KM, 

Karfonta BN, Santucci JA, Cornwell BO, Bohnstedt BN, Zheng B, Dale GL, 

Prodan CI, Systemic response of coated-platelet and peripheral blood in 

flammatory cell indices after aneurysmal subarachnoid hemorrhage and long-term 

clinical outcome, Journal of Critical Care, 2019; Doi: 10.1016/jcc.2019.03.003. 

B. Conference Proceeding Papers 

1. Tan M, Aghaei F, Wang Y, Qian W, Zheng B, Improving the performance of 

lesion-based computer-aided detection schemes of breast masses using a case-

based adaptive cueing method, Proc SPIE 2016; 97851V. 

2. Aghaei F, Tan M, Hollingsworth AB, Zheng B, Cheng S, Computer-aided global 

breast MR image feature analysis for prediction of tumor response to 

chemotherapy: performance assessment, Proc SPIE 2016; 978522. 

3. Tan M, Aghaei F, Hollingsworth AB, Stough RG, Liu H, Zheng B, Increasing 

cancer detection yield of breast MRI using a new CAD scheme of mammograms, 

Proc SPIE 2016; 97850R. 

4. Gaffney KP, Aghaei F, Battiste J, Zheng B, Automated detection and 

quantification of residual brain tumor using an interactive computer-aided 

detection scheme, Proc SPIE 2017; 101342I. 

5. Aghaei F, Mirniaharikandehei S, Hollingsworth AB, Wang Y, Qiu Y, Liu H, 

Zheng B, Exploring a new bilateral focal density asymmetry based image marker 

to predict breast cancer risk, Proc SPIE 2017; 101361P. 
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6. Wang Y, Aghaei F, Tan M, Qiu Y, Liu H, Zheng B, Developing a visual sensitive 

image features based CAD scheme to assist classification of mammographic 

masses, Proc SPIE 2017; 101361M. 

7. Aghaei F, Ross SR, Wang Y, Wu DH, Cornwell BO, Ray B, Zheng B, 

Implementation of a computer-aided detection tool for quantification of 

intracranial radiologic markers on brain CT images, Proc SPIE 2017; 1013805. 

8. Mirniaharikandehei M, Patil O, Aghaei F, Wang Y, Zheng B, Exploring a new 

quantitative image marker to assess benefit of chemotherapy to ovarian cancer 

patients, Proc SPIE 2017; 101380I. 

9. Zarafshani A, Dhurjaty S, Mirniaharikandehei S, Aghaei F, Xiang L, Zheng B, 

Developing a unique portable device to non-invasively detect ioelectrochemical 

characteristics of human tissues, Proc SPIE 2018; 10573-207. 

10. Danala G, Aghaei F, Heidari M, Wu T, Patel B, Zheng B, Computer-aided 

classification of breast masses using contras-enhanced digital mammograms, 

Proc SPIE 2018; 105752K. 

11. Aghaei F, Danala G, Wang Y, Zarafshani A, Qian W, Liu H, Zheng B, 

Association between mammogram density and background parenchymal 

enhancement of breast MRI, Proc SPIE 2018; 105752O. 

12. Mirniaharikandehei S, Zarafshani A, Heidari M, Wang Y, Aghaei F, Zheng B, 

Applying a CAD-generated imaging marker to assess short-term breast cancer 

risk, Proc SPIE 2018; 105753F. 
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13. Aghaei F, Danala G, Hollingsworth AB, Stoug RG, Pearce M, Liu H, Zheng B, 

Applying a new mammographic imaging marker to predict breast cancer risk, 

Proc SPIE 2018; 105753N. 

14. Aghaei F, Mirniaharikandehei S, Hollingsworth AB, Stoug RG, Pearce M, Liu 

H, Zheng B, Association between background parenchymal enhancement of 

breast MRI and BIRADS rating change in the subsequent screening, Proc SPIE 

2018; 105790R. 

15. Aghaei F, Hollingsworth AB, Mirniaharikandehei S, Wang Y, Liu H, Zheng B, 

Developing a new quantitative imaging marker to predict pathological complete 

response to neoadjuvant chemotherapy, Proc SPIE 2019; 109502O. 

16. Zarafshani A, Wang Y, Mirniaharikandehei S, Heidari M, Aghaei F, Wang S, 

Xiang L, Zheng B, Design, fabrication and evaluation of non-imaging, label-free 

pre-screening tool using quantified bio-electrical tissue profile, Proc SPIE 2019; 

1095304. 

17. Danala G, Heidari M, Aghaei F, Ray B, Zheng B, Developing a computer-aided 

image analysis and visualization tool to predict region-specific brain tissue “at 

risk” for developing acute ischemic stroke, Proc SPIE 2019; 109530M. 

18. Aghaei F, Nie Y, Computer Aided Antibody Screening for IHC Assay 

Development, Proc SPIE 2019; 109560C.  

In summary, besides the publications, the most significance or contribution of my 

research work is that several CAD schemes and GUI tools discussed in this dissertation 

have been implemented and used by the clinical researchers in OUHSC and biomedical 

engineering researchers in Roche company. The promising study or test results have been 
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reported in these independent studies. Thus, my research work demonstrates the 

feasibility of developing and applying new novel CAD schemes to extract quantitative 

image markers and build machine learning models for variety of medical image based 

disease detection, diagnosis and prognosis assessment. The interactive CAD schemes 

with GUI can provide clinicians the decision-making support tools to help them more 

accurately diagnosis diseases and make optimal treatment decisions for the patients. 

 

 

7.2 Future works  

 

Although great research efforts have been made in developing and testing new 

CAD schemes for many different clinical application purposes, many technical 

challenges remain to develop the CAD schemes with high scientific rigor (or robustness) 

due to several factors, which include (1) difficulty and errors in segmentation of disease 

or other related regions of interest, (2) potential bias in feature computation and selection, 

(3) the limited size of image datasets to train and cross-validate machine learning models, 

and (4) the gap between computer vision and human vision. Thus, many development 

and optimization issues still need to be better investigated and solved before any CAD 

schemes can be optimally implemented and used by the clinicians in the clinical practice. 

Based on the knowledge and hand-on experience that I have leant from my previous 

studies, I will continue investigating these issues and exploring novel approaches trying 

to make new progress or contribution to help solve these issues in my future work.  

For example, I will continue focus on developing and implementing new CAD 

schemes of digital pathology images. Every year, an average of approximately 50,000 
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cytology specimens are produced.. Pathology images can be equal to information sent 

from a satellite in space over street map regard size which means much information exists 

in one whole slide digital pathology image. The combination of image analysis and 

machine learning over digital pathology images can be used to automatically segment 

cells and detect normal and tumor cells. The research scientist and pathologist will 

continue to be instrumental in both the use and operation of image analysis workflows, 

which will continue to evolve preclinical and clinical biomarker research. Also, taking 

advantage of new research topics such as deep learning on pathology images can help in 

improving the detection and analysis of digital pathology images. In conclusion, my next 

short-term goal is to work on detection and segmentation of tumor cells depicted in digital 

pathology images scanned by two different scanners available in pathology laboratories.  
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