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CHAPTER I

INTRODUCTION

1.1 THE GLOBALIZATION OF AGRICULTURE

Advancements in the studies of crops, genetics, languages, and phytogeography
have allowed the identification of geographical origins of food crops. The identification
of the geographical origins of food crops have led to a greater awareness that worldwide
food and agricultural production is interconnected globally (Khoury et al. 2016). The
globalization of food crops is most often motivated by an aim to overcome various pests
and pathogens, provide season specific cultivation options, and meet dietary requirement
of a region’s inhabitances (Jenning and Cock 1977). These food crop globalization trends
are further amplified by an increase in purchasing power, a movement towards
supermarkets, increased consumption outside the home, urbanization, subsidized
agricultural practices, refrigerated transport, and industrialized agriculture (Khoury et al.
2014; Kearney 2010). As a part of the industrialization of agriculture, precision

agriculture has resulted in improvements in food production practices.

1.2 PRECISION AGRICULTURE

Precision agriculture is an innovative field integrating technology with agricultural
practices that aims to increase efficiency of resource utilization (i.e. water, fertilizer, etc.)
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and decrease the ambiguity of decisions required during crop production, such as
fertilizer placement and irrigation practices, that are often highly variable (Schellberg 2008).
Precision agriculture is often considered a subfield of geography because many of the
technologies utilized in geography are also implemented in precision agriculture such as
global positioning systems (GPS), geographic information systems (GIS), and remote sensing
methodologies (Zhang et al. 2002). Precision agriculture began in earnest in the late 1970s
when soil survey/sampling started to become a regular practice, and aerial photography was
introduced as a way to scout crops (Robert 2002). Since then, studies focused on
advancements in precision agriculture have increased exponentially (Schellberg 2008) as
precision agricultural practices can be beneficial to the environment and to profitability
(Zhang et al. 2002; Schellberg 2008). Some of these practices include the incorporation of

spectral scanning technologies and algorithms to predict site suitability of crops.

Precision agriculture in the U.S. has been driven by four motives: (1) strict
environmental legislation; (2) public fear of overuse of chemicals; (3) profitability from a
decrease in inputs; and (4) an increased need for large-scale farm management (Zhang et al.
2002). Furthermore, precision agriculture has also contributed to global advances in
production (Oliver et al. 2013) through improvements in crop mapping, phenological
analysis, crop health, pest/weed management, and monitoring nutrient levels of cultivated
crops (Calvao and Pessoa 2015). However, based on my experience the presence of precision
agriculture in Ethiopia is lacking. Historically, nutrient and health analysis of crops, foods,
and agricultural grasses have relied on procedures that are time-consuming, expensive,
destructive, and must be completed in a lab; where precision agriculture methods such as
remote sensing and imaging spectroscopy can be done in situ, are often non-invasive, and
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results can be determined almost instantaneously in some situations (Martinez-Valdivieso et
al. 2014). Accordingly, precision agriculture techniques, specifically those using imaging
spectroscopy, are becoming a preferred technique for nutrient and health analysis.
Additionally, site suitability analysis can be incorporated for decision making of where crops
have the potential to be grown to aid farm management decisions made across differing

environments.

1.3 REMOTE SENSING AND IMAGING SPECTROSCOPY

Remote sensing is the science of measuring electromagnetic energy that has been
reflected or emitted from an object or phenomenon through a device that is not in contact
with the object/phenomenon. Throughout history, remote sensing has utilized many different
types of platforms including hot air balloons, kites, pigeons, airplanes, satellites, unmanned
aerial systems (UASs), and field spectroradiometers (Jensen 2016). Each of these platforms
carry sensors that are designed to capture electromagnetic energy through varying spatial,
spectral, and radiometric resolutions. Spectral resolution is the number and dimension of the
specific wavebands of electromagnetic energy that are discernable by a sensor (Jensen 2016).
A low spectral resolution, or broad-band spectral sensor, covers a spectrum of wavelengths
using a few, broad intervals; while a high spectral resolution, or a narrow-band sensor, covers
a spectrum of wavelengths using many, narrow intervals. Broad-band sensors are common
among satellites as they are often utilized to differentiate simple targets such as cultural
features and vegetation characteristics, additionally, hyperspectral sensors are costly. Satellite
sensors are also useful for imaging large areas of interest because they often have low spatial

resolutions that allow them to cover a large area.



The earliest application of remote sensing for precision agriculture relied on the
multispectral scanner (MSS) broad-band sensor flown onboard the Earth Resources
Technology Satellite 1 (ERTS-1; eventually renamed Landsat-1) satellite. This sensor was
used to classify fields according to crop type as either soybean or corn agriculture with an
83% accuracy rate (Bauer and Cipra 1973). Since then, studies have focused on the
implementation of broad-band sensors to create indices for vegetation health (Overgaard et
al. 2013a) including the widely used normalized difference vegetation index (NDVI: Rouse
et al. (1973), which utilizes the red and NIR (near-infrared) portions of the electromagnetic
spectrum to determine vegetation vigor. Other broad-band indices utilizing the red and NIR
portions of the electromagnetic spectrum include the simple ratio index (Jordan 1969; Rouse
et al. 1973) and the modified simple ratio (Chen 1996). However, NDVI and other broad-
band vegetation indices have been found to lack accuracy due to oversaturation of the
analysis (Schlerf et al. 2005), its sensitivity to varying climates (Wessels et al. 2007), and

cases of underestimation (Krupenikov et al. 2011).

Nevertheless, many of the broad-band sensors mounted on satellite platforms lack the
spectral precision required for some fields of research (Moran et al. 1997), including many
precision agriculture applications that are mainly only employing NDVI. Narrow-band
spectral imaging is useful in research that requires a greater spectral sensitivity (Thenkabail
2000), because it can analyze smaller portions of the electromagnetic spectrum allowing for
more specified reflectance/absorption readings. As sensors have improved, a method known
as imaging spectroscopy (Thenkabail 2000) has become widespread in precision agriculture.
Imaging spectroscopy is the simultaneous acquisition of a large number of usually
contiguous, narrow spectral bands and is sometimes referred to as hyperspectral remote

4



sensing (Thenkabail 2000; Mohan and Porwal 2015; Overgaard et al. 2013a; Overgaard et al.
2013b). Imaging spectroscopy is often performed using a field spectroradiometer instead of a
sensor mounted on a plane or satellite platform. When using a field spectroradiometer,
reflectance is measured within a cone of light reception by a sensor, and the reflectance
values for many narrow wavelengths can be charted to produce what is known as a spectral
curve (Jensen 2016). The spectral curve (Figure 1.1) produced is dependent upon the
physical properties of the object being analyzed, within the footprint of light reception, and
results in a unique spectral signature, like a fingerprint, for all phenomena capable of
reflectance, transmittance, and absorption (Rabideau et al. 1946; Seigal and Howell 2002;

Shaw and Burke 2003; Thenkabail 2000).
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Figure Error! No text of specified style in document..1. A sample spectral curve of
Eragrostis tef with labels for the visible, red-edge, near-infrared, and middle-infrared portions

of the spectrum. Data collected by author (2017).

For plants, the reflectance, absorption, and transmittance of light can be complex due

to the structure of leaves having many different overlapping layers (Curran 1983; Calvao and
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Pessoa 2015). The spectral reflectance of plants is further complicated by the structure of the
leaves and the spatial organization of canopies, causing reflectance issues such as
background reflectance and scattering (Homolova et al. 2013). Nevertheless, the leaves are
typically the main focus for spectral imaging of plants (Daughtry and Walthall 1998),
because the leaves are, in most cases, the broadest portion of the plant and are typically good

indicators of plant health and nutrient content.

Major advancements in imaging spectroscopy methods began in the late 1980s and
1990s (Vane and Goetz 1988; Curran and Dungan 1989; Wessman et al. 1989; Curran et al.
1990; Dawson et al. 1999; Kokaly and Clark 1999), but it was earlier on that Hoffer (1978)
identified the light in the visible spectrum (blue and red) that was absorbed by plants due to
high levels of photosynthetic pigments such as chlorophylls. As field spectroradiometers
improved, it was found that the NIR region of the spectrum correlated considerably with
plant health (Blackburn 1998; Carter 1998; Elvidge and Chen 1995; Shibayama and Akiyama

1991; Curran et al. 1990).

The general spectral curve for healthy green plants is usually characterized by low
reflectance in the visible spectrum, high reflectance in the NIR, and variable reflectance in
the middle-infrared (Hoffer 1978; Curran 1983; Hardisky et al. 1983; Schneider 1984;
Goward et al. 1985; Milton and Mouat 1989). These reflectance values will differ depending
on the biophysical characteristics of the plant. For instance, the photosynthetic pigments
present in the leaf are important in controlling reflectance of visible light, which results in
absorption of blue (446-520nm) and red (630-690 nm) light, and reflectance of green (520-
600 nm) light in a healthy plant. The NIR reflectance of a plant is dependent on the scattering

of solar radiation in the air-cell interfaces, which controls the absorption levels within the
6



700 nm to 1,300 nm portion of the spectral curve. The middle-infrared reflectance is mostly
controlled by the water content of the plant (Sinclair et al. 1971; Hoffer 1978; Barrett and
Curtis 1982; Boyer et al. 1988), where high water content results in high absorption of the
electromagnetic energy represented by the spectral curve. Most of the variation within plant
reflectance is found in the NIR and middle-infrared regions, but for healthy plants, there is a
large difference in reflectance between the red and NIR regions because the red portion of
the spectrum is absorbed by chlorophyll, while the NIR portion is scattered and reflected
based upon the physical traits (leaf abundance) of the plant being sensed. This rapid increase
in reflectance between the red and NIR for healthy plant reflectance is often referred to as the
‘red-edge’ (Hoffer 1978; Boyer et al. 1988). This ‘red-edge’ falls around 0.7 and 0.75 pm
(Figure 1.1), and its precise location is often correlated with canopy biophysical
characteristics and photosynthetic pigments (Broge and Leblanc 2000). Further, studies have
found that the red-edge travels towards shorter wavelengths as stress is induced on the plant

(Boyer et al. 1988; Pinter et al. 2003).

Due to these known spectral reflectance characteristics of plants, it is common to
utilize spectroradiometers and cameras in agriculture as a means of non-destructively
assessing plant health (Alvaro et al. 2007; Beeri et al. 2007; Belanger et al. 2007; Feng et al.
2008; Morindo et al. 2007; Overgaard et al. 2013a; Rao et al. 2008). Agricultural field
conditions often vary, therefore, imaging spectroscopy has been employed to better
understand and prepare for larger scale analysis (i.e. satellite, aircraft) to analyze within-field
variations (Thenkabail 2000; Overgaard et al. 2013a). Improved systems for yield and

nutrient mapping of agricultural fields are highly desired as such methods have potential to



locate problem areas (i.e. low yielding/nutrient zones) of the field prior to the following

growing season (Overgaard et al. 2013a).

1.3.1 Agricultural Imaging Spectroscopy for Food Crops

Specifically, in agriculture, imaging spectroscopy has generally been utilized to
derive plant health, trace minerals, protein concentration, and the quality/quantity of crops,
grasses, forage, and grains/fruit for many cultivation practices (Thenkabail et al. 2000;
Cozzolino and Moron 2004; Apan et al. 2006; Overgaard et al. 2013a). Furthermore, these
remote sensing methods employed are utilized to identify correlations to photosynthetic
pigments, water content, nutrient content, and internal structure of the plant/crop (Raikes and
Burpee 1998; Nellis et al. 2009). Studies concerned with these biophysical and biochemical
characteristics often focus on the wavelengths best associated with biophysical properties
(Thenkabail 2000), in-field chlorophyll values (Zarco-Tejada et al. 2005), trace mineral
prediction (Cozzolino and Moron 2004), protein analysis (Apan et al. 2006), and

quality/quantity analysis (Overgaard et al. 2013a).

Thenkabail et al. (2000) aimed to identify the spectral bands needed on satellites that
were best suited for characterizing biophysical properties (health, height, and yield) of
cotton, potatoes, soybeans, corn, and sunflowers in Syria. Using NDVI, OMNBR (optimum
multiple narrow band reflectance), and soil-adjusted indices (indices accounting for the
reflectance of the underlying soils and other plant characteristics) dependent on 490 different
wavelengths within the red and NIR portions of the electromagnetic spectrum, the authors
found that wavelengths within the range of 650 nm and 750 nm were most important in

identifying biophysical properties of these crops (Thenkabail et al. 2000).



Studies also began to identify the effects of background soil reflectance on the
spectral readings collected by spectroradiometers, prompting the development of soil-
adjusted vegetation indices (Huete 1988; Qi et al. 1994; Rondeaux et al. 1996; Thenkabail
2000). Specifically, Zarco-Tejada et al. (2005) used aerial systems to correlate spectral
reflectance with chlorophyll content in vines in the Algoma Region of Canada. Viticulture
remote sensing presents challenges because the soil below the vine is exposed to the sensor,
causing issues when utilizing indices to predict the chlorophyll content. These soil
background effects are important as soils also reflect light, which is often mixed with the
plant reflectance within the footprint of light reception. Thus, a challenge in imaging
spectroscopy and remote sensing studies is the removal of these background affects through
mathematical computations that remove the effects of the reflectance of soil and other
materials underlying the plant (Zarco-Tejada et al. 2005; le Maire et al. 2004). Zarco-Tejada
et al. (2005) found that broad-band indices did not have the appropriate spectral sensitivities
to account for background reflectance and other variation in the environment, but the narrow

band indices they tested were found to be highly correlated with chlorophyll (e.g., R=0.90).

In addition to plant chlorophyll content, researchers have identified a strong
relationship between electromagnetic reflectance values and chemical constitutes, such as
nutrient values, for some plants/crops (Curran 1989; Ebbers et al. 2002). Nutrient values can
be identified through imaging spectroscopy because the molecular vibrations caused by
chemical bonds absorb electromagnetic energy, particularly in the NIR region of the
electromagnetic spectrum (Kokaly and Clark 1999). Thus, researchers have utilized imaging

spectroscopy to estimate mineral content of crops in the field and lab (Cozzolino and Moron



2004; Apan et al. 2006) as well as nitrogen plant content assessment for fertilizer application

purposes (Haboudane et al. 2002; Goel et al. 2003; Overgaard et al. 2013a).

While mineral content analysis using remote sensing methods has been successful in
some cases, it has been challenging in others. For instance, Cozzolino and Moron (2004)
developed a method to predict trace minerals (i.e., sodium (Na), sulphur (S), copper (Cu),
iron (Fe), manganese (Mn), zinc (Zn) and boron (B)) in animal feed legumes using an in-lab
spectroradiometer (400-2500 nm). The two plants tested were Lucerne (Medicago sativa) and
white clover (Trifolium repens). Past research (Cornforth 1984; Mills and Jones 1996;
Pinkerton et al. 1997) found differing ranges of wavelengths correspond to levels of C—H, N—
H, and O—H bonds, which have been found to be the primary constituents of organic
molecules within forage (Osborne et al. 1993; Coleman and Murray 1993). Cozzolino and
Moron’s (2004) results demonstrated the potential for using near-infrared spectroscopy
(NIRS) to predict trace minerals such as B, Cu, Mn, and Zn as well as two macro elements
that included Na and S, but the correlating relationships were too weak to obtain the exact

amounts.

Since it can be difficult to remotely sense micronutrients in the field, some studies
have focused on macronutrients such as protein. Employing imaging spectroscopy in
Queensland, Australia, Apan et al. (2006) attempted to identify the spectral bands (NIR
region; 935 nm and 1122 nm) correlating to leaf protein content in different parts of a wheat
field. The study tested specific wavelengths since using all of the wavelengths sensed by a
spectroradiometer (341 to 2500 nm) could lead to statistical overfitting. The researchers
reduced wavelengths by excluding overlapping regions of the near-infrared, short

wavelengths (341-399 nm), wavelengths associated with water vapor absorption (1356-1480
10



nm; 1791-2021 nm); and all bands beyond 2396 nm where noise is common. The spectral
wavelengths in which protein was most easily identified fell in the 935 nm band (R*=0.76)

and the 1122 nm band (R’=0.76).
1.3.2 Forage Grasses Imaging Spectroscopy

Grasses used for forage are particularly important to global food and nutrition as they
support the livestock consumed by humans (Tilman et al. 2002). Within agricultural studies,
a subset (Beeri et al. 2007; Rabbotnikof et al. 1995; Ruan-Ramos et al. 1999; Overgaard et al.
2013a) have focused on utilizing imaging spectroscopy to derive forage quality of Cs (plants
that perform well in warmer temperatures due to the type of photosynthesis performed) and
Cs (plants that perform well in cooler temperatures due to the type of photosynthesis
performed) forage grasses. C4 grasses are more efficient than Cs grasses at converting solar
energy into biomass, have improved water use efficiency (WUE), and greater nitrogen use
efficiency (NUE). The differences in efficiency result from the internal leaf structure, which
further complicates remote sensing as internal structure alters the reflectance and absorption
characteristics of the incoming solar radiation. These complications result in challenges when
employing imaging spectroscopy on grasses to derive quality and quantity, coupled with
other complexities of grass imaging spectroscopy that include plant community distribution
(i.e. degree of heterogeneity and biomass volume among vegetation being remotely sensed;
Boelman et al. 2005), soil color (Gao et al. 2000), hydrology (Todd and Hoffer 1998), and
topography (Kawamura et al. 2005). Nevertheless, research in monitoring forage quality
using imaging spectroscopy is a key focus in remote sensing as it can aid in precision

agriculture practices (Haboudane et al. 2002; Goel et al. 2003). However, while most of the
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nutrient imaging spectroscopy has been focused on the leaf level, the grain level has not been

one of the key foci of past research.

For instance, Rabotnikof et al. (1995) applied imaging spectroscopy methods to
analyze the quality of warm-season grasses (Cs) in La Pampa, Argentina by testing the
sensitivities six NIRS bands (1680, 1940, 2100, 2180, 2230, and 2310 nm). However, the
authors were able to accurately identify digestibility/solubility quality for animals, otherwise
known as in vitro digestibility (R’=0.827) and crude protein content (R’=0.918). Through
utilization of a sensors with greater spectral sensitivities, beyond only six bands, the accuracy
of the relationship between reflectance and plant properties could be improved. Similarly,
Ruan-Ramos et al. (1999) analyzed forage for livestock to better predict P, K, Ca, and Mg
using non-invasive laboratory methods. The specific wavelengths correlating to the nutrients
(Table 1.1) closely relate to specific wavelengths (2250, 2325, 2350, 1350, 2210, 2410, 2325,
2350, and 2250 nm) correlating to properties such as phospholipids, protein-phosphorus
bonds, amino acids, and phosphates, found in past studies (Murray and Williams 1987; De
Boever et al. 1994; Osborne and Fearn 1986; Shenk et al. 1979; Valdes et al. 1985; Clark et
al. 1987; Convertini et al. 1991; VaAzquez de Aldana et al. 1995). However, this study
included additional wavelengths within the 1730 to 1760 nm range as they were significant
contributors to the correlations. Nevertheless, many studies have utilized wavelength ranges
outside those identified in this study to delineate grass nutrients through imaging
spectroscopy (Valdes et al. 1985; Clark et al. 1987; Redshaw et al. 1986; Saiga et al. 1989;

Convertini et al. 1991; Linn and Martin 1991; Vazquez de Aldana et al.1995).
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Table Error! No text of specified style in document..1. Spectral bands utilized to delineate nutritional content in forage, grasses,

legumes, and forbs based on multiple linear regression. Data derived from: Ruan-Ramos et al (1999).

Mineral Mathematical Treatment Calibration
Wavelengths (nm) R? Std. Err.
log 1128, 1172, 2188, 2292, 2308, 2336, 2352  0.72 0.26
Phosphorus (P) I*" derv. log 1179, 1187, 1759, 2151, 2203, 2331, 2351  0.84 0.21
2" derv. log 1346, 1382, 1558, 1782, 1870, 2170, 2310  0.74 0.27
log 1480, 1684, 1776, 1964, 2332, 2432 0.91 1.43
Potassium (K) I*" derv. log 1547, 1563, 1595, 1747, 2175, 2371, 2423 0.90 1.50
2" derv. log 1218, 1318, 1394, 1526, 1618, 2138,2242  0.89 1.58
log 1108, 1120, 1156, 1172, 1284, 1892,2004  0.89 0.25
Calcium (Ca) I*" derv. log 1531, 1675, 1751, 1951, 2043, 2175, 2307  0.91 0.22
2" derv. log 1242, 1610, 1742, 1786, 1890, 1938, 1970  0.91 0.21
log 1676, 1800, 1940, 2000, 2188, 2328, 2452  0.92 0.08
Magnesium (Mg) [ derv. log 1127, 1671, 1947, 2203, 2351, 2371, 2423  0.94 0.07
2" derv. log 1254, 1346, 1682, 1874, 1922, 2342, 2418  0.91 0.09
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1.4  OBJECTIVE

While there is a large body of research focusing on predicting plant biophysical and
biochemical characteristics from imaging spectroscopy in agriculture, and specifically
grasses used for forage, it is important to note that many of the studies were employed in a
single region and/or location (often in a single crop field), thus limiting the applicability of
findings across multiple environments and geographical contexts. Furthermore, many of the
methods developed and tested lack the ability to account for environmental variances such as
soil (Gao et al. 2000), hydrological (Todd and Hoffer 1998), and topographical (Kawamura
et al. 2005) differences, which may cause variations in background reflectance dependent on
location. Thus, a comparative study of biochemical and biophysical analysis using imaging
spectroscopy is also important for generalizing results across regions. More specifically,
rarely have studies investigated reproducibility and replication (R&R) for more than a single
environment. Past studies have also not attempted to derive nutritional value of the grain

coming from different regions.

While past studies have focused on utilizing imaging spectroscopy to delineate crude
protein (Apan et al. 2006; Overgaard et al. 2013a; Rabotnikof et al. 1995; Beeri et al. 2007),
micronutrients (Cozzolino and Moron 2004; Ruan-Ramos et al. 1999), and plant health
(Thenkabail 2000; Zarco-Tejada et al. 2005) of forage grasses and/or grains, there are gaps in
past research that include analyzing the imaging spectroscopy methods between two differing
environments and the effects the differing environments have on reflectance and absorption
values used to correlate to plant health and nutrients. Further, the globalization of forage

crops high in nutrients have the potential to serve as sequential crops potentially alleviating
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the demands of a growing population, requiring an improved understanding of where such a

crop could be grown within the U.S.

This research will utilize tef (Eragrostis tef) as a case study as it is cultivated in many
agroecologies of Ethiopia, the geographic origin of the crop. In Ethiopia, tef monitoring
using imaging spectroscopy has the potential to alleviate food insecurities. Thus, this study
aims to determine imaging spectroscopy methods to delineate nutrient content of the plant
and the grain as well as plant health through chlorophyll detection. Furthermore, to
contribute to the globalization of agriculture, a site suitability analysis for tef cultivation in

the U.S. will be executed.

1.5 TEF

Tef is a Cq4 grass that is grown for both human consumption and forage, making it an
important and versatile crop (Miller 2014). Native to Ethiopia, tef is known for its rich
nutrient content compared to other cereals (Table 1.2) and its widespread distribution as a
cereal crop in Ethiopia today (Taffesse et al. 2011).Tef is widely used to produce a food
staple known as injera, a fermented bread central to the traditional Ethiopian diet; although
other uses for tef such as porridge and beers are also being explored (Gerbremariam et al.
2014; Zewdie and Muchie 2014). Four other major cereal crops are cultivated in Ethiopia
including wheat, maize, sorghum, and barley, but from 2004/2005 to 2007/2008, tef
accounted for 20.9% (2,337,850 ha) of the total number of hectares cultivated in Ethiopia
(Taffesse et al. 2011). In the U.S., tef has recently started to be incorporated as a forage, with
few examples of tef grown for grain (Miller 2014). Although the crop has been introduced to

the US, its cultivation has been limited (Figure 1.2). However, it has potential to serve as a
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sequential crop, meaning it is grown within the rotation of major food crops such as wheat,
possibly alleviating some of the pressures of the rising demand for meat among the US
population by serving as an annual forage that can be harvested during the warm months

(Delgado 2005; Thornton 2010).
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Table Error! No text of specified style in document..2. Micro- and macro-nutrient values within teff compared to other cereals. Data

derived from: Gerbremariam et al. (2014).

Gluten-free cereals Glutenous cereals

Component

Teff @ Maize Brownrice Sorghum @ Pearl millet Barley @ Wheat Rye
Starch (%) 73.0 72 64.3 62.9 67.0 60.6 71.0 69.0
Crude Protein (%) 11.0 8-11 7.3 8.3 11.5 11.1 11.7 7.98
Crude fat (%) 2.5 4.9 2.2 3.9 4.8 3.2 2.0 1.98
Moisture (%) 10.5 14.0 14.0 14.0 9.5 10.6 12.6 -
Ash (%) 2.8 1.4 1.4 1.6 1.7 24 1.6 1.72
Crude fiber (g/100 g) 3.0 - 0.6-1.0 0.6 0.5 3.7 2.0 1.56
Food energy (kJ/100g) 1406 - 1105
Calcium (mg/100g) 1652 483 6.85 50.0 46.0 34 39.45 31.5
Copper (mg/100g) 2.6 1.3 0.16 0.41 1.06 0.52 0.23
Iron (mg/100g) 15.7 4.8 0.57 6.0 243 3.5 2.7
Magnesium (mg/100g) 181.0 1079  16.88 180.0 137.0 94.3 103.5 92.0
Manganese (mg/100g) 3.8 1.0 0.36 8.97 0.95
Phosphorus (mg/100g) 4254 299.6 61.7 263.3 379.0 563.0 - 359.0
Potassium (mg/100g) 380.0 3248 181.71 225.23 507.0 - 412.0
Sodium (mg/100g) 15.9 59.2 0.54 6.18 25.4 -
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Zinc (mg/100g)

4.8

4.6

2.0

2.0
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CHAPTER II

REPRODUCIBILITY AND REPLICATION OF IMAGING SPECTROSCOPY METHODS

BETWEEN DIFFERING AGRICULTURAL ENVIRONMENTS

Abstract

Achieving reproducibility and replication (R&R) within any scientific discipline
is of utmost importance for future development of a given field. Yet, the topic of R&R
has not received much attention in the field of imaging spectroscopy (IS). In particular,
R&R in IS could benefit precision agriculture potentially resulting in increased efficiency
of resource utilization. Thus, this study aims to investigate the reproducibility of research
findings across study sites, environmental contexts, and international boundaries to
determine whether the same process of IS data collection, processing, and analytical
methods can be used to predict the nutrient content (Ca, Mg, protein) of Eragrostis tef
plant and grain samples from the United State and Ethiopia. The methods incorporate the
use of waveband creation, spectral preprocessing (e.g., Savisky-Golay, first derivative,
and second derivative), waveband selections, and partial least square regression (PLS)
with bootstrapping procedures. The results suggest high correlations for both the plant
and grain in single environments, with problems of overfitting when combining
environments. Additionally, results suggest that spectral preprocessing methods and

wavebands selected for PLS models will differ amongst differing environments. Thus,
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this research suggests for the purpose of reproducibility and accuracy, IS models aiming to

predict nutrient values of agricultural products should be developed for single geographies.

KEYWORDS: R&R, hyperspectral, waveband selection, partial least squares, Ethiopia,

Eragrostis tef, tef

LIST OF ABBREVIATIONS

ASD Analytical Spectral Devices

Ca Calcium

ET Ethiopia

ET1 Debre Zeit, Ethiopia

ET2 Akaki, Ethiopia

FDR First derivative

GPS Global Positioning System

IS Imaging spectroscopy

Mg Magnesium

MIR Mid-infrared

MLR Multiple linear regression

NIR Near-infrared

NLV Number of latent variables

PCA Principle component analysis

PCR Principle component regression

PLS Partial least squares regression

R&R Reproducibility and replication

R? std R’ standard deviation

Rcy Cross-validated coefficient of determination
RMSEcy Root mean squared error from cross validation
RMSEp Root mean square error of prediction
RMSEp std Root mean square error of prediction standard deviation
SDR Second derivative

SG Savitsky-Golay

tef Eragrostis tef

US United States

USI and US2 Hydro, Oklahoma

USET Combined United States and Ethiopia

pw Weighted regression coefficient
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2.1 INTRODUCTION

Achieving reproducibility and replication (R&R) of scientific findings is critical
for advancing scientific discoveries, particularly in the field of remote sensing. The topic
of R&R has recently moved to the forefront of many fields of study such as economics,
psychology, and medicine (Asendorph et al. 2013; Begley and loannidis 2015; Baker
2016; Camerer et al. 2016; Ioannidis et al. 2017) where it has widely been discovered that
many studies cannot be reproduced or replicated (Ioannidis 2005; Baker 2015). Yet, the
topic of R&R has not received much attention in geography, remote sensing, and the
spatial sciences, where investigations tend to be observational instead of experimental or
theoretical (Kedron et al., under revision). The field of remote sensing is uniquely
positioned to contribute to R&R in the spatial sciences for several reasons. First, remote
sensing scientists work with large datasets and often perform complex spectral and spatial
manipulations of the data (Lindberg et al. 1983; Naes and Martens 1984; Lorber et al.
1987; Kawamura 2008), which makes reproducibility—where the same data and methods
are used to produce the same results—difficult to achieve if processing steps are not
adequately reported. Second, there is a rich archive of publicly available remote sensing
data online, which permits independent investigations using the same datasets.

One sub-field of remote sensing that would benefit from R&R standards is
imaging spectroscopy (IS), particularly as it is used in precision agriculture. Precision
agriculture integrates technology with agricultural practices and aims to increase
efficiency of resource utilization (e.g., water, fertilizer, etc.) and decrease the ambiguity
of decisions required on agricultural lands that are often highly variable (Schellberg

2008). If findings from one field or study area are to be transferred into practice in
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another region, the results must necessarily be replicable. However, most IS studies
capture data in a single region or location (often in a single crop field) under uniform
conditions (Flynn et al., under review), thus limiting the ability to replicate findings
across multiple environments and geographical contexts. In addition, many studies lack
explanation for environmental variances such as soil (Gao et al. 2000), hydrological
(Todd and Hoffer 1998), and topographical (Kawamura et al. 2005) differences that can
cause variations in reflectance dependent on location.

The objective of this study is to investigate the reproducibility of research
findings across study sites, environmental contexts, and international boundaries to
determine whether the same process of IS data collection, processing, and analytical
methods can be used to predict the nutrient content of Eragrostis tef (tef), a grain that is
primarily grown in Ethiopia but cultivation has recently expanded to other areas of the
world. Predicting the nutrient status of plants in the field has proven difficult (Curran et
al. 2001; Mutanga et al. 2003), mainly due to plant water content masking absorption
values in the NIR that had been found to correlate well with biochemicals (Clevers 1999;
Kokaly and Clark 1999). Background effects of soil and atmospheric absorption resulted
in further challenges for in-field nutrient analysis (Curran et al. 2001). Additionally, there
have not been many studies that have attempted to correlate IS data to non-milled grain
(Caporaso et al. 2018). I captured complementary IS data and plant/grain samples from
crops in two diverse locations (United States and Ethiopia) and tested the reproducibility
of nutrient prediction across the two environments using partial least square regression

(PLS). I'aim to identify specific wavebands that can predict nutrient content of both plant
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and grain material. I compare the results from each location separately and then combine
the datasets to produce a comprehensive model.
2.2  DATA COLLECTION AND PROCESSING
2.2.1 Tef

Tef is a grass of the family Poaceae that has received very little attention from the
remote sensing community despite its versatile cultivation characteristics—it is drought
and heat resistant—and its high nutrient content (Flynn et al., under review). This lack of
attention may be due to the fact that while tef can be cultivated across many
environments, it is predominantly grown in Ethiopia, where it is the most commonly
harvested crop because it produces a highly nutritious and gluten-free grain (Boe et al.
1986; Twidwell et al. 2002; Bultosa and Taylor 2004; Dekking et al. 2005;
Gerbremariam et al. 2014; Hopman et al. 2008). In the United States, tef is becoming
popular as a sequential forage crop for cattle and horses (Flynn, under revision), but it is
only grown in a handful of locations. Its cultivation is expected to increase though, given
the rise in popularity of gluten-free diets (Stallknecht 1993; Boe et al. 1986;
Gerbremariam et al. 2014; Miller 2014).
2.2.2  Study Sites

The two sites for this study are located in the United States (US) and Ethiopia
(ET). Within the US, I sampled two fields (US1 and US2), both located in Hydro,
Oklahoma (Figure 2.1). Hydro, Oklahoma is located in the Central Great Plains
ecoregion and experiences drastic temperature changes throughout all seasons but
generally has cold winters (average minimums from 4 - -12°C) and hot summers

(reaching greater than 38°C) with low and highly variable precipitation and humidity
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rates. The two field sites are located within two miles of one another, thus the
environmental characteristics were similar. Both fields had similar soils (vertisols) and
were located at the same elevation (474 m). In-field spectroscopy and plant/grain samples
were collected immediately prior to harvest in mid-summer 2016.

The two sites in Ethiopia (ET1 and ET2) are located in Debre Zeit and Akaki
(Figure 2.1). The International Food Policy Institute separates Ethiopia into 18 agro-
ecological zones based on environmental conditions (e.g., elevation, precipitation, etc.).
The two Ethiopian sites are located in different agro-ecological zones (ET1: Warm Sub-
Moist Lowlands, and ET2: Warm Humid Lowlands). Soil composition in both sites is
similar (vertisols), but elevations are different (1919 m and 2201 m, respectively for ET1
and ET2). Both Ethiopian sites were sampled immediately prior to harvest in October

2017.

Legend
ET2

B US1
US 2

Figure 2.1. Study Site locations for both the United States (US) and Ethiopia (ET).
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2.2.3 Reflectance Measurements

The process for collecting spectral data and sampling both the plant material and
grain for nutrient testing is illustrated in Figure 2.2. The plant material was imaged in
situ, while the grain material was imaged ex situ after it had been separated from the

parent plant in the lab.
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Table 2.1. Number (7) of plant and grain samples collected in the United States (US) and

Ethiopia (ET).

Plant/Grain Nutrient Number of Samples (n)

United States Ethiopia

Plant Ca 67 78
Mg 67 79

Protein 67 79

Grain Ca 66 78
Mg 66 79

Protein 65 79

Canopy in-field spectral data were collected using a spectroradiometer (FieldSpec
Pro FR: Analytical Spectral Devices [ASD], Boulder, CO), measuring reflectance from
350-2500 nm with a spectral sampling of 1.4 nm from 350-1000 nm and 2.0 nm from
1000-2500 nm. Forty random points within each field were imaged, after which samples
of the plant material and grains were collected. The spectroradiometer fiber was held 1.4
m above the ground which equated to a 50.7 cm diameter circle of cover on the ground.
Based on the size of sample needed (10 grams of grain; SSSA 1990; Forage Analysis
Procedures 1993) for the nutrition testing, this diameter allowed for the inclusion of
enough area to correspond to the amount of plant/grain matter required. Clippers were
used to remove only the above ground biomass. Samples were dried to remove excess
moisture. Following drying, the plant and grain were separated using the traditional
methods of hand threshing and the use of a basket weaved surface. The grains were
spectrally imaged in a dark room using a contact probe (Contact Probe: Analytical

Spectral Devices [ASD], Boulder, CO) with a light source (Halogen bulb) emitting
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spectral wavelengths (350-2500 nm) capable of being identified by the same
spectroradiometer used in the field. For both canopy and in-lab methods, five spectral
readings were collected for each sample, and the five readings were averaged to provide a
single, representative curve for preprocessing.
2.2.4 Spectral Curve Preprocessing

The raw spectral curves from both the plant and grain IS data, were processed
following Kawamura et al. (2008) and Kawamura et al. (2018) (Figure 2.2). Each spectral
curve was smoothed using the Savitsky-Golay (1964) method (SG; Figure 2.3) method.
First (FDR) and second (SDR) derivatives were computed from the smoothed spectra
(Figure 2.3). Computing derivatives is a common practice within IS as the derivatives
exploit minor difference highlighting key regions such as inflection points (FDR) and
shoulder inflections (SDR). These minor changes are often difficult to acknowledge
computationally and visually when data are in raw form (Kokaly et al. 2009). To further
reduce noise within each spectral curve, the hyperspectral data were averaged using a
moving window into 5 nm centered bands (e.g. a band centered at 600 nm would be the
average value of wavelengths 598-602 nm). This step did not alter the spectral resolution
of the data. Additionally, bands associated with atmospheric noise (1290-1495; 1705-
2045; and 2355-2500 nm) and splicing points within the spectroradiometers (350-395 and
1005-1015 nm) were removed. This pre-processing resulted in 277 spectral wavebands
between 400-2350 nm, which will ultimately serve as the independent variables for the

PLS statistical analyses discussed below.
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Figure 2.3. Depiction of typical canopy spectral curves of tef subject to (A) Savitsky-
Golay, (B) 1 derivative, (C) 2" derivative.
2.2.5 Nutrient Analysis

Nutrient analysis for samples was performed in the United States at the Oklahoma
State University Soil, Water, and Forage Analytical Laboratory and in Ethiopia by the
Ethiopian Public Health Institute of Addis Ababa, Ethiopia. The same procedures were

used in both place to analyze nutrients, so the difference in processing locations is not
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expected to have a significant impact on the results. Samples were analyzed for calcium
(Ca), magnesium (Mg), and protein content. These measures are common in agronomic
research. For details on Ca and Mg laboratory procedures, please refer to SSSA (1990).
Additionally, for details on protein laboratory analysis, please refer to Forage Analysis
Procedures (1993). Ca and Mg values are expressed in ppm mg/kg, while protein values
are expressed in percent (%) of total sample weight. These nutrient data will serve as the
dependent variable in the PLS analyses (discussed below).
2.3  ANALYTICAL METHODS

Partial least squares regression with waveband selection (PLS) is employed to
assess the relationship between imaging spectroscopy data (independent variable) and
nutrient content (dependent variable) of the plant and grain (Figure 2.2). PLS was
selected over other types of regression because it accounts for overfitting errors that are
common with other methods (i.e., multiple linear regression) when analyzing IS data
(Kawamura et al. 2008; Kawamura et al. 2018). PLS standardizes the construction of
models created from the preprocessed IS data, which are ultimately used to predict the
nutrient levels of the plant and grain. Additionally, the construction of successful models
in PLS can be tested through calibration and validation steps.
2.3.1 Partial Least Squares Regression with Waveband Selection

Multiple linear regression (MLR) is appropriate in situations where there is more
than one independent variable, and those variables are not collinear. However, in
situations where the independent variables are collinear, using MLR will often overfit the
model. With hyperspectral data, the multiple wavebands that serve as the independent

variables are often highly collinear. In this study, there are 277 individual wavebands
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serving as independent variables. Thus, MLR is not appropriate. Instead, PLS can be used
to construct predictive models in situations where the independent variables are collinear
(Geladi and Kowalski 1986; de Jong 1993). PLS has been compared to principal
component regression (PCR) because both can aid in overcoming multicollinearity and
reducing dimesionality, but the two differ in the construction of the factors. PCR aims to
reduce collinearity amongst the independent variables by regressing the principal
components of the explanatory variables against the dependent variables instead of using
the independent variables themselves. In PLS, instead of finding hyperplanes of
maximum variance between the response and independent variables, the technique fits
a linear regression model by projecting both the independent and dependent variables into
a new space. In other words, a PLS model aims to find the multidimensional direction in
X space that explains the maximum multidimensional variance direction in Y space. The
PLS factors, which are often referred to as latent factors, aim to capture the variability of
the dependent variable(s), often resulting in a smaller number of variables than PCR.
More specifically, PLS establishes models by extracting what are called X-scores from
the latent variables to construct a model to predict the Y-scores. In PLS the X- and Y-
score