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Many treatments have been identified that confer robust cardioprotection in experimental animal models of acute

ischemia and reperfusion injury. However, translation of these cardioprotective therapies into the clinical setting of acute

myocardial infarction (AMI) for patient benefit has been disappointing. One important reason might be that AMI is

multifactorial, causing cardiomyocyte death via multiple mechanisms, as well as affecting other cell types, including

platelets, fibroblasts, endothelial and smooth muscle cells, and immune cells. Many cardioprotective strategies act

through common end-effectors and may be suboptimal in patients with comorbidities. In this regard, emerging data

suggest that optimal cardioprotection may require the combination of additive or synergistic multitarget therapies. This

review will present an overview of the state of cardioprotection today and provide a roadmap for how we might progress

towards successful clinical use of cardioprotective therapies following AMI, focusing on the rational combination of judi-

ciously selected, multitarget therapies. This paper emerged as part of the discussions of the European Union (EU)-

CARDIOPROTECTION Cooperation in Science and Technology (COST) Action, CA16225. (J Am Coll Cardiol 2019;73:89–99)
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ABBR EV I A T I ON S

AND ACRONYMS

AMI = acute myocardial

infarction

GIK = glucose/insulin/

potassium

IPC = ischemic pre-

conditioning

IPost = ischemic post-

conditioning

IRI = ischemia–reperfusion

injury

MI = myocardial infarction

MPTP = mitochondrial

permeability transition pore

MVO = microvascular

obstruction

NAC = N-acetylcysteine

NOS = nitric oxide synthase

PKG = protein kinase G

PPCI = primary percutaneous

coronary interventions

RIC = remote ischemic

conditioning

RISK = reperfusion injury

salvage kinase

SAFE = survivor activating

factor enhancement

STEMI = ST-segment elevation

myocardial infarction
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CARDIOPROTECTION:

WHERE WE ARE TODAY

Despite success in animal studies, translation
of cardioprotection to clinical practice has
proven difficult (1,2). Several pharmacolog-
ical treatments have failed, and although
ischemic conditioning strategies are prom-
ising, effects are weak and, in some cases,
inconsistent (3). Differences between pre-
clinical models of transient myocardial
ischemia and the clinical scenario in patients,
including age, comorbidities, and cotreat-
ments (4,5), may help to explain the diffi-
culties in translation in some cases. In others,
insufficient preclinical data or incorrect study
design may be responsible (1–3). However,
the notion is emerging from experimental
studies that an important reason for the
weak, inconsistent results obtained in
patients may be the presence of multiple,
partially redundant mechanisms of cell
death during ischemia–reperfusion whose
relative importance may depend on the con-
ditions. According to the hypothesis we raise
herein, targeting 1 mechanism at a time may
be insufficient to produce a strong and robust
effect in clinical situations where many un-
controlled variables usually coexist.
DIFFERENT TYPES OF

CARDIOPROTECTIVE STRATEGIES

Over the past 3 decades, many cardioprotective stra-
tegies against myocardial ischemia–reperfusion
injury (IRI) have been proposed (6). These can be
broadly divided into several categories based on the
protective modality, time of application, cellular
target, and intracellular target (Central Illustration).
The cardioprotective modalities that have been the
most studied are based on either the controlled
application of episodes of brief ischemia and reper-
fusion (ischemic conditioning), the administration
of chemical substances (pharmacological), or the
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application of physical measures, such as hypother-
mia or electrical nerve stimulation.

Strategies based on ischemic conditioning include
local pre-conditioning (IPC) and post-conditioning
(IPost), and remote ischemic conditioning (RIC). The
mechanisms of ischemic conditioning are incom-
pletely understood but are probably multiple. IPC
delays recovery of pHi, prevents uncoupling of nitric
oxide synthases (NOS) and subsequent generation of
reactive oxygen and nitrogen species, and increases
protein kinase G (PKG), reperfusion injury salvage
kinase (RISK) and survivor activating factor
enhancement (SAFE) signaling in reperfused car-
diomyocytes (7). RIC appears to share with IPC an
effect on nitrotyrosylation and preservation of PKG
(8), but also acts on mitochondrial function and ac-
tivates the RISK and SAFE pathways (9,10).

Cardioprotective strategies can also be classified
according to the time they are applied, that is, before,
during, or after ischemia. Here, we limit our discus-
sion to treatments applied after the onset of ischemia,
because when patients with ST-segment elevation
myocardial infarction (STEMI) present, their heart is
already ischemic. However, studies suggest that some
cardioprotective agents or interventions (e.g., car-
iporide [11], hypothermia [12], metoprolol [13],
glucose/insulin/potassium [GIK] [14], RIC [15]) may
reduce myocardial infarction (MI) size when admin-
istered during the acute ischemic phase. In fact, RIC
and metoprolol may protect the heart from ongoing
ischemic injury (16,17), providing an opportunity to
deliver the cardioprotective agent or intervention to
the acute myocardial infarction (AMI) patient in the
ambulance on the way to the cardiac catheterization
laboratory. However, for STEMI patients undergoing
primary percutaneous coronary interventions (PPCI),
administering the cardioprotective therapy before
reperfusion by PPCI can be challenging, because it
never should delay the onset of reperfusion.

Treatments that protect from reperfusion injury
should generally be applied as early as possible dur-
ing reperfusion because most cell death occurs during
the first minutes of reflow. An example of this is
IPost (18). In the case of drugs, it is generally
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CENTRAL ILLUSTRATION Multitarget Cardioprotective Strategies to Reduce Myocardial Infarction
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Cardioprotective strategies fall into 4 broad categories, which may be combined in different manners to achieve multitarget cardioprotection. PKG ¼ protein kinase G;

RISK ¼ reperfusion injury salvage kinase; SAFE ¼ survivor activating factor enhancement.
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preferable to administer them as early as possible
during ischemia to ensure adequate myocardial con-
centration at the onset of reperfusion. Prior studies
have shown that delaying the administration of some
cardioprotective therapies (e.g., sanglifehrin-A [19],
IPost [20]) until after reperfusion had already taken
place failed to reduce MI size. On the other hand,
there are limited experimental data suggesting
that some cardioprotective agents or interventions
(e.g., an inhibitor of phosphoinositide 3-kinase g/d
(PI3Kg/d) [21], antiapoptotic agents [22], or delayed
RIC [23]) may reduce MI size even when administered
after the onset of reperfusion (20 min to 3 h into
reperfusion), providing an opportunity to deliver the
cardioprotective agent after PPCI when the STEMI
patient is on the ward. However, this approach is
based on the premise that MI size increases with
reperfusion time, which remains controversial (4).

An additional consideration in the case of STEMI
patients is that if drugs protecting against ischemic
injury are given after coronary occlusion, they may
fail to reach severely ischemic myocardium with little
or no collateral flow (24,25). However, this situation
may be rapidly changing due to the increasingly
widespread use of potent antiplatelet drugs in these
patients upon first medical contact (26), resulting in a
growing proportion of infarcts being partially reper-
fused before PPCI. Physical therapies, such as hypo-
thermia, may also reach ischemic myocardium when
applied before reperfusion.



TABLE 1 Experimental Studies Illustrating the Potential for Additive Cardioprotection With Multiple Cardioprotective Agents or

Interventions Having Distinct Targets Within the Cardiomyocyte

First Author,
Year (Ref. #)

Experimental
AMI Model

Cardioprotective Agents or
Interventions Cardioprotective Effect Signaling Pathways

Schwiebert et al.,
2010 (58)

In vivo rat Xenon (20%) at reperfusion
Hypothermia (34�C) at reperfusion

Additive effects on reducing
MI size

Not investigated

Alburquerque-Béjar
et al., 2015 (8)

In vivo pig RIPerC
GIK or exenatide at reperfusion

Additive effects of RIPerC with
either insulin or exenatide

RIPerC—less oxidative stress and
reduced eNOS uncoupling

GIK and exenatide—shift to
glycolysis

Sun et al., 2016 (59) In vivo mice NaHS (H2S donor) at reperfusion
SNAP (NO donor) at reperfusion

Additive effects on reducing
MI size

NaHS—S-sulfhydration
SNAP—S-nitrosylation

Experimental studies illustrating the potential for additive cardioprotective effects with 2 or more agents or interventions given acutely in combination during ischemia or
shortly after reperfusion. Only those agents given in the short term in combination during ischemia or shortly after reperfusion, and demonstrating a reduction in infarct size
that is additive are shown.

AMI ¼ acute myocardial infarction; eNOS ¼ endothelial nitric oxide synthase; GIK ¼ glucose/insulin/potassium; MI ¼ myocardial infarction; NaHS ¼ Sodium hydrosulfide;
NO ¼ nitric oxide; RIPerC ¼ remote limb ischemic per-conditioning during cardiac ischemia; SNAP ¼ S-nitroso-N-acetylpenicillamine.
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Cardioprotective strategies may be further catego-
rized by their end targets (Central Illustration). The
first group includes molecular targets involved in
mainly necrotic cell death, such as ion exchangers
and channels, proteases, reactive oxygen species,
contractile elements, or constituents of the mito-
chondrial permeability transition pore (MPTP). These
strategies have generally been based on the use of
pre-existing pharmacological tools and have rarely
progressed to clinical trials. One exception is cyclo-
sporine A, which targets the MPTP. However, cyclo-
sporine A produced inconsistent preclinical results
and failed in clinical trials. Other forms of cell death
may occur during acute myocardial IRI, including
apoptosis, autophagy, necroptosis, and pyroptosis, all
of which may contribute in varying degrees to final MI
size following acute IRI and provide new targets for
cardioprotection. A second group of targets includes
activation of endogenous cardioprotective signaling
TABLE 2 Experimental Studies Illustrating the Potential for Additive

Interventions Combining Cardiomyocyte Targets With Noncardiomyocy

First Author,
Year (Ref. #)

Experimental
AMI Model

Cardioprotective Agents or
Interventions

Koshinuma et al.,
2014 (42)

Isolated guinea
pig heart

Z-VAD during ischemia and first
30 min of reperfusion

Necrostatin-1 during ischemia and
first 30 min of reperfusion

Yang et al.,
2015 (60)

In vivo rat Cangrelor at reperfusion
Endonuclease III at reperfusion

Alexopoulos et al.,
2017 (61)

In vivo rabbit Exenatide at reperfusion
Cyclosporine-A at reperfusion

parstatin 1-26 at reperfusion

Audia et al.,
2018 (41)

In vivo rat VX-765 and ticagrelor or
cangrelor at reperfusion

*Other criteria are as per Table 1.

MPTP ¼ mitochondrial permeability transition pore; VAD ¼ val-ala-asp; Z-VAD ¼ Z-v
pathways, including the NO/cGMP/PKG cascade, RISK
and SAFE pathways, mitochondrial morphology, and
cardiomyocyte metabolism. Inflammation contrib-
utes to post-MI injury and forms an additional target
for its reduction (21,27). Translation of these indi-
vidual targets to patients has met with variable suc-
cess (3,6), but they could form part of a multitarget
strategy.

Finally, cardioprotective strategies may be aimed
at either protecting cardiomyocytes or non-
cardiomyocyte cells, such as platelets or leukocytes
(6). Although cardiomyocytes are the working cells
in the heart and the most susceptible to IRI, the
myocardium also contains a large number of other
cell types that are important players in myocardial
IRI, including endothelial cells, fibroblasts, smooth
muscle cells, and neuronal cells. Some factors released
by the endothelium and fibroblasts (i.e., the “secre-
tome”) such as microRNA (miRNA) and exosomes,
Cardioprotection With Multiple Cardioprotective Agents or

te Targets*

Cardioprotective Effect
Cardiomyocyte and

Noncardiomyocyte Targets

Additive effects on reducing
MI size

Z-VAD—apoptosis inhibition
Necrostatin-1—necroptosis

inhibition

Additive effects of cangrelor
and endonuclease III on
reducing MI size

Cangrelor, P2Y12 inhibitor—platelets
Endonuclease III, targets

mitochondrial DNA—
cardiomyocyte

Additive effects with
exenatide combined with
either cyclosporine-A or
parstatin 1-26 on
reducing MI size

Exenatide-GLP-1 signaling—
cardiomyocytes

Cyclosporine-A—MPTP
cardiomyocytes

Parstatin 1-26—inflammation

Additive reduction in MI
size after 2-h and 3-day
reperfusion.

P2Y12 inhibitor—platelets
VX-765, caspase 1 inhibitor—inhibition

of cardiomyocyte pyroptosis

al-ala-asp. Other abbreviations as in Table 1.



TABLE 3 Experimental Studies Illustrating the Potential for Additive Cardioprotection With Multiple Cardioprotective Agents or Interventions Targeting Distinct

Time-Points During Ischemia and Reperfusion*

First Author,
Year (Ref. #)

Experimental
AMI Model

Cardioprotective Agents or
Interventions Cardioprotective Effect Timing of Intervention

Xin et al.,
2010 (62)

In vivo rat Limb RIPerC (4 � 5/5-min cycles)
IPost (6 � 10/10-s cycles)

Additive effects on reducing MI size,
reducing ROS at reperfusion and
inhibiting apoptosis

Ischemia—limb RIPerC
Reperfusion—IPost
Additive effects on Akt and Erk1/2 phosphorylation

Yang et al.,
2013 (44)

In vivo rat Cangrelor at reperfusion
Hypothermia (32�C–33�C) during ischemia
Cariporide during ischemia

Additive effects of cangrelor combined
with either cariporide or hypothermia
on reducing MI size. Additive
protection with all 3

Reperfusion—cangrelor, P2Y12 inhibitor
Ischemia—hypothermia, reduces energy consumption
Ischemia—cariporide, Naþ/Hþ exchanger inhibitor

*Other criteria are as per Table 1.

IPost ¼ post-conditioning; ROS ¼ reactive oxygen species; other abbreviations as in Table 1.
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may contribute to cardioprotective signaling (28,29).
IRI may cause the death of noncardiomyocytes by
various pathways including apoptosis (30). Further-
more, IRI may disrupt the endothelial barrier favoring
myocardial edema (31,32), and may activate endothe-
lial cells causing them to interact with circulating
blood cells that may plug the microvessels, release
molecules that affect cardiomyocyte function and
tolerance to IRI, and infiltrate the myocardium.
Platelets are some of the first hematopoietic cells to
respond to IRI. Although activated platelets release
factors that may exert cardioprotective effects during
ischemia (33) strong evidence indicates that they may
exacerbate reperfusion injury by mechanisms not
dependent on vessel obstruction (34,35). They also
form coaggregates with white blood cells (mainly
neutrophils), and these plugs are distally embolized
upon reperfusion contributing to microvascular
obstruction (MVO) (27). MVO can also be caused by
embolization from the recanalized coronary plaque
and extrinsic compression secondary to edema for-
mation upon reperfusion (36). Furthermore, areas of
no-reflow and intramyocardial hemorrhage may
develop due to extreme myocardial devastation (37).
However they arise, MVO and no-reflow have the po-
tential to cause further cardiomyocyte necrosis (38)
and are clearly associated with adverse prognosis in
patients with AMI (32).

MULTITARGET STRATEGIES

FOR CARDIOPROTECTION

We define “multitargeted cardioprotective therapy”
as additive or synergistic cardioprotective effects of
multiple cardioprotective agents or interventions
directed to distinct targets. There are also some
specific examples where a single agent is known to
have effects on multiple distinct targets and can
therefore also be considered as a multitargeted
strategy. The combination of agents or interventions
to achieve multitarget cardioprotection may be
broadly classified into 5 categories, although these
are not mutually exclusive (Central Illustration, Tables
1 to 5). Each of these categories are discussed in the
following sections using examples taken from animal
experiments. Their applicability to patients is dis-
cussed in the following text.

MULTIPLE CARDIOPROTECTIVE AGENTS OR

INTERVENTIONS WITH DISTINCT TARGETS WITHIN

THE CARDIOMYOCYTE. Conceptually, the simplest
approach to multitarget cardioprotection is to
combine 2 or more agents or interventions, each of
which has a distinct target within the cardiomyocyte.
In this approach, it is important that each car-
dioprotective agent or intervention is at maximal
“dose” (i.e., not subthreshold), and that the combi-
nation of agents or interventions confers additive
benefit in terms of infarct size reduction. The intra-
cellular targets can include prosurvival signaling
pathways (e.g., the RISK, SAFE, and NO-cGMP-PKG
cascades), cell death pathways (e.g., necrosis,
apoptosis, autophagy, necroptosis, and pyroptosis),
and cellular organelles (e.g., mitochondria, sarco-
plasmic reticulum) (Figure 1). As such, maximal
cardioprotection may require activation of comple-
mentary prosurvival pathways and/or inhibition of
deleterious cell death pathways, as recently proposed
in the “multitarget hypothesis” (39).

There are several published examples of multi-
target cardioprotective strategies directed to distinct
signaling pathways within the cardiomyocyte
(Table 1). For example, in a pig AMI model, the com-
bination of limb RIC with either GIK or exenatide
(a glucagon-like peptide-1 mimetic) at the time of
reperfusion reduced infarct size to a greater extent
than either intervention alone (8). Importantly, the
interventions were shown to have distinct intracel-
lular targets, with RIC decreasing oxidative stress
(myocardial nitrotyrosine levels) and endothelial NOS
(eNOS) uncoupling, and GIK and exenatide shifting
cardiac metabolism toward increased glycolysis (8).



TABLE 4 Experimental Studies Illustrating the Potential for Additive Cardioprotection With Multiple Cardioprotective Agents Or Interventions Targeting the Same

Signaling Pathway but With Potentiating Effects*

First Author,
Year (Ref. #)

Experimental
AMI Model

Cardioprotective Agents or
Interventions Cardioprotective Effect Signaling Pathways

Xin et al.,
2010 (62)

In vivo rat Limb RIPerC (4 � 5/5-min cycles)
IPost (6 � 10/10-s cycles)

Additive effects on reducing MI size, reducing
ROS at reperfusion and inhibiting apoptosis

Additive effects on Akt and Erk1/2
phosphorylation

Huang et al.,
2011 (63)

In vivo rat Esmolol infusion at reperfusion
Milrinone infusion at reperfusion

Additive effects on reducing MI size, and
inhibiting apoptosis

Additive effects on PKA activity
and Akt phosphorylation

Fan et al.,
2012 (51)

In vivo diabetic and
nondiabetic rats

Atorvastatin at reperfusion
IPost (6 � 10/10 s)

Diabetic heart resistant to IPost and partially
protected by atorvastatin. However,
combination of IPost and atorvastatin
reduces MI size

Additive effects on Akt and eNOS

Tratsiakovich
et al., 2013 (46)

In vivo rat and pig L-arginine at reperfusion
Tetrahydrobiopterin (BH4) at reperfusion

Additive effects on reducing MI size, and
reducing ROS at reperfusion

Additive cardioprotection
mediated by NOS

Wang et al.,
2015 (64)

In vivo rat Limb RIPerC (1 cycle of 10-min
ischemia and 5-min reperfusion)

Vagal stimulation

Additive effects on reducing MI size and
inflammation

Not investigated

*Other criteria are as per Table 1.

NOS ¼ nitric oxide synthase; PKA ¼ protein kinase A; other abbreviations as in Tables 1 and 3.
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MULTIPLE CARDIOPROTECTIVE AGENTS OR

INTERVENTIONS WITH NONCARDIOMYOCYTE TARGETS.

Combining cardiomyocyte-targeted therapies with
therapies that target noncardiomyocyte components
in the heart (e.g., those improving tissue perfusion)
may provide a more effective strategy for car-
dioprotection (Table 2). One example is provided by
P2Y12 inhibitors (such as ticagrelor and cangrelor),
which are known to reduce infarct size (40). Because
all patients with AMI receive a P2Y12 receptor antag-
onist, a cardioprotective agent, to be effective, must
provide additive protection on this therapeutic
background. In this regard, VX-765, an inhibitor of
caspase 1–mediated pyroptosis, has been demon-
strated in rats to provide such an additive benefit on a
therapeutic background of the P2Y12 inhibitors tica-
grelor or cangrelor (41). In another example, targeting
necroptosis with necrostatin-1 and apoptosis (pre-
sumably in nonmyocytes) with Z-VAD during
ischemia and reperfusion conferred additive reduc-
tion in infarct size in isolated perfused guinea pig
hearts (42).
TABLE 5 Experimental Studies Illustrating the Potential for Additive

Interventions Having Multiple Targets*

First Author,
Year (Ref. #)

Experimental
AMI Model

Cardioprotective Agents or
Interventions

Rastaldo et al.,
2012 (48)

Isolated rat
heart

Hybrid molecule containing NO donor
and antioxidant

Lougiakis et al.,
2016 (47)

In vivo rabbit Hybrid molecule containing H2S-donor a
adenosine analogue at reperfusion

García-Ruiz et al.,
2016 (17) and
Garcia-Prieto
et al., 2017 (27)

In vivo pig
In vivo mouse

Intravenous metoprolol targeting
simultaneously cardiomyocytes (redu
energy demand), and neutrophils
(inhibiting migration and neutrophil–
platelet coaggregates)

*Other criteria are as per Table 1.

cGMP ¼ cyclic guanosine monophosphate; PKG ¼ protein kinase G; other abbreviation
There would appear to be a solid rationale for
combining one agent targeting the microcirculation
(MVO) with another targeting cardiomyocytes. Un-
fortunately, there has been only marginal success to
date in trying to relieve MVO and improve microcir-
culatory flow after MI, even experimentally. Some of
the more promising candidates include the vasoactive
compounds adenosine and NO (32). Recombinant
human angiopoietin-like protein 4 (ANGPTL4) indeed
reduced infarct size and prevented no-reflow and
intramyocardial hemorrhage in mice (43).
MULTIPLE CARDIOPROTECTIVE AGENTS OR

INTERVENTIONS TARGETING DISTINCT TIME-POINTS

DURING ISCHEMIA AND REPERFUSION. Given the pos-
sibility of intervening at 3 different time points in the
setting of AMI (i.e., during ischemia, at reperfusion,
and late into reperfusion), there is an opportunity to
combine 2 or more cardioprotective therapies to
target these 3 different phases in order to achieve
additive cardioprotection (Table 3). An excellent
example of this multitarget cardioprotective
approach was provided by Yang et al. (44), who
Cardioprotection With Multiple Cardioprotective Agents or

Cardioprotective Effect Signaling Pathways

Additive effects on reducing
MI size

Mitochondrial KATP channel

nd Additive effects on reducing
MI size

cGMP/PKG/phospholamban
pathway

cing
Reduces infarct size when given

at different times of ischemia
duration, but effect is stronger
when given earlier

Cardiomyocyte oxygen
consumption reduction
and neutrophil
conformational
re-arrangements

s as in Table 1.



FIGURE 1 Main Cardioprotective Signaling Pathways That Can Be Targeted in Combination

Different comorbidities and cotreatments can influence protection via effects on different cellular and subcellular targets, as indicated by arrows.

MPTP ¼ mitochondrial permeability transition pore; SR ¼ sarcoplasmic reticulum.
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showed that triple therapy combining mild hypo-
thermia and cariporide (a sodium-hydrogen
exchanger inhibitor) during ischemia, with cangrelor
added at reperfusion conferred additive protection.
MULTIPLE CARDIOPROTECTIVE AGENTS OR

INTERVENTIONS TARGETING THE SAME SIGNALING

PATHWAY BUT WITH ADDITIVE EFFECTS. In some situ-
ations, 2 agents may act on the same signaling



TABLE 6 Main Clinical Studies (Completed and Ongoing) Investigating Multitargeted Agents or Interventions Against AMI IRI in STEMI Patients Undergoing PPCI

First Author,
Year (Trial) (Ref. #)

No. of Patients
(Control/Intervention)

Multitargeted
Treatment
Intervention Approach Primary Endpoint Outcome

Completed studies

Eitel et al., 2015
(LIPSIA-COND)
(54)

Control/IPost/RIPerCþIPost
232/232/232

Combined limb
RIPerC þ IPost

RIPerC: In hospital upper limb
3 cycles (5/5 min, 200 mm Hg),
IPost: (1-min balloon inflation/1-min

deflation) started as soon as possible
after reopening of the culprit
coronary artery

Myocardial salvage index
(edema and late
gadolinium enhancement
by CMR)

23% increase in
salvage index

No limb RIPerC alone
group

Pasupathy et al.,
2017 (NACIAM)
(56)

IV GTN/IV GTNþNAC
38/37

Combined
NACþGTN

IV GTN:
IV NAC:

MI size (late gadolinium
enhancement by CMR)

5.5% reduction in
infarct size

All patients received
GTN

Actively recruiting
studies

Ovize et al.,
(CARIOCA)
(NCT03155022)

Estimated enrolment
355/355

Combined limb
RIPerC and
IPost

RIC: In-hospital, upper limb,
4 cycles (5/5 min, 200 mm Hg) initiated

as soon as possible before PCI
IPost: 4 cycles (1 min balloon inflation/

1 min deflation) started as soon as
possible after reopening of the
culprit coronary artery

Combined incidence of all-
cause mortality; worsening
of heart failure during
initial hospitalization or
rehospitalization for heart
failure at 6 months after
PPCI

Recruiting

Garcia-Dorado et al.,
COMBAT-MI
(NCT02404376)

2 � 2 factorial design (RIC,
exenatide, both, or
neither)

107/107/107/107

Combined limb
RIPerCþ
exenatide

RIC: in-hospital, upper limb,
4 cycles (5/5 min, 200 mm Hg)
Intravenous infusion of exenatide

initiated before reperfusion

Myocardial infarct size (late
gadolinium enhancement
by CMR)

Recruiting

CARIOCA ¼ Combined Application of Remote and Intra-Coronary Ischemic Conditioning in Acute Myocardial Infarction; CMR ¼ cardiac magnetic resonance; COMBAT-MI ¼ COMBinAtion Therapy in
Myocardial Infarction; GTN ¼ nitroglycerin; IRI ¼ ischemia–reperfusion injury; IV ¼ intravenous; LIPSIA-COND ¼ Effect of Conditioning on Myocardial Damage in STEMI; NAC ¼ N-acetylcysteine;
NACIAM ¼ N-acetylcysteine in Acute Myocardial Infarction; PCI ¼ percutaneous coronary intervention; PPCI ¼ primary percutaneous coronary intervention; RIC ¼ remote ischemic conditioning;
STEMI ¼ ST-segment elevation myocardial infarction; other abbreviations as in Tables 1 and 3.
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pathway, one potentiating the other’s cardioprotective
effects (Table 4). For example, coadministration of the
NOS substrate L-arginine and cofactor tetrahy-
drobiopterin (BH4) just before reperfusion significantly
reduced MI size in both rats and pigs, despite neither
being protective on their own (45,46).

A SINGLE CARDIOPROTECTIVE AGENT OR INTERVENTION

WITH MULTIPLE TARGETS. There are many examples of
a single cardioprotective agent or single intervention
having multiple targets (Table 5), and one would
intuitively expect that these therapies would be more
effective than a single-target agent or intervention.
For example, intravenous metoprolol administered
before reperfusion reduces both infarct size and MVO
in mice (27), pigs (17), and humans (13). Classically,
metoprolol has been considered to reduce ischemic
injury by reducing energy demands from car-
diomyocytes, because it is more effective when given
early during ischemia (17). However, metoprolol has
recently been shown to act via the b1 adrenergic re-
ceptors on neutrophils to decrease neutrophil–platelet
coaggregate formation during reperfusion (17), which
can explain the strong effect of metoprolol on MVO.
The dual-target benefits of metoprolol appear to be
specific to this drug and not a class effect.

The endogenous cardioprotective strategies of IPC,
IPost, and RIC are known to protect the heart through
a number of different signaling pathways and might
therefore be assumed to confer a stronger car-
dioprotective effect than a single-target agent.

A single miRNA or small interfering RNA may
protect the heart against acute IRI through its effects
on a variety of different target mRNAs. Hybrid mol-
ecules may have 2 or more structural domains acting
as 2 distinct pharmacophores to provide additive
cardioprotection. For example, a hybrid compound
that combines the adenine nucleus with a moiety that
slowly releases hydrogen sulfide (H2S)–induced ad-
ditive cardioprotection (47). A hybrid molecule con-
sisting of a lipophilic NO donor and a lipophilic
antioxidant compound protected the rat heart against
acute IRI if given as a hybrid molecule, but not as a
mixture (48).

THE IMPACT OF COMORBIDITIES

AND COTREATMENTS

Since the first observations in animal studies in the
late nineties, it has been well established that many
of the signaling pathways involved in the protection
by ischemic conditioning interventions are affected
by several cardiovascular risk factors and comorbid-
ities such as sex, age, hypertension, and metabolic
diseases such as hyperlipidemia and diabetes (5). For

https://www.clinicaltrials.gov/ct2/show/NCT03155022
https://www.clinicaltrials.gov/ct2/show/NCT02404376
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example, conditioning stimuli are less effective in
diabetic animals because they are less able to activate
PI3K/Akt (49). A stronger stimulus or combination
strategy against additional targets may be required to
fully activate the protective pathways. For example,
cardioprotection can be restored by administering an
inhibitor of phosphatase and tensin homolog
(PTEN)—a major negative regulator of PI3K/Akt—to
maximize PI3K/Akt activation (50). Medications used
to treat a comorbidity may either interfere or enhance
cardioprotective signaling (6). Atorvastatin at reper-
fusion combined with IPost was able to overcome the
resistance of the diabetic murine heart to car-
dioprotection by augmenting the activation of the
Akt-eNOS pathway (51).

Most studies showing the interaction of certain
comorbidities with cardioprotection have been per-
formed in single comorbidity models with no specific
treatment of the comorbidity. Although most animal
experiments on IRI and protection from it were per-
formed in young and otherwise healthy (therefore
untreated) animals, patients recruited into clinical
cardioprotection trials are usually of advanced age
and have numerous comorbidities and related come-
dications as well as short-term treatments related to
AMI. An important example of comedications con-
founding cardioprotection are anesthetics including
propofol that can affect cardioprotection (6). There-
fore, more studies in adequate animal models more
closely mimicking the clinical situation with multiple
comorbidities and related comedications would be
ideal for finding drug targets (5). In this regard, it
should be noted that existing clinical therapies post-
MI already consist of many combination strategies.

The impact of comorbidities and cotreatments on
cardioprotection has long been suspected; however,
subgroup analyses performed in largescale clinical
studies including patients with multiple comorbid-
ities and comedications have not confirmed the con-
founding effect of a particular single comorbidity or
comedication (e.g., in the CIRCUS [Cyclosporine and
Prognosis in Acute Myocardial Infarction (MI) Pa-
tients] trial on cyclosporine A [52]).
CLINICAL STUDIES OF MULTITARGET THERAPY. The
main target patient population for cardioprotection is
those with STEMI undergoing immediate revascular-
ization by PPCI. Current clinical studies of multitarget
therapies are limited to combinations of different
ischemic conditioning strategies, a combination of
pharmacological treatments, or a combination of
pharmacological and conditioning strategies,
(Table 6), whereas physical measures such as hypo-
thermia or nerve stimulation have not been studied in
combination with other cardioprotective strategies.
As an example of a study investigating 2 in-
terventions targeted primarily to cardiomyocytes,
exenatide (53) and RIC (15), which have each
demonstrated cardioprotective efficacy individually
in STEMI patients undergoing PPCI, are being inves-
tigated in combination in the COMBAT-MI (COMBi-
nAtion Therapy in Myocardial Infarction) trial
(NCT02404376).

In an investigation of 2 therapies administered at
different time points, Eitel et al. (54) studied the
combination of in-hospital RIC before reperfusion
and intracoronary IPost after reopening the culprit
coronary artery in 696 STEMI patients. Whereas IPost
alone failed to improve myocardial salvage index
assessed by cardiac magnetic resonance, combined
RIC and IPost increased the salvage index. Because
there was no group treated with RIC alone, the study
could not confirm an additive effect. Another clinical
study failed to observe an additive cardioprotective
effect with limb RIC and IPost (55). The CARIOCA
(Combined Application of Remote and Intra-Coronary
Ischemic Conditioning in Acute Myocardial Infarc-
tion) trial (NCT03155022), investigating the efficacy of
combined in-hospital RIC before reperfusion and
IPost on clinical outcome is ongoing.

In a study intended to test the potentiating effect of
2 different cardioprotective agents, the NACIAM
(N-acetylcysteine in Acute Myocardial Infarction) trial
(56) examined the effects of N-acetylcysteine (NAC)
on infarct size in 75 patients with STEMI undergoing
PPCI. NAC is an antioxidant and potentiates the ef-
fects of nitroglycerine. With background nitroglycerin
infusion administered to all, patients receiving NAC
had an absolute 5.5% reduction in cardiac magnetic
resonance imaging–assessed infarct size relative to
placebo. However, the study design of the trial did not
provide conclusive information about mechanisms
involved, because all patients received nitroglycerin (56).

As an example of a single agent targeting multiple
pathways, metoprolol has been studied in STEMI
patients; however, results have been mixed (13,57).

FUTURE RECOMMENDATIONS

Extensive evidence accumulated over the past 30
years has shown that a multitude of cardioprotective
therapies are effective at reducing infarct size in an-
imal models of IRI (3,4,6,32). However, routinely used
animal models of IRI do not adequately recapitulate
the complex phenomenon of IRI in patients. Here, we
hypothesize that to be effective in these models, and
to effectively translate cardioprotection to patients, a
multitarget cardioprotective therapy is necessary.
Combinations of interventions with solid preclinical

https://www.clinicaltrials.gov/ct2/show/NCT02404376
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information on mechanism of action, efficacy, and
safety, and that are easily applicable are good candi-
dates to be moved to clinical trials. In designing such
a trial, a factorial design may be used to prove addi-
tive benefit of a combination, but this approach in-
creases patient numbers needed. A better approach
may be to first prove additive benefit in animal
models and then test the combination in patients
against control. Another important consideration is
that STEMI patients receive comedications such as
P2Y12 inhibitors. Other factors such as the effect on
arrhythmias and long-term cardiac remodeling
should also be considered.

In light of the examples discussed in the previous
sections, some promising examples of approaches to
multitargeted cardioprotection include:

� A combination of RIC with a drug with a different
mechanism of action—this is being tested in the
COMBAT-MI trial.

� A combination of a drug that activates endoge-
nous cardioprotective pathways (RISK, SAFE,
cGMP/PKG) with a drug that inhibits cell death
pathways.

� A drug targeting vascular injury/inflammation with
a drug targeting cardiomyocyte death.

We hypothesize that the ideal multitargeted
therapy might be one that can target MVO
(e.g., intravenous cangrelor or ANGPL4), target car-
diomyocytes (e.g., remote ischemic per-conditioning)
and target inflammation (e.g., metoprolol). The
timing of administration of these modalities could
potentially be separated over time.

ADDRESS FOR CORRESPONDENCE: Dr. Sean M.
Davidson, The Hatter Cardiovascular Institute, Uni-
versity College London, 67 Chenies Mews, London
WC1E 6HX, United Kingdom. E-mail: s.davidson@ucl.
ac.uk. Twitter: @UCL. OR Dr. David Garcia-Dorado,
Servicio de Cardiología, Hospital Universitari Vall
d’Hebron, Passeig Vall d’Hebron, 119-129, 08035,
Barcelona, Spain. E-mail: dgdorado@vhebron.net.
Twitter: @VHIR.
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