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Study of Abnormal Group Velocities 
in Flexural Metamaterials
Hong Woo Park & Joo Hwan Oh

Generally, it has been known that the optical branch of a simple one-dimensional periodic structure has 
a negative group velocity at the first Brillouin zone due to the band-folding effect. However, the optical 
branch of the flexural wave in one-dimensional periodic structure doesn’t always have negative group 
velocity. The problem is that the condition whether the group velocity of the flexural optical branch is 
negative, positive or positive-negative has not been studied yet. In consequence, who try to achieve 
negative group velocity has suffered from trial-error process without an analytic guideline. In this paper, 
the analytic investigation for this abnormal behavior is carried out. In particular, we discovered that 
the group velocity of the optical branch in flexural metamaterials is determined by a simple condition 
expressed in terms of a stiffness ratio and inertia ratio of the metamaterial. To derive the analytic 
condition, an extended mass-spring system is used to calculate the wave dispersion relationship in 
flexural metamaterials. For the validation, various numerical simulations are carried out, including a 
dispersion curve calculation and three-dimensional wave simulation. The results studied in this paper 
are expected to provide new guidelines in designing flexural metamaterials to have desired wave 
dispersion curves.

Flexural metamaterial is an artificially-made elastic metamaterial that tailors flexural waves by periodically 
arranged sub-wavelength unit cells. By using previously known dynamics of metamaterials, such as the internal 
resonance phenomena1–11 or Bragg scattering12–16, numerous flexural metamaterials have been proposed17–24. 
Recent researches about flexural metamaterials focused on its unique characteristics25,26 which originate from the 
fact that flexural wave is governed by its own unique equation unlike other metamaterials27. For example, Lee et 
al.25 reported that flexural metamaterial accompanied with rotational resonance exhibits peculiar bandgap phe-
nomena that cannot be explained with previously developed theories on metamaterial. Also, Oh et al.26 showed 
that a first-order wave mode could be flattened with zero rotational stiffness so that a broad, low-frequency band-
gap can be obtained. However, despite the previous researches, unique wave characteristics of flexural metama-
terials are still not fully understood.

Here, we’d like to focus on the group velocity issue among the other unique characteristics of the flexural meta-
materials. For better explanation about the issue, the dispersion curves of flexural wave mode are compared with the 
longitudinal wave mode as shown in Fig. 1. When the longitudinal wave propagates inside the periodic structures, 
shown in Fig. 1(a), the optical branch of the dispersion curve usually has a negative group velocity, as in Fig. 1(b), 
because it originates from the well-known band-folding at the Brillouin zone. (Here, we will use the term ‘acoustic 
branch’ and ‘optical branch’28 to describe the lower and upper wave dispersion branch, respectively. Also, the group 
velocity is defined in the first Brillouin zone29, following the general definition)30,31. However, this general under-
standing does not hold for flexural wave; the optical branch of the flexural metamaterial does not always have nega-
tive group velocity. For the flexural wave, the optical branch could have negative, positive or even positive-negative 
group velocity, as in Fig. 1(c). According to the previous researches on elastic metamaterials30–33, the optical branch 
with both positive-negative group velocity is usually observed if the material is two- or three-dimensional struc-
ture30,31, or if there exists any coupling between various elastic wave modes32,33. However, as can be seen in Fig. 1, 
none of the case belongs to the flexural wave’s group velocity issue - the group velocity issue is observed for even 
one-dimensional simple periodic structure where flexural wave mode is not coupled with any other wave modes 
such as longitudinal, shear or torsional wave modes. Because of this unique characteristic, previous research utiliz-
ing negative group velocity in periodic structures, such as negative refraction30,31,34 or wave-focusing34,35, cannot be 
directly applied to the flexural metamaterial. In consequence, there is currently no design guideline to utilize the 
optical branch in flexural metamaterials and they have been designed by trial-and-errors.
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In this paper, we present an analytic investigation and background physics of the group velocity issue in the 
optical branch of flexural metamaterials. From the analytic approach, we found that there is a certain condition 
that determines whether the optical branch has purely positive, negative or both positive-negative group veloc-
ity. The condition can be simply expressed by the stiffness ratio (the ratio between shear and bending stiffness 
of the flexural metamaterial) and the inertia ratio (the ratio between mass and rotational inertia of the flex-
ural metamaterial). From the study, one can easily design the flexural metamaterial to have negative, positive or 
positive-negative group velocities by adjusting the stiffness ratio and the inertia ratio. Also, we figured out the 
background physics that cause the group velocity issue, with the explanation why the issue is hardly observed in 
other metamaterials.

To analytically study the group velocity issue in optical branch of flexural metamaterials, we used the extended 
mass-spring system developed by Oh et al.26 for flexural metamaterials. The extended mass-spring system is based 
on the classical Timoshenko beam theory26. In the extended mass-spring system, each mass is assumed to have 
two degrees of freedom - the vertical and rotational motions - and the dispersive nature of flexural metamaterial 
can be precisely and easily studied. Therefore, there is no need to use the complicated guided wave theories or to 
extend the Kirchhoff plate theory to periodic systems to consider the flexural metamaterial. From the extended 
mass-spring system, analytic condition governing the group velocity in flexural metamaterial is derived. To sup-
port the findings from our analytic investigation, numerical validations are carried out by numerically calculating 
the wave dispersion curves for various flexural metamaterials. Also, three-dimensional wave analyses are carried 
out to show that the derived analytic conditions and related findings can be used for three-dimensional systems.

Results
Analytic condition for the group velocity issue of the optical branch.  Unlike acoustic or other elas-
tic wave modes, flexural waves are governed by different wave equations and are thus hard to be expressed in gen-
eral mass-spring systems. Therefore, the extended mass-spring system shown in Fig. 2 was developed to consider 
the flexural wave with discrete mass-spring system25,26. Since this system is based on the classical Timoshenko 
beam theory, it cannot be used for very high frequency ranges. However, in current research, we consider the 
frequency range covering acoustic and optical branches, and the extended mass-spring system can precisely pre-
dict flexural wave motion at this frequency range25,26. In Fig. 2, the nth unit cell with the periodicity of a consists 
of two kinds of inertias (mass m and rotational inertia I) and two kinds of springs (vertical linear spring α and 

Figure 1.  (a) Various simple one-dimensional periodic systems made by aluminum (thickness of the two 
connectors is 1 mm), (b) the dispersion curves for longitudinal waves show a negative group velocity on the 
optical branch, (c) the dispersion curves for flexural waves show negative, positive-negative and positive group 
velocity on the optical branch.

https://doi.org/10.1038/s41598-019-50146-8


3Scientific Reports |         (2019) 9:13973  | https://doi.org/10.1038/s41598-019-50146-8

www.nature.com/scientificreportswww.nature.com/scientificreports/

rotational spring β) in order to consider two kinds of motions, vertical linear motion wn and rotational motion θn, 
respectively. With this system, the wave dispersion relationships can be obtained as (see the detailed derivation 
in Supplementary Material):

ω ω+ + =Im A k B k( ) ( ) 0 (1)4 2

where A(k) and B(k) are defined as:
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By using the quadratic formula, Eq. (1) can be solved with respect to ω2 as:
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Equations (3a) and (3b) indicate that there are two different dispersion curves in the extended mass-spring 
system. Here, Eq. (3a) corresponds to the acoustic branch, while Eq. (3b) corresponds to the optical branch of the 
flexural wave in the periodic system.

To determine whether the optical branch has a positive or negative group velocity, the analytic equation for the 
group velocity of the optical branch should be considered. The equation for the group velocity can be achieved by 
differentiating the dispersion relation in Eq. (1) with wavenumber k as:
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Equation (4) can be re-arranged as:
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Figure 2.  Extended mass-spring system for flexural metamaterials which is governed by vertical motion (wn) 
and rotational motion (θn). The unit cell, arranged with periodicity (a), consists of mass (m), rotational inertia 
(I), linear spring (α) and rotational spring (β).
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In Eq. (7), it is worth noting that the angular frequency ω and the wavenumber k satisfy the wave dispersion 
relation shown in Eq. (1). Since we are considering the optical branch whose equation is shown in Eq. (3b), the ω2 
term in Eq. (7) can be replaced as:
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In Eq. (8), the denominator is always positive for the optical branch. Therefore, the sign of ∂ω/∂k is governed 
by the sign of the numerator. The numerator in Eq. (8) can be expressed as:
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Due to the periodicity, the group velocities at k = 0 and k = π/a are already known to be zero, so we focus on 
the wavenumber range of 0 < k < π/a. At this range, sin (ka) is always positive. Thus, the sign of ∂ω/∂k is deter-
mined by its numerator as shown below:
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In Eq. (10), note that cos (ka) − 1 has a negative value at 0 < k < π/a. This indicates that 8αβ [cos (ka) − 1] has 
a negative value at 0 < k < π/a. Therefore, the sign of ∂ω/∂k depends on that of [2(αI + βm) − αma2/2]ω2 term. 
Because ω2 should be always positive, we can consider the following two cases:
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In CASE 1, where the sum of the inertia ratio (I/m) and the stiffness ratio (β/α) is smaller than a2/4 (note that 
a is the periodicity), both 8αβ [cos (ka) − 1] and [2(αI + βm) − αma2/2]ω2 in Eq. (10) are negative at 0 < k < π/a. 
Therefore, in CASE 1, ∂ω/∂k is negative, and the optical branch has a negative group velocity as shown in Fig. 1(c).

In CASE 2, the group velocity ∂ω/∂k can be negative or positive. From Eq. (10), the corresponding conditions 
can be written as:
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Again, we note that the angular frequency ω and the wavenumber k should satisfy the wave dispersion rela-
tion. Therefore, one may substitute the wave dispersion equation (shown in Eq. (3b)) with Eq. (12) to get the final 
condition. However, since this would be too complicated, we will use graphical approach instead. Figure 3 shows 
two regions satisfying Eqs (12a) and (12c), respectively. Here, the dotted line is the curve indicated in Eq. (12b). If 
the optical branch is in the red region, both the dispersion Eqs (3b) and (12a) are satisfied, and the group velocity 
∂ω/∂k should thus be positive. On the other hand, if the optical branch is in the blue region, representing Eq. 
(12c), the group velocity ∂ω/∂k is negative. As illustrated by Fig. 3, if there is a point of intersection between the 
dotted line and the optical branch, i.e. if there exists a certain frequency ω that satisfies both Eqs (3b) and (12b), 
then the optical branch will exhibit both positive-negative group velocities (note that there can be only one inter-
section point – once the optical branch enters the blue region, the branch exhibits a negative slope and cannot 
intersect with the dotted line again). Also, it can be seen that when there is no intersection the optical branch 
exhibits a purely positive group velocity.

Thus, the condition of whether the group velocity exhibits purely positive group velocity or both the 
positive-negative group velocities can be established by the existence of the intersection point between the dotted 
line and the optical branch in Fig. 3(b). Since there can be at most one intersection point, we can focus on the fre-
quencies of the optical branch at k = 0 and k = π/a. At k = 0, the dotted line is at zero frequency while the optical 
branch is located at nonzero frequency - the optical branch is thus in the red region at k = 0. Therefore, one may 
conclude that if the optical branch is in the blue region at k = π/a, i.e., if the dotted line has higher frequency than 
the optical branch at k = π/a, then there must exist an intersection point and thus the optical branch should have 
both positive-negative group velocities. Substituting k = π/a into Eqs (3b) and (12b) to figure out the frequencies 
of the optical branch yields:
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while ωk = π/a is the frequency on the optical branch and ω* is defined on the dotted line (see Fig. 3). From 
Fig. 3(a,b), it can be seen that there is no intersection point if ωk = π/a > ω*; otherwise, there is an intersection 
point and the optical branch exhibit both positive-negative group velocities. From these explanations, the follow-
ing conditions can be achieved:purely positive group velocity if
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Note that the denominator of Eq. (14) is positive in the CASE 2. Thus, Eq. (15) can be simplified by substitut-
ing Eq. (14) as:
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Figure 3.  Plot of the wave dispersion curve (solid line) and Eq. (12b) (dashed line) when the optical branch has 
(a) purely positive group velocity and (b) both the positive-negative group velocities.
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Figure 4 summarizes the analytic conditions achieved in this section. As illustrated by Fig. 4, the group veloc-
ity of a flexural metamaterial is determined by its inertia ratio (I/m) and stiffness ratio (β/α). If the sum of two 
ratios is smaller than a2/4, the optical branch of the flexural metamaterial will have only negative group velocity. 
On the other hand, if the sum is larger than a2/4, the difference between two ratios plays important role. If the 
difference larger than a2/4, the optical branch will have a positive group velocity. Otherwise, both the positive and 
negative group velocities can be observed in the optical branch if the difference is smaller than a2/4. By manip-
ulating these variables, one can tailor the flexural metamaterial to have a desired group velocity at its optical 
branch.

Physical background of the exceptional group velocity issue.  From the previous section, the ana-
lytic condition of positive, negative or positive-negative group velocities for the optical branch is derived. In 
this section, the physical origin of the group velocity issue is investigated. To identify the physical background, 
the real and imaginary parts of the wavenumber of the optical branch are focused. By re-arranging and solving 
the dispersion relation, in Eq. (1), with respect to wavenumber k, the following equations can be achieved. (see 
Supplementary Material for the detailed procedure):
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According to Timoshenko beam theory, Eq. (17a) represents the wavenumber of the lowest order wave mode 
and Eq. (17b) represents the wavenumber of the higher order wave mode. From these two equations, dispersion 
curves can be plotted with both the real and imaginary wavenumber as shown in Fig. 5(a–c). The lowest order 
flexural wave mode is plotted in the red line and the higher order wave mode is plotted in the blue line. In addi-
tion, curves with the real wavenumber are plotted in the solid line while with the imaginary wavenumber are 
plotted in the dashed line.

First, consider the case in which the optical branch has a purely negative group velocity, whose dispersion 
curve is plotted in Fig. 5(a). As the figure shows, both the acoustic branch and optical branch consist of the red 
solid line, which means that both acoustic and optical branches belong to the lowest order flexural wave mode. 
For this case, the optical branch can be viewed as the band-folded wave of the lowest order flexural wave mode, 
which is generated by the periodicity. The higher-order flexural wave mode is shown to remain in the imaginary 

Figure 4.  Visualized analytic condition for the group velocity in optical branch of flexural metamaterials.
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wavevector region, showing that the cutoff frequency of the higher-order flexural wave mode is higher than the 
optical branch.

Now, consider the case shown in Fig. 5(b) describing the case in which the optical branch has a purely pos-
itive group velocity. The acoustic branch is plotted in the red line while the optical branch is plotted in the blue 
line. At the frequency range of the optical branch, the lowest order flexural wave mode remains at the imaginary 
region with a real value of k = π/a. This indicates that the lowest order flexural wave mode is within the Bragg 
gap at the frequency range of the optical branch. Consequently, it may be concluded that the optical branch is the 
higher-order flexural wave mode while the acoustic branch is the lowest order flexural wave mode. In this case, 
the cutoff frequency of the higher-order flexural wave mode is very low such that the branch of the higher-order 
wave appears earlier than that of the band-folded lowest order flexural wave mode. Obviously, the branch should 
have a positive group velocity.

In Fig. 5(c), where the case in which the optical branch has both positive-negative group velocities is described, 
it can be seen that the optical branch is divided into two parts; the positive slope part (having a positive group 
velocity) is plotted in the blue line while the negative slope part (having a negative group velocity) is plotted in 
the red line. This indicates that the optical branch consists of both the lowest order flexural wave mode and the 
higher-order flexural wave mode. The higher-order flexural wave mode, having a positive group velocity, inter-
sects with the band-folded lowest order flexural wave mode (a phenomenon usually called ‘branch-overlapping’), 
and both wave modes enter the imaginary plane at the intersection point. This is why the positive-negative group 
velocity is sometimes formed with the flexural metamaterial.

These results explain the background physics about how the flexural metamaterials can have negative, positive 
or even positive-negative group velocities. For other elastic wave mode such as longitudinal or shear waves, the 
higher-order wave modes have very high cutoff frequencies. Thus, there is generally no effect of higher-order 
wave mode on the optical branch for the longitudinal and shear wave modes. In flexural waves, however, the 
cutoff frequency of the higher-order wave modes is relatively low, and there can be possible interactions between 
the higher-order and the band-folded lowest-order wave modes. It results various abnormal group velocity phe-
nomena in flexural metamaterials; the optical branch of flexural metamaterial can exhibit negative, positive or 
positive-negative group velocity.

Numerical validation with wave dispersion curves.  In the previous section it was shown that there is 
a certain condition defined by the inertia ratio and stiffness ratio, that determines whether the optical branch has 
positive, negative or both positive-negative group velocity in flexural metamaterials. To validate these analytic 
findings, the wave dispersion curves for various elastic metamaterials are numerically calculated. To effectively 
validate the analytic condition derived in the previous section, flexural metamaterials whose inertia ratio (I/m) 
and stiffness ratio (β/α) can be easily tuned should be introduced. To this end, the flexural metamaterial shown in 
Fig. 6(a) is considered. Figure 6(b,c) shows how the stiffness ratio and inertia ratio can be tuned with the proposed 
metamaterial; the stiffness ratio can be tuned by adjusting the distance between the connector couple d, while the 
inertia ratio can be tuned by changing the height of the block h. For instance, if the distance between the connec-
tor couple d increases, the vertical force generated by the connector is unchanged and the vertical linear spring 
α thus remains constant. However, increasing the distance d will increase the distance from the rotation center, 
which will increase the moment generated by the connector couple. Increasing the distance d thus increases the 
rotational spring β, and the stiffness ratio (β/α) can be adjusted by changing the distance between the connec-
tors d. On the other hand, changing the thickness of the block h will both increase the mass m and the rotational 
inertia I. But the rotational inertia I is much more affected by the thickness h and thus I will be more increased. 
Accordingly, the mass ratio (I/m) can be easily tuned by changing the thickness of the block h.

Based on the flexural metamaterial in Fig. 6(a), we conduct numerical validations for the analytic condition 
derived in Eq. (16). First, we considered 5 metamaterials having the same connector distance d but various thick-
nesses of block h, i.e., having the same stiffness ratio but different inertia ratio – the stiffness and inertia ratios of 
each metamaterial is plotted in Fig. 7(a). By using the numerical method with periodic boundary conditions36, 
the wave dispersion curve for the flexural elastic wave is numerically calculated for each metamaterial. For the 
comparison, the wave dispersion curve for each metamaterial is also analytically calculated by using Eq. (3). 

Figure 5.  Plot of wave dispersion curves for both real and imaginary value of wavevectors. Here, flexural 
metamaterials whose optical branch has (a) purely negative group velocity, (b) purely positive group velocity 
and (c) both the positive-negative group velocities are considered, respectively.
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Here, coefficients, such as α, β, m and I for each metamaterials, are numerically calculated from static analyses as 
done in refs10,11. For instance, the equivalent vertical spring coefficient α is calculated by static numerical analysis 
imposing unit force along the thickness direction and measuring the corresponding displacement.

Figure 7(b–f) plots the numerically and analytically calculated wave dispersion curves. Note that in the 
numerical results, only the wave dispersion curve for the flexural wave mode is plotted; the curves for longitu-
dinal and shear wave modes are omitted. Very good agreements are observed between numerical and analytic 
results, suggesting that the analytic approach used can well-predict both the actual wave behavior of the contin-
uum flexural metamaterial and whether the optical branch of the metamaterial has positive, negative or both 

Figure 6.  (a) Flexural metamaterial whose ratio and stiffness ratio can be easily tuned. Here, aluminum 
(E = 70 GPa, v = 0.31, ρ = 2700 kg/m3) is considered as the base material. (b) The stiffness ratio can be tuned by 
adjusting the distance d and (c) the inertia ratio can be tuned by adjusting the height h.

Figure 7.  (a) Flexural metamaterials having constant stiffness ratio and various inertia ratio, and the wave 
dispersion curves for metamaterial with d = 0.7 mm and (b) h = 55.9 mm, (c) h = 50.4 mm, (d) h = 44.2 mm, (e) 
h = 36.9 mm and (f) h = 27.9 mm.
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positive-negative group velocities. At the given stiffness ratio, the optical branch exhibits positive group velocities 
for large inertia ratios (see the metamaterial cases for Fig. 7(b,c)). However, as the inertia ratio decreases, the 
optical branch has both positive-negative group velocities as in Fig. 7(d) and, finally, it has a purely negative group 
velocity as in Fig. 7(e,f). This observation clearly validates the analytic condition summarized in Fig. 4.

Now, we newly consider another 5 metamaterials with a constant inertia ratio but different stiffness ratio by 
adjusting the distance between the two connectors d. Figure 8(a) shows the stiffness and inertia ratio for each 
metamaterial. Again, the wave dispersion curves are both numerically and analytically calculated and plotted 
together in Fig. 8(b–f). From Fig. 8(b–f), one can deduce that the analytic condition derived in this work accu-
rately predicts the group velocity of the metamaterial’s optical branch. For the constant inertia ratio, if the stiffness 
ratio is large as in Fig. 8(b,c), the group velocity of the optical branch is shown to be positive. However, the group 
velocity becomes both positive-negative and purely negative if the stiffness ratio decreases, as in Figs (d–f). This 
also supports the analytic condition summarized in Fig. 4. In conclusion, the numerical simulations clearly show 
that the sign of the group velocity of the flexural metamaterial’s optical branch is determined by the analytic con-
dition derived in this work.

Numerical validation with three-dimensional wave simulations.  From the analytic investigations 
and numerical validations, it was shown that the optical branch of flexural metamaterials can have a negative, 
positive or both positive-negative group velocities according to its stiffness ratio and inertia ratio. However, 
the validation based on a wave dispersion curve may not provide clear results since the branch can be a ghost 
branch, deaf mode37 or other wave modes. Also, since all theories and dispersion analyses were made with 
two-dimensional structures, one may question that the results may not hold for three-dimensional metamaterial 
structures. Therefore, in order to further clarify the numerical validations, we carried out the negative and pos-
itive refraction simulation by using the three-dimensional flexural metamaterials, which are designed based on 
the analytic condition derived in this work.

Figure 9(a) shows the three-dimensional unit cell, which is designed to have a negative group velocity. The 
metamaterial is designed to have a stiffness ratio of 6.667e-5 m2 and an inertia ratio of 8.268e-6 m2. According 
to the derived analytic condition, the metamaterial is expected to have a negative group velocity for its optical 
branch, as shown in Fig. 9(b). To show that the metamaterial indeed exhibits negative group velocity, a wave sim-
ulation is carried out. Here, the metamaterial is used to form a triangular prism, as in Fig. 9(c), and the flexural 

Figure 8.  (a) Flexural metamaterials having constant inertia ratio and various stiffness ratio, and the wave 
dispersion curves for metamaterial with h = 13.7 mm and (b) d = 1.79 mm, (c) d = 1.58 mm, (d) d = 1.35 mm, 
(e) d = 1.08 mm and (f) d = 0.77 mm.
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wave is actuated on the left side of the prism. Also, the perfectly matched layer (PML) is placed around the system 
to prevent any reflected waves from the boundary. Figure 9(c) shows the time-harmonic analysis results for the 
metamaterial shown in Fig. 9(a) (note that the simulation is a three-dimensional and the figure is plotted on the 
x-y plane). It can be seen that negative refraction phenomena can be observed from the simulation results – the 
refraction angle from the wave simulation is −41 degrees, which agree well with the analytically calculated refrac-
tion angle of −40.796 degrees. This result suggests that the analytic findings also hold for the three- dimensional 
case, and that the optical branch considered in this work is indeed the flexural wave, not the ghost branch, deaf 
mode or other wave modes.

It was already shown that if the height of the block in the unit cell is increased, then the inertia ratio increases, 
and achieving a positive group velocity is possible. Figure 10(a) shows the three-dimensional unit cell which is 
designed in this way. With the unit cell, the stiffness ratio is measured to be 3.994e-6 m2 while the inertia ratio is 
evaluated as 1.521e-4 m2. These stiffness and inertia ratios are expected to provide the optical branch of the meta-
material having a positive group velocity, as shown in Fig. 10(b). To confirm this point, the same wave simulation 
is carried out by forming a metamaterial prism with the unit cell in Fig. 10(a). Figure 10(c) shows the wave simu-
lation results. Here, the refraction angle is shown to be 38 degrees (from the wave simulation) and 39.857 degrees 
(from analytic calculations). The result shows that the metamaterials exhibit positive group velocity, validating the 
analytic investigations carried out in this work.

Discussion
In this research, the abnormal group velocity generally observed in flexural metamaterial’s optical branches 
is analytically studied. Unlike other wave modes, the optical branch of the flexural metamaterial can be either 
band-folded, high-order branch or both, and the group velocity can be purely negative, positive or both 
positive-negative, respectively. To determine the detailed condition for the interaction, extended mass-spring 
systems for flexural metamaterial were considered. In the extended mass-spring system, both the vertical dis-
placement and rotation of the metamaterial unit cell were considered to precisely analyze the wave motion in 
flexural metamaterials. From the analytic investigations, we found that the group velocity of the optical branch 
in flexural metamaterial is governed by a certain condition expressed by the stiffness and inertia ratio of the 
flexural metamaterial. Also, the analytic investigation showed that the abnormal characteristics originate from 
the higher-order flexural wave mode; flexural waves have very low cut-off frequency for high-order wave modes 

Figure 9.  (a) Three-dimensional flexural metamaterial design having negative group velocity. (b) Wave 
dispersion curves achieved with numerical calculation (black solid line) and analytic equation (red dotted line). 
(c) Numerical wave simulation result at 10 kHz.
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and thus the interaction between the band-folded lowest order flexural wave mode branch and high-order wave 
branch is highly active. If both the inertia and stiffness ratios are small, the optical branch of the flexural met-
amaterial is shown to be a purely band-folded lowest order flexural wave mode having negative group velocity. 
On the other hand, if one of the ratios is significantly larger than the other, the higher-order flexural wave mode 
dominates the optical branch and thus the optical branch exhibits purely positive group velocity. If both ratios 
are large and there is no significant difference between two ratios, the band-overlapping between the band-folded 
lowest order flexural wave mode and higher-order flexural wave mode takes place and thus the optical branch 
shows both positive-negative group velocities.

To validate the analytic investigation, numerical validations were carried out. In these validations, we intro-
duced a new flexural metamaterial design whose stiffness and inertia ratios can be easily and independently 
tuned. Based on the design, flexural metamaterials having various stiffness and inertia ratios were numerically 
investigated by calculating their dispersion curves. Calculation results showed that the optical branch of the flex-
ural metamaterial may have negative, positive or both positive-negative group velocity depends on the analytic 
condition derived. Also, additional wave simulation showed that the optical branch considered here is indeed the 
flexural wave’s dispersion branch. These results clearly validated the derived analytic condition.

We expect that the analytic condition derived in this paper will provide effective guidelines in designing var-
ious flexural metamaterials. In fact, although the issue related to the group velocity can be easily observed when 
designing flexural metamaterials, its physical background or any guidelines have not yet been given. By using the 
condition derived here, one can easily design metamaterials to have positive or negative group velocity by tailor-
ing the stiffness and inertia ratios. Considering that flexural wave motion is closely related to vibrational applica-
tions, various new vibration systems, such as vibration-focusing devices, are expected to be newly designed based 
on the proposed analytic condition.

Data Availability
The datasets generated during and/or analyzed during the current study are available from the corresponding 
author on reasonable request.

Figure 10.  (a) Three-dimensional flexural metamaterial designed to have positive group velocity. (b) Wave 
dispersion curves achieved with numerical calculation (black solid line) and analytic equation (red dotted line). 
(c) Numerical wave simulation result at 10 kHz.
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