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A B S T R A C T   

Subsurface deformation behavior of a polymeric material is studied through the digital volume correlation (DVC) 
technique. Fundamental principles of the DVC technique are presented and the supplemental state-of-the-art 
algorithmic schemes to improve the efficiency and accuracy of the DVC analysis are also introduced. Tensile 
tests on an epoxy material are performed in conjunction with synchrotron radiation tomography. In order to 
create randomly distributed grayscale values in the tomograms for the following image analysis, microscale high- 
density particles are embedded when the epoxy specimens are fabricated. 3D tomographic images taken at 
multiple loading steps are utilized for the DVC analysis. The performance of the present DVC analysis is eval
uated with the experimental data.   

1. Introduction 

Since the 1980s, the digital image correlation (DIC) technique has 
been widely used to measure real-time full-field data pertaining to 
displacement and strains [1–5]. This non-destructive testing method is 
capable of measuring deformation behavior of a material over a wide 
area in exceptional detail. The capability of measuring out-of-plane 
displacement is also incorporated [6–10] into the method, which con
ventional measuring tools such as a strain gage and an extensometer fail 
to offer. As a result, nowadays, the imaging technique is routinely used 
for the quantitative investigation of material behavior. However, the 
DIC technique can measure the displacement and strain data only on the 
specimen surface where a speckle pattern is applied. The surface infor
mation is often insufficient to completely represent complicated me
chanical response of an anisotropic heterogeneous material like 
composites or a material with a complex microstructure such as bones 
and foams. In order to have a better understanding of these types of 
materials, it is necessary to observe subsurface deformation behavior, 
which the current DIC approach cannot detect [11]. 

Digital volume correlation (DVC) technique has been effectively used 
to determine the internal volumetric deformation behavior of solid 
materials since it was proposed by Bay and Smith [12,13]. The DVC 
technique can be considered as the extended version of the DIC approach 
to three-dimensional (3D) domain in conjunction with micro-computed 
tomography (μCT). Therefore, the 3D imaging technique shares its 

simplicity in terms of principles and effectiveness when it comes to 
applications with the well-established DIC method [14,15]. Since the 
DVC technique was first applied in the field of medical biology, various 
materials including bones [12,16], soft materials [17,18], wood [19], 
sand [20], and ceramic [21] are characterized by the 3D image analysis. 
As the X-ray μCT technique evolves, the resolution of tomographic im
ages has been refined as low as one micron with better image quality, 
lower noise, and fewer artefacts. The subsurface deformation behavior 
of a material can now be quantified at a micro-length scale through the 
DVC approach. However, the computational burden of the DVC analysis 
is considerably heavier than the DIC approach because of the additional 
degree of freedom (DOF) in space. Thus, the improvement of the 
computational speed has been one of the key issues in the 3D DVC 
analysis, posing a challenge to researchers from the past decade [15]. 

In the present study, deformation behavior inside a polymeric ma
terial is investigated using the DVC technique. 3D CT images for the DVC 
analysis are taken during in situ tensile tests performed at a synchrotron 
facility. The in situ mechanical testing protocol using the synchrotron 
light source is described in great detail. Polymeric materials are gener
ally considered as an isotropic homogeneous material. Tomograms of 
such a material may not have a wide variation of grayscale values that is 
crucial for image correlation techniques. Note that the DIC analysis 
cannot be performed without a speckle pattern. The DVC analysis 
typically utilizes image contrast mainly resulted from the natural 
pattern of a complex material microstructure. Since the polymer 
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specimen considered in the present study does not have such a distinct 
natural pattern, high-density microscale particles are inserted when the 
specimen is fabricated to create a “3D volumetric speckle pattern.” The 
present DVC analysis is performed using in-house DVC software opti
mized for massive 3D volume data with micro-voxel resolution. The 
matching process of the software is based on the zero-normalized cross 
correlation (ZNCC) method. The DVC program employs fast Fourier 
transform (FFT) and precomputation strategies, which are classical 
remedies to improve the computational efficiency for recursive template 
matching processes. Parallelization scheme is also implemented for the 
present DVC analysis. 

The rest of this paper is organized as follows. Section 2 describes the 
specimen preparation process and in situ mechanical testing protocol. 
Section 3 first presents the fundamental principle of the correlation 
process in the view of the DIC technique and then describes the details of 
the present DVC approach including the resolution refinement tech
nique. The present DVC analysis is evaluated in Section 4 by comparing 
the measurement results against experimental data. The conclusions of 
the present study are summarized in Section 5. 

2. Experimental procedure 

2.1. Preparation of specimens 

For the demonstration of the present DVC analysis, the INF-114 
epoxy resin with the INF-212 hardener from Pro-Set Inc. is utilized to 
fabricate test specimens. INF-114/INF-212 is an ordinary resin system 
for a typical infusion molding process. In the present work, the resin is 
mixed with the hardener by hand and the mixture is dripped into an 
acrylic mold with a rectangular shape using a conventional liquid 

dropper. The resin is then gelated at room temperature and subsequently 
post-cured for 8 h at 80 �C in an oven to improve the mechanical per
formance as instructed by the technical data sheet [22]. The specimen 
dimension is 25 mm � 3 mm � 2 mm with the gage length of 11 mm. In 
order to detect the subsurface deformation behavior of the epoxy using 
the image correlation approach, micro-scale copper particles are 
embedded into the specimens to introduce heterogeneity to the homo
geneous material and thus to create the gray-level distribution in X-ray 
images [23]. Embedding the copper particle in the material is analogous 
to applying a speckle pattern for the DIC technique. Since the density of 
copper is much higher than that of the epoxy resin, the particles will 
absorb more X-rays and thus will be imaged in bright color on radio
graphs. Fig. 1 shows a copper particle embedded in the specimen. 
Typical diameter of the sphere-shaped particles is about 4 μm. The 
copper particles and epoxy resin are mixed using a centrifugal paste 
mixer, and a three roll mill is used for dispersing the particles in the 
viscous resin as evenly as possible. The three roll mill is a machine 
whereby a shear force is applied via three horizontally positioned rolls 
rotating in opposite directions at different speeds relative to each other, 
in order to mix, refine, disperse, or homogenize viscous materials fed 
into it [24]. 

The amount of the copper particles inserted into the resin is set to 
20 wt%, which is equivalent to 5.88% by the measure of a volume 
fraction. The particular weight percentage is decided by observing the 
section images of the specimens containing different percentages of the 
particles. Fig. 2 (a), (b) and (c) show the SEM images of the specimens 
with the particle mass fractions of 10, 15, and 20 wt%, respectively. The 
black region corresponds to the epoxy resin and the red dots represent 
the copper particles, which are originally white but later colored red for 
clear visibility. As can be seen in Fig. 2 (a), (b) and (c), the particles are 
well dispersed in the epoxy resin for all the cases. However, the distri
butions with the mass fractions of 10 and 15 wt% seem quite sparse for 
the image correlation process and, thus, the mass fraction is set to 20 wt 
% in the present experimentation. 

2.2. In situ tension test setup 

Fig. 3(a) shows the typical scheme of synchrotron radiography. As 
the X-ray beam penetrates the sample, X-ray photons are absorbed by 
the material. The absorption rate of the X-rays varies, mainly depending 
on material density. The differences collected by the detector is utilized 
to create a radiograph to reveal the internal structure of the sample. In 
the synchrotron radiography, a number of projection images are taken at 
multiple angles by rotating the sample from 0 to 180� as illustrated in 
Fig. 3(a). The series of radiographs are then further processed to 
reconstruct tomograms as shown in Fig. 3(b) and the sliced images are 
stacked up along the rotation axis of the sample to render the 3D volume 
data of the sample. 

In the present study, X-ray scanning is performed while the epoxy 
polymer sample is loaded in order to examine internal response of the 

Fig. 1. Magnified view of a Cu particle embedded in the epoxy specimen.  

Fig. 2. Section images of the specimens with various particle mass fractions (a) 10 wt% mass fraction (b) 15 wt% mass fraction (c) 20 wt% mass fraction.  
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material in situ. The subsurface deformation behavior of the epoxy ma
terial is imaged using a synchrotron light source at Beamline 6C in 
Pohang Accelerator Laboratory (PAL). Fig. 4 shows the general experi
mental setup at the beamline. The loading device is mounted on a 
motorized positioning stage to precisely locate the sample with respect 
to the beam path. The specimen-to-detector distance (SDD) is set to 

35 mm, which is the shortest available distance at the beamline. SDD 
should be short to enhance the spatial resolution of X-ray images while 
long SDD improves image contrast [25]. The detector system consists of 
a scintillator and a camera with a microscope lens. In the present 
experiment, we use a 6-μm thick LSO:Tb scintillator layer, an sCMOS 
camera with a 2560 � 2160 pixels readout and a 4 �microscope lens. 
The detector setup results in the field of view (FOV) having the size of 
4.16 � 3.51 mm2 for the projectional radiography with the effective 
resolution of 1.625 μm/pixel. The monochromatic parallel X-ray beam 
from the synchrotron light source is modulated at a photon energy of 
25 keV. The energy level is high enough to penetrate the sample at least 
10% in transmission, but low enough to result in strong signal-to-noise 
ratio for good image quality [25]. 

In situ tension tests are performed using the microtest tensile stage 
(Deben Ltd., UK) as shown in Fig. 4. Tensile loading is applied to the 
specimen by a stepper motor, while the top and bottom of the specimen 
is fastened with serrated grips in the tensile stage. Force data is 
measured by a load cell with a capacity of 5 kN and a linear exten
someter is utilized to measure the crosshead displacement. The loading 
device is equipped with a tubular glassy-carbon window with the 
diameter of 59 mm and the thickness of 3 mm. The window is strong 
enough to support the structure of the tensile stage during the tension 
test and thin enough to transmit a sufficiently large number of X-ray 
photons with the transmission rate of 78% at the photon energy level of 
25 KeV. In the present study, X-ray scanning is carried out at 20 loading 
steps with the interval of 10 N from 0 to 190 N. When the force value 

Fig. 3. Schematic illustration of the X-ray scanning process and the reconstructed tomograms.  

Fig. 4. Experimental setup at 6C Beamline of PAL.  

Fig. 5. Tomograms of the epoxy specimen (a) Raw image (b) Cropped and rotated image for DVC analysis with the definition of a VOI region.  
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measured by the load cell reaches the target load, the motor is paused to 
start X-ray imaging. At each loading step, 1200 projection images are 
acquired while the sample is rotating from 0 to 180� with the exposure 
time of 0.5 s per projection. Total measurement time taken at each 
loading step is about 18 min. 

A stack of tomograms is constructed from the radiographs using a 
commercial reconstruction software, Octopus (XRE, Gent, Belgium) 
with a filtered back-projection (FBP) reconstruction algorithm. 2160 
tomograms are obtained at each loading step with a pixel resolution of 
2560 � 2560 per image, in which the physical length of one pixel is 
1.625 μm. Fig. 5(a) is an example of the tomograms that shows the cross- 
section of the epoxy polymer specimen. All the tomograms are cropped 
and rotated first accordingly as shown in Fig. 5(b) to reduce the image 
size for efficient DVC analysis. 

3. Digital volume correlation technique 

3.1. Correlation principle between images 

As mentioned in the prior section, the DVC technique can be 
considered as a straightforward extension of the well-established DIC 
technique [14,15]. Therefore, for the efficient explanation of the present 
DVC analysis, the core principle of the general DIC approach is briefly 
described here. In principle, the DIC approach tracks small motions of 
randomly distributed points (speckle pattern) on the surface of a spec
imen from a series of images taken while the specimen is being 
deformed. The measured movements of the points are then utilized to 
compute the deformation behavior of the specimen. The motion tracking 
is essentially a correlation process between the reference and target 
images. Prior to the correlation, the points of interest (POIs) in the re
gion of interest (ROI) are defined first. For example, the circular black 
dots, shown in Fig. 6, represent the POIs. The POIs in the reference 
(undeformed) image and the target (deformed) image are located on the 
same global coordinates. A “facet,” which is a group of several pixels, 
with its center conforming to a POI is then constructed in the reference 
image. In the deformed state image, a searching area larger than the 
reference facet is assigned at the corresponding POI. The comparing 
facet is moving inside the searching window typically by one pixel at a 
time and the similarities between the reference facet and the trial facets 
are quantified using various template matching criteria. 

The DIC method originally owes its name to the use of the cross- 
correlation method for the matching criteria. In addition to the cross- 
correlation (CC) criterion, various matching criteria such as the sum of 
absolute difference (SAC) and sum of squared difference (SSD) methods 
have been used for DIC analysis [1,26–28]. Some studies [29,30] have 
compared displacement and strain fields obtained from different 
matching criteria. The results show that the matching criteria 

principally yield the same results under the condition that the intensity 
values of each pixel remains unchanged in the deformed image. How
ever, the intensity of the deformed image is susceptible to undesired 
changes in practical experiments. For example, the lighting may fluc
tuate with time, and the reflectivity of a specimen surface may change 
because of the increase in the surface roughness when the specimen is 
being deformed [30]. Under such a condition, the performance of 
correlating subvolumes becomes poor and the error in the displacement 
measurement can be significant. Therefore, a robust correlation crite
rion must be used to compensate for the possible intensity discrepancy 
[29,31]. 

The zero-mean normalized cross correlation (ZNCC) method is the 
most commonly used matching criterion owing to its insensitivity to the 
potential scale and offset changes in the intensity of the deformed image 
[30,32,33]. In the ZNCC method, for each searching area, the quantified 
similarities between the reference facet and the trial facets are assem
bled into a matrix. The components of the matrix are correlation co
efficients expressed as 
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where I and J denote the current location of the moving facet within the 
search area in terms of pixel numbers in the horizontal and vertical di
rections, respectively. For example, in Fig. 6, the comparing facet can 
move by up to five pixels both in the horizontal and vertical directions, 
and thus, the integers I and J range from 1 to 5. The correlation coef
ficient of the comparing facet illustrated using a red dashed line in Fig. 6 
corresponds to C11. Nx and Ny are the pixel numbers of the facet in the 
horizontal and vertical directions, respectively. ðxi; yjÞ are the center 
point coordinates of a single pixel in the reference facet, and fðxi; yjÞ is 
the grayscale value of the single pixel. gðxi þuI; yjþvJÞ is the intensity 
value of a single pixel centered at the coordinates ðxiþuI; yj þvJÞ in the 
comparing facet, where uI and vJ are the distances of the current position 
of the comparing facet from the center of the search area in the hori
zontal and vertical directions, respectively. f0 and g0 are the mean in
tensity values of all the pixels inside the facets in the reference and 
deformed states, respectively. 

As the comparing facet moves in the search area with an increment of 
one pixel, the I � J matrix C is filled with the corresponding correlation 
coefficients. The location corresponding to the maximum CIJ in the 
matrix is considered to be the new position of the reference facet in the 
image of the deformed state. Consequently, the displacement vector p ¼
fu; vgT of the reference facet is determined. The full-field displacement 
data in the ROI can be obtained after the same procedure is applied to all 

Fig. 6. Schematic illustration of the correlation process between the two images.  
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the other POIs shown in Fig. 6. Note that the resolution of the computed 
displacement field depends on the number of POIs in the ROI. 

The correlation coefficients CIJ have a practical range of 0–1, 
wherein 1 implies that two facets in the reference and deformed states 
are perfectly correlated. As mentioned previously, the ZNCC method is 
advantageous for image-processing applications wherein the brightness 
of the image or facet varies with the lighting or other experimental 
conditions [30,32,33]. The ZNCC method compensates for the discrep
ancy in the brightness between two comparing images through the 
normalization process as described in Eq. (1). In the normalization 
process, the mean intensity and the standard deviation of all the pixels 
inside the images (facets) are calculated. Subsequently, all the pixels 
inside the two images (facets) are subtracted by each mean value and 
finally divided by each standard deviation value. 

The physical meaning of Eq. (1) can be explained by considering two 
comparing images (facets), which are subtracted by each mean in
tensity, as two vectors. The ZNCC equation is then considered as the 
inner product of the two vectors divided by the norms of each vector, 
which is equivalent to the cosine of the angle between the two vectors. 
Therefore, two vectors representing the reference and comparing facets 
are the same when the angle is zero, resulting in a correlation coefficient 
value of one. 

3.2. Correlation between 3D CT images 

The correlation process in the DVC technique is based on the same 
principle of the DIC approach except that the DVC method deals with 3D 
volume data that are typically obtained through X-ray computed to
mography (CT) as illustrated in Figs. 6 and 7. The DVC technique starts 
with defining cubical subvolumes, analogous to the facets in the DIC 
approach, as shown in Fig. 7(a). The similarity between the reference 
and target subvolumes are evaluated with a fully 3D-based correlation 
method. Eq. (1), defined in 2D space, is extended to 3D space for the 
DVC approach by including all the voxels inside the two subvolumes. Eq. 
(1) is then revised as  

where CIJK is a correlation coefficient, I, J, and K are integers indicating 
the current location of the compared subvolume in the search area along 
x, y, and z directions, respectively. f0 and g0 are the mean intensity 
values of all the voxels inside the subvolumes corresponding to the 
reference and deformed states, respectively. The DVC method typically 
utilizes a natural microstructural pattern inside a sample to compute the 
intensity value of a subvolume while the DIC technique requires an 

artificial speckle pattern on the surface of a specimen. The right-hand 
side of Eq. (2) is based on the same principle as that of Eq. (1), except 
that the computation range is extended to the 3D space. As can be seen in 
Fig. 7(b), the DVC algorithm searches for the target subvolume in the 
deformed state using the greyscale value averaged over the subvolume. 
The increase in the computational workload during the correlation 
process is inevitable compared to the DIC technique, which leads to an 
increase in the total computation time. In the following section, the 
computation efficiency of the DVC approach is discussed. 

3.3. Enhancement of computational efficiency in DVC approach 

While the resolution of the displacement field computed from the 
DVC approach is directly affected by the discretization size of 3D volume 
data, a finer discretization leads to dramatically increased computa
tional cost as a result of an increased number of correlation operations. 
Therefore, implementing an efficient correlation algorithm to achieve 
fast computational speed is one of the key issues in the DVC method. 
Simplifying the correlation process is one of the strategies of improving 
the computation efficiencies for both the DIC and DVC techniques. The 
standard cross-correlation (CC) method in conjunction with the fast 
Fourier transform (FFT) is now commonly used, taking advantage of the 
fact that the cross-correlation operation in the space domain is equiva
lent to the point-wise multiplication in the frequency domain [15,30]. 
This significant computation advantage is made possible by sacrificing 
the image matching performance. The CC-based image matching tech
nique is incompetent in dealing with image noise and brightness dis
crepancies existing between two compared images [15,27,29]. 3D 
volume data obtained from μCT are usually much noisier than 2D im
ages. Furthermore, the intensity levels of each voxel in the 3D image 
may change due to the deformation of a material especially when the 
images are taken during an in situ test. For these reasons, the 
ZNCC-based correlation approach is more appropriate than the CC 
method for the DVC analysis. However, the computational burden of 
using the ZNCC matching algorithm is more significant due to the 

additional computations of means and standard deviations of the gray
scale images. The additional burden is traditionally relieved by utilizing 
a precomputed table data in conducting summations in Eq. (2) [18,34, 
35]. Details about the FFT and sum-table approaches are described in 
Appendices A and B, respectively. In the present work, in addition to the 
two conventional remedies, simplified matching process and parallel 
computing are implemented to further improve the computational 
efficiency. 

Fig. 7. Correlation process of the DVC approach.  
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The matching process between the reference and target subvolumes 
is simplified through the translation-only correlation approach. Since 
the specimen considered in the present study is a homogenous isotropic 
material and subjected to tensile loading only, any rigid body rotation of 
the subvolumes is negligible. Linearized small deformation theory is 
sufficient for the epoxy polymer within the strain range considered here. 
Several studies [36,37] have considered adding a rotational DOF for 
each subvolume, especially for biomedical applications wherein a 
sample would undergo a large deformation. However, such an addi
tional DOF can cause an increase in computational time during the 
correlation process, particularly with the increased number of sub
volumes. Neglecting the rotational DOF may not be critical when tensile 
elongation behavior is dominant and a deformation increment between 
two comparing images remains small. Furthermore, the resolution of 
images obtained using the synchrotron light source is high enough for 
finer subvolume discretization. Since synchrotron radiography offers a 
superior image resolution with a finer pixel size (1.625 μm in the present 
work) than conventional medical CT scanners (15–82 μm [38]), the 
simplified matching process can be justified for the inorganic polymer 
specimen with finely discretized subvolumes. 

Parallel computing is also implemented into the present DVC anal
ysis. Since subvolume matching is a completely individual process, 
significant saving in computational cost can be achieved when multiple 
core processors simultaneously execute the correlation operations. In 
the present analysis, the iterative process to determine the entire cor
relation coefficients in VOI is parallelized through the built-in function, 
parfor, available in the Matlab toolbox. The runtime parallelization is 
evaluated with 12,348 cubical subvolumes when a single subvolume has 
a size of 31 � 31 � 31 pixels. Fig. 8 shows the performance evaluation 
results with a variance of processor numbers. As demonstrated in Fig. 8, 
the computational time is greatly reduced with an increased number of 
processors. 

3.4. Sub-voxel registration 

The smallest logical unit of a digital image is a picture element or 
pixel. The size of a pixel consequently determines the accuracy of 
displacement computed from DVC analysis since correlation resolution 
is confined in a discrete sense within a grid of pixels. However, a location 
change of a point in a deforming material is occurring in a continuous 

sense. It would be ideal to use images with higher resolution for the DVC 
analysis, but image resolution is often limited by an optical instrument 
and a data storage device. The limitation is typically overcome by 
implementing a sub-pixel registration algorithm [1,2,18,33,40,41]. This 
is a supplementary matching process to refine the correlation precision 
at the resolution finer than one-pixel size. 

There are several sub-voxel registration approaches mostly used for 
the DVC technique. Peak-finding (PF) method [12,17,27] seeks a new 
peak position from a surface interpolating discrete correlation coeffi
cient data. The surface typically interpolates the coefficient data of 
3 � 3 � 3 or 5 � 5 � 5 voxels surrounding an initial peak position 
determined from a traditional DVC process. While the principle and 
implementation of the peak-finding scheme is simple, the resulting peak 
point may vary depending on interpolation models [27,40]. Coarse-fine 
searching (CFS) method interpolates discretely sampled intensity values 
and resamples the grayscale pattern with higher resolution for the 
following correlation process [1]. CFS is also based on the interpolation 
scheme and thus the calculation accuracy and convergence character are 
sensitive to the selection of interpolation function [40]. 
Newton-Raphson iterative (NRI) method models subvolume deforma
tion using shape functions defined with displacement and its derivatives 
[2,3,40]. The unknown variables in the shape functions are determined 
when a similarity error between two comparing subvolumes is mini
mized. The minimization process results in a system of nonlinear 
equations, which can be solved by the Newton-Raphson method. CFS 
and NRI methods consider a shape change of a subvolume and appar
ently are not affected by large strains and rotations of deformed sub
volumes [27]. Gradient-based (GB) method [40,41] is founded on the 
optical flow theory [42,43] that calculates the velocity vectors of rigid 
objects from time-series images. The intensity function g is linearized 
using a Taylor series with respect to the sub-voxel size displacement 
field Δx, Δy and Δz. In doing so, the derivatives of the grayscale function, 
gx, gy and gz are approximated following the similar approach in the 
optical flow theory. The only unknown variables Δx, Δy and Δz are 
determined through the minimization of the similarity error, resulting in 
a closed-form solution [40]. 

In the present study, the PF method is utilized to refine the correla
tion precision at the sub-voxel level due to its simplicity in imple
mentation and effectiveness in calculation for the simple loading test 
considered here. Following the approaches of Bay et al. [12]. and Franck 
et al. [17], a quadratic polynomial is used to create a fitting contour of 
the discrete CIJK data. The correlation coefficients of 3 � 3 � 3 voxels 
with the center corresponding to the initial maximum CIJK determined 
by the ZNCC-based analysis are interpolated by the quadratic poly
nomial function, Cðx;y; zÞ, such that 

Cðxi; yi; ziÞ ¼ a1 þ a2xi þ a3yi þ a4zi þ a5xiyi þ a6yizi þ a7zixi

þa8x2
i þ a9y2

i þ a10z2
i ði ¼ 1; 2;…27Þ

(3)  

where xi, yi and zi are the central coordinates of the 27 voxels and a1 thru 
a10 are the unknown polynomial coefficients to be determined. The 
coefficient can be found from the system of linear equations related to 
the 27 data points. In matrix form, CIJK at the 27 center points can be 
expressed as 

u¼XA (4)  

where 

u¼fCðx1; y1; z1Þ;Cðx2; y2; z2Þ;…;Cðx27; y27; z27Þg
T (5)  

X¼

2

6
6
6
6
6
4

1 x1 y1 z1 x1y1 y1z1 z1x1 x2
1 y2

1 z2
1

1 x2 y2 z2 x2y2 y2z2 z2x2 x2
2 y2

2 z2
2

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
1 x27 y27 z27 x27y27 y27z27 z27x27 x2

27 y2
27 z2

27

3

7
7
7
7
7
5

(6) 

Fig. 8. Computation time for the correlation process of 12,348 subvolumes 
with different numbers of CPU cores. 
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and 

A¼
�

a1;a2;…; a10
�T (7)  

The unknown coefficients can be found from Eq. (4) by first multiplying 
the both sides with the transpose of X and then multiplying the both 
sides again with XTX: 

A¼
�
XTX

�� 1XTu (8)  

Now the peak point on the surface expressed in Eq. (3) can be found at 
which the following derivatives of C vanish; 

∂C
∂x
¼ a2 þ a5yþ a7zþ 2a8x

∂C
∂y
¼ a3 þ a5xþ a6zþ 2a9y

∂C
∂z
¼ a4 þ a6yþ a7xþ 2a10z

(9)  

Eq. (9) is another system of linear equations that can be solved for x, y, 
and z, i.e., the coordinates of the new correlation point. 

3.5. Computation of strain fields 

Strain fields can be obtained once the displacement fields are fully 

Fig. 9. Strain computation process in presenting DVC algorithm illustrated in 2D domain (a) Definition of facets in the undeformed configuration (b) Facets in the 
deformed configuration (c) Construction of a four-node element from the neighboring facets. (Each number on the vertices denotes a node number of the element). 

Fig. 10. DVC analysis results at various loading steps. The loading steps are associated with the stress-strain curve shown in Fig. 11.  
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identified from the DVC analysis. Strain is a measure of how rapidly the 
displacement changes in a deforming material and thus defined with 
partial derivatives of displacement fields or a displacement gradient. In 
the present analysis, the deformation gradient is effectively computed 
using a well-established finite element (FE) approach. The main idea is 
to consider the center points of subvolumes as nodal points of a local 
element of an FE model. DOFs of every node are transferred from the 
results of the DVC analysis. Fig. 9 illustrates the process of constructing 
such a local element using the center points of subvolumes in the case of 
a 2D (two dimensional) FE model. As shown in Fig. 9, a four-node 
quadrilateral element is constructed with the center points of the four 
neighboring facets. Since the element already has the displacement data 
at each node, strains can easily be computed using the conventional FE 
approach based on the Lagrange shape functions. For 3D volume data, 
an eight-node hexahedron element can be constructed. Again, the DOFs 
at each node of the six-sided element are provided from the DVC 

analysis. 

4. Results and discussions 

4.1. Displacement fields from DVC analysis 

The present DVC analysis is demonstrated with the CT data obtained 
from the in situ tensile tests described in the prior section. Partial region 
of the specimen is selected for the deformation analysis to save 
computational time and cost as indicated in Fig. 5(b). The cubicle vol
ume of interest (VOI), located at the center of the specimen, has the size 
of 960 � 225 � 225 pixels or 1.536 � 0.36 � 0.36 mm3. Total 960 
tomographic images are stacked in the VOI space along the loading di
rection. The VOI is discretized with 12,348 cubical subvolumes, where 
the size of one subvolume is 31 � 31 � 31 pixels. The subvolumes are 
evenly distributed over the region, and each subvolume is overlapped 
with adjacent ones by 15 pixels in the x, y, and z directions. 

Fig. 10 shows the loading-directional displacement field computed 
through the present DVC analysis at several loading steps with a uniform 
interval of 10 N. For all the loading steps, the average correlation co
efficient of all the subvolumes inside the VOI is 0.7532. This high cor
relation coefficient value indicates that the position tracking of all the 
subvolumes in the VOI are fairly successful. Position changes of all the 
subvolumes result in the displacement field of the sample, which is 
mapped on the undeformed configuration of the VOI as shown in Fig. 10. 
The displacement field is continuously increasing as the load increases 
from Fig. 10 (a) thru (b). Note that the top of the specimen is fixed and 
the bottom is pulled down in the experiment. Fig. 11 shows the stress- 
strain response of the epoxy material. Each circle on the curve in
dicates the loading steps at which X-ray CT scanning is carried out. The 
stresses in Fig. 11 are computed by dividing the loads measured from the 
load cell by the initial cross-sectional area of the sample while the strains 
are obtained by dividing the cross-head displacement with the initial 
gage length. The loading steps of the results displayed in Fig. 10 are also 
indicated in Fig. 11. 

Fig. 12 compares the results of the present DVC analysis against the 
experimental data obtained from preliminary tests performed prior to 
the in situ tensile test. Specimens of the same configuration, but with and 
without the copper particles, are fabricated for the pretests. All these 
tension tests are conducted using the same loading device used for the in 
situ test for the sake of consistency. Loading is continuously applied to 

Fig. 11. Stress-strain curve of the polymer. The circles indicate the loading 
steps at which the X-ray images are taken. DVC analysis are performed at each 
loading step and the results are partly shown in Fig. 10. 

Fig. 12. Comparison of DVC analysis results against experimental data.  

Fig. 13. Loading directional displacement field at 190 N (a) Displacement field 
obtained without the sub-voxel registration method (Note that numbers inside 
four textboxes denote the displacement [mm] of corresponding regions). (b) 
Displacement field obtained with the sub-voxel registration algorithm. 
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the specimens without any interruption in the pretests. The vertical axis 
in Fig. 12 represents the loading directional engineering stresses ob
tained by dividing the measured load with the initial cross-sectional area 
of a specimen. The axial strains from the pretests are defined as the 
crosshead displacement divided by the gauge length of a specimen. As 
can be seen in Fig. 12, the particles have a negligible effect on the global 
response of the material. It is reiterated here that the particles are 
embedded into the epoxy sample to introduce the random distribution of 
grayscale values in the CT images, not to enhance the mechanical 
properties of the polymeric material. The DVC strains at each loading 
step in Fig. 12 are the average values of the strains in the VOI computed 
using the FEM approach described in the previous section. As shown in 
Fig. 12, the DVC results agree reasonably well with the experimental 
data. The DVC results slightly deviate from the test data in the plastic 
regime. The discrepancy is mainly due to the differences between the 
definitions of the strain. The experimental strains are defined in a global 
sense to include all the nonlinearities within the gage length while the 
DVC strains are computed in a very small local region. 

4.2. Demonstration of the sub-voxel registration algorithm 

In this section, the effect and necessity of implementing the sub-voxel 
registration algorithm into the DVC analysis is demonstrated. For an 
example of the demonstration, the DVC results at 190 N in Fig. 12 are 
utilized here. Fig. 13 compares the loading-direction displacement with 
and without the sub-voxel registration approach. As shown in Fig. 13(a), 
the displacement values calculated at the maximum resolution of one 
pixel are unrealistically invariant in a number of wide areas. The dif
ferences in the displacement between two neighboring regions are 
0.0016 mm, which is the physical length of one pixel in the present 
study. Fig. 13(b) shows that the maximum resolution limit is overcome 
by the implementation of the sub-voxel registration method. 

The importance of sub-voxel resolution in computing the displace
ment field is highlighted in Fig. 15 more specifically. Fig. 15 show the 
calculated displacement values along the pathlines defined in Fig. 14. 
Displacement data computed along the three straight lines defined at z ¼
� 18 mm, z ¼ 0 and z ¼ þ18 mm with y ¼ 0 are utilized to study the 
effect of the sub-voxel resolution and they are plotted in Fig. 15. As can 
be seen in Fig. 15(a), the DVC analysis without the capability of 
matching at the sub-voxel resolution exhibits piecewise constant results. 
When there exists no gradient in the displacement field, zero strains are 
computed in the wide region, which is an unacceptable measurement for 
the continuum material considered in the present study. The DVC 
analysis with the sub-voxel registration is capable of measuring 
reasonable deformation behavior of the sample as shown in Fig. 15(b). 
The displacement data computed along the three different pathlines are 
fairly consistent with each other. Furthermore, it is obvious that the 
discrete data points can easily be represented by a linear function. This 
implies nearly constant axial strains in the VOI region, which is expected 
from the present simple tensile test. The comparison results in Fig. 15 
demonstrate the necessity of the sub-voxel registration technique espe
cially for the computation of strains. 

5. Conclusions 

We have presented the protocol of the DVC analysis of a polymer 
material with synchrotron-based X-ray tomography. The epoxy material 
is first embedded with high-density particles to introduce a 3D speckle 
pattern inside the material. Copper particles are utilized in the present 
study. The particles create the random distribution of grayscales values 
in the CT images, which is necessary for the following image analysis. In 
situ tensile testing is performed at a synchrotron facility to obtain 3D 
volume images of the sample at multiple loading steps. The 3D images 
are used for the ZNCC-based DVC analysis to identify the deformation 

Fig. 14. Example of the definition of a pathline with the VOI dimensions (unit: 
millimeters). 

Fig. 15. (a) Displacement values computed from the DVC analysis without the sub-voxel registration method (b) DVC results along the pathlines with the sub-voxel 
registration approach. 
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behavior inside the material. The fundamental principle of the DVC 
approach is to track the location changes of a number of cubic blocks 
between the reference and deformed images. In order to efficiently 
perform the recursive correlation operations, we have implemented 
various methodologies in addition to the classical FFT and pre
computation approaches. The peak finding method refines the correla
tion resolution lower than a one-pixel size. The present DVC technique is 
demonstrated on the polymer material under tension and good agree
ments between the DVC results and experimental data are shown. The 
present study can be instrumental for future DVC analysis of a polymer 
material with a more complex configuration, e.g., quantitative analysis 
of the effect of voids on subsurface fracture behavior. 

Data availability 

The raw/processed data required to reproduce these findings cannot 
be shared at this time as the data also forms part of an ongoing study. 
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Appendix 

A. Fast Fourier transform approach 

Fast Fourier transform (FFT) is commonly utilized for the DIC approach to improve its computational efficiency [34]. Before applying FFT to the 
DVC process, the numerator of Eq. (2) is rewritten as 

XNx

i¼1

XNy

j¼1

XNz

k¼1

�
f
�
xi; yj; zk

�
� f0

��
g
�
xi þ uI ; yj þ vJ ; zk þ wK

�
� g0

�

¼
XXX

f ðxÞg’ðxþ pÞ � f0

XXX
g’ðxþ pÞ

(A1)  

where g’ðxþpÞ ¼ gðxþpÞ � g0 , x ¼ ðxi; yj; zkÞ and p is the displacement vector. In the last term of Eq. (A1), 
XXX

g’ðxþ pÞ ¼
XXX

½gðxþ pÞ � g0�

¼
XXX

gðxþ pÞ � NxNyNzg0

¼

�PPP
gðxþ pÞ

NxNyNz
� g0

�

� NxNyNz ¼ 0

(A2)  

The right hand side of Eq. (A1) is thus written as 
XXX

f ðxÞgðxþ pÞ � g0

XXX
f ðxÞ (A3) 

The first term of Eq. (A3) can be considered as the typical expression of the discrete cross-correlation with the real-valued function f . Indeed, when 
the first term of Eq. (A3) is normalized by the standard deviations in a similar manner as Eqs. (1) and (2), it defines the correlation coefficient of the 
normalized cross-correlation (NCC) method. The cross-correlation between the two functions fðxÞ and gðxÞ is simply defined as the convolution of 
fð� xÞ and gðxÞ where f denotes the complex conjugate of f [39]: 
XXX

f ðxÞgðxþ pÞ¼ f ⋆g¼ f ð� xÞ*gðxÞ (A4)  

According to the convolution theorem, Eq. (A4) can be expressed using the Fourier transform. 

f ð� xÞ * gðxÞ¼ ​ F� 1fFff ’g ⋅ Ffggg (A5)  

where F denotes the Fourier transform operator. f ’ is a Nx � Ny � Nz matrix for which f matrix is reflected with respect to the x; y; and z directions 
when f is the grayscale matrix of the reference subvolume. g is a Nx � Ny � Nz matrix representing the intensity of the comparing subvolume. The dot 
operator in Eq. (A5) denotes point-wise multiplication. 

Suppose that the size of the searching region is Mx � My� Mz. If the 3D cross-correlation is performed in spatial domain using Eq. (A3), the 
computational complexity of the first term of Eq. (A3) is OððNx �Ny �NzÞ � ðMx �My �MzÞÞ. At each dimension, 

P
f � g requires N multiplications 

and N � 1 additions. Total ð2Nx � 1Þ � ð2Ny � 1Þ � ð2Nz � 1Þ calculations should be performed to obtain the triple sum in Eq. (A3). The triple sum is 
evaluated whenever the reference subvolume is compared against each of ðMx � Nxþ1Þ � ðMy � Nyþ1Þ � ðMz � Nzþ1Þ trial subvolumes inside the 
searching region. When the correlation process is performed in frequency domain with an FFT algorithm, Eq. (A5) should be first extended to include 
the entire searching region such that 

F� 1fFfF’g ⋅ FfGgg (A6)  

where G is the intensity matrix of the searching region (see Fig. 6) and F’ is a zero-padded matrix of f ’ to have the same size with the G matrix. Then, 
the required computational cost based on Eq. (A6) is OððMx�My�MzÞ�logðMx �My�MzÞÞ for the Fourier transform, OðMx�My�MzÞ for the point- 
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wise multiplications and OððMx�My�MzÞ�logðMx�My�MzÞÞ for the inverse Fourier transform. The FFT approach to compute the first term of Eq. 
(A3) becomes relatively more efficient as the subvolume size approaches the searching region and both of them are sufficiently large [34]. 
B. Precomputation for summing operations 

In order to utilize FFT as described in Appendix A, Eq. (2) has been transformed into 

CIJK ¼

PPP
f ðxÞgðxþ pÞ � g0

PPP
f ðxÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PPP

½f ðxÞ � f0�
2

q

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PPP

½gðxþ pÞ � g0�
2

q (B1) 

In addition to the FFT approach, precomputation strategy is employed to further improve the computing efficiency of the correlation coefficient, 
following the approach suggested by Lewis [34]. The main idea is to pre-calculate summations in Eq. (B1) and allocate memory to store the data for 
future usage [18,34,35]. It is obvious that summations associated with the reference subvolume in Eq. (B1) need to be evaluated only once during the 
recursive operation to determine all CIJK over an entire searching region. They are 

PPP
fðxÞ and 

PPP
½fðxÞ � f0�

2 in the numerator and de
nominator of Eq. (B1), respectively. Furthermore, 

PPP
½fðxÞ � f0�

2 can be efficiently computed if the summation of 
PPP

f is conducted in 
advance and the data is utilized with 

PPP
f2. Lastly, the term associated with g in the denominator of Eq. (B1) can also be efficiently computed. The 

square term is expanded as 
XXX

½gðxþ pÞ � g0�
2
¼
XXX

gðxþ pÞ2 � 2g0

XXX
gðxþpÞ þ NxNyNzg2

0 (B2)  

The intensity average g0 can be expressed in terms of gðxþpÞ such that 

g0¼
1

NxNyNz

XXX
gðxþ pÞ (B3)  

The right-hand side of Eq. (B2) is then rewritten as 
XXX

gðxþ pÞ2 �
1

NxNyNz

nXXX
gðxþ pÞ

o2
(B4) 

Again, similarly with the summations associated with f , precomputed data of 
PPP

g and 
PPP

g2 can save computational time and cost 
significantly [18]. In summary, the first term in the denominator of Eq. (B1) is computed using the FFT approach and the rest of summations is 
obtained from the precomputed data. 
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