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A NEW SCALABLE, PORTABLE, AND MEMORY-EFFICIENT PREDICTIVE ANALYTICS

FRAMEWORK FOR PREDICTING TIME-TO-EVENT OUTCOMES IN HEALTHCARE

by

RAMESHBABU MANYAM

Under the Direction of Yanqing Zhang, PhD

ABSTRACT

Time-to-event outcomes are prevalent in medical research. To handle these outcomes, as well

as censored observations, statistical and survival regression methods are widely used based

on the assumptions of linear association; however, clinicopathological features often exhibit

nonlinear correlations. Machine learning (ML) algorithms have been recently adapted to

effectively handle nonlinear correlations. One drawback of ML models is that they can

model idiosyncratic features of a training dataset. Due to this overlearning, ML models

perform well on the training data but are not so striking on test data. The features that we

choose indirectly influence the performance of ML prediction models. With the expansion of

big data in biomedical informatics, appropriate feature engineering and feature selection are



vital to ML success. Also, an ensemble learning algorithm helps decrease bias and variance

by combining the predictions of multiple models.

In this study, we newly constructed a scalable, portable, and memory-efficient predictive

analytics framework, fitting four components (feature engineering, survival analysis, feature

selection, and ensemble learning) together. Our framework first employs feature engineering

techniques, such as binarization, discretization, transformation, and normalization on raw

dataset. The normalized feature set was applied to the Cox survival regression that produces

highly correlated features relevant to the outcome.The resultant feature set was deployed to

“eXtreme gradient boosting ensemble learning” (XGBoost) and Recursive Feature Elimina-

tion algorithms. XGBoost uses a gradient boosting decision tree algorithm in which new

models are created sequentially that predict the residuals of prior models, which are then

added together to make the final prediction.

In our experiments, we analyzed a cohort of cardiac surgery patients drawn from a multi-

hospital academic health system. The model evaluated 72 perioperative variables that impact

an event of readmission within 30 days of discharge, derived 48 significant features, and

demonstrated optimum predictive ability with feature sets ranging from 16 to 24. The area

under the receiver operating characteristics observed for the feature set of 16 were 0.8816, and

0.9307 at the 35th, and 151st iteration respectively. Our model showed improved performance

compared to state-of-the-art models and could be more useful for decision support in clinical

settings.



INDEX WORDS: Ensemble Learning, Gradient Decision Tree Algorithm, Extreme Gra-
dient Boosting, XGBoost, Advanced Machine Learning Algorithms,
Deep Learning, Artificial Intelligence, Neural Networks, Feature Engi-
neering, Feature Selection, Recursive Feature Elimination, Coronary
Artery Bypass Grafting Surgery, CABG, Cox Proportional Hazards
Model, Survival Regression, Time-to-event Outcomes, Predictive An-
alytics Modeling.
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CHAPTER 1

INTRODUCTION

In this chapter, we present an overview of the rationale of our proposed research and indicate

why it’s worth doing for healthcare quality improvement as well as knowledge advancement.

Specifically, we discuss i) the prevailing problem of time-to-event outcomes in medical re-

search that became a critical measure of quality and cost of healthcare in recent years, and

ii) the best feasible approaches for more accurate assessment, and better risk-prediction

methodologies to handle such outcomes. We tackle these problems in the context of develop-

ing a new scalable, portable and memory-efficient predictive analytics framework using highly

tuned and optimized machine learning algorithms. In the following sections, we describe the

motivation, significance and implications of this research study.

1.1 Role of Artificial Intelligence, Machine Learning, and Deep Learning in
Healthcare

The US healthcare system generates approximately one trillion gigabytes of data annually,

and this amount doubles-up every two years [1]. These enormous quantities of data have

been accompanied by a rise in cost-effective, and large-scale computing power. Together,

they raise the possibility that artificial intelligence - and machine learning, in specific - can

generate insights both to improve the discovery of new predictive data analytics techniques

and to make the delivery of current ones more effective.

Figure 1.1 provides a quick history and evolution of Artificial Intelligence and its subsets.

In 1976, Maxmen [2] predicted that artificial intelligence (AI) in the 21st century would
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usher in “the post-physician era,” with health care provided by paramedics and computers.

More than four decades later, today, the extinction of physician seems unlikely, though.

However, as outlined by Hinton [3], in a related viewpoint in 2018, the emergence of a

radically different approach to AI, called deep learning, has the potential to effect major

changes in clinical medicine and health care delivery. As Verghese et al. [4] suggested,

“clinicians should seek a partnership where the machine predicts, and the human explains

and decides on action.” Clinicians are trained to reason and act under uncertainty. AI does

not reduce the importance of this professional competency. On the contrary, AI is best

suited to augmenting human intelligence, bringing more data into focus to support human

judgement.

Despite concerns of convincing clinicians and patients to ‘trust a black-box’, AI and

Deep Learning (DL) have gradually entered the mainstream clinical medicine - especially in

handling heterogeneous data sets in image-intensive fields such as radiology, radiotherapy,

pathology, ophthalmology, dermatology, and image-guided surgery. In many cases, interpre-

tation of images by deep learning neural network (NN) systems has outperformed individual

clinicians - when measured against a consensus of expert readers or gold standards such as

pathologic findings [5]. Clinically relevant applications have widened beyond image process-

ing to include risk stratification for a broad range of patient populations, and health care

organizations are capitalizing on deep learning and other machine-learning tools to improve

logistics, quality management, and financial oversight [6]. However, NN models are com-

putationally intensive and may take a longer time to train and converge to a solution. To
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Figure 1.1 A Quick History of Machine Learning

handle small-to-medium-scale tabular data of time-to-event outcomes, the highly-effective,

faster, scalable and portable advanced machine learning (ML) techniques, such as ensemble

learning algorithms are better choice, and this forms the basis for our research study.

1.2 Hospital Readmissions

Healthcare costs are constantly rising around the globe with each passing year. Hospital

readmissions, that occur shortly after discharge, are identified as one of the significant con-

tributors to healthcare expenses. For instance, the estimated annual cost of readmissions

for Medicare is $26 billion and $17 billion is considered avoidable. Centers for Medicare and
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Medicaid Services (CMS) penalized over 2,500 hospitals by more than $564 million in 2017

for excessive 30-day hospital readmission rates [7].

In 2011, 3.3 million hospital readmissions, with an associated cost of $41.3 billion, made

reducing hospital readmissions a national priority of the Affordable Care Act reform. Sub-

sequently, CMS created ‘Hospital Readmission Reduction Program’ [HRRP] in 2012. The

HRRP is a value-based reimbursement program that cuts-down payments to hospitals with

excessive rates of readmissions [8]. This program tracks readmissions for Medicare patients

admitted initially for six targeted conditions: heart attack, heart failure, pneumonia, chronic

obstructive pulmonary disease (COPD), elective hip and knee replacement, and coronary

artery bypass graft (CABG). Figure 1.2 shows the chronological timeline for readmission

penalties for the above six medical procedures.

Among these 6 medical procedures, CABG is of particular interest due to its higher

short-term readmission rates relatively and mean hospital charges. Among CABG patients,

average medicare readmission rate is 1 in 5 [ 9, 10]. However, in many situations, these

readmissions are potentially predictable, and thus avoidable.

1.3 Coronary Artery Bypass Grafting Surgery

Heart disease is the leading cause of death around the world. For both male and female

populations, heart disease turns out to be the first leading cause of death in USA as well

[11], as shown in Figure 1.3. According to the Center for Disease Control and Prevention

[7], around 610,000 Americans die from heart disease every year, that’s 1 of every 4 deaths.
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Figure 1.2 Hospital readmissions Reduction Penalties

Someone dies from heart disease, stroke, or cardiovascular disease every 40 seconds in the

USA [10]. Heart disease costs the United States about $200 billion each year. This total

includes the cost of healthcare services, medications, and lost productivity. Coronary Heart

Disease (CHD) is the most common type of heart disease, killing over 370,000 people annu-

ally. CHD is a disease in which a waxy substance called plaque (plak) builds up inside the

coronary arteries [13]. Coronary arteries are the blood vessels that supply oxygen-rich blood

to heart, as shown in Figure 1.4. Over time, plaque can harden or rupture (break open).
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Figure 1.3 Percentage Distribution of Diseases

Hardened plaque narrows the coronary arteries and reduces the flow of oxygen-rich blood to

the heart. This can cause chest pain or discomfort called angina (an-JI-nuh or AN-juh-nuh).

If the plaque ruptures, a blood clot can form on its surface. A large blood clot can mostly

or completely block blood flow through a coronary artery. This is the most common cause

of a heart attack.

Coronary Artery Bypass Graft (CABG, pronounced like the word ‘cabbage’) surgeries

are among the most commonly performed operations for CHD. During CABG, a healthy

artery or vein from the body is connected, or grafted, to the blocked coronary artery. The

grafted artery or vein bypasses the blocked portion of the coronary artery. This creates a

new path for oxygen-rich blood to flow to the heart muscle. In Figure 1.4, figure A shows

the location of the heart. Figure B shows how vein and artery bypass grafts are attached

to the heart.The mean price for CABG was $151,271 and ranged from $44,824 to $448,038
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Figure 1.4 Coronary Artery Bypass Grafting

[14]. Readmission events of CABG surgery population forms the pilot study cohort of our

proposed predictive analytics framework.

1.4 Objective

The primary focus of this research study is to develop a new scalable, portable, memory-

efficient, and user-friendly predictive analytics framework fitting four components (feature

engineering, survival analysis, feature elimination, and ensemble learning methods). The

objectives of this new ensemble learning based model are to evaluate the predictive ability

more accurately with effective feature engineering and feature selection techniques and to

improve performance by using less features compared to state-of-the-art models. For testing
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and validation of our proposed framework, we consider running experiments with a study

cohort comprising of i) demographics data and pre-, peri-, and postperative electronic health

records of cardiac surgery patient population, ii) time-varying perioperative clinical data,

drawn from the Society of Thoracic Surgeons (STS) database pertaining to a multi-hospital

academic health system.

1.5 Motivation for the study

Hospital readmissions contribute substantially to the overall healthcare cost. Coronary artery

bypass graft (CABG) is of particular interest due to its relatively high short-term readmission

rates and mean hospital charges. Readmission is an important source of patient dissatisfac-

tion as well. Because hospital readmissions are costly and potentially avoidable, reducing

hospital readmission rates has been proposed as a means to improve quality of care and

reduce costs [4]. Therefore it is important to be able to accurately identify those patients at

high risk for early readmission after open-heart surgery. With more accurate predictive ana-

lytics model, clinicians i) can more appropriately decide on patient’s readiness for discharge

and ii) can recommend better follow-up care measures for patients who are at higher risk of

readmission. This is where predictive healthcare transforms into preventive healthcare.

1.6 Contribution

The current dissertation work presents a multidisciplinary research efforts to investigate

the advanced machine learning, deep learning, and ensemble learning algorithms, survival

analysis methods, automatic feature selection and feature engineering techniques, and to
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analyze the complicated and unstructured healthcare data in a better manner so as to develop

effective decision support tools for clinical settings.

We constructed a new scalable and portable predictive analytics framework for predicting

time-to-event outcomes in healthcare (for instance, hospital readmission events following

CABG surgery) using advanced feature engineering, feature selection methods, and ensemble

learning techniques - prominently though ”eXtreme Gradient Boosting” (XGBoost) that

employs a gradient boosting decision tree algorithm. We have established simple feature

engineering techniques to process the real data sets of unstructured electronic health records

and employed automatic feature selection (Recursive Feature Elimination) techniques to

minimize redundancy which led to improved prediction accuracy compared to state-of-the-

art models. We carried out experiments with a study cohort of adult cardiac surgery patient

population, drawn from two data sources: the Society of Thoracic Surgeons (STS) database

and clinical data warehouse of a multi-hospital academic health system. The results of

our model demonstrated improved predictive ability in terms of ’Area Under the Receiver

Operating Characteristics (AUROC)’, and concordance index metrics.

1.7 List of Additional Contributions and Accomplishments

The following list provides additional contributions of our research work such as, papers

presented at scientific conferences, submitted to journal publication, received travel awards.

• Manyam, R. B., Zhang, Y., Keeling, W. B., Binongo, J., Kayatta, M., & Carter, S.

(2018). Deep Learning Approach for Predicting 30 Day Readmissions after Coronary
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Artery Bypass Graft Surgery. arXiv preprint arXiv:1812.00596.

• Manyam, R. B., Zhang, Y., Binongo, J., Rosenblum, J.M., & Keeling, W. B. (2019,

June). Unraveling the impact of time-dependent perioperative variables on 30-day read-

mission following CABG. Presented at the 45th Annual Meeting of Western Tho-

racic and Surgical Association, Olympic Valley, CA, USA. Abstract retrieved from

https://meetings.westernthoracic.org/abstracts/2019/CF6.cgi

• Manyam, R. B., Zhang, Y., Binongo, J., Rosenblum, J.M., & Keeling, W. B. (2019,

June). A New Scalable, Portable Predictive Analytics Framework for Predicting Time-

to-event Outcomes in Healthcare. Presented at the 2nd Machine Learning in Science

and Engineering Symposium, Atlanta, GA, USA.

• Manyam, R. B., Zhang, Y., Binongo, J., Rosenblum, J.M., & Keeling, W. B. (In

Review). Unraveling the impact of time-dependent perioperative variables on 30-day

readmission following CABG. Manuscript submitted to the Journal of Cardiovascular

and Thoracic Surgery.

• Manyam, R. B., Zhang, Y., Binongo, J., Rosenblum, J.M., & Keeling, W. B. (2019,

October). A Simple, Scalable And Portable Machine Learning Model With Effective

Feature Selection For Accurately Predicting 30-day Readmission After Discharge Fol-

lowing CABG. Submitted to the 100th Annual Meeting of the Association of American

Thoracic Surgeons, New York, NY, USA.
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• Manyam, R. B., Zhang, Y., Binongo, J., Rosenblum, J.M., & Keeling, W. B.. (2019,

November). Explainable Decision Tree Framework for Effectively Assessing the Risk

Factors for 30-day Readmission Following CABG. Submitted to the 34th AAAI Con-

ference of Artificial Intelligence, NEw York, NY, USA

• In addition to the above contributions, our research work secured second prize in Geor-

gia State University’s (GSU) Spring 2019 Three Minute Thesis (3MT) competition,

featured on GSU merit pages, Computer Science department, Graduate School, and

Provost office websites, and received travel awards at two scientific conferences: 2nd

Machine Learning in Science and Engineering Symposium (June, 2019), and Machine

Learning for Health (ML4H) Workshop at the Thirty-second Conference on Neural In-

formation Processing Systems (NeurIPS, December 2018). We enclosed a few pictures

taken at the conference presentations in Appendix.

1.8 Thesis Outline

The remainder of this dissertation is structured as follows. Chapter 2 presents an overview of

the background information and concepts relevant to the scope of our research focus. Chapter

3 provides a comprehensive review of state-of-the-art models that deal with the assessment

of risk factors associated with ‘time-to-event’ outcomes in acute care medical procedures in

general, and prediction of hospital readmission events following cardiac surgery, in specific.

Chapter 4 describes our proposed model, a new scalable, portable, and memory-efficient

predictive analytics framework, demonstrates the experiments that we conducted and the
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results obtained. Chapter 5 highlights the summary of our research findings, limitations,

conclusion, and recommendations for further research and enhancements to our predictive

anlytics framework.
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CHAPTER 2

BACKGROUND STUDY

In this chapter, we present an overview of background information and concepts relevant to

the design of our proposed framework. We review topics such as linear regression, logistic

regression, univariable, multivariable, survival regression analyses, Cox Proportional Hazard

(CPH) model, and machine learning methods. Additionally, we discuss ensemble learning

algorithms and feature selection methods that form the basis of our new predictive analytics

framework.

2.1 Univariable, Bivariable and Multivariable Analysis

Data in statistics is usually classified based on how many variables are in a particular study.

For example, ‘height’ might be one variable and ‘weight’ might be another variable. Depend-

ing on the number of variables being analyzed at, the data might be univariable, bivariable

or multivariable. Univariable involves the analysis of a single variable, while multivariable

analysis examines two or more variables.

2.1.1 Univariable Analysis

Univariable analysis is the simplest form of analyzing data. As the name “Uni” implies, data

has only ‘one’ variable in this kind of analysis. It doesn’t deal with causes or relationships

(unlike regression) and it’s major purpose is to describe; it takes data, summarizes that data

and finds patterns in the data.
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2.1.2 Bivariable Analysis

Bivariable analysis is the analysis of exactly two variables. It usually involves an independent

variable (for example, X) , and a dependent variable (Y).

2.1.3 Multivariable Analysis

Multivariable (MVA) deals with analysis of more than one statistical outcome variable at a

time. The technique is used across multiple dimensions while taking into account the effects

of all variables on the responses of interest. This MVA is more valuable technique, especially

when working with correlated variables. MVA involves a dependent variable and multiple

independent variables.

2.1.4 Independent vs. Dependent Variables

We can interpret the correlation between the dependent variable and the independent vari-

able as resulting from a cause-effect relationship from independent (cause) to dependent (ef-

fect) variable. Sometimes, it may be more reasonable to refer to “independent variables” as

“predictors”, and “dependent variables” as “response-,” “outcome-,” or “criterion-variables.”

Suppose, we want to find out the relationship between caloric intake and weight. As shown

in Table 2.1, ‘Caloric Intake’ would be ‘independent’ variable and ‘Weight’ would be ‘depen-

dent’ variable.
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Table 2.1 Independent vs Dependent Variable
Calorie Intake (X) Weight in Lbs

4000 200
2500 150
2000 135
3500 175
1500 110

2.2 Regression Analysis

Regression is a statistical technique used to model and analyze the relationships between vari-

ables and how they contribute and relate to each other to producing a particular outcome to-

gether. Regression analysis helps to understand how a typical value of a (outcome∣dependent)

variable changes when any one of the (predictor∣independent) variables is varied, while the

other (predictor∣independent) variables are unchanged. (i.e., which among the independent

variables are related to the dependent variable). Linear and Logistic regressions are usually

the first modelling algorithms that people learn for Machine Learning and Data Science.

2.2.1 Linear Regression

A linear regression refers to a regression model that is completely made up of linear variables.

Single Variable Linear Regression (SVLR) is a technique used to model the relationship

between a single input independent variable (feature variable) and an output dependent

variable using a linear model i.e a line, for instance. The more general case is Multi-variable

Linear Regression (MVLR) where a model is created for the relationship between multiple

independent input variables (feature variables) and an output dependent variable (classifier
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variable). The model remains linear in that the output is a linear combination of the input

variables. We can model a multi-variable linear regression as the following:

Y = a 1*X 1 + a 2*X 2 + a 3*X 3 . . . . . . . a n*X n + b

Where a n are the coefficients, X n are the variables and b is the bias. As we can see,

this function does not include any non-linearities and so is only suited for modelling linearly

separable data.

2.2.2 Logistic Regression

Logistic regression is a class of regression where the independent variable is used to predict

the dependent variable. When the dependent variable has two categories, then it is a binary

logistic regression. When the dependent variable has more than two categories, then it is a

multinomial logistic regression. When the dependent variable category is to be ranked, then

it is an ordinal logistic regression. The idea of logistic regression is to find a relationship

between features and probability of particular outcome. For example, when we have to

predict if a student passes or fails in an exam when the number of hours spent studying is

given as a feature, the response variable has two values, pass and fail. This type of a problem

is referred to as ‘binomial logistic regression’, where the response variable has two values 0

and 1 or pass and fail or true and false. Multinomial logistic regression deals with situations

where the response variable can have three or more possible values.

Figure 2.1 provides the expression of Logistic regression.

The left hand side of the equation is called the logit or log-odds function, and p(x)/(1-

p(x)) is called odds. The odds signifies the ratio of probability of success to probability of
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Figure 2.1 Log-odds function

Figure 2.2 Sigmoid Equation

failure. Therefore, in logistic regression, linear combination of inputs are mapped to the

log(odds) - the output being equal to 1. If we take an inverse of the above function, we get

Sigmoid equation, as expressed in Figure 2.2:

The Sigmoid function produces an S-shaped curve (Figure 2.3), and it always gives a

value of probability ranging from 0<p<1. Logistic regression has been popular with medical

research in which the dependent variable is whether or not a patient has a disease, in our

research application case [as described in Chapter 4], for example, it could be a ‘readmission

event within 30 days of discharge following CABG’.

For logistic regression, the predicted dependent variable is the estimated probability that

a particular subject will be in one of the categories (for example, the probability that a

specific patient has the disease, given his/her set of scores on the predictor variables).
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Figure 2.3 Sigmoid function

2.3 Survival Analysis

Survival analysis is a kind of statistical modeling where the main goal is to analyze and model

time until the occurrence of an event of interest (for example, hospital readmission). The

challenging characteristic of survival data is the fact that ‘time-to-event’ of interest for many

instances is unknown because the event might not have happened during the period of study

or missed tracking of occurrence, caused by other events. This concept is called ‘censoring’

which makes the survival analysis different [15]. The special case of censoring is when the

observed survival time is less than or equal to the true event time called ‘right-censoring’ -

which is one of the concepts of our focus in this research study.

In Figure 2.4, an illustrative example is given for a better understanding of the definition

of censoring and the structure of survival data. Six instances are observed in this study for

12 months and the event occurrence information during this time period is recorded. So, we



19

Figure 2.4 Illustration of Censoring Problem

can see that only subjects S4 and S6 have experienced the event (marked by ‘X’) during the

follow-up time and the observed time for them is the event time. For subjects S1, S2, S3

and S5, the event did not occur within the 12 months period, and hence, these subjects are

considered to be censored and marked by red dots in the figure. More specifically, subjects

S2 and S5 are censored since there was no event occurred during the study period, while

subjects S1 and S3 are censored due to the withdrawal or being lost to follow-up within the

study time period.

Since the censored data is present in survival analysis, the standard statistical and ma-

chine learning approaches are not appropriate to analyze and predict time-to-event outcome

because those approaches will miss the censored/right-censored instances.

Survival modeling provides different statistical approaches to analyze such censored data

in many real-world applications. In survival analysis, a given instance i, represented by a
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Figure 2.5 Survival Hazard Function

triplet ( X i, i, Ti ) where Xi refers to the instance characteristics and Ti indicates ‘time-to-

event’ of the instance. If the event of interest is observed, Ti corresponds to the time between

baseline time and the time of event happening, in this case i = 1. If the instance event is

not observed and it’s time-to-event is greater than the observation time, Ti corresponds to

the time between baseline time and end of the observation, and the event indicator is i = 0.

The goal of survival analysis is to estimate the time to the event of interest (T) for a new

instance X j [15].

2.3.1 Survival and Hazard Function

Survival and hazard functions are the two fundamental functions in survival analysis. The

survival function is denoted by

S(t) = Pr(T >t)

which signifies the probability that an individual has ‘survived’ up to time t. The initial

value of survival function is 1 when t = 0 and it monotonically decreases with t . The hazard

function corresponds to the probability that an individual dies at time t given that he or she

has survived up to that point. Figure 2.5 shows the definition of the hazard function.

Survival and hazard function are non-negative functions. While the survival function

decreases over time, the shape of a hazard function can be in different forms: increasing,

decreasing, constant, or U-shaped.
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2.3.2 Survival Regression using Cox’s Proportional Hazard Model

The Cox proportional hazards model [16] is the most commonly used multivariable approach

for analysing survival time data in medical research. It is a survival analysis regression model,

which describes the relation between the event incidence, as expressed by the hazard function

and a set of covariates. In brief, the hazard is the instantaneous event probability at a given

time, or the probability that an individual under observation experiences the event in a

period centred around that point in time, for instance, hospital readmission within 30 days

after discharge. Mathematically, the Cox model is written as

h(t)= h0(t) × expb1x1+b2x2++bpxp

where the hazard function h(t) is determined by a set of p covariates (x1, x2, . . . , xp),

whose impact is measured by the size of the respective coefficients (b1, b2, . . . , bp). The

term h0 is called the baseline hazard, and is the value of the hazard if all the xi are equal

to zero (the quantity exp(0) equals 1). The ‘t’ in h(t) reminds us that the hazard may vary

over time.

An appealing feature of the Cox model is that the baseline hazard function is estimated

nonparametrically, and so unlike most other statistical models, the survival times are not

assumed to follow a particular statistical distribution. The Cox model is essentially a multiple

linear regression of the logarithm of the hazard on the variables xi, with the baseline hazard

being an ‘intercept’ term that varies with time. The covariates then act multiplicatively on

the hazard at any point in time, and this provides us with the key assumption of the PH

model: the hazard of the event in any group is a constant multiple of the hazard in any other.
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Proportionality implies that the quantities exp(bi) are called ‘hazard ratios’. A value of ‘bi’

greater than zero, or equivalently a hazard ratio greater than one, indicates that as the value

of the ith covariate increases, the event hazard increases and thus the length of survival

decreases. In other words, a hazard ratio above 1 indicates a covariate that is positively

associated with the event probability, and thus negatively associated with the length of

survival. This proportionality assumption is often appropriate for survival time data, but it

is important to verify that it holds. The purpose of the model is to simultaneously evaluate

the effect of several factors on survival. Thus, it allows us to examine how specific factors

influence the rate of a particular event happening (e.g., hospital readmission or disease

recurrence) at a particular point in time, for instance ‘T’ days. This rate is commonly

referred as the hazard rate. Predictor variables are usually termed covariates in the survival-

analysis literature [17]. Lifelines has an implementation of the Cox proportional hazards

regression model (implemented in R under coxph) [18]

2.3.3 Evaluation Metrics for Survival Analysis

Since the censored instances exist in survival data, the standard evaluation metrics such

as mean squared error and R-squared are not appropriate for evaluating the performance

of survival analysis (19). In survival analysis, the most popular evaluation metric is based

on the relative risk of an event for different instances called concordance index or c-index.

C-index is a generalization of the area under the ROC curve (AUC) that can take into

account censored data. It represents the global assessment of the model discrimination

power. Similar to AUC, C-index of 1.0 corresponds to the best model prediction, while
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Figure 2.6 Concordance Equation

C-index of 0.5 represents a random prediction.

This measure is defined in Figure 2.6. where N refers to the all comparable instance pairs

and S is the survival function. The main motivation for using c-index in survival analysis is

originated from the fact that the medical doctors and researchers are often more interested

in measuring the relative risk of a disease among patients with different risk factors, than

the survival times of patients.

2.4 Statistical Methods Vs Machine Learning Methods

In general, the survival analysis models can be divided into two main categories: (1) statis-

tical methods including non-parametric, semi-parametric and parametric and (2) machine

learning based methods such as survival trees, Bayesian methods, neural networks and ran-

dom survival forests [20].

Figure 2.7 illustrates the multidisciplinary nature of machine learning (ML), data mining,

data science, and related areas [21]. However, the two fields of interest here, statistics and

ML are converging more and more even though the below diagram shows them almost

exclusive. While both machine learning and statistics share the same goal, the differences lie

in terms of ‘learning from data’ (drawing knowledge or insights from the data), the volume
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Figure 2.7 Multidisciplinary Nature of Machine Learning

Table 2.2 Mapping between Common Vocabulary Terms in Data Analysis Fields
Machine Learning Term Multidisciplinary Synonyms

Feature, input Independent Variable, Variable, Column

Case, Instance, Example Observation, Record, Row

Label Dependent Variable, Target

Train Fit

Class Categorical Target Variable Level

of data involved and human involvement for building a model. Statistical modeling are

generally applied for smaller data with less attributes or they end up over fitting. Machine

learning does really well with wide (more number of attributes) and deep (more number of

observations). The general terminology and what it means in terms of both the methods are

listed in Table 2.2.
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2.5 Machine learning, Neural networks, and Deep learning

In machine learning, one develops and studies methods that give computers the ability

to solve problems by learning from experiences. The goal is to create mathematical models

that can be trained to produce useful outputs when fed input data. Machine learning models

are provided experiences in the form of training data, and are tuned to produce accurate

predictions for the training data by an optimization algorithm. The main goal of the models

is to be able to generalize their learned expertise, and deliver correct predictions for new,

unseen data.

There are several kinds of machine learning, loosely categorized according to how the

models utilize its input data during training. Basically, these subfields are categorized into

supervised-, semi-supervised-, and unsupervised-learning algorithms, as such. These are

illustrated in Figure 2.8. In unsupervised learning the computer is tasked with uncovering

patterns in the data without manual/human guidance. Clustering is a prime example. Most

of today’s machine learning systems belong to the class of supervised learning. Here, the

computer is given a set of already labeled or annotated data, and asked to produce correct

labels on new, previously unseen data sets based on the rules discovered in the labeled data

set. From a set of input-output examples, the whole model is trained to perform specific

data-processing tasks. Suppose, we have input data (X), and output variable (Y). The

algorithm learns the mapping function from input to output.

f : X → Y

Y typically represents an instance from a fixed set of class. The objective of the learning
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Figure 2.8 Categories of Machine Learning

algorithm is to approximate the mapping function well so that when a new input data

comes, the model can predict the output class for it. For example, an algorithm trained on

the labelled dataset of a specific diagnosis (for instance, an abnormal overweight, fat content

etc, that indicate signs of obesity), learns to identify patients having diabetes or not.

A model’s generalization ability is typically estimated during training using a separate

dataset, namely, the validation set, and it is used as feedback for further tuning of the model.

After several iterations of training and tuning, the final model is evaluated on a test set, used

to simulate how the model will perform when faced with new, unseen data. The taxonomy

of ML algorithms and methods are depicted in the Figure 2.9 [21].
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Figure 2.9 Taxonomy of Machine Learning

2.6 Deep Learning

Traditionally, machine learning models are trained to perform useful tasks based on man-

ually designed features extracted from the raw data, or based on features learned by other

simple machine learning models. Fig 2.10 summarizes the layers of learning algorithms and

approaches that have been evolving since 1950s. In deep learning, the computers learn use-

ful representations and features automatically and directly from the raw data, bypassing

the manual (difficult) step. By far the most common models in deep learning are various

variants of artificial neural networks, but there are others. The main common characteristic

of deep learning methods is their focus on feature learning: automatically learning represen-
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Figure 2.10 AI, ML, DL

tations of data. This is the primary difference between deep learning approaches and more

“classical” machine learning. Discovering features and performing a task is merged into one

problem, and therefore both improved during the same training process. See [21-23] for

general overviews of the field. In a simple definition, deep learning or deep machine learning

refers to use of a neural network with multiple layers of hidden nodes between input and out-

put where the deep architectures are constructed by several levels of non-linear operations,

as shown in Figure 2.11.
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Figure 2.11 Layers of Neural Network

2.7 Ensemble Learning

This section introduces key concepts that are being used in our proposed ensemble learning

predictive analytics framework.

In general, ‘ensembling’, as the name implies, is a technique of combining two or more

algorithms of similar or dissimilar types called base learners. Ensemble methods are meta-

algorithms that combine several machine learning techniques into one predictive model in

order to decrease variance (bagging), bias (boosting), or improve predictions (stacking) [24].

This approach helps obtaining better predictive performance compared to a single model.

Ensemble methods can be divided into two groups. The first category is sequential ensem-
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Figure 2.12 Sequential Ensemble Learning

ble methods where the base learners are generated sequentially (e.g. AdaBoost). The basic

motivation of sequential methods is to exploit the dependence between the base learners.

The overall performance can be boosted by weighing previously mislabeled examples with

higher weight. Figure 2.12 depicts an example of sequential ensemble methods. The second

category is parallel ensemble methods where the base learners are generated in parallel (e.g.

Random Forest). Figure 2.13 depicts a simple parallel ensemble method. Now, we discuss

below, two of the most common ensembling methods that we propose to use in our model.
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Figure 2.13 Parallel Ensemble Learning

Figure 2.14 Bagging Function

2.7.1 Bagging

Bagging stands for bootstrap aggregation. One way to reduce the variance of an estimate

is to average together multiple estimates. For example, we can train M different trees on

different subsets of the data (chosen randomly with replacement) and compute the ensemble

as described in Figure 2.14.

The idea behind bagging is to combining the results of multiple models (for instance,

all decision trees) in order to get a generalized result. Bagging (or bootstrap aggregating)

technique uses these subsets (bags) to get a fair idea of the distribution of complete set. The
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Figure 2.15 Illustration of Bagging

size of subsets created for bagging may be less than the original set. Multiple subsets are

created from the original dataset, selecting observations with replacement. A base model

(weak model) is created on each of these subsets. The models run in parallel and are

independent of each other. The final predictions are determined by combining the predictions

from all the models, as illustrated in Figure 2.15.

2.7.2 Boosting

Boosting is a sequential technique in which, the first algorithm is trained on the entire dataset

and the subsequent algorithms are built by fitting the residuals of the first algorithm, thus

giving higher weight to those observations that were poorly predicted by the previous model.
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Figure 2.16 Illustration of Boosting

As illustrated in Figure 2.16, boosting technique can be described in the below steps.

A subset is created from the original dataset. Initially, all data points are given equal

weights. A base model is created on this subset. This model is used to make predictions

on the whole dataset. Errors are calculated using the actual values and predicted values.

The observations which are incorrectly predicted, are given higher weights (Here, the three

misclassified blue-plus points will be given higher weights). Another model is created and

predictions are made on the dataset (This model tries to correct the errors from the previous

model). Similarly, multiple models are created, each correcting the errors of the previous

model. The final model (strong learner) is the weighted mean of all the models (weak

learners).
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Thus, the boosting algorithm combines a number of weak learners to form a strong

learner. The individual models would not perform well on the entire dataset, but they work

well for some part of the dataset. Thus, each model actually boosts the performance of

the ensemble. It’s really important to note that boosting is focused on reducing the bias.

This makes the boosting algorithms prone to overfitting. Thus, parameter tuning becomes

a crucial part of boosting algorithms to make them avoid overfitting.

2.7.3 XGBoost

In prediction problems involving unstructured data (images, text, etc.) artificial neural

networks tend to outperform all other algorithms or frameworks. However, when it comes

to small-to-medium structured/tabular data, decision tree based algorithms are considered

one of the best choices in recent times.

XGBoost (eXtreme Gradient Boosting) is an advanced implementation of the gradient

boosting algorithm [69].The XGBoost uses the gradient boosting decision tree algorithm.

Gradient boosting is an approach in which new models are created sequentially that predict

the residuals or errors of prior models, which are then added together to make the final

prediction. It is called gradient boosting because it uses a gradient descent algorithm to

minimize the loss when adding new models.This approach supports both regression and

classification predictive modeling problems.

XGBoost has proved to be a highly effective ML algorithm, extensively used in machine

learning competitions and hackathons. XGBoost has high predictive power and is almost 10

times faster than the other gradient boosting techniques. It also includes a variety of regular-
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Figure 2.17 Evolution of XCBoost

ization which reduces overfitting and improves overall performance. Hence it is also known as

‘regularized boosting‘ technique. Figures 2.17 and 2.18 illustrate the evolution of tree-based

algorithms over the years, and the optimization techniques of XGBoost, respectively [69].

2.8 Feature Selection Methods

Feature selection (FS) is the process of selecting a subset of the most relevant features to help

build a more accurate predictive analytics model [72]. In general terms, feature selection is

also referred as variable selection or attribute selection. The main objectives of FS are to

improve the prediction performance of the predictors, provide faster and more cost-effective

predictors by eliminating the least important ones, and identifying the best combination of

features that contribute the most to the target outcome. Also, the lesser the number of
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Figure 2.18 Features of XCBoost

features, the lesser the complexity of the model. Many research studies have shown that

feature selection can be used to increase the classification performance [73-76].

There are three general categories of FS algorithms: filter methods, wrapper methods

and embedded methods [77]. Filter methods employ a statistical measure to assign a score

to each feature (for example: Chi squared test or correlation coefficient scores). The features

are ranked by the score and either selected to be kept or removed from the model. Embed-

ded methods learn which features best contribute to the model’s accuracy while it is being

created. Regularization algorithms (for instance, LASSO, Elastic Net and Ridge Regression)

are the most common type of embedded FS methods.

Wrapper methods consider the selection of a set of features as a search problem, where
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various combinations of subsets of features are prepared, evaluated and compared to each

other. A predictive model is used to evaluate a combination of features and assign a score

based on model accuracy. An example of a wrapper method is the recursive feature elim-

ination (RFE) algorithm, that our framework utilizes. The RFE technique evaluates the

input feature set by recursively removing the redundant and the least important features,

and builds a model on those features that remain. This method uses the model accuracy to

identify which features (and combination of features) contribute the most to predicting the

target outcome.
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CHAPTER 3

REVIEW OF THE STATE-OF-THE-ART

In this chapter, we present a comprehensive review of the existing predictive analytics models

that deal with time-to-event outcomes in healthcare. Furthermore, we review and discuss

prior research studies that focused on the assessment of risk factors for short-term hospital

readmission events following acute care medical procedures in general, and prediction of

short-term readmission outcomes following cardiac surgery, in specific.

3.1 Statistical Models

In 2018, Deo et al. [25] reported development of a decision support tool, i.e., a Risk Calculator

to predict 30-day readmission tool after CABG. This study uses statistical analysis methods

and R language environment [26]. In this research paper, categorical data were presented as

counts (percentages) while continuous data were presented as median (interquartile range).

The study cohort was stratified into those who did and did not experience 30-day readmission.

Categorical data was compared with the Chi square test while continuous data was analysed

with the Wilcoxon rank-sum test or two-tailed ‘t’ test. Their initial model incorporated 37

pre- and post-procedural variables. Subsequently, the risk calculator was developed using

16 preoperative and three postoperative factors. The final model was also developed with

hierarchical regression using the hospital identifier as the random effects term. The results

demonstrated a c-statistic of 0.65. The Center for Medicare Services presented a model with

a c-statistic of 0.62 when applied to the development model and 0.63 when applied to the

validation samples [27]. While the CMS model was limited to preoperative data, the study
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of Deo et al. take into account important postoperative events that influence readmission.

Benuzillo et al. [28] proposed a model for ‘Predicting readmission risk shortly after

admission for CABG surgery’. This research considers the Society of Thoracic Surgeons

(STS) database and the study cohort includes isolated CABG procedures performed in four

Intermountain Healthcare hospitals. In this model, a total of 50 clinically relevant risk factors

were considered, and grouped into demographic characteristics, prior histories, biometric

data, lifestyle data, laboratory results, preoperative cardiac status, preoperative medications,

hemodynamic data, and previous cardiac intervention data. The data were analyzed using

Stata 13 statistical software (StataCorp LP, College Station, TX). The methods used were

Chi-square test (or the Fisher exact test when appropriate) for categorical variables and the

two-sample t-tests (or the Wilcoxon rank sum test when appropriate) for continuous variables

in bivariate analysis. Predictors with a P < 0.05 were included in a multivariable logistic

regression model and removed stepwise, using backward elimination procedures.The Hosmer-

Lemeshow test was used to evaluate model calibration.The area under the curve c-statistic

obtained from the derivation sample was 0.63, 0.65 in the validation sample. In addition, the

model was shown to calibrate well according to the Hosmer-Lemeshow goodness of fit test

9.31 (P = 0.32). However, the predictive power of the model presented here was limited by

the exclusion of postoperative risk factors such as renal failure or postoperative infections,

as it considers a small of number of commonly available electronic data. Zywot et al. [29]

proposed a ‘Preoperative Scale to Determine All-Cause Readmission after CABG’, and this

model uses, STATA, version 12, statistical software (StataCorp LP, College Station, TX) for
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data analysis. Statistical analysis of categorical variables was performed using Chi square

tests and cohort comparison was performed using t-tests and ANOVA. Predictive factors

were added in a stepwise manner to a mulitivariable logistic regression and odds ratios (OR)

and 95% confidence intervals (CI) were calculated. They devised 100-point readmission risk

score based only on preoperative factors using the State Inpatient Database (SID) for New

York, California, Washington and Florida. While their model has a higher c-statistic of

0.702, Deo’s [25] model appears more intuitive to use in regular clinical practice. Zywor et

al. presented a 100-point risk scale without specifically providing data of how to convert

this into a clear probability for the individual patient , while the model of Deo et al. gives

a simpler comparison of total score and probability. However, the findings of Zywot’s model

are similar to those of previous studies on readmission rates among post-CABG patients.

Feng et al. [30] carried out a retrospective study on CABG readmission rates and risk

factors, with data drawn from California, Florida, and New York State Inpatient Databases.

In this study, statistical tests and analyses were performed using SAS version 9.3 (SAS

Institute, Cary, North Carolina). Fisher’s exact test or Chi-square analysis was used to

test statistical significance for categorical variables, including insurance status, readmission

rates, readmission diagnoses, and demographic data. Continuous variables were analyzed

with analysis of variance (ANOVA) or Kruskal-Wallis tests, for non-normally distributed

variables, as appropriate. All p-values were two-sided with statistical significance evaluated

at an alpha level of 0.05. mulitivariable logistic regression analyses were used to estimate

odds ratios (OR) with 95% confidence intervals for 30- and 90-day readmissions for each



41

insurance cohort (compared to private insurance), while controlling for other demographic

variables, comorbidities, postoperative complications, hospital LOS, discharge disposition

status, and other potential confounders. According to this model, independent risk factors

for readmission within both 30 days and 90 days after discharge from CABG are age, female

sex, black or Hispanic race, low median household income (based on zip code), discharge

with home health care, non-routine transfers, and length of stay (LOS). Additionally, the

presence of certain complications during the initial postoperative hospitalization, including

cardiovascular, intraoperative, and pulmonary complications, were associated with higher

risk of readmission at both 30- and 90-day intervals. The results of this study are in consistent

with previous studies that have demonstrated readmission rates ranging from 8% to 21%.

[31, 32, 33, 43]. The limitation of the study is its use of an administrative dataset, which may

lack relevant clinical information or intraoperative data that could change the comorbidity

burden of given patients or explain adverse perioperative outcomes. Follow-up data was not

available beyond the readmission findings that they presented; the database was also limited

as it can only trace patients readmitted to the hospital within the same state.

In 2017, Kilic et al. [34] developed and validated a risk score for readmission after ault

cardiac operations. Data analyses in their model were performed with STATA, version 11,

statistical software (StataCorp LP, College Station, TX). This model also uses student’s

t test for continuous variables, Chi-square test for categorical variables. The inclusion of

each variable into the model was evaluated in a stepwise fashion using the likelihood ratio

test, with a p value less than 0.05 considered significant. The predictive capability of the
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composite risk score in evaluating the risk of 30-day readmission was then evaluated in the

validation cohort using logistic regression analysis, the Akaike information criterion, the Chi-

square test, the c-index, and the Hosmer-Lemeshow goodness-of-fit test. The model showed

predictive capability in the validation cohort, with an Akaike information criterion of 795,

c2 result of 40 (p ¡ 0 .001), C-index of 0.64, and nonsignificant Hosmer-Lemeshow test result

of 0.57. multivariable logistic regression analysis of this study identifies six predictors as the

most significant, and they are chronic lung disease (CLD), race, insurance type (Private,

Medicare, Medicaid, Other), type of operation (CABG, Valve, CABG- Valve, Aortic, other),

length of stay in hospital, postoperative acute renal failure. The major limitation of this

study is that readmissions to other hospitals were not captured in the analysis. Another

limitation was that other variables that may be associated with 30-day readmission were not

available in their database. This includes variables such as proximity to the hospital, a social

support system, and medication compliance. Furthermore, readmissions were captured only

if they occurred within 30 days, although the incidence of specific causes of readmission may

peak at later times.

In 2016, Espinoza et al. [35] studied about ‘30-day readmission score after cardiac

surgery’. In their model, statistical analyses were performed using SPSS version 21 (IBM®

SPSS ® Statistics). univariable analysis used Chi-square or Fisher’s exact, while multivari-

able model analysis was done through stepwise logistic regression. This model demonstrated

the area under the curve (AUC) 0.663, and 0.639 for the test and validation data sets, re-

spectively. Although, this model includes a large cohort of patients that is well represented
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by differences in gender, age, and all types of cardiac surgical procedures, the data are de-

rived from a single center. The model needs to be tested prospectively at multiple centers

to substantiate its broad applicability. Furthermore, only 2 out of 5 risk factors included in

this scoring model are considered to be ‘modifiable risk factors’ (preoperative anemia and

peak glycemic serum level).

Swaminathan et al. [36] studied on ‘ Gender Differences in Hospital Outcomes after

CABG’ In tius model, all analyses were conducted using SAS, version 9.2 (SAS Institute,

Cary, North Carolina) and SPSS, version 20 (IBM corporation, Armonk, New York). In

univariable analysis, Chi-squared and independent t-test were used for categorical and con-

tinuous variables, respectively. multiivariable logistic regression analysis was used to adjust

for baseline differences between male and female groups by adjusting for univariable pre-

dictors of examined outcomes (p < 0.01). Their findings reported that women have worse

in-hospital outcomes than men; however, the gender gap is slowly closing. Fanari et al. [37]

tried ‘predicting readmission risk following CABG at the time of admission’. In their model,

Fractional Polynomial (FP) Regression (FPR) was used to assess nonlinearity of continuous

variables, while Hierarchical Logistic Regression (HLR) was used to model readmissions (a

patient may have had more than one). Derivation models were developed by a combination

of forward selection and backward elimination of variables.They developed 3 models, one at

admission and two at discharge. The c-indices were 0.673, 0.7, and 0.714 for the admission,

discharge and STS models respectively. Internal validation of the models demonstrated c-

index of 0.641, 0.659 and 0.670 respectively. Although these models showed that clinical
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risk factors could be predictive of CABG readmission, they also had some limitations. First,

none of them added previous utilization as an important potential predictor of readmission.

Second, they all used registry data that would need abstracting and that may be subjective

to inaccurate coding and/ or not inclusive of all comorbidities and complications that may

impact and predict readmission.

Shahian et al. [38] linked the Society of Thoracic Surgeons data with Medicare readmis-

sions claims to devise a 30-day readmission model. They found dialysis, increased creatinine

levels, severe chronic lung disease, preoperative atrial fibrillation, insulin dependent diabetes

mellitus, female gender, immunosuppressive therapy,recent myocardial infarction,low body

surface area in men and obesity in women, as factors associated with higher likelihood of

30-day readmission after CABG. The c-statistic of their model was 0.648. The final list of

covariates selected by the surgeon panel included all covariates that were either (1) selected

at the 0.05 level in the original full sample for at least 1 calendar year; or (2) were selected

in at least 50% of bootstrap replicates at the 0.05 level in at least 1 calendar. Logistic

regression was used to identify readmission risk factors. To estimate hospital-specific per-

formance, the selected covariates were entered into a hierarchical logistic regression model

with hospital-specific random intercept parameters. These hierarchical models were used to

estimate hospital-specific risk-standardized readmission rates (RSRRs) using methodologies

identical to the existing CMS readmission measures [39-41]. The data for this model was

drawn STS National Database linked to Medicare claims records. However, not all Medicare

CABG admissions could be linked to an STS record, and some Medicare admissions were,
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by design, excluded from analysis (eg, unknown discharge date). Similarly, some Medicare

hospitals were excluded because of extremely low CABG volumes, possibly indicating they

were not actually CABG providers.

Maniar et al. [42] performed ‘prospective evaluation of patients readmitted after cardiac

surgery and analyzed outcomes to identify risk factors’. The analyses of continuous and cat-

egorical variables were performed using t tests, and chi-square tests respectively. Through

SAS software, version 9.3 (SAS Institute Inc, Cary, NC), multiivariable Logistic regression

analysis identified independent risk factors for readmission. This study considers patients

patients underwent cardiac surgical procedures at a single tertiary care institution. This

single-center experience was limited by sample size, precluding the use of more sophisticated

matching between study patients and control patients, and required the use of 2 multiivari-

able logistic regression models to allow for testing of statistically and clinically significant

covariates identified by univariable algorithms. Price et al. [43] attempted ‘Risk Analysis

for Readmission after CABG’ and proposed a strategy to reduce readmissions. This model

considers data that were extracted from New York State Cardiac Surgery Reporting System

(CSRS), and the STS Adult Cardiac Surgery Database. Univariable screening was performed

using chi-square or independent t-tests. Multivariable logistic regression was then also used

to further evaluate the subgroup of variables meeting univariable statistical significance (p <

0.05). The results demonstrate a c-index of 0.651. However, given the small sample consid-

ered in this model, this study may have likely been underpowered to uncover all risk factors

and limited in its ability to perform extensive multiivariable analysis.
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Currie et al. [44] proposed a ‘predictive model for readmission within 30 days after

CABG’, and used patient-specific perioperative parameters for individual risk assessment

for early readmission. Chi-squared and independent t-test were used for categorical and

continuous variables, respectively. A logistic regression was performed with variables having

tests with p-value 0.02. Hannan and colleagues [45] performed analysis of more than 33,000

patients undergoing CABG in New York state, demonstrated 30-day readmission rates rang-

ing from 8.3% to 21.1% across institutions, and found that the most common causes of

readmission were infection and heart failure. The model uses stepwise logistic regression,

and all analyses were performed with SAS software version 8.2. Zhongmin Li et al. [56] also

retrospectively analyzed 30-day readmissions among 11,823 patients discharged alive after

isolated CABG in 2009 in the State of California and found risk factors similar to Hannan’s

previous findings [45]. But, they also identified other risk factors such as postoperative atrial

fibrillation and recent myocardial infarction, both of which support Espinoza’s findings [35].

This study reported c-statistic of 0.65. This is not uncommon for models that predict

complications or readmissions, but it means that unavailable patient-level predictors of read-

mission could have improved the discrimination and/or that unmeasured hospital quality of

care/process measures would have substantially improved the ability to predict readmissions.

In 2000, Stewart et al. [46] attempted studying about ‘Predictors of 30-Day Hospital

Readmission After Coronary Artery Bypass’, with data drawn from a single institution. All

patients of the final cohort (n=485) were personally contacted by telephone on the 30th

postoperative day to determined if patient had been readmitted. Statistical analysis was
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performed using STATA software.. Continuous variables were compared using student’s t

tests. Categorical or dichotomous variables were compared using Chi-square or Fisher’s

exact tests. multiivariable logistic regression was performed with all variables included in

the model to control for potential confounding or effect modification. The most significant

finding of this study was that women were readmitted more than twice as often as men

within 30 days of CABG. According to this study, the most common reasons for readmission

were atrial fibrillation, leg wound infection, followed by congestive heart failure or angina.

Kansagara et al [47] carried out a systematic review of ‘Risk Prediction models for Hospi-

tal Readmission’ in 2011. Their study reviewed 7843 citations and found ound 26 readmission

risk prediction models of medical patients tested in a variety of settings and populations. The

most common outcome used was 30-day readmission. Half the models were largely designed

to facilitate calculation of risk-standardized readmission rates for hospital comparison pur-

poses. The other half were clinical models that could be used to identify high-risk patients

for whom a transitional care intervention might be appropriate. Of these, nine were tested

in large US populations and had poor discriminative ability (c-statistics 0.55 – 0.65). Seven

models could potentially be used to identify high-risk patients for intervention early dur-

ing a hospitalization (c-statistics 0.56 – 0.72), and five could be used at hospital discharge

(c-statistics 0.68 – 0.83). Six studies compared different models in the same population

and two of these found that functional and social variables improved model discrimination.

Though most models incorporated medical comorbidity and prior utilization variables, few

examined variables associated with overall health and function, illness severity, or social
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determinants of health. Kangara’s review concluded that most readmission risk prediction

models, whether designed for comparative or clinical purposes, perform poorly. Though

in certain settings such models may prove useful, efforts to improve their performance are

needed as use becomes more widespread.

3.2 Survival Regression Models

One of the survival models that is most commonly used in the statistical and medical research

literature is the Kaplan-Meier estimator [78], which has the advantage of being able to learn

very flexible survival curves, but the disadvantage of not incorporating patients’ covariates.

Hence it is useful at the population level but not useful at the individual level. As we have

noted already the Cox proportional hazard model [16] is capable of incorporating patients’

covariates, but assumes that the hazard rate is constant and that the log of the hazard

rate is a linear function of covariates. Other models make different assumptions about the

underlying stochastic processes and about the relationship between the covariates and the

parameters of the assumed process. For instance, Lee et al. and Doskum et al. [79, 80]

assume a Wiener process, while [81] assumes a Markov Chain.. A merit of these models is

that, because they formulate survival analysis as the problem of determining the distribution

of the first time at which the prescribed stochastic process hits a prescribed boundary, they

are able to incorporate competing risks. The drawback of these models is that they are tied

to the specific form of stochastic process that they assume. The models might be of limited

use unless we have already learned the underlying stochastic process. In the healthcare
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setting this means learning the underlying disease process, which would seem to be an even

more complicated problem than survival analysis itself - especially since the states of the

disease or diseases are typically hidden and not directly observable. Alternatively, Fine and

Gray [82] modified the traditional proportional hazard model by direct transformation of the

cumulative incidence function, but this model is also severely limited by strong assumptions

on the form of the hazard rates and on the way in which the parameters depend on covariates.

Recently, the survival analysis problem has also received significant interest in the ma-

chine learning literature. These include random survival forests by IIshwaran et al [83], deep

exponential families by R. Ranganath and Blei [84], dependent logistic regressors by Yu et

al. [85], and semi-parametric Bayesian models based on Gaussian processes by Fernndez et

al.[86]. These methods are capable of incorporating the individual patient’s covariates, but

none of them appears readily adaptable to the problem of competing risks. Recently, Alaa

and van der Schaar [87] used deep multi-task Gaussian process to develop a nonparametric

Bayesian model for survival analysis with competing risks, but their model still relies on

assumption that the latent stochastic process follows Gaussian process.

3.3 Neural Network Models

Faraggi and Simon [88] developed the first application of neural networks to survival analysis.

In contrast to the standard CPH model, this work uses a feed-forward network to learn the

relationship of the covariates to the hazard function. Recently, Katzman et al. [89, 94]

and Luck et al. [90] have followed a similar general approach, using more sophisticated
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network architectures and loss functions. These works have improved on the CPH model by

relaxing the specific functional relationship between covariates and the hazard function in

the standard CPH model while maintaining the other central assumption - that the hazard

rate is constant over time. Consequently, these studies do not fully utilize the potential

capacity of deep neural networks to learn complex representations of risk and in particular

to capture the time-dependent influence of covariates on survival. In the other research, Lee

et al. [91] introduced a different approach called DeepHit which employs deep architecture

to estimate the survival times distribution. They used neural network including two types of

sub-networks: (1) a single shared sub- network and (2) family of cause-specific sub-networks.

They evaluated their method based on real and synthetic datasets which illustrate that

DeepHit leads to better performance in comparison with state of the art methods. Although

these survival models developed by using deep learning are well suited for high-dimensional

survival data, they are not the best choice when labeled instances are scarce, it seems more

effort s should be accomplished to improve them in such situations. The other drawback of

these deep learning based survival model is related to interpretability. Majority of the studies

discussed above did not provide interpretable framework for treatment recommendation or

survival risk analysis while their proposed methods were based on deep representation of

original features (risk factors) through multiple non-linear transformations [93-98].

In the context of our research area, sophisticated statistical prediction models (classi-

fiers) have been applied to CABG outcomes readmission risk prediction problem, ranging

from simple univariable analysis to multiivariable logistic regression and Bayesian statistics.
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However, most regression models require statistical assumptions (eg, linearity, additivity,

distributional), which may not be justified [48], and the management of missing data is

problematic. Bayesian models assume that prediction variables are independent and also

require categorical data that typically can assume only two values. However, they do not re-

quire iterative training and easily accommodate missing features. Each of these methods has

inherent limitations when applied to a complex biological process, and a high degree of pre-

dictive accuracy has yet to be achieved. Neural networks are a form of artificial intelligence

that may obviate some of the problems associated with traditional statistical techniques,

and it has been asserted by Steen et al. [49] that they will represent the next major advance

in predictive modeling. Previously, Lippman et al. described the results of pilot studies

of CABG risk prediction from databases of approximately 1,000 and 40,000 patients and a

limited set of variables [50,51].

To the best of our knowledge, the applicability of multilayer perceptron neural networks

(MLP) to coronary artery bypass grafting risk prediction was first assessed using the STS

database of 80,606 patients who underwent coronary artery bypass grafting in 1993 by Lipp-

man et al [52]. In this study, the results of traditional logistic regression and Bayesian

analysis were compared with single-layer (no hidden layer), two-layer (one hidden layer),

and three-layer (two hidden layer) MLP neural networks. These networks were trained us-

ing stochastic gradient descent with early stopping. A committee classifier combining the

best neural network and logistic regression provided the best model calibration in the above

study. The Receiver Operating Characteristic (ROC) curve areas for predicting mortality
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were approximately 76% for all classifiers, including neural networks. Calibration (accuracy

of posterior probability prediction) was slightly better with a two-member committee clas-

sifier that averaged the outputs of a MLP network and a logistic regression model. Unlike

the individual methods, the committee classifier did not overestimate or underestimate risk

for high-risk patients.

Despite optimism that artificial intelligence techniques might be the next major advance

in risk prediction for coronary bypass, results in this analysis of more than 80,000 patients

from the above model confirms the suspicion of many investigators that all prediction systems

have inherent limitations [53-55]. Neural networks alone failed to improve upon the ROC

curve area of logistic regression or Bayesian analysis, suggesting an absence of complex

nonlinear relationships, at least among the variables presented to the network.

NNs are being used in the areas of prediction and classification of outcomes in medicine -

areas where regression models have traditionally been used. In most applications, outcomes

(termed outputs by users of NNs) are characterized by the presence or absence of an event. In

this situation, a NN is regarded as an alternative to traditional logistic regression methods.

However, in the situation where outcomes are characterized by the time to an event, the

application of NNs to predict clinical events requires development of a strategy to address the

time course of a disease process. In cases where the event of interest does not occur, outcomes

are regarded as (right)-censored. Simple exclusion of censored observations from the available

training set would limit the amount of data available for network development and could

lead to significant biases in event predictions. Several strategies have been developed to
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extend NN prediction methods to accommodate right-censored data. These are methods

due to Faraggi and Simon (57), Liestol et al. (58), and a modification of the Buckley-

James method (59). Because Cox regression analysis is an accepted solution to the problem

of analyzing censored data, the performance of Cox regression models, when compared to

those of NNs, can provide a useful perspective on the utility of a NN approach.

Xiang et al. [92] compared the performance of neural network methods and Cox regression

for censored survival data. The results of Xiang’s study suggested that NNs could serve as

effective methods for modeling right-censored data. However, the performance of the NN is

somewhat variable, depending on the method that is used. The limitation of their study was

the use of simulated data.

With the advent of big data in biomedical and health field in recent times, Wang et

al [61] presented the scope of applications of deep learning in biomedical informatics. In

the recent past, EHRs were analyzed using traditional machine learning techniques, whereas

recently the progress in the field of deep learning let to the application of deep learning

techniques to EHRs [62]. Electronic Health Records (EHR) are the rich source of patient

information, including both structured and unstructured data, with various sources such

as, diagnosis, laboratory test results, medications, procedures, and other clinical data. DL

obtains better results than conventional Machine Learning (ML) models applied in processing

EHRs. DL have the capability to learn complex patterns, extract data-driven features, and

high-dimensional data, and is becoming popular in biomedical data analysis. As more data

becomes available, DL systems can evolve and deliver where human interpretation is difficult.
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NN software has generated a great deal of interest partly because it effectively places

advanced modeling tools in the hands of users of personal computers. One of the advantages

of NNs is that they can detect complex patterns among the inputs. In contrast, one disad-

vantage of NN models is that they can model idiosyncratic features of the training dataset.

When this happens the NN has overlearned, and will appear to perform extremely well on

the training dataset but further testing on new data will generally be far less successful. In

fact, overlearning was apparent in our testing datasets. For example, comparing training

to testing results for Design 5, the Faraggi-Simon, Liestol-Andersen-Anderson and Buckley-

James methods [57-59] declined by 0.041, 0.079 and 0.019, respectively. Overfitting can be

reduced by using the m-item out validation approach, which is time intensive (Lachenbruch

and Mickey, 1968).

Another disadvantage is that NNs are ’computationally intensive’ and may take a long

time to train and converge to a solution. Using the quasi-Newton minimization algorithm,

the Liestol-Andersen-Andersen and Buckley-James methods converged to a solution very

fast. In contrast, the Faraggi-Simon method, which used the simple gradient minimization

algorithm, took a long time to train. Additionally, the NN may converge not to the optimal

solution, but rather to a local minimum, so that the resulting NN will perform sub-optimally.

Some methods such as genetic algorithms can be used to avoid local minima. However, the

genetic algorithm requires a lot of computer memory and is slow in convergence.

One advantage of Cox regression, is that the regression coefficients can be interpreted as

the likelihood of an outcome given some value(s) of the risk factor (e.g.,odds ratios or relative
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risks). NN weights usually do not lend themselves to such interpretation. The NN methods

presented here represent only a few of the many options in survival modeling. It may be

more valuable to explore issues of methods, applications, and potential for improvement than

to draw conclusions about whether one method is inherently ’superior’ to another.

In this research, we propose a new scalable, portable and memory-efficient predictive

analytics framework, using four components: feature engineering, time-to-event (survival)

analysis, feature selection, and ensemble learning algorithms. The motivation for this study

comes from literature gap and application needs in several domains (e.g., healthcare, manu-

facturing and finance) in dealing with time-to-event outcomes.
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CHAPTER 4

A NEW SCALABLE, PORTABLE AND MEMORY-EFFICIENT
PREDICTIVE ANALYTICS FRAMEWORK FOR PREDICTING

TIME-TO-EVENT OUTCOMES IN HEALTHCARE

In this chapter, we describe our proposed model, a newly constructed scalable, portable,

and memory-efficient predictive analytics framework that requires minimal resources, com-

putationally as well as memory-wise. The primary objectives of this new ensemble learning

based model are to evaluate the predictive ability more accurately with effective feature en-

gineering and feature selection techniques and to improve performance by using less features

compared to state-of-the-art models. Our framework comprises of four components (feature

engineering, survival analysis methods, feature selection techniques, and ensemble learn-

ing methods) working together to produce a more robust and accurate predictive analytics

model, as illustrated in Figure 4.1.

In this research study, our new contributions include i) design and development of more

appropriate feature engineering rules to process the unstructured input feature set of medical

data, ii) incorporation of time-dependent perioperative granular data points, i.e, multiple

rows of records for each subject, comprising of both the time-fixed and time-dependent health

records of patient population iii) application of better automatic feature selection techniques,

and iv) parameter tuning and optimization of the ensemble learning algorithms - in order to

minimize overlearning issues on the training data and improve predictive performance when

tested with new data. In other words, in the proposed framework, we attempted to improve

performance by a four-step process, i.e., more granular data, automatic feature selection,
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algorithm tuning, and ensemble methods. While this model’s approach can be extended

to any general application area of time-to-event outcomes (for example, a device failure, a

project success or a student dropout), we focus on a healthcare application set-up here to

explain all the modules of the framework in the following sections.

4.1 The Conceptual Framework

Our proposed framework employed the technique of ensemble learning methods, i.e., combin-

ing the decisions from multiple models to improve performance. As shown in Figure 4.2, the

first component, feature engineering, formed the foundational basis as it handled data ex-

traction and processing tasks. The second component encompassed the selection of the best

possible feature set that influence the outcome, and this role was handled by Cox Propor-

tional Hazard (CPH) survival analysis model, and an advanced feature selection technique,

’Recursive Feature Elimniation (RFE). The third and fourth components, model training

and validation were handled by an appropriately tuned and optimized ensemble learning

method, ’eXtreme Gradient Boosting’(XGBoost). This framework analyzes the entire input

feature set, evaluates the best possible feature set and processes the most significant feature

vectors relevant to the outcome and generates better predictive performance metrics. The

components of the framework are described in the following sections in more detail.

The model first processes a consolidated raw dataset or feature set (for instance, elec-

tronic health records of cardiac surgery patients), and employs imputation and one-hot

encoding processes to handle missing and categorical variables, using XGBoost libraries.
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Figure 4.1 Workflow of the Proposed Framework

Feature engineering techniques, such as feature binarization, discretization, transformation,

normalization, and weighting are then applied to form the informative features from the raw

dataset. This whole feature set is then fed to the Cox survival regression model that produces

highly correlated features relevant to the outcome, using univariable and multivariable anal-

yses. To further bring down the number of redundant or irrelevant features, we employed

RFE, an automatic feature selection technique that considers smaller and smaller sets of

features recursively, eliminates the least important ones, and identifies the best combination

of features that contribute the most to the target outcome.

The resultant feature set was deployed to XGBoost. XGBoost uses a gradient boosting

decision tree algorithm that employs a boosting technique in which new models are created

sequentially that predict the residuals or errors of prior models, which are then added to-

gether to make the final prediction. Within the XGBoost, we first load the selected feature

set, prepare data, train the model with training data set; run k-fold cross-validation with

subsets of data (for k=3,5,and 10), perform parameter tuning to reduce overlearning; val-

idate the model with validation data set; and then collect the evaluation metrics, such as,
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Figure 4.2 Proposed Ensemble Learning Framework
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area under the receiver operating characteristics (AUROC), ro concordance index metrics,

and logarithmic loss plots for both the training and validation data sets, and survival curves

for the most significant and highly correlated features that impact the likelihood of the target

event.

4.2 Feature Engineering and Feature Selection

Feature engineering is the act of injecting knowledge into a machine learning model. Through

this component, we carried out the tasks, such as, removal of unnecessary and redundant

features from the raw data set; inclusion of new features by combining the existing ones;

transformation of features, modification of features and feature values. These processes are

explained in the subsequent subsections.

4.2.1 Data Sources and Study Cohort

As shown in Figure 4.2, the primary database we used in this study was Society of Thoracic

Surgeons (STS) Adult Cardiac Surgery Database, pertaining to a multi-hospital academic

health system. Also, we utilized institution’s Clinical Data Warehouse (CDW) as a sec-

ondary data source in order to cross-refer and fill-in any missing data values as well as to

extract additional data elements (that were not usually recorded in STS database) such as,

time-dependent perioperative variables, insurance provider data as well. The study cohort

included all patients who were discharged alive following isolated CABG, and the number

of initial subjects was 1334. Minors (of < 18 years old) and in-hospital mortalities that oc-

curred during the index admission were excluded, and 1303 patients were included for final
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Figure 4.3 Illustration of Data Feed Formatting in Prior Models

analysis. The entire study cohort was then divided randomly into training and validation

sets with a 80:20 ratio.

4.2.2 Study Features and Outcomes

For our experiments, one of the primary events of interest that we considered was the same

hospital all-cause readmission within 30 days of discharge following CABG. The initial list of

variables were either (1) selected at a p value less than 0.05 level in the original full sample,
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or (2) added in accordance with a well-established list of risk factors associated with prior

studies [28 - 32], or 3) recommended by surgeons. As listed in Tables 1-4 in Appendix A,

this study included 82 potential readmission risk factors, including patient demographics

(such as age, race, gender); preoperative comorbidities (diabetes, congestive heart failure,

prior myocardial infarction); pre- and post-operative vital signs (blood pressure, heart rate);

laboratory values (white blood cell count, glucose, hemoglobin, creatinine), intraoperative co-

variates (number of diseased coronary vessel systems, operative approach, Cardiopulmonary

Bypass Utilization, total time in operation room), and postoperative events (such as atrial

fibrillation, pneumonia, renal failure, reoperation for bleeding, prolonged ventilation, new

dialysis). The notable addition in this study was the inclusion of granular data points of

time-varying covariates, as illustrated in Figures 4.3 and 4.4. For each patient in the cohort,

multiple readings of preoperative laboratory values (such as creatinine, glucose, hemoglobin

A1c, hematocrit, white blood cell count for preoperative day 1, day 2) within 48 hours prior

to CABG operation were considered for analysis. Similarly, multiple recordings of postopera-

tive laboratory values (such as creatinine, glucose, hemoglobin, hematocrit for postoperative

day 1, day 2, day 3), and vital signs (such as blood pressure, heart rate for postoperative

day 1, day 2, day 3) within 72 hours post-CABG were considered in the analysis.

Not every individual has a full set of all of the measurements recorded in the STS primary

database due to version-upgrades or data-entry misses. So, we cross-referred institution’s

CDW for missing and/or additional data values and filled-in data where appropriate, includ-

ing CDW-specific information, such as, prior heart failure, preoperative chronic lung disease,
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Figure 4.4 Illustration of Data Feed Formatting in the Proposed Framework

preoperative insurance type (Medicare, Medicaid, Private, and Other). This process led to

minimize the amount of missing data to less than 5% in the overall study cohort.

4.2.3 Feature Data Extraction and Purification

One of the most valuable parts of machine learning is predictive modeling, i.e., development

of models that get trained with historical data to make predictions on new data. So, we

first tried to create new and different perspectives on our data in order to best expose the
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Figure 4.5 Feature Engineering Process in Ensemble Learning Framework

structure of the underlying problem to the learning algorithms - and thus, help improve

performance. A five step process of data integration was performed which included merging,

cleansing, consolidation, normalization, and rescaling in order to fit the data well into our

proposed framework, as depicted in Figure 4.5. Below is the list of algorithmic steps that

we devised for the above processes. These tasks were performed with the aid of Structured

Query Language (SQL) scripts, using an open source MySQL workbench software [65] and

Python language [66].

Algorithm 1: Data pre-processing

1. Extract the data set of patients who underwent isolated CABG procedures during the

study period, from the primary data source,, i.e., STS database.

2. Link and merge the dataset with the secondary data source, CDW for additional data



65

elements, time-dependent variables and granualr data poitns for each subject of the

study (Table 4 in Appendix A).

3. De-identify the data set, excluding the patient-specific protected health information

(PHI)

4. Delete non-relevant subjects, variables, based on the criteria described in study cohort

section.

5. Rescale and/or normalize categorical values in order to fit well into model (Figure 4.4

and Table 1-4 in Appendix A]

6. Handle missing data for columns with < 5% data missing [by applying missing data

algorithm described in section 4.2.4]

7. Apply XGBoost’s one hot encode to categorical data

• Encode string output values as integers for classification [through ‘Label Encoder’

string class of XGBoost]

• Map integer values into binary variables

4.2.4 Handling of Missing Data for Selected Feature Set

Handling missing data is important as many machine learning algorithms do not support

data with missing values. Accurate estimation of the missing values is a critical component

in data analysis [70-71]. In our study population, missing data mostly occurred due to

unrecorded or unobserved instances in STS database. This kind of missing data falls into
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‘Missing Completely At Random’ (MCAR) category [67]. However, after we applied variable

selection criteria to the whole data set, the missing data was very minimal. We applied

below ML algorithm to handle missing data, because ML imputation methods outperform

statistical methods in the prediction outcome [68]. Finally, all the variables included in the

CPH survival regression model were complete. Hence, only complete cases or subjects were

included in the models we developed. Also, we have not removed any rows with missing

data, because it might change the distribution of actual data. We used below two step-

processes and algorithms for handling missing data. We customized sparsity-aware spilt

finding handled in XGBoost [69].

Purification by skipping data

• There are two kinds of skipping that we might want to do when we have missing data.

• We can either skip data points that have missing data or skip features that have missing

data.

• Somehow we have to make a decision of whether to skip a data point, skip features, or

skip some data points and some features and that’s a kind of complicated decision to

make.

• Idea 1: Skip data feature where any feature contains a missing value [make sure only

a few data points are skipped]

• Idea 2: Skip an entire feature if it’s missing for many data points [make sure only a

few unnecessary or redundant features are skipped]
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Purification by imputing data

• Simple imputation may introduce bias. So, we designed an algorithm, as described

below. This customized approach adapts to missing data at hand and makes it robust

for better outcomes from the study.

Algorithm 2 for handling missing data

• Determine the amount of missing data for each column/data field.

• If missing data is > 5%, apply case deletion of data columns

• Else, apply multiple imputation through XGBoost

• For categorical variables, use the most frequent and ‘mode’ values

• For continuous variables - apply imputer class to impute with mean/median, based on

the nature of data fields [with XGBoost modules

• Split data into training and validation sets randomly in 80:20 ratio [using either XG-

Boost methods or SQL scripts]

4.2.5 Feature Processing

Feature processing of input data can result in a lift in performance on algorithms that use

weighted inputs or distance measures. We performed feature processing techniques, such

as, feature binarization, discretization, transformation, normalization on input data. A

traditional rule of thumb when working with ML methods is to rescale feature values to



68

the bounds of Objective/activation functions. For instance, if we use sigmoid activation

functions, it helps rescaling data to values between 0 and 1; for the Hyperbolic Tangent

(tanh), values between -1 and 1 would help. So, based on LR model and CPH survival

regression, as we used sigmoid function, we rescaled and normalized feature values for most

of the categorical variables [that have arbitrarily assigned values at the source database].

Figure 4.6 provides the list of feature engineering rules that we implemented in this study.

4.3 Model Derivation and Evaluation

To the best of our knowledge, ensemble learning approach coupled with feature engineering

and automatic feature selection techniques is a new contribution in the field of predictive

analytics modeling for cardiac surgery outcomes. In this section, we describe the research

problem that our framework aims to address, followed by evaluation measures to be derived

from this framework. Then we enumerate the results obtained from the model.

4.3.1 Research Problem Statement

Our model can be applied to the research application that is illustrated in Figure 4.7. In

this context, we define T as a random point in time that a patient is readmitted to the

hospital, or is censored from the study by any reason, where 0 < T <= 31. In this study,

we focus on readmissions that occur within 30 days after discharge following cardiac surgery

procedure. The study begins whenever a patient is discharged from a facility and ends at the

30th day, setting status of the event =1 if the patient was readmitted to the hospital within

the interval and event status = 0 otherwise. In case of no rehospitalization during the 30-day
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Figure 4.6 Illustration of Feature Engineering Rules
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interval, the event indicator becomes zero and the readmission time random variable T gets

31. Such observations are called right-censored, which form the only type of censoring in

our study. We assume that censoring is non-informative due to the fact that the censoring

random variable U is the arranged end of the study and does not have any information about

the distribution of T.

4.3.2 Time-to-event Outcomes

From the feature set that we derived in the preceding section, we identified inpatient, non-

elective, planned or unplanned, and all-cause hospital readmissions to the hospital within 30

days of discharge from the index procedure. We identified readmissions from primary data

source as well as confirmed with CDW data source as well. Readmission to any hospital

other than the index hospital-chain either has not been traced or included. The primary

outcome evaluated form the model is all-cause readmission event within 30 days of hospital

discharge following the cardiac surgery procedure. In the subsequent section we demonstrate

the results obtained from the model.

4.4 Experiments and Results

This section describes the experiments we conducted and the results obtained with the

study cohort described in section 4.2.1. A total of 1303 patients met inclusion criteria and

were included for analysis. All of these patients had multiple records of perioperative time-

dependent data measured based on their encounters. With each patient in the study cohort

having multiple rows grouped by encounter, the study size was 3852 records of data in
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Figure 4.7 Illustration of Research Application

total. Out of 1303 patients, 92 suffered 30-day readmission after isolated CABG (7.1%). Of

82 potential variables analyzed for this study, 72 potential readmission risk variables were

included in the model evaluation.
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Figure 4.8 Significant Feature Set: Characteristics of time-independent covariates evalu-
ated from univariable and multivariable analyses of the Cox Proportional Hazards survival
regression model
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Figure 4.9 Significant Feature Set: Characteristics of time-dependent pre and perioperative
covariates evaluated from univariable and multivariable analyses of the Cox Proportional
Hazards survival regression model

4.4.1 Significant Feature Set from COX PH Model

Out of the 72 features, 45 were identified as significant with a p-value of <0.05 when sub-

jected to univariable analysis using CPH survival regression methods. 34 of these were

time-independent pre-, peri-, and postoperative covariates (Figure 4.8), while 11 features

were time-dependent covariates (Figure 4.9). Variables highlighted in red belong to the

most significant feature set that impact the target outcome with a hazard ratio of greater

than 1.0.

Multivariable analysis determined the 28 most significant factors, and 9 (32.1%) co-

variates were identified as the most significant in the time-dependent group while the re-

maining 19 covariates (67.9%) were time-independent. The time-dependent covariates in-

cluded Preoperative Hemoglobin A1c level with Hazard Ratio = 1.0169, Preoperative Cre-

atinine (HR=1.1473), Preoperative Blood Glucose (HR=1.0045), Preoperative Hematocrit
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(HR=1.10539), Preoperative WBC count (HR=1.0664), Highest Intraoperative Glucose (HR=1.0016),

Postoperative Creatinine (HR=1.2026), Postoperative Glucose (HR=1.0011), Postoperative

Hemoglobin (HR=1.0421).

Postoperative Creatinine was the most significant risk factor for 30-day readmission in this

model followed by Postoperative Hemoglobin, and Postoperative Glucose in time-dependent

group. For instance, the exponential coefficient (exp(coef) = exp(0.1845) = 1.2036) for ‘Post-

operative Creatinine’ covariate, also known as Hazard Ratio (HR), indicated the impact of

covariate on readmission. It can be inferred that, an increase of 1.0 gm/dL in creatinine level

has a hazard of readmission factor of 1.3439. The most significant risk contributors in time-

independent group were Postoperative Return To OR For Non-cardiac Reason, Reoperation

for Bleeding, Renal Failure, and Postoperative Atrial Fibrillation.

4.4.2 Survival Curves of Significant Features

With a fitted CPH model, survival plots for some of the most significant were created (Fig-

ure 4.10). These plots illustrated the impact of a covariate on 30 day readmission, as the

covariate changes over time, while all the other covariates remain equal. For instance, the

graph for Postoperative Creatinine implied that creatine greater than the baseline level of

1.2 increases the risk of readmission. Similarly, the survival curve for Length of Stay implied

that a patient with longer stay at the hospital (beyond approximately 8 days) had a higher

risk of readmission. The features highlighted (in red color) in Figures 4.8 and 4.9 were

selected for the final predictive model. Features such as alcohol use, cardiogenic shock, to-

tal albumin, intraoperative blood products, postoperative pulmonary ventilation prolonged,
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postoperative reoperation for other cardiac reasons, postoperative sepsis, postoperative renal

dialysis required, postoperative dialysis required after discharge, postoperative HIT, lowest

intraoperative glucose, postoperative hematocrit were excluded from the final model on the

basis of the results of the CPH multivariate survival regression analysis. The area under the

ROC curve for the training data set (n=1042) was 0.951, and it was 0.873 in the validation

data set (n=261), as shown in Figure 4.11.B. Excluding the time-dependent variables, the

area under the ROC curve drops to 0.868 and 0.658 for the training and validation data sets,

respectively (Figure 4.11.A).

4.4.3 Concordance Index Measures

In this subsection, we present the results of concordance index metrics obtained from ex-

periments with state-of-the-art models, such as Cox PH model [18], Deep Survival analysis

model, Tensor Flow Deep Survival model [94, 95], XGBoost [69], and the proposed ensemble

learning model (Figure 4.12). All the above models were subjected to the same study cohort.

Our proposed framework demonstrates improved concordance index statistics (that repre-

sent a generalization of the area under the receiver operating characteristics curve taking

into account survival data as well) of 0.873 for validation data set.

4.4.4 Recursive Feature Elimination, Cross-Validation and Parameter
Tuning

This section presents experimental details and results of ’Recursive Feature Elimination’

(RFE) feature selection algorithm, cross validation, and XGBoost parameter tuning and

optimization techniques. These methods were applied to the feature set of 45 readmission
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Figure 4.10 Survival curves for the most significant covariates evaluated from the CPH
multivariable model: Postoperative Creatinine (a), Postoperative Glucose (b), Postoperative
Hemoglobin (c), and Length of Stay (d). These plots depict the impact of a covariate on
30-day readmission event, as the covariate changes while everything else holds equal
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Figure 4.11 Performance metrics of the prediction model before (A), and after (B) the inclu-
sion of time-dependent covariates.(A: AUROC statistics for Training dataset = 0.868, and
Validation dataset = 0.658, best values at 17th iteration; B: AUROC statistics for Training
dataset = 0.951, and Validation dataset = 0.873, best values at 55th iteration)
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Figure 4.12 Performance comparison matrix: C-Index measures with 95% confidence interval
for training and validation datasets

Figure 4.13 Illustration of Recursive Feature Elimination algorithm

risk factors (that resulted with survival regression described in the preceding section 4.4.1)

to further improve the performance of the model.

RFE method, an automatic feature selection technique, evaluated the input feature set

by recursively removing the redundant and the least important features, and built a model

on the features that contribute the most to the model accuracy (Figure 4.13). Figure 4.14

demonstrates the RFE cross validation scores versus the number of features, when the feature
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Figure 4.14 Illustration of Cross Validation scores versus Number of Features obtained with
RFE Feature Selection Method
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Figure 4.15 Performance Metrics of the Prediction Model: Area Under the Receiver Oper-
ating Characteristics (AUROC) measures for number of features n = 10, 12, 13, and 14
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Figure 4.16 Performance Metrics of the Prediction Model: AUROC measures for number of
features n = 15, 16, and 17
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Figure 4.17 Performance Metrics of the Prediction Model: AUROC measures for number of
features n = 18, 19, 20, and 21
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set was subjected to k-fold cross-validation, with k=3, 5, and 10. The green-highlighted

region indicate the range of optimum number of features that tend to yield best possible

predictive accuracy of around 0.89 for the validation data set of the study cohort.

Figures 4.15 through 4.19 illustrate the performance metrics of the prediction model in

terms of area under the receiver operating characteristics (AUROC) for feature sets of 10

through 30. Using RFE feature selection algorithm and 10-fold cross-validation, the model

demonstrated optimum predictive ability of around 0.89 when the number of features were

between 20 to 24 (Figure 4.20.A). Of these 24, 16 features resulted with importance scores

of greater than or equal to 9 (Figure 4.20.C). These were: Preoperative Creatinine, Preoper-

ative Hemoglobin A1c Level, Lowest Intraoperative Hemoglobin, Postoperative Hematocrit,

Postoperative Creatinine, Postoperative Hemoglobin, Total Albumin, Alcohol Use, Post-

operative HIT, Postoperative Return to OR for Non-Cardiac Reason, Intra-Aortic Balloon

Pump, Race, Preoperative Insurance, Discharge Location, Preoperative Congestive Heart

Failure, Postoperative Reoperation for Bleeding.

For the 16 selected features, the AUROC measures observed were 0.9492 and 0.8816 at the

35th iteration, and 0.9995 and 0.9307 at the 151st iteration (Figure 4.20.B) for the training

and validation datasets respectively. In addition to the AUROC measures, the proposed

prediction model builds individual decision trees using the selected set of 16 features. Three

instances of such decision trees are depicted in Figures 4.21 though 4.23. These boosting

decision tree plots show how the model arrived at its final decisions and what splits it made

to arrive at those decisions. In other words, these trees provide better understanding and



84

Figure 4.18 Performance Metrics of the Prediction Model: AUROC measures for number of
features n = 22, 23, 24, and 25

interpretability about the impact of each feature (for example: Length of Stay, Postoperative

Creatinine, Postoperative Hemoglobin etc.) on the target outcome, i.e., the impact of the

predictor variables on 30-day readmission after discharge following CABG.
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Figure 4.19 Performance Metrics of the Prediction Model: AUROC measures for number of
features n = 26, 27, 28, and 30
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Figure 4.20 Performance Metrics of the Proposed Ensemble Learning Predictive Analytics
Framework



87

Figure 4.21 Illustration of 1st decision tree instance derived from the model’s best feature
set

Figure 4.22 Illustration of 2nd decision tree instance derived from the model’s best feature
set
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Figure 4.23 Illustration of 3rd decision tree instance derived from the model’s best feature
set
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CHAPTER 5

SUMMARY, CONCLUSION, AND FUTURE SCOPE

This chapter provides a summary of the review of findings, conclusions garnered from the

results, limitations of the proposed prediction model, and directions for further research and

enhancements.

5.1 Summary

In undertaking this study, we sought to develop a new simple, scalable, portable and user-

friendly open-source predictive analytics model by using advanced ensemble learning meth-

ods and automatic feature selection techniques more effectively. This approach facilitated

analyzation of huge amounts of medical data, elimination of redundant features, reduction

of overlearning on training data and hence, improvisation of prediction accuracy over new

test data.

With our proposed ensemble learning model, we attempted to improve performance using

a four-step process, i.e., by feeding more clean and structured data though simple feature

engineering rules, applying effective feature selection methods, algorithmic tuning, and en-

semble learning techniques, as illustrated in Figure 5.1. Also, majority of the previous

time-to-event prediction models in medical studies used ’single-point’ or time-fixed data

(for example, one row per each patient) available at either patient’s index-admission or dis-

charge. Our new model utilized more granular data points (i.e. multiple rows of records)

for each subject of the study, for example, data consisting both the time-dependent and

time-independent perioperative covariates for each patient grouped by encounter, to predict
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Figure 5.1 Snapshot of performance improvement techniques

hospital readmission within 30 days of discharge following CABG. Furthermore, our study

identified that the best feature set (comprising of 16 out of the 82 input features) that con-

tributes the most to the target outcome would in turn produce better prediction accuracy

for the model, as summarized in Figure 5.2. The apparent merits of this framework are: En-

hanced learning test data, improved performance and accuracy with less features, scalability

and Portability, user friendliness with automatic feature engineering and feature selection

methods.

5.2 Limitations of the Study

Our study is not without limitations. One of those is the smaller and limited study cohort

size. The study cohorts were derived from a single-institution’s multi-hospital facility and

may not have captured data regarding target outcomes at other hospitals. This was reflected

in the admittedly low rate of readmission events. Also, the study cohort size was relatively
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Figure 5.2 Workflow of feature engineering, feature selection and simplification

smaller with 1334 patients with a study period of 20 months. The current model should be

tested prospectively at multiple hospitals to substantiate its broader applicability. This study

considered time-dependent pre-, perioperative covariates, within 48 hours prior to CABG

procedure and up to 72 hours of postoperative period. In a way, this facilitated minimal

missing data (¡1%) for all the covariates, and provided more consistent supplemental data

drawn from local clinical data warehouse. This model was more suited to handle tabular

form of medical data, and the wave-from or time-series data were untested or unexplored in

this study.

5.3 Recommendations for Further Research and Enhancements

Perhaps the most intriguing extension of the present study would be to test this model’s

performance in a variety of settings and populations in order to make it reproducible and
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more generalizable. For instance, this framework can be extended to handle time-to-event

outcomes in applications areas of manufacturing (eg: to predict a device failure), academics

(eg: to predict a student drop-out), business or finance (eg: to predict a project success or

failure, to track customer behavior, stocks behaviour etc.). Further potential performance-

hikes can be explored with other feature selection methods and hyper-parameter tuning and

optimization techniques as well. Another potential direction for future research in ensemble

learning predictive analytics modeling could be handling of wave-form or time-series medical

data as well.

5.4 Conclusion

Time-to-event outcomes in healthcare can be predicted more accurately with less features

by using open-source advanced ensemble learning techniques. Prediction accuracy could be

further improved by feeding huge amounts of highly-correlated features of patient medical

data, including time-varying laboratory values, vital signs, and medications. Our new pre-

diction model demonstrated excellent accuracy and could be more useful for decision support

in clinical settings.
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Figure 3 Picture taken at the Three Minute Thesis (3MT) Competition at Georgia State
University, Spring, 2019: Receiving 2nd prize from Jeff Steely (Dean of Libraries, GSU), and
Lisa Armistead, Associate Provost of Graduate Programs, GSU

Figure 4 Picture taken at the Three Minute Thesis (3MT) Competition at Georgia State
University, Spring, 2019: with Dr. Yanqing Zhang, Advisor
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Figure 5 Picture taken at the 2nd Machine Learning in Science and Engineering Symposium,
June 2019: Poster session

Figure 6 Photo taken at the 45th Annual Meeting of Western Thoracic and Surgical Asso-
ciation, Olympic Valley, CA, USA, June 2019
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Figure 7 Photo taken at the 45th Annual Meeting of Western Thoracic and Surgical Asso-
ciation, Olympic Valley, CA, USA, June 2019

Figure 8 Poster Presented at the 45th Annual Meeting of Western Thoracic and Surgical
Association, Olympic Valley, CA, USA, June 2019
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