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Abstract—Network based attacks are the major threat to secu-
rity on the Internet. The volume of traffic and the high variability
of the attacks place threat detection squarely in the domain of big
data. Conventional approaches are mostly based on signatures.
While these are relatively inexpensive computationally, they are
inflexible and insensitive to small variations in the attack vector.
Therefore we explored the use of machine learning techniques on
real flow data. We found that benign traffic could be identified
with high accuracy.

Index Terms—Networks, Flow analysis, Attack Detection, Ma-
chine Learning

I. INTRODUCTION

Big data problems are characterized by five Vs: Volume, Ve-
locity, Variety, Veracity, and Value [1]. Reliable estimation of
the threat from a network attack requires rapid (Velocity) and
accurate (Veracity, Value) estimation of a non-homogeneous
threat (Variety) in the presence of terabytes of data (Volume).

Forecasts on both the Volume and Velocity of network traffic
show a doubling in the next three years [2]. Estimating a
variety of attacks at increasing scale is critical to network
security.

Many toolkits exist to aid in launching attacks. Examples
include network scanners, botnets, and data injection tools,
to name a few. When coupled with certain protocols and
services, attacks become particularly effective. Attackers rely
on the connectionless user datagram protocol (UDP) to hide
themselves. Such attacks exploit UDP by spoofing the packet’s
source Internet protocol (IP) address. Modern attacks use the
simple network management protocol (SNMP) or the network
time protocol (NTP). When queried, these protocols return a
response payload larger than the query size. Thus, attacks are
“amplified” to devastating effect. A recent attack utilizing the
Memcached service crossed the terabit per second scale [3].

In this paper, we explore the use of conventional machine
learning approaches on experimental network flow data in
order to determine baseline performance as the first step to
developing better approaches. In particular, we analyze the In-
trusion Detection Evaluation Dataset published by Sharafaldin
et al in [4]. This dataset consists of 15 different attacks
over a week of collection. The dataset also includes benign

background traffic which mimics typical user behavior. The
Intrusion Detection Evaluation Dataset is hereafter referred to
as the CIC-IDS dataset.

We also examined the KDD ’99 network intrusion dataset
[5]. This dataset is often used for machine learning appli-
cations. The KDD and CIC-IDS dataset differ in several
important ways:

• The KDD data consists of connections between endpoints
and not whole flows

• Much of the KDD data has connections with a duration
of zero

• The KDD data has no source or destination Internet
Protocol (IP) addresses

• The KDD data has no source ports
• The KDD data has destination ports, but they are the

nominal service names instead of numeric values
The most glaring difference between the datasets is that the

KDD dataset is much older. There is a well known truism that
“Attacks always get better; they never get worse.” [6] Modern
attacks and attack methods have evolved since the publishing
of the KDD dataset. It is possible that the KDD dataset may
no longer represent common attacks. We include this dataset
to show how well machine learning methods work for attack
classification in disparate datasets.

The contributions of this paper are as follows. After showing
that conventional machine learning algorithms converge to
high accuracy on both datasets, we break the CIC-IDS data
into non-overlapping sets based on the time of collection. The
accuracy significantly deteriorates when attacks are present
in the test data but not the training data which demonstrates
that the system is non-stationary. Since conventional machine
learning algorithms converge poorly on this non-stationary
dataset, we conclude that generalizing on network flow data
requires more advanced machine learning algorithms.

II. RELATED WORK

Existing research into network intrusion detection falls into
two categories. The first is misuse detection and the second
is anomaly detection [7]. Misuse detection uses an attack
signature database to recognize a potential attack. Anomaly



(a) A sample set of decisions that discriminate between normal and
smurf traffic.

(b) A sample set of decisions that discriminate between normal and
warezclient traffic.

Fig. 1: Samples from the decision tree trained with the feature-reduced KDD data set.

detection relies on a model of normal system behavior to detect
an attack. Both techniques have been well researched and each
has its own disadvantages. Misuse detection cannot detect new
attacks since it relies on known attack signatures. Anomaly
detection does not rely on attack signatures. Instead, a profile
of “normal” behavior must be built to detect anomalous
behavior. Building such a profile is difficult.

Several previous approaches use machine learning models
for misuse detection and anomaly detection. Accuracy and
speed improvements in anomaly detection have come from su-
pervised learning methods such as k-Nearest Neighbor (kNN)
[8], Support Vector Machines (SVM) [9] and decision trees
[10]. Unsupervised learning methods such as K-means [11]
have improved malicious behavior detection. If the training
and testing datasets come from the same unknown distribu-
tion, supervised methods in general outperform unsupervised
methods [12]. Decision trees can yield accuracy as high as
95% [12]. This justifies our use of decision trees on the CIC-
IDS dataset in this paper.

Hybrid intrusion detection combines misuse and anomaly
detection. It has been suggested as a way to resolve the
disadvantages in traditional intrusion detection techniques. In
[13], a decision tree is used to decompose the data into
subsets. Support vector machines (SVMs) are trained on the
subsets. Training and testing times are substantially reduced
and high accuracy is obtained. In [14], Rai et el. modified the
C4.5 decision tree algorithm to perform more granular feature
splitting. The splitting function is augmented to average the
values for each feature. The information gain ratio is then the
information gain divided by the result of the splitting function.
The result is that any bias towards frequent values in attributes
is removed.

Dimensionality reduction is crucial to applying machine
learning to intrusion detection. In [15], Zhang et el. use a
Bayesian Network classifier to iteratively arrive at an optimal
feature set. Their technique uses the wrapper approach to
feature selection. In the wrapper approach, feature selection

is based on classification accuracy improvements. Another
dimensionality reduction technique is the filter approach. The
filter approach evaluates and ranks each feature independent
of the classifier. The result is a feature subset that best
approximates the original dataset.

In [16], Mukherjee, et el. make use of Correlation-based
Feature Selection (CFS), Information Gain (IG), and Gain
Ratio (GR) for feature selection. The authors compare these
techniques to their proposed Feature-Vitality Based Reduction
Method (FVBRM). FVBRM functions like the Bayesian Net-
work described in [15] with the addition of feature vitality.
Feature vitality includes classification accuracy, true-positive
rate (TPR), and false-positive rate (FPR). Feature vitality thus
defines the subset of features used in the reduced dataset.

III. USING DECISION TREES TO CLASSIFY ATTACKS

Decision trees are a machine learning model used for
classification and regression tasks. Decision trees work by
creating rules for splitting nodes based on the features in the
data. These rules are analogous to asking a series of yes/no
questions on the data. The predicted class of the input data is
that of the leaf node once reached.

Several algorithms exist for constructing a decision tree (e.g.
ID3, C4.5, CART, etc...). In this paper we use the CART
algorithm [17]. CART runs in logarithmic time and uses
Gini impurity on features to split nodes. Gini impurity is the
probability of obtaining two different output predictions for a
given input. The Gini impurity of node t for j = {1, · · · , k}
possible classes is given by Equation 1:

1−
k∑

j=1

p2(j|t) (1)

The tree generated by the decision tree algorithm is easy to
understand (for example Figures 1a and 1b). This simplicity
makes decision trees very popular for many machine learning
tasks. Effective attack classification requires that the machine



Fig. 2: Performance comparison for the different models. Random forest performs the best, but only by a small margin.

learning model generalize on the data. We explore how well
decision trees generalize by measuring accuracy on an expand-
ing dataset.

IV. FEATURE REDUCTION

Raw network data are quite verbose. Reducing the data to
relevant features is critical for obtaining high classification
accuracy. This process comprises feature reduction techniques.
The idea is to drop features which do not provide adequate
variance in the data. The remaining features then provide
enough variance to achieve reasonable classification accuracy.

There are benefits and drawbacks to feature reduction.
Benefits include simpler models, improved accuracy, and a re-
duction of the effects of high dimension data. High dimension
data suffers from the so-called “curse of dimensionality” [18].
This problem affects machine learning when the data lacks
enough samples for combinations of all the features. Removing
unnecessary features eases the effects of an insufficient amount

of samples. Feature reduction can also enable the use of other
machine learning models. Removing unnecessary features can
remove the noise from data, but can remove the signal as
well. This can cause a close grouping of the data, destroying
the variance and reducing accuracy.

Reducing the size of the dataset is a practical advantage
of feature reduction. Network flow data can easily exceed
gigabytes per day, and threat detection requires rapid and
accurate response to be useful. Therefore, minimizing the size
of the data has important practical effects.

We applied Principal Components Analysis (PCA) [19]
and the entropy and information gain metrics from the ID3
algorithm [20] to both datasets and were able to significantly
reduce the number of features while retaining the same level of
accuracy. Applying PCA can obscure the connection between
the reduced dataset and the original. PCA can also “load”
the first principal component with the highest variance which
makes the reduced dataset non-optimal. The remaining com-

CIC-IDS KDD
Split (train % / test %) Accuracy/Std Dev Precision Recall F1 Score Accuracy/Std Dev Precision Recall F1 Score
67/33 97.881/0.010 97.881 97.881 97.881 99.982/0.0004 99.982 99.982 99.982
50/50 97.837/0.033 97.837 97.837 97.837 99.981/0.001 99.981 99.981 99.981
33/66 97.759/0.026 97.759 97.759 97.759 99.973/0.008 99.973 99.973 99.973

TABLE I: Cross-validated performance on the entire CIC-IDS and KDD datasets. The IP addresses are excluded from the
CIC-IDS dataset. All scores are percentages.



CIC-IDS KDD
Split (train % / test %) Train Time/Std Dev Test Time/Std Dev Train Time/Std Dev Test Time/Std Dev
67/33 25.259/2.651 0.093/0.002 10.439/0.797 0.175/0.029
50/50 16.176/2.234 0.067/0.002 6.712/1.264 0.120/0.0006
33/66 10.422/1.783 0.042/0.007 3.780/0.934 0.0869/0.0134

TABLE II: Computational performance on the entire CIC-IDS and KDD datasets. The IP addresses are excluded from the
CIC-IDS dataset. All times are in seconds.

ponents thus no longer provide an accurate interpretation of
the original data. Measuring information gain is useful for
working around these limitations. In doing so, we can arrive
at a set of features that are the most characteristic of attacks.

V. RESULTS

We applied machine learning to both the CIC-IDS data and
the KDD data and found excellent cross-validated accuracy
when we looked at the entire data set. When the data set was
segmented by time to study the effect of novel attacks the
results were less impressive. We also looked at the effects
of removing various features from the data to determine the
minimal set of features needed to achieve high accuracy.

A. Accuracy of Machine Learning

Table I shows the performance of the decision tree for both
datasets. We removed the IP addresses from the CIC-IDS data
for two important reasons. First, attackers spoof IP addresses
to hide themselves and defeat IP filtering systems. Second,
the high variance of the IP addresses “crowded out” the other
attributes when applying feature reduction. This complicates
efforts to find a set of features that best characterize attacks.
We applied k-fold cross-validation with k = 3 in all cases. The
accuracy scores shown are averages taken over the folds. Table
II shows the running time of the decision tree. The running
times shown are averages taken over the folds.

Though the results in Table 1 and Table 2 are appealing,
they obscure a problem we found with the data. Because the
amount and type of traffic varies by day (for the CIC-IDS
data) and by connection (for the KDD data) the data are not
stationary. This lack of stationarity means that generalizing on
the data is difficult. Traditional machine learning algorithms
such as decision trees, support vector machines, and so on
will not work without modifications because they expect the
underlying data to have a stationary distribution.

To test this, we first trained a decision tree on the CIC-IDS
Monday dataset. We then checked its accuracy on the rest of
the week. We obtained scores of 96.897, 63.524, 99.517, and

71.172 for Tuesday, Wednesday, Thursday, and Friday, respec-
tively. We tested retrospective learning by training on Friday’s
data. We then checked accuracy on Thursday, Wednesday,
Tuesday, and Monday and obtained scores of 95.264, 64.117,
96.811, 99.714, respectively. We obtained similar results when
we tested using a random forest with 10 estimators.

We further tested decision tree and random forest general-
ization on a power set of the days of the CIC-IDS data. The
decision tree result is shown in Table IV. The random forest
result is shown in Table VI. The average score is 84.407%
and the standard deviation is 8.530% for the decision tree.
The average score is 85.289% and the standard deviation is
9.541% for the random forest.

We also tested classification using the kNN algorithm.
Figure 2 provides a comparison between the three models we
tested. The left side of the figure shows how the decision tree
and random forest compare as a function of kNN. The right
side of the figure shows how random forest and kNN compare
as a function of the decision tree. Random forest showed better
generalization than the decision tree and kNN. The decision
tree performed better than random forest. kNN had the worst
run time at over 660 seconds on average. This run time is
over 9 times longer than the decision tree, which was almost
4 times longer than random forest.

B. Feature Reduction

Table III shows the results of applying the ID3 entropy
and information gain metrics to varying sample sizes for
both datasets. The KDD data does not show an interesting
result since the initial feature chosen is the same for all three
sample sizes. Both algorithms select the same initial feature
for the first split. The CIC-IDS result varies as the sample size
increases until the initial feature is ultimately the same for all
datasets.

Figure 3 shows the per-feature variance for all five days of
the CIC-IDS data. All features have been scaled to the range
[0,1] so that the largest value of each feature is scaled to unit
size. It is obvious that many features have a small variance

Dataset 1,000 Samples 5,000 Samples 10,000 Samples
CIC-IDS Monday Flow Bytes/second Flow Bytes/second Flow Bytes/second
CIC-IDS Tuesday Flow Packets/second Source Port Flow Bytes/second
CIC-IDS Wednesday Source Port Source Port Flow Bytes/second
CIC-IDS Thursday Flow Bytes/second Flow Bytes/second Flow Bytes/second
CIC-IDS Friday Source Port Source Port Flow Bytes/second
CIC-IDS Full dataset Fwd Packets/second Flow Bytes/second Flow Bytes/second
KDD Full dataset Destination Bytes Destination Bytes Destination Bytes

TABLE III: Feature reduction on the CIC-IDS and KDD datasets using the ID3 entropy and information gain metrics. The
given feature for each dataset is the initial feature to split on.



and can thus be eliminated. Further feature reduction could be
based on a variance threshold or some other criteria.

We applied PCA to the CIC-IDS data and reduced the
number of features from 85 to 5. The largest eigenvalue
corresponded with the Backward Inter Arrival Time (IAT)
Total feature. The second largest was Flow Bytes per second.
The third largest was Flow Duration. The fourth largest
was Forward IAT Total. The last was Forward IAT Max.
We reduced the KDD dataset from 41 features to 2. The
largest eigenvalues corresponded with the Source Bytes and
Destination Bytes features. It is worth noting that the ID3
splitting algorithm always chose Destination Bytes as the best
feature to split on in Table III.

We retrained the decision tree on both reduced datasets.
Table V shows the results in a format comparable to Table I.
The accuracy on the CIC-IDS dataset increased by an average
of 0.097% while the accuracy on the KDD dataset decreased
by an average of 2.79%.

We then tested generalization on the reduced per-day CIC-
IDS dataset for the decision tree and random forest. The
rightmost column in Table IV shows the decision tree results.
Accuracy decreased by an average of 0.72% with a standard
deviation of 9.541%. The rightmost column in Table VI shows
the random forest results. Accuracy decreased once again, this
time by an average of 0.74% and a standard deviation of
8.728%.

VI. CONCLUSIONS

We showed that decision trees provide good performance in
estimating attacks. The lack of stationarity in the data means
that traditional machine learning models will not generalize
well. This presents a problem when an attack signal is present
only in certain features. When using a decision tree, the result
is that features near the top of the tree for one day are lower
down for other days. There are two possible approaches to
fixing this. The first is to increase the size of the training set

Fig. 3: The variance of all flow features. All values have been scaled to the range [0, 1].



Full Dataset Reduced Dataset
Training Days Test Days Score Score
Tuesday Wednesday, Friday, Monday, Thursday 80.877 78.008
Wednesday Tuesday, Friday, Monday, Thursday 88.927 85.649
Friday Tuesday, Wednesday, Monday, Thursday 87.455 90.464
Monday Tuesday, Wednesday, Friday, Thursday 79.509 79.509
Thursday Tuesday, Wednesday, Friday, Monday 80.317 80.163
Tuesday, Wednesday Friday, Monday, Thursday 85.924 85.383
Tuesday, Friday Wednesday, Monday, Thursday 83.097 88.793
Tuesday, Monday Wednesday, Friday, Thursday 75.356 75.082
Tuesday, Thursday Wednesday, Friday, Monday 83.761 76.353
Wednesday, Friday Tuesday, Monday, Thursday 97.38 94.021
Wednesday, Monday Tuesday, Friday, Thursday 85.357 82.477
Wednesday, Thursday Tuesday, Friday, Monday 85.525 84.445
Friday, Monday Tuesday, Wednesday, Thursday 86.78 84.854
Friday, Thursday Tuesday, Wednesday, Monday 84.747 87.733
Monday, Thursday Tuesday, Wednesday, Friday 74.943 74.493
Tuesday, Wednesday, Friday Monday, Thursday 96.635 95.410
Tuesday, Wednesday, Monday Friday, Thursday 81.212 78.537
Tuesday, Wednesday, Thursday Friday, Monday 81.822 81.738
Tuesday, Friday, Monday Wednesday, Thursday 75.948 79.835
Tuesday, Friday, Thursday Wednesday, Monday 79.997 84.532
Tuesday, Monday, Thursday Wednesday, Friday 67.535 67.405
Wednesday, Friday, Monday Tuesday, Thursday 96.674 93.566
Wednesday, Friday, Thursday Tuesday, Monday 98.197 96.038
Wednesday, Monday, Thursday Tuesday, Friday 79.075 78.537
Friday, Monday, Thursday Tuesday, Wednesday 77.142 80.640
Tuesday, Wednesday, Friday, Monday Thursday 92.343 92.620
Tuesday, Wednesday, Friday, Thursday Monday 99.958 98.669
Tuesday, Wednesday, Monday, Thursday Friday 68.913 69.368
Tuesday, Friday, Monday, Thursday Wednesday 80.21 72.858
Wednesday, Friday, Monday, Thursday Tuesday 96.613 93.392

TABLE IV: Generalization on the power set of per-day full and feature-reduced CIC-IDS datasets using the decision tree. IP
addresses are excluded from the full dataset. All scores are percentages.

to more than a day and retrain the model after some time. This
way, the model is aware of malicious traffic and the structure
of the tree can adapt. We observed this lack of awareness when
the accuracy on the model trained on the Monday data dropped
from 96.897% for Tuesday to 63.524% for Wednesday. The
cause of this was the fact that Monday’s data were all benign
and no traffic for Wednesday was benign. We intend to explore
ways of determining the optimal size of this training set. The
second is to explore models that do generalize well. Based on
our previous work in [21], the Restricted Boltzmann Machine
(RBM) is a good choice.

Feature reduction provides a powerful means of reducing
the data to the features that are most characteristic of attacks.
85 features were reduced to 5 significant ones with this data,
which suggests that the data are highly redundant. This process
must be applied iteratively to the data. Doing so systematically
eliminates high-variance features that do not contribute to the

discrimination between benign and malicious traffic.

The results shown in Table V suggest two possible findings
related to our feature reduction efforts. First, the reduced CIC-
IDS dataset features are close to those most characteristic of
attacks. Second, the reduction in features for the KDD dataset
was too aggressive. It is obvious that both reduced datasets
need further feature engineering. For this paper, our goal was
to show the effects of feature reduction. We intend to explore
ways of adding useful features without adding redundancy
and retaining the performance improvement that comes with
feature reduction.

The overall decrease in accuracy shown in Tables IV and
VI compared to the increase for cross-validated training on
the entire data set (shown in Table V) strongly suggests that
the non-stationarity affects the accuracy of the results. The
changes of the accuracy in the power set data between the
reduced and full data sets are not uniform, sometimes increas-

CIC-IDS KDD
Split (train % / test %) Accuracy/Std Dev Precision Recall F1 Score Accuracy/Std Dev Precision Recall F1 Score
67/33 98.005/0.020 98.005 98.005 98.005 97.176/0.044 97.176 97.176 97.176
50/50 97.929/0.014 97.929 97.929 97.929 97.182/0.031 97.182 97.182 97.182
33/66 97.828/0.032 97.828 97.828 97.828 97.203/0.048 97.203 97.203 97.203

TABLE V: Cross-validated performance on the feature reduced CIC-IDS and KDD datasets. The features used in the CIC-IDS
dataset are Bwd IAT Total, Flow Bytes/sec, Flow Duration, Fwd IAT Total, and Fwd IAT Max. The features used in the KDD
dataset are Source Bytes and Destination Bytes. All scores are percentages.



Full Dataset Reduced Dataset
Training Days Test Days Score Score
Tuesday Wednesday, Friday, Monday, Thursday 80.820 77.797
Wednesday Tuesday, Friday, Monday, Thursday 88.279 86.399
Friday Tuesday, Wednesday, Monday, Thursday 89.428 90.706
Monday Tuesday, Wednesday, Friday, Thursday 79.509 79.509
Thursday Tuesday, Wednesday, Friday, Monday 80.290 80.197
Tuesday, Wednesday Friday, Monday, Thursday 86.265 86.010
Tuesday, Friday Wednesday, Monday, Thursday 88.634 89.313
Tuesday, Monday Wednesday, Friday, Thursday 75.341 75.343
Tuesday, Thursday Wednesday, Friday, Monday 76.382 76.361
Wednesday, Friday Tuesday, Monday, Thursday 98.760 95.674
Wednesday, Monday Tuesday, Friday, Thursday 84.551 83.806
Wednesday, Thursday Tuesday, Friday, Monday 87.385 84.629
Friday, Monday Tuesday, Wednesday, Thursday 87.852 87.679
Friday, Thursday Tuesday, Wednesday, Monday 92.390 88.274
Monday, Thursday Tuesday, Wednesday, Friday 74.098 74.512
Tuesday, Wednesday, Friday Monday, Thursday 99.686 98.333
Tuesday, Wednesday, Monday Friday, Thursday 82.148 80.776
Tuesday, Wednesday, Thursday Friday, Monday 83.580 82.038
Tuesday, Friday, Monday Wednesday, Thursday 79.568 82.069
Tuesday, Friday, Thursday Wednesday, Monday 86.313 84.840
Tuesday, Monday, Thursday Wednesday, Friday 67.393 67.393
Wednesday, Friday, Monday Tuesday, Thursday 95.620 95.392
Wednesday, Friday, Thursday Tuesday, Monday 98.590 96.190
Wednesday, Monday, Thursday Tuesday, Friday 78.830 78.508
Friday, Monday, Thursday Tuesday, Wednesday 82.956 82.808
Tuesday, Wednesday, Friday, Monday Thursday 99.656 97.864
Tuesday, Wednesday, Friday, Thursday Monday 99.963 98.879
Tuesday, Wednesday, Monday, Thursday Friday 69.378 69.629
Tuesday, Friday, Monday, Thursday Wednesday 68.704 71.761
Wednesday, Friday, Monday, Thursday Tuesday 96.316 93.523

TABLE VI: Generalization on the power set of per-day full and feature-reduced CIC-IDS datasets using a random forest with
10 estimators. IP addresses are excluded from the full dataset. All scores are percentages.

ing and sometimes decreasing. This suggests a complicated
interaction between feature selection and stationarity. It may be
interesting to explore this effect on larger and more complete
data sets in future work.
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