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Continuous Restricted Boltzmann Machines

Robert W. Harrison1

Department of Computer Science, Georgia State University, Atlanta Georgia USA.

Abstract. Restricted Boltzmann machines are a generative neural net-
work. They summarize their input data to build a probabilistic model
that can then be used to reconstruct missing data or to classify new
data. Unlike discrete Boltzmann machines, where the data are mapped
to the space of integers or bitstrings, continuous Boltzmann machines di-
rectly use floating point numbers and therefore represent the data with
higher fidelity. The primary limitation in using Boltzmann machines for
big-data problems is the efficiency of the training algorithm. This pa-
per describes an efficient deterministic algorithm for training continuous
machines.

Keywords: Deep learning, Data mining, Energy-based learning, Restricted Boltz-
mann machines

1 Introduction

Restricted Boltzmann machines (RBMs) [12] develop a energy-based model of
the data presented to them. Since RBMs learn to recognize the data they have
seen [6, 11, 4], they are well-suited to extracting and reconstructing consistent
patterns in the data. In a very real sense they straddle the divide between unsu-
pervised and supervised learning algorithms. Because they are regenerative, they
are also a prototype of deep learning, and can serve as an ”adapter” between
real data and a more abstract representation suitable for other machine learn-
ing approaches. For a recent review of the manifold versions of RBMs that are
used, see [3] . RBMs are inherently probabilistic recognizers and can interface
effectively with fuzzy representations of uncertainty. We developed an efficient
training algorithm for fuzzy discrete RBMs and this algorithm builds on that
work[8, 7].

The classic or discrete RBM (dRBM) restricts the input and output data
to integer values or bitstrings. Real valued data typically are mapped to unique
bit-strings. This results in a loss of fidelity in the reconstruction because only
the bitstring can be reproduced. The encoding or mapping is also problem-
dependent and the use of a sub-optimal encoding will result in sub-optimal
training, classification, and reconstruction.

Continuous RBMs (cRBM) replace discrete valued spins with continuous val-
ues. The problem of training an RBM shifts from enumerating independent spins
to estimating the continuous values of the hidden variables. Chen and Murray



introduced the first practical cRBM in 2003 [4]. This paper introduces a deter-
ministic training algorithm for the cRBM. It shows that using least square error
estimates for the hidden variables is computationally tractable and gives excel-
lent results. The paper demonstrates that the classification and reconstruction
accuracy of a cRBM is competitive with other machine learning methods.

2 Algorithm and Implementation

The general algorithm for a RBM trains or optimizes a potential against data
[10]. A full discrete Boltzmann machine uses a spin-lattice construct of hidden
variables to enumerate states and seeks to find an energy minimum over that
lattice given an observed set of data. Since the number of possible states of
the spin-lattice is exponential, simplifications such as the RBM have been devel-
oped. An RBM uses a layer of independent hidden variables and thus the number
of possible states is a linear function of the number of hidden variables. Con-
ventional RBMs use an iterative stochastic optimization algorithm, contrastive
divergence, for training. Replacing the stochastic algorithm with an analytic
approximation results in considerable simplifications to the algorithm[8].

2.1 Algorithm

The specific steps in the algorithm are given in 1. The formal background of the
algorithm for a continuous Boltzmann machine starts from the definition of the
potential energy:

U =
∑
i

∑
j

ViWi,jHj = V tWU (1)

Where Vi are the observed data, Wi,j are the weights and Hj are the hidden
values. A bias could be added to both the observed data and hidden values.
However, since the bias is colinear with the data and hidden values we set it
to a constant of zero. Adding a bias would replace Hj with (Hj − bhj) and Vi
with (Vi − bvi) where bv and bh are visible and hidden layer bias values. The
free energy is by definition and as an analogy the the Helmholtz free energy in
statistical mechanics:

F =
−1

β
ln(

∑
samples

e−βU ) (2)

The partition function Z is defined as
∑
samples e

−βU , and the probability of any

one state is given by e−βU

Z . Taking the derivative of F yields the probability:

dF

dUi
=

1

Z
e−βUi = P (Ui) (3)

thus by the chain rule, the derivative of F with respect to a parameter p is:

dF

dp
=

∑
i

df

dUi

dUi
dp

=
∑
i

Pi
dUi
dp

=<
dUi
dp

> (4)



where <> denotes expected value. Maximizing U to train and minimizing F to
prevent over-training results in the total derivative dU

dp − dF
dp or dU

dp− < dU
dp >.

Taking the derivative of U − F with respect to Wi,j results in:∑
i

∑
j

ViHj− <
∑
i

∑
j

ViHj >= V tH− < V tH > (5)

which encapsulated Hebbian learning in the correlation between V and H[9, 17,
11].

Two major difficulties arise in the use of equation 5. The first is the evaluation
of the expected value term and the second is the evaluation of Hj . Contrastive
divergence [10, 12, 18] finds a numerical approximation for < dU

dW >. Previous
work [8, 7] describes an analytic approach to training the discrete RBM that
converges to the same results and is much faster than contrastive divergence.
Moving from the discrete model to a continuous model requires shifting from a
sum over two states (spins of ±1) to an integral over the changes in potential.
Numerical approximations readily converge for this integral and we use:

<
dU

dW
>= dW

3e−βU(W+dW )

e−βU(W−dW ) + e−βU(W ) + e−βU(W+dW )
(6)

where dWi,j is ViHj .
Evaluating Hj is more difficult. Naively using the gradient dU

dHj
=

∑
i ViWi,j

to estimate H tends to lose information and converge to a uniform set of weights.
Forming the least squares estimate that matches H and V given W gives far
better results. The rows of W form a basis set for expanding V in the least
squares algorithm.

dU

dV
=

∑
j

Wi,jHj (7)

Vcalc = δ
dU

dV
(8)

minimize Q = (V − Vcalc)
2 over H (9)

dQ

dH
= −2(V − Vcalc)

dVcalc
dH

= 0 at the minimum. (10)

This leads to the following Matrix equation:

(
∑
i

Wi,jVi) = (
∑
i

Wi,jWi,k)(Hj) = W tWH = NH (11)

Where N is the normal equation of the system. N is a symmetric, diagonally
dominant, matrix. During training, N may be ill-conditioned, so as a practical
matter, it is regularized by adding λI. In this paper λ = 1 and the magnitude
of the elements of N is typically about 100-1000. The code used in this paper
solved the normal equation with Gaussian elimination every time H was gen-
erated. Production code would save time by either storing N−1 or using a LU



Algorithm 1 cRBM Training

1: procedure Train(V,Cid) . V is a tuple of data values and Class ID.
2: H ← N−1W tV . Find the H values, N is the normal matrix.
3: if after first pass then
4: Use algorithm 2 to update the classifier with H,Cid.

5: dWi,j ← ViHj

6: Find < dWi,j > using equation 6
7: W ←W + dW− < dW >
8: return

decomposition. This approach is a version of the Levenberg-Marquardt algorithm
[16] applied to training and other approaches to accelerating the calculation (as
in [14]) can be evaluated in future work.

Figure 1 shows the quality of reconstructions when applied to the MNIST
data set.

2.2 Classification Algorithm

The values of the energy and the quality of the reconstruction are poor predictors
of class membership with cRBMs. In essence, the reconstruction algorithm is too
good for the errors to be a reliable indicator of class membership. Since the rows
of W are a basis set and H is the expansion of the data in that basis, the values
of H are useful for classifying data. Since the rank of W is often lower than
the number of features or the number of features times the number of classes,
the values of H are a compressed representation of the data. Algorithm 2 was
used to train the classifier. It selects points that are along the boundary between
classes.

Algorithm 2 Classifier Training

1: procedure Train(H,Cid) . H,Cid is a tuple of Hidden layer values and Class
ID.

2: R← closest point to H
3: Rs ← closest point to H with Class == Cid
4: if |R| < |Rs| then . Not correctly predicted
5: Rs ← H . Replace Rs, Cid with H,Cid
6: else
7: already correct, leave intact.

8: return

3 Results

Table 3 shows the performance of the cRBM on a range of problems taken from
the UCI repository [15], and used in our previous work on the Fuzzy Decision



Benchmark Scale Size,Classes FDT FDT2 dRBM cRBM

Iris S 36,3 97.2 91.67 91.7 100.

Bupa S 86,2 54.7 ND 64 67.4

Wdbc S 142,2 95.1 ND 95.1 95.8

Ecoli S 170,7 79.4 ND 74.7 78.2

sRNA S 452,2 48.7 71.7 58.6 79.9

Image S 574,7 91.5 ND 92 95.3

microRNA M 1106,2 85.7 82.5 87.1 89.4

Shuttle L 58000,9 ND 83.7 ND 83.4

TPV L 10300, 2 Fail 99.5 98.7 97.7

Table 1. Benchmark Results. The performance of this cRBM was tested against stan-
dard datasets.

Trees (FDT) [1, 2, 5] and dRBMs [8]. The best results for the dRBMs, after
optimizing the encoding to discrete bitstrings, were included in the table. The
prescribed training and test sets were used for all of the UCI datasets and the
others were evaluated with five-fold cross validation with the mean accuracy
reported. The new algorithm consistently out-performs the older ones. While not
shown, the PPV, recall and F-scores are consistent with the level of accuracy
in the results. The correlation between the reconstructed data, determined by
equation 8 and the input data is > 0.99 for most of the data sets. (TPV is an
exception where it is only > 0.9).

Benchmarking the approach against HIVpr drug resistance data taken from
Yu et al[20] and shown in table 2 demonstrates that it can handle relatively
large datasets. The approach in [20] maps drug resistant mutations onto the
molecular structure and uses Delaunay triangulation to reduce it to a 210 long
feature vector. The Yu paper uses compressed encoding as well as SVM and ANN
so it is a relevant comparison. The average values for 5-fold cross validation and
standard errors are reported for this data.

Inhibitor Yu Accuracy Accuracy PPV Recall F

idv 96.1 94.8±0.1 94.1±0.9 92.9±1.0 93.4±0.2

lpv 95.9 95.1±0.3 95.5±0.3 93.0±0.8 94.2±0.4

sqv 95.0 93.6±0.3 95.8±0.2 91.9±0.8 93.8±0.4

tpv 96.1 97.7±0.2 98.2±0.2 97.8±0.1 98.0±0.2

Table 2. Results on benchmark HIVpr data. The same data that were used in [20] were
used for this test. There are 210 features and between 10000 and 17000 data points.
These are the results from five-fold cross validation using 10 hidden layers.

The MNIST character recognition data set consists of 60,000 scanned and
centered handwritten digits for training and 10,000 digits for testing[13, 19].
Figure 1 shows the quality of the reconstruction with a cRBM as a function of
the number of hidden layers. The cRBM achieved accuracies of between 94.6%



and 95.4%. Fuzzy RBMs[8] reached accuracies between 94.6% and 95.7% when
trained with 1000 hidden units (either divided into ten 100-deep classifiers or
treated as on large one of 1000 layers). This accuracy is comparable to a 2-layer
NN[13]. cRBMs use a significantly smaller number of hidden layers to achieve
similar accuracy to the earlier work (table 3 shows the results for the cRBM using
40 layers). Note that the 40 layers used in the cRBM is much smaller than the
1000 layers used in the dRBM. Surprisingly the classification accuracy degrades
as the number of hidden layers rises, while the quality of the reconstruction
(figure 1) improves. This strongly suggests that improving the quality of the
classification algorithm used on the hidden layers would be fruitful.

Number of hidden layers Accuracy

40 95.4

80 95.2

100 94.6

200 91.8

Table 3. Results on the MNIST dataset. The accuracy is shown as a function of the
number of hidden layers.

Fig. 1. A sample of digits from the MNIST data set is shown for the original data
followed by reconstructions with 40, 60, 80, 100, 120, 140, 160, 180, and 200 hidden
layers. The cRBM was trained on the standard training set and the reconstructions
are from the testing set.



The code was written in C++ and complied with the GNU compiler. Other
than the MNIST benchmark, all the calculations were performed on a small
laptop computer (1.6GHz lenovo n22, using Ubuntu under windows 10) in a
matter of minutes. The exact times depend on training parameters, but the cited
examples from table 3 took 205 seconds for the microRNA set with 50 hidden
layers and 60 seconds for the shutle set with 10 hidden layers. The MNIST data
took about an hour of CPU time per point on a 1.6GHz linux workstation. Ten
training epochs were used in all the examples.

4 Conclusion

This paper demonstrated an effective algorithm for classification and reconstruc-
tion using a continuous RBM. The accuracy of the predictions was competitive
with other methods when validated either against standard test sets or by 5-fold
cross validation. Several areas for improvement remain. Namely, the naive 1-NN
classification algorithm should be replaced with a more accurate one, and the
mechanics of the least square estimation of H could be implemented in a more
effective manner. There is no reason that the algorithm cannot be implemented
on a GPU with significant performance enhancement.
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