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ABSTRACT 

Our understanding of genetic predisposition to inflammatory and autoimmune 

diseases has been enhanced by large scale quantitative trait loci (QTL) linkage mapping 

and genome-wide association studies (GWAS). However, the resolution and interpretation 

of QTL linkage mapping or GWAS findings are limited. In this work, we complement 

genetic predictions for several human diseases including multiple sclerosis (MS) and 

systemic capillary leakage syndrome (SCLS) with genetic and functional data in model 

organisms to associate genes with phenotypes and diseases. 

Focusing on MS, an autoimmune inflammatory disease of the central nervous 

system (CNS), we experimentally tested the effect of three of the GWAS candidate genes 

(SLAMF1, SLAMF2 and SLAMF7) in the experimental autoimmune encephalomyelitis 

(EAE) mouse model and found a male-specific locus distal to these loci regulating CNS 

autoimmune disease. Functional data in mouse suggests this male-specific locus modulates 

the frequency of immune cells including CD11b+, TCRαβ+CD4+Foxp3+, and 

TCRαβ+CD8+IL-17+ cells during EAE disease. Orchiectomy experiments demonstrate 

that this male specific phenotype is dependent on testis but not on testosterone (T) or 5α-

dihydrotestosterone (DHT). Using a bioinformatic approach, we identified SLAMF8 and 

SLAMF9 along with other differentially expressed genes in linkage with MS-GWAS 

predictions, as potential positional candidates regulating CNS autoimmune disease.  

Using SCLS, an extremely rare disorder of unknown etiology characterized by 

recurrent episodes of vascular leakage, we identified and modeled this disease in an inbred 

mouse strain, SJL, using susceptibility to histamine-and infection-triggered vascular leak 

as the major phenotypic readout. This trait “Histamine hypersensitivity” (Histh/Histh) was 

mapped to a region on Chr-6. Remarkably, Histh is syntenic to the genomic locus (3p25.3) 

most strongly associated with SCLS in humans. Subsequent studies found that the Histh 

locus is not unique to SJL but additional mouse strains also exhibit Histh phenotype. 

Considering GWAS studies in SCLS are limited by sample size, we utilized interval-

specific SNP-based association testing to predict Histh candidates. Furthermore, to dissect 

the complexity of Histh QTL, we developed network-based functional prediction methods 

to rank genes in this locus by predicting functional association with multiple Histh-related 

processes. The top-ranked genes include Cxcl12, Ret, Cacna1c, and Cntn3, all of which 

have strong functional associations and are proximal to SNPs segregating with Histh.  

Lastly, we utilized the power of integrating genetic and functional approaches to 

understand susceptibility to Bordetella pertussis and pertussis toxin (PTX) induced 

histamine sensitization (Bphs/Bphs), a sub-phenotype with an established role in 

autoimmunity. Congenic mapping in mice had earlier linked Bphs to histamine H1 receptor 

gene (Hrh1/H1R) and demonstrated that H1R differs at three amino acid residues in Bphs-

susceptible and -resistant mice. Our subsequent studies identified eight inbred mouse 

strains that were susceptible to Bphs despite carrying a resistant H1R allele. Genetic 

analyses mapped the locus complementing Bphs to mouse Chr-6, in linkage disequilibrium 

with Hrh1; we have designated this Bphs-enhancer (Bphse). Similar to the approaches used 

for Histh, we utilized interval-specific SNP based association testing and network-based 

functional enrichment to predict nine candidate loci for Bphse including Atp2b2, Atg7, 

Pparg, Syn2, Ift122, Raf1, Mkrn2, Timp4 and Gt(ROSA)26Sor. Overall, these studies 

demonstrate the power of integrating genetic and functional methods in humans and animal 

models to predict highly plausible loci underlying QTL/GWAS data.   



ii 

 

CITATIONS 

Material from this dissertation has been accepted for publication to Comm Biol on 

September 10, 2019 in the following form: 

Raza, A., Chan, C. E., Chen, W. S., Xie, Z., Scott, L. M., Eisch, R., Krementsov, D. N., 

Rosenberg, H. F., Parikh, S. M., Blankenhorn, E. P., Teuscher, C., Druey, K. M.. (2019). 

A natural mouse model reveals genetic determinants of Systemic Capillary Leak 

Syndrome (Clarkson disease). 

 

AND 

 

Material from this dissertation has been submitted for publication to Genes, Genomes 

and Genetics on July 29, 2019 in the following form: 

Tyler, A.L., Raza, A., Krementsov, D.N., Case, L.K., Huang, R., Ma, R.M., Blankenhorn, 

E.P., Teuscher, C., Mahoney, J.M.. (2019). Network-based functional prediction augments 

genetic association to predict candidate genes for histamine hypersensitivity in mice.  

  



iii 

 

DEDICATION 

I dedicate my work to my late father, Shakil Raza Ghazali, and my mother, 

Shabana Shakil, who sacrificed their goals, dreams and aspirations so I could be successful.  

  



iv 

 

ACKNOWLEDGEMENT  

Firstly, I would like to express my sincere gratitude to my advisor Dr. Cory Teuscher 

for the continuous support of my Ph.D. study and related research, for his patience, 

motivation, and immense knowledge. His guidance helped me in all the time of 

research and writing of this thesis. I could not have imagined having a better advisor 

and mentor for my Ph.D. study. 

Besides my advisor, I would like to thank the rest of my thesis committee: Dr. 

Mathew Poynter, Dr. Jonathan Boyson, Dr. Ralph Budd, Dr. Dimitry Krementsov 

and Dr. Dawei Li for their insightful comments and encouragement, but also for the 

hard question which incented me to widen my research from various perspectives. 

I thank my ex-fellow lab mates Dr. Devin Champagne, Dr. Victoria DeVault, Dr. 

Phyu Thwe and Dr. Mike Secinaro for the stimulating discussions, and for all the fun 

we have had in the last five years. Also, I would like to thank my lab mom, Ms. 

Cheryl Collins, for keeping me sane and motivated in research with her wonderful 

baking and lots of care. My sincere thanks to Dr. Roxana del Rio for guiding me 

throughout flow cytometry and helping me whenever I needed her support. 

Last but not the least, I would like to thank my family: my late father, my mother and 

my brothers and sister for supporting me spiritually throughout writing this thesis and 

my life in general. 

 



v 

 

TABLE OF CONTENTS 

Page 

CITATIONS ...................................................................................................................... ii 

DEDICATION.................................................................................................................. iii 

ACKNOWLEDGEMENT ............................................................................................... iv 

LIST OF FIGURES ........................................................................................................ xii 

LIST OF TABLES ......................................................................................................... xiv 

CHAPTER 1: COMPREHENSIVE LITERATURE REVIEW ................................... 1 

1.1. Introduction to Multiple Sclerosis ............................................................................... 1 

Clinical course .............................................................................................................. 2 

Epidemiology ................................................................................................................ 4 

Therapies available ....................................................................................................... 5 

Pathogenesis .................................................................................................................. 7 

Etiology ....................................................................................................................... 15 

1.2. Genome wide association studies (GWAS) in MS. ................................................... 20 

1.3. Experimental autoimmune encephalomyelitis (EAE) ............................................... 27 

Active EAE ................................................................................................................. 27 

Passive EAE ................................................................................................................ 28 

Immunology of EAE ................................................................................................... 29 

Genetics and sex differences in EAE .......................................................................... 36 

1.4. The signaling lymphocytic activation molecule (SLAM) family of receptors .......... 39 

1.5. SLAM family receptor 1, 2 and 7 in MS-GWAS studies .......................................... 43 



vi 

 

1.8. Literature Review References .................................................................................... 45 

CHAPTER 2: SEX-SPECIFIC REGULATION OF CNS AUTOIMMUNITY BY 

SIGNALING LYMPHOCYTIC ACTIVATION MOLECULE (SLAM) LOCUS. .. 76 

2.1. Abstract ...................................................................................................................... 77 

2.2. Introduction ................................................................................................................ 79 

2.3. Results ........................................................................................................................ 82 

2.3.1. EAE susceptibility in male mice is controlled by a locus in linkage 

disequilibrium with Slamf1, Slamf2, and Slamf7 ............................................... 82 

2.3.2. Immune profiling of c1 and B6 mice ................................................................ 83 

2.3.3. Increased IL-10 by male c1 T cells co-segregates with resistance to EAE ...... 84 

2.3.4. Gene-by-testis specific interactions modify EAE disease in c1 male mice ...... 84 

2.3.5. Lack of evidence for Slamf1, 2 and 7 as the true GWAS candidates 

regulating CNS autoimmune disease ................................................................. 86 

2.3.6. Polymorphic candidate genes within the refined locus whose expression is 

testis-dependent are novel candidates regulating CNS autoimmunity. ............. 86 

2.4. Discussion .................................................................................................................. 88 

2.5. Material and Methods ................................................................................................ 93 

2.5.1. Animals ............................................................................................................. 93 

2.5.2. DNA extraction and Genotyping ...................................................................... 93 

2.5.3. Induction and evaluation of actively induced EAE .......................................... 94 

2.5.4. Orchiectomy and hormone administration ........................................................ 95 

2.5.5. Cytokine and proliferation assays ..................................................................... 96 

2.5.6. CNS-infiltrating mononuclear cell isolation ..................................................... 96 

2.5.7. Antibodies and flow cytometric analysis .......................................................... 97 

2.5.8. In Silico analysis and Data Mining ................................................................... 97 



vii 

 

2.5.9. Statistics ............................................................................................................ 99 

2.6. Acknowledgements .................................................................................................. 100 

2.7. References ................................................................................................................ 101 

2.8. Figures...................................................................................................................... 107 

2.9. Tables ....................................................................................................................... 116 

2.10. Supplementary Data ............................................................................................... 118 

CHAPTER 3: CONCLUSION AND FUTURE DIRECTIONS. .............................. 121 

COMPREHENSIVE BIBLIOGRAPHY .................................................................... 134 

APPENDIX A: A NATURAL MOUSE MODEL REVEALS GENETIC 

DETERMINANTS OF SYSTEMIC CAPILLARY LEAK SYNDROME 

(CLARKSON DISEASE) ............................................................................................. 172 

A.1. Abstract ................................................................................................................... 173 

A.2. Introduction ............................................................................................................. 174 

A.3. Results ..................................................................................................................... 177 

A.3.1. Dermal vasculature of SCLS patients exhibit hyper-responsive to leak 

provocateurs. .................................................................................................... 177 

A.3.2. SJL mice exhibit traits that phenocopy human SCLS.................................... 177 

A.3.3. SJL mice exhibit age- and inflammation-dependent hypersensitivity to 

systemic administration of histamine............................................................... 179 

A.3.4. Histh, the locus controlling susceptibility to vascular hypersensitivity to 

histamine, exhibits maximal linkage to mouse chromosome 6 ....................... 180 

A.3.5. Congenic mapping of Histh ........................................................................... 181 

A.3.6. Dermal vasculature of mice harboring an Histh susceptibility allele is 

hyperresponsive to histamine. .......................................................................... 181 

A.3.7. Susceptibility to histamine-induced systemic vascular leak is genetically 

controlled by Histh. .......................................................................................... 183 



viii 

 

A.3.8. Acute viral infectious trigger exacerbates genetically-controlled vascular 

hyperpermeability. ........................................................................................... 184 

A.3.9. Synteny of Histh locus and SCLS GWAS candidates. .................................. 184 

A.4. Discussion ............................................................................................................... 186 

A.5. Material and Methods ............................................................................................. 191 

A.5.1. Patients and skin testing. ................................................................................ 191 

A.5.2. Animals. ......................................................................................................... 191 

A.5.3. Histh Phenotyping. ......................................................................................... 191 

A.5.4. DNA extraction and genotyping. ................................................................... 192 

A.5.5. Data resources in the Mouse Phenome Database........................................... 192 

A.5.6. Miles assay. .................................................................................................... 193 

A.5.7. Influenza virus infection. ............................................................................... 193 

A.5.8. Systemic vascular leak analysis. .................................................................... 194 

A.5.9. Linkage analysis and generation of Histh congenic mice. ............................. 194 

A.5.10. Synteny mapping between Histh locus and SCLS GWAS candidates. ....... 194 

A.6. Acknowledgements ................................................................................................. 196 

A.7. References ............................................................................................................... 197 

A.8. Figures ..................................................................................................................... 201 

A.9 Tables ....................................................................................................................... 208 

APPENDIX B: NETWORK-BASED FUNCTIONAL PREDICTION 

AUGMENTS GENETIC ASSOCIATION TO PREDICT CANDIDATE GENES 

FOR HISTAMINE HYPERSENSITIVITY IN MICE. ............................................. 211 

B.1. Abstract ................................................................................................................... 212 

B.2. Introduction ............................................................................................................. 213 



ix 

 

B.3. Results ..................................................................................................................... 216 

B.3.1. Generation of Interval Specific Recombinant Congenic Lines (ISRCL) 

across the Histh locus....................................................................................... 216 

B.3.2. Inbred strain survey of Histh. ......................................................................... 216 

B.3.3. Targeted genetic association analysis for Histh. ............................................ 217 

B.3.4. Network-based prediction of Histh-associated genes. ................................... 217 

B.3.5. Integration of functional enrichment with genetic association. ..................... 220 

B.4. Discussion ............................................................................................................... 222 

B.5. Material and Methods.............................................................................................. 227 

B.5.1. Animals. ......................................................................................................... 227 

B.5.2. Histh Phenotyping. ......................................................................................... 227 

B.5.3. DNA extraction and genotyping. ................................................................... 227 

B.5.4. Generation of Histh congenic lines and GigaMUGA. ................................... 229 

B.5.5. Targeted genetic association testing. .............................................................. 229 

B.5.6. Trait-related gene sets. ................................................................................... 233 

B.5.7. FNTM network. .............................................................................................. 234 

B.5.8. Clustering gene sets. ....................................................................................... 234 

B.5.9. Machine learning. ........................................................................................... 235 

B.5.10. Positional Candidate Scoring. ...................................................................... 236 

B.5.11. Combined Gene Score. ................................................................................. 237 

B.6. Acknowledgements ................................................................................................. 238 

B.7. References ............................................................................................................... 239 

B.8. Figures ..................................................................................................................... 243 



x 

 

B.9. Tables ...................................................................................................................... 250 

B.10. Supplemental Data. ............................................................................................... 251 

APPENDIX C: GENETIC ANALYSIS OF BPHSE: A NOVEL GENE 

COMPLEMENTING RESISTANCE TO BORDETELLA PERTUSSIS-

INDUCED HISTAMINE SENSITIVITY. .................................................................. 252 

C.1. Abstract ................................................................................................................... 254 

C.2. Introduction ............................................................................................................. 255 

C.3. Results ..................................................................................................................... 259 

C.3.1. H1R is highly conserved in mice. ................................................................... 259 

C.3.2. Identification of co-adaptation complementing BphsR. ................................. 260 

C.3.3. A functional linkage disequilibrium domain on Chr 6 regulates 

susceptibility to Bphs. ...................................................................................... 261 

C.3.4. Identification of candidate genes for Bphse. .................................................. 262 

C.4. Discussion ............................................................................................................... 266 

C.5. Materials and Methods ............................................................................................ 272 

C.5.1. Animals. ......................................................................................................... 272 

C.5.2. Bphs Phenotyping. ......................................................................................... 272 

C.5.3. DNA sequencing of third intracellular loop of Hrh1. .................................... 273 

C.5.4. DNA isolation and Genotyping. ..................................................................... 273 

C.5.5. H1RKO mice genotyping. .............................................................................. 275 

C.5.6. Linkage analysis and generation of Bphse congenic. ..................................... 275 

C.5.7. Targeted genetic association testing. .............................................................. 275 

C.5.8. Trait-related gene sets. ................................................................................... 280 

C.5.9. Functional enrichment and ranking of Bphs associated genes. ...................... 280 



xi 

 

C.5.10. Combined gene score. .................................................................................. 281 

C.6. Acknowledgements ................................................................................................. 282 

C.7. References ............................................................................................................... 283 

C.8. Figures ..................................................................................................................... 289 

C.9. Tables ...................................................................................................................... 292 

C.10. Supplementary data ............................................................................................... 297 



xii 

 

 LIST OF FIGURES 

CHAPTER 1: COMPREHENSIVE LITERATURE REVIEW 

Figure 1.1. MS disease course. ........................................................................................... 3 
Figure 1.2. Likelihood of identifying genetic variants by risk allele frequency and 

strength of genetic effect ................................................................................................... 22 
 

CHAPTER 2: SEX-SPECIFIC REGULATION OF CNS AUTOIMMUNITY BY 

SIGNALING LYMPHOCYTIC ACTIVATION MOLECULE (SLAM) LOCUS 

Figure 2.1. B6 mice with overlapping intervals encompassing the 129-derived Slam 

locus used in this study. .................................................................................................. 107 
Figure 2.2. Male c1 mice exhibit increased resistance to EAE. ..................................... 108 

Figure 2.3. Ex-vivo production of IL-10 by MOG35–55 specific T cells. ......................... 110 

Figure 2.4. EAE severity was enhanced in orchiectomized (ORX) c1 mice compared 

to sham mice while neither Testosterone (T) nor 5α-dihydrotestosterone (DHT) 

replacement ameliorate disease susceptibility. ............................................................... 111 

Figure 2.5. Generation and EAE testing of interval specific recombinant congenic 

(ISRC) lines across c1 interval confirms that EAE susceptibility in male mice is 

controlled by a locus in linkage disequilibrium to Slamf1, Slamf2 and Slamf7. ............. 114 
Figure 2.6. Polymorphic candidate genes within the c1 locus whose expression is 

modulated by orchiectomy. ............................................................................................. 115 

  

CHAPTER 3: CONCLUSIONS AND FUTURE DIRECTIONS 

Figure 3.1. A comparison of GWAS and functional follow-up studies. ......................... 123 
 

APPENDIX A: A NATURAL MOUSE MODEL REVEALS GENETIC 

DETERMINANTS OF SYSTEMIC CAPILLARY LEAK SYNDROME 

(CLARKSON DISEASE) 

Figure A.1. SCLS patients are hyper-responsive to histamine and morphine. ............... 201 
Figure A.2. SJL mice phenocopy SCLS. ........................................................................ 202 

Figure A.3. Dermal vasculature of mice containing the identified Histh allele is 

hyper-responsive to histamine. ....................................................................................... 203 

Figure A.4. Systemic administration of histamine induces vascular leak in SJL and 

B10.S-HisthSJL but not B10.S mice. ................................................................................ 204 
Figure A.5. Influenza-associated vascular leak in SJL mice as a means to model 

SCLS. .............................................................................................................................. 205 
Figure A.6. Shared genetic and phenotypic alignment between Histh and SCLS. ......... 207 

 

APPENDIX B: NETWORK-BASED FUNCTIONAL PREDICTION 

AUGMENTS GENETIC ASSOCIATION TO PREDICT CANDIDATE GENES 

FOR HISTAMINE HYPERSENSITIVITY IN MICE. 

Figure B.1. Interval specific recombinant congenic (ISRC) mapping places Histh 

candidates in four genetic loci. ....................................................................................... 243 
Figure B.2. Targeted genetic association analysis for Histh. .......................................... 244 



xiii 

 

Figure B.3. Workflow Overview. ................................................................................... 245 

Figure B.4. Two axes of gene scoring. ........................................................................... 246 

Figure B.5. Final gene scores. ......................................................................................... 247 
Figure B.6. Network-based machine learning for functionally annotating genes. ......... 249 

 

APPENDIX C: GENETIC ANALYSIS OF BPHSE: A NOVEL GENE 

COMPLEMENTING RESISTANCE TO BORDETELLA PERTUSSIS-

INDUCED HISTAMINE SENSITIVITY. 

Figure C.1. Congenic mapping of Bphse confirms linkage to Bphs/Hrh1. .................... 289 
Figure C.2. Integration of genetic and functional mapping approaches to predict 

candidates for Bphse. ...................................................................................................... 290 
Supplementary Figure C.1. Mouse family tree showing the phylogenetic relationships 

among 102 inbred and wild-derived inbred strains. ................................................ 298 

  



xiv 

 

LIST OF TABLES 

CHAPTER 1: COMPREHENSIVE LITERATURE REVIEW 

Table 1.1. Disease modifying therapies approved for use in MS. ...................................... 6 
Table 1.2. Published GWAS studies in MS. ..................................................................... 24 
Table 1.3. EAE loci in mouse models............................................................................... 37 
Table 1.4. The SLAM family and signaling adaptors ....................................................... 40 

 

CHAPTER 2: SEX-SPECIFIC REGULATION OF CNS AUTOIMMUNITY BY 

SIGNALING LYMPHOCYTIC ACTIVATION MOLECULE (SLAM) LOCUS 

Table 2.1. SLAM locus is highly conserved between human and mouse with natural 

genetic variation segregating between B6 and 129 mice. ............................................... 116 

Table 2.2. Immune profile of c1 and B6 mice ................................................................ 117 

Supplementary Table 2.1. Clinical disease metrics of c1, c2 and B6 mice. ................... 118 

Supplementary Table 2.2. Primers used in genotyping B6.129 congenic lines. ............. 119 
 

APPENDIX B: NETWORK-BASED FUNCTIONAL PREDICTION 

AUGMENTS GENETIC ASSOCIATION TO PREDICT CANDIDATE GENES 

FOR HISTAMINE HYPERSENSITIVITY IN MICE. 

Table B.1. A survey of Histh phenotypes across 23 inbred mouse strains. .................... 250 

APPENDIX C: GENETIC ANALYSIS OF BPHSE: A NOVEL GENE 

COMPLEMENTING RESISTANCE TO BORDETELLA PERTUSSIS-

INDUCED HISTAMINE SENSITIVITY. 

Table C.1. Distribution of H1R
S and H1R

R alleles in inbred laboratory and wild-

derived mouse strains. ..................................................................................................... 292 

Table C.2. Bphs susceptibility of mice with the H1R
R allele. ......................................... 293 

Table C.3. Bphs susceptibility in (H1R
R × H1RKO) F1 hybrids. .................................... 294 

Table C.4. Linkage of chromosome 6 marker loci to Bphse. ......................................... 295 
Table C.5. Predicted candidates for Bphse and their annotation in Bphs functional 

networks. ......................................................................................................................... 296 

Supplementary Table C.1. List of 50 inbred mouse strains used in genetic association 

testing. ..................................................................................................................... 297 

 

 



1 

 

 CHAPTER 1: COMPREHENSIVE LITERATURE REVIEW 

1.1. Introduction to Multiple Sclerosis 

Multiple sclerosis (MS) is the most common progressive neurologic disease of 

young adults worldwide (Feigin, 2017). Earliest records suggestive of MS date back to 

1300s in Schiedam, Holland about a woman named Lidwina the Virgin (Orrell, 2005). In 

year 1395 at age 16 years she developed a strange illness that exhibited as blindness in one 

eye, weakness and pain that subsequently led her to fall while skating on a frozen canal. 

She died in 1433. Moreover, records from the personal diary of Sir Augustus d'Esté (1794-

1848), grandson of King George III of England, reveals almost certainly that he suffered 

from MS. His symptoms started at age 28 with a transient visual loss. Later as the disease 

progressed, he experienced double vision (diplopia), weakness and stiffness of the legs 

(spastic paraparesis), lack of control over defecation (anal incontinence) and erectile 

dysfunction (impotence). He spent the rest of his life wheelchair bound until his death in 

1848 (Landtblom et al., 2010b).  

The first illustration of pathological findings in MS is attributed to Robert 

Carswell, a Scottish professor of pathology, in his work Illustrations of the Elementary 

Forms of Disease published in 1837 in which he drew the macroscopical appearances of 

the plaques seen in multiple sclerosis (Murray, 2009). Jean Martin Charcot, a French 

neurologist at the Hôpital de Salpétrière in Paris, is attributed to having coined the term 

sclérose en plaques disseminées in 1868, which later became known as ‘disseminated 

sclerosis’ and in the 1960s as ‘multiple sclerosis’. He described through a series of seminal 
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lectures the pathology: demyelination (“nervous tubes…have lost their myelin cylinder”) 

and axonal loss (“in the plaque center, nervous tubes are reduced and thinner”), diagnostic 

criteria: nystagmus (involuntary eye movement), intention tremor (rhythmic shaking) and 

scanning speech; and disease onset (young adults with predominance in women) of MS 

(Charcot, 1868; Lubetzki, 2018). The diagnostic criteria have been revised several times to 

incorporate additional features including those by Marburg in 1909 (Uhtoff's sign, absence 

of abdominal reflexes and pyramidal tract lesions), Broman in 1965 (oligoclonal bands in 

cerebrospinal fluid, dissemination in space and time), and recently by McDonald in 2001, 

2005, 2010 and 2017 (Magnetic Resonance Imaging (MRI) evidence) (Gafson et al., 2012; 

Thompson et al., 2018).  

Clinical course 

MS is a heterogeneous disease and exhibits variability in disease course and rate 

of progression to disability from person to person (Weiner, 2009). Kurtzke developed the 

Expanded Disability Status Scale (EDSS) to quantitate symptoms by assigning weights to 

pyramidal, cerebellar, brain stem, sensory, bowel, bladder, cerebral, visual and other 

deficits in patients (Kurtzke, 1983). Using the EDSS system, the National Multiple 

Sclerosis Society Advisory Committee on Clinical Trials in MS (Lublin et al., 2014) has 

defined four clinical courses (Figure 1.1A): clinically isolated syndrome (CIS; single 

neurological episode lasting 24 hours or more), relapsing remitting MS (RRMS; periodic 

relapse and exacerbation with partial remission), primary progressive MS (PPMS; gradual 

worsening of symptoms with no relapse or remission) and secondary progressive MS 

(SPMS; transition from relapsing remitting to progressive disease) (Lublin et al., 2014). 
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Most people diagnosed with MS transition from one form to another as the disease 

progresses. The disease course of MS for Augustus d’Esté (Landtblom et al., 2010a) is a 

prime example of clinical heterogeneity. He started with CIS that transitioned to RRMS 

and later to SPMS until his death in 1848 (Figure 1.1B).  

 

Figure 1.1. MS disease course. 

(A). Four clinical courses are defined for MS. (B) The disease course of Augustus d’Esté  
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Epidemiology 

Approximately 2.3 million people in the world have MS and the disease is usually 

found to be more prevalent in women than men (Feigin, 2017). Most people are diagnosed 

between the ages 20 and 50 years, although MS can also occur in young children (pediatric 

MS) and older adults (late onset MS). The prevalence of MS varies geographically, with 

high levels in North America, Northern Europe, Australia and New Zealand (>100/100,000 

inhabitants) but low levels in Eastern Asia and Africa (2/100,000 inhabitants) (Wade, 

2014). Several population-based studies have shown a steady increase in the prevalence 

and incidence of MS worldwide (Etemadifar et al., 2013; Kingwell et al., 2013). In US, 

prevalence estimates were calculated in 1976 (123,000), 1990 (180,000), 2008 (572,312), 

2010 (727,344) and 2017 (913,925) and exhibit a similar trend (Wallin et al., 2019). Alonso 

et al., compared the mean incidence of MS cases among 38 population-based studies 

between 1966 and 2007 and found the rise is not uniform across all age groups and genders 

(Alonso et al., 2008). While the incidence has generally increased in both men and women 

over the years, there is a disproportional increase in incidence among women >50 years 

and could explain the increase in sex ratio from 2.4 ♀:1 ♂ to 3.5 ♀:1♂ over the last 50 

years (Ramagopalan et al., 2010). Possible explanations for the increased incidence include 

improved access to medical facilities, better diagnostic tools and increase in life expectancy 

in general. However, this cannot explain the disproportionate increase in MS among 

women.  

Migration studies in MS have shown that individuals who travel below the age of 

15 or 16 from an area where the disease is common to an area where it is rarer show a 



5 

 

decrease in rate of disease (Dean et al., 1971; Kurtzke et al., 1985; Gale et al., 1995). The 

same is true for migration to high-risk areas. Dean et al., has reported that immigrants to 

England from India and Pakistan at an age younger than 15 years had a higher risk of 

developing MS than those immigrating after that age (Dean et al., 1997). This suggests that 

the years preceding adulthood can shape the course of disease late in life.  

Therapies available 

There is no cure for MS. Several therapies were tried during the 1800s and 1900s 

including injection of malarial parasites, arsenic, mercury, corticosteroids, 

cyclophosphamide, cyclosporin, methotrexate, and azathioprine with little to no success 

(Patwa, 2014). The first positive trial using interferon beta-1b (IFN-β-1b) was reported in 

1993 (Duquette et al., 1993) and earned Food and Drug Administration (FDA) approval as 

a prescribed treatment to reduce disability and the number of relapses. Currently, several 

additional disease-modifying therapies (DMT) are available to decrease the frequency of 

relapses and/or to delay disease progression in MS (Table 1.1). These DMTs have varying 

mechanisms of action with immunosuppressive and immunomodulatory effects on 

leukocyte numbers (alemtuzumab, ocrelizumab, cladribine), proliferation (teriflunomide, 

mitoxantrone), trafficking (fingolimod, natalizumab) and cytokine production (interferon 

beta, glatiramer acetate). These treatments are not cheap and could range from $8,528 to 

$52,244 annually per patient depending on the clinical course and severity of disease 

(Marcus et al., 2013; Ernstsson et al., 2016; De Angelis et al., 2018). 
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Table 1.1. Disease modifying therapies approved for use in MS.  

  Therapy Active 

ingredient 

Target FDA MS type 

1 Avonex®  Interferon beta-1a Unknown; 

Immunoregulatory 

1996 RRMS, CIS 

2 Betaseron®  Interferon beta-1b Unknown; 

Immunoregulatory 

1993 RRMS, SPMS, 

CIS 

3 Copaxone®  Glaterimer 

acetate 

leukocyte differentiation 1996 RRMS, CIS 

4 Extavia®   Interferon beta-1b Unknown; 

Immunoregulatory 

2009 RRMS 

5 Mayzent Siponimod Binds sphingosine-1-

phosphate receptor (S1P); 

reduce leukocyte migration 

to CNS 

2019 RRMS, SPMS, 

CIS 

6 Glatopa® Glaterimer 

acetate 

Leukocyte differentiation 2015 RRMS 

7 Plegridy®  Peginterferon 

beta-1a 

Unknown; 

Immunoregulatory 

2014 RRMS 

8 Rebif® Interferon beta-1a Unknown; 

Immunoregulatory 

1998 RRMS, CIS 

9 Aubagio®  Teriflunomide Inhibits dihydroorotate 

dehydrogenase; reduce 

leukocyte proliferation 

2012 RRMS 

10 Gilenya®  Fingolimod Binds S1P; reduce 

migration of leukocytes to 

CNS 

2010 RRMS 

11 Tecfidera®  Dimethyl 

fumarate 

activate nuclear erythroid 2-

related factor 2; 

neuroprotection 

2013 RRMS 

12 Lemtrada®  Alemtuzumab Bind and depletes CD52 

bearing mature 

lymphocytes 

2014 RRMS 

13 Novantrone®  Mitoxantrone Type II topoisomerase 

inhibitor; inhibits leukocyte 

proliferation 

2000 RRMS, SPMS 

14 Ocrevus®  Ocrelizumab Targets CD20; B cell 

depletion 

2017 RRMS, PPMS 

15 Tysabri®   Natalizumab Binds α4-integrin; prevent 

migration of leukocytes into 

CNS 

2006 RRMS 

16 Mavenclad Cladribine Purine analogue; reduce 

leukocyte numbers 

2019 RRMS 

CIS: clinically isolated syndrome; RRMS: relapsing remitting MS; PPMS: primary progressive 

MS; SPMS: secondary progressive MS.  
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Pathogenesis 

 CNS lesions are a pathologic hallmark in all types of MS (Huang et al., 2017). 

These are areas of demyelination close to post capillary venules both in white and grey 

matter, along the ventricles, optic nerves, corpus callosum, cerebellar peduncles, long tracts 

and subpial region of the spinal cord and brain and are regions where blood-brain barrier 

(BBB) permeability is compromised (Compston et al., 2008). Myelin is a specialized 

membrane of lipids and proteins made by Schwann cells in the peripheral nervous system 

(PNS) and oligodendrocytes in CNS and wraps around axons allowing for rapid and 

efficient propagation of electrical impulses (Podbielska et al., 2013). The exact cause of 

demyelination in MS is unknown. However, genetic, pathological and animal studies have 

strongly suggested a role for the immune system in mediating immune attack against 

myelin antigens (Gay et al., 1997; Denic et al., 2011; Sawcer et al., 2011). The infiltrating 

population of immune cells express high levels of integrins including leukocyte function 

associated antigen-1 (LFA-1) and very late antigen-4 (VLA-4) (Claudio et al., 1995). LFA-

1 and VLA-4 are ligands for intercellular adhesion molecule-1 (ICAM-1) and vascular cell 

adhesion molecule-1 (VCAM-1) respectively, which are expressed by endothelial cells that 

line the BBB in the CNS (van de Stolpe et al., 1996). This LFA-1/ICAM-1 and VLA-

4/VCAM-1 interaction helps immune cells extravasate into the CNS.   

The active lesions of MS are characterized by immune cell infiltrates composed 

of clonally expanded CD4+ (perivascular cuff), CD8+ (parenchyma) and γδ T cells 

(perivascular cuff), B cells (perivascular cuffs and parenchyma) and macrophages 

(perivascular cuffs and parenchyma), suggesting an antigen specific response (Traugott et 
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al., 1983; Wucherpfennig et al., 1992; Baranzini et al., 1999). In this regard, several 

antigens are proposed as targets of autoreactive T cells and autoreactive antibodies in MS 

including proteins of myelin or oligodendrocytes (myelin basic protein [MBP], myelin 

oligodendrocyte glycoprotein [MOG], proteolipid protein [PLP], myelin-associated 

glycoprotein [MAG]), 2’,3’-cyclic nucleotide 3’-phosphodiesterase [CNPase], myelin-

associated oligodendrocyte basic protein [MOBP], non-myelin proteins αB-crystallin 

[HspB5], S100β, transaldolase-H, contactin-2/TAG-1), and non-protein antigens 

(glycolipids) (Hohlfeld et al., 2016). Since autoreactive B and T cells are part of the normal 

lymphocyte repertoire (Wucherpfennig, 1994), it is not fully understood how, where and 

when they are activated, their selective recruitment into the CNS, and their reactivation and 

maintenance within the CNS during MS disease. One hypothesis is the initial damage in 

MS takes place within the CNS, which leads to the drainage of myelin antigens to the 

periphery where they get picked up by the immune system that unleashes an autoimmune 

response against the CNS (Caprariello et al., 2018). An alternate hypothesis is that the 

initial events in MS happen outside the CNS possibly as a result of microbial (Berer et al., 

2017) or viral (Fujinami et al., 1985; Kakalacheva et al., 2011) trigger with cross-reactivity 

to myelin antigens.  

Within the CNS, T cells encounter cognate myelin antigens on antigen presenting 

cells (APC) and are reactivated setting up an inflammatory cascade that triggers 

recruitment of more T cells, as well as B cells, dendritic cells (DC), microglia and natural 

killer (NK) cells. Several cells can serve as APC in the CNS, including microglia, DC, 

macrophages and B cells, and provide co-stimulatory signals to myelin-reactive T cells 
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(Greter et al., 2005b; Pierson et al., 2014). Activated macrophages/microglia can 

phagocytose myelin directly or, along with T cells and the CNS glial cells, can release 

cytotoxic products and mediators such as proteases, inflammatory cytokines (tumour 

necrosis factor-α, interferon-γ), soluble reactive oxygen and nitrogen intermediates, free 

radicals and glutamic acid (Selmaj et al., 1988; Cuzner et al., 1999; Smith et al., 1999; 

Neumann et al., 2002). Infiltrating B cells and complement further damage myelin. As a 

result of CNS damage, additional neoantigens are released into the periphery (epitope 

spreading) that prime further autoreactive B and T cells and subsequent invasion into the 

CNS (Tuohy et al., 1997).  

In the earliest clinical presentation of MS, CIS, increased peripheral CD4+ T cell 

activation is linked to the occurrence of a second attack (Corvol et al., 2008). The central 

role of CD4+ T cells in MS has been further explored by immune and functional profiling 

in MS patients (Chitnis, 2007). Naïve CD4+ T cells differentiate into several types of T 

helper (Th) cell lineages including Th1, Th2, Th17, Follicular B helper cells (TFH), and 

regulatory T cells (Treg) depending on antigenic stimulation and cytokine milieu 

(Luckheeram et al., 2012). These Th lineages produce distinct cytokines (Th1: interferon 

gamma (IFN-γ), tumor necrosis factor alpha (TNF-α), and lymphotoxin (LT); Th2: 

interleukin 4 (IL-4), interleukin 5 (IL-5), and interleukin 13 (IL-13); Th17: interleukin 17A 

(IL-17A), interleukin 17F (IL-17F), interleukin 21 (IL-21), and interleukin 22 (IL-22); TFH: 

interleukin 2 (IL-2), IL-4; and Treg: interleukin 10 (IL-10) and tumor growth factor beta 

(TGF-β). Historically, Th1 cells were thought to be the main pathogenic T cells in MS: 1) 

increased levels of Th1 cytokines are evident during MS relapse, whereas Th2 cytokines 
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are found increased during remission in MS patients (Imam et al., 2007); 2) administration 

of IFN-γ in relapsing/remitting MS patients can exacerbate disease (Panitch et al., 1987b); 

3) animal models of MS have demonstrated that mice lacking in the small subunit of 

interlukin-12 (IL-12) cytokine, IL-12p40-/-, or T-box transcription factor (T-bet), T-bet-/-, 

are resistant to CNS autoimmune disease (Gran et al., 2002; Bettelli et al., 2004), and 4) 

treatment with glatiramer acetate, a peptide of MBP, reduces relapses in MS due to shift of 

pathogenic Th1 cells to protective Th2 cells (Oreja-Guevara et al., 2012). Th1 cells may 

contribute to the development and progression of disease by secreting IFN-γ (activates 

macrophages to secrete nitric oxide and promote myelin destruction), TNF-α and TNF-β 

(direct damage to myelin sheath and oligodendrocytes) cytokines (Selmaj et al., 1988; Chu 

et al., 2018) 

 The Th1 driven model of MS disease was challenged by observations that IFN-γ 

and IFN-γ-receptor-deficient mice, as well as mice that lack other molecules involved in 

Th1 differentiation, such as IL-12p35, IL-12 receptor β2, were not protected from CNS 

autoimmune disease, but instead were more susceptible to the disease (Krakowski et al., 

1996; Gran et al., 2002; Zhang et al., 2003). This became apparent with the discovery of 

interleukin 23 (IL-23), which is related structurally to IL-12 (Cua et al., 2003). IL-23 shares 

the p40 chain with IL-12, which is associated with either p19 (IL-23) or p35 (IL-12), 

respectively.  IL-23 was shown to be necessary to drive the induction or expansion of Th17 

(Langrish et al., 2005). In addition to IL-23, Th17 differentiation program require 

interleukin 6 (IL-6), IL-21, TGF-β, and receptor-related orphan receptor gamma-T 

(RORγt) as the master regulator (Yang et al., 2008). Analysis of peripheral blood 
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mononuclear cells (PBMCs), cerebrospinal fluid (CSF) and CNS lesions among MS 

patients found higher levels of IL-17, TGF-β and IL-6 transcripts (Lock et al., 2002). An 

increased frequency of Th17 cells is detected n PBMC and CSF of some RRMS and CIS 

patients compared with noninflammatory neurological diseases (Matusevicius et al., 1999; 

Tzartos et al., 2008). In vitro BBB migration assays have shown that Th17 cells 

transmigrate efficiently, highly express granzyme B and display enhanced cytotoxic 

activity against neurons compared with Th1 cells (Kebir et al., 2007). Th17 cell also exhibit 

impressive plasticity and lymphocytes expressing both IL-17 and IFN-γ have been found 

in MS brain tissue, suggesting that IL-17+ IFN-γ+ T cells may be involved in pathology 

(Kebir et al., 2009). Secukinumab is a monoclonal antibody against IL-17A, and a phase 

II clinical trial has shown to reduce MRI lesions among RRMS patients (Havrdová et al., 

2012). 

Other effector T cell subsets important in MS include, granulocyte macrophage 

colony stimulating factor (GM-CSF) expressing CD4+ (Th-gm), CD8+ T cells, gamma 

delta (γδ) T cells, regulatory T cells (nTreg, iTreg, Tr1, Tfr and iTr35) and B cells (Rasouli 

et al., 2015; Willing et al., 2018).. Th-gm are elevated in the CSF of MS patients compared 

to the blood and can secrete proinflammatory cytokines including IFN-γ and GM-CSF 

upon exposure to IL-12 (Noster et al., 2014; Rasouli et al., 2015; Restorick et al., 2017). 

These cytokines can promote the activation, maturation, and differentiation of 

macrophages and of DC cells respectively (Sonderegger et al., 2008).  
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One of the major populations infiltrating CNS lesions among MS patients are 

CD8+ T cells (Booss et al., 1983). These cells express granzyme B, perforin, IFN-γ, and 

IL-17 (Tc17). They are enriched in CSF of RRMS patients (Salou et al., 2015), and are 

thought to contribute to direct injury of neurons (Kebir et al., 2007; Huber et al., 2013). 

Blockade of CD8+ T cell migration into the CNS reduces clinical disease in animal models 

suggesting potential role in the development of MS.   

γδ T cells are a unique class of immune that can be activated with or without their 

cognate T-cell receptor (TCR) ligands and are an early effector T cell population during an 

immune response. These cells can produce IL-17 upon stimulation with interleukin 1 beta 

(IL-1β) and can amplify Th17 autoimmune responses (Sutton et al., 2009).  γδ T cells are 

found in the CNS lesions of MS patients (Wucherpfennig et al., 1992). Animal models of 

MS strongly suggest contribution of γδ T cells in disease pathogenesis (Blink et al., 2014a).  

The aberrant activation of several of these effector cells in MS is kept in check by 

regulatory T cells (iTreg and nTreg) expressing forkhead box protein P3 (FOXP3) 

transcription factor (Kitz et al., 2018). iTreg cells are FOXP3+CD4+CD25+ cells, which 

develop in peripheral lymphoid organs after antigen priming, in contrast to the natural Treg 

cells (nTreg) which are released from the thymus as a distinct lineage with FOXP3 already 

expressed (Chen et al., 2003). Activation of naïve T cells in the presence of TGF-β results 

in the expression of Foxp3 and the generation of iTregs. The activity of myelin reactive T 

cells, which are present in healthy individuals, is kept in check through several 

immunosuppressive mechanisms. These include secretion of IL-10, interleukin 35 (IL-35), 

TGF-β, granzyme B, adenosine, induction of immunosuppressive indoleamine 2,3-
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dioxygenase (IDO), and inhibition of effector T cells by consumption of IL-2 or negative 

signaling by cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) (Roncarolo et al., 

2006; Schmidt et al., 2012). These regulatory mechanisms are however impaired in MS 

patients where reduced numbers of circulating nTreg, decreased expression of FOXP3, loss 

of IL-10 secretion and impairment of regulatory capacity are observed (Astier et al., 2006; 

Venken et al., 2008; Frisullo et al., 2009; Dhaeze et al., 2015).  

While earlier view about MS predominantly focused on T lymphocytes as the key 

cell type that mediates autoimmune damage, emerging evidence suggest that B 

lymphocytes can also contribute to disease. Recent successes of CD20+ B-cell targeting 

therapies (rituximab, ocrelizumab, and ofatumumab) have renewed interest in their role in 

MS pathogenesis (Sabatino et al., 2019). 95% of MS patients have IgG oligoclonal bands 

(OCB) in CSF but not in their blood, suggesting a compartmentalized B-cell response 

(Kabat et al., 1942; Link et al., 2006). These OCB are long lived consistent with in situ 

local antigen stimulation and Ig production. Some of these OCB are reactive against myelin 

(Genain et al., 1995; von Budingen et al., 2008). Recently, Brändle et al. reported that 

OCB in MS target ubiquitous intracellular proteins, which may suggest a protective role 

(Brandle et al., 2016). Other studies found OCB antibodies targeting against many virus 

and infectious agents like Epstein-Barr virus (EBV), measles, mumps, herpes simplex virus 

type-1 (HHV-1) and type-6 (HHV-6), varicella-zoster virus, cytomegalovirus, rotavirus, β-

hemolytic streptococcus, Haemophilus influenzae type B, Escherichia coli, and 

enterococcus (Winger et al., 2016). Additional studies are needed to examine the 

specificity of OCB in MS and to determine if they participate in pathogenesis.  



14 

 

The initiator and effector functions of T and B lymphocytes are coordinated by 

the innate immune cells including, DCs and microglial cells, and their contribution to MS 

disease has become increasingly recognized (Gandhi et al., 2010). DCs are professional 

APC and promote activation and differentiation of naïve T cells into Th1, Th2, Th17 or 

iTregs. Two major DC subsets can be discriminated in blood: myeloid or conventional DCs 

(cDCs) and plamacytoid DCs (pDCs). cDCs phenotypically express CD11c, human 

leukocyte antigen (HLA)-DR, blood dendritic cell antigen (BDCA)-1, and absence of 

CD123 (Merad et al., 2013). In addition, they express toll-like receptor (TLR) 2 and TLR4. 

Activated cDCs secrete IL-12p70 that can help polarize Th cells into Th1 (Schulz et al., 

2000). In contrast, pDCs are identified by a CD11c- HLA- DR+ CD123high phenotype. They 

express TLR7 and TLR9 and upon activation produce type I interferon (IFN-I) (Kadowaki 

et al., 2001). Importantly, both cDCs and pDCs are found CNS lesions and CSF of MS 

patients (Serafini et al., 2006). cDCs isolated from peripheral blood of RRMS and SPMS 

patients have an activated phenotype, with increased expression of activation markers such 

as cluster of differentiation (CD) 40 and CD80, decreased expression of immunoregulatory 

molecule programmed death ligand-1 (PD-L1), and higher levels of Th1 and Th17 

polarizing cytokines (IFNγ, IL-12, TNF-α, IL-6 and IL23) (Karni et al., 2006). pDCs 

isolated from PBMC of MS patients exhibit decreased expression of activation markers 

including CD86, CD83, CD40 and 4-IBBL (Stasiolek et al., 2006). 

Microglia are the resident immune cells of the CNS and express HLA class II and 

co-stimulatory molecules CD83 and CD40, which are essential for interaction with effector 

T and B cells (Stasiolek et al., 2006). In addition, microglial cells express all nine TLRs 
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and expression of these receptors is necessary for the generation of CNS autoimmune 

responses (Jack et al., 2007). They secrete a variety of proinflammatory cytokines (IL-1β, 

IL-6, and TNF-α), are capable of phagocytosis, and can recruit peripheral cells to the site 

of injury (Lampron et al., 2013). Activated microglia are present during early and late MS 

stages and express proinflammatory markers involved in phagocytosis (CD68), in antigen 

presentation (HLA Class I and II, CD86), and production of reactive oxygen species 

(p22phox) (Woodroofe et al., 1986; Bogie et al., 2014). The recent discovery of 

transmembrane protein 19 (TMEM19) as a unique marker for microglia has significantly 

advanced our understanding of their role in MS. Analysis of TMEM19+ cells among 

different stages of CNS lesions in MS have shown that the initial tissue is associated with 

activated microglia, and these cells after phagocytosis of tissue debris transform into cells 

with a macrophage phenotype (Woodroofe et al., 1986).  

Etiology 

MS is a multifactorial disease with several risk factors, which are broadly grouped 

into environment, sex and genetics. These factors appear to act synergistically to modify 

the overall risk for disease. 

Environmental risk. There is strong evidence that exposure to environmental 

factors during gestation and/or early in childhood can influence susceptibility to MS later 

in life (Goodin, 2009). Risk promoting factors include exposure to EBV (odds ratio 3.6), 

HHV-6 (odds ratio 1.6), active and passive smoking (odds ratio 1.3-1.6), vitamin D 

deficiency <50mM in serum (odds ratio 1.4), reduced exposure to UV radiation (odds ratio 

2.0), month of birth (odds ratio 1.3), cigarette smoking (odds ratio 2.4), and adolescent 
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obesity (odds ratio 2.0) (Filippi et al., 2018). MS risk is reduced by exposure to 

cytomegalovirus (odds ratio 0.7), fasting mimicking or ketogenic diets (odds ratio 0.5) and 

fish consumption (odds ratio 0.55) (O'Gorman et al., 2012). 

Sex differences. Increased incidence (Wallin et al., 2012), slower progression 

(Tremlett et al., 2006), earlier onset (Bergamaschi, 2007) and amelioration of symptoms 

during pregnancy (Airas et al., 2012) among women all support the important contribution 

of sex in MS susceptibility. These effects may be driven by differences in sex 

chromosomes, sex hormones or both. Animal models of MS have shown that presence of 

two X-chromosomes (Chr-X) increases susceptibility to CNS autoimmune disease 

independent of hormones (Smith-Bouvier et al., 2008). Chr-X inactivation and genomic 

imprinting effects can additionally skew expression of genes implicated in autoimmunity 

including Toll-like receptor 7 (TLR7), CD40 ligand (CD40L) and FoxP3 between men and 

women (Sellebjerg et al., 2012). Conversely, several genes on the Chr-Y are known to 

provide resistance to CNS autoimmune disease in animals models of MS (Case et al., 

2015). Moreover, maternal transmission of MS is linked to mitochondrial effects (Ban et 

al., 2008). 

The role of sex hormones in MS susceptibility is apparent in women during 

pregnancy, when high levels of estriol seem to ameliorate symptoms especially during the 

third trimester (Confavreux et al., 1998b). Symptoms worsen post-partum before returning 

to the pre-pregnancy rate (Confavreux et al., 1998a). Some studies have demonstrated that 

pregnancy could offer long term protection in MS by delaying progression to disability 

(Runmarker et al., 1995). Others suggest that the immune response during pregnancy is 
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modulated by sex hormones with a shift to Th2 phenotype and an increase in the levels of 

regulatory T cells (Garay et al., 2007; Tai et al., 2008; Sherer et al., 2017). Preclinical 

studies of MS show that estriol treatment has both anti-inflammatory and neuroprotective 

properties (Spence et al., 2012). However, human phase II trials with estriol have shown 

only modest benefits in reducing relapses among women with MS (Voskuhl et al., 2016). 

Numerous studies have demonstrated that androgens are protective in MS with 

low levels associated with an increased risk of MS (Pakpoor et al., 2014). The four 

androgen hormones, 5α-dihydrotestosterone (DHT), testosterone, androstenedione, and 

dehydroepiandrosterone (DHEA), are all synthesized from cholesterol in the gonads and 

adrenal glands. DHT is more potent than testosterone, while androstenedione and DHEA 

have only 10 and 5% of the potency of testosterone, respectively (Marchetti et al., 2013). 

Testosterone can be converted to androstenedione (and vice versa) and both can be 

aromatized to estrogens by the enzyme aromatase (Remage-Healey et al., 2011). DHEA 

can be metabolized to testosterone and estrogens. Thus, studies in which testosterone, 

androstenedione and DHEA have been used for in vivo treatment can be difficult to 

interpret. DHT alone cannot be converted to estrogens and thus, studies utilizing DHT are 

most easily interpreted. 

Among men with MS, low levels of testosterone correlate with worse EDSS 

scores (Bove et al., 2014). A phase II trial of testosterone treatment has shown benefits in 

RRMS patients by reducing brain atrophy in grey and white matter and improving 

cognition and spatial memory in participants (Sicotte et al., 2007).  Further support comes 

from animal studies in which castration is linked to increased disease severity, whereas 
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exogenous supplementation with testosterone ameliorates disease by reducing 

inflammation, demyelination and axonal damage (Dalal et al., 1997b; Palaszynski et al., 

2004b). Mechanistically, testosterone and its more biologically active form, DHT, can act 

through the androgen receptor (AR) to exert their biological actions (Davey et al., 2016). 

The expression of AR in various immune organs and multiple immune cells (T 

lymphocytes, B lymphocytes, macrophages, DC, and mast cells) provides some indication 

of the level at which androgens influence immunity.  

Increased levels of androgens in males may protect from autoimmunity by 

maintaining higher levels of thymic autoimmune regulator (Aire) expression. Aire exerts 

T-cell self-tolerance by promoting expression of tissue-specific antigens (TSA) in 

medullary thymic epithelial cells. Developing thymocytes that recognize these TSAs with 

high affinity undergo negative selection, thus preventing the release of self-reactive T cells 

into the periphery and thus autoimmunity.  

Genetic susceptibility. The contribution of genetic inheritance in MS is not new 

and is supported by several observations. These include higher MS incidence and 

prevalence in some ethnic populations (Caucasians, Sardinians, Parsis and Palestinians) 

while being uncommon in Uzbeks, Samis, Turkmen, Kyrgyzis, Kazakhs, native Siberians, 

North and South Amerindians, Japanese, Chinese, African blacks, and New Zealand Maori, 

which suggested genetics as an important component of disease (Rosati, 2001). Genetic 

relatedness and predisposition to MS was further supported by familial clustering of 

disease in which siblings of affected individuals had 15-20 fold higher risk (2-4%) of 

developing disease compared to the general population (0.2%) (Harirchian et al., 2018).  
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Classical twin studies in MS puts the age-adjusted risk at 35% for monozygotic 

twins, 6% for dizygotic twins and 3% in siblings reinforcing direct relationship between 

genetic relatedness and susceptibility (Filippi et al., 2018). In addition, it also suggests that 

the genetic architecture underlying susceptibility may involve several polymorphic loci and 

non-Mendelian inheritance of disease. Early attempts in the 1980s to uncover the genetic 

contribution through linkage studies among multiple-affected member MS families 

established a strong contribution of chromosome 6p21.3 (Jersild et al., 1972; Naito et al., 

1972). This ~4Mb large interval spans 220 closely linked genes and includes six of the 

classical human leukocyte antigen (HLA) genes: the class I genes HLA-A, HLA-B, and 

HLA-C, and the class II genes HLA-DPB1, HLA-DQB1, and HLA-DRB1 consistent with 

the notion that MS is an autoimmune disease (Sawcer et al., 1996). Among the 24000 

alleles describe to date for HLA genes (Robinson et al., 2015), the HLA-DRB1*15:01 allele,  

has the strongest effect on MS susceptibility in both Caucasians and non-Caucasians, with 

an odds ratio of 3.08 (Mosca et al., 2017). It remains to be determined how and why the 

selection of this allele influence disease risk.  

Early success in the search for genetic loci in MS led to subsequent large and 

ambitious genome wide-microsatellite screens or candidate gene studies but they failed to 

identify additional linkages outside of the HLA region (Barcellos et al., 2003; Sawcer et 

al., 2005). These studies made clear that MS may not be caused by a small number of 

mutations having large effects that can be identified using traditional linkage analysis but 

is likely a result of several polymorphic loci each having a modest contribution to overall 

disease.  
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1.2. Genome wide association studies (GWAS) in MS. 

The completion of the human genome sequencing and HapMap projects in early 

2000 provided a wealth of information about common genetic variation across the genome 

(Collins et al., 2003). Subsequent advances in high throughout genotyping technologies 

made it possible to profile large numbers of samples in a cost-effective manner. These 

allowed screening of thousands of unrelated individuals in population-based studies to 

determine association of a genetic variant with particular trait in case-control subjects. The 

first GWAS was performed for myocardial infarction (MI) using 92,788 gene-based single-

nucleotide polymorphism (SNP) markers in a Japanese cohort of 1133 affected individuals 

and 1006 controls (Ozaki et al., 2002). They discovered a functional SNP in the 

lymphotoxin-alpha gene that was associated with susceptibility to MI. This was followed 

by successful GWAS for osteoarthritis (Mototani et al., 2005), rheumatoid arthritis (Suzuki 

et al., 2003), and diabetic nephropathy (Tanaka et al., 2003). 

Considering family-based linkage studies had failed to identify these risk loci in 

MS other than HLA, this led to the rationale for and drive to perform high-powered GWAS 

to screen SNPs in several thousand samples. The GWAS strategy in MS, like other 

complex disorders, relied on the common disease-common variant hypothesis (CDCV) 

(Wang et al., 2005). The CDCV hypothesis argues that common genetic variants with high 

frequency in the population, but relatively low penetrance, are the major contributors to 

genetic susceptibility to common diseases (McCarthy et al., 2008). Thus, by screening for 

difference in allele frequency of relatively common SNPs between cases and healthy 

controls, one can gain insight into the genetics of MS (Figure 1.2).  
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In 2007 the first MS GWAS was published and identified the first non-HLA 

regions with genome-wide significance (p<1x10-8) (Hafler et al., 2007). This study utilized 

2322 MS cases and 789 control subjects and found significant associations in interleukin-

2 receptor subunit alpha (IL-2Rα) and interleukin-7 receptor subunit alpha (IL-7Rα) 

(Lundmark et al., 2007; Cerosaletti et al., 2013). These were later supported by functional 

data where it was shown that polymorphism in IL-2Rα regulates GM-CSF production in 

Th cells (Hartmann et al., 2014). Similarly, polymorphic IL-7Rα was found to alter the 

pathogenicity of CD8+ T cells (Kreft et al., 2012).  

From 2007 onwards, thirty-three MS-GWAS studies have been performed 

(Buniello et al., 2019) to uncover risk alleles (Table 1.2). These studies were remarkably 

successful in identifying significant associations in 200 autosomal variants outside the 

MHC, one on the Chr-X and 32 independent effects in the broader MHC locus (Alcina et 

al., 2019). Remarkably, the majority of these MS-associated loci encode immune related 

genes, strongly supporting the notion that MS is primarily an immune-mediated disease. 

Of interest, one third of the identified loci are associated with at least one other autoimmune 

disease, suggesting common disease mechanism(s) may underlie most, if not all 

autoimmune diseases (Cotsapas et al., 2011).  
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Figure 1.2. Likelihood of identifying genetic variants by risk allele frequency and 

strength of genetic effect  

 After more than 12 years of GWAS studies in MS and identification of 233+ 

genetic variants, several caveats remain to be explained. The total heritability explained is 

a mere 30% of total genetic variance (Beecham et al., 2013). The ‘missing heritability’ is 

thought to result from common variants with much smaller effect sizes that are below the 

detection limit in current GWAS studies. A recent and modified association study of MS 

patients discovered several genetic associations in rare variants (MAF <1%) that could 

explain 5% of the heritability in MS (Mitrovič et al., 2018). The current design of GWAS 

assumes a single-gene model in which each locus acts independently of the others (Spencer 

et al., 2009). It is quite possible that a substantial portion of heritability lies in epitasis or 

genetic interactions among variants. This is true for MS where three types of epistasis have 

been documented in the MHC locus hat can exert an effect on MS risk (Dyment et al., 

2005).  
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The distinction between GWAS-associated variant and causal variant may be 

masked by linkage disequilibrium (LD) in the genome and may require additional fine 

mapping to exclude false positive associations. Unfortunately, the majority of MS-GWAS 

studies are performed in Caucasians where the pattern of LD structure as well as frequency 

of risk allele vary across diverse population groups (African Americans, Ashkenazi Jews) 

(Martin et al., 2018). Thus, the applicability of GWAS findings across diverse populations 

is an overestimation. In fact, it has been demonstrated that variants associated with diseases 

found in European ancestry populations do not always replicate in non-European 

populations (Simon-Sanchez et al., 2008; Weiss et al., 2009; Yamada et al., 2009; Haga, 

2010). 

An overwhelmingly large number of identified variants in MS GWAS–greater 

than 90%– are located outside of coding sequences (promoter, enhancer, repressor, intron, 

splice site, intergenic, non-coding RNA etc), making direct interpretation of their 

functional effects challenging (Schaub et al., 2012; Paraboschi et al., 2018). These can 

perturb transcription factor binding sites or chromatin structure in cis or trans and can have 

direct impact on gene expression (Gao et al., 2018). Understanding how non-coding SNPs 

alter MS susceptibility remains a significant challenge due to incomplete understanding of 

cis and trans effects of variants. 

 

The genetic basis of heterogeneity in distinct clinical courses of MS is incomplete 

with few GWAS studies that predict suggestive associations with age of onset, clinical 

severity, brain atrophy, glutamate levels and MRI T2 lesion load with disease susceptibility 
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Table 1.2. Published GWAS studies in MS. 

Cases Controls Population XY 

data 

SNP Year Reference 

3,862 5,418 UK, US yes 334,923 2007 (Hafler et al., 

2007) 

975 1,466 UK no 12,374 2007 (Burton et al., 

2007) 

2,679 3,125 Dutch isolate No 262,000 2008 (Aulchenko et al., 

2008) 

795  1,275 Spain, US no 500,000 2008 (Comabella et al., 

2008) 

1,364 1,507 Dutch, Canadian No 465,534 2008 (Hoppenbrouwers 

et al., 2008) 

978 883 Netherlands, 

Switzerland, US 

yes 551,642 2009 (Baranzini et al., 

2009) 

4,839 9,340 US, UK, 

Switzerland, 

Netherlands 

No 709,690 2009 (De Jager et al., 

2009) 

3,874 5,723 Australia, New 

Zealand, UK, US 

Yes 303,431 2009 (Booth; et al., 

2009) 

68 136 Finland Yes 297,343 2010 (Jakkula et al., 

2010) 

1,913 - France, Sweden No 105,035 2010 (Brynedal et al., 

2010a) 

2,657 2,877 Sardinian (Italy) Yes 6,607,266 2010 (Sanna et al., 

2010) 

592 825 Germany yes 758,000 2010 (Nischwitz et al., 

2010) 

382 - US Yes 500,000 2010 (Baranzini et al., 

2010b) 

3,742 8,708 US, UK No 2,560,000 2011 (Wang et al., 

2011) 

1,470 - US, UK  2,110,417 2011 (Briggs et al., 

2011) 

9,772 17,376 15 countries No 465,434 2011 (Sawcer et al., 

2011) 

5,545 12,153 US, UK, 

Australia, New 

Zealand, 

Netherlands, 

Switzerland 

No 2,529,394 2011 (Patsopoulos et 

al., 2011) 

576 632 Italy, Sweden, 

Australia, 

No 277,866 2012 (Martinelli-

Boneschi et al., 

2012) 
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Norway, 

Denmark 

4,912 7,498 US, UK, 

Netherlands, 

Switzerland, 

Spain, Italy 

No 130,903 2012 (Matesanz et al., 

2012) 

284 - European Yes 208,975 2013 (Gourraud et al., 

2013) 

4,396 534 Sweden, 

Denmark, 

Norway 

No  495,970 2013 (Mero et al., 

2013) 

2,197 249 Italy, Sweden, 

Belgium, 

Denmark, 

Norway 

No 504,967 2013 (Leone et al., 

2013) 

29,300 50,794 14 countries No 161,311 2013 (Beecham et al., 

2013) 

4,088 12,030 Australia, New 

Zealand, US, UK 

No 5,440,446 2014 (Goris et al., 

2014) 

5,258 727 14 countries Yes 485,522 2015 (Goris et al., 

2015) 

420 296 US, UK, France No 539,016 2015 (Esposito et al., 

2015) 

12,950 13,718 Germany, Italy No 8,143,088 2016 (Andlauer et al., 

2016) 

3,599 - US, Australia No 2,428,201 2016 (Zhou et al., 

2016) 

166 171 European No 1,387,466 2017 (Clarelli et al., 

2017) 

9,113 8,192 UK, Sardinian 

(Italy) 

No 12,200,000 2017 (Steri et al., 

2017) 

449 - Australia No 1,033,813 2017 (Zhou et al., 

2017) 

14,802 26,703 14 countries Yes 7,781,511 2017 (Patsopoulos et 

al., 2017) 

(Baranzini et al., 2009; Baranzini et al., 2010a; Brynedal et al., 2010b; Martinelli-Boneschi 

et al., 2012). A recent transcriptomics analysis of peripheral blood mononuclear cells from 

CIS, RRMS, PPMS and SPMS patients found unique transcriptional signatures in each 

clinical course that highlight selective dysregulation of MS susceptibility genes in distinct 

phases of disease (Srinivasan et al., 2017). 
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The high prevalence of MS in women, clinical heterogeneity of disease course 

between men and women, and distinct effects of sex-hormones all warrant an explanation. 

However, only a few GWAS studies in MS have predicted statistically significant 

associations with gender (Baranzini et al., 2009; De Jager et al., 2009) and sex 

chromosomes (Baranzini et al., 2009; Patsopoulos et al., 2017). A SNP with different 

disease associations in men and women can provide insight into the established sex 

difference in MS that may further guide the discovery of how disease mechanisms differ 

between sexes.  

Lastly, GWAS studies are merely association studies and we may not be learning 

anything new about MS genetics unless we identify the causal genetic variant and its 

biology in pathogenesis of disease. Except for a few mechanistic studies conducted with 

MS associated risk loci (Maier et al., 2009; Gregory et al., 2012; Didonna et al., 2015), the 

biological function of most of the predicted candidates is unknown. Elucidating the 

functional pathways may require studying the effect on candidate gene expression at a 

tissue or cell level that may or may not be feasible in human studies. Human studies also 

present a challenge in functional follow up because the contribution of each GWAS gene 

(or non‐coding element) in MS is small (often <1%), thus, both the importance of their 

roles in pathogenesis and the sex- and non-sex specific mechanisms by which different 

alleles act are difficult to test in human cohorts. Consequently, studies in experimental 

autoimmune encephalomyelitis (EAE), the principal autoimmune model of MS 

(Constantinescu et al., 2011), are useful for discerning the identities and sex-specific 

effects of predicted MS-GWAS variants in CNS autoimmune disease.  
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1.3. Experimental autoimmune encephalomyelitis (EAE) 

Several animal models exist that can mimic clinical and pathological features of 

MS including immune mediated (EAE), virus-induced (Theiler’s murine 

encephalomyelitis virus), and toxin-induced (cuprizone) (Didonna, 2016). EAE is by far 

the most studied model to understand various aspects of autoimmunity in MS. Like MS, 

symptoms of EAE disease includes sensory loss, optic neuritis, difficulties with 

coordination and balance (ataxia), muscle weakness, spasms and progressive hind-limb 

paralysis (Burrows et al., 2019b). Several species including rodents, primates, cats, dogs 

and chickens exhibit EAE following immunizations with spinal cord homogenates or 

purified myelin peptides (active EAE) (Stromnes et al., 2006a). Alternately, EAE can be 

induced by adoptive transfer of encephalitogenic T cells (passive EAE) (Stromnes et al., 

2006b). The histopathology and symptoms of EAE disease vary depending on the genetic 

background, antigenic material used and mode of immunization making parallels with the 

heterogeneity of MS disease (Simmons et al., 2013).  

Active EAE 

 Active EAE is induced by subcutaneous injection of either spinal cord 

homogenate or purified myelin peptides such as myelin oligodendrocyte glycoprotein 

(MOG), myelin basic protein (MBP) or myelin proteolipid protein (PLP) together with an 

appropriate adjuvant (Stromnes et al., 2006a). These include complete Freund’s adjuvant 

(CFA) supplemented with Mycobacterium tuberculosis H37RA, and Bordetella pertussis 

toxin (PTX). CFA is known to promote proinflammatory Th1 responses and together with 

PTX, helps increase the permeability of the BBB in the CNS (Reiber et al., 1984). In mice, 
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which remain the most commonly used animal species in EAE studies, the disease follows 

a predictable clinical course with a 10-15-day induction period followed by an effector 

phase targeting mostly the spinal cord and characterized by ascending paralysis in the tail, 

hind limbs and forelimbs (classic EAE). In C57BL/6J (B6) strain, the disease exhibits a 

monophasic or chronic form of EAE while SJL/J (SJL) exhibit a relapsing remitting course 

(Li et al., 2011). NOD/Lt initially exhibits relapsing remitting course that transitions to a 

chronic form of EAE (Baker et al., 2019). 

Daily clinical assessment of disease from day 12-30 are performed using a non-

invasive grading system scaled from 0 to 5 (0, no clinical expression of disease; 1, flaccid 

tail without hind limb weakness; 2, hind limb weakness; 3, complete hind limb paralysis 

and floppy tail; 4, hind leg paralysis accompanied by a floppy tail and urinary or fecal 

incontinence; and 5, moribund state (Miller et al., 2007). In a small number of antigen-

specific models, brain inflammation occurs and are characterized by proprioception 

defects, ataxia, spasticity and hyper-reflexivity (atypical EAE) (Stromnes et al., 2008).  

Passive EAE 

Instead of immunization with myelin-specific antigens, EAE can be induce 

passively by inoculating naïve syngeneic mice with activated myelin-specific T cells (Ben-

Nun et al., 1981). Passive EAE allows one to evaluate the effector phase of disease in the 

absence of adjuvant. Symptoms typically appear earlier, are more severe and homogenous 

in passive EAE. The clinical features and assessment scores utilized are identical to those 

for active EAE. Passive EAE models offer the advantage that the myelin-specific T cells 
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can also be manipulated in vitro to study the role of specific cytokines and other biological 

agents before transfer to the recipient.  

Considering EAE requires prior immunization with antigen/adjuvant or injection 

of autoreactive CD4+ T cells while MS seem to develop naturally, spontaneous models of 

EAE were developed in which genetically susceptible strains expressed transgenic TCR 

for myelin peptides (Bettelli et al., 2003). These animals are born normal and develop a 

spontaneous EAE disease several months after birth.  The spontaneous model allows one 

to study EAE disease without confounding factors such as immunizing agents and/or route 

of immunization.  

Immunology of EAE 

 Autoreactive T cells are normal constituents of the peripheral T cell repertoire and 

are activated following immunization with myelin antigens (Anderson et al., 2000). These 

cells undergo maturation and clonal expansion in peripheral lymphoid organs (draining 

lymph nodes and spleen) under the guidance of APCs including DC and macrophages. 

Following differentiation and aided by their activation status and CFA/PTX pre-treatment, 

these effector T cells enter the circulation and make their way through the BBB into the 

CNS facilitated by expression of specific adhesion molecules, cytokines, chemokines and 

their receptors. Within the CNS, effector T cells become reactivated after they recognize 

myelin antigens on APC, such as microglia, macrophages and/or astrocytes. Reactivation 

leads to the expression of pro-inflammatory cytokines by effector T cells. This constant 

activation and recruitment (facilitated by chemokine production from effector T cells) 

bring in additional effector cells such as γδ T cells, CD8 T cells, monocytes, macrophages, 
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and neutrophils that lead to a vicious cycle of myelin destruction (Lees et al., 2008). 

Initially, the immune response is contained by recruitment of regulatory T cells that leads 

to resolution of some EAE symptoms (Korn et al., 2007). However, in later stages, the 

constant activation and recruitment overpowers the regulatory responses with the immune 

response spreading to other neuro-antigens presented by resident APCs (epitope 

spreading), thus failing to control autoimmune inflammation (McMahon et al., 2005). 

T lymphocytes. Several flavors of T lymphocytes are important in EAE including 

CD4+ T cells (Th), cytotoxic (CD8+) cells, and regulatory T (Treg) cells. Each category is 

subdivided into unique subsets depending on cytokine environment, transcriptional 

program and epigenetic modifications. Th1 cells secreting TNF-α, IFN-γ and IL-2  were 

originally found to have a pathogenic role in the CNS (Sriram et al., 1982). These cells 

require IL-12 for their polarization from naïve T cells (Th0). Mice deficient in T-bet, key 

transcription factor for the development of Th1 cells, do not develop EAE (Bettelli et al., 

2004; Park et al., 2014). Both TNF -/- mice and administration of TNF antagonist reduce 

EAE disease (Körner et al., 1995; Riminton et al., 1998). Interestingly, there is evidence 

that suggest an anti-inflammatory role of this cytokine (Frei et al., 1997). This could 

explain the failed attempts in targeting TNF for the treatment of MS (Group, 1999). Th1 

cells expressing IFN-γ are known to infiltrate CNS of EAE mice (Murphy et al., 2010). 

This is supported by clinical evidence showing that MS patients treated with recombinant 

IFN-γ in clinical trials develop severe inflammation (Panitch et al., 1987a). However, 

genetic knockouts of IFN-γ gene, its receptor and anti- IFN-γ treatments exacerbate EAE 

(Billiau et al., 1988; Ferber et al., 1996) suggesting a regulatory role.   
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Th2 cells are believed to exert a protective anti-inflammatory role in EAE. They 

secrete numerous cytokines including IL-4, IL-5, IL-10, and IL13 (Mosmann et al., 1996). 

IL-4-/-mice exhibit increased EAE severity, while overexpression of transcription factor for 

Th2, GATA-3, ameliorates disease (Fernando et al., 2014). Th17 are a proinflammatory 

population secreting IL-17 and are found in CNS infiltrates of EAE mice (Hofstetter et al., 

2005). Mice lacking IL-17, its receptor, RORγt (transcription factor for the development 

of Th17) or IL-23 (cytokine needed for differentiation of Th17), have been reported to 

show an attenuation of CNS inflammation and suppression of EAE (Bettelli et al., 2004; 

Park et al., 2014) (Gonzalez-García et al., 2009). Autoreactive Th17 cells can induce EAE 

following adoptive transfer to naive mice, and this produces a more clinically severe form 

of the disease than Th1-mediated EAE (Jäger et al., 2009). Contrary to this, mice lacking 

IL-17A and IL-17F do not show any major alleviation of clinical disease (Haak et al., 2009) 

suggesting that these signature cytokines themselves are not required. It was later shown 

that GM-CSF secreted by Th17 cells is the main cytokine contributing to 

encephalitogenicity (El-Behi et al., 2011).  

CD8+ T cells are divided into Tc1 (produce IFN-γ), Tc2 (produce IL-4, IL-5 and 

IL-10) and Tc17 (produce IL-17) (Gravano et al., 2013). Like CD4+, CD8+ T cells can 

migrate into the CNS and adoptive transfer of CD8+ T cells sensitized to MOG produces 

histologically more severe EAE (Sun et al., 2001). Complete depletion or genetic ablation 

of CD8+ T cells in Lewis rats or C57BL/6J mice protects them from EAE (Camara et al., 

2013; Luo et al., 2014). While these studies suggest a pathogenic role for CD8+ T-cells in 



32 

 

EAE, there is conflicting evidence supporting a regulatory role (Najafian et al., 2003; York 

et al., 2010) suggesting involvement of specific effector subsets of CD8+ T cells.  

Tregs expressing CD4+ CD25+ Foxp3+ and producing IL-10, IL-35 and TGF-β 

have a well-characterized role in promoting peripheral tolerance by regulating 

inflammatory responses. Absent or dysfunctional Tregs due to genetic defects in Foxp3 in 

mice leads to a lymphoproliferative disorder (Brunkow et al., 2001). With regards to CNS 

autoimmune disease, the frequency of Tregs are increased in the CNS during recovery from 

EAE which are thought to suppress the production of IFN-𝛾 by MOG-sensitized T cells in 

coculture (Korn et al., 2007). Transfer of CD25+ Treg, or administration of indoleamine 

2,3-dioxygenase (IDO) metabolite (increases Treg number) leads to significant 

amelioration of EAE symptoms (Kohm et al., 2002; Yan et al., 2010). In addition, non-

specific deletion of natural Treg by anti-CD25 antibodies has been reported to exacerbate 

EAE. Possible mechanisms include soluble mediators like IL-10 (prevents co-stimulation 

of T cells), IL-35 (upregulates inhibitory molecules such as PD-1, TIM3 and LAP3 on T 

cells) and TGF-β (regulates antibody production; promotes Treg differentiation), cell-to-

cell contact with autoreactive effector T cells (inhibitory molecules: CTLA-4, TIM3, 

LAP3, PD-1) or inhibiting APCs such as DCs (Danikowski et al., 2017) (Zhang et al., 

2004). CD25+ CD4+ Treg from IL-10-deficient mice are unable to suppress active EAE 

(Zhang et al., 2004). Dysfunctional Tregs are also reported in EAE (Viglietta et al., 2004).  

B lymphocytes. B cells are important regulators of immune system by secretion of 

antibodies, cytokines and antigen presentation. In EAE, B cells contribute to demyelination 

and CNS damage through the production of anti-myelin antibodies and administration of 
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anti-IgM ameliorates EAE (Willenborg et al., 1983). The role of antibodies secreted by B 

cells in disease pathogenesis is supported by studies where adoptive transfer of anti-MOG 

antibodies resulted in demyelination in Lewis rat and SJL mice (Linington et al., 1987; 

Schluesener et al., 1987). In addition to antibodies, B cells primed by Th1 cells can secrete 

proinflammatory cytokines including IFN-γ, IL-12, and TNFα, whilst B cells primed by 

Th2 cells secrete anti-inflammatory cytokines, such as IL-4 and IL-13 all of which are 

important in EAE disease (Harris et al., 2000). Pathogenicity of B cells in EAE is linked 

to the secretion of IL-6 (Barr et al., 2012). In MOG protein-induced EAE, administration 

of anti-CD20–mediated B-cell depletion ameliorated EAE (Weber et al., 2010). In contrast, 

anti-CD-20 treatment in EAE induced by MOG35-55 peptide exacerbates disease 

(Matsushita et al., 2008). In support of a regulatory role, B-cell deficient mice (µMT) fail 

to recover from EAE disease compared with wild-type (WT) counter-parts (Wolf et al., 

1996).  

Innate cells. While the adaptive immune system is critical for the induction of 

EAE, innate immune cells comprising of macrophages, microglia, DCs and NK cells are 

involved in several stages of EAE. During EAE, activated macrophages are found in CNS 

lesions and correlate with progression to paralytic EAE (Ajami et al., 2011). They express 

several markers including calcium-binding adapter protein (IBA-1), major 

histocompatibility complex class II (MHC II), CXCR1, and CD11b (London et al., 2013). 

Subtypes of macrophage include the predominantly proinflammatory M1 cell (iNOS+) 

which secretes cytokines including IL-6, IL-12, TNF-α, IL-1, and IL-23 and IL-1β and 

their presence is associated with increased EAE severity (Liu et al., 2013). M2 cell 
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(Arg1+), on the other hand, are anti-inflammatory in nature secreting IL-10 and adoptive 

transfer of IL-4-activated M2 cells ameliorates clinical disease ameliorates EAE (Mikita et 

al., 2011). 

Microglia bears several similarities with macrophages including shared surface 

markers (F4/80, CD11b) and activation states (M1/M2), and are scattered throughout the 

CNS, coming into close contact with important cells in EAE including neurons, astrocytes, 

and oligodendrocytes. Activation of microglia is a hallmark of EAE pathology and in vivo 

depletion of CD11b+ cells (microglia and macrophages) significantly repress EAE disease 

(Heppner et al., 2005).  

DCs are professional APC residing in the peripheral and lymphoid organs. In the 

absence of inflammation, they exhibit low surface expression of major histocompatibility 

complex (MHC) and costimulatory molecules and are characterized by high endocytic 

capacity. Activation of DCs by microbes, proinflammatory cytokines, or CD40 ligand 

make them proficient at activating naïve T cells (Steinman et al., 2003). Distinct DC 

subsets in mouse include myeloid and plasmacytoid DC. Myeloid DC (mDC) express 

CD11c, CD11b, CD103, and ESAM surface marker while plasmacytoid DC (pDC) lack 

these antigens and instead express B220 and Siglec. Genetically engineered mice 

expressing MHC-II on CD11c+ DC cells are susceptible to EAE, suggesting that DCs alone 

are sufficient to mediate CNS inflammation and clinical disease development (Greter et 

al., 2005a). Depletion of CD11c+ DCs or exclusively pDC has shown to ameliorate EAE 

(Isaksson et al., 2009; Isaksson et al., 2012; Yogev et al., 2012).  
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γδ T cells are a small heterogenous population of unconventional innate like T 

cells and are defined by expression of TCR composed of γ and δ chains. Activation of γδ 

does not require antigen processing and MHC and thus make them early effector cells. 

They have been identified clonally expanded in CNS infiltrates of EAE mice and are the 

first cells to respond to IL-23 upon EAE induction (Blink et al., 2014b). Early γδ17 T cell-

derived cytokine secretion (GM-CSF, IL-17, IL-21, and IL-22) has shown to enhance the 

pro-inflammatory activity of αβ Th17 cells (Sutton et al., 2009).  Mice lacking γδ T cells 

exhibit less severe EAE when compared to wild-type mice (Blink et al., 2014b) while some 

studies suggesting a protective role (Ponomarev et al., 2004). These contradictory findings 

were resolved by the discovery of unique subsets of γδ and it was shown that anti-Vγ4 

treatment exacerbates EAE disease whereas anti-Vγ1 treatment is protective (Blink et al., 

2014b). The Vγ4+ subset produces high levels of IL-17, and accounts for 15-20% of the 

IL-17 producing cells in the CNS during EAE. In contrast, the Vγ1 subset produces CCR5 

ligands, which may promote regulatory T cell differentiation. The role of other γδ subsets 

(Vγ5, Vγ6, Vγ7) in EAE remain to be determined. 

NK cells are large granular lymphocytes that respond rapidly to a variety of insults 

with cytolytic activity and cytokine secretion and are protective in EAE (Hao et al., 2010). 

CNS-infiltrating NK cells secrete brain-derived neuroprotective factor (BDNF) 

(Hammarberg et al., 2000) that may reduce CNS damage. In vitro experiments indicate 

that the downregulation of EAE by NK cells may arise from their inhibitory effects on T 

cell proliferation (Zhang et al., 1997). 



36 

 

Overall, EAE pathology is mediated by the concerted actions of several innate 

and adaptive immune cells with marked heterogeneity and distinct sub-populations 

attributed to their functions. The discovery of unique markers distinguishing respective 

subsets will continue to improve our understanding EAE disease. 

Genetics and sex differences in EAE 

Genetics. EAE bears similarities to MS especially with the genetic control of 

susceptibility. Different strains of mice and rats vary in their susceptibility to EAE. Using 

mice congenic for the major histocompatibility complex (MHC), termed H-2 in the mouse, 

it is demonstrated that EAE disease was restricted by the MHC class II, notably H-2A, gene 

products, however there are exceptions such as B10.S (H-2s) and B 10.Q (H-2q) (Abdul-

Majid et al., 2000) Andersson et al., 2004. Whilst MHC expression is critical for the 

generation of autoimmunity, there is variability in the background genes of the susceptible 

MHC haplotypes and this may mask the importance of this restriction (Levine et al., 1973). 

In addition to MHC, several non-MHC loci are implicated with EAE incidence, onset, 

severity, and histopathology (Butterfield et al., 1998; Butterfield et al., 2000). QTLs 

controlling sub-phenotypes of EAE, such as histopathological lesion-severity in the brain 

or spinal cord, weight loss, Bordetella pertussis histamine sensitivity (Bphs) histamine 

sensitivity (Histh), demyelination and paralysis have been described (Encinas et al., 1996; 

Butterfield et al., 1998; Butterfield et al., 1999; Teuscher et al., 1999; Blankenhorn et al., 

2000b; Encinas et al., 2001; Ma et al., 2002; Mazon Pelaez et al., 2005; Tyler et al., 2019). 

These studies have indicated that EAE disease is a complex polygenic trait of dominant, 

additive (heterozygotes) and recessive alleles whose products may interact in an epistatic 
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fashion, where the detection of susceptibility loci depends on the presence of another 

interacting locus (Baker, 2005).  

Several of these quantitative trait loci (QTL) exhibit sex-specificity mirroring 

gender differences in MS (Table 1.3) (Bearoff et al., 2015). The presence of unique QTL 

in males and females regulating the severity and characteristics of CNS lesions in EAE 

suggests that these QTL are responsive to sex hormones. Similarly, EAE susceptibility is 

influenced by the Y-chromosome and parent-of-origin effect (Teuscher et al., 2006; Spach 

et al., 2009a; Case et al., 2015). In addition, EAE model is prone to gene-environmental 

interactions since use of PTX can override EAE resistance of some mouse strains (Munoz 

et al., 1984; Blankenhorn et al., 2000a). 

Table 1.3. EAE loci in mouse models  

EAE locus Location sex 

specificity 

Trait 

Chr1 cM2 

Eae1 17 20 
 

Incidence 

Eae2 15 15  Incidence 

Eae3 3 42  Incidence 

Eae4 7 50  Incidence, spinal cord histopathology 

Eae5 17 21  Incidence 

Eae6a 11 7  Severity 

Eae6b 11 24  Duration 

Eae7 11 48  Severity, acute disease 

Eae8 2 103  Incidence, severity 

Eae9 9 35  Duration 

Eae10 3 72  Onset 

Eae11 16 41 Male Incidence, brain histopathology 

Eae12 7 12 Female Remitting relapsing disease 

Eae13 13 37 Male Monophasic disease 

Eae14 8 21 Female Incidence 

Eae15 10 16 Male Brain histopathology 

Eae16 12 6  Spinal cord histopathology 

Eae17 10 36 Female Severity, spinal cord demyelination 
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Eae18 18 -  Incidence 

Eae19 19 34 Male Brain demyelination 

Eae20 3 14  Spinal cord demyelination 

Eae21 2 37 Female Brain histopathology 

Eae22 11 61 Female Brain histopathology 

Eae23 11 38 Male Spinal cord histopathology 

Eae24 8 10  CNS inflammation 

Eae25 18 54 Male Spinal cord histopathology 

Eae26 5 27 Male Acute disease 

Eae27 1 82 Female Remitting relapsing disease 
1Chromosome. 
2cM position of genetic marker correlated to linkage peak according to www.jax.org  

 

 Sex differences. Sex differences in EAE were first reported in Lewis rats where 

female exhibit clinical relapses but males exhibit a monophasic disease course (Keith, 

1978). Similarly, female SJL mice exhibit multiple relapses of EAE while males do not 

(Bebo Jr et al., 1996). Adoptive transfer of encephalitogenic T cells from female SJL 

exhibit greater incidence and severity of EAE compared with male SJL (Bebo Jr et al., 

1998a). In addition to SJL, ASW, B10.PL, PL and NZW strains of mice exhibit significant 

differences in clinical disease between males and females. The severity of EAE is higher 

in females of the H-2s strains (SJL/J and ASW) but lower in females of the H-2u strains 

(B10.PL and PL/J) (Papenfuss et al., 2004b).   

 Administration of testosterone to female SJL mice results in less severe EAE, 

while castration of male SJL mice induces relapses (Dalal et al., 1997a). However, adoptive 

transfer of encephalitogenic T cells from female SJL donors into male recipients result in 

severe EAE suggesting testosterone effects may not be universal (Bebo Jr et al., 1998b). 

In agreement with this, there is no effect of orchiectomy in male B10.PL mice or 

testosterone treated C57BL/6 mice on EAE disease (Voskuhl, 2002). Similarly, no sex 

http://www.jax.org/
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differences are noted in the C57BL/6 or NOD strains suggesting genetics may play a more 

dominant role than sex hormones in influencing EAE. Intriguingly, administration of 

estriol (E2) protects SJL, B10.PL and B10.RIII mice from EAE while ovariectomy results 

in increased EAE severity (Kim et al., 1999).  

1.4. The signaling lymphocytic activation molecule (SLAM) family of receptors 

The signaling lymphocytic activation molecule (SLAM) family is comprised of 

nine distinct receptors SLAMF1 (SLAM or CD-150), SLAMF2 (CD48), SLAMF3 (Ly-9 

or CD229), SLAMF4 (2B4 or CD244), SLAMF5 (CD84), SLAMF6 (Ly108 in mice, NTB-

A or SF2000 in humans), SLAMF7 (CRACC, CD319 or CS1), SLAMF8 (CD353 or 

BLAME), and SLAMF9 (SF2001 or CD84H) and are expressed on hematopoietic cells 

(Wu et al., 2016). These receptors are part of the CD2 family which represents a subset of 

the immunoglobulin (Ig) superfamily of cell surface receptors. Family members are 

characterized by a N-terminal variable (V) domain lacking disulfide bonds and a 

membrane-proximal C2 domain containing two conserved disulfide bonds. An exception 

is SLAMF3, in which the V-CD2-like sequences have been duplicated, resulting in an 

extracellular domain containing four Ig-like folds. Furthermore, the genes encoding CD2 

family members are clustered on mouse Chr 1 and 3 and on two syntenic pericentric loci 

on human Chr 1, suggesting that they arose through duplication of a common ancestral 

precursor. 

 Most of the SLAM family members function through homophilic binding and are 

important in regulating several immune responses including CD4+ T cell differentiation, 

CD8+ T cell proliferation, cytokine production by macrophages and DC, B cell activation, 
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antibody production, and NK cell functions (Veillette et al., 2003; Wang et al., 2004; 

Chatterjee et al., 2012; Chu et al., 2014).  

 

Table 1.4. The SLAM family and signaling adaptors  

Name Expression Ligand (s) Function 

SLAMF1 Thymocytes, naïve B cells, 

memory T cells, in-vitro 

activated T and B cells, 

mature DC, platelets, 

hematopoietic stem cells 

Self, 

measles 

virus 

• IL-4 secretion by CD4+ T cells 

• IL-12, TNFα production by 

macrophages 

• Measles virus receptor 

• Platelet aggregation 

• Promotes myeloid cell 

migration 

SLAMF2 Monocyte, B and T cells, 

NK cells, eosinophils, γδ T 

cells 

SLAMF4 • Effector functions of CD8+ T 

cells 

• Associated with mast cell 

activation by Mycobacterium 

tuberculosis 

• Promotes B cell activation and 

inhibits apoptosis 

• Increases TNFα production 

from mast cells 

• Promotes eosinophil activation 

• Enhances macrophage 

phagocytic functions 

SLAMF3 Thymocytes, T cells, B 

cells, NKT cells, NK cells, 

hematopoietic stem cells 

Self • Negative regulator of T cell 

receptor signaling and IFN-γ 

secretion 

• Splenocytes from Slamf3-/- 

mice display proliferation 

defects 

• Negatively regulate NKT 

development 

SLAMF4 NK cells, NKT cells, γδ T 

cells, memory CD8+ T 

cells, monocytes, basophils, 

eosinophils, DC 

SLAMF2 • NK cell cytokine secretion, 

cytotoxicity 

• Immune synapse formation in 

CD8+ T cells signal through 

SLAMF4 
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• Regulates adhesion, 

chemotaxis and peroxidase 

production in eosinophils 

SLAMF5 Thymocytes, hematopoietic 

stem cells, B cell, T cells, 

NKT cells, mast cells, 

monocytes, macrophages, 

DC, neutrophils, basophils, 

eosinophils, platelets 

Self 
• T cell proliferation, cytokine 

secretion 

• Regulates mast cell 

degranulation 

• Enhances autophagy in DC 

SLAMF6 NK cells, T cells, NKT 

cells, B cell, eosinophils, 

plasmacytoid DC (pDC) 

Self 
• NK cell cytokine secretion, 

cytotoxicity 

• IL-4 secretion by CD4+ T cells 

• Increases reactive oxygen 

species, IL-6 and TNFα 

production from neutrophils  

• regulates germinal center (GC) 

response 

SLAMF7 NK cells, CD8+ T cells, 

CD4+ T cells, B cells, 

mature DC 

Self 
• NK cytotoxicity 

• Regulates CD8+ T cell 

degranulation capacity 

• Regulates proinflammatory 

responses in monocytes 

SLAMF8 CD8+ T cells, neutrophils, 

macrophages, monocytes 

and DC 

self 
• B cell lineage commitment 

• Regulates reactive oxygen 

species production by 

macrophages 

• Migration of DCs 

• NKT cell development 

SLAMF9 Macrophages, pDC unknown 
• Regulates TNFα production 

from macrophages 

• Regulates pDC homeostasis 

SAP Thymocytes, T cells, NK 

cells, NKT cells, B cells, 

eosinophils, platelets 

- 
• Increases IL-4 secretion 

• Promotes GC formation 

• NK cell activation 

• NKT cell development 

• CD8+ T cell activation 

EAT-2 NK cells, DCs, T cells, B 

cells, macrophages, 

platelets 

- 
 

• NK cell downregulation 

ERT NK cells - 
• NK cell downregulation 

Several small SLAM family adaptor proteins are known to associate with the 

intracellular domains of SLAM family members and transduce activating or inhibitory 
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signals. These include SLAM-associated protein (SAP), Ewing's sarcoma-associated 

transcript 2 (EAT-2) and EAT-2-related transducer (ERT). While SAP (SH2D1A) is located 

on chromosome X, EAT-2 (SH2D1B) and ERT (SH2D1B2) are on chromosome 1. In 

addition, several phosphatases can bind to the cytosolic side of the SLAM family receptors 

and compete with SAP family adaptors. All SLAM adaptor proteins are cytosolic and 

exhibit differential expression in immune cells allowing for a variety of co-stimulatory or 

inhibitory responses (Dragovich et al., 2018). Table 1.4 lists SLAM members and adaptors, 

their expression, ligands, and cellular functions.  

Defects in SLAM family members and adaptor proteins have been implicated in 

immune diseases. For example, SAP undergoes a loss of function mutation in X-linked 

lymphoproliferative (XLP) disease. These patients have massive lymphoproliferation that 

fails to clear infected B cells leading to enlarged lymph nodes, liver, spleen, and hepatitis. 

Without treatment, most people with XLP survive only into childhood. Defects in humoral 

responses and lack of germinal center formation are also observed in in virally infected or 

immunized SAP-deficient mice (Booth et al., 2011) (Crotty et al., 2003). Several studies 

indicate that these mice have defects in Th2 response (IL-4 secretion), which are restored 

after reconstitution with WT CD4+ T cells, but not WT B cells (Cannons et al., 2006). 

Interestingly, compared to severe immunodeficiencies in Sap-/- mice, single 

ablation of SLAMF receptors (Slamf1-/-, Slamf3-/-, Slamf5-/-, and Slamf6-/- mice) causes a 

mild phenotype (Wang et al., 2015). This suggests that functional redundancy exists among 

the SLAMF receptors.  
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The importance of SLAM/SAP signaling is also apparent in systemic lupus 

erythematosus (SLE), an autoimmune multi-organ disease typically associated with 

vasculopathy and autoantibody production that can lead to seriously disabling or even life-

threatening complications, such as lupus nephritis and neuropsychiatric disorders (Harvey 

et al., 1954). Dysregulation of various SLAM family receptors (SLAMF1, SLAMF2, 

SLAMF4, SLAMF5, SLAMF6 and SLAMF7) are associated with SLE (Chatterjee et al., 

2012; Karampetsou et al., 2017). In agreement with human data, loss of function mutations 

in Sh2d1a and polymorphism in Slamf6 are associated with increased severity of murine 

SLE (Wandstrat et al., 2004).  

1.5. SLAM family receptor 1, 2 and 7 in MS-GWAS studies 

SLAMF1, 2, and 7 have been identified as MS-GWAS candidates (Beecham et 

al., 2013; Patsopoulos et al., 2017; Madireddy et al., 2019). In addition to SLE and MS, 

the SLAM locus is implicated in other autoimmune diseases including Graves’ disease, 

Crohn's disease, ankylosing spondylitis, psoriasis, primary sclerosing cholangitis, and 

ulcerative colitis (Zhao et al., 2013; Ellinghaus et al., 2016; Langefeld et al., 2017). 

SLAM/Slam locus is highly conserved across several species including chimpanzee, dog, 

cow, rat, and mouse, which suggests an important immunological function.  

 Considering animal models are critical in validation of GWAS candidates, we 

searched the literature to find ways to test the effect of Slamf1, Slamf2 and Slamf7 

polymorphisms in EAE. Wandstrat et al., reported sequencing the entire Slam locus 

(Slamf1-Slamf9) among 34 inbred laboratory strains of mice (Wandstrat et al., 2004).  

Interestingly, two stable, divergent haplotypes (Haplotypes 1 and 2) were observed. The 
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natural genetic variation allows us to assess the effect of the entire Slam locus provided the 

relevant locus is captured in a congenic mouse strain. Coincidently, Wandstrat et al., 

described establishing a congenic line (B6.129c1) that captured the Slam interval of 

haplotype-2 (129/SvJ) on the haplotype-1 (C57BL/6J) background (Wandstrat et al., 

2004). This congenic line exhibits SLE-like disease with antinuclear autoantibodies at 9 

months of age exclusively in female animals.  

Like case/control studies in MS, we therefore sought to utilize the natural genetic 

variation in the Slam locus between 129 and B6 strains to test the hypothesis that 

SLAMF1/Slamf1, SLAMF2/Slamf2, and/or SLAMF7/Slamf7, and not a disease related gene 

in linkage disequilibrium with the SLAM/Slam locus, are the true GWAS-genes 

contributing to CNS autoimmune disease susceptibility.  
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2.1. Abstract 

Multiple Sclerosis (MS) is the most common neurodegenerative disease affecting 

young adults and is characterized by myelin loss, varying degrees of axonal damage, and 

progressive neurological dysfunction. The disease has high prevalence in women (3 ♀:1 

♂), although men display a more aggressive course of disease. Risk factors for MS 

susceptibility are multifactorial and includes genetic and environmental influences. The 

gene discovery efforts in MS using genome-wide association studies (GWAS) have 

identified at least 233 candidates. However, the contribution of each GWAS gene (or non‐

coding element) is small (often <1%), thus both the importance of their roles in 

pathogenesis and the sex- and non-sex specific mechanisms by which different alleles act 

are difficult to test. Consequently, studies in experimental autoimmune encephalomyelitis 

(EAE), the principal autoimmune model of MS, are useful for discerning the identities and 

sex-specific effects of MS-GWAS in CNS autoimmune disease. The signaling lymphocytic 

activation molecule family members 1 (SLAMF1), 2 (SLAMF), and 7 (SLAMF7) have been 

identified as potential MS-GWAS candidates. Since the SLAM locus is highly conserved 

between humans and mice, with natural polymorphic variation in each Slamf gene 

segregating between 129/SvJ and C57BL/6J, we utilized congenic mapping to test the 

hypothesis that SLAMF1, SLAMF2, and/or SLAMF7, and not a disease-related gene in 

linkage disequilibrium with the SLAM locus, are the true GWAS-genes contributing to 

CNS autoimmune disease susceptibility. Herein, we show evidence that the SLAM 

candidate gene variants identified through MS-GWAS are not the causal variants in CNS 

autoimmune disease. Instead, a locus distal to Slamf1, Slamf2and Slamf7 defines disease 
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susceptibility. This locus exhibits male-specific resistance that segregates with the 

frequency of CD11b+ cells and TCRαβ+ CD4+ Foxp3+ T cells in the draining lymph nodes 

and TCRαβ+ CD4+ Foxp3+ and TCRαβ+ CD8+ IL-17+ T cells in the CNS during EAE. 

Orchiectomy enhanced the severity of EAE disease among congenic male mice while 

supplementation of testosterone (T) or 5α-dihydrotestosterone (DHT) did not ameliorate 

disease. Using a bioinformatics approach, we identified Slamf8 and 9 along with other 

differentially expressed genes whose expression is testis-dependent, but not directly 

regulated by T or DHT, as potential positional candidates supporting the existence of novel 

gene-by-testis interactions controlling susceptibility to CNS autoimmune disease. Further 

refinement of this locus is required to identify the causal gene(s) that may be targeted for 

prevention and/or treatment of MS in men. 
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2.2. Introduction 

Multiple sclerosis (MS), a chronic inflammatory disease of the central nervous 

system (CNS), is characterized by myelin loss, varying degrees of axonal damage, and 

progressive neurological dysfunction (Noseworthy et al., 2000). It is the most common 

disabling neurologic disease of young adults and adolescents, affecting 2.3 million 

individuals worldwide (Chen et al., 2017; Kim et al., 2019). MS prevalence is ~3 fold 

higher in women, although the disease course in men typically presents as a more rapid 

severe progressive disease (Whitacre et al., 1999).  

The etiology of MS involves both genetic and environmental factors (Gourraud et 

al., 2012). The heritability of MS is estimated to be ~30%, largely associated with the 

inheritance of susceptible HLA haplotypes that are present in up to 70% of MS cases 

(Schmidt et al., 2007). Polymorphisms in multiple non-MHC genes have also been 

associated with disease in linkage and genome-wide association studies (GWAS) (Hauser 

et al., 2013). The latest and most extensive GWAS of MS has identified 233 independent 

associations with MS susceptibility (Sawcer et al., 2019). The contribution of each GWAS 

gene (or non-coding element (Kumar et al., 2014)) is small (often <1%), and both the 

importance of their roles in pathogenesis and the mechanisms by which different alleles 

act are difficult to test. Thus, animal models of MS like experimental autoimmune 

encephalomyelitis (EAE) (Constantinescu et al., 2011) are useful for discerning the 

identities and effects of MS gene candidates and to understand their genetic role in CNS 

autoimmune disease from an evolutionary perspective (Spach et al., 2009b; Blankenhorn 

et al., 2011; Bearoff et al., 2015). 
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GWAS studies have shown that: (1) most SNPs (single nucleotide 

polymorphisms) associated with MS in large populations of people are located close or 

inside genes encoding immune related molecules (Farh et al., 2015; Axisa et al., 2016); (2) 

the promoters, enhancers, intergenic regions, and ncRNAs in which these SNPs lie may 

control much of the phenotypic variation (an estimated ∼90% of associated variants are 

non-coding (Farh et al., 2015; Ransohoff et al., 2015)). The inclusion of gene functional 

information and network-based pathway analysis into a GWAS meta-analysis is the best 

approach to finding ‘true’ MS genes (Consortium, 2013).  

The signaling lymphocytic activation molecule family members 1 (SLAMF1), 2 

(SLAMF), and 7 (SLAMF7) have been identified as potential MS-GWAS candidates (p = 

9 × 10-6  for all three genes) (Beecham et al., 2013; Patsopoulos et al., 2017; Madireddy et 

al., 2019). The SLAM locus (SLAMF1-SLAMF9) is highly conserved between humans and 

mice (Limaye et al., 2008). A comparison between two strains of mice, 129/SvJ (129) and 

C57BL/6J (B6), revealed a high level of genetic variation in each SLAM ortholog (Limaye 

et al., 2008). Therefore, we utilized B6 mice carrying overlapping congenic intervals 

[B6.129c1 (c1) and B6.129c2 (c2)] on chromosome 1 (Chr 1) derived from the 129 strain 

to test the hypothesis that SLAMF1, SLAMF2, and/or SLAMF7, and not a gene(s) in linkage 

disequilibrium with the SLAM locus, are the causal GWAS-gene contributing to CNS 

autoimmune disease susceptibility (Wandstrat et al., 2004; DeVault et al., 2019). We found 

that the male c1 congenic mice develop less severe EAE than B6 or c2 congenic mice. In 

contrast, the female mice exhibit no difference in disease susceptibility between B6 or c1 

congenic mice. Splenocytes from immunized c1 male mice produce significantly more 
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interleukin 10 (IL-10) and a higher frequency of CD11b+, TCRαβ+ CD4+ Foxp3+ T cells 

in draining lymph nodes (DLN). Furthermore, infiltrating immune cells in CNS exhibit 

higher proportion of TCRαβ+ CD4+ Foxp3+ and TCRαβ+ CD8+ IL-17+ T cells that 

segregates with resistance to disease in c1 male mice. The effect of orchiectomy and 

hormone replacement by testosterone (T) or dihydrotestosterone (DHT) on EAE disease 

course of male c1 congenic mice was investigated. To physically map causal loci distal to 

MS-GWAS candidates, we generated a panel of interval specific recombinant congenic 

lines (ISCL) encompassing the candidate genetic interval on Chr 1. The congenic mapping 

studies reported herein demonstrate that a ~1.2Mb interval distal to Slamf1, Slamf2 and 

Slamf7 regulates susceptibility to EAE. Collectively these results demonstrate the need to 

functionally validate candidate genes identified in MS-GWAS to identify the causal gene 

(s) that may be targeted in therapeutic and/or diagnostic interventions in MS.   
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2.3. Results 

2.3.1. EAE susceptibility in male mice is controlled by a locus in linkage 

disequilibrium with Slamf1, Slamf2, and Slamf7 

The SLAM locus on chromosome 1 includes nine family members (SLAMF1-

SLAMF9) that are highly conserved between human and mice (Table 2.1). Three of the 

family members (SLAMF1, SLAMF2, and SLAMF7) have been predicted as MS-GWAS 

candidates (Beecham et al., 2013; Patsopoulos et al., 2017; Madireddy et al., 2019). 

Interestingly, there is natural genetic variation in the Slam locus among inbred strains of 

mice where two stable and divergent haplotypes are described (Wandstrat et al., 2004). 

Two congenic lines have been described (B6.129c1 and B6.129c2) that introgress Slam 

intervals belonging to haplotype-2 (129) onto haplotype-1 (B6) (Figure 2.1) (Wandstrat et 

al., 2004; DeVault et al., 2019). The B6.129c1 (c1) line carries a 6.6Mb region of 129 that 

includes all of Slamf1-Slamf9 whereas B6.129c2 (c2) mice carries a small 1Mb interval of 

129 that includes Slamf1-Slamf7. 

 We studied the susceptibility of c1, c2 and background B6 mice to MOG35–55 + 

CFA immunization (Figure 2.2). Given the sexual dimorphism in EAE (Bearoff et al., 

2015), the data for female and males were analyzed separately. A significant difference in 

the severity of disease course was not detected among the female mice (interaction p >0.05; 

strain p >0.05; time p < 0.0001). However, the severity of the disease course of male c1 

mice was significantly reduced compared to both B6 and c2 mice (interaction, p < 0.0001; 

strain, p < 0.0001; time, p < 0.0001; B6 = c2 > c1. An analysis of EAE-associated clinical 

quantitative trait variables (Supplementary Table 2.1) revealed that male c1 exhibited 
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significantly less cumulative diseases scores (CDS), delayed mean day of onset (DO), 

increased peak score (PS) and lesser days affected (DA) compared with B6 and c2. These 

data demonstrate that the c2 line, which harbors polymorphic orthologues of SLAMF1, 

SLAMF2 and SLAMF7 did not exhibit reduced differences in severity of disease compared 

with B6. This suggests that EAE susceptibility in male c1 mice is controlled by a locus in 

linkage disequilibrium to Slamf1, Slamf2, and Slamf7.  

2.3.2. Immune profiling of c1 and B6 mice 

Although the exact pathogenic mechanisms underlying EAE are not known, 

several immune cell subsets and cytokines are important during the initiation of immune 

response in secondary lymphoid organs and subsequent trafficking to CNS during later 

stages of disease (Barthelmes et al., 2016). Therefore, to elucidate the mechanisms 

associated with differential EAE susceptibility observed in c1 males compared with others, 

we first examined the frequency of immune cells in the DLN on day 10 (D0) post MOG35–

55 + CFA immunization. There was no significant difference in the frequency of TCRαβ+, 

CD19+, TCRαβ+ CD4+, TCRαβ+ CD4+ IFN-γ+, TCRαβ+ CD8+, TCRαβ+ CD8+ IFN-

γ+, TCRγδ+ IFN-γ+ cells between c1 and B6 (Table 2.2). Increased frequency of TCRαβ+ 

CD4+ IL17+ in both c1 male and female mice and TCRγδ+ in female c1 was observed.  

Importantly, increased frequency of CD11b+ cells and TCRαβ+CD4+Foxp3+ co-

segregated with EAE resistance in c1 males.  

The reduced severity of EAE in c1 males was probed further during the peak stage 

of disease on day 22 (D22) post MOG35–55 + CFA immunization by profiling immune cells 

infiltrating the CNS. In agreement with DLN results, we found a significant increase in the 
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frequency of TCRαβ+CD4+Foxp3+ and TCRαβ+CD8+IL-17+ T cells that co-segregated 

with EAE resistance in c1 males (Figure 2.2).  

2.3.3. Increased IL-10 by male c1 T cells co-segregates with resistance to EAE 

EAE induction is highly dependent on CD4+ T cells capable of producing several 

cytokines including IFN-γ, IL-17, GM-CSF, and IL-10 (Ponomarev et al., 2007; Herndler-

Brandstetter et al., 2014). DLN cells from c1 mice restimulated ex vivo with MOG35–55 

produced significantly more IL-10 compared to B6 mice (Figure 2.3). Measurement of 

other cytokines including IFN-γ, IL-17, and GM-CSF did not differ between c1 and B6 

(data not shown). These results suggest that the differences in EAE susceptibility observed 

in c1 mice may, in part, be attributed to increased regulatory T-cell responses from DLN 

in the form of IL-10 cytokine. 

2.3.4. Gene-by-testis specific interactions modify EAE disease in c1 male mice 

Genetic studies have shown that distinct genetic loci govern development of 

MOG-induced EAE in C57BL/6J mice and are exhibited in a particular sex (Bearoff et al., 

2015). In addition, sex hormones including testosterone (T) and estrogen (E2) are known 

to regulate autoreactive Th1/Th17 responses in EAE disease (Dalal et al., 1997b; 

Haghmorad et al., 2016). We, therefore, aimed to determine whether endogenous male sex 

hormones might be regulating disease through the 129 derived quantitative trait locus 

(QTL). Male c1 mice were orchiectomized (ORX) or sham-operated at 4 weeks of age and 

supplemented with testosterone (c1 ORX + T) along with placebo control pellets (c1 ORX 

+ CNT) prior to immunization with MOG35–55 + CFA (see material and methods). 

Testosterone can exert its effect either directly by stimulation of the androgen receptor 
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(AR) or via aromatization in target tissues to estradiol (E2), the ligand for the estrogen 

receptors (ERs) α and β (Ishikawa et al., 2006). Thus, we included supplementation with 

non-hydrolysable 5α-dihydrotestosterone (c1 ORX + DHT) as a control for testosterone 

dependent biological effects. Unmanipulated (unoperated) c1 males served as an additional 

control.  

A significant difference in the severity of disease course was not detected between 

the sham and unmanipulated mice (interaction p = 0.95; strain p = 0.58; time p >0.9999; 

c1=c1 Sham) (Figure 2.4A). The severity of the disease course of c1 ORX + CNT mice 

was significantly increased compared to Sham and c1 while neither of the male androgen 

(T or DHT) replacements ameliorated disease susceptibility (interaction p < 0.0001; strain 

p < 0.0001; time p < 0.0001; c1 ORX + CNT= c1 ORX + DHT = c1 ORX + T > c1 Sham 

or c1). Analysis of EAE-associated clinical quantitative trait variables revealed that the 

CDS and incidence was significantly different among the various groups (Figure 2.4B) 

with CDS of c1 ORX + CNT= c1 ORX + DHT = c1 ORX + T > c1 Sham or c1 (p < 0.0001) 

while incidence of c1 ORX + CNT= c1 ORX + DHT = c1 ORX + T > c1 Sham or c1 (p < 

0.004). Serum measurements of T or DHT (Figure 2.4C) confirm the results that EAE 

resistance of male c1 mice is dependent on testis but not testosterone or 5α-

dihydrotestosterone.  



86 

 

2.3.5. Lack of evidence for Slamf1, 2 and 7 as the true GWAS candidates regulating 

CNS autoimmune disease 

To physically map the causal EAE locus in c1 congenic male mice, we generated 

a panel of interval specific recombinant congenic lines (ISRCL) encompassing the 

candidate genetic interval on Chr 1 and studied them in a step-wise fashion using MOG35–

55 + CFA immunization. The severity of the disease course was significantly different 

among the congenic lines (interaction, p < 0.0001; strain, p < 0.0001; time, p <0.0001) with B6 

= c8 = c10 > c1 = c7 (Figure 2.5A) and correlated with significant difference in CDS (Figure 

2.5B). This demonstrates that the c7 congenic interval is sufficient to capture the full c1 

phenotype. Importantly, these results confirm that the causal variant in the c1 congenic line 

is not Slamf1, Slamf2 or Slamf7 since c7 line does not include the 129-derived polymorphic 

interval encoding these genes. The c8 line, carrying the distal portion of c7 interval, did 

not differ in EAE susceptibility with B6. Therefore, the causal gene (s) influencing CNS 

autoimmune disease resides within a ~1.2Mb interval (172,282,646-173,408,539) (Figure 

2.5C).  

2.3.6. Polymorphic candidate genes within the refined locus whose expression is testis-

dependent are novel candidates regulating CNS autoimmunity. 

All genetic elements (protein coding genes, microRNA, long non-coding RNA, 

pseudogenes) underlying the ~1.2Mb interval were retrieved using genomic coordinates as 

input in Mouse Genomics Informatics (MGI) database at Jackson Laboratory 

(http://www.informatics.jax.org/). This yielded thirty-nine genes and may include the 

http://www.informatics.jax.org/
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causal gene (s) regulating EAE susceptibility (Figure 2.6). Given that the locus is 

polymorphic between B6 and 129 strains of mice, we first filtered the gene list to focus on 

candidates that exhibit SNPs (both coding and non-coding) between 129 and B6 mouse 

strains. Secondly, we included gene expression data (Accession # GSE54945, GSE5901, 

and GSE66873) available in various mouse tissues including CD4+ T cells in spleen, 

cortical thymic epithelial cells and prostrate tumor comparing castrated (ORX) and sham 

control mice in public databases such as Gene Expression Omnibus (GEO) of National 

Center of Biotechnology Information (NCBI) database 

(https://www.ncbi.nlm.nih.gov/geo/) to delimit potential candidate regulating EAE disease 

(see material and methods). The prioritized list includes thirteen genes (Atp1a2, Apcs, 

Cadm3, Dsp23, Fcer1a, Kcnj9, Kcnj10, Olfr16, Pigm, Slamf8, Slamf9, Tagln2, Vsig8) that 

are novel candidates not previously associated with any MS-GWAS. Several of them are 

associated with important immune functions and require mechanistic validation.  

  

https://www.ncbi.nlm.nih.gov/geo/
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2.4. Discussion 

Many risk-modifying loci have been identified through GWAS studies in MS 

(Cotsapas et al., 2018). While the number of loci associated with susceptibility have grown 

over time due to greater statistical power of studies conducted, approaches to determine 

causal association with MS disease have lagged. In this study, we attempted to understand 

the role of a MS-GWAS predicted genetic locus called SLAM/Slam using the natural 

genetic variation in B6 and 129 strains of mice and an integrated genetics and functional 

approach to test association of Slamf1, Slamf2 and Slamf7 on Chr 1 with the development 

of CNS autoimmune disease. The results of our study demonstrate that male c1 and c7 

congenic mice develop significantly less severe EAE compared with B6 and c2, c8, and 

c10 congenic mice. This male-specific resistance segregates with the frequency of CD11b+ 

cells and TCRαβ+ CD4+ Foxp3+ T cells in the draining lymph nodes and TCRαβ+ CD4+ 

Foxp3+ and TCRαβ+ CD8+ IL-17+ T cells in the CNS during EAE. We have also shown 

that orchiectomy of male c1 congenic mice enhanced the severity of EAE disease while 

supplementation of T or DHT did not ameliorate disease.  

Sex differences are apparent in several inbred strains including SJL, NZW, ASW, 

B10.PL and PL where female exhibits a different disease course than male mice following 

EAE induction (Papenfuss et al., 2004a).  Generally, B6, 129 and NOD do not exhibit sex 

differences in EAE although there are exceptions (Papenfuss et al., 2004a; Rahn et al., 

2014). The gender difference seen in our male c1 congenic mice could either be due to 

differences in sex hormones, differences in sex chromosomes, or both. Since our congenic 
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lines harbor the same genetic background of B6 except for the congenic interval on Chr 1, 

we can exclude the contribution of polymorphic loci on sex chromosome.  

Studies looking at the effect of orchiectomy and hormone replacement in EAE 

disease exhibit variable outcomes depending on the mouse strain. Administration of male 

androgens including T and its non-hydrolyzable form, DHT, in female SJL mice 

ameliorates EAE, while castration of male SJLs induces relapse (Dalal et al., 1997a). In 

contrast, there is no effect of orchiectomy in male B10.PL mice or B6 mice (Palaszynski 

et al., 2004a). Intriguingly, administration of testosterone or DHT did not restore resistance 

in male c1 congenic mice in line with the idea that endogenous androgens are not protective 

in all genetic backgrounds (Voskuhl, 2002). Moreover, several immunomodulatory 

molecules are synthesized by testis in addition to male androgens including inhibins and 

activins however it is unknown how these molecules can module the immune response in 

the periphery and CNS (Aleman-Muench et al., 2012); Setchell, 1974; Uhlen et al., 2015; 

Ahn et al., 2017.  

Immune profiling data demonstrate that the polymorphic locus in c1 modulates 

the frequency of CD11b+, TCRαβ+ CD4+ Foxp3+ and TCRαβ+ CD8+ IL-17+ T cells that 

co-segregates with resistance to EAE disease. CD11b is expressed on the surface of many 

leukocytes important in EAE pathogenesis including monocytes, dendritic cells, 

neutrophils, natural killer cells, granulocytes and macrophages. Thus, it remains to be 

determined which CD11b+ cell type is upregulated in male c1 congenic mice. Tregs 

expressing CD4+ CD25+ Foxp3+ and producing IL-10 cytokine has a well-characterized 

role in EAE by promoting peripheral tolerance and are known to suppress the production 
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of IFN-𝛾 and IL-17 by MOG-sensitized T cells in coculture (Korn et al., 2007); (Chaudhry 

et al., 2011). We found an increased secretion of IL-10 by DLN cells in ex vivo recall 

assays. These results, together with the reports of other groups, indicate that induction of 

Tregs and secretion of IL-10 is an important step in the tolerance to EAE disease. 

Our results with interval specific recombinant congenic (ISRC) lines established 

that the causal gene lies distal to MS GWAS candidates Slamf1, Slamf2 and Slamf7 in a 

~1.2 Mb interval. This interval encodes several genetic elements including protein coding 

genes, microRNA, long non-coding RNA and pseudogenes all of which are candidates for 

this male specific phenotype. Given that the locus is polymorphic between 129 and B6, we 

excluded genetic elements that exhibit no SNP between the two strains. As a second filter, 

we excluded genes that do not exhibit change in gene expression following orchiectomy. 

The resulting prioritized list includes thirteen genes: Atp1a2, Apcs, Cadm3, Dsp23, Fcer1a, 

Kcnj9, Kcnj10, Olfr16, Pigm, Slamf8, Slamf9, Tagln2, Vsig8. The list excludes several of 

the lncRNA and pseudogenes that are not annotated in gene expression datasets and could 

be ‘true’ candidates regulating CNS autoimmunity in male c1 congenic mice. Among the 

annotated genes, several exhibit immune related functions. Apcs encodes serum amyloid P 

component that belongs to the pentraxin family of proteins and are endowed with Ca2+-

dependent lectin-like binding activity. Importantly, Apcs is associated with CNS 

autoimmunity (Ji et al., 2012). Transgenic mice expressing Apcs have unexpectedly 

attenuated EAE due to impaired encephalitogenic responses. However, genetic knockouts 

of Apcs exhibit severe EAE. In vitro studies demonstrate that Apcs could change the 

affinity between α4-integrin and T cells thereby influencing the trafficking to CNS.  
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Slamf9 encodes the ninth member of the Slam family and is expressed by myeloid 

cells with abundant expression in plasmatoid dendritic cells (pDC). Genetic knockouts of 

Slamf9 leads to defective differentiation and activation of pDCs with reduced capacity to 

secrete IL-6, IFN-α and TNF-α cytokines suggesting a proinflammatory role of Slamf9 

(Sever et al., 2019a). Slamf9−/− pDCs express higher levels of chemokine receptor 5 

(CCR5), which could increase their mobilization to the periphery. Importantly, Slamf9−/− 

exhibit amelioration of EAE disease (Sever et al., 2019a). Given the important role of 

Slamf9 in pDC activation and differentiation, immune profiling of male c1 congenic mice 

should be performed to assess whether they are defective between c1 and B6. Furthermore, 

the expression levels of all thirteen prioritized gene candidates need to be validated using 

quantitative PCR before and after orchiectomy in male c1 or c7 congenic mice.  

Given that functional redundancy exists among the different Slamf receptors 

(Slamf1, Slamf3, Slamf5 and Slamf6), it is quite possible that mouse Slamf9 might carry 

out similar functions to Slamf1, Slamf2 and Slamf7 in humans.  Supporting this hypothesis, 

the genes coding from SLAM-family receptors are located within a ∼400 kilobase (kb)-

cluster on chromosome 1, in humans and mice (Morra et al. 2001). This observation, 

coupled with the conserved exon-intron structure of SLAM-related genes, implies that the 

SLAM family was generated by sequential duplication of a single ancestor gene and thus 

may exhibit overlapping functions. Lastly, since several of the candidate genes in the 

~1.2Mb interval have genetic knockouts available, one can assess their contribution to CNS 

autoimmune disease using F1 cross with male c1 or c7 congenic line.  
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As a follow up to orchiectomy dataset, one can exclude genes whose expression 

is unaffected by testosterone supplementation and in this regard several datasets are 

available in GEO database (GSE95692, GSE93726, GSE102143) although the cell type 

may be irrelevant using this approach. Confirmation of differential expression following 

orchiectomy and testosterone supplementation among c7 congenic mice would be needed 

to predict the causal gene (s). In summary, we demonstrate the need to functionally validate 

candidate genes identified in MS-GWAS. Our results suggest lack of evidence that 

polymorphic Slamf1, Slamf2 and Slamf7 genes do not regulate EAE disease, but a locus 

distal to these genes is important in CNS autoimmune disease development in mice. Since 

the SNPs identified in human SLAM locus are markedly different from the Slam locus in 

mice, this however does not preclude the possibility that the identified GWAS loci may be 

causal in MS.  This locus is male-specific and supports the existence of novel gene-by-

testis interactions controlling susceptibility to disease that may be targeted for prevention 

and/or treatment of MS in men. 
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2.5. Material and Methods 

2.5.1. Animals  

C57BL6/J (B6) were purchased from the Jackson Laboratory (Bar Harbor, 

Maine). B6.129c1 (c1) and B6.129c2 (c2) congenic mice have been previously described 

(Wandstrat et al., 2004; DeVault et al., 2019). B6.129c7 (c7), B6.129c8 (c8), B6.129c10 

(c10), and B6.129c11 (c11) strains were generated by backcrossing c1 mice to B6 mice 

and intercrossing the heterozygous progeny. Offspring in which recombinants were 

identified were backcrossed to B6 to allow for the generation of homozygous congenic 

lines. All mice were housed in the specific pathogen-free barrier facility at the University 

of Vermont. All procedures involving animals were approved by the University of 

Vermont Institutional Animal Care and Use Committee.  

2.5.2. DNA extraction and Genotyping 

DNA was isolated from mouse tail clippings as previously described (Sudweeks 

et al., 1993). Briefly, individual tail clippings were incubated with cell lysis buffer (125 

mg/ml proteinase K, 100 mM NaCl, 10mM Tris-HCl (pH 8.3), 10 mM EDTA, 100 mM 

KCl, 0.50% SDS, 300 ml) overnight at 55oC. The next day, 6M NaCl (150 ml) was added 

followed by centrifugation for 10 min. at 4oC. The supernatant layer was transferred to a 

fresh tube containing 300 µl isopropanol. After centrifuging for 2 min, the supernatant 

was discarded, and the pellet washed with 70% ethanol. After a final 2 min. 

centrifugation, the supernatant was discarded, and DNA was air-dried and resuspended 

in TE. The congenic interval boundaries were determined using primer sets designed to 

amplify across informative insertions/deletions and SNPs (Supplementary Table 2.2). 



94 

 

Thermocycling was carried out for a 15 µL reaction mix with 2mM MgCl2, 200µM 

dNTPs, 0.2µM primers, 1 unit of Taq polymerase and ~50ng of genomic DNA together 

with an initial 2-min 97°C denaturation followed by 35 cycles of 97°C for 30 sec, 58°C 

for 30 sec and 72°C for 30 sec. The final extension was for 5 min at 72°C. Amplicons 

were subjected to 2.5% agarose gel electrophoresis and visualized by ethidium bromide 

and UV light. 

2.5.3. Induction and evaluation of actively induced EAE 

Eight-ten week old male and female mice were injected subcutaneously in the 

posterior right and left flank with a sonicated emulsion containing 100 μg of MOG35–55 

and an equal volume of complete Freund's adjuvant (CFA; Sigma-Aldrich, St. Louis, 

MO, USA) supplemented with 200 μg of Mycobacterium tuberculosis H37Ra (Difco 

Laboratories, Detroit, MI, USA). Then 1 week later, all mice received an identical 

injection of MOG35–55 + CFA.  

Mice were scored daily for clinical signs of EAE beginning on D10 after injection 

as follows: 0, no clinical expression of disease; 1, flaccid tail without hind-limb 

weakness; 2, hind limb weakness; 3, complete hind-limb paralysis and floppy tail; 4, 

hind-limb paralysis accompanied by a floppy tail and urinary or fecal incontinence; and 

5, moribund. Clinical quantitative trait variables, including disease incidence, mean day 

of onset, cumulative disease score, number of days affected, overall severity index, and 

peak score, were generated as previously described (Fillmore et al., 2004). The incidence 

of EAE was recorded as positive for any mouse with clinical signs of EAE for 1 or more 

days. Susceptibility was analyzed as a quantitative trait, using a disease index generated 



95 

 

by averaging the clinical scores for each animal over the course of the experiment. The 

severity of disease among affected animals was analyzed using a severity index generated 

by averaging the clinical scores for each animal over the number of days that it exhibited 

clinical symptoms. Severity was assessed only in affected animals. Days affected was 

calculated as the number of days an animal displayed a clinical score of 1, and onset was 

the day clinical signs were first observed. 

2.5.4. Orchiectomy and hormone administration 

Male mice at 4 weeks of age were anesthetized using ketamine (80 mg/kg) and 

xylazine (10mg/kg) as described (Fillmore et al., 2004).  The area around testes was 

shaved using a trimmer and sterilized using surgical scrub, alcohol and 5% povidone-

iodine (Betadine®; SmartPak Equine LLC, Plymouth, MA, USA).  A single <1cm 

incision was made in the scrotal sac, the vas deferens was clipped and the testes were 

removed. The incision was then sealed with gut (dissolving) sutures to close the wound. 

Buprenorphine hydrochloride was injected at 0.05mg/kg subcutaneously immediately 

after surgery and again 4 hours later for analgesia. After the surgeries, mice were placed 

on a paper towel in the cages to prevent inhalation of the bedding and warmed with a 

heat lamp until they begin moving around the cage.  They were allowed rest for 2 weeks 

then implanted with hormone pellets. 

For hormone replacement, mice were anesthetized by inhalation of isoflurane 

(0.2ml) in a transparent cylindrical induction chamber and a small incision was made 

dorsally and slightly lateral to the nape approximately 3mm caudal to the ear. Sixty-day 

release testosterone (12.5mg total; 0.21mg/day), 5α-dihydrotestosterone (5mg total; 
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0.08mg/day) or control pellets (Innovative Research, Sarasota, FL) were subcutaneously 

implanted. The incision was sealed, and mice injected with Buprenorphine hydrochloride 

as before. The animals were rested an additional 2 weeks to allow recovery and then 

immunized with EAE.  

2.5.5. Cytokine and proliferation assays 

For ex vivo cytokine assays, mice were immunized using the EAE immunization 

protocol described earlier, spleens and draining lymph nodes were harvested on D10, and 

single-cell suspensions were prepared (1 x 106 cells/ml) in RPMI 1640 (10% FBS) and 

restimulated with 50 µg/ml MOG35–55 peptide. Cell culture supernatants were recovered 

after 72 h and IL‐10 was measured using a commercial ELISA kit (R&D Systems, 

Minneapolis, MN, USA), according to the manufacturer's instructions.  

2.5.6. CNS-infiltrating mononuclear cell isolation 

At D15 post-immunization, animals were perfused with saline, and brains and 

spinal cords were removed. A single-cell suspension was obtained and passed through a 

70-mm strainer. Mononuclear cells were obtained by Percoll gradient (37%/70%) 

centrifugation and collected from the interphase. Cells were washed and stimulated for 4 

h with PMA + ionomycin in the presence of Brefeldin A (GolgiPlug; BD Biosciences). 

Cells were labeled with LIVE/DEAD ultraviolet-blue dye (Invitrogen) followed by 

surface staining (CD45 from Invitrogen and CD4, CD8, TCR-γδ, CD11b, and TCR-β 

from BD Biosciences). Afterward, cells were fixed, permeabilized, and stained for 

intracellular IL-17A (BD Biosciences) and IFN-γ (Invitrogen). 
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2.5.7. Antibodies and flow cytometric analysis 

Single-cell suspensions of lymph node cells and splenocytes were prepared and 

the red blood cells were lysed with ammonium chloride. Total numbers of cells were 

counted using the Advia 120 hematology analyzer (Bayer/Siemens, Tarrytown, NY). For 

flow cytometric analysis, the cells were washed twice and incubated for 30 min on ice 

with the desired fluorochrome-conjugated mAbs or isotype control Ig at 0.5 μg/106 cells. 

For the identification and phenotypic analysis of Treg cells (CD4+ CD8− TCRβ+ 

Foxp3+), the following surface anti-mouse mAb were used: anti-CD4 (MCD0417, 

Caltag); anti-CD8, and anti-CD25 (53-6.7, PC61; Biolegend); anti-TCRβ, and anti-

Foxp3 staining set (H57-5987 and FJK-16s; eBioscience), according to the 

manufacturer’s instructions. Viable cells were selected for flow cytometric analysis (LSR 

II, BD) based on forward and side scatter properties and analysis was performed using 

FlowJo software (TreeStar Software, Inc). 

2.5.8. In Silico analysis and Data Mining 

Murine homologs of all SLAMF members were identified using Mouse Genome 

Informatics (MGI; http://www.informatics.jax.org/). Using the SNP search tool in MGI 

and default settings of 2kb upstream and downstream of the gene, each Slamf gene was 

run to identify polymorphism between 129 and B6 mouse strains.  The genes underlying 

c7-c8 interval were retrieved using Genes and Markers Query Form in MGI and genomic 

coordinates as input. This list was filtered through SNP search tool in MGI to focus on 

those genes that are polymorphic between 129 and B6 mouse strains.  
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Public high-throughput RNA-sequencing and microarray data were acquired 

from Gene Expression Omnibus (GEO) of National Center of Biotechnology Information 

(NCBI) database (https://www.ncbi.nlm.nih.gov/geo/) to query genes within c7-c8 

interval whose expression was modulated by orchiectomy (GSE54945, GSE5901, and 

GSE66873). The keywords searched in GEO were (“gene name” AND “castration”; 

“gene name” AND “orchiectomy”; “gene name” AND “androgens”, and “gene name” 

and “gonadectomy” In the GEO dataset search, GEO series, which met the following 

criteria were selected for our study: (1) Samples contained castration/orchiectomized and 

sham control group. (2) Samples were from humans (primary cell lines) or mouse (any 

tissue). (3) Series detected expression profiling by RT-qPCR/array/high-throughput 

sequencing data. The resulting final gene list was used to search primary literature in the 

public library of medicine (PubMed) of NCBI with the following key words: “gene 

name” AND “autoimmunity”; “gene name” AND “CNS disease”; “gene name” AND 

“inflammation”; “gene name” AND “disease”; “gene name” AND “neuroinflammation”, 

and “gene name” AND “EAE disease”.  

 

 

 

 

 

https://www.ncbi.nlm.nih.gov/geo/
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2.5.9. Statistics 

Statistical analyses as indicated in the figure legends were performed using 

GraphPad Prism 7 software (GraphPad Software Inc). 
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2.8. Figures 

 

 

Figure 2.1. B6 mice with overlapping intervals encompassing the 129-derived Slam 

locus used in this study. 

The congenic C57BL/6J.129c1 (c1) and C57BL/6J.129c2 (c2) lines have been described in 

literature (Wandstrat et al., 2004; DeVault et al., 2019). Black denote B6 derived regions while 

white denotes 129 derived regions. The coordinates of 129-derived interval in c1 and c2 congenic 

mice are listed together with the number of predicted protein coding genes. MS-GWAS candidates 

Slamf1, Slamf2 and Slamf7 reside between 171.6-171.9Mb. 
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Figure 2.2. Male c1 mice exhibit increased resistance to EAE. 

Male and female B6, c1 and c2 mice at 8-12 weeks of age were immunized with 100µg of MOG35-

55 + CFA on D0 and D7. The clinical scores following immunization were recorded, and the 

significance of differences between clinical courses was calculated by regression analysis with the 
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best-fit curve shown, and two-way ANOVA followed by Holm-Sidak’s multiple comparison test. 

Error bars indicate standard error of mean deviations within the groups. The number in parenthesis 

indicate number of mice used. (A) A significant difference in the severity of disease course was not 

detected among the female mice (interaction p >0.05; strain p >0.05; time p < 0.0001). (B) The 

severity of the disease course of male c1 mice was significantly reduced compared to both B6 and 

c2 mice (interaction, p < 0.0001; strain, p < 0.0001; time, p < 0.0001; B6 = c2 > c1).   
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Figure 2.3. Ex-vivo production of IL-10 by MOG35–55 specific T cells. 

Draining lymph node (DLN) cells were isolated on D10 post-immunization, and restimulated with 

5μg/ml MOG35-55 for 3 days. Production of IL-10 was determined by ELISA. Significance of the 

observed differences was determined by two-way ANOVA followed by Holm-Sidak’s multiple 

comparisons test (** p = 0.0019). Error bars indicate standard error of mean (SEM). Each group 

includes 3-5 animals.  
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Figure 2.4. EAE severity was enhanced in orchiectomized (ORX) c1 mice compared 

to sham mice while neither Testosterone (T) nor 5α-dihydrotestosterone (DHT) 

replacement ameliorate disease susceptibility. 

Male c1 mice were ORX or received sham surgeries at 4-6 weeks of age. The mice were rested 2 

weeks, and then underwent hormone replacement with 90-day release pellets containing either 5mg 

DHT, 12.5 mg T, or placebo control pellets (CNT) (Innovative Research of America, FL). Pellets 

were implanted 7–10 days prior to EAE induction. The clinical scores following immunization 

were recorded, and the significance of differences between clinical courses was calculated by 

regression analysis with the best-fit curve shown. Error bars indicate SEM. The number in 

parenthesis indicate number of mice used. (A) The severity of the disease course different 

significantly among the groups (interaction, p < 0.0001; strain, p < 0.0001; time, p <0.0001) with 

c1 ORX + CNT= c1 ORX + DHT = c1 ORX + T > c1 Sham or c1 as analyzed by two-way ANOVA 

followed by Holm-Sidak’s multiple comparison test. (B) The cumulative disease score (CDS: 

summation of daily scores) metric among treatment groups was analyzed by one-way ANOVA 

followed by Holm-Sidak’s multiple comparison test; p<0.0001. The numbers within the columns 

is incidence (incidence: number of animals with clinical signs ≥1 for two or more days). The 



112 

 

significance of the observed difference in incidence was assess by Chi-square analysis; p =0.004. 

(C) Blood was obtained by intracardiac puncture from Sham, ORX and ORX + T supplemented or 

ORX and ORX + DHT treated c1 mice on D30 post EAE immunization. Serum levels of T and 

DHT were determined by ELISA in duplicate according to the manufacturer’s directions and the 

significance of observed differences calculated (T, p = 0.003 determined by Krustkal Wallis one-

way ANOVA followed by Dunn’s multiple comparison test; DHT, p = 0.09 determined by the 

Mann-Whitney test).  *p, 0.05, **p, 0.01, ***p, 0.001, ****p, < 0.0001. 
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Figure 2.5. Generation and EAE testing of interval specific recombinant congenic 

(ISRC) lines across c1 interval confirms that EAE susceptibility in male mice is 

controlled by a locus in linkage disequilibrium to Slamf1, Slamf2 and Slamf7. 

Overlapping interval specific recombinant congenic (ISRC) lines were generated by crossing c1 to 

B6 mice. F2 hybrids were genotyped using tail snip DNA and PCR with Chr 1 microsatellite 

markers and deletion primers (Supplementary Table 2.2) discriminating 129 and B6 alleles across 

the c1 candidate interval. Mice carrying variable regions of c1 interval were selected and 

backcrossed an additional two generations to b6 mice. The lines were fixed by brother-sister mating 

to generate the c7, c8, and c10. (A) Male B6, c1, c2, c7, c8, and c10 mice at 8-12 weeks of age 

were immunized with 100µg of MOG35-55 + CFA on D0 and D7. The clinical scores following 

immunization were recorded, and the significance of differences between clinical courses was 

calculated by regression analysis with the best-fit curve shown. Error bars indicate standard error 

of mean deviations within the groups. The number in parenthesis indicate number of mice used. 

The clinical course of EAE differed significantly among the congenic lines as determined by 

repeated measures two-way ANOVA followed by Holm-Sidak’s multiple comparison test 

(interaction, p < 0.0001; strain, p < 0.0001; time, p <0.0001) with B6 = c8 = c10 > c1 = c7. **** p 

< 0.0001. (B). The CDS metric among ISRC lines was analyzed by one-way ANOVA followed by 

Holm-Sidak’s multiple comparison test; p<0.0001. (C) Congenic intervals on Chr-6. Each row 

represents a congenic line that denotes the approximate position (bp) of the congenic region (x-

axis). The black portions of each row represent the regions homozygous for the B6 allele (the 

background strain) while the white portions represent the 129 regions (donor alleles). Region 

outlined in blue depicts the location of causal gene (s) regulating CNS autoimmunity. 
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Figure 2.6. Polymorphic candidate genes within the c1 locus whose expression is 

modulated by orchiectomy. 

The list of thirty-nine genes residing within the ~1.2Mb c7-c8 interval controlling EAE 

susceptibility in male mice were filtered through the following criteria: 1) the gene is 

polymorphic between B6 and 129 strains of mice as assessed using Mouse Genomic 

Informatics (MGI) SNP database (http://www.informatics.jax.org/snp); and 2) the gene 

exhibit transcriptional change in expression following castration (ORX)  as assessed by 

mining publicly available gene expression datasets in Gene Expression Omnibus (GEO) 

repository (https://www.ncbi.nlm.nih.gov/geo/). The final list of 13 candidates are 

searched in PubMed for gene function (See Material and Methods).  
aGEO accession for cortical thymic epithelial cells #GSE66873, spleen CD4+ T cells # 

GSE54945, and prostrate xenograft tumor GSE33316. b Filtering was done using all coding 

and non-coding SNP available in MGI. cList of literature references (Bickerstaff et al., 

1999; Griffin et al., 2009; Choubey et al., 2010; Na et al., 2015; Chen et al., 2016; 

Kinoshita et al., 2016; Zeng et al., 2018; Sever et al., 2019b). 

  

http://www.informatics.jax.org/snp
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2.9. Tables 

Table 2.1. SLAM locus is highly conserved between human and mouse with natural 

genetic variation segregating between B6 and 129 mice. 

Human   Mouse 
#SNPa 

Gene Location   Gene Location 

SLAMF1 1:160608106-160647295 → Slamf1 1:171767127-171801184 137 

SLAMF2 1:160678746-160711831 → Slamf2 1:171682009-171705258 96 

SLAMF3 1:160796074-160828261 → Slamf3 1:171588624-171607410 114 

SLAMF4 1:160830160-160862887 → Slamf4 1:171559193-171609746 260 

SLAMF5 1:160541095-160579516 → Slamf5 1:171839697-171890718 100 

SLAMF6 1:160485030-160523262 → Slamf6 1:171917515-171953170 101 

SLAMF7 1:160739057-160754821 → Slamf7 1:171632403-171653035 105 

SLAMF8 1:159826811-159837492 → Slamf8 1:172581758-172590568 73 

SLAMF9 1:159951492-159954237 → Slamf9 1:172475358-172478575 99 

SLAM genes highlighted in red are MS-GWAS candidates. The location of genes is based on 

GRCh37 (Human) and GRCm38 (Mouse). aNumber of SNPs distinguishing B6 and 129 mice were 

determined using comparative sequence data across each Slam gene. 
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Table 2.2. Immune profile of c1 and B6 mice 

Mononuclear cells were isolated from the draining lymph nodes and central nervous system of EAE 

immunized mice on D10 and D22 respectively post immunization, stimulated with 

PMA/ionomycin for 4 h in the presence of Brefeldin A, stained, and analyzed by flow cytometry. 

Representative bar graph data of the frequency of immune cells from draining lymph nodes and 

CNS is shown as mean ± SEM of n = 5-10 mice per strain. Significance of differences observed in 

the percentage of immune cells was determined by two-way ANOVA followed by Holmes Sidak’s 

post hoc test.   

    DLN  CNS 

Cell type Sex B6 N c1 N p-value   B6 N c1 N p-value 

CD45+ M             33.1 ± 5.3 4 40.3 ± 3.5 8   

  F             26.1 ± 3.9 5 47.6 ± 4.0 3 <0.05 

CD11b+ M 1.8 ± 0.1 4 5.1 ± 1.1 5 <0.05   71.0 ± 5.3 4 59.4 ± 3.7 8   

  F 2.2 ± 0.2 4 1.8 ± 0.1 5     66.2 ± 5.4 5 64.4 ± 2.9 3   

CD11c+ M             8.8 ± 1.5 4 9.7 ± 0.7 8   

  F             7.1 ± 1.0 5 13.3 ± 1.0 3 <0.005 

CD19+ M 31.1 ± 2.4 4 36.4 ± 2.7 5     26.6 ± 5.8 4 33.1 ± 3.6 8   

  F 31.3 ± 3.2 4 25.5 ± 2.4 4     25.9 ± 5.0 5 27.4 ± 0.8 3   

TCRαβ+ M 63.2 ± 3.0 4 57.7 ± 2.6 5     34.9 ± 5.0 4 30.8 ± 1.9 8   

  F 63.9 ± 3.2 4 68.8 ± 2.3 4     25.6 ± 3.0 5 28.6 ± 3.7 3   

  CD4+ M 51.9 ± 0.6 9 51.7 ± 0.6 10     62.7 ± 7.0 4 68.1 ± 2.6 8   

  F 51.8 ± 0.9 9 53.4 ± 1.0 9     69.1 ± 3.3 5 66.6 ± 2.4 3   

     IL-17+ M 0.9 ± 0.2 9 3.2 ± 0.5 10 <0.0001   17.6 ± 3.4 4 12.7 ± 1.9 8   

  F 0.8 ± 0.2 8 2.6 ± 0.4 9 0.0012   29.2 ± 5.9 5 8.0 ± 1.3 3 0.005 

     IFN-γ+ M 0.8 ± 0.1 4 2.0 ± 0.4 5     24.9 ± 2.4 4 27.5 ± 4.2 8   

  F 0.8 ± 0.1 4 2.4 ± 0.9 4     26.7 ± 3.5 5 39.1 ± 3.4 3   

     Foxp3+ M 12.3 ± 0.4 4 19.7 ± 1.1 5 <0.0001   7.5 ± 0.7 4 13.1 ± 0.6 5 0.005 

  F 14.4 ± 0.2 4 14.8 ± 1.0 4     10.1 ± 0.7 5 11.5 ± 2.2 3   

  CD8+ M 36.6 ± 1.0 4 36.1 ± 0.6 5     25.1 ± 7.3 4 20.6 ± 2.4 8   

  F 36.3 ± 1.3 4 36.0 ± 2.1 4     19.8 ± 2.9 5 28.2 ± 6.0 3   

     IL-17+ M 0.5 ± 0.1 4 1.8 ± 0.4 5     2.9 ± 0.7 4 7.6 ± 1.0 7 <0.05 

  F 1.0 ± 0.6 4 1.3 ± 0.4 4     6.1 ± 0.9 5 9.1 ± 2.3 3   

     IFN-γ+ M 3.4 ± 0.3 4 4.9 ± 0.6 5     10.4 ± 4.2 4 8.5 ± 0.9 8   

  F 2.9 ± 0.4 4 3.2 ± 0.6 4     45.4 ± 4.2 5 10.0 ± 1.2 3 <0.0005 

TCRγδ+ M 1.7 ± 0.1 4 1.7 ± 0.1 5     13.9 ± 2.0 4 16.4 ± 1.3 8   

  F 1.7± 0.2 4 2.6 ± 0.4 4 0.0136   10.2 ± 1.5 5 16.2 ± 3.7 3   

     IL-17+ M 9.2 ± 1.7 4 9.4 ± 1.1 5     10.3 ± 3.0 4 12.5 ± 3.2 8   

  F 8.4 ± 0.6 4 8.7 ± 1.2 4     29.0 ± 3.5 5 5.0 ± 2.1 3 <0.0005 

     IFN-γ+ M 12.8 ± 2.0 4 21.9 ± 4.0 5     29.8 ± 2.5 4 28.5 ± 3.0 8   

  F 12.0 ± 2.3 4 14.0 ± 3.7 4     33.6 ± 3.4 5 37.0 ± 2.6 3   
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2.10. Supplementary Data 

 

Supplementary Table 2.1. Clinical disease metrics of c1, c2 and B6 mice.  

Strain Sex N 
Incidence 

(%) 

 
CDS DO PS DA 

B6 F 33 22/33 (67%)  19.8 ± 2.9 17.5 ± 0.5 1.8 ± 0.3 8.8 ± 1.2 

c1 F 20 16/20 (80%)  20.9 ± 3.1 18.1 ± 0.5 2.1 ± 0.3 9.6 ± 1.3 

c2 F 29 22/29 (76%)  24.0 ± 3.1 17.5 ± 0.5 2.1 ± 0.3 10.3 ± 1.0 

         

   χ2=1.3  F=0.6 F=0.4 F=0.5 F=0.4 

   p=0.5  p=0.6 p=0.7 p=0.6 p=0.6 

   B6=c1=c2  B6=c1=c2 B6=c1=c2 B6=c1=c2 B6=c1=c2 

         

B6 M 20 19/20 (95%)  31.3 ± 3.0 17.2 ± 0.4 3.1 ± 0.2 13.2 ± 0.8 

c1 M 12 6/12 (50%)  7.9 ± 2.5 21.3 ± 1.1 1.1 ± 0.3 4.2 ± 1.3 

c2 M 19 18/19 (95%)  27.6 ± 3.2 18.3 ± 0.6 2.7 ± 0.2 11.3 ± 1.0 

         

   χ2=14.0  F=13.8 F=8.8 F=14.3 F=18.6 

   p=0.0009  p<0.0001 p=0.007 p<0.0001 p<0.0001 

   B6=c2>c1  B6=c2>c1 B6=c2<c1 B6=c2>c1 B6=c2>c1 

Male and female B6, c1 and c2 mice at 8-12 weeks of age were immunized with 100µg of MOG35-

55 + CFA on D0 and D7. Animals were scored daily starting on D10 post injection till D30. Clinical 

quantitative trait variables were generated as previously described (Butterfield et al., 1998). Mice 

were considered positive for incidence if they showed any clinical signs ≥1 for two or more days. 

Cumulative disease score (CDS) is the summation of daily scores, day of onset (DO) was the first 

day at which an animal presents with a score of ≥1, peak score (PS) is the highest score attained, 

days affected (DA) is the total days in which a mouse was at a score of ≥1. Significance of 

differences in incidence was determined by chi-square. The significance of the observed differences 

in other quantitative trait variables was determined by two-way ANOVA followed by Holm-

Sidak’s multiple comparisons test when a significant overall effect was detected. 
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Supplementary Table 2.2. Primers used in genotyping B6.129 congenic lines. 

Primer Location Sequence B6 129 

169.71 169,704,331 F: 5'TCTCCTCACCCCCAGTCTTA3' 588 433 

    R: 5'TGGCTCCCTTTGATTGACTC3'     

169.90 169,906,770 F: 5'GAACAAGTCCTGCCCTTCTG3' 583 309 

    R: 5'GAAGTCCAGGGGGATCTGAC3'     

171.00 171,044,494 F: 5'CCAGTTTCCAGGGCAAGATA3' 532 686 

    R: 5'GGACTGCCCTCCAAACACTA3'     

D1Mit113 171,804,480 F: 5'CCTCAAAATCAGGATTAAAAGGG3' 206 228 

    R: 5'ACATGGGGTGGACTTGTGAT3'     

171.83 171,835,566 F: 5'CTCTCCCTGAACCACTGACC3' 766 196 

    R: 5'CGCTCCAGATAGTCCCACAT3'     

171.87 171,873,666 F: 5'GGCATTTCTGTTCCGTTTGT3' 690 445 

    R: 5'GGCTTGACCCCAGTGACTTA3'     

171.91 171,913,430 F: 5'GAAGGTCCATTGCTGTTTCC3' 559 353 

    R: 5'TATAGAGGTGGTGGCCAAGG3'     

172.03 172,031,928 F: 5'GTAAGCTGCCCAATGTGGAT3' 569 354 

    R: 5'CCCCTTTGTCATTGTGTGTG3'     

172.08 172,087,845 F: 5'ACACAATGGGGTCATCCAGT3' 641 364 

    R: 5'CCAACACCTGGCCCTACTAA3'     

rs245610856 172,100,795 F: 5'TAGCCTGAGCAACAGCAAAA3' 645 618 

    R: 5'TGAGCTGCCTGACATAGGTG3'     

172.13 172,131,470 F: 5'CACAGGATTTTGTGGTGGTG3' 531 300 

    R: 5'ATGTCTGTGGCCTCCATAGG3'     

172.18 172,178,303 F: 5'AGGTTTTTGAGATGGCCTCA3' 578 383 

    R: 5'GGACCTGAGCTGGATTACCA3'     

172.27 172,270,868 F: 5'TGGGTTACCTGGGACTGAAG3' 600 369 

    R: 5'GGGCATTTGGTCAGCATAGT3'     

172.28 172,282,646 F: 5'CAGGCTGAAATCCCATCAGT3' 566 413 

    R: 5'ATGAGGGTCAGCAGAGGAGA3'     

172.32 172,324,995 F: 5'CCAGGTTTCAAGGCTAGCAG3' 542 348 

    R: 5'TGACTGTGCTCGGTTTTCAG3'     

D1Mit206 173,004,198 F: 5'TGAGGCACCTTTGTATTCAGC3' 123 119 

    R: 5'CCAGATGTCTTTGAACATTCTCC3'     

D1Mit456 172,559,415 F: 5'TGGCTTCCACAGGAATGAG3' 113 227 

    R: 5'GCCAGTACAGATGCACAGACA3'     

D1MiT149 172,699,229 F: 5'AAAGAGAATCTGACTTACCCATGG3' 100 149 

    R: 5'TGTGAGGGAGAAGAATTATGTCTG3'     

172.70 172,701,841 F: 5'TGTAGGTGGTGCTCCTGATG3' 536 671 

    R: 5'TCCTTGGGTGCTCTAACCTG3'     

173.00 173,408,539 F: 5'AGGTGGGGAGCAAATGAGAT3' 602 364 

    R: 5'AAACCGTAAGCCAAGTCCAG3'     
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174.60 174,603,762 F: 5'TGCCATGAACATTGGGTAAA3' 523 355 

    R: 5'TGGCTAGCTCTTGGAGAGGA3'     

403.00 175,641,251 F: 5'TATTGAGGGTGTGTTTTTATTTCTC3' 125 147 

    R: 5'CTCCACGGGTCCCTGTATTC3'     

175.97 175,969,658 F: 5'ATGCCTGGCAAACAATCTTC3' 885 443 

    R: 5'GTTTGCTTGTCCCATCCAGT3'     

176.40 176,415,010 F: 5'CTCTGGGGAATTTGGAACAA3' 524 287 

    R: 5'GGATTGGCATGCTCTCTCTC3'     

D1MIT115 177,680,220 F: 5'AAGGGAATGGAATTAGGGTCA3' 147 122 

  R: 5'TAACGGACACCCATTTTAAACA3'   

The location of primers is based on GRCm38 (Mouse). The size of PCR amplicon for each 

primer pair is listed under B6 and 129 strains are listed.   
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CHAPTER 3: CONCLUSION AND FUTURE DIRECTIONS.  

Large scale quantitative trait loci (QTL) linkage mapping and genome-wide 

association studies (GWAS) have uncovered hundreds of thousands of genetic loci 

associated with human diseases. Despite generating promising results in complex 

disorders, both methods have limitations. For example, QTL studies are limited by 

resolution of causal loci, often resulting in large regions spanning entire chromosomes. 

Moreover, large QTLs when interrogated by high-resolution congenic mapping often 

reveals that the overall QTL effect is due to multiple linked genes within the QTL rather 

than a single gene (Yazbek et al., 2011; Parker et al., 2013). GWAS approaches, on the 

other hand, do define narrow regions of association. However, the amount of variance 

explained by GWAS is often small. Moreover, the resolution and interpretation of causal 

loci in disease from QTL linkage mapping or GWAS findings require functional testing. 

In this work, we complement genetic predictions for several human diseases including 

multiple sclerosis (MS) and systemic capillary leakage syndrome (SCLS) with genetic and 

functional data in model organisms to associate loci with phenotypes and diseases. 

In Chapter 2, we describe testing a genetic locus identified by several GWAS 

studies among MS patients to be associated with disease. MS is a complex autoimmune 

disease of CNS affecting young adults with no effective cure (Charcot, 1868; Lubetzki, 

2018). The definitive cause for MS is unknown. However, a multipart etiology is suggested 

whereby genetics x environment x sex interactions define the overall outcome of disease. 

A familial nature of MS was suggested back in 1988 whereby siblings of affected 

individuals were found to exhibit a 30 to 50 times higher risk to develop disease (Burrows 
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et al., 2019a). Later studies confirmed this among monozygotic MS twins where it was 

found that if one twin had MS, 30-35% of the time the other twin also developed MS 

(Willer et al., 2003). Thus, began studies to identify the genetic basis of MS with the hope 

to discover highly penetrant loci (Xu et al., 2001). Except for association with HLA, most 

of these studies failed to identify loci associated with MS risk. This led to a major shift in 

the understanding of complex disorders like MS where it was hypothesized that disease-

causing alleles or variants are common in the population and have a very small additive or 

multiplicative effect to phenotype (Collins et al., 1997; Pritchard et al., 2002).  

Following the completion of human genome sequencing project in 2003 and 

subsequent information on common genetic variants with the HapMap project in 2005, 

interest started to mount to screen for common genetic variants in MS and other complex 

disorders (Manolio et al., 2009).  This led the rationale and drive to perform large GWAS 

that have so far uncovered 233+ genetic variants that are associated with MS susceptibility 

(Baranzini et al., 2017). Considering these are merely associated variants, the next obvious 

step is to translate the GWAS findings into functional insights (causal variants) that can 

allow one to predict targets for MS therapies. Except for a handful of functional studies 

with IL7R, DDX39B, TNFRF1A and EVI5, a vast majority of MS GWAS candidates have 

not been validated (Gregory et al., 2007; Gregory et al., 2012; Didonna et al., 2015; 

Galarza-Munoz et al., 2017). The same trend is apparent in all the GWAS studies of 

complex diseases in which functional follow-up lags the discovery efforts (Figure 3.1).   
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Figure 3.1. A comparison of GWAS and functional follow-up studies.  

Several questions are raised in Chapter 2 about the utility of GWAS studies in MS 

and if we are learning anything important by continuing to expand the list of associated 

variants. First, most of the significant SNPs in any GWAS lie in non-coding regions of the 

genome (>90%) and are annotated to the closest gene. This excludes the possibility that 

the variant could have effects on a gene far away (trans-acting variant) and could be 

important in the biology of disease. Understanding how non-coding SNPs alter MS 

susceptibility remains a significant challenge, due to incomplete understanding of cis and 

trans effects of variants (Reuveni et al., 2018).  Second, the general design of GWAS 

excludes contributions from rare variants (<5% mean allele frequency in population) that 

are not genotyped (common variant-common disease model). In fact, rare variants could 
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explain a substantial fraction of heritance in MS (Mitrovič et al., 2018). Third, GWAS 

assumes a single-gene model in which each locus acts independently of the others (Spencer 

et al., 2009). This excludes effects of epistasis or genetic interactions between variants that 

have been shown to exist in MS (Dyment et al., 2005). Fourth, linkage disequilibrium (LD) 

is an inherent characteristic of the human genome, thus the distinction between GWAS 

associated variant and causal variant may be masked and may require additional fine 

mapping to exclude false-positive associations. Moreover, LD structures vary across 

different ethnicity that may muddle the overall picture. Fifth, a clear majority of MS-

GWAS studies are performed in Caucasians, thus, finding of genetic variants may not be 

truly applicable across other population groups (African Americans, Ashkenazi Jews) 

(Martin et al., 2018). In fact, it has been demonstrated that variants associated with diseases 

found in European ancestry populations do not always replicate in non-European 

populations (Simon-Sanchez et al., 2008; Weiss et al., 2009; Yamada et al., 2009; Haga, 

2010). Sixth, knowledge about the genetic basis of heterogeneity in distinct clinical courses 

of MS is incomplete with few GWAS studies that predict suggestive associations with age 

of onset, clinical severity, brain atrophy, glutamate levels and MRI T2 lesion load with 

disease susceptibility (Baranzini et al., 2009; Baranzini et al., 2010a; Brynedal et al., 

2010b; Martinelli-Boneschi et al., 2012). Seventh, the high prevalence of MS in women, 

clinical heterogeneity of disease course between men and women and distinct effects of 

sex-hormones all warrant an explanation from GWAS studies. However, very few studies 

have tested genes on sex chromosomes or segregated genetic data by sex (Baranzini et al., 

2009; Patsopoulos et al., 2017). A SNP with different disease associations in men and 
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women can provide insight into the established sex difference in MS that may further guide 

the discovery of how disease mechanisms differ between sexes. Thus, it is imperative to 

validate these genetic variants using appropriate models to determine causality with 

disease. 

Several animal models have been developed over the years to understand the 

various aspects of human MS. Among them, EAE is the most extensively studied and 

allows one to dissect the contribution of specific risk factors (Constantinescu et al., 2011). 

Although these animal models cannot fully replicate the MS disease course, they help 

perform mechanistic studies addressing disease pathogenesis that cannot be readily 

performed in MS patients. In fact, several of the approved disease-modifying drugs in MS 

came from EAE studies (Burrows et al., 2019a).  

We chose to model the signaling lymphocytic activation molecule (SLAM) locus 

for functional testing in this study for the following reasons. First, this locus encodes a 

family of nine proteins that are expressed on hematopoietic cells and exert important 

immunoregulatory functions including CD4+ T cell differentiation, CD8+ T cell 

proliferation, cytokine production by macrophages and dendritic cells, B cell activation, 

antibody production, NK and natural-killer T cells (NKT) cell functions (Veillette et al., 

2003; Wang et al., 2004; Aktan et al., 2010; Chatterjee et al., 2012; Chu et al., 2014). 

Second, three of the SLAM members (SLAMF1, 2, and 7) came up as susceptibility loci in 

numerous MS-GWAS studies (Beecham et al., 2013; Patsopoulos et al., 2017; Madireddy 

et al., 2019). Third, SLAM is an important susceptibility locus in other autoimmune 

diseases including Graves’ disease, systemic lupus erythematosus, Crohn's disease, 
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ankylosing spondylitis, psoriasis, primary sclerosing cholangitis and ulcerative colitis 

(Zhao et al., 2013; Ellinghaus et al., 2016; Langefeld et al., 2017). Considering there is 

sharing of genetic loci between autoimmune diseases, an understanding of SLAM genes in 

MS would help guide functional efforts in other autoimmune diseases (Márquez et al., 

2018). Fourth, the SLAM locus is highly conserved across several species including 

chimpanzee, dog, cow, rat, and mouse suggesting an important immunological function. 

Fifth, the Slam (SLAM) locus exhibits natural genetic variation in mouse that exhibits as 

two stable and divergent haplotypes (Haplotypes 1 and 2) (Wandstrat et al., 2004).  Sixth, 

two congenic lines have been described in the literature that capture various intervals of 

the Slam locus (Wandstrat et al., 2004) (DeVault et al., 2019). We, therefore, thought to 

leverage these mouse congenic lines and some additional lines that we generated with 

natural genetic variation in the Slam locus between 129 and B6 strains to test the hypothesis 

that SLAMF1/Slamf1, SLAMF2/Slamf2, and/or SLAMF7/Slamf7, and not a disease-related 

gene in linkage disequilibrium with the SLAM/Slam locus, are the true GWAS-genes 

contributing to CNS autoimmune disease susceptibility. 

Our EAE experiments with c1, c2, c7, c8 and c10 congenic lines established that 

the causal variant in the c1 congenic line is not Slamf1, Slamf2 or Slamf7 but is predicted 

to lie in a small ~1.2Mb interval between 172.28-173.41Mb, which does include Slamf8 

and Slamf9 (Figure 2.5). Considering several immunoregulatory cell types are associated 

with susceptibility and resistance to EAE and MS disease, we dissected the decreased 

severity of disease in c1 males through immune profiling experiments (Cheng et al., 2017). 

We found an increased frequency of CD11b+ cells and TCRαβ+ CD4+ Foxp3+ in DLN 
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and TCRαβ+ CD4+ Foxp3+ and TCRαβ+ CD8+ IL-17+ T cells in the CNS that co-

segregate with EAE resistance in c1 male mice. In addition, we found increased production 

of IL-10 cytokine by CD4+ T cells following stimulation with MOG35-55 peptide that could 

explain reduced severity of autoimmune disease in c1 males. It remains to be determined 

whether the causal variant that regulates disease in c7 congenic line exhibits the same 

immune profile. Genetic cross between IL-10-/- mice and c7 congenic line followed by 

EAE and immune profiling of F1 would help to elucidate the mechanism of resistance. In 

addition, since CD4+ T cells play a major pathogenic role in EAE disease development, it 

will be helpful to include measurement of CD4+ T cell proliferation using variable doses 

of MOG35-55 peptide. Moreover, as a control for the frequency of immune cells in naïve 

state (no EAE induction), immune profiling of all congenic lines needs to be examined.  

While MS is generally viewed as a female-centric disease, many studies have 

demonstrated that male sex is independently associated with rapid accumulation of 

disability (Finkelsztejn et al., 2011), poorer recovery from initial relapse (Cossburn et al., 

2012) and display a more malignant form of MS (Gholipour et al., 2011), suggesting that 

the effects of sex in MS are much more complex. The resistance to EAE seen in the c1 

congenic line is sex-specific with only the male mice showing amelioration of disease 

whereas females are as susceptible as B6. We confirmed this through orchiectomy 

experiments in male c1 mice that led to reversal of EAE resistance while neither of the 

male androgens tested (T or DHT) restored resistance of c1 congenic mice. This is a unique 

finding and it is possible that additional immunomodulatory molecules synthesized by 

testis in addition to male androgens e.g. inhibins and activins may regulate disease. It is 
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however unknown how these molecules can module the immune response in the periphery 

and CNS (Setchell, 1974; Uhlen et al., 2015; Ahn et al., 2017).  

We have extensively utilized publicly available databases of gene expression such 

as gene expression omnibus (GEO) in this work to retrieve information from other 

researchers on gene expression following orchiectomy. Fine mapping of causal variant on 

Chr 1 was performed using an in-silico approach by first sorting candidates within the 

~1.2Mb locus that were polymorphic between the two haplotypes (129 vs B6) and then 

using data mining in GEO to identify those candidates whose expression was known to be 

modulated by orchiectomy. Using this approach, we were able to identify thirteen genes 

that were polymorphic, including Atp1a2, Apcs, Cadm3, Dsp23, Fcer1a, Kcnj9, Kcnj10, 

Olfr16, Pgm, Slamf8, Slamf9, Tagln2, Vsig8. Interestingly, several of these candidates have 

important autoimmune functions (Figure 2.5) and it will be critical to validate these using 

quantitative PCR in several cell types including CD11b+ cells, TCRαβ+ CD4+ Foxp3+, 

and TCRαβ+ CD8+ IL-17+ T cells. Additionally, since several of the candidate genes in 

the ~1.2Mb interval have genetic knockouts available, one can assess their contribution to 

CNS autoimmune disease using F1 cross with male c1 or c7 congenic line. 

In Appendix A, we describe an extremely rare disorder of unknown etiology 

called systemic capillary leakage syndrome (SCLS), which is characterized by recurrent 

episodes of vascular leakage.  There are currently fewer than 200 cases with a confirmed 

diagnosis worldwide although its prevalence is on the rise, likely due to increased 

awareness among physicians and the public (Druey et al., 2017). Complications of acute 

SCLS include shock, compartment syndrome, and multi-organ dysfunction (Druey et al., 



129 

 

2010). The pathogenic mechanisms underlying SCLS are unknown, and consequently, 

treatments have been developed primarily by trial-and-error. SCLS attacks are diagnosed 

based on the clinical triad of hypotension, elevated hematocrit, and hypoalbuminemia. 

SCLS flares are frequently preceded by respiratory viral and other infections, suggesting a 

role for inflammation in the induction of acute vascular leak (Eo et al., 2018).  

During SCLS flares, transient spikes in circulating angiogenic proteins known to 

trigger vascular hyperpermeability [e.g., angiopoietin 2 (Angpt2), and vascular endothelial 

growth factor (VEGFA)] have been detected (Xie et al., 2012; Xie et al., 2014a). 

Additionally, sera from SCLS patients during episodes have been shown to impair 

microvascular endothelial cell (EC) barrier function, whereas convalescent sera from these 

same patients are functionally benign (Xie et al., 2012; Xie et al., 2014b). These results 

suggest that humoral factors present during disease flares are responsible for promoting 

vascular leak and systemic pathology. 

Patients with SCLS routinely develop symptoms in mid-life, and they lack a 

family history of this disorder, both findings that suggest that the genetic basis of disease 

is multifactorial and complex. Early studies of our initial SCLS patient cohort resulted in 

the identification of a small genetic interval, 3p25.3, as the highest-ranking candidate 

susceptibility locus (p~10-6) with an odds ratio of ~41 (Xie et al., 2013). Whole exome 

sequencing (WES) of a single patient with fatal SCLS revealed a potentially pathogenic 

loss of function mutation in the gene ARHGAP5, which encodes a known of a regulator of 

endothelial permeability (p190BRhoGAP) (Pierce et al., 2017). Notably, this mutation has 

not been detected in any other subjects with SCLS (Pierce et al., 2018). These results 
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suggest that SCLS may be genetically heterogeneous, which is yet another significant 

obstacle to a more definitive analysis of this rare disorder. An appropriate animal model 

could not only help delineate the role of genetic factors in SCLS, but also would serve as 

a pivotal tool for modeling gene-environment interactions in numerous, often life-

threatening, disorders and diseases in which vascular hyperpermeability has a central 

pathogenic function (e.g. systemic anaphylaxis, sepsis, Ebola virus, and dengue) 

(Escudero-Perez et al., 2014; Mikelis et al., 2015; Wang et al., 2019).  

Using publicly available mouse phenotype data, we identified a mouse strain, SJL/J 

(SJL), that uniquely and spontaneously displays the clinical features of SCLS—

hypoalbuminemia, elevated hematocrit, and hypotension (Bogue et al., 2018). Here, we 

investigated the feasibility of using SJL mice as a model to interrogate pathophysiological 

mechanisms of SCLS. We discovered that SJL exhibit susceptibility to histamine- and 

infection-triggered vascular leak. This trait “Histamine hypersensitivity” (Histh/Histh) was 

mapped to a region on Chr 6 in SJL mouse. Remarkably, Histh is syntenic to the genomic 

locus most strongly associated with SCLS in humans (3p25.3). Subsequent studies found 

that the Histh locus is not unique to SJL but additional mouse strains also exhibit Histh 

phenotype. Considering GWAS studies in SCLS are limited by the small number of 

patients, we utilized interval-specific SNP based association testing among Histh 

phenotyped mouse strains to predict Histh candidates. Furthermore, to dissect the 

complexity of Histh QTL, we developed network-based functional prediction methods to 

rank genes in this locus by predicting functional association with multiple Histh-related 
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processes. The top-ranked genes include Cxcl12, Ret, Cacna1c, and Cntn3, all of which 

have strong functional associations and are proximal to SNPs segregating with Histh.  

In Appendix B, we developed a computationally technique to prioritize positional 

candidates based on computationally inferred gene function. Our method uses machine 

learning with functional genomic networks, whose links encode functional associations 

among genes, to identify network-based signatures of functional association to a trait of 

interest. We demonstrate the method by functionally ranking positional candidates in Histh 

locus on Chr 6 (45.9 Mb to 127.8 Mb) associated with histamine hypersensitivity (Histh). 

To dissect its complexity, we ranked genes in the Histh locus by predicting functional 

association with multiple Histh-related processes. We integrated these predictions with 

single nucleotide polymorphism (SNP) association data derived from a survey of 23 inbred 

mouse strains. The top-ranked genes included Cxcl12, Ret, Cacna1c, and Cntn3, all of 

which had strong functional associations and were proximal to SNPs segregating with 

Histh. These results demonstrate the power of network-based computational methods to 

nominate highly plausible quantitative trait genes even in highly challenging cases 

involving large QTLs and extreme trait complexity.  
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In Appendix C, we utilize the power of integrating genetic and functional 

approaches to understand susceptibility to Bordetella pertussis and pertussis toxin (PTX) 

induced histamine sensitization (Bphs/Bphs), a sub-phenotype with an established role in 

autoimmunity. Susceptibility to Bphs is controlled by histamine H1 receptor (Hrh1/H1R) 

alleles, with the susceptible (BphsS/H1R
S) and resistant (BphsR/H1R

R) alleles differing by 

three amino acids (P263L, V313M, and P331S) within the third intracellular loop 

associated with signal transduction, protein folding, and trafficking. Functionally, the two 

alleles equally activate Gαq/11, the G protein family members that couple H1R signaling to 

second messenger signaling backways, indicating that susceptibility and resistance is not 

due to differential activation of Gαq/11. In contrast, the two alleles exhibit differential cell 

surface expression and altered intracellular trafficking, with the H1R
R allele preferentially 

retained within the endoplasmic reticulum (ER), and all three residues comprising the H1R
R 

haplotype required for altered expression. Given the importance of H1R signaling in health 

and disease we phenotyped and sequenced the third intracellular loop of H1R among a large 

panel of inbred laboratory and wild-derived mouse strains to identify potential allelic co-

adaptations capable of complementing BphsR in mice with a H1R
R allele. Taking this 

approach, we identified eight inbred mouse strains with a H1R
R allele that are BphsS 

(BphsS/H1R
R). Genetic analyses mapped the locus complementing BphsR to mouse Chr 6, 

in linkage disequilibrium with Hrh1; designated Bphs-enhancer (Bphse). Similar to the 

approaches used for Histh, we utilized interval-specific SNP based association testing and 

network-based functional enrichment to predict nine candidate loci for Bphse including 
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Atp2b2, Atg7, Pparg, Syn2, Ift122, Raf1, Mkrn2, Timp4, and Gt(ROSA)26Sor. These 

findings reveal an additional mechanism by which genetic factors control BphsS. 

To conclude, this work integrates several genetic (linkage analysis, SNP based 

association testing, congenic mapping) and functional (animal models of disease, immune 

profiling, gene expression databases, functional network of tissues in mouse) approaches 

to understand complex pathologies in humans (multiple sclerosis, systemic capillary 

leakage syndrome) and mouse (histamine hypersensitivity) that help enhance our 

understanding of the genetic basis of disease. Further genetic and functional validation of 

prioritized genes will provide mechanistic insights into disease pathogenesis and may 

facilitate to provide potential targets for future therapeutics and diagnostics.  
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A.1. Abstract 

 

The Systemic Capillary Leak Syndrome (SCLS, Clarkson disease) is a disorder of 

unknown etiology characterized by recurrent episodes of vascular leakage of proteins and 

fluids into peripheral tissues, resulting in massive whole-body edema and hypotensive 

shock. The pathologic mechanisms and genetic basis for SCLS remain elusive. Here we 

identify an inbred mouse strain, SJL, that recapitulates cardinal features of SCLS, including 

susceptibility to histamine- and infection-triggered vascular leak. We named this trait 

“Histamine hypersensitivity” (Histh/Histh) and mapped it to a region on Chr 6. 

Remarkably, Histh is syntenic to the genomic locus most strongly associated with SCLS 

in humans (3p25.3). These studies reveal that the predisposition to develop vascular 

hyperpermeability has a strong genetic component conserved between humans and mice 

and provide a naturally occurring animal model for SCLS. Thus, genetic analysis of the 

Histh locus has the potential to reveal and functionally validate orthologous candidate 

genes that contribute not only to SCLS but also to normal and dysregulated mechanisms 

underlying vascular barrier function more generally.  

  



174 

 

A.2. Introduction 

The Systemic Capillary Leak Syndrome (SCLS, Clarkson disease) is a rare 

disease. There are currently fewer than 200 cases with a confirmed diagnosis worldwide 

although its prevalence is on the rise, likely due to increased awareness among physicians 

and the public (Druey et al., 2017). SCLS is characterized by transient but potentially lethal 

episodes of diffuse vascular leakage. Complications of acute SCLS include shock, 

compartment syndrome, and multi-organ dysfunction (Druey et al., 2010). The pathogenic 

mechanisms underlying SCLS are unknown, and consequently treatments have been 

developed primarily by trial-and-error. SCLS attacks are diagnosed based on the clinical 

triad of hypotension, elevated hematocrit, and hypoalbuminemia. SCLS flares are 

frequently preceded by respiratory viral and other infections, suggesting a role for 

inflammation in the induction of acute vascular leak (Eo et al., 2018).  

During SCLS flares, transient spikes in circulating angiogenic proteins known to 

trigger vascular hyperpermeability [e.g., angiopoietin 2 (Angpt2), and vascular endothelial 

growth factor (VEGFA)] have been detected (Xie et al., 2012; Xie et al., 2014b). 

Additionally, sera from SCLS patients during episodes have been shown to impair 

microvascular endothelial cell (EC) barrier function, whereas convalescent sera from these 

same patients are functionally benign (Xie et al., 2012; Xie et al., 2014a). These results 

suggest that humoral factors present during disease flares are responsible for promoting 

vascular leak and systemic pathology. 
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Patients with SCLS routinely develop symptoms in mid-life, and they lack a 

family history of this disorder, both findings that suggest that the genetic basis of disease 

is multifactorial and complex. Early studies of our initial SCLS patient cohort resulted in 

the identification of a small genetic interval, 3p25.3, as the highest-ranking candidate 

susceptibility locus (p~10-6) with an odds ratio of ~41 (Xie et al., 2013). Whole exome 

sequencing (WES) of a single patient with fatal SCLS revealed a potentially pathogenic 

loss of function mutation in the gene ARHGAP5, which encodes a known of a regulator of 

endothelial permeability (p190BRhoGAP) (Pierce et al., 2017). Notably, this mutation has 

not been detected in any other subjects with SCLS (Pierce et al., 2018). These results 

suggest that SCLS may be genetically heterogenous, which is yet another significant 

obstacle to a more definitive analysis of this rare disorder. An appropriate animal model 

could not only help delineate the role of genetic factors in SCLS, but also would serve as 

a pivotal tool for modeling gene-environment interactions in numerous, often life-

threatening, disorders and diseases in which vascular hyperpermeability has a central 

pathogenic function (e.g. systemic anaphylaxis, sepsis, Ebola virus, and dengue) 

(Escudero-Perez et al., 2014; Mikelis et al., 2015; Wang et al., 2019).  

Using publicly available mouse phenotype data, we identified a strain of mice, 

SJL/J (SJL), that uniquely and spontaneously displays the clinical features of SCLS—

hypoalbuminemia, elevated hematocrit, and hypotension (Bogue et al., 2018). Here, we 

investigated the feasibility of using SJL mice as a model to interrogate pathophysiological 

mechanisms of SCLS. Previous studies suggested that the SJL strain of mice is susceptible 

to systemic histamine, a canonical mediator of vascular hyperpermeability(Linthicum et 
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al., 1982). We report herein that mortality of SJL mice in response to administration of 

histamine was highly correlated with evidence of increased vascular leakage in a pattern 

similar to that reported in SCLS patients. Classical linkage studies revealed that a recessive 

locus in SJL mice controlling histamine-induced mortality mapped to a region on mouse 

Chr 6, which we designated Histh (histamine hypersensitivity). Strikingly, Histh is syntenic 

with human 3p25.3, the highest ranking SCLS susceptibility locus. Considering the 

similarity of the Histh-mediated phenotype to SCLS, the results suggest that humans and 

mice share genetic traits that predispose both species to stress-induced vascular 

dysregulation.  
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A.3. Results 

A.3.1. Dermal vasculature of SCLS patients exhibit hyper-responsive to leak 

provocateurs. 

In vitro studies of endothelial cells isolated from skin of an SCLS patient 

demonstrated exaggerated responses to inflammatory mediators, suggesting that primary 

endothelial dysfunction contributes to the clinical symptoms of SCLS (Pierce et al., 2017). 

To test this hypothesis directly in situ, we injected histamine or morphine intradermally in 

patients with SCLS and healthy controls and measured the area of drug-induced skin 

wheals caused by fluid extravasation. Histamine evokes vascular leakage by acting directly 

on the endothelium whereas morphine functions indirectly through mast cell degranulation 

and release of various permeability-inducing mediators including histamine, leukotrienes, 

and prostaglandins; both agents have been used safely in a prior human study of cutaneous 

vascular responsiveness (Keffer et al., 1989; Mikelis et al., 2015; Nakamura et al., 2018). 

We observed significantly larger wheal sizes in SCLS patients compared to healthy 

controls in response to a range of concentrations of either histamine or morphine (Figure 

A.1A-B). Thus, with two unrelated stimuli provoking exaggerated vascular leakage in 

SCLS patients—and doing so in a dose-proportional fashion—the results were most 

suggestive of a generalized vascular hyper-responsiveness in SCLS.  

A.3.2. SJL mice exhibit traits that phenocopy human SCLS. 

Seeking an in vivo model of vascular hyper-responsiveness, we first identified 

mouse strains with a constellation of traits resembling SCLS by searching the Mouse 
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Phenome Database (https://phenome.jax.org) for data on systolic blood pressure, 

hematocrit, and plasma albumin. Compared to the mean trait variables for all strains, SJL 

mice were unique in that they exhibited significantly lower systolic blood pressure in 

conjunction with an increased hematocrit and hypoalbuminemia (p<0.01, 2-way ANOVA, 

SJL v. all other strains (Figure A.2A-C). As a comparator strain for functional studies, we 

selected the B10.S/SgMcdJ (B10.S) mouse, which, like SJL, carries the H2S haplotype at 

the H2 (MHC) locus, but has been reported to be insensitive to histamine(Linthicum et al., 

1982). We have previously used various SJL/B10.S crosses in genetic studies of 

susceptibility to autoimmune neuroinflammation (Butterfield et al., 1998), a disease that 

may be regulated in part by histamine-mediated effects on vascular or immune systems, 

and controlling for MHC-regulated effects in studies of immune/inflammatory disorders is 

paramount (Ma et al., 2002; Lu et al., 2010). Given that neither B10.S nor C57BL/10SgSnJ 

(the background recipient sub-strain used to generate B10.S) mice have been phenotyped 

for systolic blood pressure, hematocrit and serum albumin levels, we utilized the data for 

each of these parameters for genetically highly-related strains (C57BL/10, C57BL/6, 

C57BLKSC57BR, C57L, and C57BR (Petkov et al., 2004). We used only data that were 

obtained simultaneously with SJL/J mice and closely controlled for age, sex, and time of 

day for specimen collection. Blood pressure, albumin, and hematocrit in C57BL/10SgSnJ-

related strains are significantly different from SJL/J mice (Figure A.2A-C). Compared to 

B10.S mice, SJL mice also exhibited increased circulating levels of SCLS-related 

angiogenic proteins Angpt2 and VEGFA (Figure A.2D-E). We therefore hypothesized that 

https://phenome.jax.org/
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these traits may be due to an underlying susceptibility to vascular leakage and that SJL 

mice may be useful as an in vivo model for SCLS. 

A.3.3. SJL mice exhibit age- and inflammation-dependent hypersensitivity to 

systemic administration of histamine. 

The SJL strain has been extensively studied, most notably to investigate immune 

dysregulation (Moriguchi et al., 2018). To our knowledge, however, vascular function in 

SJL mice has not been queried in detail. To determine whether SJL mice were more 

susceptible to vascular leakage than B10.S mice, we administered histamine to two distinct 

SJL sub-strains, SJL/J and SJL/NCr mice, with B10.S mice as a control. Both SJL sub-

strains exhibited histamine hypersensitivity and died within 30 minutes of histamine 

administration, even at the lowest intravenous doses, whereas B10.S mice all survived 

(Table A.1A). We have designated this phenotype “histamine hypersensitivity (Histh)”. 

Similar to the emergence of SCLS symptoms in middle age (Druey et al., 2017), we found 

that the Histh phenotype in SJL mice was age-dependent; mice greater than 6 months of 

age all succumbed to histamine administration whereas the younger, 8 week old mice did 

not (Table A.1A). 

In a recent survey of SCLS patients, infectious triggers were identified in 35-50% 

of disease exacerbations (Eo et al., 2018). We therefore tested whether an inflammatory 

stimulus potentiates a lethal response to histamine challenge in SJL mice. To study this, 

we administered complete Freund’s adjuvant (CFA), a complex mixture of antigens and 

oil widely used to augment immune responses.  CFA-induced inflammation had no 

apparent impact on the responses of aged (>6 months) mice; both primed and un-primed 
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mice succumbed to intravenous histamine doses at 25 mg/kg and higher, but not to the 

lowermost dose (12.5 mg/kg). By contrast, the younger (8-week old) SJL mice, which were 

fully resistant to intravenous histamine alone, exhibited 100% mortality in response to 

histamine (25 mg/kg and higher doses) if first primed with CFA. CFA-primed B10.S mice 

of both age groups remained resistant throughout. Furthermore, (B10.S × SJL) F1 hybrid 

mice phenocopied B10.S mice, demonstrating that Histh is a recessive trait (Table A.1-B). 

Taken together, these findings suggest that genetically-controlled histamine 

hypersensitivity can be spontaneous and/or exacerbated by inflammatory stimuli.  

A.3.4. Histh, the locus controlling susceptibility to vascular hypersensitivity to 

histamine, exhibits maximal linkage to mouse chromosome 6 

To map the gene or genes controlling Histh, we treated ~478 (B10.S × SJL) F2 

mice with histamine at 30 days after priming with CFA and performed genetic association 

analysis using pre-established genomic markers (Rhodes et al., 1998) (Table A.2). A 

genome scan using microsatellite markers that distinguish Histh-resistant B10.S and Histh-

susceptible SJL mice identified a quantitative trait locus (QTL) on Chr 6 within an 

approximately ∼100Mb region between D6Mit74 (48.72Mb) to D6Mit372 (148.45Mb) 

(p=5.73 x 10-5). In addition, there were minor linkages to Chr 8 (p=2.80x10-2) and Chr 15 

(p=9.74x10-4, data not shown). We have designated this locus on Chr 6 as Histh (histamine 

hypersensitivity) with accession #6360897 in Mouse Genome Informatics 

(http://www.informatics.jax.org). 
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A.3.5. Congenic mapping of Histh 

We then confirmed the existence and location of Histh on Chr 6 by congenic 

mapping (Table A.3). We used marker-assisted selection to introgress the Histh interval 

(D6Mit74 (48.72Mb) through D6Mit254 (125.36Mb) from SJL onto the B10.S 

background. These mice were backcrossed for 12 generations and fixed as a homozygous 

interval-specific recombinant congenic line (ISCL) hereafter referred to as B10.S-HisthSJL. 

The Histh phenotype was confirmed by testing susceptibility to histamine challenge 30 

days after priming with CFA as above. Indeed, lethality due to Histh differed significantly 

among the strains (Χ2 = 51.61, df=1, p<0.0001); SJL and B10.S-HisthSJL mice were 

significantly more susceptible to CFA/histamine than were B10.S mice (χ2 =55.24, df=1, 

p<0.0001 for both strains), but their responses did not differ significantly from each other. 

Moreover, (B10.S × B10.S-HisthSJL) F1 hybrids were Histh-resistant, confirming the 

observation made earlier (see findings in Table A.1) regarding Histh as a recessive trait. 

Thus, we have physically mapped Histh to Chr 6:48-125 Mb and demonstrated that this 

locus is sufficient to provide full penetrance of the Histh phenotype.  

A.3.6. Dermal vasculature of mice harboring an Histh susceptibility allele is 

hyperresponsive to histamine. 

We hypothesized that Histh in mice is due to a genetic predisposition of 

endothelial cells to exaggerated barrier breakdown in response to permeability mediators. 

To evaluate histamine-mediated vascular hyperpermeability in vivo, we used the well-

established Miles assay (Radu et al., 2013), which measures plasma extravasation from 

cutaneous microvasculature through quantification of Evans blue (EB), an albumin-
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binding dye, in skin. We first injected EB intravenously into older (>6 months) B10.S or 

SJL mice, followed by intradermal injection of histamine and quantification of 

extravasated EB in skin biopsies. Dermal EB extravasation increased significantly in skin 

biopsies of histamine-treated SJL v. B10.S mice, and extravasation in both strains appeared 

to be more extensive than that detected in response to PBS alone (Figure A.3A-B). To 

determine if the Histh locus is associated with histamine-induced vascular leakage, we 

performed the Miles assay in older B10.S-HisthSJL congenic mice. Compared with the 

responses of B10.S mice, B10.S-HisthSJL congenic mice exhibited a significant increase in 

dermal EB vascular leakage (Figure A.3C).  

Finally, to determine if the increased susceptibility to histamine-induced 

cutaneous vascular leak in SJL and B10.S-HisthSJL mice is age-dependent and/or 

inflammation dependent, we performed Miles assays in 8-week-old mice that were primed 

with CFA prior to histamine challenge. In the absence of CFA priming, we observed no 

significant response to histamine in these younger mice (Figure A.3D). By contrast, CFA 

priming potentiated the vascular hyperpermeability response in the younger 8-week-old 

B10.S-HisthSJL congenic mice. B10.S controls exhibited no increase in hypersensitivity to 

histamine following CFA administration. Together, these results strongly suggest that the 

Histh locus plays a critical role in regulating histamine-induced vascular 

hyperpermeability, and that this phenotype is affected by both age and pre-existing 

systemic inflammation.  
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A.3.7. Susceptibility to histamine-induced systemic vascular leak is genetically 

controlled by Histh. 

For unknown reasons, vascular leak in SCLS patients manifests prominently in 

skin and skeletal muscle, less frequently in gastrointestinal tract and myocardium (Pineton 

de Chambrun et al., 2017; Druey et al., 2018; Pineton de Chambrun et al., 2018), and rarely 

in other internal organs including lungs, kidneys, and central nervous system (Druey et al., 

2017; Pineton de Chambrun et al., 2017). To determine the extent of vascular leak in 

individual internal organs in response to histamine, we challenged young CFA-primed SJL, 

B10.S-HisthSJL and B10.S mice intravenously with EB followed by systemic (intravenous) 

administration of histamine or diluent control; EB content was quantified in various organs 

after 30 minutes. Histamine-mediated vascular leak was detected in skin and skeletal 

muscle of both SJL and B10.S-HisthSJL but not B10.S mice compared to PBS-treated 

counterparts (Figure A.4-A). We detected no dye extravasation in lungs, heart, or gut. We 

also observed a similar pattern of vascular leakage among older mice (greater than 6 

months) following systemic administration of EB and histamine in the absence of CFA 

priming (Figure A.4-B). These data indicate that the Histh locus controls susceptibility to 

histamine-mediated vascular hyperpermeability with impact in a whole animal model. 

Moreover, the pattern of vascular leakage is highly reminiscent of that observed in SCLS 

patients, where skin edema is profound and frequently complicated by extensive 

rhabdomyolysis requiring fasciotomies (Druey et al., 2017; Pineton de Chambrun et al., 

2017). 
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A.3.8. Acute viral infectious trigger exacerbates genetically-controlled vascular 

hyperpermeability. 

Given the prominent link between viral upper respiratory tract or other infections 

and acute SCLS flares, we determined whether acute virus infection, as a common link and 

physiologic inflammatory stimulus, also elicits vascular leakage in SJL mice. We 

inoculated SJL and B10.S mice with influenza virus A (H3N2) and assessed systemic 

vascular leak in correlation with systemic symptoms (i.e. weight loss). A pronounced, 15-

20% weight loss was apparent in both strains after 7 days of infection indicating 

comparable susceptibility to H3N2 (Figure A.5A). However, compared to uninfected 

controls at day 7 after infection, vascular leakage was increased in H3N2-infected SJL mice 

but not in B10.S mice (Figure A.5B). In line with the histamine-challenge results, EB 

extravasation was most prominent in skin, similar to the distribution of fluid extravasation 

in SCLS. These results demonstrate that a clinically relevant infectious trigger can 

exacerbate genetically-controlled vascular hyperpermeability and suggest that the SJL 

mouse recapitulates multiple aspects of SCLS susceptibility, providing a useful and 

tractable animal model. 

A.3.9. Synteny of Histh locus and SCLS GWAS candidates. 

The extreme rarity of SCLS has greatly limited our understanding of the complex 

genetic factors that contribute to disease development. The one published genome-wide 

association study of SCLS patients has identified 3 SNPs on Chr 3p25.3 (p ~10-6), with an 

odds ratio of ~41, as the highest-ranking candidate susceptibility locus (Xie et al., 2013). 

Using the list of published potential SCLS candidate loci, we sought syntenic mouse 
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homologous genes that map to the Histh interval (Figure A.6A). We identified 9 human 

genes that were significant hits in the SCLS GWAS and were also captured in this locus in 

B10.S-HisthSJL congenic mice. Most notably, human 3p25.3 is syntenic with the center of 

the mouse Histh locus on Chr 6, a region that also demonstrates strong linkage to the Histh 

phenotype (Table A.1). The shared genetic alignment of Histh with several SCLS-linked 

genes has provided strong focus on numerous gene candidates that may be involved in the 

pathogenesis of both Histh and SCLS. We generated protein functional interaction 

networks (Kramer et al., 2014) using the list of syntenic genes to define SCLS or its sub-

phenotypes and to interrogate potential mechanistic links between predicted SCLS gene 

candidates and disease (Figure A.6B). This approach identified several genes that are 

associated with aging (ATP2B2, CAV3, CNTN3, CTNNA2, GRID2), inflammation 

(ATP2B2, CAV3, RAD18, KBTBD8), vascular permeability (SFXN5, RAD18) and 

anaphylaxis (CAV3, RAD18, CTNNA2, ATP2B2 and GRID2). In summary, these results 

suggest that SJL mice and human subjects with SCLS share a similar genetic basis for 

increased susceptibility to vascular hyperpermeability.  
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A.4. Discussion 

SCLS is a unique, relapsing-remitting disease that can have devastating 

consequences. Although disorders with features of SCLS have recently emerged in 

children(Hsu et al., 2015), most patients present in mid-life and lack any family history of 

the disease. Not unexpectedly, whole exome sequencing (WES) performed on DNA 

samples from several children with SCLS, their families, and unrelated adults did not 

uncover any shared single nucleotide variants that could readily explain the phenotype 

(Pierce et al., 2018). Thus, multiple genetic abnormalities may contribute to SCLS, 

indicating that our alternative approach of synteny studies may be more appropriate.  

Our discovery of a shared susceptibility locus for vascular hyperpermeability in 

mice has led to unexpectedly strong conclusions about human 3p25 increasing the risk of 

SCLS in a mechanistic fashion. Specifically, we have characterized the vascular phenotype 

of the inbred SJL mouse strain, which shares genetic and phenotypic similarities with 

human patients with SCLS. Because SJL mice recapitulate cardinal features of SCLS, this 

mouse model may serve to advance our understanding of disease mechanisms. Just as 

patients with SCLS are typically asymptomatic between episodes, SJL mice do not exhibit 

overt symptoms of vascular leak at baseline, although deeper investigation revealed that 

these mice maintain the prototypic SCLS triad of high hematocrit, low serum albumin and 

hypotension at homeostasis (Figure A.1). Histamine-induced mortality in SJL mice 

correlated with vascular leakage in skin and skeletal muscle, which are the most prominent 

sites of pathology in SCLS patients. Both SCLS patients and SJL mice are uniquely 
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susceptible to inflammation-associated vascular leakage, particularly that induced by 

systemic infection, such as that resulting from infection with influenza A.  

Although we note that SJL mice have monoclonal gamma globulins in serum as 

do more than 80% of SCLS patients (Druey et al., 2017), this trait is controlled by the 

mammary tumor virus locus 29 (Mtv29), which encodes for an endogenous superantigen 

(vSAg29) (Tsiagbe et al., 1990). Our genetic mapping studies exclude its role in increased 

histamine susceptibility as it falls outside of the Histh locus.  Accordingly, no pathogenic 

role for SCLS paraproteins has been demonstrated thus far in humans (Zhang et al., 1993; 

Xie et al., 2012). Based on the histamine-induced mortality and vascular leakage findings, 

we can conclude that the Histh locus controls histamine sensitivity and vascular 

permeability as a function of age and various inflammatory stimuli (CFA, viral infection). 

These patterns reflect the pathogenesis of SCLS, notably reflecting the fact that most 

patients who have spontaneous episodes are middle-aged. Interestingly, SCLS crises in 

children are nearly always preceded by infection (Hsu et al., 2015).  

Most important, the synteny map of the Histh locus and SCLS GWAS has 

provided strong focus on several gene candidates that may be involved in the pathogenesis 

of both Histh and SCLS in that they have demonstrated roles in processes involved in 

vascular endothelial barrier integrity. We further characterized potential functions of 

several of these genes in SCLS by searching PubMed and the International Mouse 

Phenotyping Consortium (http://www.mousephenotype.org) for associations with 

processes involved in vascular barrier integrity. Among these, ATP2B2/Atp2b2 encodes 

ATPase plasma membrane Ca2+ transporting 2 protein, which plays a critical role in 

http://www.mousephenotype.org/
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intracellular calcium homeostasis and endothelial cell responses to histamine (Worthen et 

al., 2000). Atp2b2 also regulates endothelial nitric oxide (NO) synthase (eNOS) 

phosphorylation in endothelial cells (Holton et al., 2010), a critical step in histamine- and 

VEGF-induced vascular permeability previously implicated in SCLS-associated vascular 

dysregulation (Di Lorenzo et al., 2013; Umbrello et al., 2014). Notably, Atp2b2−/−  mice 

have significantly reduced serum albumin levels at homeostasis compared with WT 

controls (Dickinson et al., 2016). Cav3 encodes caveolin 3, a protein also implicated in 

eNOS regulation (Sun et al., 2015). Although Cav3 knockout mice develop heart failure 

due to myocardial fibrosis and dilated cardiomyopathy (Bryant et al., 2018), functions of 

Cav3 in the peripheral vasculature have not been studied in mice. CTNNA2/Ctnna2 encodes 

-catenin 2, which functions as a linker between cadherin adhesion receptors and the 

cytoskeleton, and thereby regulates cell-cell adhesion dynamically in response to histamine 

(Kugelmann et al., 2018). However, since genome-wide knockout of Ctnna2 in mice is 

associated with neonatal lethality, with most homozygotes dying with 24 hours after birth 

(Abe et al., 2004), vascular-specific deletion of Ctnna2 may be necessary to interrogate its 

potential role in Histh and SCLS. RAD18/Rad18 is a E3 ubiquitin-protein ligase involved 

in post replication repair of UV-damaged DNA. Notably, Rad18 knockout mice exhibit 

higher Hct at homeostasis (Tateishi et al., 2000). Finally, CNTN3/Cntn3 encodes contactin 

3, an activator of the small GTPase Arf6 that has been linked to inflammation-triggered 

vascular permeability (Zhu et al., 2012). Cntn3−/− mice exhibit normal physiological levels 

of serum albumin and reduced Hct compared to WT controls (Dickinson et al., 2016).   
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Because several of the genes captured in Histh map to chromosomal locations that 

are outside of the top region of synteny on Chr 3 in humans (Figure A.6B), there may be 

additional causal loci for SCLS. Indeed, because there were 134 separate loci significantly 

associated with SCLS in our original GWAS (Xie et al., 2013), we focused on the strongest 

genetic signal from the SCLS GWAS that allowed us to interrogate candidates that overlap 

the Histh locus. Even within Histh, the true causal variants for SCLS may lie in strong 

linkage with genotyped SNP.  In future studies, it will be critical to further dissect the Histh 

QTL by generating interval specific recombinant sub-congenic lines (Bennett et al., 2002) 

and/or by using mouse GWAS (Flint et al., 2012) in order to fine map and validate the true 

causative genes. Since the rarity of SCLS in humans poses a large barrier to mapping the 

causative gene(s), our new mouse genetic model provides an important alternative 

approach.  

The present results advance the field by showing that SCLS patients are hyper-

responsive to mediators of vascular permeability, suggesting that aberrant endothelial 

function contributes directly to clinical symptoms. Although SCLS patients are typically 

asymptomatic between episodes, dermal microvascular endothelial cells isolated from a 

patient with fatal SCLS were persistently hyper-responsive to inflammatory mediators 

including LPS, TNFα, and IL-1 in vitro (Pierce et al., 2017). Previous histological studies 

of skin and muscle of SCLS patients have failed to uncover gross structural or 

ultrastructural abnormalities within the microvasculature that could account for this 

phenotype (Druey et al., 2010). Thus, our results demonstrating that the cutaneous 

vasculature of SCLS patients is hyper-responsive to inducers of permeability supports the 



190 

 

hypothesis that the acute manifestations of SCLS result from the exaggerated functional 

responses of a susceptible host to otherwise common inflammatory triggers in a fashion 

attributable to underlying genetic defects within the endothelium, resulting in an 

accelerated breakdown of vascular barrier function. As such, future studies including 

assessment of expression and sequence of top Histh candidate genes in SCLS patients and 

mice and their role in endothelial responses to inflammation will be essential to determine 

their contribution to these phenotypes. 
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A.5. Material and Methods 

A.5.1. Patients and skin testing. 

Patients were seen at the Clinical Center of the National Institutes of Health under 

an IRB-approved study protocol (I-0184) after informed consent. Histamine phosphate or 

morphine sulfate were injected intradermally at separate sites along the dorsal aspect of the 

upper arm. After 15-20 minutes, the size of wheals was determined manually and analyzed 

using ImageJ.  

A.5.2. Animals. 

B10.S-HisthSJL, (B10.S x SJL/J)F1 and (B10.S x SJL/J) x B10.S F2 mice were 

generated and maintained under specific pathogen free conditions in the vivarium of the 

Given Medical Building at the University of Vermont according to National Institutes of 

Health guidelines. All animal studies were approved by the Institutional Animal Care and 

Use Committee of the University of Vermont or the NIAID/NIH (animal study protocol 

LAD3E). 

A.5.3. Histh Phenotyping. 

Cohorts of 4 male and 4 female mice were used in each histamine challenge. Each 

mouse was sensitized (D0 and D7) by subcutaneous injection with a 50/50 mix of complete 

Freund’s adjuvant (CFA) and PBS or left unmanipulated. 30 days later histamine 

hypersensitivity was determined by intravenous (i.v.) injection of 100, 50, 25 and 6.25 

mg/kg histamine (dry weight free base) diluted in PBS. Deaths were recorded at 30 minutes 

post injection and the data reported as the number of dead mice over the number of mice 



192 

 

in the study. 6-month old/aged animals did not receive any CFA priming prior to histamine 

challenge.  

A.5.4. DNA extraction and genotyping. 

DNA was isolated from mouse tail clippings as previously described (Sudweeks 

et al., 1993). Briefly, individual tail clippings were incubated with cell lysis buffer (125 

µg/ml proteinase K, 100 mM NaCl, 1 0mM Tris-HCl (pH 8.3), 10 mM EDTA, 100 mM 

KCl, 0.50% SDS, 300 µl) overnight at 55oC. The next day, 6M NaCl (150 µl) was added 

followed by centrifugation for 10 min. at 4oC. The supernatant layer was transferred to a 

fresh tube containing 300 µl isopropanol. After centrifuging for 2 minutes, the supernatant 

was discarded and the pellet washed with 70% ethanol. After a final 2 min. centrifugation, 

the supernatant was discarded, and DNA was air dried and resuspended in TE. Genotyping 

was performed by using established microsatellite markers (Butterfield et al., 1998). 

Polymorphic microsatellites were selected to have a minimum polymorphism of 8 bp for 

optimal identification by agarose gel electrophoresis. Briefly, primers were synthesized by 

IDT-DNA (Coralville, IA) and diluted to a concentration of 10 µM. PCR amplification was 

performed using Promega GoTaq according standard methods and amplicons were 

subjected to 2% agarose gel electrophoresis and visualized by ethidium bromide and UV 

light.  

A.5.5. Data resources in the Mouse Phenome Database. 

Phenotype data for systolic blood pressure (MPD#23602), hematocrit 

(MPD#31825) and albumin (MPD#46001) were queried using the Mouse Phenome 

Database (https://phenome.jax.org/) for laboratory inbred strains. The significance of the 

https://phenome.jax.org/
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observed differences for each trait was determined using the Mann-Whitney U test 

comparing SJL/J against the mean trait variables for all strains studied. 

A.5.6. Miles assay. 

To assess histamine-induced vascular leak in mice, we used the Miles assay as 

described previously (Radu et al., 2013). Briefly, mice were injected intraperitoneally with 

pyrilamine maleate (4 mg per kg body weight, Sigma) 30 minutes prior to injection with 

Evans blue dye to reduce background permeability during handling. Mice were then 

injected with 100 µl of 0.5% Evans blue dye in PBS (Sigma) via retro-orbital injection, 

followed by intradermal injections of histamine or saline (50 µl total volume). 30 minutes 

after the intradermal injection, the dorsal skin was collected with a 12-mm biopsy punch, 

and Evans blue (EB) dye was extracted with formamide (Sigma; 56°C for 48 hrs). The 

amount of EB in each sample was determined by measuring the absorbance at 620 nm, and 

results were expressed as EB dye amount (ng) per 100 mm2 of the skin, with quantification 

against a standard curve. 

A.5.7. Influenza virus infection. 

Mice were anesthetized with isoflurane and influenza A/HK/1/68 (H3N2) virus 

was administered intranasally in a total volume 3 µl in each nare (6 x 104 cfu/ml). Weight 

loss was monitored, and mice were sacrificed on D8 post-inoculation for analysis of 

vascular leakage. 
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A.5.8. Systemic vascular leak analysis. 

To assess influenza-mediated vascular leak in various tissues/organs, we injected 

mice intravenously with 100 µl of 2% EB in PBS retro-orbitally. Fifteen minutes post-

injection, the mice were deeply anesthetized by isoflurane inhalation and perfused with 5 

ml of heparinized PBS through the left ventricle of the heart to remove the EB remaining 

in the vascular space. Tissues were heated at 95°C for one hour to obtain dry weights. The 

amounts of Evans blue dye (ng) were quantified as described above and normalized by dry 

weights of individual tissues (mg). Results were expressed as fold change compared to 

corresponding controls (PBS inoculated mice). To analyze histamine-mediated systemic 

vascular leak, same procedures were performed except that mice were injected with Evans 

blue dye immediately following intraperitoneal injection with 100 µl of histamine in PBS 

(12.5 mg per kg body weight). 

A.5.9. Linkage analysis and generation of Histh congenic mice. 

Segregation of genotype frequency differences with susceptibility and resistance 

to Histh in (B10.S × SJL/J) × B10.S were tested by Chi-square (χ2) analysis in 2 x 2 

contingency tables. B10.S-HisthSJL congenic mice were derived by marker-assisted 

selection of SJL/J derived alleles and successive backcrossing to B10.S mice. 

A.5.10. Synteny mapping between Histh locus and SCLS GWAS candidates. 

The list of significant SNPs from SCLS GWAS (Xie et al., 2013) were retrieved 

and annotated to the corresponding human genes using SNP Nexus tool (Dayem Ullah et 

al., 2018). The orthologous mouse genes and their genomic coordinates were retrieved 
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using MGI-gene database at Jackson Labs (http://www.informatics.jax.org/batch). Genes 

that mapped outside the Histh interval were excluded from subsequent analysis.   

http://www.informatics.jax.org/batch).
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A.8. Figures 

 
 

 

Figure A.1. SCLS patients are hyper-responsive to histamine and morphine. 

(A-B) SCLS patients (n=16) or healthy controls (n=7) were injected intradermally with the 

indicated concentrations of histamine (A) or morphine (B). Wheal sizes were determined using 

ImageJ. ****p<0.00001, 2-way ANOVA. 
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Figure A.2. SJL mice phenocopy SCLS.  

(A-C) Phenotype data was obtained from mouse phenome database (https://phenome.jax.org/) for 

systolic blood pressure (A, MPD#23602), hematocrit (B, MPD#31825) and albumin (C, 

MPD#46001). Values for SJL mice (bold) were compared each mean trait variable for all strains 

(***p<0.001, ****p< 0.0001, Mann-Whitney U test). (D-E) Serum levels of VEGFA (D) and 

Angpt2 (E) in SJL and B10.S mice; (****p<0.0001, Mann-Whitney). 
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Figure A.3. Dermal vasculature of mice containing the identified Histh allele is 

hyper-responsive to histamine. 

(A-D) SJL, B10.S or B10.S-HisthSJL congenic mice were injected with Evans Blue (EB) dye i.v. 

followed by intradermal challenge with histamine for 30 min. (A) Skin biopsies from aged (>6 

months) mice after intradermal treatment with histamine (625 ng/mouse) or saline. (B-C) 

Quantification of EB extravasation in skin biopsies of B10.S, SJL, or B10.S-HisthSJL congenic mice. 

Each symbol represents one mouse; **p<0.003; ****p=0.00005; Holm-Sidak corrected t test. (D) 

Young (8-week-old) mice were primed with CFA or left untreated (ctrl) prior to histamine 

challenge. ***p=0.0006; ****p<0.0001, 2-way ANOVA, Tukey multiple comparisons v. B10.S 

mice (n=3-5 mice/group); ns= not significant. 
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Figure A.4. Systemic administration of histamine induces vascular leak in SJL and 

B10.S-HisthSJL but not B10.S mice. 

(A-B) EB was injected i.v. followed by i.p. injection of histamine (12.5 mg/kg) in either young (8-

week-old) mice primed with CFA (A) or aged mice (>6 months of age) (B). Extravasated dye was 

normalized to dry weight of the tissue/organ and expressed as fold change compared with controls 

(PBS). Each symbol represents an individual mouse; 2 independent experiments were performed; 

*p<0.03, **p=0.001; ***p=0.0004, Holm-Sidak corrected t test.  
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Figure A.5. Influenza-associated vascular leak in SJL mice as a means to model 

SCLS. 

SJL and B10.S mice were infected with influenza virus A/H3N2. (A) Weights were determined D0 

and D7 post-infection (*p=0.01, ****p<0.00001, Holm-Sidak corrected t test. (B) EB dye 

extravasation was evaluated at D8 post infection; symbol represents an individual animal; 2-4 

separate experiments were performed. ***p=0.0002, Holm-Sidak corrected t test. 
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Figure A.6. Shared genetic and phenotypic alignment between Histh and SCLS. 

(A) Of the 134 genetic loci implicated in SCLS (7), 9 (shown in red) were found to overlap with 

Histh locus on mouse Chr 6 (shown in orange). (B) Protein functional interaction networks for 

aging, inflammation, vascular permeability and anaphylaxis were generated using Ingenuity 

Pathway Analysis. These networks were used to assess biological interactions with 9 predicted 

SCLS candidates. Dotted lines represent an interaction. Each sub-phenotype and associated loci are 

color coded. Aging=pink; Inflammation=green; Vascular permeability=yellow and 

Anaphylaxis=orange 
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A.9 Tables 

Table A.1. SJL mice exhibit age and/or inflammation-dependent histamine 

hypersensitivity (Histh). 

 

 

Strain 
Histamine       

Strain 
Histamine CFA 

(mg/kg) aged 8 week   (mg/kg) aged  8 week  

SJL/J 

100 4/4 0/4   

SJL/J 

100 4/4 4/4 

50 4/4 0/4   50 4/4 4/4 

25 2/4 0/4   25 4/4 4/4 

12.5 0/4 0/4   12.5 0/4 0/4 

SJL/NCr 

100 4/4 0/4   

SJL/NCr 

100 4/4 4/4 

50 4/4 0/4   50 4/4 4/4 

25 2/4 0/4   25 4/4 4/4 

12.5 0/4 0/4   12.5 0/4 0/4 

B10.S/SgMcdJ 

100 0/4 0/4   

B10.S/SgMcdJ 

100 0/4 0/4 

50 0/4 0/4   50 0/4 0/4 

25 0/4 0/4   25 0/4 0/4 

12.5 0/4 0/4   12.5 0/4 0/4 

(B10.S x SJL) 

F1 

100 0/4 0/4   

(B10.S x SJL) F1 

100 0/4 0/4 

50 0/4 0/4   50 0/4 0/4 

25 0/4 0/4   25 0/4 0/4 

12.5 0/4 0/4   12.5 0/4 0/4 

Young (8-10 week-old) or aged (>6 months) mice were left untreated or pretreated with CFA by 

intraperitoneal (i.p.) injection and challenged 30 days later with the indicated doses of histamine 

(mg/kg) by i.v. injection. Deaths were recorded at t=30 min. Results are expressed as the # of 

deaths/total mice.  CFA=complete Freund's adjuvant. 
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Table A.2. Histamine sensitivity (Histh) maps to mouse chromosome 6. 

 

Marker Location  

Dead Alive 

χ2 p-value B10.S     SJL B10.S     SJL 

   Ho het Ho    Ho het Ho 

D6Mit116 25150229 29 36 53 90 71 203 6.84 3.28E-02 

D6Mit74 48726556 21 47 48 111 66 189 25.69 2.64E-06 

D6Mit17 71119218 16 56 45 116 57 180 51.16 7.76E-12 

D6Mit8 83713869 12 34 54 91 127 42 55.70 8.00E-13 

D6Mit178 94225829 13 31 56 94 130 37 67.80 2.00E-15 

D6Mit36 104503360 8 62 51 124 52 198 81.61 1.90E-18 

D6Mit54 112269957 5 38 55 89 137 35 80.30 3.70E-18 

D6Mit366 115242853 6 38 56 88 137 35 74.40 2.60E-17 

D6Mit216 121115242 9 65 41 120 42 192 103.36 3.59E-23 

D6Mit254 125356646 11 65 42 127 51 194 89.47 3.73E-20 

D6Mit59 138976326 10 58 49 124 56 188 66.44 3.74E-15 

D6Mit372 148450482 8 62 47 115 56 195 75.63 3.77E-17 

(B10.S x SJL) F2 mice were genotyped using microsatellite markers, and phenotyped for Histh: 

histamine sensitivity was determined by i.v. injection of 1.0mg of histamine free base in 0.2 ml of 

PBS 30 days post CFA injection. Deaths were recorded t=30 min. after histamine challenge.  
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Table A.3. Congenic mapping confirms the existence and location of the Histh locus. 

Strain Marker/Location(bp) Histh 
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CFA aged 

SJL/J S S S S S S 12/16 10/16 

B10.S B B B B B B 1/118 0/16 

B10.S-HisthSJL B S S S S B 34/73 4/8 

(B10.S x B10.S-HisthSJL) F1 B B/S B/S B/S B/S B 0/15 ND 

Cohorts of young (8 to 10-week old) mice pre-conditioned with CFA, or aged mice (>6 months) 

left untreated were challenged 30 days later with histamine (50-100 mg/kg) by i.v. injection. Deaths 

were recorded at t=30 min. Results in the two right columns indicate the #of animals dead/total 

mice. ND= not done; CFA=complete Freund’s adjuvant. 
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B.1. Abstract  

Genetic mapping is a primary tool of genetics in model organisms; however, many 

quantitative trait loci (QTL) contain tens or hundreds of positional candidate genes. 

Prioritizing these genes for validation is often ad hoc and biased by previous findings. Here 

we present a technique for computationally prioritizing positional candidates based on 

computationally inferred gene function. Our method uses machine learning with functional 

genomic networks, whose links encode functional associations among genes, to identify 

network-based signatures of functional association to a trait of interest. We demonstrate 

the method by functionally ranking positional candidates in a large locus on mouse Chr 6 

(45.9 Mb to 127.8 Mb) associated with histamine hypersensitivity (Histh). Histh is 

characterized by systemic vascular leakage and edema in response to histamine challenge, 

which can lead to multiple organ failure and death. Although Histh risk is strongly 

influenced by genetics, little is known about its underlying molecular or genetic causes, 

due to genetic and physiological complexity of the trait. To dissect this complexity, we 

ranked genes in the Histh locus by predicting functional association with multiple Histh-

related processes. We integrated these predictions with single nucleotide polymorphism 

(SNP) association data derived from a survey of 23 inbred mouse strains. The top-ranked 

genes included Cxcl12, Ret, Cacna1c, and Cntn3, all of which had strong functional 

associations and were proximal to SNPs segregating with Histh. These results demonstrate 

the power of network-based computational methods to nominate highly plausible 

quantitative trait genes even in highly challenging cases involving large QTLs and extreme 

trait complexity.  
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B.2. Introduction 

Identifying causal variants within quantitative trait loci (QTLs) is a central 

problem of genetics, but genetic linkage often prevents narrowing QTLs to less than several 

megabases (Mb). Thus, QTLs may contain hundreds of candidate genes. Instead of 

revealing the exact gene (or genes) responsible for trait variation, QTL mapping produces 

positional candidate genes. Rigorously narrowing a QTL by fine mapping with congenic 

strains can take years or decades, particularly in organisms such as mice that have long 

generation times. Moreover, high-resolution congenic mapping often reveals that the 

overall QTL effect is due to multiple linked genes within the QTL rather than a single gene 

(Yazbek et al., 2011; Parker et al., 2013). Thus, positional data alone are generally 

insufficient to nominate candidate genes for subsequent biological follow up. To overcome 

the limitations of mapping data, researchers look within a QTL for plausible candidate 

genes. However, these selections are typically done by ad hoc criteria using prior 

knowledge or a literature search. This strategy is strongly biased toward prior knowledge 

and is highly error prone due to missing annotations. There is a need for rigorous and 

systematic strategies to distinguish among positional candidate genes for mechanistic 

follow up. 

We developed a novel approach to rank positional candidates based on functional 

association with a trait. To avoid annotation or literature bias, we use functional genomic 

networks (FGNs), which encode predicted functional associations among all genes in the 

genome. FGNs such as the Functional Networks of Tissues in Mouse (FNTM) (Goya et 

al., 2015) and HumanBase (Greene et al., 2015), are Bayesian integration networks that 
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combine gene co expression, protein-protein binding data, ontology annotation and other 

data to predict functional associations among genes. With these networks we can expand 

on known gene-trait associations to identify sub-networks of trait-associated genes that 

include novel genes, including in the QTL of interest. 

Recent studies with functional genomic networks, for example FNTM, have 

demonstrated their power to associate novel genes with specific phenotype terms (Guan et 

al., 2010) or biological processes (Ju et al., 2013). For example, Guan et al. used a support 

vector machine (SVM) classifier to identify a gene network associated with bone 

mineralization and made validated predictions of novel genes that lay outside of all 

published QTLs for bone mineralization phenotypes (Guan et al., 2010). Subsequent 

studies using similar network-based techniques have made novel predictions of 

hypertension- and autism-associated genes (Greene et al., 2015; Krishnan et al., 2016). We 

have expanded these methods to rank genes in a mapped QTL based on multiple putative 

functional terms and to integrate these rankings with genetic association p values from 

strain surveys. Our method produces a final ranked list for all genes in the QTL that 

incorporates both the functional and positional scores of each candidate gene. 

Our strategy first builds trait-associated gene lists from structured biological 

ontologies (e.g., the Gene Ontology (Acencio et al., 2019)and the Mammalian Phenotype 

Ontology) (Smith et al., 2012) and public transcriptomic data from the Gene expression 

Omnibus (GEO) (Edgar et al., 2002; Barrett et al., 2013). We then applied machine 

learning classifiers to the functional networks of tissues in mice (FNTM) (Goya et al., 

2015) to identify network-based signatures of the trait-related gene lists. This strategy 
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allows us to predict gene-trait associations that are not currently annotated within a 

structured ontology, overcoming the missing annotation problem. 

We applied our approach to a large QTL associated with histamine 

hypersensitivity (Histh) in mice. Histh in mice is a lethal response to a histamine injection. 

In insensitive mice, a histamine injection produces an inflammatory response that resolves 

without further treatment. Mice with the Histh response develop excitation and ear 

blanching, followed by progressive respiratory distress, vasodilation, anaphylactic shock, 

and death (Vaz et al., 1977; Wang et al., 2014). Histh can be induced in a subset of mouse 

strains by sensitization with Complete Freund’s Adjuvant (CFA). Histh also develops 

spontaneously in SJL/J animals older than six months of age. 

We previously mapped Histh to a locus on Chr 6 (45.9Mb to 127.8 Mb; the Histh 

locus), which was confirmed using a congenic line (B10.S-HisthSJL) (Raza et al., 2019). 

Because of the large size of this locus, additional information is required to identify causal 

variants. To narrow down candidates, we integrated novel genetic association data from 

interval-specific congenic recombinant lines (ISCRLs) and an inbred strain survey with 

our network-based functional predictions of Histh-related genes. By augmenting positional 

data with functional predictions, we dramatically reduced the candidate gene list to a 

tractable set of high-quality candidates that are implicated in Histh-related processes.  
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B.3. Results 

B.3.1. Generation of Interval Specific Recombinant Congenic Lines (ISRCL) across 

the Histh locus.  

In prior work, we mapped the genetic locus regulating susceptibility to age- and/or 

inflammation (CFA)-dependent sensitivity to histamine on Chr 6 in SJL mice (Raza et al., 

2019). The B10.S-HisthSJL congenic mice exhibit Histh and carry a large ~ 83 Mb region 

of SJL between 45.9 Mb to 127.8 Mb on the resistant B10.S background (Raza et al., 2019). 

This large QTL includes 628 protein coding genes. To narrow this region, we generated 

five ISRCLs using B10.S-HisthSJL x B10.S backcross mice and assessed their susceptibility 

to Histh (Figure B.1). Under an additive model, these data suggest that Histh is composed 

of four sub-QTL which we have designated Histh1, Histh2, Histh3, and Histh4, each 

contributing 17%, 19%, 14% and 10%, respectively, to the overall penetrance. The sub-

QTLs are assigned # 6362992, 6362994, 6362996 and 6362997 accession numbers in 

Mouse Genome Informatics (MGI, www.informatics.org). Importantly, for each sub-QTL 

this makes positional candidate gene identification using interactive high-resolution 

congenic mapping impractical. 

B.3.2. Inbred strain survey of Histh. 

To investigate whether the Histh phenotype is unique to SJL, we assessed 

histamine responses for 23 inbred mouse strains (including SJL and B10.S; Table B.1). 

These strains were chosen using haplotype structure across the Histh interval to identify 

additional mouse strains that are likely to share a susceptible Histh allele (data not shown). 

129X1/SvJ, ALR/LtJ, BPN/3J, FVB/NJ, NOD/ShiLtJ, NU/J, SJL/BmJ and SWR/J mice 

http://www.informatics.org/


217 

 

were identified as having similar haplotype structure as SJL at the Histh locus. ALR/LtJ 

and SJL/BmJ mice required embryo recovery and were therefore not included. Histh 

phenotyping identified FVB/NJ, SWR/J, and NU/J mice as Histh-susceptible, whereas 

129/X1/SvJ, NOD/ShiLtJ, and BPN/3J were resistant. Taken together with our earlier data, 

these results indicate that Histh susceptibility segregates among a unique subset of SJL/J-

related strains (Petkov et al., 2004). 

B.3.3. Targeted genetic association analysis for Histh. 

Our result from previous linkage analysis (Raza et al., 2019) and congenic 

mapping localized Histh to an ~ 83 Mb region on Chr 6 between 45.9 Mb to 127.8 Mb. 

Given that Histh susceptibility is restricted to a unique subset of inbred strains, particularly 

the closely related SJL/J, FVB/NJ, and SWR/J, we performed a targeted association 

analysis (Benson et al., 2017) between SNPs in the Histh locus across all 23 inbred strains. 

We tested the association of 13,598 SNPs across the Histh locus using efficient mixed-

model association (EMMA) (Kang et al., 2008). A total of 84 SNPs in 23 genes showed 

significant associations (p<3.68x10-6) (Figure B.2). The majority of the significant hits 

were intronic (71%), non-coding (12%), intergenic (4%) or regulatory (5%) variants. 

Interestingly, there was overlap between three of the four Histh sub-QTLs (Figure B.2) and 

SNP-association peaks. 

B.3.4. Network-based prediction of Histh-associated genes. 

To predict functional candidates among the positional candidates in the Histh 

locus, we delineated a list of Histh-associated biological processes and trained machine 

learning classifiers to identify subnetworks of functional genomic networks associated with 
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each of these processes. An overview of our workflow is in Figure B.3. We first defined 

gene sets that were related to seven terms that are functionally related to the Histh 

phenotype. 

The terms and their justifications are as follows: 

• Type I hypersensitivity/Anaphylaxis: The death response following systemic 

histamine challenge exhibits symptoms of type I hypersensitivity/anaphylaxis 

including respiratory distress, vasodilation, and anaphylactic shock (Vaz et al., 

1977). 

• Cardiac: There is evidence suggesting that anaphylactic shock in mice is 

associated with decreased cardiac output, rather than solely a function of systemic 

vasodilation (Wang et al., 2014). 

• Histamine: Histh is elicited by a systemic histamine challenge (Raza et al., 2019). 

• G-protein coupled receptor: Histamine receptor H1 (Hrh1) signaling is required 

for the Histh phenotype, and all histamine receptors belong to the family of G-

protein coupled receptors (Hill et al. 1997). 

• Aging: Spontaneous Histh develops after six months of age in sensitive mouse 

strains (Raza et al., 2019). 

• Inflammation: Treatment with pro-inflammatory CFA induces Histh in sensitive 

mouse strains. 

• Tuberculosis: Histh is induced in some mouse strains by CFA, which contains 

inactivated Mycobacterium tuberculosis (Raza et al., 2019). 
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• Vascular permeability: The Histh response includes vascular leakage in skin and 

skeletal muscles as assessed by Miles’ assay (Raza et al., 2019). 

We used GeneWeaver, the Gene Expression Omnibus (GEO), and PubMed to 

retrieve gene sets associated with each of these terms (see Materials and Methods). The 

gene sets ranged in size from 651 to 1466 genes. Because Guan et al. (Guan et al., 2010) 

found that SVMs trained on gene sets with around 300 genes performed best for network-

based functional prediction, we clustered large gene sets into modules of approximately 

300 genes and analyzed each module separately (see Materials and Methods). Multiple 

members of these gene sets are encoded in the Histh locus. For example, e.g. Hrh1 was a 

member of the Anaphylaxis gene set. To reduce bias in classification, we removed all such 

genes from each gene set before SVM training. We then trained an ensemble of 100 SVMs 

on each module gene set. We calculated ROC curves for each model to quantify the ability 

of each set of SVMs to distinguish genes inside the module gene set from all genes outside 

the module gene set. AUCs ranged from 0.9 to 0.975 indicating that the SVMs were able 

to classify the genes in each list robustly. In other words, each gene set used to define a 

putative Histh-related process forms a distinct subnetwork of the full functional genomic 

network. 

We then applied the trained SVM models to the positional candidate genes in the 

Histh locus. By classifying each positional candidate, we can identify genes that are likely 

to be functionally associated with each module gene set. For example, for the Anaphylaxis 

module gene set, the histamine receptor Hrh1 received a positive score indicating that the 

SVMs predicted it belonging to the Anaphylaxis gene set despite its absence from the 
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training set. This example provides a positive control and shows that the SVMs identify 

biologically relevant patterns in the functional genomic network. In addition to the SVM 

score, we calculated a false positive rate (FPR) for each gene (see Materials and Methods). 

Low FPRs indicate high confidence in the classification. 

B.3.5. Integration of functional enrichment with genetic association. 

Genes that are predicted to be highly functionally related to the trait may not have 

functionally variant alleles in the study population and may therefore be unlikely to drive 

the observed strain differences in Histh. To identify genes that were likely to have 

functionally relevant polymorphisms, we integrated functional scores with SNP association 

p values to focus only on those candidates that satisfied both criteria. By plotting the 

maximum functional score for a gene, -log10 (FPRSVM) versus the -log10 (pEMMA) 

(normalized to the max values; see Materials and Methods), we can identify genes that 

were predicted to be both highly functionally related to Histh phenotype and likely to have 

functional polymorphisms that segregated with Histh susceptibility (Figure B.4). The blue 

line in Figure B.4 traces along the Pareto front of the gene set in this space. For any gene 

on this line, finding a gene with a stronger functional association means finding a gene 

with lower SNP p value, and vice versa. The genes near the Pareto front have either 

segregating polymorphisms or are predicted to be functionally related to Histh, or both. All 

such genes are potentially good candidates for experimental follow-up.  

To rank the candidates with a single score, we defined a final gene score (Scg) for 

each gene, which is the sum of the (normalized) -log10 (FPRSVM) and the -log10 (pEMMA) 

(Figure B.5). This score prioritizes candidates in the upper right quadrant with 
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simultaneously high positional and functional scores. The genes in the upper right 

quadrant—Cxcl12, Ret and Cacna1c—had near-maximal scores along both axes and were 

therefore ranked as the best candidates for follow-up. 

In addition to identifying the top-ranked gene over the full Histh locus, we 

identified a top-ranked gene for each sub-QTL identified through congenic mapping. 

Figure B.5A shows the functional associations across all modules of the top 20 genes 

ordered by final gene score (Scg).  
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B.4. Discussion 

In this analysis, we identified a small set of positional candidate genes in a large locus by 

combining computational predictions of functional association with Histh and SNP 

associations. The final list of genes is highly plausible and can be followed up relatively 

easily with modern genetic editing techniques. 

High-quality candidates for Histh.  

Three genes in the final ranked list deserve attention: Cxcl12, Ret, and Cacna1c. 

Of all genes in the locus, these three lie on the Pareto front with both low genetic 

association p values and high functional scores (Figure B.4). The top-ranked gene, Cxcl12 

(a.k.a. stromal cell-derived factor 1), is chemotactic for mast cells via the chemokine 

receptor Cxcr4 (Ghannadan et al., 2002). Mast cells are major drivers of pathological 

events in anaphylaxis (Lieberman et al., 2016), demonstrating that the final predictions are 

highly relevant to Histh. The second-ranked gene Ret encodes a pleiotropic tyrosine protein 

kinase involved in cell differentiation, growth, migration, and survival (Motenko et al., 

2015), inflammation (Rusmini et al., 2013) and the development of the cardiovascular 

system (Hiltunen et al., 2000). Alleles of this gene could conceivably modify multiple 

processes underlying Histh, including the both the anatomical background susceptible to 

Histh and the acute response to histamine. Ret was significantly associated with multiple 

functional gene sets (Figure B.5A). The third-ranked gene, Cacna1c, encodes the voltage-

dependent calcium channel Cav1.2, which is expressed in the heart, muscle, and endocrine 

glands (Mouse Genome Informatics Mouse Genome Informatics Web Site). Mutations in 

Cacna1c are associated with electrophysiological alterations in the heart (Napolitano et al., 
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1993; Hedley et al., 2009) suggesting a possible role for Cacna1c in impaired cardiac 

function in Histh. Interestingly, SNPs in human CACNA1C were recently associated with 

chronic spontaneous urticaria (i.e., spontaneous episodes of hives and/or angioedema) and 

antihistamine drug response (Yan et al., 2018). These results suggest a direct connection 

between Cacna1c and anaphylactic or hypovolemic shock. 

All of the above genes lie in the Histh4 locus, which accounts for only a portion 

of the total variation in the Histh phenotype. In the Histh3 locus, the highest-ranked 

candidate gene was Cntn3, which encodes for contactin 3, an activator protein of the small 

GTPase Arf. Cntn3 is a member of the contactin family of immunoglobulins. Genetic 

variants of human CNTN3 are associated with an enlargement of the aorta, acute heart rate 

recovery, and abdominal aortic aneurysm, suggesting a potential connection to impaired 

cardiac function during histamine challenge (Elmore et al., 2009). Intriguingly, CNTN3 is 

near a segregating SNP for Systemic Capillary Leak Syndrome (SCLS) from a human 

GWAS. SCLS is an extremely rare disease characterized by transient but potentially lethal 

episodes of diffuse vascular leakage of proteins and fluids into peripheral tissues, resulting 

in massive whole-body edema and hypotensive shock. The pathological mechanisms and 

genetic basis for SCLS remain elusive (Xie et al., 2013), but SCLS shares many phenotypic 

properties with Histh in mice. In particular, SCLS attacks are diagnosed based on the 

clinical triad of hypotension, elevated hematocrit, and hypoalbuminemia, all of which 

naturally occur in the Histh-sensitive SJL mouse strain (Raza et al., 2019). The potential 

association between CNTN3 and SCLS, therefore, lends credence to its possible functional 

role in Histh as well. Indeed, CNTN3 was not only a positional candidate in the SCLS 
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GWAS but was contained within functional terms that were enriched among the top 

positional candidate genes (cf. Table 5 of Xie et al. (Xie et al., 2013), indicating that 

CNTN3 functions in concert with other genetic risk factors for SCLS. 

In the Histh1 locus, the top hits were Creb5 and Tril. Creb5 codes for cyclic AMP-

Responsive Element-Binding Protein 5. Creb5 has high expression in the heart (Fagerberg 

et al., 2014) and has been implicated in cardiac function and pathology (Schisler et al., 

2015). Tril is Tlr4 interactor with leucine-rich repeats and is a functional component of 

Tlr4 complex involved with LPS signaling and is highly expressed in the kidney (Carpenter 

et al., 2009), indicating a potential role for Tril in blood pressure regulation. Tril(-/-) mice 

also produce lower levels of multiple proinflammatory cytokines and chemokines within 

the brain after E. coli and LPS challenge (Wochal et al., 2014), suggesting a potential role 

in immune modulation. There were no significant hits in the Histh2 locus. 

Further experimental validation will be required to confirm the association 

between our any of the above candidates and Histh. However, the above genes each have 

compelling functional associations that can inform follow up studies. 

Computation and quantitative trait gene prediction. 

Definitive functional validation of a quantitative trait gene (QTG) has 

traditionally required either congenic mapping to resolve an extremely narrow QTL, or ad 

hoc nomination of a candidate gene for direct experimentation. The advent of modern 

genetic technologies, such as CRISPR/Cas9 (Hsu et al., 2014), allow relatively fast and 

inexpensive allelic manipulations, so the burden of QTG prediction is moving toward a 
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regime in which a small handful of strong candidates can be followed up individually. 

Importantly, many QTLs, including Histh, contain multiple causal variants, so fine-

mapping alone cannot provide definitive validation. Therefore, computational tools that 

can identify a small number of reasonable candidates can be a significant aid in biological 

follow-up. We have presented an integrative strategy for ranking genes in a QTL by 

combining predicted functional associations to the trait with SNP associations. Our method 

produces a full ranked list of genes in the locus providing researchers with the potential to 

validate multiple targets. To this end, the Histh QTL represents an extreme use case for 

QTG prediction–a large, polygenic QTL associated with a physiologically complex trait. 

One major limitation to our approach is the decision of which functional terms to 

include for network-based prediction. The better tailored this set is to the trait of interest, 

the greater confidence we can have in the final predictions. In principle, the inclusion of a 

spurious functional term could skew the rankings toward genes that are functionally 

associated with the spurious term but irrelevant to the trait of interest. One potential way 

around this issue is to use functional data, such as transcriptomics, directly from the 

mapping population. However, in some cases, including Histh, the relevant tissue in which 

to measure gene expression may not be obvious. Alternatively, one could consider distinct 

rankings for each functional term. In any case, the researcher will have to exercise some 

measure of judgment in the prioritization process. However, by transferring the judgments 

from a large list of positional candidate genes to a smaller and more tractable list of trait-

related biological processes, we have shown that we can arrive at a strong set of follow up 
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candidates that would have evaded naive p-value filters and are relatively unbiased by 

findings published in the literature. 

The final output of our method, a ranked list of positional candidate genes, is easy 

to interpret, and provides researchers with a clear set of hypotheses to test in the lab. While 

this approach cannot definitively identify the causal gene or genes in a locus, it does 

provide a much-reduced set of plausible candidates to test. 
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B.5. Material and Methods 

B.5.1. Animals.  

A total of 23 mouse strains (129X1/SvJ, A/J, AKR/J, B10.SH2s/SgMcdJ (B10.S), 

BALB/cJ, BPL/1J, BPN/3J, C3H/HeJ, C57BL/6J, CBA/J, CZECHII/EiJ, DBA/1J, 

DBA/2J, FVB/NJ, JF1/MsJ, MOLF/EiJ, MRL/MpJ, MSM/MsJ, NOD/ShiLtJ, NU/J, 

PWD/PhJ, PWK/PhJ, SJL/J and SWR/J were purchased from the Jackson Laboratory (Bar 

Harbor, ME). All mice, including B10.S-HisthSJL and B10.S-HisthSJL ISRC lines, were 

generated and maintained under specific pathogen-free conditions in the vivarium of the 

Given Medical Building at the University of Vermont according to National Institutes of 

Health guidelines. All animal studies were approved by the Institutional Animal Care and 

Use Committee of the University of Vermont. 

B.5.2. Histh Phenotyping.  

On D0 mice were injected i.p. with complete Freund’s adjuvant (CFA) (Sigma-

Aldrich, St. Louis, MO) supplemented with 200 mg of Mycobacterium tuberculosis H37Ra 

(Difco Laboratories, Detroit, MI). On D30 histamine hypersensitivity was determined by 

i.v. injection of histamine (mg/kg dry weight free base) in phosphate buffered saline (PBS). 

Deaths were recorded at 30 min post injection and the data are reported as the number of 

animals dead over the number of animals studied. Significance of observed differences was 

determined by Chi-square with p-values <0.05 significant. 

B.5.3. DNA extraction and genotyping.  

DNA was isolated from mouse tail clippings as previously described (Sudweeks 

et al., 1993). Briefly, individual tail clippings were incubated with 300µL cell lysis buffer 
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(125µg/mL proteinase K, 100 mM NaCl, 10mM Tris-HCl (pH 8.3), 10 mM EDTA, 

100mM KCl, 0.50% SDS) overnight at 55◦C. The next day, 150µL of 6M NaCl were added 

followed by centrifugation for 10 min at 4◦C. The supernatant layer was transferred to a 

fresh tube containing 300µL of isopropanol. After centrifuging for two minutes, the 

supernatant was discarded, and pellet washed with 70% ethanol. After a final two min 

centrifugation, the supernatant was discarded, and DNA was air dried and resuspended in 

50µL TE. 

Genotyping: Genotyping was performed using either microsatellite markers in a 

standard PCR reaction or sequence specific SNP primers in a phototyping reaction. 

Polymorphic microsatellites were selected to have a minimum polymorphism of 8bp for 

optimal identification by agarose gel electrophoresis. Briefly, primers were synthesized by 

IDT-DNA (Coralville, IA) and diluted to a concentration of 10µM. PCR amplification was 

performed using Promega GoTaq. The cycling conditions included a two-minute initial 

denaturation step at 94°C followed by 35 cycles of 94°C for 30 seconds, 55°C for 30 

seconds and 72°C for 30 seconds followed by a final extension step at 72°C for five 

minutes. Amplicons were subjected to 2% agarose gel electrophoresis and visualized by 

ethidium bromide and UV light. 

Phototyping: Genotyping was performed using sequence specific primers that 

differ only at the 3’ nucleotide corresponding to each allele of the identified SNP (Bunce 

et al., 1995). Each primer set was designed using Primer3 to have a Tm of 58-60oC, 

synthesized by IDT-DNA (Coralville, IA), and used at a concentration of 100mM (primer 

sequences are available online 
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(https://github.com/MahoneyLab/HisthFunctionalRankings). PCR reactions were 

subjected to multistage (high, medium and low stringency) cycling conditions as 

described and if found to be necessary, the cycle conditions at each stage were adjusted to 

accommodate the optimal annealing temperature. Amplicons were electrophoresed with 

10µl Orange G loading buffer on a 1.5% agarose gel stained with ethidium bromide and 

visualized by UV light. The presence of a SNP specific allele was scored by observing an 

amplicon of the expected size in either reaction. Cycling conditions are available in 

Supplemental Figure B.1. 

B.5.4. Generation of Histh congenic lines and GigaMUGA. 

B10.S-HisthSJL ISRC lines were generated by identifying recombinant haplotypes 

across the Histh interval among (B10.S-HisthSJL × B10.S) × B10.S BC1 mice and then 

fixed as homozygous lines (Figure B.1). To identify potential contaminating background 

loci segregating among the strains and to further refine the recombination break points of 

each line, the lines were further genotyped using GigaMUGA arrays (143,259 markers) by 

the commercial service of Neogen/Geneseek (Lincoln, NE).  

B.5.5. Targeted genetic association testing. 

We retrieved genotype data (both coding and non-coding) of the 23 mouse strains 

from the databases at the Sanger Institute (https://www.sanger.ac.uk/science/data/mouse-

genomes-project) and The Jackson Laboratory (https://phenome.jax.org/). The lack of 

representation of genotype data from B10.S, BPN/3J, BPL/1J, CZECHII/EiJ, JF1/Ms, 

MOLF/EiJ, MRL/MpJ, NU/J, PWD/J and SJL/J in these databases were compensated by 

the following:  

https://github.com/MahoneyLab/HhsFunctionalRankings
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The Chromosome Region Capture Sequencing 

Fragment DNA.  3 µg of genomic DNA was sheared into fragments of 

approximately 200 bp with the Covaris E220 system (Covaris, USA), and purification 

was performed with 1.4-fold volume of AMPure XP Beads (Beckman, USA). 

DNA Library Construction. After the purification of the sheared DNA, the library 

was constructed with SureSelect Library Prep Kit (Agilent, USA). End-repair was 

performed with the volume of 10× End Repair Buffer, dNTP Mix, T4 DNA Polymerase, 

Klenow DNA Polymerase and T4 Polynucleotide Kinase, reacted at 20 °C for 30 min, and 

1.8× the volume of AMPure XP Beads was added for purification; adding A at the 3' end 

was performed with the volume of 10×Klenow Polymerase Buffer, dATP and Exo(-) 

Klenow, reacted at 37 °C for 30 min.  T4 DNA Ligase Buffer, SureSelect Adaptor Oligo 

Mix and T4 DNA Ligase were added and reacted at 20 °C for 15 min. Adaptor-ligated 

library was amplified through added in SureSelect Primer, SureSelect ILM Indexing Pre 

Capture PCR Reverse Primer, 5×Herculase II Rxn Buffer, 100 mM dNTP Mix and 

Herculase II Fusion DNA Polymerase, and the reaction procedure is: 98 °C pre-

denaturation 2 min, 98 °C denaturation 30 Sec, 65 °C annealing 30 Sec, 72 °C extension 

30 Sec , amplified for 4 rounds. Purification was performed with 1.8X Agencourt AMPure 

XP beads after each enzymatic reaction. The adaptor-ligated library around range of 225 ~ 

275bp was finally obtained. 

Hybridization capture. Prepared library was executed hybridization capture 

experiment with the SureSelect Target Enrichment Kit (Agilent, USA). The prepared 

library reacted with SureSelect Block Mix in 95 °C 5min, followed by maintaining in 65 
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°C and then Hybridization Buffer, capture library mix was added in and reacted at 65 °C 

24hrs, finally Dynabeads M-280 streptavidin (Life, USA) was used for the enrichment of 

the Captured DNA library (Gnirke et al., 2009; Mamanova et al., 2010). 

Index amplification. 5×Herculase II Rxn Buffer, 100 mM dNTP Mix, SureSelect 

ILM Indexing Post Capture Forward PCR Primer and Herculase II Fusion DNA 

Polymerase were added in the enriched captured DNA library for index amplification. 

The reaction procedure is 98°C Pre-denaturation 2 Min, 98 °C denaturation 30 Sec, 57 °C 

annealing 30 Sec, 72 °C extension 30 Sec, amplification 12 rounds, followed by the 

purification using 1.8 times the volume of AMPure XP Beads. A Sequencing library of 

250-350 bp range was finally obtained (Gnirke et al., 2009). 

Sequencing. A 10 ng library was used for cluster generation in cBot with the 

TruSeq PE Cluster Kit (illumina, USA) followed by bidirectionally sequenced in Illumina 

Hiseq 2500 to obtain the data of 2x150 bp. 

Whole-genome sequencing 

DNA Library Construction. For whole-genome sequencing, DNA libraries was 

constructed according to Illumina recommended protocols. Briefly, 3 µg of genomic DNA 

was sheared into fragments of approximately 300-400 base pairs with the Covaris E220 

system, followed by end-repair, A-tailing, and ligation of the Illumina multiplexing PE 

adaptors. Purification was performed with 1.8X Agencourt AMPure XP beads after 

enzymatic reactions. An agarose gel electrophoresis with a concentration of 2% to separate 

DNA products was performed, and DNA fragments with a length between 300 and 400 bp 
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were recycled and purified according to the user guide of Qiagen Gel Extraction Kit. A 

PCR enrichment experiment was performed to ensure that DNA products to be successfully 

sequenced was enough. 

Library inspection. After construction of the library, preliminary quantification 

was performed using Qubit 2.0, and the library was diluted to 1 ng/ul, and then the insert 

size of the library was detected using Agilent 2100. If the insert size was as expected, Q-

PCR was performed to accurately quantify the effective concentration of the library (library 

effective concentration >10 nM) to ensure library quality. 

Sequencing. Finally, these DNA fragments were subjected to the Illumina Hiseq 

2000 platform for pair-end sequencing (PE150). The raw image data files obtained by high-

throughput sequencing (Illumina) were converted into Sequenced Reads by CASAVA, and 

the results were stored in FASTQ format. The read length was 150 bp. 

Data processing and analysis. To ensure the quality of subsequent information 

analysis, the original sequence was filtered with the software SolexaQA to get high quality 

Clean Reads (Cox et al., 2010). Efficient high-quality sequencing data was mapped to the 

reference genome mm10 by BWA software(Li et al., 2009a), samtools (Li et al., 2009b) 

was used for sorting, picard tools was used for duplication, and GATK was used for Indel 

Realignment and Base Recalibration (McKenna et al., 2010). Finally, HaplotypeCaller of 

GATK is used for mutation detection. The VCF format file was filtered with VCFtools 

(Danecek et al., 2011). The SNP filtered results of each sample are annotated by 

ANNOVAR software (Wang et al., 2010), which mainly includes three aspects: annotation 
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based on gene, genomic region and function. GATK software was also used to detect InDel, 

and pindel was used to detect SV (Ye et al., 2009), which is divided into four types: 

deletions (>5bp), Insertions (>5bp), inversions and tandem duplication. The VCF format 

files were converted to Plink files with VCFtools.  

All these data sources were collated to generate genotype information for a total 

of 13,598 SNPs across the Histh locus. To calculate associations between genetic 

polymorphisms and Histh, we used efficient mixed-model association (EMMA) (Kang et 

al., 2008). This method treats genetic relatedness as a random variable in a linear mixed 

model to account for population structure, thereby reducing false associations between 

SNPs and the measured trait. We used the likelihood ratio test function (emma.ML.LRT) 

to generate p values. Significance was defined with a Bonferroni correction (p = 0.05/13, 

598). Genomic coordinates included for each SNP using the latest mouse genome build 

GRCm38.p5/mm10. 

B.5.6. Trait-related gene sets. 

The positional candidate genes were ranked based on their predicted association 

with seven functional terms related to the Histh phenotype: “aging", “mycobacterium 

tuberculosis", “cardiac", “G protein coupled receptor", “histamine", “inflammation", “type 

I hypersensitivity", and “vascular permeability." We used Gene Weaver (Baker et al., 

2012) to identify genes associated with each term. We entered each term into the Gene 

Weaver homepage (https://geneweaver.org). We restricted the search to human, rat, and 

mouse genes, and to curated lists only. Mouse homologs for each gene were retrieved using 

batch query tool in MGI (http://www.informatics.jax.org/batch_data.shtml). In addition, 

https://geneweaver.org/
http://www.informatics.jax.org/batch_data.shtml
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we used Gene Expression Omnibus (GEO) and PubMed to retrieve expression data sets for 

each phenotype term. Final gene lists consisted of the unique set of genes associated with 

each process term. 

B.5.7. FNTM network.  

We trained support vector machines (SVMs) to classify genes in each gene list 

using features derived from the Functional Network of Tissues in Mouse (FNTM) (Goya 

et al., 2015). In this network, genes are nodes, and the edge weights between them are 

continuous values between 0 and 1 predicting the degree to which each pair of genes is 

functionally related. Larger values indicate higher predicted functional relatedness. 

Functional relatedness in this network was predicted through Bayesian integration of data 

sets from multiple sources, including gene expression, protein-protein interaction data, and 

annotation to GO terms (Goya et al., 2015). We downloaded the top edges of the mouse 

network on January 15, 2018 from https://http://fntm.princeton.edu.  

B.5.8. Clustering gene sets.  

Guan et al. (Guan et al., 2010) noted that support vector machines trained on 200 

to 300 genes yielded the best classification accuracy. Two of our gene lists had fewer than 

100 genes. For all lists over 400 genes, we reduced the size of our training sets by clustering 

each term gene set into modules using the fast greedy (Newman, 2004) algorithm in the 

R/igraph package (Csardi, 2006). We applied the fast greedy algorithm iteratively until all 

modules comprised fewer than 400 genes. Using a maximum modules size of 300 overly 

fragmented the networks yielding many modules with fewer than 100 genes. 

https://http/fntm.princeton.edu
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B.5.9. Machine learning.  

To classify novel genes as belonging to a functional module, we trained SVMs 

using the connection weights in the FNTM network as features, as described in (Guan et 

al., 2010). Briefly, an annotated set of genes (Figure B.6A, blue nodes) is used as a set of 

known positives for the corresponding functional module. Other genes in this module are 

expected to be strongly functionally connected to these known positives, i.e. have high 

probability of functionally interacting with known positives. Each gene, therefore, is 

represented as a feature vector of connection weights to the known positives, which can be 

visualized as a sub-matrix of the adjacency matrix of the network (Figure B.6B). 

Correspondingly, the rows of this matrix are labeled as either known positive or not (Figure 

B.6B, blue dots vs. gray dots). We used the e1071 package in R (Dimitriadou et al., 2008) 

to train SVMs to distinguish the known positive genes from an equal-sized set of genes 

selected at random from outside the known positive list using the network-based feature 

vectors (Figure B.6C). The trained model can then annotate novel genes as belonging to 

the functional module by classifying all gene in the genome (Figure B.6C, green bordered 

nodes). We trained 100 SVMs on each module selecting a new set of random genes for 

each run. We used a linear kernel and 10-fold cross-validation for each SVM. We trained 

each SVM over a series of cost parameters. We started with the sequence 1 × 10−5 to 1 × 

102 by factors of 10, and iteratively narrowed the range of cost parameters until we found 

a series of eight cost parameters that maximized the accuracy of the SVM (see Workflow). 

We calculated the area under the ROC curves (AUC) over all runs in the following 

way: For a sequence ranging from the minimum SVM score to the maximum SVM score, 
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we quantified all true positives (TP), true negative (TN), false positives (FP) and false 

negatives (FN). The TP genes in this case were those genes from the known positives that 

were correctly classified as being in the module (above the SVM score cutoff). TN genes 

in this case were those genes outside the module that were correctly classified as being 

outside the module (below the SVM score cutoff). We calculated the AUC across the 

average curve for all 100 SVMs for each module. 

B.5.10. Positional Candidate Scoring. 

We used the trained SVMs to score each positional candidate gene in the Histh locus. The 

score for each gene gave an estimate of how functionally related each gene was to each 

module based on its connection weights to the known module genes in the FNTM mouse 

network. Genes with large positive scores were predicted by the SVMs to interact 

functionally with the genes in the module, while genes with negative scores were predicted 

to not functionally interact with the module genes. To be able to compare SVM scores 

across different trained models, we calculated a false positive rate (FPR) for each gene and 

each SVM as follows: For each gene’s SVM score we calculated the number of true 

positives (TP), true negatives (TN), false positives (FP) and false negatives (FN) classified 

by the SVM. The FPR for a given SVM score was calculated as FP/(FP + TN). 

The final functional score for each was the max(−log10(FPR)) across all modules. 

This meant that genes with a high functional score for a single module, but low functional 

scores for other modules received higher overall scores than genes with moderately high 

scores across all modules. 
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B.5.11. Combined Gene Score. 

High-quality candidate genes in the locus should not only be functionally related to the 

trait of interest, but should also segregate with the trait of interest. We thus defined a 

combined gene score (Scg) that combined these two aspects of the analysis: 

 

where the denominators of the two terms on the right hand side are the maximum values 

of −log10(pEMMA) and −log10(FPRSVM) over all positional candidates in Histh, respectively, 

which normalizes the functional and positional scores to be comparable to each other. 

EMMA p values for SNPs were assigned to the nearest gene within 1 megabase using the 

R package biomaRt (Durinck et al., 2005; Durinck et al., 2009). Genes for which more 

than one SNP was assigned were given the maximum −log10(pEMMA) across all SNPs 

associated with that gene. The rows of this matrix are sorted by the maximum gene score 

across all gene lists. 

B.5.12. Data Availability. 

A reproducible workflow in R markdown is available on GitHub 

(https://github.com/MahoneyLab/HisthFunctionalRankings). This workflow contains all 

code required to reproduce the figures and results presented in this manuscript. The data 

used as input for the workflow, as well as intermediate and final-results are available on 

Figshare (https://figshare.com).  

https://github.com/MahoneyLab/HhsFunctionalRankings
https://figshare.com/
https://figshare.com/
https://figshare.com/
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B.8. Figures 

 

Figure B.1. Interval specific recombinant congenic (ISRC) mapping places Histh 

candidates in four genetic loci. 

ISRC lines were injected (D0) with complete Freund’s adjuvant (CFA) and subsequently 

challenged (D30) with and i.v. injection of histamine to determine histamine hypersensitivity. 

Deaths were recorded at 30 min post injection and the data are reported as the number of animals 

dead over the number of animals studied. Significance of observed differences was determined by 

a χ2 test with p-values <0.05 considered significant.  
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Figure B.2. Targeted genetic association analysis for Histh. 

Negative log-transformed p values of SNP associations with Histh. Genomic coordinates (mm10 

Mbp) of each SNP are shown along the x-axis. Each circle denotes a single SNP. Gene names are 

included for SNPs that crossed p-value threshold of 3.68 × 10−6 shown with a red dotted line. The 

location of Histh sub-QTLs are shown at the top of the figure. 
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Figure B.3. Workflow Overview. 

The workflow is broken into blocks by color, each with a bolded title. Each block shows how data 

(blue rectangles) were operated on (gray rectangles) to achieve results (green rectangles). Arrows 

show the general flow of work and dependence (and independence) of individual analyses. 
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Figure B.4. Two axes of gene scoring. 

Gene names are plotted by their −log (pEMMA) on the x-axis and the −log (FPRSVM) on the y-axis. 

Both scores were scaled by their maximum value for better comparison. Genes farther to the right 

were associated with SNPs that segregated with Histh. Genes higher up on the y-axis are associated 

with stronger functional association with gene modules. The blue line marks the Pareto front. Genes 

on this line maximize the two scores and are the best candidates based on the combination of both 

scores.  
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Figure B.5. Final gene scores. 

Gene functional values were combined with SNP associations to assign each gene a final gene score 

(Scg). Higher gene scores indicate better candidates. (A) Heat map showing the final score of each 

of the top 20-ranked genes for each gene module. To aid visualization of the strongest candidates, 

A 

B Histh1 Histh2 Histh3 Histh4 
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asterisks in each cell indicate where candidate genes were associated with a module with an FPRSVM 

≤ 0.2. (B) The top panel shows individual SNPs plotted at their genomic location (x-axis) and their 

log10(pEMMA) (y-axis). All SNPs with nominally significant p value (p ≤ 0.05) are plotted. The 

horizontal line indicates the Bonferroni corrected significance cutoff (p ≤ 0.05/13598). The bottom 

panel shows genes plotted at their genomic location (x-axis) and their final gene score (Scg) (y-axis) 

to demonstrate how the final ranked genes align with the SNP association data. 
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Figure B.6. Network-based machine learning for functionally annotating genes. 

(A) Known-positive genes annotated to a functional term (blue nodes) are typically densely 

interconnected in a functional network. (B) The adjacency matrix of a network is a tabular 

representation of the connectivity structure of the network in which each row/column corresponds 

to a node of the network, and connected pairs of nodes have non-zero values in the corresponding 

cell of the matrix. Note that in general the connections are weighted, but for display we are only 

showing present/absent links (white/black cells). The connections from every gene in the genome 

to the known positives form a sub-matrix of the adjacency matrix called the feature matrix (vertical 

red lines), whose rows are the feature vectors for each gene. (C) Using the network-based feature 

vectors for each gene, we train SVMs to distinguish known positives (blue dots) from random genes 

in the genome (gray dots) to identify the full sub-network corresponding to the true positive genes 

(green bordered dots and dotted red lines in panels A,B).  

A B C 
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B.9. Tables 

Table B.1. A survey of Histh phenotypes across 23 inbred mouse strains. 

Strain HA  Strain HA  Strain HA  Strain HA  

129X1/SvJ 0/8 C3H/HeJ 0/8 DBA/2J 0/8 PWK/PhJ 0/6 

A/J 0/8 C57BL/10J 0/8 JF1/Ms 0/8     

AKR/J 0/8 C57BL/6J 0/7 MOLF/EiJ 0/8 FVB/J 6/8 

BALB/cJ 0/8 CBA/J 0/8 MRL/MpJ 0/8 NU/J 5/8 

BPL/1J 0/8 CZECHII/EiJ 0/8 NOD/ShiLtJ 0/8 SJL/J 12/12 

BPN/3J 0/8 DBA/1J 0/8 PWD/PhJ 0/12 SWR/J 6/8 

Cohorts of CFA injected 8 to10 week old mice were challenge 30 days later with 75 mg/kg HA by 

i.v. injection, and deaths recorded at 30min. Results are expressed as the #of animals dead/#of 

animals studied  
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B.10. Supplemental Data. 

Supplemental Table B.1. Cycling conditions for PCR. 

 Cycling conditions for SNP 96oC 60s 1cycle   

      96oC 60s     

      70oC 45s annealing 
5 cycles 

      72oC 25s   

              

      96oC 25s     

      65oC 50s  annealing 21 

cycles 
      72oC 30s   

        25s     

              

      96oC 30s     

      55oC 60s  annealing 
4 cycles 

      72oC 90s   

              

      cool by ramping to 20oC for 30s 
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complex (EMC); Endoplasmic reticulum-associated degradation (ERAD.   
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C.1. Abstract 

Susceptibility to Bordetella pertussis and pertussis toxin (PTX) induced histamine 

sensitization (Bphs/Bphs) is controlled by histamine H1 receptor (Hrh1/H1R) alleles, with 

the susceptible (BphsS/H1R
S) and resistant (BphsR/H1R

R) alleles differing by three amino 

acids (P263L, V313M and P331S) within the third intracellular loop associated with signal 

transduction, protein folding, and trafficking. Functionally, the two alleles equally activate 

Gαq/11, the G protein family members that couple H1R signaling to second messenger 

signaling backways, indicating that susceptibility and resistance is not due to differential 

activation of Gαq/11. In contrast, the two alleles exhibit differential cell surface expression 

and altered intracellular trafficking, with the H1R
R allele preferentially retained within the 

endoplasmic reticulum (ER), and all three residues comprising the H1R
R haplotype 

required for altered expression. Given the importance of H1R signaling in health and 

disease we phenotyped and sequenced the third intracellular loop of H1R among a large 

panel of inbred laboratory and wild-derived mouse strains to identify potential allelic co-

adaptations capable of complementing BphsR in mice with a H1R
R allele. Taking this 

approach, we identified eight inbred mouse strains with a H1R
R allele that are BphsS 

(BphsS/H1R
R). Genetic analyses mapped the locus complementing BphsR to mouse Chr 6, 

in linkage disequilibrium with Hrh1; designated Bphs-enhancer (Bphse). Interval-specific 

SNP based association testing and functional enrichment resulted in the identification of 

nine candidate genes for Bphse within a 113-116Mb interval, including Atp2b2, Atg7, 

Pparg, Syn2, Ift122, Raf1, Mkrn2, Timp4 and Gt(ROSA)26Sor. These findings reveal an 

additional mechanism by which genetic factors control BphsS.
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C.2. Introduction 

Histamine (2-[4-imidazole]-ethylamine) is an endogenous biogenic monoamine 

that is synthesized, stored intracellularly within granules, and following cellular activation 

released by mast cells, basophils, platelets, neurons, and enterchromaffin-like cells in the 

stomach (Panula et al., 2015). After release, free histamine (HA) mediates its effects by 

binding to four different 7-transmembrane G-protein-coupled receptors (GPCRs): 

histamine receptor H1 (Hrh1/H1R), Hrh2/H2R, Hrh3/H3R, and Hrh4/H4R, expressed on 

target cells in various tissues (Parsons et al., 2006). 

Histamine acting through these receptors influences a diverse array of physiological 

processes, including brain function, neurotransmission, secretion of pituitary hormones, 

cell proliferation and differentiation, hematopoiesis, embryonic development, wound 

healing and regeneration, and the regulation of gastrointestinal, cardiovascular, and 

secretory functions (Parsons et al., 2006). In addition, HA plays a major role in 

inflammation and the regulation of innate and adaptive immune responses in both normal 

and pathologic states (Branco et al., 2018). In fact, HA has been linked to more than 

twenty-five different physiological functions and is one of the most extensively studied 

chemical compounds with physiologic activity (Falus et al., 2004). 

Historically, HA is most well-known for its role in HA-shock and anaphylaxis 

(Peavy et al., 2008a). Histamine was first synthesized in 1907 (Windaus et al., 1907), and 

in 1910 isolated in sufficient quantities for experimentation by Barger from the parasitic 

rye mold, ergot (Claviceps purpurea) (Barger G, 1910). They showed that HA caused 

smooth muscle contraction, and subsequently, in a series of crucial experiments, Dale 
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found that HA induced a shock‐like syndrome when injected into mammals (Dale et al., 

1910). In addition, HA caused bronchiolar constriction, constricted cardiac and pulmonary 

arteries and stimulated cardiac contraction. Further research firmly established that HA 

was a natural constituent of the body and a mediator of anaphylactic shock (Peavy et al., 

2008b). 

Studies of species differences in susceptibility to HA-shock revealed significant 

differences with guinea pigs and rabbits being highly susceptible whereas mice and rats, 

were in general, remarkably resistant (Munoz et al., 1968). However, Parfentjev showed 

in 1948 that prior exposure of mice to Bordetella pertussis vaccine increased the 

susceptibility of mice to HA up to 100-fold (Parfentjev et al., 1948). Susceptible strains 

died within 30 minutes as a result of hypotensive (drop in blood pressure) and hypovolemic 

(drop in blood volume) shock (Iff et al., 1966). This phenotype was designated Bphs for 

B. pertussis-induced histamine sensitivity (Sudweeks et al., 1993). Subsequent studies 

showed that B.pertussis-treated mice exhibited increased vascular permeability and 

alteration in blood-tissue barrier functions in association with susceptibility to HA-shock 

and other vasoactive agents including serotonin (Bpss) and bradykinin (Bpbs) (Gao et al., 

2003b). The sensitization phenotype is unique to B. pertussis, as other bacterial or viral 

infections/exposures do not elicit increased sensitivity to HA-shock (Kind, 1953). The 

sensitizing activity elicited by exposure to B. pertussis was subsequently shown to be a 

function of pertussis toxin (PTX)-catalyzed ADP-ribosylation of the α subunit of 

heterotrimeric Gi/o proteins (Gαi/o) (Katada et al., 1982; Kurose et al., 1983; Diehl et al., 

2014). 
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Genetic studies using inbred strains of mice established that  susceptibility to Bphs, 

Bpss, and Bpbs are under unique genetic control (Diehl et al., 2014) and that Bphs was 

controlled by a single dominant locus (Wardlaw, 1970). Using a forward genetic approach, 

we identified Bphs as Hrh1/H1R. H1R-susceptible (BphsS/H1R
S) and -resistant 

(BphsR/H1R
R) alleles differ by three amino acids (P263L, V313M and P331S) (Ma et al., 

2002a) within the disordered third intracellular loop of GPCRs that is implicated in signal 

transduction, protein folding, and trafficking (Venkatakrishnan et al., 2014; Latorraca et 

al., 2017). Functionally, H1R
S and H1R

R alleles equally activate Gαq/11, the G protein family 

members that couple H1R signaling to second messenger signaling pathways (Parsons et 

al., 2006; Monczor et al., 2016), indicating that the genetic control of susceptibility and 

resistance to Bphs is not inherently due to differential activation of either Gαq or Gα11. 

However, the two alleles exhibit differential cell surface expression and altered 

intracellular trafficking, with the H1R
R allele selectively retained within the endoplasmic 

reticulum (ER). Importantly, all three residues (263L-313M-331S) comprising the H1R
R 

haplotype are required for altered expression (Noubade et al., 2008).  

Given the importance of H1R signaling in health and disease we phenotyped and 

sequenced the H1R alleles of a panel of inbred laboratory and wild-derived strains to 

identify potential allelic co-adaptations capable of complementing BphsR in mice with a 

H1R
R allele. We identified eight inbred strains that phenotyped as BphsS, despite carrying 

an H1R
R allele. Genetic analysis, reported herein, identified a dominant locus linked to 

Hrh1 capable of complementing BphsR. We have designated this locus Bphse for Bphs-
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enhancer. Interval-specific SNP-based association testing and functional enrichment are 

used to identify candidate genes for Bphse.  
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C.3. Results 

C.3.1. H1R is highly conserved in mice.  

Given the role of H1R signaling in diverse normal and pathologic states, particularly 

HA-shock anaphylaxis, we undertook a genetic approach to screen for evolutionarily 

selected mechanisms that may be capable of complementing BphsR. Toward this end, we 

sequenced the third intracellular loop of Hrh1 across a panel of 91 inbred laboratory and 

wild-derived strains of mice (Table C.1). Surprisingly, we did not identify any additional 

genetic variants other than the P263L, V313M and P331S haplotypes associated with 

BphsS/H1R
S and BphsR/H1R

R (Ma et al., 2002a). Of the 91 strains, 22 carry the BphsR/H1R
R 

allele whereas 69 carry the BphsS/H1R
S allele. The evolutionary distribution of the two 

alleles was assessed using a published mouse phylogenetic family tree (Petkov et al., 2004) 

(Supplementary Figure C.1). The BphsR/H1R
R allele was primarily restricted to wild-

derived Group 7 strains and a selected sub-branch of Group 1 Bagg albino derivatives 

whereas the BphsS/H1R
S allele was distributed across Groups 2-6. Interestingly, Group 7 

is highly heterogeneous and includes representatives of M. m. domesticus (PERA, PERC, 

ZALENDE and TIRANO), M. m. musculus (PWK, PWD, CZECHI, CZECHII and WSB), 

M. m. castaneus (CAST), M. m. molossinus (JF1, MSM, MOLF, MOLD, MOLC), M. m. 

hortulanus (PANCEVO/EiJ), M. m. spretus (SPRET), M. m. praetextus (IS),  or hybrids of 

M. m. musculus and M. m. domesticus (SKIVE), M. m. musculus and M. m. poschiavinus 

(RBF) and of M.m.castaneous and M.m.domesticus (CALB) (Boursot et al., 1993; Beck et 

al., 2000; Bult et al., 2019) 
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C.3.2. Identification of co-adaptation complementing BphsR. 

Compared to classical inbred strains, wild-derived mice exhibit sequence variation 

at approximately every 100-200 base pairs (Poltorak et al., 2018) and are, in general, more 

resistant to a variety of pathogens, most notably viral infections (Guenet et al., 2003; 

Harper, 2008; Dejager et al., 2009; Bearoff et al., 2016). This genetic variability represents 

a rich source of evolutionary selected diversity and has the potential to lead to the 

identification of genes controlling novel regulatory features arising from host-pathogen co-

evolutionary adaptation. To screen for functional co-adaptations capable of complementing 

BphsR, we phenotyped a panel of Group 1 and 7 mice with the H1R
R allele for susceptibility 

to Bphs.. Among the seventeen H1R
R strains that we phenotyped, eight were BphsS (Table 

C.2). Importantly, the BphsS/H1R
R strains are confined primarily to a Group 7 wild-derived 

strains (Supplementary Figure C.1) whereas most H1R
R Group 1 strains were BphsR. We 

therefore selected a subset of BphsS/H1R
R (MOLF, PWK) and BphsR/H1R

R (AKR, CBA, 

C3H, MRL) strains for further studies. 

 To confirm the existence of a co-adaptation capable of restoring Bphs 

susceptibility in mice with an H1R
R allele and to assess its heritability, we studied F1 

hybrids between the select strains of interest and H1RKO mice (Table C.3). (B6 × 

H1RKO)F1 and (C3H.BphsS × H1RKO)F1 served as BphsS/-/H1R
S/- controls while (C3H × 

H1RKO)F1, (CBA × H1RKO)F1, (MRL × H1RKO)F1 and (AKR × H1RKO)F1 served as 

BphsR/-/H1R
R/- controls, respectively. Both H1R

S by H1RKO F1 hybrids were BphsS 

whereas none of the H1R
R by H1RKO F1 hybrids were susceptible, in agreement with our 

prior finding  (Ma et al., 2002a). In contrast, both (MOLF × H1RKO)F1 and (PWK × 
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H1RKO)F1 mice were BphsS. Thes data support the existence of one or more dominant loci 

in MOLF and PWK capable of complementing BphsR. 

C.3.3. A functional linkage disequilibrium domain on Chr 6 regulates susceptibility 

to Bphs. 

  Given the evidence from inbred strains of mice indicating that a quarter or more 

of the mammalian genome consists of chromosomal regions containing clusters of 

functionally related genes, i.e., functional linkage disequilibrium domains (Petkov et al., 

2005; Graber et al., 2006), we hypothesized that the dominant locus complementing 

BphsR/H1R
R may reside within a Hrh1/H1R functional LD domain. To test this, we 

generated and phenotyped 114 (MOLF × H1RKO) × H1RKO backcross (BC) mice (Table 

C.3). As expected, none of the 54 homozygous H1RKO mice phenotyped as BphsS. In 

contrast, of the 60 H1R
MOLF/- mice, 54 were BphsS and 6 were BphsR, indicating that the 

locus capable of complementing BphsR is linked to Hrh1. We have designated this locus 

Bphse for Bphs-enhancer.  

Further support for linkage of Bphse to Hrh1 comes from genetic linkage analysis 

using 170 (AKR × PWK) × AKR BC mice and informative Chr 6 marker loci (Table C.4). 

Marker loci from rs36385580 through D6mit135 exhibited significant linkage to Bphse 

with maximal linkage across the interval bounded by D6Mit102 and rs31698248; thereby, 

placing Bphse within a 93-120Mb interval encompassing Hrh1. We next confirmed the 

existence and location of Bphse by congenic mapping. Marker-assisted selection was used 

to introgress the BphseMOLF and BphsePWK intervals onto the BphsR C3H and AKR 

backgrounds, respectively. Starting at N5 through N10, heterozygous and homozygous BC 
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mice were phenotyped for Bphs (Figure C.1). Compared to C3H (C3H and 

C3H.BphseC3H/C3H) and AKR (AKR and AKR.BphseAKR/AKR) mice both C3H.BphseC3H/MOLF  

and AKR.BphseAKR/PWK mice were BphsS. Overall, BphseC3H/MOLF and BphseAKR/PWK mice 

were significantly more susceptible to Bphs than BphseC3H/C3H and BphseAKR/AKR mice (χ2 

2 = 60.63, df=1, p<0.0001). Taken together, these results confirm the location of Bphse 

within an interval encompassing Hrh1, providing further support for the existence of a 

functional LD domain controlling overall responsiveness to HA. 

C.3.4. Identification of candidate genes for Bphse.  

Using genotype data collected from Mouse Phenome Database, Mouse Genomes 

Project, and Nimblegen Sequence Capture (See Material & Methods) for the seventeen 

BphsR/H1R
R and BphsS/H1R

R strains (Table  C.2), we searched for genetic associations 

between single nucleotide polymorphisms (SNPs) and BphsS. Not surprisingly, this 

approach yielded poor resolution as the sample size was limited (data not shown). To 

circumvent the sample size limitation in genetic association testing, we utilized all 

available Bphs phenotype data (Supplementary Table C.1) and searched for SNPs that 

could explain BphsS irrespective of Hrh1/H1R genotype. Using efficient mixed-model 

association (EMMA) (Kang et al., 2008), we identified 69 SNPs in 28 genes that were 

associated with BphsS (data not shown). Most significant SNPs were intronic (64%) 

followed by non-coding (13%), regulatory (3%) and intergenic (1%) variants). 

As a complementary approach to identify loci associated with BphsS, we utilized 

machine-learning computation, using functional genomic networks (Guan et al., 2010) to 

identify network-based signatures of biological association. To this end, we used prior 
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knowledge to generate a list of Bphs-associated biological processes and retrieved gene 

sets functionally associated with each term. The terms and their justifications are as 

follows:  

• Type I hypersensitivity/Anaphylaxis: The death response following systemic 

HA challenge exhibits symptoms of type I hypersensitivity/anaphylaxis 

including respiratory distress, vasodilation, and anaphylactic shock (Munoz et 

al., 1965).  

• Cardiac: There is evidence suggesting that anaphylactic shock in mice is caused 

by decreased cardiac output, rather than systemic vasodilation (Wang et al., 

2014). 

• Histamine: Bphs is induced by a systemic HA challenge (Ma et al., 2002b). 

• G-protein coupled receptor: H1R signaling is required for the Bphs phenotype 

(Ma et al., 2002b), and all HA receptors belong to the family of G-protein 

coupled receptors (Seifert et al., 2013).  

• Pertussis toxin: Bphs is induced in mouse strains by PTX(Munoz et al., 1968).  

• Vascular permeability: The Bphs response includes vascular leakage in skin 

and muscles (Munoz et al., 1965) (Gao et al., 2003a).  

• Endoplasmic reticulum (ER)/endoplasmic membrane protein complex (EMC), 

and endoplasmic reticulum-associated degradation (ERAD): The two H1R 

alleles exhibit differential protein trafficking and cell surface expression 

whereby Hrh1R is retained in endoplasmic reticulum (Noubade et al., 2008). 
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The EMC and ERAD are intimately involved in regulating GPCR translocation 

to the plasma membrane (Lackman et al., 2014; Chitwood et al., 2018). 

Each of the six gene sets define a putative Bphs-related process that forms a distinct 

subnetwork of the full functional genomic network. Using this approach, we identified 

several hundred genes within the Bphse locus that are functionally associated with each 

biological process (data not shown).  

Genes that are predicted to be highly functionally related to the trait may not have 

functionally variant alleles in the study population and may therefore be unlikely to drive 

the observed strain differences in Bphs. We, therefore, integrated the genetic association (-

log10 pEMMA) with functional enrichment (-log10 FPR) to focus on genes that were 

significant in both approaches (Figure C.4A). The final ranking was calculated by defining 

a final gene score (Scg) for each gene, which is the sum of the (normalized) -log10(FPR) 

and the -log10(pEMMA) (Figure C.2B).. This approach revealed several candidates including 

Hrh1, which is a positive control shown to regulate Bphs among laboratory inbred strains 

of mice (Ma et al., 2002b).  The nine candidates for Bphse are ranked using Scg: Atp2b2, 

Atg7, Pparg, Syn2, Ift122, Raf1, Mkrn2, Timp4 and Gt(ROSA)26Sor. Each of these 

candidates are associated with sub-phenotypes of Bphs supporting the utility of this 

approach (Table C.5). Interestingly, all predicted candidates localize around 113-116Mb 

overlapping the Bphs locus (Figure C.2B), in agreement with the presence of a functional 

LD domain containing Hrh1 and Bphse that regulate overall responsiveness to HA.  
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 In summary, we have identified a small set of positional candidate genes in a large 

locus by combining linkage analysis, congenic mapping, genetic and computational 

predictions of functional association with Bphs susceptibility in mice. The final list of 

genes is highly plausible and can be followed up relatively easily with modern genetic 

editing techniques.  
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C.4. Discussion 

Bordetella pertussis and its purified toxin, PTX, mediates several phenotypes in 

vivo including hypersensitivity to HA, serotonin, bradykinin, active and passive 

anaphylaxis, endotoxins, X-irradiation, cold stress, hypoglycemia, hypoproteinemia, 

changes in vascular permeability and enhancement of organ specific autoimmune diseases 

like EAE, EAU (Munoz et al., 1968; Ma et al., 2002a). Our previous work had found that 

the genetic control of HA hypersensitivity among laboratory inbred strains of mice 

following PTX challenge is dependent on the haplotype of histamine 1 receptor with H1R
S 

allele exhibiting susceptibility whereas H1R
R imparting resistance to Bphs (Ma et al., 

2002a). Phylogenetically, the H1R
R allele is restricted to wild-derived Group 7 strains and 

a selected sub-branch of Group 1 Bagg albino derivatives whereas the H1R
S allele is 

distributed across all groups (Supplementary Figure C.1). Herein, we present data from 

several wild derived inbred strains of mice that harbor H1R
R but surprisingly a subset of 

them exhibit histamine hypersensitivity. This is suggestive of an evolutionary adaptation 

in the genomes of these Group 7 (e.g., MOLF) mice that can complement Bphs/ H1R
R 

resistance. We have designated this locus Bphse for Bphs-enhancer.  

Our results with the genetic cross [(MOLF × C3H) × C3H backcross mice] confirm 

the existence of this co-adaptation capable of complimenting susceptibility to Bphs in mice 

with an H1R
R allele. We also found that this complementing dominant locus (Bphse) does 

require H1R as none of the BC1 mice that genotype as H1R
-/- exhibit Bphs (Table C.3). 

Among BC1 mice that genotype as H1R
MOLF/-, 10% phenotyped as BphsR suggesting that 

the co-adaptation that complements the H1R
R allele in wild-derived mice is linked to Hrh1 
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at > 10.7 cM. Linkage scan using microsatellite markers validates significant linkages to 

Chr 6, with most significance around Hrh1 (Table C.4). In addition, we show the physical 

location of this locus by making congenic mice (C3H.BphseMOLF+/- and AKR.BphsePWK+/-) 

that captures the Bphse locus on Chr 6 (59.3-128.8Mbp, Figure C.1) and replicate the 

phenotype. To our knowledge, this is the first study assessing Bphs susceptibility among 

wild derived inbred strains of mice.   

Several factors can influence histamine sensitivity after PTX inoculation including 

age, sex, strain of mice, route of sensitization in addition to the haplotype of Hrh1 (Munoz 

et al., 1968; Ma et al., 2002a). In our phenotyping experiments, we used 8-12-week-old 

mice of each sex and did not find any sex differences. This agrees with earlier studies that 

found no such effects in Bphs (Fink et al., 1954). We also tested the route of administration 

of PTX and histamine challenge using intraperitoneal and intravenous route and found no 

difference (data not shown). We have not tested the effect of age on Bphs susceptibility 

amongst the various strains, however work from Munoz and others have reported 

significant effect of age (Munoz et al., 1953). It is quite possible that some of the strains 

that show resistance to Bphs may exhibit susceptibility as they age.  

H1R is a GPCR. Normally, GPCRs function at the cell surface, but mutated GPCRs 

can become sequestered in the ER. We have earlier shown that the two H1R alleles exhibit 

differential cell surface expression and altered intracellular trafficking, with the H1R
R allele 

being retained within the ER. Synthesis of GPCRs in the ER is, by itself, insufficient to 

result in effective cell surface delivery and function. It is possible that the retention of H1R
R 

is a result of improper folding and conformation, and is therefore unable to exit the ER. 
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We have earlier tested that the two H1R alleles can activate downstream Gαq and Gα11 

proteins equally well in vitro suggesting the defect lies not in the signaling but in the 

location of the two alleles. Both conventional and nonconventional chaperone and escort 

proteins play key roles in promoting proper folding, preventing the transport of incorrectly 

folded proteins to the Golgi, and regulation of receptor trafficking to the cell surface 

(Achour et al., 2008). If the defect cannot be corrected, it can lead to disease or in the case 

of H1R
R, resistance to Bphs. There are several examples associated with GPCR mutations 

and incorrect folding e.g. mutations in the vasopressin V2 receptor are linked to 

nephrogenic diabetes insipidus (Robben et al., 2005) in the photon receptor rhodopsin 

associated with retinitis pigmentosa (Illing et al., 2002) and in the gonadotropin-releasing 

hormone receptor (GRHR) resulting in hypogonadotropic hypogonadism(de Roux et al., 

1997). It is highly possible that Bphse encodes a chaperone or an adaptor protein for H1R
R 

that regulates trafficking to the surface thereby rescuing the signaling by H1R. It will be 

interesting to test the surface expression of H1R
R among strains that show Bphs 

susceptibility (Table C.2). Results using bone marrow chimeras suggest that susceptibility 

to Bphs lies in the non-hematopoietic compartment (Lu et al., 2010) so several cell types 

(endothelial, epithelial, stromal cells) are potential candidates for this cell surface 

expression analysis. 

 Histh is an autosomal recessive genetic locus that regulates age and/inflammation 

dependent responses to histamine ((Tyler et al., 2019)). Interestingly, Histh is in strong 

linkage with Bphse and Hrh1 on Chr 6. This is a classic example of the physical linkage of 

functionally related genes, i.e., functional LD domains as seen in a quarter or more of the 
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mammalian genome (Petkov et al., 2005; Graber et al., 2006). LD-domains can be thought 

of as gene clusters whose products act in a similar pathway and tend to segregate together 

in linkage studies. Thus, it is possible that Bphse may encode genes related to H1R folding, 

trafficking, or signaling. Unfortunately, the region implicated for Bphse is very large and 

contain hundreds of genes. Until recently, interval specific recombinant congenic mapping 

was the gold standard to delimit large quantitative trait loci (QTLs) associated with a 

phenotype (Ma et al., 2002a; Schallschmidt et al., 2018). Of the thousands of QTLs for 

various phenotypes and diseases, only a small fraction of genes have been identified 

through sub-congenic mapping, phenotyping and sequencing. The identification of 

candidate genes from large genomic regions has been revolutionized with the advent of 

advanced sequencing technologies and genome wide association studies (GWAS) (Kelly 

et al., 2017). For example, the Sanger Institute has sequenced 36 mouse genomes and The 

Jackson Laboratory, in conjunction with the University of North Carolina, has genotyped 

several hundred laboratory inbred strains using the Mouse Diversity Array, which 

altogether provide an almost complete picture of genetic variation among the various 

strains. Our approach, however, is different from other mouse GWAS studies that have 

been done to identify candidate loci for several diseases (Klein et al., 2016; Kelly et al., 

2017). Instead of running a full genome scan among Bphs strains, we tested association of 

susceptibility exclusively across the Bphse locus (Chr 6:59-128Mbp). This allowed us to 

use the information gathered from the genetic cross and congenic mapping and delimit the 

region to be screened for association.  Our first screen using genetoype and phenotype data 

across seventeen H1R
R mouse strains did not yield any significant hits, mostly due to 
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limitation in number of strains used. To overcome this problem, we excluded H1R genotype 

as the co-variate. Given that several dozen laboratory inbred mouse strains (Group 2, 3 and 

4) have been described in literature that are phenotyped for Bphs (Linthicum et al., 1982; 

Diehl et al., 2014), and also to circumvent the sample size limitation in genetic association 

testing, we searched for genetic polymorphism among 50 mouse strains that could explain 

overall responsiveness to histamine. Hrh1, which is our positive control and associated 

with Bphs susceptibility among classical laboratory inbred strains (Ma et al., 2002b) was 

identified as a significant hit supporting the validity of this approach. In addition to Hrh1, 

several loci were predicted to be associated with Bphs susceptibility (data not shown). 

Recently, a quantitative trait gene prediction tool has been described that utilizes 

functional genomics information (gene co-expression, protein-protein binding data, 

ontology annotation and other functional data) to rank candidate genes within large QTLs 

associated with respective phenotype (Guan et al., 2010). This methodology has validated 

several of the GWAS/QTL mapping findings and discovered novel associations with 

phenotype of interest. We utilized this approach for a complex phenotype (Bphs) that is 

believed to involve cardiac, vascular and anaphylactic responses (Munoz et al., 1965; Ma 

et al., 2002b; Wang et al., 2014). Because the selection of phenotype-associated gene sets 

is critical for final gene predictions, several terms were used to incorporate sub-phenotypes 

equivalent to Bphs in the expectation that use of multiple phenotype terms would help 

identify candidate loci for Bphse. Integration of functional predictions with genetic 

association (Scg, Figure C.2) allowed us to focus on only those candidates that reached 

significance in both approaches. Importantly, Hrh1, one of the genes implicated in Bphs 
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susceptibility is among the the six candidates that were identified. Interestingly, the 

location of all ten predicted candidates around 113-116Mb supports the presence of a 

functional LD domain containing Hrh1.Bphse and Histh that regulate overall 

responsiveness to histamine. Several of the top candidates have potential relevance to 

phenotypes associated with Bphs, including anaphylaxis and mast cell degranulation, G 

protein coupled signaling, potential role as chaperones, and cardiovascular effects (Table 

C.5). Among them, peroxisome proliferator-activated receptor-gamma (Pparg), is the only 

gene that together with Hrh1 is functionally enriched in all sub-phenotypes used to define 

Bphs. Pparg encodes a nuclear receptor protein belonging to the peroxisome proliferator-

activated receptor (Ppar) family. Activation of PPARg suppresses mast cell maturation and 

is involved in allergic disease (Tachibana et al., 2008; Ushio et al., 2011). Because mast 

cells are major drivers of pathological events in anaphylaxis (Lieberman et al., 2016), 

identification of Pparg may be highly relevant to Bphs. In addition, increased PPARg 

expression is associated with cardiac dysfunction (Sikder et al., 2018), one of the sub 

phenotypes associated with anaphylactic shock following histamine release (Wang et al., 

2014). It will be interesting to quantify the mRNA expression of some of these candidates 

between susceptible and resistant strains and whether they interact with the H1R
R 

haplotype. Taken together these data support that allelic co-adaptations within a functional 

Hrh1 LD domain encompasses a Bphse gene in some wild-derived strains that is capable 

of complementing BphsR.  
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C.5. Materials and Methods 

C.5.1. Animals.  

AKR/J (AKR), BPL/1J, C3H/HeJ (C3H), C3H/HeN, CAST/EiJ, C57BL/6J (B6), 

CBA/J (CBA), CBA/N, CZECHII/EiJ, I/LnJ, JF1/MsJ, MOLD/EiJ, MOLF/EiJ (MOLF), 

MRL/MpJ (MRL), MSM/Ms, PWD/PhJ, PWK/PhJ (PWK), RF/J, SF/CamEiJ, and 

SKIVE/EiJ were purchased from the Jackson Laboratory (Bar Harbor, Maine). B6.129P-

Hrh1tm1Wat (H1RKO) (Banu et al., 1999), C3H.SJL-Hrh1Bphs-s (C3H.BphsS ) (Ma et al., 

2002a), (B6 × H1RKO)F1, (C3H × H1RKO)F1, (CBA × H1RKO) F1, (AKR × H1RKO)F1, 

(MRL × H1RKO)F1, (AKR × PWK)F1, (C3H × MOLF)F1, (MOLF × H1RKO) × H1RKO, 

(AKR × PWK) × AKR, (C3H × MOLF) × C3H, C3H.BphsMOLF+/-, C3H.BphseC3H, 

AKR.BphsePWK+/- and AKR.BphseAKR were generated and maintained under specific 

pathogen free conditions in the vivarium of the Given Medical Building at the University 

of Vermont according to National Institutes of Health guidelines. All animal studies were 

approved by the Institutional Animal Care and Use Committee of the University of 

Vermont. 

C.5.2. Bphs Phenotyping.  

Bphs phenotyping was carried out as previously described (Ma et al., 2002a). 

Briefly, mice were injected with purified PTX (List Biological Laboratories, Inc.) in 0.025 

M Tris buffer containing 0.5 M NaCl and 0.017% Triton X-100, pH 7.6. Control animals 

received carrier. Three days later, mice were challenged by injection with histamine 

(milligrams per kilogram of body weight [dry weight], free base) suspended in phosphate-
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buffered saline (PBS). Deaths were recorded at 30 min post-challenge. The results are 

expressed as the number of animals dead over the number of animals studied. 

C.5.3. DNA sequencing of third intracellular loop of Hrh1.  

DNA for 91 inbred laboratory and wild-derived strains of mice was purchased from 

the Mouse DNA resource at Jackson laboratories (www.jax.org) and used in an Hrh1 

specific PCR reaction using the following primer sets: forward-740F, 5’-

TGCCAAGAAACCTGGGAAAG-3’, and reverse-1250R, 5’-

CAACTGCTTGGCTGCCTTC-3’. Thermocycling was carried out for a 15 µl reaction mix 

with 2 mM MgCl2, 200 µM dNTPs, 0.2 µM primers, 1 unit of Taq polymerase and ~50 ng 

of genomic DNA together with an initial 2-min 97°C denaturation followed by 35 cycles 

of 97°C for 30 sec, 58°C for 30 sec and 72°C for 30 sec. The final extension was for 5 min 

at 72°C. Hrh1 amplicons from each mouse strain were gel purified (Qiagen Cat# 28115) 

and DNA sequencing reactions were performed with the BigDye terminator cycle 

sequencing kit (Applied Biosystems, Foster City, CA) using 740F or 1250F reverse 

primers. The reaction products were resolved on an ABI Prism 3100 DNA sequencer at the 

DNA analysis facility at University of Vermont. DNA sequencing data were assembled 

and analyzed using MultiAlign (Corpet, 1988). Each potential nucleotide sequence 

polymorphism was confirmed by comparing it with the actual chromatographic profiles 

using Chromas v2.6.5 (https://technelysium.com.au/wp/)  

C.5.4. DNA isolation and Genotyping.  

DNA was isolated from mouse tail clippings as previously described (Sudweeks et 

al., 1993). Briefly, individual tail clippings were incubated with cell lysis buffer (125 

http://www.jax.org/
https://technelysium.com.au/wp/
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mg/ml proteinase K, 100 mM NaCl, 1 0mM Tris-HCl (pH 8.3), 10 mM EDTA, 100 mM 

KCl, 0.50% SDS, 300 ml) overnight at 55oC. The next day, 6M NaCl (150 ml) was added 

followed by centrifugation for 10 min at 4oC. The supernatant layer was transferred to a 

fresh tube containing 300 µl isopropanol. After centrifuging for 2 min, the supernatant was 

discarded, and the pellet washed with 70% ethanol. After a final 2 min centrifugation, the 

supernatant was discarded, and DNA was air dried and resuspended in TE. Genotyping 

was performed using microsatellite, sequence specific and Hrh1 primers. Microsatellite 

primers: Polymorphic microsatellites were selected to have a minimum polymorphism of 

8bp for optimal identification by agarose gel electrophoresis. Briefly, primers were 

synthesized by IDT-DNA (Coralville, IA) and diluted to a concentration of 10 µM. PCR 

amplification was performed using Promega GoTaq according standard conditions and 

amplicons were subjected to 2% agarose gel electrophoresis and visualized by ethidium 

bromide and UV light. Sequence-specific primers: Genotyping was performed using 

sequence specific primers that differ only at the 3’ nucleotide corresponding to each allele 

of the identified SNP (Bunce et al., 1995). Each primer set was designed using Primer3 to 

have a Tm of 58-60°C and synthesized by IDT-DNA (Coralville, IA) and used at a 

concentration of 100 µM. PCR reactions were subjected to cycling conditions as described 

and if found to be necessary, the annealing temperature at each stage was adjusted to 

accommodate the optimal Tm. Amplicons were electrophoresed with 10 µl Orange G 

loading buffer on a 1.5% agarose gel stained with ethidium bromide and visualized by UV 

light. The presence of a SNP specific allele was scored by observing an amplicon of the 

expected size in either reaction. 
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C.5.5. H1RKO mice genotyping. 

Wild-type and Hrh1-/- alleles were genotyped as previously described (Ma et al., 

2002a). Approximately 60 ng of DNA was amplified (GeneAmp PCR system 9700, 

Applied Biosystems, Foster City, CA). The DNA was amplified by incubation at 94°C for 

3 min followed by 35 cycles of 94°C for 30 sec, 62°C for 30 sec, and 72°C for 30 sec. At 

the end of the 35 cycles, the DNA was incubated at 72°C for 10 min and 4°C for 10 min. 

The amplified DNA was analyzed by gel electrophoresis in a 1.5% agarose gel. The DNA 

was visualized by staining with ethidium bromide. 

C.5.6. Linkage analysis and generation of Bphse congenic.  

Segregation of genotype frequency differences with susceptibility and resistance to 

Bphs in (MOLF × H1RKO) × H1RKO and (AKR × PWK) × AKR mice were tested by χ² 

in 2 × 2 contingency tables. C3H.BphseMOLF+/-, C3H.BphseC3H, AKR.BphsePWK+/- and 

AKR.BphseAKR congenic mice were derived by marker assisted selection. (AKR × PWK) 

× AKR and (C3H × MOLF) × C3H mice that were heterozygous across the Bphse interval 

at N2 and at each successive BC generation were selected for continued breeding. Bphse 

congenic mice were maintained as heterozygotes. 

C.5.7. Targeted genetic association testing.  

Genotype data (SNPs in both coding and non-coding) of 50 mouse strains 

(Supplementary Table C.1) that were phenotyped for Bphs either by us or described in the 

literature (Munoz et al., 1953; Wardlaw, 1970; Linthicum et al., 1982; Gao et al., 2003b; 

Diehl et al., 2014), was retrieved from public databases at the Sanger Institute 

(https://www.sanger.ac.uk/science/data/mouse-genomes-project) and The Jackson 



276 

 

Laboratory (https://phenome.jax.org/). The lack of representation of genotype data from 

BPL/1J, C3H/HeN, CZECHII/EiJ, JF1/Ms, MOLD/EiJ, MOLF/EiJ, MRL/MpJ, MsM/Ms, 

NU/J, PWD/J, RJ/J, SF/CamiJ, SKIVE/EiJ and SJL/J in these databases were compensated 

by the following:  

The Chromosome Region Capture Sequencing 

Fragment DNA.  3 µg of genomic DNA was sheared into fragments of 

approximately 200 bp with the Covaris E220 system (Covaris, USA), and purification was 

performed with 1.4-fold volume of AMPure XP Beads (Beckman, USA). 

DNA Library Construction. After the purification of the sheared DNA, the library 

was constructed with SureSelect Library Prep Kit (Agilent, USA). End-repair was 

performed with the volume of 10× End Repair Buffer, dNTP Mix, T4 DNA Polymerase, 

Klenow DNA Polymerase and T4 Polynucleotide Kinase, reacted at 20 °C for 30 min, and 

1.8× the volume of AMPure XP Beads was added for purification; adding A at the 3' end 

was performed with the volume of 10×Klenow Polymerase Buffer, dATP and Exo(-) 

Klenow, reacted at 37 °C for 30 min.  T4 DNA Ligase Buffer, SureSelect Adaptor Oligo 

Mix and T4 DNA Ligase were added and reacted at 20 °C for 15 min. Adaptor-ligated 

library was amplified through added in SureSelect Primer, SureSelect ILM Indexing Pre 

Capture PCR Reverse Primer, 5×Herculase II Rxn Buffer, 100 mM dNTP Mix and 

Herculase II Fusion DNA Polymerase, and the reaction procedure is: 98 °C pre-

denaturation 2 min, 98 °C denaturation 30 Sec, 65 °C annealing 30 Sec, 72 °C extension 

30 Sec , amplified for 4 rounds. Purification was performed with 1.8X Agencourt AMPure 
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XP beads after each enzymatic reaction. The adaptor-ligated library around range of 225 ~ 

275bp was finally obtained. 

Hybridization capture. Prepared library was executed hybridization capture 

experiment with the SureSelect Target Enrichment Kit (Agilent, USA). The prepared 

library reacted with SureSelect Block Mix in 95 °C 5min, followed by maintaining in 65 

°C and then Hybridization Buffer, capture library mix was added in and reacted at 65 °C 

24hrs, finally Dynabeads M-280 streptavidin (Life, USA) was used for the enrichment of 

the Captured DNA library (Gnirke et al., 2009; Mamanova et al., 2010). 

Index amplification. 5×Herculase II Rxn Buffer, 100 mM dNTP Mix, SureSelect 

ILM Indexing Post Capture Forward PCR Primer and Herculase II Fusion DNA 

Polymerase were added in the enriched captured DNA library for index amplification. 

The reaction procedure is 98°C Pre-denaturation 2 Min, 98 °C denaturation 30 Sec, 57 °C 

annealing 30 Sec, 72 °C extension 30 Sec, amplification 12 rounds, followed by the 

purification using 1.8 times the volume of AMPure XP Beads. A Sequencing library of 

250-350 bp range was finally obtained (Gnirke et al., 2009). 

Sequencing. A 10 ng library was used for cluster generation in cBot with the 

TruSeq PE Cluster Kit (illumina, USA) followed by bidirectionally sequenced in Illumina 

Hiseq 2500 to obtain the data of 2x150 bp. 

Whole-genome sequencing 
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DNA Library Construction. For whole-genome sequencing, DNA libraries was 

constructed according to Illumina recommended protocols. Briefly, 3 µg of genomic DNA 

was sheared into fragments of approximately 300-400 base pairs with the Covaris E220 

system, followed by end-repair, A-tailing, and ligation of the Illumina multiplexing PE 

adaptors. Purification was performed with 1.8X Agencourt AMPure XP beads after 

enzymatic reactions. An agarose gel electrophoresis with a concentration of 2% to separate 

DNA products was performed, and DNA fragments with a length between 300 and 400 bp 

were recycled and purified according to the user guide of Qiagen Gel Extraction Kit. A 

PCR enrichment experiment was performed to ensure that DNA products to be successfully 

sequenced was enough. 

Library inspection. After construction of the library, preliminary quantification 

was performed using Qubit 2.0, and the library was diluted to 1 ng/ul, and then the insert 

size of the library was detected using Agilent 2100. If the insert size was as expected, Q-

PCR was performed to accurately quantify the effective concentration of the library (library 

effective concentration >10 nM) to ensure library quality. 

Sequencing. Finally, these DNA fragments were subjected to the Illumina Hiseq 

2000 platform for pair-end sequencing (PE150). The raw image data files obtained by high-

throughput sequencing (Illumina) were converted into Sequenced Reads by CASAVA, and 

the results were stored in FASTQ format. The read length was 150 bp. 

Data processing and analysis. To ensure the quality of subsequent information 

analysis, the original sequence was filtered with the software SolexaQA to get high quality 
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Clean Reads (Cox et al., 2010). Efficient high-quality sequencing data was mapped to the 

reference genome mm10 by BWA software(Li et al., 2009a), samtools (Li et al., 2009b) 

was used for sorting, picard tools was used for duplication, and GATK was used for Indel 

Realignment and Base Recalibration (McKenna et al., 2010). Finally, HaplotypeCaller of 

GATK is used for mutation detection. The VCF format file was filtered with VCFtools 

(Danecek et al., 2011). The SNP filtered results of each sample are annotated by 

ANNOVAR software (Wang et al., 2010), which mainly includes three aspects: annotation 

based on gene, genomic region and function. GATK software was also used to detect InDel, 

and pindel was used to detect SV (Ye et al., 2009), which is divided into four types: 

deletions (>5bp), Insertions (>5bp), inversions and tandem duplication. The VCF format 

files were converted to Plink files with VCFtools.  

All these data sources were collated to generate genotype information for 13,257 

SNPs across the Bphse locus on Chr 6. To calculate associations between genetic 

polymorphisms and Bphs, we used efficient mixed-model association (EMMA) (Kang et 

al., 2008). This method treats genetic relatedness as a random variable in a linear mixed 

model to account for population structure, thereby reducing false associations between 

SNPs and the measured trait. We used the likelihood ratio test function (emma.ML.LRT) 

to generate p-values. Significance was assessed with Bonferroni multiple correction 

testing. The -log transformed p-values were plotted using GraphPad Prism7 and genomic 

coordinates included for each SNP using the latest mouse genome build 

GRCm38.p5/mm10. 
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C.5.8. Trait-related gene sets.  

The positional candidate genes were ranked based on their predicted association 

with six functional terms related to the Bphs phenotype: “cardiac", “G-protein coupled 

receptor", “histamine", “pertussis toxin", “type I hypersensitivity", and “vascular 

permeability” and “ER/EMC/ERAD" Gene Weaver (Baker et al., 2012) was used to 

identify genes annotated with each term. Each term was entered into Gene Weaver 

homepage (https://geneweaver.org)and search restricted to human, rat, and mouse genes, 

and to curated lists only. Mouse homologs for each gene were retrieved using batch query 

tool in MGI (http://www.informatics.jax.org/batch_data.shtml). In addition, using Gene 

Expression Omnibus (GEO) and PubMed additional gene expression data sets were 

retrieved for each phenotype term. Final gene lists consisted of the unique set of genes 

associated with each process term. 

C.5.9. Functional enrichment and ranking of Bphs associated genes.  

We associated genes with Bphse-related functions as described in Tyler et al. 

(Tyler et al., 2019). Briefly, we used the connectivity weights in the Functional Network 

of Tissues in Mouse (FNTM) (Goya et al., 2015) as features for training support vector 

machines. Each feature consisted of the connection weights from a given gene to genes in 

the functional module. To improve classification and reduce over-generalization we 

clustered each functional gene set into modules each less than 400 genes (Guan et al., 

2010).  For each of these modules, we trained 100 SVMs to classify the module genes from 

a balanced set of randomly chosen genes from outside the module. We used 10-fold cross 

validation and a linear kernel. We also trained each SVM over a series of cost parameters 
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identified by iteratively narrowing the cost parameter window to identify a series of eight 

cost parameters that maximized classification accuracy. We then used the train modules to 

score each positional candidate gene in the Bphse locus. To compare scores across multiple 

trained models, we converted SVM scores to false positive rates.  

C.5.10. Combined gene score.  

To create the final ranked list of positional candidate genes, we combined the SNP 

association scores with the functional predictions derived from the SVMs. We scaled each 

of these scores by its maximum value across all positional candidates and summed them 

together to derive a combined gene score (Scg) that incorporated both functional predictions 

and genetic influence:  

 

where the denominators of the two terms on the right-hand side are the maximum values 

of -log10 (pEMMA) and -log10 (FPRSVM) over all positional candidates in Bphse, 

respectively, which normalizes the functional and positional scores to be comparable to 

each other. SNPs were assigned to the nearest gene within 1Mb. If more than one SNP was 

assigned to a gene, we used the maximum negative log10  p-value among all SNPs assigned 

to the gene.   
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C.8. Figures 
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Strain Bphs % Aff p-value 

C3H/HeJ C C C C C 4/30 13   

MOLF/MpJ  M  M M M M 20/22 90  <0.0001a 

C3H.BphseC3H/C3H C C C C C 7/50 14   

C3H.BphseC3H/MOLF C He He He C 19/32 60  <0.0002a 

                  

AKR/J A A A A A 5/30 16   

PWK/J P P P P P 15/18 83  <0.0001b 

AKR.BphseAKR/AKR A A A A A 8/47 17   

AKR.BphseAKR/PWK A He He He A 35/40 88  <0.0001b 

                  

C3H+AKR           9/60 15   

MOLF+PWK           35/40 88  <0.0001c 

BphseC3H/C3H+BphseAKR/AKR           15/97 15   

BphseC3H/MOLF+BphseAKR/PWK           54/72 75  <0.0001c 
aRelative to MOLF/MpJ; bRelative to PWK/J; cRelative to C3H/J and AKR/J; C=C3H, 

M=MOLF, A=AKR, P=PWK and He=heterozygous. 

 

Figure C.1. Congenic mapping of Bphse confirms linkage to Bphs/Hrh1. 
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Figure C.2. Integration of genetic and functional mapping approaches to predict 

candidates for Bphse. 
(A). The plot shows negative log-transformed false positive rate of functional enrichment on the 

y-axis. The x-axis denotes the corresponding negative log-transformed genetic association scores. 

Both scores were scaled by their maximum value for better comparison. Significance thresholds 

are marked as red dotted line. (B). Candidates that reached significance in both genetic and 

functional approaches are displayed using a final gene score (Scg) on y-axis and the genomic 

location on x-axis. Higher gene scores indicate better candidates. The boundaries of Bphs and 

A 

B 
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Bphse quantitative trait loci are shown to indicate the linkage of Bphse predicted candidates with 

Hrh1.  
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C.9. Tables 

Table C.1. Distribution of H1RS and H1RR alleles in inbred laboratory and wild-

derived mouse strains. 

Susceptible Haplotype                                                          

(Pro263, Val312, Pro330) 

Resistant Haplotype                                       

(Leu263, Met312, Ser330) 

            

129X1/SvJ C57BR/cdJ P/J  AKR/J  

129S1/SvImJ C57L/J PANCEVO/EiJ  BPL/1J  

129T2/SvEmsJ C58/J PERA/EiJ  C3H/HeJ  

A/HeJ CALB/RkJ PERC/EiJ  C3H/HeN  

A/J CE/E PL/J  CASA/RkJ  

A/WySnJ DBA/1J RBF/DnJ  CAST/EiJ  

ALR/LtJ DBA/2J RIIIS/J  CBA/J  

ALS/LtJ DDY/JcISidSeyFrkJ SB/LeJ  CBA/N  

B10.S/DvTee EL/SuzSeFrkJ SEA/GnJ  CZECHI/EiJ  

B10.S/McdgJ FVB/NCr SEC/1ReJ  CZECHII/EiJ  

BALB/cByJ IS/CamRkJ SENCARA/PtJ  I/LnJ  

BALB/cJ KK/HIJ SENCARB/PtJ  JF1/Ms  

BDP/J LEWES/EiJ SENCARC/PtJ  MOLC/RkJ  

BPH/2J LG/J SJL/J  MOLD/RkJ  

BPL/1J LP/J SJL/BmJ  MOLF/EiJ  

BPN/3J MA/MyJ SM/J  MRL/MpJ  

BTBRT+ MOR/RkJ SPRET/EiJ  MSM/Ms  

BXSB/MpJ NOD/LtJ ST/BJ  PWD/PhJ  

C57BL/10J NON/LtJ SWR/J  PWK/PhJ  

C57BL/10SnJ NOR/LtJ SWXL-4/TyJ  RF/J  

C57BL/6ByJ NZB//BINJ TIRANO/EiJ  SF/CamEiJ  

C57BL/6J NZO/HILtJ YBR/EiJ  SKIVE/EiJ  

C57BLKS/J NZW/LacJ ZALENDE/EiJ    
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Table C.2. Bphs susceptibility of mice with the H1RR allele. 

  Histamine (mg/kg)       

Strain 100 50 25 Total % Aff p-valuea 

C3H/HeJ 0/3 0/2 0/2 0/7 0   

C3H/HeN 0/2 0/2 0/2 0/6 0   

     C3H 0/5 0/4 0/4 0/13 0   

AKR/J 1/3 0/2 0/2 1/7 14  

BPL/1J 1/2 2/2 2/2 5/6 83 0.0005 

CAST/EiJ 1/3 0/3 0/3 1/9 11  

CBA/J 0/3 0/2 0/2 0/7 0   

CBA/N 0/3 0/2 0/2 0/7 0   

     CBA 0/6 0/4 0/4 0/14 0  

CZECHII/EiJ 4/4 2/4 2/2 8/10 80 <0.0001 

I/LnJ 2/7 0/3 - 2/10 20  

JF1/MsJ 2/3 2/3 - 4/6 67 0.004 

MOLD/EiJ 2/2 1/2 2/2 5/6 83 0.0005 

MOLF/EiJ 2/2 5/5 5/5 12/12 100 <0.0001 

MSM/Ms 0/3 0/3 - 0/6 0  

MRL/MpJ 0/3 0/2 0/2 0/7 0  

PWD/PhJ 5/7 - - 5/7 71 0.001 

PWK/PhJ 2/2 2/2 2/2 6/6 100 <0.0001 

RF/J 2/2 2/2 2/2 6/6 86 <0.0001 

SF/CamEiJ 0/4 0/2 - 0/6 0  

SKIVE/EiJ 2/7 1/6 0/2 3/15 20  

aRelative to C3H mice 
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Table C.3. Bphs susceptibility in (H1RR × H1RKO) F1 hybrids. 

  Histamine (mg/kg)       

Strain 100 50 25 12.5 6.25 Total % Aff p-valuea 

H1RKO 0/2 0/2 0/2 0/2 0/2 0/10 0   

C57BL/6J 3/3 3/3 3/3 2/2 1/2 12/15 90 <0.0001 

(B6 × H1RKO) F1 4/4 4/4 4/4 3/4 3/3 18/19 95 <0.0001 

                  

C3H.BphsSJL 3/3 2/2 2/2 2/2 2/2 11/11 100 <0.0001 

(BphsSJL × H1RKO) F1 2/2 2/2 2/2 2/2 2/2 10/10 100 <0.0001 

                  

C3H/HeJ 1/3 0/2 0/2 0/2 0/2 1/11 9   

(C3H × H1RKO) F1 0/2 0/2 0/2 0/2 0/2 0/10 0   

                  

CBA/J 0/3 0/2 0/2 0/2 0/2 0/11 0   

(CBA x H1RKO) F1 0/2 0/3 0/2 0/2 0/2 0/11 0   

                  

AKR/J 1/3 0/2 0/2 0/2 0/2 1/11 9   

(AKR x H1RKO) F1 0/2 0/2 0/2 0/2 0/2 0/10 0   

                  

MRL/MpJ 0/3 0/2 0/2 0/2 0/2 0/11 0   

(MRL x H1RKO) F1 2/3 0/2 0/2 0/2 0/2 2/11 18   

                  

PWK/PhJ 3/3 3/3 2/2 1/2 0/2 9/12 75 0.0005 

(PWK x H1RKO) F1 3/3 2/2 2/2 1/2 1/2 11/13 85 <0.0001 

                  

MOLF/MpJ 2/2 2/2 2/2 2/2 0/2 8/10 80 <0.0001 

(MOLF x H1RKO) F1 2/2 2/2 2/2 2/2 0/2 8/10 80 <0.0001 

                  

(MOLF x H1RKO) x 

H1RKO 
114 Aff Unaff           

H1R-/- 54 0 54     0/54 0%   

H1RMOLF/- 60 54 6     54/60 90% <0.0001 
aRelative to H1RKO mice   
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Table C.4. Linkage of chromosome 6 marker loci to Bphse. 

Marker bp χ2 p-value 
A 

Ho 

A 

He 

Un 

Ho 

Un 

He 
Total 

rs36385580 59,353,905 28.8 7.95E-08 28 52 65 20 165 

rs38650989 72,592,521 30.6 3.21E-08 28 52 66 19 165 

D6Mit186 73,387,511 29.5 5.49E-08 30 53 66 19 168 

D6Mit102 93,463,949 38.2 6.36E-10 25 58 66 19 168 

D6Mit65 101,387,523 42.3 7.92E-11 25 58 68 17 168 

D6Mit149 106,005,405 38.5 5.44E-10 27 56 68 17 168 

Hrh1 114,397,936               

rs31698248 120,207,163 41.6 1.09E-10 26 56 69 16 167 

D6Mit254 125,356,646 35.6 2.42E-09 26 56 66 19 167 

rs30853093 125,365,703 34.5 4.32E-09 26 57 65 20 168 

rs30662734 125,370,997 34.5 4.32E-09 26 57 65 20 168 

rs36868180 127,629,804 32.7 1.06E-08 27 56 65 20 168 

D6Mit135 128,834,894 29.2 6.53E-08 27 56 63 22 168 

Segregation of genotype frequency differences with susceptibility (Affected=A) and resistance 

(unaffected=Un) to Bphs in (AKR × PWK) × AKR mice were tested by χ² in 2 × 2 contingency 

tables. He=AKR/PWK allele, Ho=AKR allele 
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Table C.5. Predicted candidates for Bphse and their annotation in Bphs functional 

networks. 

      Functional enrichment 

  Gene bp Cardiac  GPCR   HA PTX T1H V.P ER 

1 Gt(ROSA)26Sor 113074173     ✓ ✓       

2 Atp2b2 113893222 ✓ ✓         ✓ 

3 Hrh1 114440616 ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

4 Atg7 114751855             ✓ 

5 Syn2 115208454 ✓ ✓         ✓ 

6 Timp4 115247048             ✓ 

7 Pparg 115425675 ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

8 Mkrn2 115612263             ✓ 

9 Raf1 115647351     ✓ ✓     ✓ 

10 Ift122 115890084             ✓ 

GPCR = G-protein coupled receptors, HA = Histamine, PTX = Pertussis toxin, T1H = Type 1 

hypersensitivity/anaphylaxis, V.P = vascular permeability and ER = Endoplasmic 

reticulum/endoplasmic membrane protein complex, and endoplasmic reticulum-associated 

degradation. 
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C.10. Supplementary data 

Supplementary Table C.1. List of 50 inbred mouse strains used in genetic association 

testing. 

Bphs Susceptible (41)   Bphs Resistant (9) 

129S1/SvImJ C57BL/6J LP/J PL/J   AKR/J   

129T2/SvEmsJ C57BLKS/J MA/MyJ PWD/PhJ   C3H/HeJ   

129X1/SvJ C57BR/cdJ MOLD/RkJ PWK/PhJ   CAST/EiJ   

A/J C57L/J MOLF/EiJ RF/J   CBA/J   

A/WySnJ C58/J NOD/ShiLtJ RIIIS/J   I/LnJ   

BALB/cJ CZECHII/EiJ NON/ShiLtJ SJL/J   MRL/MpJ   

BALB/cByJ DBA/1J NOR/LtJ SM/J   MSM/MsJ   

BPL/1J DBA/2J NU/J SWR/J   SF/CamEiJ   

C57BL/10J FVB/NJ NZB/BlNJ     SKIVE/EiJ   

C57BL/10ScNJ JF1/MsJ NZW/LacJ         

C57BL/6ByJ LG/J P/J         
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Supplementary Figure C.1. Mouse family tree showing the phylogenetic relationships 

among 102 inbred and wild-derived inbred strains. 

The seven mouse groups as described as by Petkov et al. 2004 with the strains examined in this 

study highlighted. Group 1, Bagg albino derivatives; Group 2, Swiss mice; Group 3, Japanese and 

New Zealand inbred strains; Group 4, C57/58 strains; Group 5, Castle mice; Group 6, C.C. Little 

DBA and related strains; Group 7, wild-derived strains.  
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