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Abstract 

 Dupuytren’s Disease (DD) is a benign fibrosis of the palmar fascia, the connective tissue 

beneath the skin of palm and digits. DD leads to loss of hand function and affects 4 - 6% of the 

US population alone. Current treatments focus on removing diseased tissue through surgery —

however, post-surgery disease recurrence rates exceed 30% with no known cure. Previous 

studies found that fibroproliferative diseases such as DD contain fibroblasts with abnormally 

high levels of β-catenin, similar to certain malignancies such as colon cancer. In colon cancer 

cells, nuclear translocation of β-catenin trans-activates genes responsible for cellular 

proliferation, and this process is facilitated by the transducin β-like proteins TβL1 and TβLR1 

that are post-translationally modified with small ubiquitin-like modifiers (SUMOylation). The 

anti-cancer drug, BC2059 (Tegavivint), has been developed to competitively inhibit interactions 

between β-catenin and SUMOylated TβL1/TβLR1 and is currently undergoing Phase-I clinical 

trials. It is currently unknown whether the SUMOylated TβL1/TβLR1 complex mediates β-

catenin nuclear translocation in DD. In this study, we investigated whether β-catenin interactions 

with SUMOylated TβL1/TβLR1 were present in primary fibroblasts derived from patients with 

DD, and if cytokine treatments mimicking inflammation during fibrosis modified these 

interactions. Through western blotting, proximity ligation assays, and confocal microscopy, we 

confirmed that in DD fibroblasts— the levels of SUMOylated TβL1/TβLR1 increased in 

response to cytokines. Moreover, we observed that the interactions between β-catenin and 

TβL1/TβLR1 were significantly increased. The novel finding of cytokine-induced SUMOylation 

of TβL1/TβLR1 presents a mechanistic link between inflammation and fibroproliferation. Given 

the prevalence and debilitating nature of DD, there exists a need to identify new therapeutic 
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targets to prevent disease progression and recurrence — the results of this study identify 

SUMOylated TβL1/TβLR1 interactions with β-catenin as a feasible target and provide a strong 

rationale to cross-purpose anti-cancer drugs such as BC2059 to treat DD. 
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Introduction  

Dupuytren’s Disease 

 Dupuytren’s Disease (DD) is a chronic, heritable fibrosis of the palmar fascia —the 

fibrous layer of connective tissue found underneath the skin of the palm and digits.  During the 

progression of DD, the palmar fascia undergoes excessive deposition of collagen, eventually 

thickening to the point where some patients experience permanent hand and/or finger 

contractures1. The prevalence of DD is estimated to be up to 7% in the United States of America, 

and as high as 32% in some regions of Europe2, 3. Current treatments for DD primarily focus on 

directly removing diseased palmar fascia, either through invasive surgical interventions 

(fasciectomy), or enzymatic breakdown using minimally invasive collagenase injections1, 4. 

Unfortunately, post-surgery disease recurrence rates are high, typically exceeding 30% and as a 

result, DD is presently incurable5. Given the prevalence and debilitating nature of DD, there 

exists a crucial need to identify new therapeutic targets in order to prevent disease progression 

and recurrence. 

 

Canonical β-catenin signalling 

 Although DD is ultimately benign, it shares certain molecular characteristics with 

malignant tumours, particularly increased β-catenin levels 6. β-catenin is a dual function trans-

activating factor that regulates gene transcription and coordinates cell-to-cell adhesion7. It is 

normally under regulation and tagged for degradation through phosphorylation through a 

destruction complex consisting of the scaffolding proteins Axin, Adenoma Polyposis Coli 

(APC), glycogen synthase kinase 3β (GSK3β), and casein kinase 1 (CK1). Ultimately, 
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phosphorylated β-catenin undergoes degradation through the 26S proteasome ubiquitination 

pathway 7. Inactivation of the destruction complex occurs canonically through Wnt-signalling, 

where β-catenin accumulates in the cytoplasm and translocates into the nucleus to trans-activate 

genes involved in cell proliferation, differentiation, and adhesion— normally, this process is 

crucial in normal embryonic development7. However, abnormal Wnt-signalling has been 

implicated in various malignancies such as colon cancer as a result of mutations in the APC gene 

—leading to a dysfunctional destruction complex and over-accumulation of β-catenin in the 

cytoplasm6, 7.  

 

The role of β-catenin in normal and abnormal wound healing 

Fibroproliferative diseases such as DD are an exaggerated response to wound healing7. In 

addition to its role in the development of certain cancers, β-catenin is involved in the normal 

wound healing process, which can be characterized by three major phases: the inflammatory 

response, the proliferative phase, and the remodelling phase7 (Figure 1). The inflammatory 

response is necessary to mediate the break down of debris and clearance of bacteria by 

neutrophils and macrophages. To begin the transition from the inflammatory phase to the 

proliferative phase, a number of growth factors and anti-inflammatory cytokines such as 

transforming growth factors α and β (TGFα and TGFβ), epidermal growth factor (EGF), and 

insulin-like growth factor (IGF) are released by macrophages at the wound to stimulate fibroblast 

migration and proliferation. During the proliferation phase, recruited fibroblasts differentiate into 

myofibroblasts, which then function during the tissue-remodelling phase to deposit collagen 

bundles that compact or contract the wound. Notably, within the proliferative phase of normal 

wound healing — it is believed that TGFβ mediates β-catenin signalling in fibroblasts through 
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inactivation of GSK3β, and that fibroblast proliferation and subsequent tissue remodelling is 

dependent on β-catenin signalling. Ultimately, dysregulation of β-catenin-signalling during 

fibroblast proliferation may be a factor in the abnormal wound healing response leading to the 

development of fibroproliferative disorders such as DD 16, 17, 18. 

 

Previous studies have shown that the fibroblasts inducing palmar fascia fibrosis (DD 

fibroblasts) exhibit markedly increased cytoplasmic and nuclear β-catenin levels24. Unpublished 

findings in our lab have demonstrated that β-catenin nuclear translocation in DD may lead to its 

association with certain pro-fibrotic and pro-malignant genes, such as WT1 (encoding Wilm’s 

Tumour One). A high level of the WT1 protein is known to be a common characteristic among 

various cancers, and more recently, in DD8, 9. The potential consequences of aberrant β-catenin 

nuclear translocation in DD, therefore, make it a valuable therapeutic target to prevent disease 

progression and/or recurrence. However, the specific molecular mechanisms that are responsible 

for its nuclear translocation are unclear.   

 

 

 

 

 

 

 

 

 
Fig 1. The normal wound healing process.  
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Mechanisms behind the nuclear translocation of β-catenin  

Recently, the conjugation of small ubiquitin-like modifiers (SUMO1) to Transducin β-

like 1 (TβL1) and Transducin β-like receptor 1 (TβLR1) have been implicated in the nuclear 

translocation of β-catenin in colon cancer cells exhibiting high β-catenin levels and aberrant β-

catenin signaling. More specifically, it is believed that only after SUMO1 conjugation 

(SUMOylation) of the TβL1/TβLR1 complex will β-catenin associate with the complex and 

localize into the nucleus10 (Figure 2). Small molecule inhibitors, such as BC2059 (Tegavivint), 

have been developed to competitively inhibit SUMOylated TβL1/TβLR1 interactions with β-

catenin as an anti-cancer therapeutic11, and are already in phase I clinical trials28. The aim of this 

study was to identify parallels in the molecular characteristics associated between DD and cancer 

to determine the feasibility of cross-purposing anti-cancer drugs such as BC2059 for the 

treatment of DD and other fibroproliferative disorders.  

 

Based on the findings that there are increased levels of cytoplasmic and nuclear β-catenin 

in DD, we hypothesized that in DD, β-catenin nuclear translocation is facilitated by the 

SUMOylated TβL1/TβLR1 complex, and that inhibition of this complex will prevent DD 

progression and recurrence.  
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Fig 2. Nuclear translocation of β-catenin in cancer.  
 
TβL1/TβLR1 SUMOylation induces their dissociation from the Nuclear hormone receptor Co-
Repressor (NCoR) / Silencing Mediator of Retinoic acid and Thyroid hormone receptor (SMRT) 
complex and translocation to the cytoplasm.  Cytoplasmic stabilization of ß-catenin by Wnt 
promotes the formation of ß-catenin/SUMO-TßL1/SUMO-TßLR1 complexes, translocation to 
the nucleus and transactivation of gene transcription. Adapted from Choi et al., (2011). 
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Materials and Methods 

Clinical Specimen Collection 

 Surgically resected palmar fascia tissue samples were obtained from patients with 

Dupuytren’s Disease (DD) and patients undergoing surgery for carpal-tunnel release (CT) at the 

XXX hospital. All patients signed consent forms allowing their tissues to be used for research, 

and the XXX Research Ethics Board approved sample collection for Health Sciences Research 

involving Human Subjects (XXX). Lab numbers were assigned to samples prior to processing in 

order to meet patient de-identification and confidentiality agreements.  

 

Primary Cell Culture 

 DD fibroblasts were extracted from the palmar fascia of DD patients, while the palmar 

fascia from patients without any history of DD undergoing carpal tunnel release was used to 

extract phenotypically normal fibroblasts (CT fibroblasts) for use as allogeneic controls.  

Tissue samples were dissected and placed onto 100 mm culture dishes containing α-MEM 

medium (Life Technologies) supplemented with 1% antibiotic-antimycotic solution (Life 

Technologies), 1% L-Glutamine (Life Technologies), and 10% fetal bovine serum (FBS; Life 

Technologies) at 37°C in 5% CO2. The cellular outgrowths from tissue fragments were then 

passaged routinely by trypsinization using 0.25% trypsin (Gibco). All primary cell cultures were 

used up to a maximum of seven passages, where afterward they were discarded.  
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Cytokine Treatments  

 DD and CT fibroblasts were seeded at a density of 2.2 x 106 cells in 100 mm dishes and 

serum-starved in serum-free α-MEM media for at least 24 hours prior to treatment with human 

pro-inflammatory cytokine mixtures (Cytomix 1), or human anti-inflammatory cytokine mixtures 

(Cytomix 2). The human cytokines comprising Cytomix 1 and 2 were purchased from 

PeproTech. Cytomix 1 was comprised of tumour necrosis factor (TNF), interleukin 1 beta (IL1-

β), and interferon gamma (IFN-γ) at a stock concentration of 1 ug/mL. Cytomix 2 was comprised 

of intereukin-4 (IL-4), interleukin 10 (IL-10), and transforming growth factor beta (TGFβ1), at a 

stock concentration of 1 ug/mL. DD and CT fibroblasts were treated separately at 24 and 48h 

with Cytomix 1 or Cytomix 2, at a dose of 0.5 ng/ml.  

 

Antibodies 

 The following primary antibodies were used: rabbit polyclonal SUMO1 antibody 

(ab11672, Abcam, 1:100 for proximity ligation assays), mouse monoclonal TβL1 antibody (sc-

137083, SantaCruz 1:150 for immunocytofluorescence and proximity ligation assays), mouse 

monoclonal TβLR1 antibody (ab117761, Abcam, 1:150 for immunocytofluorescence and 

proximity ligation assays), rabbit monoclonal non-phosphorylated active β-catenin antibody 

(D13A1, Cell Signalling Technology, 1:1000 for immunoblotting; 1:200 for proximity ligation 

assays). The following secondary antibodies for western immunoblotting were used: horseradish 

peroxidase (HRP)-linked horse anti-mouse IgG (#7076, Cell Signaling Technology, 1:1000), and 

HRP-linked goat anti-rabbit IgG (#7074, Cell Signaling Technology, 1:1000). For 
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immunocytofluorescence, the following secondary antibodies were used: anti-rabbit Alexa Fluor 

568 (Molecular Probes, 1:400) and anti-mouse Alexa Fluor 488 (Molecular Probes, 1:400). 

Cell Lysate Preparation 

 Cell pellets stored at -80°C were resuspended in RIPA cell lysis buffer (Teknova) 

supplemented with protease inhibitor cocktail (Sigma-Aldrich), 0.1M sodium flouride, 10 mM 

sodium orthovanadate, and 10 mM phenylmethane sulfonyl fluoride (PMSF). Resuspended cells 

were then needle aspirated five times and placed on ice for 30 minutes. Cell lysates were 

centrifuged at 5000 RPM to remove insoluble material, and total protein concentrations were 

determined by Bicinchoninic Assay (BCA, ThermoScientific). Protein lysates were used directly 

for western immunoblotting.  

 

Western Immunoblotting and Densitometry Analysis 

 Protein samples were separated using stain-free Mini Protean TGX precast gels (Bio-

Rad), and transferred onto a nitrocellulose membrane using the Invitrogen iBlot. Membranes 

were visualized by chemiluminescence on a Chemidoc XRS+ (BioRad). Band intensity was 

normalized using total protein lane quantification, using the total protein imaged on the stain-free 

membrane25. Relative densitometry analysis was performed using ImageLab 6.0 (BioRad).  

 

Immunocytofluorescence 

 Cells were fixed with 4% paraformaldehyde using Nunc Lab-Tek 8-well chamber slides 

(ThermoFisher) at 60-70% confluency. Cells were washed with phosphate-buffered saline (PBS) 

three times for five minutes and permeabilised by incubating in 0.1% Triton X-100 in PBS for 30 

minutes. Samples were blocked for ten minutes (Background Sniper, Biocare Medical) and then 
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rinsed three times for five minutes in PBS. All incubations were completed at room temperature. 

Primary antibodies were then added for overnight incubation at 4°C. Alexa Fluor 488 or 568 

secondary antibodies were added to the cells for one hour in PBS containing 1% bovine serum 

albumin (BSA) and 0.1% Tween-20 detergent, and subsequently washed in PBS for three times 

for five minutes in PBS. Glass slides were then mounted onto the chamber slides with Duolink 

mounting media containing DAPI counterstain (Sigma-Aldrich).  

Images were captured on a Nikon A1R+ hybrid resonant/galvano point scanning confocal 

microscope 20X objective lens, using the NIS Elements AR software for data acquisition at room 

temperature. The Alexa Fluor 568 was excited with the 15 MW 561 nm diode-pumped solid-

state laser, while the Alexa Fluor 488 was excited with the 15 MW 488 nm diode laser. The 

DAPI signal was excited using the 15 MW 405 nm diode laser. The system is equipped with four 

Photomultiplier tubes for standardized fluorescence detection.  

 

Proximity Ligation Assays (PLA) 

Cells were fixed with 4% paraformaldehyde using Nunc Lab-Tek 8-well chamber slides 

(ThermoFisher) at 60-70% confluency. Cells were washed with phosphate-buffered saline (PBS) 

three times for five minutes and permeabilised by incubating in 0.1% Triton X-100 in PBS for 30 

minutes. Cells were then rinsed with three times for five minutes in PBS and then treated with 

blocking solution (Duolink Sigma-Aldrich) for 60 minutes at 37°C. All incubations were 

completed at room temperature. Primary antibodies were then added for overnight incubation at 

4°C. Combinations of each primary antibody are as follows: i) β-catenin rabbit polyclonal Cell-

Signalling technology 9562L (1:200) and TβL1 mouse monoclonal Santa Cruz H-11 (1:100), ii) 

β-catenin rabbit polyclonal Cell-Signalling technology 9562L (1:200) and TβLR1 mouse 



	 14	

monoclonal Abcam 117761 (1:200), iii) TβL1 mouse monoclonal Santa Cruz H-11 (1:100) and 

SUMO1 rabbit polyclonal Abcam 11672 (1:400), iv) TβLR1 mouse monoclonal Abcam 117761 

(1:200) and SUMO1 rabbit polyclonal Abcam 11672 (1:400). The secondary probes were diluted 

1:5 in the antibody diluent (Duolink Sigma-Aldrich) and incubated for one hour at 37°C. The 

species of the secondary probes used were Anti-Rabbit PLUS and Anti-mouse MINUS (Duolink 

Sigma-Aldrich). The subsequent ligation and amplification reactions were performed according 

to the manufacturer’s instructions. Cells were then mounted on slides with mounting media 

containing DAPI counterstain (Sigma-Aldrich). 

Images were captured on a Nikon A1R+ hybrid resonant/galvano point scanning confocal 

microscope 60X objective lens, using the NIS Elements AR software for data acquisition. Five 

regions were randomly selected per slide and Z-stack images were captured for quantitative 

analysis 

 

Three-Dimensional Analysis of PLA Signals 

The 3D analysis was performed using NIS Elements AR software. The default 3D-

thresholding function was used to create an iso-surface of the nuclear (DAPI) signals. The PLA 

signals were then iso-surfaced using the default 3D spot-detection function. PLA interactions per 

cell were calculated by dividing the total number detected PLA signals by the number of cells in 

each image (based on DAPI signal).  

 

Statistical Analyses  

 Statistical analyses were conducted using GraphPad Prism 7 statistical software. For the 

immunoblotting experiments, ordinary one-way Analysis of Variance (ANOVA) was used in 
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order to determine any significant treatment effects at similar time points for the immunoblotting 

experiments, where significance was designated at p < 0.05. When significance was detected, 

post-hoc analyses were performed using the Dunnett’s test to compare the effect of each 

treatment at a specific time point with a control group at the same time point. For the PLA 

experiments, the unpaired T-test was used to determine any significant treatment effects between 

treatment and control, where significance was designated at p < 0.05.  
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Results 

Fibrosis-associated cytokines enhance β-catenin protein levels in DD and CT fibroblasts 

As with other fibroproliferative disorders, DD is the result of an exaggerated, abnormal 

wound healing response to chronic inflammation7. Therefore, we created cell culture conditions 

that would best mimic the chronic inflammatory environment in order to maximize and stabilize 

β-catenin levels.  

To mimic the pro-inflammatory phase of tissue repair, in which chronic activation is 

associated with cytotoxicity and damage 14, we treated DD and CT fibroblasts with a pro-

inflammatory cytokine mixture consisting of TNF (tumour necrosis factor), IL1β (interleukin-1 

beta), IFNγ (interferon gamma), termed “Cytomix 1”. To mimic the anti-inflammatory phase of 

tissue repair, where inflammation is dampened and tissue remodeling is initiated 14, we treated 

DD and CT fibroblasts with an anti-inflammatory cytokine mixture consisting of IL4 (interleukin 

4), IL10 (interleukin 10), and TGFβ (transforming growth factor beta), termed “Cytomix 2”. The 

concentrations of our cytokine mixtures were dosed at 0.5 ng/ml, approximating the 

physiological levels detected in fresh DD tissue15. There were no noticeable differences in the 

levels of active β-catenin when treated with Cytomix 1 and 2 at 24 hours, in both DD and CT 

fibroblasts (Figure 3B, 4B, respectively). A modest 2-fold increase in β-catenin levels was 

observed after Cytomix 1 treatment at 48 hours in DD fibroblasts (Figure 3D), however CT 

fibroblasts remained relatively unaffected (Figure 4D). After 48-hour Cytomix 2 treatment, we 

observed in DD fibroblasts significant 3-fold increase in β-catenin levels (Figure 3D), and a 

significant 2-fold increase in β-catenin levels in CT fibroblasts (Figure 4D). Taken together, 
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exposing DD and CT fibroblasts to Cytomix 2 successfully increased β-catenin levels, relative to 

Cytomix 1 treatments. 

 

   

 

 

 

 

 

 

 

 

Fig 3. Anti-inflammatory cytokines (Cytomix 2) increase levels of β-catenin in DD 
fibroblasts. 
 
(A, C) Immunoblots for active non-phosphorylated (Ser33/37/Thr41) β-catenin in DD 
fibroblasts. All groups were treated cultured in serum-free media for 24 hours prior to treatment. 
Treatments: no treatment for 24 hours or 48 hours (NT); TNF, IL1β, IFNγ (Cytomix1) (0.5 
ng/ml) added for 24 or 48 hours; IL4, IL10, TGFβ1 (Cytomix2) (0.5 ng/ml) added for 24 or 48 
hours. Total protein imaged on the stain-free membrane was used as a loading control to 
normalize band intensity. Results are shown from the same probed blot.  
 
(B, D) Relative densitometry analysis for active β-catenin in DD fibroblasts treated with 
Cytomix 1 or 2 at 24 and 48 hours, respectively. Data derived from one patient (N=1) assessed in 
triplicate (n=3). Total lane protein quantification was used to normalize band intensity. 
Densitometry analysis was tested by one-way ANOVA followed by Dunnett’s multiple 
comparison test. Asterisks indicate significant differences to control (*P<0.05, *** P<0.0002). 
Values shown are mean +/- SD. 
 
 
 
 
 
 

- 92 kDa - 92 kDa 
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Fig 4. Anti-inflammatory cytokines increase levels of β-catenin in CT fibroblasts. 
 
(A, C) Immunoblots for active non-phosphorylated (Ser33/37/Thr41) β-catenin in CT 
fibroblasts. All groups were cultured in serum-free media for 24 hours prior to treatment. 
Treatments: no treatment for 24 hours or 48 hours (NT); TNF, IL1β, IFNγ (Cytomix1) (0.5 
ng/ml) added for 24 or 48 hours; IL4, IL10, TGFβ1 (Cytomix2) (0.5 ng/ml) added for 24 or 48 
hours. Total protein imaged on the stain-free membrane was used as a loading control to 
normalize band intensity. Results are shown from the same probed blot. 
 
(B, D) Relative densitometry analysis for active β-catenin in CT fibroblasts treated with Cytomix 
1 or 2 at 24 and 48 hours, respectively. Data derived from one patient (N=1) assessed in triplicate 
(n=3). Total lane protein quantification was used to normalize band intensity. Densitometry 
analysis was tested by one-way ANOVA followed by Dunnett’s multiple comparison test. 
Asterisks indicate significant differences to control (*P<0.05, *** P<0.0002). Values shown are 
mean +/- SD. 
 
 

- 92 kDa - 92 kDa 
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Cytoplasmic localizations of TβL1 are increased in DD fibroblasts relative to CT fibroblasts  

To assess whether the SUMOylated TβL1/TβLR1 complex facilitates β-catenin nuclear 

translocation in DD fibroblasts, the cytoplasmic localization of TβL1 was visualized using 

immunofluorescence confocal microscopy. Primary mouse monoclonal antibodies to TβL1 and 

Alexa Fluor 568 secondary antibodies were used to visualize the cytoplasmic and nuclear 

localization of TβL1 by immunofluorescence confocal microscopy. As demonstrated in Figure 

5A, both cytoplasmic and nuclear localization of TβL1 was evident in DD fibroblasts, while 

TβL1 localization was found to be predominantly nuclear in CT fibroblasts, as seen in Figure 5B.  

 

TβLR1 localization is cytoplasmic and nuclear in both DD and CT fibroblasts 

 To assess whether the SUMOylated TβL1/TβLR1 complex facilitates β-catenin nuclear 

translocation in DD fibroblasts, the cytoplasmic localization of TβLR1 was visualized using 

immunofluorescence confocal microscopy.  Primary mouse monoclonal antibodies to TβLR1 

and Alexa Fluor 568 secondary antibodies were used to visualize TβLR1 localization by 

confocal microscopy. As demonstrated by Figure 6A and 6B, TβLR1 localization was both 

cytoplasmic and nuclear in DD and CT fibroblasts, respectively. 
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Fig 5. TβL1 cellular localization is more cytoplasmic in DD fibroblasts relative to CT 
fibroblasts.   
 
(A, B) DD and CT fibroblasts, respectively, were stained with a mouse monoclonal anti-TβL1 
antibody and the secondary antibody Alexa Fluor anti-mouse 568. Images were captured by 
confocal microscopy using a 20X objective lens. Scale bars: 100 microns.  
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Fig 6. TβLR1 cellular localization is cytoplasmic and nuclear in both DD and CT 
fibroblasts.   
 
(A, B) DD and CT fibroblasts, respectively, were stained with a mouse monoclonal anti-TβLR1 
antibody, and secondary antibody Alexa Fluor anti-mouse 568. Images were captured by 
confocal microscopy using a 20X objective lens. Scale bars: 100 microns.  
 

 

 

 

 

 

 

 

A 

B 



	 22	

Cytokine treatments enhance PLA signals for SUMO1 and TβL1 in both DD and CT 

fibroblasts, but not for SUMO1 and TβLR1 

To assess whether the SUMOylated TβL1/TβLR1 complex is active in DD and CT 

fibroblast, and whether the formation of these complexes changes in response to anti-

inflammatory cytokines, we conducted PLAs to determine proximity (<40 nm) between TβL1 

and SUMO1, as well as TβLR1 and SUMO1 by confocal microscopy. To maximize and stabilize 

β-catenin levels and effectively simulate the tissue repair environment in vitro, DD and CT 

fibroblasts were treated with Cytomix 2 for 48 hours. PLA signals for TβL1 and SUMO1 were 

significantly increased in both DD and CT fibroblasts (P = 0.0002) upon treatment with Cytomix 

2 for 48 hours (Figure 7). However, PLA signals for TβLR1 and SUMO1 remained unchanged in 

both DD and CT fibroblasts upon treatment with Cytomix 2 for 48 hours (Figure 8).  
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Fig 7. Interactions between TβL1 and SUMO1 are increased in DD and CT fibroblasts in 
response to Cytomix 2.   
 
(A): Transducin β-like 1 (TβL1) and small ubiquitin-like modifier 1 (SUMO1) are visualized by 
proximity ligation assay (PLA). Representative images are shown where PLA signal (red) 
indicates close proximity (<40 nm) between two proteins. DD and CT fibroblasts were treated 
with Cytomix 2, consisting of interleukin-4, interleukin-10, and transforming growth factor-1 
beta. Images were captured by confocal microscopy using a 60X objective lens. Scale bars: 50 
microns.  
 
(B): Quantification of PLA signal. Data derived from one patient (N=1; n=5). An unpaired t-test 
was performed to test for significance between control and Cytomix 2 treatment. Values shown 
are mean +/- SD.  
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Fig 8. Interactions between TβLR1 and SUMO1 are unchanged in DD and CT fibroblasts 
in response to Cytomix 2.   
 
(A): Transducin β-like receptor-1 (TβLR1) and small ubiquitin-like modifier 1 (SUMO1) are 
visualized by proximity ligation assay (PLA). Representative images are shown where PLA 
signal (purple) indicates close proximity (<40 nm) between two proteins. DD and CT fibroblasts 
were treated with Cytomix 2, consisting of interleukin-4, interleukin-10, and transforming 
growth factor-1 beta. Images were captured by confocal microscopy using a 60X objective lens. 
Scale bars: 50 microns.  
 
(B): Quantification of PLA signal. Data derived from one patient (N=1; n=5). An unpaired t-test 
was performed to test for significance between control and Cytomix 2 treatment. Values shown 
are mean +/- SD.  
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Cytokine treatments enhance PLA signals for β-catenin and TβL1 as well as β-catenin 

and TβLR1 in both DD and CT fibroblasts 

 To assess whether the SUMOylated TβL1/TβLR1 complex is active in DD and CT 

fibroblasts, and whether these complexes interact with β-catenin, PLAs were conducted to 

determine proximity (<40 nm) between β-catenin and TβL1 as well as β-catenin and TβLR1 by 

confocal microscopy. To maximize and stabilize β-catenin levels and effectively simulate the 

tissue repair environment in vitro, DD and CT fibroblasts were treated with Cytomix 2 for 48 

hours.  PLA signals for TβL1 and β-catenin were significantly increased in both DD and CT 

fibroblasts in response to Cytomix 2 treatment for 48 hours (P = 0.0003) (Figure 9). PLA signals 

for TβLR1 and β-catenin were also significantly increased in both DD and CT fibroblasts in 

response to Cytomix 2 treatment for 48 hours (P< 0.02) (Figure 10).  
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Fig 9. Interactions between TβL1 and β-catenin are increased in DD and CT fibroblasts in 
response to Cytomix 2.   
 
(A): Transducin β-like 1 (TβL1) and β-catenin are visualized by proximity ligation assay (PLA). 
Representative images are shown where PLA signal (red) indicates close proximity (<40 nm) 
between two proteins. DD and CT fibroblasts were treated with Cytomix 2, consisting of 
interleukin-4, interleukin-10, and transforming growth factor-1 beta. Images were captured by 
confocal microscopy using a 60X objective lens. Scale bars: 50 microns.  
 
(B): Quantification of PLA signal. Data derived from one patient (N=1; n=5). An unpaired t-test 
was performed to test for significance between control and Cytomix 2 treatment. Values shown 
are mean +/- SD.  
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Fig 10. Interactions between TβLR1 and β-catenin are increased in DD and CT fibroblasts 
in response to Cytomix 2.   
 
(A): Transducin β-like receptor-1 (TβLR1) and β-catenin are visualized by proximity ligation 
assay (PLA). Representative images are shown where PLA signal (red) indicates close proximity 
(<40 nm) between two proteins. DD and CT fibroblasts were treated with Cytomix 2, consisting 
of interleukin-4, interleukin-10, and transforming growth factor-1 beta. Images were captured by 
confocal microscopy using a 60X objective lens. Scale bars: 50 microns.  
 
(B): Quantification of PLA signal. Data derived from one patient (N=1; n=5). An unpaired t-test 
was performed to test for significance between control and Cytomix 2 treatment. Values shown 
are mean +/- SD.  
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Discussion 

 In this study, we investigated whether any parallels existed with respect to abnormal β-

catenin signalling in DD relative to cancer, in order to assess the feasibility and potential of 

cross-purposing anti-cancer drugs to target β-catenin nuclear translocation in fibroproliferative 

diseases. We determined that the cellular localization of TβL1 and TβLR1 are primarily 

cytoplasmic in DD fibroblasts— translating into an increased availability for the formation of 

TβL1/TβLR1/β-catenin complexes that can then translocate into the nucleus relative to CT 

fibroblasts. Furthermore, in response to treatment with anti-inflammatory cytokines, DD and CT 

fibroblasts both demonstrated increased levels of SUMOylated TβL1 and TβLR1, as well as 

higher levels of TβL1 and TβLR1 interactions with β-catenin.  

 

To maximize and stabilize β-catenin levels, DD and CT fibroblasts were treated with 

fibrosis-associated cytokines to mimic chronic inflammation. DD fibroblasts demonstrated 

higher sensitivity to 48-hour Cytomix 1 treatment, as a modest two-fold increase in β-catenin 

levels was observed (Figure 3D) relative to CT fibroblasts (Figure 4D). As mentioned 

previously, DD is a hyperproliferative disorder resulting from an exaggerated, abnormal wound 

healing response to chronic inflammation7. The heightened sensitivity of DD fibroblasts to pro-

inflammatory cytokines in Figure 3D supports this hypothesis. In response to 48-hour Cytomix 2 

treatment, DD fibroblasts experienced a significant 3-fold increase in β-catenin levels (Figure 

3D), and CT fibroblasts experienced a significant 2-fold increase (Figure 4D). The increase in β-

catenin levels observed after Cytomix 2 treatment may be attributed to TGFβ, as previous studies 

determined that fibroblasts treated with TGFβ experienced an increase in β-catenin levels13, 17. 
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TGFβ is an important anti-inflammatory cytokine during the wound healing process and is linked 

to β-catenin signalling to modulate wound repair and tissue remodeling18.  

 

 We determined that upon treatment with Cytomix 2 —consisting of the anti-

inflammatory fibrosis-associated cytokines IL4, IL10, and TGFβ1— resulted in increased levels 

of SUMOylated TβL1 in DD and CT fibroblasts (Figure 7). Furthermore, interactions between 

TβL1 and TβLR1 with β-catenin were increased in DD and CT fibroblasts upon treatment with 

Cytomix 2 (Figures 9 & 10). To our knowledge, the facilitation of β-catenin nuclear translocation 

by the SUMOylated TβL1/TβLR1 has only been studied in the context of cancer cells. Our novel 

findings implicating β-catenin nuclear translocation by SUMOylated TβL1/TβLR1 have not yet 

been studied in the context of fibrosis and chronic inflammation. Based on these new findings, 

along with the role that TGFβ plays in modulating wound repair and tissue remodelling16, 17, 18 — 

we hypothesize that the anti-inflammatory cytokines IL4, IL10, and TGFβ1 may contribute to 

the transition between the inflammation and proliferation phases in both normal and fibrotic 

tissue repair. More specifically, the anti-inflammatory cytokines may lead to increased 

interactions between SUMOylated TβL1/TβLR1 and β-catenin, thereby resulting in the β-

catenin-mediated transactivation of genes involved in cellular proliferation and wound healing 

during normal and abnormal tissue repair (Figure 11).    
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Fig 11. The presence of anti-inflammatory cytokines during the transition from the inflammation 
to proliferation phase of wound healing mediates β-catenin nuclear translocation as a result of the 
SUMOylated TβL1/TβLR1 complex.  
 

 

Limitations and Future Directions  

 We have presented here evidence that SUMOylated TβL1 and SUMOylated TβLR1 exist 

at higher levels in both DD and CT fibroblasts upon treatment with anti-inflammatory cytokines, 

which correlates with increased protein levels of β-catenin. Additionally, TβL1 and TβLR1 

interactions with β-catenin are also more abundant as a result. PLAs were used to detect these 

protein-protein interactions, as this technique detects proximity between two proteins that is < 40 

nm. However, it is important to detect these interactions with other techniques such as 

immunoprecipitation, in order to validate our PLA findings. Additionally, in order to directly 

confirm the mechanisms behind BC-2059 and its specificity towards targeting specific β-catenin 

interactions with SUMOylated TβL1 and TβLR1 — it is important to test whether interactions 

between TβL1 and TβLR1 with β-catenin are effectively disrupted in drug-treated DD 

fibroblasts.   
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 The protein-protein interactions were primarily detected in fibroblasts cultured in vitro, 

and this may present a limitation of this study. Although the levels of β-catenin were stabilized 

through treatments with fibrosis-associated cytokines in order to mimic the tissue repair 

environment and maintain physiological relevance — these findings can be strengthened by 

moving towards an ex vivo experimental approach. Performing immunostaining and PLAs in 

fresh palmar fascia tissue ex vivo may strengthen our findings by providing increased 

physiological relevance 27.  

 

Conclusion 

 In summary, we have presented evidence of the specific mechanisms that may be 

involved in β-catenin nuclear translocation during the anti-inflammatory phase of tissue repair. 

Our novel findings present the SUMOylated TβL1/TβLR1 complex as a new therapeutic target 

for DD and other fibroproliferative diseases. Small molecule inhibitors such as BC2059 that 

disrupt interactions between SUMOylated TβL1/TβLR1 and β-catenin are in development for the 

treatment of cancer and are already undergoing phase-I clinical trials28. Our observations here 

show that similar mechanisms may be involved during the abnormal tissue repair process 

associated with the development of DD. At present, there are no therapies that focus on targeting 

early disease development and preventing post-surgical disease recurrence in DD.  The results of 

this study identify SUMOylated TβL1/TβLR1 interactions with β-catenin as a novel therapeutic 

target for DD and other fibroproliferative diseases.   
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