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Abstract

Focal cortical dysplasia (FCD) are localized regions of malformed cerebral cortex that are

frequently associated with drug-resistant epilepsy. Currently, there is a lack of research towards

providing quantitative methods for characterizing minor abnormalities in cortical architecture,

hindering efforts to determine whether removal affects surgical outcome, and define potential

imaging correlates. In our work, we have developed a tool to extract relevant features associ-

ated with cortical architectural abnormalities that can deal with artifacts including cortical layer

distortions and morphological differences caused by cortical folding effects, and processing ar-

tifacts due to improper sectioning. This framework was applied to detect abnormalities across

multiple subjects and slides using unsupervised anomaly detection algorithm. Our results sug-

gest that the technique is able to identify anomalies that correspond to visually-identifiable

histological abnormalities. The frequency of abnormalities was found to differ among patients;

however, the clinical significance of these findings is yet to be investigated.

Keywords: Epilepsy, Imaging-histology, Cytoarchitecture, Machine Learning, Anomaly-detection.
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Lay Summary

Drug-resistant epilepsy occurs in over 30% of epilepsy patients, with many patients un-

dergoing surgical treatment to alleviate their seizure activity. Focal cortical dysplasia (FCD)

is a common pathology associated with drug-resistant epilepsy and is mainly characterized by

the presence of abnormal brain layering. However, FCD is challenging to diagnose and treat

since lesions are not often seen with clinical imaging protocols. Furthermore, minor corti-

cal architectural abnormalities are seen in many temporal lobe epilepsy cases, however, their

significance is not well understood because of the challenges in objectively quantifying these

abnormalities. The goal of this research is to develop analysis tools for histopathology of re-

sected brain tissue to objectively and quantitatively evaluate cortical abnormalities in epilepsy

patients. Quantitative evaluation of cortical architecture in histology samples would comple-

ment specialists in the detection of subtle epileptogenic lesions, reducing inter-rater variability

and ultimately providing a more accurate reference for in-vivo diagnostic techniques.

A major challenge in analyzing cortical histology to quantitatively describe cortical archi-

tecture is that the layering of the brain can be distorted in different parts of the sample. This

is caused by mainly two sources of variability: displacement of the brain layering due to the

complex geometry of the brain, and out-of-plane sampling problems when the section is not

perpendicular to the brain surface. These alterations can cause issues for computer-aided anal-

ysis, as many algorithms have difficulty in handling these artifacts.

In this study, we summarize our digitized tissue samples into relevant features that describe

the cortical architecture. The result of the summarized features showed sensitivity to changes

commonly associated with FCD pathology. Additionally, we implemented a method to ex-

tract relevant layering information computationally and applied computational techniques to

align the displaced data across multiple slides and subjects. Furthermore, we apply a machine

learning technique to identify and eliminate the processing artifacts presented in the data due to

out-of-plane sampling problems. We then applied an outlier detection algorithm to test whether

outliers in the data represent abnormal tissue in the brain. Our results suggest that anomalies
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in the summarized image features resemble abnormalities in the tissue samples.
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Chapter 1

Introduction

1.1 Epilepsy

1.1.1 Introduction to Epilepsy

Epilepsy is a neurological disease characterized by abnormal neuronal electrical activity which

is associated with recurrent seizures [1, 2]. Specifically, a seizure is defined as a sudden,

uncontrolled electrical disturbance in the brain. A diagnosis of epilepsy is often recognized

when a patient has two or more unprovoked seizures episodes. Seizures are caused by an

imbalance of inhibitory and excitatory neural signalling, causing excessive neuronal electrical

activity in a confined or general region of the brain. There is a wide range of types of seizures,

and the manifestations will depend on the particular type of seizure disorder. The International

League Against Epilepsy (ILAE) classification has categorized seizures into two groups, partial

(focal) seizures and generalized seizures [3, 2]. Focal seizures are seizures that consistently

arise from a confined localized region in the brain, resulting in a specific uncontrolled action,

with or without loss of or alteration in consciousness. Focal seizures are further characterized

by whether awareness is retained (focal aware) or impaired (focal impaired awareness). In

addition, the presence of motor movements during the onset of seizure can further characterize

the focal seizures. Generalized seizures affect both hemispheres often from the onset of a

1
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seizure, and are sub-categorized by the presence of convulsive movements. Epilepsy is one of

the most common neurological disorders affecting 1% of Canadians and more than 65 million

people worldwide. [4, 5]. The highest number of newly diagnosed cases are found in seniors

and young children, but the disease can begin at any age.

The first line of treatment for newly diagnosed patients are anti-epileptic drugs (AEDs).

However, the ability to control and eliminate seizures remains highly limited. In approximately

30 percent of cases, patients have intractable epilepsy as they are drug-resistant to medication

despite multiple trials of AEDs [6, 7]. A prognosis of epilepsy, especially those with drug-

resistant epilepsy, is associated with a decrease in quality of life due to high levels of social

stigmatization and imposed restrictions [8], increase risk in suicide [9], as well as an increase

in psychiatric co-morbidity [10], and decrease in life expectancy [11]. This devastating neu-

rological disease places a huge burden on patients, family and friends, as well as the health

care services due to the additional costs and need for more complicated interventions such as

surgery in drug-resistant cases [12, 13].

Temporal lobe epilepsies (TLE) represent the most common form of focal epilepsy and

are among the most frequent medically intractable [14]. Temporal lobe epilepsy is defined as

epilepsies in which seizures originate from mesial or lateral structures of the temporal lobe.

Surgery may have a role in the treatment of both mesial and lateral temporal lobe epilepsies

in drug-resistant patients [14]. When there is a localized seizure focus, found through clinical

imaging, patients become eligible for surgical excision of the affected brain region in order to

achieve seizure control [15, 16]. In the case of temporal lobe epilepsy, an anterior temporal

lobectomy is an effective treatment, resulting in seizure freedom for 60-80 percent of patients

[17, 18, 19]. A major factor in surgical success is correct identification and resection of the

entire seizure focus, which is challenging in subtle cases due to the limitations in clinical

neuroimaging [20].
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1.1.2 Temporal Lobe Anatomy and Function

The temporal lobe is one of the four lobes of the brain among the frontal (blue), parietal (yel-

low) and the occipital lobe (red), and lies at the base of the skull beneath the lateral sulcus or

Sylvian fissure as shown in Figure 1.1.

Figure 1.1: Location of temporal lobe within the cerebral cortex and anatomical landmarks defining
temporal lobe boundaries. Modied from Henry Grays anatomy: Figure 728. Licensed under Public
domain via Wikimedia Commons

The lateral component of the temporal lobe comprises of the temporal neocortex which is

responsible for speech perception and language comprehension, as well as auditory, visual and

olfactory senses [21]. The mesial temporal lobe structures involve the limbic structures which

consist of the hippocampus and other nearby deep structures. The hippocampus receives highly

processed sensory information from disparate regions of the brain and is responsible for con-

solidating working memory into long-term declarative memory (facts and experiences) [21].

Furthermore, the hippocampus is involved in many other aspects of cognition beyond naviga-

tion and declarative memory, including for example emotional regulation [22], imagining the

future [23], and perceptual processing [24]. Figure 1.2 highlights the deep structures found

within the medial temporal lobe.
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Figure 1.2: Deep brain structures and high level function

1.1.3 Neocortical Architecture

The cerebral cortex is the convoluted outer surface of the cerebrum and is composed of grey

matter. The grey matter is made up of neurons and other neuronal cells, which are the basic

functional units of the nervous system (Figure 1.3). These cells are responsible for receiving

and transmitting information through electrical signals. Neurons are typically composed of

three parts: dendrites, the soma or cell body, and axon. Respectively, the three components of

the neuron allow these cells to receive signals from other neurons, integrate incoming signals,

and transmit or communicate signals to target cells, such as other neurons. The other types of

cell types found within the cortex are glial cells which function primarily to support neurons.

The cortical grey matter is arranged in layers, or laminae, with each layer having distinct

densities and types of neurons. The neuronal cell bodies found within each layer may also

differ in size and shape. For example, layers II and IV have high density with mostly smaller

granular neurons, and layer III and V have a lower density with mostly larger pyramidal neu-

rons. Brodmann, a German scientist in the early 20th century, was the first to describe that the

properties of the layers differed from one cortical region to another. Individual layers exhibit

distinct cellular compositions and distributions [25], developmental trajectories [26], and func-

tional roles [27]. The six cortical layers are numbered from the pial (outer surface) to the white
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Figure 1.3: Diagram of a neuron. Adapted from the Blausen Gallery, 2013. Licensed under the Creative
Commons Attribution 3.0 Unported license

matter (inner surface), as seen in Figure 1.4. Overall, the 2-3 mm thick cortex consists of the

following 6 layers: Layer I, or the molecular layer, which is sparsely populated by neuronal

cell bodies; Layer II, the external granular layer, a relatively thin layer which consist of numer-

ous small, densely packed neurons; Layer III, the external pyramidal layer, which is composed

of mid-sized pyramidal nerve cells; Layer IV, also known as the internal granular layer, that

is composed of densely populated granular cells, and is the most densely packed layer; Layer

V, also known as the internal pyramidal layer, includes large pyramidal neurons; and layer VI,

the polymorphic layer or multiform layer, this layer contains a mix of small polymorphic and

fusiform neurons [28, 29].

As mentioned previously, the cortical layers have specific functional roles, as reflected by

the inputs they receive (afferents), and the sites to which they project their axons (efferents).

In general, layers I, II, and IV are primarily input layers, that receive their inputs from the

thalamus and other regions of the cortex. Whereas, layers III and V contain mostly efferent

fibres that project signals to the brain stem, spinal cord and other cortical regions. Layer VI has

mostly efferent fibres that project to the thalamus. The disruption of the cortical architecture or

the structure of the cortex can affect the functional activities of the layers, which can give rise

to epilepsy and other functional pathologies [3, 30, 31].
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Figure 1.4: Coronal section through the cortex showing the major types of fibers projecting to and from
the cerebral cortex. Illustration on the right shows the six cortical layers as they appear after staining for
cell bodies. Image created with c©BioRender - biorender.com

1.1.4 Neuropathology of Temporal Lobe Epilepsy

Pathological findings in surgical resections from patients with temporal lobe epilepsy include

a wide range of diagnostic possibilities, which can originate from either genetic or acquired

factors. These include conditions such as hippocampal sclerosis, congenital lesions, tumours,

ischemic lesions, traumatic injuries, and inflammatory lesions [32]. Many of these pathological

findings are complex and challenging to assess due to the presence of multiple types of lesions

and the historical lack of quantitative characterization. In addition, there is an ongoing debate

about whether the presence of dual pathologies (i.e., hippocampus sclerosis and associated

microscopic cortical architectural abnormalities) is a significant factor for surgical outcome.

With early studies stating the presence of hippocampus sclerosis and associated microscopic

abnormalities leads to a higher risk of seizure recurrence [33, 34], while newer studies suggest

that patients have a favourable outcome when both pathologies are removed [35, 36, 37]. The
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lack of research towards characterizing minor abnormalities in cortical architecture hinders the

ability to determine whether removal of the minor architectural abnormalities affects surgical

outcomes. Better classification of the range of such pathologies can lead to improved detec-

tion of lesions which can be used to assess surgical predictive outcomes and improve in-vivo

characterization. Therefore in this work, we will focus on providing a quantitative method for

characterizing lesional epilepsy due to malformations of cortical development.

Malformation of Cortical Development

Cortical development (corticogenesis) is the dynamic process in which the cerebral cortex is

formed through a series of complex morphogenetic events [38]. Corticogenesis starts with the

development and growth of the nervous system and is followed by the proliferation of neurons.

Neuronal cells will then undergo migration towards their final locations in one of the six layers

of the cortex. Finally, the neurons will take on specific functional roles during the differenti-

ation stage. Malformations of cortical development (MCD) are brain abnormalities resulting

from the disruption in the normal processes in cortical development. Typically the disruptions

occur in stages during neurogenesis and migration. The disruption of cortical development can

result in abnormal cortical structure and neuronal morphologies. Ultimately this may disrupt

neuronal circuitry and predispose patients to a variety of clinical consequences, epilepsy being

the most common outcome [38].

Focal Cortical Dysplasia

Focal cortical dysplasia (FCD) is a common form of MCD and is the leading cause of drug-

resistant epilepsy in both children and adults [39]. FCD was first termed by Taylor et al. (1971)

to describe localized regions of malformed cerebral cortex in surgical specimens from patients

with epilepsy. Since then, FCD has been defined as a range of cortical abnormalities each with

specific histopathological features [40]. As a result, the ILAE has created a three-tier classifica-

tion system to distinguish the range of FCD variants [41, 3]. The broad range of FCD variants
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includes a wide range of characteristic deformities including disrupted cortical architecture,

cortical lamination, radial organization, and presence of abnormal neuronal morphology.

According to the ILAE three-tier classification system, FCD type I are isolated lesions pre-

sented with abnormal cortical layering or lamination. FCD type Ia variant are lesions with

radial disorganization characterized by the presence of microcolumns, defined in regions con-

taining more than eight neurons aligned in the vertical direction. FCD type Ib consist of loss

of the six-layered tangential architecture of the cortex, resulting in blurring between bound-

aries of the layers. Furthermore, FCD type Ic is abnormalities consisting of both abnormal

radial (FCD type Ia) and tangential cortical lamination (FCD type Ib). FCD type II variant are

isolated lesions characterized by the presence of cortical dyslamination in addition to dysmor-

phic neurons without (Type IIa) or with the presence of balloon cells (Type IIb). The hallmark

feature that differentiates FCD type II variant from the other variants is the presence of dys-

morphic neurons, defined as neurons with: significantly larger cell bodies, malorientations, and

abnormal presence of Nissl substance and neurofilament proteins. FCD Type III refers to cor-

tical lamination abnormalities in addition to the presence of a principal lesion. These include

lesions that are associated with: hippocampal sclerosis (FCD Type IIIa), tumours (FCD Type

IIIb), vascular deformations (FCD Type IIIc), and lesions acquired during early life (FCD Type

IIId).

Currently, there is a lack of research towards providing objective, quantitative methods for

characterizing FCD in epilepsy. Since specimens with FCD present a higher degree of com-

plexity, there is a need for quantitative methods that can differentiate between the FCD variants

and objectively apply the ILAE classification scheme. In addition, such quantitative methods

can be incorporated into the ILAE classification scheme in order to increase the sensitivity

and specificity in routine microscopic diagnosis. In a previous study by Muhlebner and col-

leagues, specific morphological features were evaluated and highlighted for FCD subgroups to

improve the lack of quantitative measurements in the proposed ILAE criteria [42]. In particu-

lar, Muhlebner and associates evaluated cortical thickness, neuronal cell densities, and size and
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highlighted relative changes in these parameters in the different FCD subgroups compared to

age and location-matched controls. Although their work highlights relevant parameters for the

detection of FCD variants, further work is needed to provide an automated method capable of

characterizing and analyzing whole sections of cortical tissue.

1.1.5 Diagnostic techniques for Pre-Surgical Planning in Epilepsy

Surgery can have tremendous outcomes for TLE patients providing seizure freedom to 60-80

percent of eligible drug-resistant patients [17, 18, 19]. However, potential candidates with

drug-resistant epilepsy that consider surgery must undergo an extensive evaluation to deter-

mine that the surgical procedure will be an effective treatment in controlling seizures without

unacceptable adverse side effects [16, 15]. In order to properly evaluate patients, details of

the medical history, blood tests, neuropsychological test, EEG tests, nuclear imaging and brain

imaging scans such as PET and MRI are often needed. This provides clinicians with informa-

tion about the electrical activity of the brain, what the brain looks like and possible causes of

seizures. Therefore, diagnostic and pre-surgical evaluation is a crucial first step in determining

eligibility and accurate planning of surgical intervention.

EEG Role in Pre-Surgical Planning

Electroencephalography (EEG) is a technique used for measuring neuronal electrical activity

in the brain using electrodes attached to the scalp. In general, neurons are excitable cells which

generate time-varying electrical currents when activated. EEG detects the voltage fluctuations

from ionic currents in the activated neurons. Although, EEG is incapable of recording elec-

trical activity from individual neurons, since neurons are microscopic, and their signal is very

faint the recording is still possible since the recorded signal is from the summed activity of

many neurons firing in synchrony [43, 44]. The signal from this modality is known to have

a high temporal resolution (on the order of milliseconds), making, EEG a vital non-invasive

tool for analyzing the temporal dynamics of the brain [45]. EEG is commonly analyzed as
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temporal waveforms over multiple channels and is evaluated based on the power of rhythms,

frequency changes, latency and amplitude fluctuations of the peaks and troughs during a stim-

ulus or event [46]. In particular, the onset of clinical seizure activity can be characterized by

a sudden change of frequency, sudden loss or increase in voltage, or presence of ultra-low or

ultra-high frequencies [47]. The primary purposes of EEG recordings in epilepsy are to con-

firm the presence of a seizure, the type of seizure, location, and whether seizures are focal or

generalized. These findings can help determine a clinical course of action, including specifying

the type of AEDs and determining whether the patient is a candidate for surgery. Other neu-

roimaging modalities, such as MRI, potentially help to identify the extent and exact location of

the seizure focus. The main limitation of EEG is its poor spatial resolution (centimetres) and

that this modality does not provide a direct method of localizing the exact location of seizure

focus [46]. In addition, EEG is limited to measuring electrical activity near the surface of the

scalp and does not provide information from deeper structures of the brain.

Another method for evaluating the neuronal activity for pre-surgical evaluation is intracra-

nial EEG (iEEG). The techniques involved include surgical insertion of subdural electrodes in

suspected cortical regions and/or insertion of depth electrodes to evaluate deeper brain struc-

tures. Compared to standard EEG modality iEEG can provide additional electrographic evi-

dence for seizure localization, as electrodes are placed closer to the suspected region of interest.

The implantation of subdural or deep electrodes is indicated when a patient is being considered

for surgery, and the readings of scalp EEG have been inconclusive. Although iEEG methods

are relatively safe, they must be balanced against the potential surgical complications such

as hematoma, infection, malignant cerebral edema, and brain compression from intracranial

electrodes [48, 49]. When consistent findings from the analysis of MRI, EEG, and neuropsy-

chology provide conclusive evidence of lesion focus, surgery is performed without intracranial

EEG [49].
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Neuroimaging Role in Pre-Surgical Planning

In order to properly evaluate patients, imaging modalities such as magnetic resonance imag-

ing (MRI), Computerized tomography (CT), positron emission tomography (PET), and single-

photon emission computerized tomography (SPECT) scans may be potentially required for the

pre-operative planning of epilepsy surgery. Among the variety of imaging modalities used

magnetic resonance imaging has proven to be the most clinically useful in the diagnostic pro-

cess in lesional epilepsy, leading to a greater understanding of structural abnormalities found

within patients and increased surgical success [50].

Nuclear magnetic resonance (NMR), now referred to as MRI, was first introduced in 1946

[51, 52], at the time the medical value was not realized until in-vitro rat tumours showed dif-

ferent NMR characteristics in 1971 [53, 54]. MR imaging is now one of the most common

non-invasive imaging modalities for visualizing anatomical structural details, especially in neu-

rology. The fundamental principle behind MRI is based on the magnetic properties of atomic

nuclei, which are exploited through strong magnetic fields in addition to radio frequencies to

generate images that are not only anatomical but also reflect physiological status [54]. The

main advantages MRI provides compared to other imaging modalities, such as CT, is that MR

provides high contrast between tissue types, especially in the brain. Furthermore, the tissue

contrast in MRI can be exaggerated to highlight specific structures, such as tumours or lesions,

by modulating the method of acquiring the MR image, specifically the pulse sequence used

to generate these images. This makes MRI techniques very useful compared to other imaging

modalities such as CT which provides very little contrast between tissue types in the brain.

Secondly, MRI is a non-invasive technique that provides the highest spatial resolution among

other methods such as PET and SPECT, whose spatial resolution is lacking and is invasive due

to their exposure to ionizing radiation. Details about other imaging modalities used for diag-

nostics of epilepsy such as CT, PET, SPECT, and others are outside of the scope of this project

but have a valuable contribution in both diagnostics and pre-operative planning.

MRI has revolutionized the pre-operative evaluation of drug-resistant epilepsy by allowing
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reliable detection of lesions related to seizure onset, leading to increased rates of surgical suc-

cess. In fact, several studies have shown that a reliable predictor for favourable post-surgical

outcome is the complete resection of seizure focus as detected by MRI [55, 56, 57, 58, 59]. De-

spite MRI ability to often accurately identify lesions related to seizure onset, in more than 30%

of patient lesions are undetected based on clinical imaging protocols [60, 61] with histological

evaluation revealing subtle lesions or dual pathologies undetected by MRI - mainly dysplasias

and rarely subtle isolated gliosis [62, 63]. Sensitivity can be increased by the use of dedicated

acquisition protocols such as quantitative MRI sequences and image processing techniques,

such as T2 relaxometry mapping, diffusion tensor imaging (DTI), and voxel-based morphom-

etry which can provide correlation with neocortical pathology that is absent with clinical MRI

[64]. For example, Cantor-Rivera et al. [65] showed that with the use of quantitative multi-

parametric imaging the identification of TLE patients can be improved from 81% to 88.9%.

In addition, with the advancement in artificial intelligence and machine learning, detection of

structural abnormalities in epilepsy has become increasingly sensitive. Dev et al. [66] utilized

MR imaging and convolutional neural networks, a form of deep learning, to detect FCD le-

sions. In their study, they were able to obtain an 82.5% detection rate in their proposed model.

The continued development of new imaging modalities and computational techniques aimed at

better identifying the lesional epilepsies will enable surgical treatment and improved outcomes

in an increasing number of patients. The advent of higher-field magnets at (≥ 3T) has improved

the obtainable resolutions and image quality (i.e. signal-to-noise and contrast-to-noise). Such

advancement in high-resolution MRI has made it possible to identify increasing numbers of

patients with lesional epilepsy, as there is evidence that structural abnormalities extend beyond

obtainable resolution in standard clinical MR protocol at 1.5T [67, 68, 69]. However, with the

new advances in MRI technology, imaging modalities, and computational techniques, there is

an increasing need to evaluate performance with ground truth annotations. Histology can pro-

vide accurate ground truth information to test the validity of the MRI techniques in identifying

disease-related tissue alterations, such as epilepsy and other neurological disorders [70].
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1.1.6 Epilepsy Surgery

Even with the continuous improvements to pharmacotherapy with the introduction of new anti-

epileptic medications, the problem of medically refractory epilepsy has not yet been solved

[71, 72]. Currently, surgery is the standard of care in the majority of drug-resistant focal

epilepsy cases. In a randomized controlled trial, it was shown that surgery is a superior treat-

ment compared to prolonged medical therapy [73]. Ultimately, surgery has proven to be an

effective treatment option for drug-resistant patients providing 60 – 80 % success rate in which

surgically treated patients become seizure-free [17, 18, 19]. Temporal lobe resections are a

relatively safe medical procedure with almost zero mortality rate, and with the continuous ad-

vances in pre-surgical assessment and a broad range of available surgical techniques, these

procedures are becoming even safer and more efficient [74, 75]. There are two standard sur-

gical procedures used in the treatment of drug-resistant TLE (Figure 1.5), anterior temporal

lobectomy (ATL) and selective amygdalohippocampetomy (SAH).

Figure 1.5: The standard temporal lobe surgeries showing the performed craniotomy (first row), and the
target tissue (second and third row). a) anterior temporal lobectomy (ATL) b) selective amydalohip-
pocampectomy (SAH). Adapted from the creative commons attribution license from epilepsy research
and treatment 2012, Selective Amygdalohippocampectomy, Spencer D. and Burchiel k., c© 2012.
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The former, ATL, is the most common surgical approach in treating adolescents and adults

with medically intractable TLE [76, 77]. The procedure involves complete resection, or equiv-

alently 3.0-5.0 cm, of the anterior portion of the temporal lobe including the mesial structures,

the hippocampus and amygdala. In lesional epilepsy, preservation of the mesial structures may

be indicated in cases with discrete temporal lesions without indication of mesial involvement.

In contrast, during SAH, the amygdala and hippocampus are removed while preserving the

surrounding neocortex.

Although complications are uncommon, there are still risks associated with temporal re-

sective surgery. These risks can be broken down into three groups: surgical, neurological and

psychological complications [74]. Among the three, a surgical complication such as infections,

postoperative stroke, and cerebral spinal fluid leakage are the most common complications.

Neurological complications include visual field deficits on the contralateral side of surgery,

cranial ischemic changes, and cranial nerve paresis or palsy. In addition, common cognitive or

physiological complications include both verbal and visual memory loss, speech difficulties,

emotional changes, as well as the development of depression and anxiety disorders [74]. Ac-

curate pre-operative planning is a critical step for both preventing surgical complications and

surgical success.

Surgical success remains sub-optimal, despite the current advanced imaging techniques

used to localize epileptic lesions. Poor surgical outcomes, which is defined as early seizure re-

currence, are suspected to be mainly due to inadequate removal of epileptic lesions, due to the

inability to clearly identify lesions pre-operatively. In fact, studies have shown that a reliable

predictor in surgical success is the accurate localization of epileptic lesions as detected in MRI

prior to surgery [55]. In another study, surgical removal of focal dysplasia lesion resulted in

92% seizure freedom, when resection was complete according to MRI [49]. However, a signif-

icant challenge in epilepsy surgery is the development of novel techniques that are capable of

localizing the epileptogenic focus, especially in subtle cases in which current MRI is unable to

detect structural abnormalities (MRI Negative). In order to develop new in-vivo techniques for
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detecting epileptic abnormalities in epilepsy, it is required that these techniques be thoroughly

validated by correlating with histology of excised tissue following surgery.

1.2 Histopathology

Histopathology is the microscopic examination of diseased tissue. Histopathology refers to

the examination of a biopsy or a resected specimen by a pathologist. Pathological findings

in surgical resections from patients with TLE include a wide range of diagnostic possibilities,

some of which defy specific diagnosis [78]. The careful examination of resected tissue from

TLE patients can enhance our understanding of the underlying pathology of TLE and ultimately

lead to better management and diagnostic strategies [32]. Quantification and characterization

of specimens can aid in the detection of the wide range of pathologies in TLE with higher

sensitivity and can provide a quantitative measure of lesion severity.

1.2.1 Tissue Preparation

Microscopic analysis of tissue requires the correct preparation of very thin, high quality sec-

tions, or slices, that are appropriately stained to demonstrate normal and abnormal structures

of interest. In the following sections, the necessary preparations required before examinations

are outline in detail, which can be summarized in the following steps:

1. Fixation

2. Wax Infiltration and Embedding

3. Sectioning

4. Staining

Fixation

Fresh tissue is very delicate and can be easily distorted and damaged. Preserving and stabi-

lizing tissue, by fixation is a critical step in the preparation of biological tissue before other
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processing occurs. Tissue fixation is the process of chemically preserving biological tissue

from natural decay in addition to maintaining cell and other tissue structure throughout prepa-

ration steps. The standard fixation process involves placing tissue in a liquid fixative, such

as formaldehyde This will slowly penetrate tissue causing chemical and physical changes that

harden and preserve the tissue and protect it from subsequent processing steps. The liquid fixa-

tive, usually formalin, is carefully balanced and buffered in order to reduce shrinkage, swelling,

and other unwanted artifacts.

Wax Infiltration and Embedding

After the specimen is fixed and dehydrated, it is required to be embedded in a material that has

appropriate physical properties which will solidify and allow thin slices or sections to be cut

from the specimen. Paraffin wax is the most common wax infiltration and embedding material

for this process. Once the wax infiltration process is completed, the specimens are enclosed in

a block mould and are moulded using the paraffin wax. Note that the specimens are carefully

oriented into a block mould as the orientation will determine the plane of section, an important

consideration in both diagnostic and research histology.

Sectioning

Once the specimens are embedded, the paraffin blocks are sectioned in thinly sliced sections.

The microtome is an apparatus used to section the tissue embedded paraffin blocks with micron

level precision. There are a number of factors that affect the quality of section such as: blade

material, blade shape, cutting speed, blade angle, and others. Sections cut under non-optimal

conditions will result in a number of artifacts such as tearing, out of plane section, folding. The

sectioned slices are then mounted onto a microscope slide.
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Staining

Prior to staining, tissue structures may be colorless or transparent, the staining process pro-

vides enhanced contrast to tissue structures of interest. There are various types of stains, each

are specialized to highlight certain tissue structures with the presence of a specific reactive

compound. For instance, stains may be used to define and examine bulk tissue such as muscle

fibers, cell populations, or organelles within cells [79]. For example, the NeuN antibody stain

reacts with neuronal proteins, a compound found in abundant in the nuclei and cytoplasm of

most neurons in the nervous system, thus enhancing contrast between the neuronal cell bodies

and other tissue structures.

Digitization

Upon completion of staining tissue structures, the 2D slides are evaluated by a pathologist to

provide an appropriate diagnosis. Typically, the pathological report will be made by the pathol-

ogist directly using the stained slides and light microscope, however, it is becoming common

practice to convert slides to a digitized form where it can be visualized, stored, and evaluated

digitally. Digitize slides, or digital pathology can improve accessibility, allows teleconsulta-

tions from specialized pathologists, and provides an accessible method for sharing slides for

research purposes. With digitized slides, it is possible to develop computer-aided diagnosis

(CAD) systems, such that pathologist can be guided to regions of interest based on objec-

tive quantitative criteria, potentially increasing sensitivity and reducing workload and inter-

observer variation [80]. As such, digital pathology has the potential to improve the exchange

between pathologists and research colleagues, which can lead to better treatment options or

interventions for patients.
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1.2.2 Image Artifacts

Ideally, tissue preparation preserves the natural structure and morphology that closely rep-

resents the tissue in-vivo. However, during the tissue preparation process there may be an

unwanted presence of foreign substances or alteration in tissue details which can result in

confusion and lead to incorrect interpretations [81]. These changes are broadly referred to

as artifacts. Artifacts in histological sections can result from any of the steps in the tissue

processing pipeline, and therefore are difficult to avoid. Common artifacts encountered in-

clude tissue shrinkage due to prolonged fixation, tissue tearing due to sub-optimal handling,

and color inconsistencies from improper staining. Figure 1.6 illustrates examples of common

artifacts encountered in histopathology. The presence of artifacts can result in clinical misin-

terpretations leading to poor diagnostic accuracy [81]. In addition, certain artifacts can cause

issues for computer-aided analysis, as many modern algorithms have difficulty handling these

artifacts. Thus artifacts must be considered and potentially corrected for before analysis can be

done.

Figure 1.6: Common examples of histopathology artifacts. a) tissue folding artifact due to improper
slide mounting b) Tissue tearing due to poor slicing or tissue handling. c) obliquely sliced region
(red) compared to ideal sectioning (green) due to poor slicing. d) color inconsistencies from improper
staining.
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1.3 Techniques for Cortical Laminae Modeling

Irregularities in microstructure in the different layers of the cortex are seen in several neuro-

logical disorders. For example, malformations of cortical development can lead to focal areas

of abnormal neuronal architecture, which can result in epilepsy, and, in some instances mental

retardation [82, 83]. Furthermore, evidence from previous research suggests that neurological

disorders such as major depressive disorder (MDD) [31], and schizophrenia [84] are associated

with abnormalities in intracortical myelin content. The irregularities in the cortical architec-

ture are often associated with deformities in cortical cytoarchitecture. However, to analyze

layer architecture or function, it is desirable to define a suitable coordinate system which al-

lows sampling of cortical laminae. In this section, we introduce and evaluate the different

techniques and models used to analyze and sample the cortical laminae, often referred to as

cortical laminae models. These models can be represented as a three-dimensional coordinate

system, where each point represents the image intensity at a specified depth along the cortex (i)

and location along the cortical ribbon (j). From depth isocontours, cortical profiles can be con-

structed that transverse the cortex, which describes the laminae at a specified location along the

cortical ribbon. An illustration of the derived profiles is shown in Figure 1.7. Current methods

to model the cortical laminae thus far include manual techniques, equidistance, equipotential,

and the equivolume model, which will be discussed in the sections below.

Cortical laminae can be generated with manual and computational techniques which in-

volve sophisticated mathematical modelling. For example, Schleicher et al., 1998, derived

cortical laminae by manually tracing drawn streamlines that orthogonally traversed the border

between the grey-CSF surface and borders between grey-white matter surface [85]. In their

study, Schleicher and associates used the manually defined profiles on stained cortical sec-

tions, quantifying the differences in mean profiles of a sliding window to provide an observer-

independent detection of distinct architectural boundaries.

In more recent work, the equipotential model, or Laplace method, has been used exten-

sively for evaluating the architecture of two-dimensional histological sections. For instance,
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Figure 1.7: NeuN stained image illustrating examples in which profiles were sampled along the cortical
depth (i) at specific locations along the cortical ribbon (j).

the more recent work of Schleicher et al., 2005, used Laplace profiles to provide a more au-

tomated method for observer-independent detection of cytoarchitectural boundaries [86]. The

equipotential model has also been used to study neurotransmitter receptor laminar distribution

patterns [87], and also for myeloarchitectonic parcellation studies [88]. Briefly, the equipoten-

tial model solves the Laplace equation (Eq.1.2) between the gray and white matter boundaries.

∇2φ =
∂2φ

∂x2 +
∂2φ

∂y2 +
∂2φ

∂z2 (1.1)

∇2φ = 0 (1.2)

Solutions of this partial differential equation have to fulfill the constraint that the sum of the

(unmixed) second partial derivatives is zero. The main reason the equipotential model is used

for sampling cortical laminae is that this model provides a one-to-one correspondence between

the cortical boundary surfaces, derived profiles terminate perpendicularly at boundary surface
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and profiles do not intersect. Despite the desirable properties of the Laplace method, a major

limitation is that laminar mapping procedures are sensitive to smooth or gradual changes as

caused by cortical folding [89]. However, corrections of layer widths and density for folding

effects can increase the sensitivity in mapping procedures and reduce false positive detections

[86].

The effects induced by the complex structure and folding pattern of the cortex makes an-

alyzing cortical laminae challenging. This was first described in 1929 by a German scientist

Bok [90] who was interested in the relationship between cortical folds and layer geometry.

Through his research, it was shown that cortical folding caused gradual changes in the layer-

ing of the cortex. More specifically, Bok showed that relative location and width of the layers

was dependent on the curvature of the cortex [90], an illustration is shown in Figure 1.8. In

addition to layer geometry variations, von Economo and Koskinas (1925) described changes in

cell shape due to cortical folding [25]. Due to the complex relationship between curvature and

layer geometry, computational methods that analyze cortical laminae must take into account

the inherent distortions caused by the folding of the cortex [85, 89].

Figure 1.8: Sketch from Bok (1929) depicting the six cytoarchitechtonic layers and their relationship
with curvature. Reprint figure adopted from Bok. 1929. License agreement found in Appendix A.

In high-resolution data (e.g., 0.5 mm or better), sampling laminae using equidistance and

equipotential model will lead to misclassification of layers in regions of high curvature. To
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remedy the anatomically incorrect sampling, the equivolume model leverages anatomical ob-

servations about how laminae become displaced due to the curvature and account for these

inherent anatomical biases [89]. However, a major limitation of the equivolume model is the

need for high-resolution 3D data, which limits the modelling to 3D neuroimaging studies. De-

spite histological sections offering a high spatial resolution to examine laminar architecture,

they are often restricted by being 2D, and therefore are limited to the 2D cortical laminae

models (e.g., equipotential and equidistance models).

1.4 Unsupervised Machine Learning

Machine learning (ML) is a tool that provides systems with the ability to learn and improve

from experience without being explicitly programmed. To accomplish the process of learning,

ML models are provided examples from which they extract patterns in data and make informed

decisions in the future based on the samples provided. When a pattern has been correctly iden-

tified, or a model has been trained, the algorithm can be used to make individual predictions.

In past research, ML methods have been applied to the identification of Alzheimer’s disease

[91, 92], schizophrenia [93, 94] and epilepsy [95, 65]. Similarly, ML algorithms can be used

to identify pathologies in the resected tissue of TLE patients.

In general, ML methods are often categorized as supervised or unsupervised. The main

difference between the two types is that supervised learning is performed using ground truth

information of the data. In other words, in supervised machine learning both inputs and desired

outputs (ground truth) are provided to the algorithm, to learn how to estimate the outputs given

new unseen inputs. In supervised learning, the task of approximating a mapping function from

input variables to discrete output variables is known as classification, whereas, regression refers

to algorithms that map to continuous outputs. Common supervised algorithms include naive

Bayes, support vector machines, and neural networks. In contrast, in unsupervised learning, the

goal is to learn the inherent structure or hidden pattern of the data when provided with inputs
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and no outputs. Common examples of unsupervised learning algorithms include clustering

analysis, principal component analysis, and self-organizing maps. In this section, we will

explore clustering techniques in detail. These are a set of unsupervised classification methods

that can create meaningful groups or classes by directly processing data, without any previous

knowledge or hypothesis about the groups that may be present. Also, we will describe in detail

other unsupervised learning methods, such as principal component analysis and unsupervised

anomaly detection.

1.4.1 Feature Space

The input to many of the ML algorithms is a n dimensional set of features that describe and

summarize the data. A feature can be defined as an individual quantifiable property of an object

being observed. Choosing informative, discriminating, independent features is a crucial step in

effectively grouping a data-set into meaningful distinct clusters [96]. A cluster can be defined

as a collection of objects which will have high similarity between them and are dissimilar to the

objects belonging to other clusters. Figure 1.9 illustrates the importance of carefully choosing

a feature set that helps differentiate groups of objects. With a good feature set, the spatial

distance in the feature space clearly separates groups of interest, as shown in Figure 1.9 A).

There are different categories of clustering methods that will classify clusters within a data set,

including partitioning clustering, hierarchical clustering, density-based clustering.

Figure 1.9: Examples of (n=2) dimensional feature space in A) ideal, realistic and poor scenario for a 2
class classification problem. Class 1 and 2 is represented in blue and red respectively.



Chapter 1. Introduction 24

1.4.2 Clustering Algorithms

K-means Clustering

Partitioning clustering is a clustering technique that subdivides a data set into a set of K groups,

where K is the number of groups pre-specified by the user. A popular partitioning clustering

method is K-means clustering [97], in which each cluster is represented by the average of the

data points belonging to the cluster. The K-means algorithm is an iterative algorithm which

starts by randomly defining K centroids in the feature space. The iterative steps of K-means

algorithm include:

1. Assigning each data point to the nearest corresponding centroid based on euclidean dis-

tance.

2. Recalculating centroids by computing the mean of all the data points within each cluster.

This procedure is repeated until there is no or very little change in the computed centroid

values. The K-means algorithm expects to find K clusters in the data; the algorithm will find

specified clusters even when none exist. Therefore, it is crucial to validate the results of the

K-means algorithm. A limitation to consider when applying K-means algorithm is due to

the initial randomly chosen centroids, which means that starting at an undesirable location is

possible. As a result, the iterative process may lead to some unlikely solution. To ensure

that the solution is most probable, the K-means algorithm is repeated a few times to reach a

reasonable solution. Another weak point to consider is the distance measure that the K-means

algorithm uses (Euclidean Distance). When the variables or features used are significantly

different in scale, the distances become dominated by the elements with the largest scale. Thus,

it is crucial to normalize features before applying the K-means algorithm. Another problem

that may arise is due to redundant information in the data or correlations between features.

Typically, correlations between features can be removed using techniques such as principal

component analysis (PCA), which is explained in detail in a later section.
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Hierarchical Clustering

Hierarchical clustering (also known as Agglomerative clustering) is an algorithm that links

similar objects, by a distance measure, into groups. These algorithms start by treating each

observation as its own cluster. The algorithm iteratively proceeds by:

1. Identifying two clusters that are closest together.

2. Merges the two identified clusters into a single cluster.

This iterative process continues until the algorithm reaches K distinct clusters, where K is

the distinct number of clusters specified by users. In addition to specifying K, an important

parameter to specify is where distances are computed between two clusters. For example,

distances can be computed between the two most similar parts of a cluster (single-linkages),

the two least similar, or boundary observations (complete linkage), or the center of clusters

(average-linkage). Compared to the K-means algorithm, agglomerative algorithms do not scale

well to large data sets and require additional hyper-parameters to work effectively.

Density-Based Clustering

Density-based clustering is another unsupervised clustering algorithm tool that works by de-

tecting areas where points are concentrated and where points are empty or sparse. Furthermore,

areas of the feature space with insufficient density or extremely sparse set of points are points

that are labelled as noise or outliers, that is, points characterized by unusual values. These

classes of algorithms are more complex and require more running time than, for example, K-

means clustering, however, they are capable of automatically guessing the number of clusters

and grouping clusters of any arbitrary shape. There are several density-based clustering tools,

among the three DBSCAN [98] is the most popular method.

DBSCAN uses a specified distance, search distance, to separate dense clusters from sparser

noise. A cluster is defined as a maximal set of density-connected points. It relies on the idea

that clusters are dense, it starts by exploring the feature space in every direction, within the
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specified search distance, and marks a cluster boundary when points fall out of the specified

search density. The main limitation of DBSCAN is that this algorithm requires two parameters

to be defined, and is sensitive to the setting of parameters [99]. Thus, defining suitable values

for these parameters may take several trials before reasonable results can be found.

1.4.3 Dimensionality Reduction

A common problem that may arise when choosing features is due to the correlation between

variables, causing redundant information in selected features. In addition to eliminating redun-

dant information, discarding irrelevant, and noisy data can prevent poor predictive or clustering

performance [96].

Principal component analysis (PCA) is a statistical technique that uses an orthogonal trans-

formation to transform a large number of (possibly) noisy and redundant variables into a

smaller number of linearly uncorrelated variables, called principal components, with a min-

imum loss of information. The components determined from PCA are orthogonal to one an-

other (i.e., uncorrelated), and each component contains compressed information from the orig-

inal set of variables. The PCA transformation is defined in such a way that the first principal

component accounts for as much of the variability in the data as possible, and each succeeding

component accounts for as much of the remaining variability as possible under the constraint

that the principal components are orthogonal to one another. Thus, the first two principal com-

ponents obtained from PCA are the most informative in terms of variance, while the last two

components are the most residual. The later principal components that contain minimal vari-

ance represent noise or redundancies from the original data, and therefore, are ignored. The

dimensions of the original data-set are reduced by representing the data by a reduced number of

components obtained by PCA that explain the majority of the explained variance. An example

of a two-dimensional data set is represented by its principal components is shown in Figure

1.10. The results of PCA are typically discussed in terms of components scores and loadings.

Components scores are the transformed variable values corresponding to a data point. While
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Figure 1.10: Two-dimension example of PCA: a) Original data with dimension of 2 b) Output from PCA
c) Lower representation of data projected onto Principal Component (PC) 1 and 2. From the illustration
in c), it is clear that PC 1 explains most of the explained variation and dropping PC2 can be justified
since it contributes an insignificant amount of the data variation.

the loadings are the weights by which each variable should be multiplied to get the component

score.

1.4.4 Anomaly Detection

In certain cases, data sets tend to be limited in the number of positive cases that can be ob-

tained. Therefore there tends to be a high imbalance between positive and negative samples.

Ultimately this poses difficulties for learning algorithms, as there is a bias towards one group.

Anomaly detection algorithms can leverage a highly biased data-set and detect suspicious or

rare observations. As a general definition, anomaly or outlier detection is the process of detect-

ing a small fraction of data that differs from the global pattern defined by the data set. The goal

of the anomaly detector is to identify unusual samples in the data set, without prior information

of the anomaly, other than a low probability of occurrence. In unsupervised anomaly detection,

a general assumption that is made is that the majority of the instances in the data are normal

and the normal instances follow a pattern defined by the data-set.
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Abnormal observations in data can sometimes have more significant meaning than a sys-

tematic error. For example, anomalies in medical image analysis can represent pathologies

found in tissues. Most anomaly detection research in the medical field is focused on studying

tissue prone to certain types of cancer with low screening detection, such as breast and brain

cancers. A recent example of anomaly detection techniques being used in the medical domain

is highlighted by Wei et al., 2018 [100]. In their work, they utilize a patch-based method to de-

tect malignant tumours in breast tissue. In general, these studies rely on the assumption that the

abnormal tissue is structurally distinct from the surrounding healthy tissue and the structural

differences can be picked up by the imaging modality.

1.5 Research Question

Currently, there is a lack of objective or quantitative methods for defining FCD pathology,

and qualitative ratings by pathologists can be highly variable, especially for subtle lesions,

and require time-consuming annotations by trained specialists. The goal of this research is

to develop image analysis and machine learning techniques for histopathological examination

of resected brain tissue to objectively quantify and evaluate cortical tissue in temporal lobe

epilepsy patients. This can provide quantitative data for MRI-histology comparison studies

and can also improve current histopathology workflows. Also, with the combination of image

processing and machine learning tools, histological data can be studied quantitatively to expand

our understanding of the biological variability between normal and dysplastic cortex.

A major challenge in analyzing cortical histology slides to quantify epilepsy lesions is

that the laminae can be distorted in different parts of the sample. This is caused by mainly

two sources of variability: displacement of laminae in regions of high curvature (e.g. gyral

peaks of sulcal depths), and out-of-plane sampling problems when the histological plane is

not perpendicular to the cortical mantle. Pathologists generally address the latter problem

by only examining the tissue that appears thinnest (most likely to be sampled perpendicularly).
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However, this excludes a large amount of tissue that could be analyzed if accurate identification

of these regions could be made. The former problem, the displacement of laminae at gyral

peaks or sulcal depths, was first noted by Bok [90]. For example, laminae near the pial surface

boundary tend to be stretched thin near gyral peaks and squeezed thicker at sulcal depths, and

vice versa for laminae at the white matter boundary.

We hypothesize that with the correct histological image features that summarize and de-

scribe the epilepsy lesions, an unsupervised model can differentiate the subtle abnormalities

in cortical architecture from the surrounding healthy tissue in the resected histological data.

However, a general assumption is required to achieve this hypothesis. Specifically, it is as-

sumed that the normal instances (i.e. healthy tissue) form a distinct pattern defined by the

selected histological features, and pathological tissue is deviant from this defined pattern. A

significant source of variability that can affect the classification of these two groups come from

inherent anatomical biases as well as other artifacts. Therefore, a crucial step in differentiating

the subtle abnormalities in cortical architecture is to eliminate or reduce the variability due to

the aforementioned distortions and biases.

In this study, we investigate two approaches for correcting the non-pathological distortions

and develop a technique to generate laminar profiles that are spatially-normalized to a common

reference. We show that by performing these corrections, the laminar correspondence can be

achieved across regions of the cortex, within and between subjects. Furthermore, we applied

unsupervised clustering to eliminate processing artifacts, such as out-of-plane slicing and to

reduce variability due to morphological differences. We then perform unsupervised anomaly

detection on the normalized data to identify regions of abnormal architecture across subjects

and slides.
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1.6 Thesis Objectives

The overall goal of this thesis was to create a tool to quantitatively classify layer specific

anomalies in 2D histological brain slices. This objective can be broken into three sub-objectives

as follows:

1. Create a coordinate system for the cortical laminae in 2D histology.

2. Eliminate variability due to inherent anatomical biases as well as other artifacts affecting

classification.

3. Select histological image features that are associated with epilepsy lesions and apply

unsupervised learning to examine whether subtle abnormalities in cortical architecture

can be detected quantitatively.

Figure 1.11: Overview of objectives illustrating: a) Example of cortical laminae coordinate system.
b) inherent artifacts present within cortical data c) A overview of the cortical architectural anomaly
detection
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Method

We began with whole slide images of brain obtained from resected tissue of patients suffering

from medically intractable TLE. We then performed neuron cell body segmentation to extract

microscale feature maps that describe and summarize information from our high-resolution

histological images, using a patch-based analysis. Subsequently, we extracted profiles which

were obtained using equipotential cortical laminae modelling. We then corrected for the cor-

tical layer distortion by applying a technique that leverages anatomical observation about how

laminae become displaced in addition to an iterative warping technique to normalize profiles

across subjects to a common reference. Furthermore, we applied unsupervised clustering to

eliminate processing artifacts and to reduce variability due to morphological differences. The

methods for correcting the mentioned distortions and biases in histological slides are sum-

marized and described in detail in the following sections. Finally, we applied an unsupervised

anomaly detection algorithm within defined sub-regions to identify anomalous data, which was

hypothesized to represent pathological tissue.

31
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Figure 2.1: Pipeline outlining the main steps and workflow

2.1 Recruitment, Image Acquisition & Histological Process-

ing

Patients suffering from intractable epilepsy who were approved for anterior temporal lobe

lobectomy (ATL) at University Hospital, were recruited in an ongoing study at Robarts Re-

search Institute. The study cohort included 90 temporal lobe patients who underwent epilepsy

surgery and the resection of two specimens, temporal neocortex and hippocampus. Within this

cohort, a subset of 27 patients was selected for analysis in this study. Inclusion of these subjects

was determined based on the availability of minimally artifact-free NeuN stained neocortical

slides. In addition, this cohort included patients with wide range of verified pathology. This

project was cleared by the Health Sciences Research Ethics Board of Western University, and

informed consent was obtained from all patients prior to their participation in the study. Table

2.1 summarizes the relevant patient data, including the sex, age, seizure origin, neocortical

pathological findings and MRI findings for our cohort.
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Figure 2.2: Overview of the histological processing and data generation.

2.1.1 Histological Preparation

Histological processing was performed on tissue samples obtained from the surgically resected

temporal lobe of patients with temporal lobe epilepsy (TLE). Following surgery, specimens

underwent accessioning and grossing at the Department of Pathology at the Univerisity Hos-

pital of London Health Sciences Centre, in addition, these specimens were also cut through

the coronal plane into two equal halves, anterior and posterior. The halved specimens were

then embedded in agar for stabilization and were sectioned into 4.4mm pieces in the anterior

to posterior direction, using a standard deli slicer (Globe Food Equipment Company, Dayton,

OH, USA). Coronal, 8-um thick sections of formalin-fixed, paraffin-embedded tissue were then

processed with a NeuN staining. Following staining, the resulting histology slides were digi-

tized on a ScanScope GL (Aperio Technologies, Vista, CA, USA) bright-field slide scanning

system in BigTIFF file format, using a pixel resolution of 0.5 um. For example, the image

resolution for a typical slide is 86,030 x 44,791 pixels which correspond to metric dimensions

of approximately 172 x 90 mm (a portion of an image is shown in Figure 2.3 a)). A detailed

overview of the histological processing is described in Figure 2.1.
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2.2 Histological Quantification

We pre-processed the high-resolution histology images by performing automated segmentation

of neurons in 100µm x100µm patches and generating summary feature maps that are relevant

in the detection of FCD lesions. This effectively provides images down-sampled by 200 times

where each pixel contains neuronal information derived from the high-resolution images, as

shown in Figure 2.3 b).

2.2.1 Neuron Segmentation

Briefly, image segmentation is the process of dividing a digital image into meaningful regions

or segments, often based on the characteristics of the pixels in the image. Image segmentation

could involve separating foreground from background, or clustering regions of pixels based

on similarities in colour or shape. Segments of interest are separated from the background

and each other using a variety of segmentation techniques. A common application of image

segmentation in medical imaging is to detect and label pixels in an image that represents a

pathology in a patient’s brain or used to detect specific cell types such as neurons.

There are many challenges in accurately and efficiently detecting and segmenting cells in

a histology specimen. For example, the 2D representation of a 3-D tissue sample imposes

difficulties in detecting cell bodies due to artifacts that result from the sectioning process. This

includes partially imaged cell bodies, imaging of cells at non-optimal angles and damage to

cell bodies due to the preparation processing. In addition, image noise and other artifacts can

result in additional errors and difficulties. Therefore careful considerations are necessary for

detecting and segmenting cells in histological images. We have adopted validated work from

[101]. Their segmentation and detection method involved a two-step process in which the

NeuN stained images undergo colour deconvolution, to separate individual colours within the

slide, followed by a marker-based watershed segmentation technique. The segmentation results

were compared with the ground truth by calculating the amount of area overlap measured by
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the Dice coefficient. The Dice coefficient varies between 0 and 1, higher coefficients indicate

better agreement between the segmentation result and ground truth. On average, the mean dice

similarity coefficient was reported at 0.77, which falls within an acceptable range as defined by

[102].

2.2.2 Feature Map Extraction

Choosing informative, discriminating, independent features that summarize information from

the original high-resolution images is a crucial precursor to effectively being able to evaluate

the architecture and irregularities of neural tissue (Figure 3.1-3.2). In this section, we describe

chosen features that are commonly used to describe the pathologies found within cortical tissue.

Following segmentation, each image was divided into 100µm x 100µm overlapping patches.

For each 100µm x 100µm patch, histopathologic features were extracted, and maps of each

feature were generated for each slide. Each feature map described and summarized the rele-

vant characteristics of the high-resolution histological image. The relevant features used for

FCD detection included: Neuron density, shown in Figure 2.3 b), which is obtained from the

number of neurons within a patch. Clinically neuron density may significantly decrease within

an area with pathology. In addition, Neuron size feature maps were obtained by determining

the average size of individual neurons within a patch. Specifically, the size of the neuron was

defined by the number of pixels a single neuron defined. In epilepsy, abnormally large neurons

can be indicative of balloon cells, which are present in several subtypes of FCD. Furthermore,

eccentricity, a metric used to measure the shape of the neuron cell body, was computed for

each neuron within a patch. Specifically, this metric quantified the degree of circularity of cell

bodies. Eccentricity was calculated as a ratio of the foci of an ellipse (neuron) and its major

axis and is a scalar between 0 and 1. Eccentricity feature maps are indicative of neuron mor-

phology and may be able to assess FCD in epilepsy. In this work, we define neuron density,

size, and eccentricity as quantitative microscopic features.
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Figure 2.3: General approach of the proposed cortical laminar alignment. a) NeuN stained image b)
Neuron density feature map c) Solved Laplacian with the domain being grey matter, and boundary
conditions being the pia and CWM junction d) Streamlines derived from equi-potential model, laid on
top of the feature map. e) Uncorrected profiles sampled from the feature map f) Spectral aligned profiles
using Correlation Optimized warping (COW)

2.3 Cortical Coordinate Extraction

The procedure for extracting profiles of cortical laminae is based on creating a coordinate sys-

tem that allows sampling along the cortical depth from the pial to cortex-white matter (CWM)

junction and along the length of cortical tissue being examined. For this, streamlines were gen-

erated across a Laplacian solution (Figure 2.3 c) with the domain as the cortex and boundary

conditions as pia and CWM junction. We performed the cortical segmentation using a semi-

automated approach. However, this task can be further automated when we apply the technique

to a larger set of subjects and slides. Streamlines were kept in sequential order from one edge

of the cortical ribbon to the other, and each profile was resampled to a normalized depth to

have 1000 vertices.

2.3.1 Semi-automated Cortical Segmentation

We created a semi-automated segmentation approach, using Qupath software [103], to obtain

cortical segmentation’s required from our equipotential model. The model used to train the
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segmentation algorithm was a random forest (RF) classifier, which used 6640 random training

samples from a variety of subjects and slides. Training samples are defined as 5x5 tiled in-

stances of the 20um down-sampled image, as shown in Figure 2.4 a and Figure 2.4 b. These

samples came from all three regions: grey, white matter, and background. The trained classifier

was used to create segmentation prediction from the down-sampled 20um NeuN stained image.

Specifically, the algorithm created a 5x5 grid from which we extracted common statistical mea-

sures such as mean, median, variance, max, min from each unsmoothed and smoothed colour

space images. The colour space images included the three components in Red, Green, Blue

(RGB) space and the three components from Hue, Saturation, and Brightness (HSV) space.

The smoothing kernel size used to smooth the colour space images was a full-width half max-

imum (FWHM) of 50 pixels. An example of the feature map is shown in Figure 2.4 c, and in

total, there were 60 feature maps used in this model. The classifier used the aforementioned

features to train on and predict the class of each pixel; an example of the prediction result is

shown in Figure 2.4 d. Since the equipotential model is sensitive to the boundary conditions

we then manually corrected for any mistakes made by the classifier — corrections were made

using ITK-snap toolbox.

Figure 2.4: Overview of semi-automated cortical segmentation procedure a) Down sampled NeuN
stained image (20um x 20um) b) 5x5 pixel tiled image overlayed on top of 20um NeuN stained im-
age. c) Example of Intensity feature used to train random forest classifer d) Example of segmentation
prediction
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2.3.2 Laplacian Cortical Laminae Model

In order to analyze layer architecture or function, it is desirable to define a suitable coordinate

system that allows sampling of cortical laminae. The equipotential model, or the Laplacian

model, can account for the unambiguous mapping between the cortical boundaries in highly

convoluted and variable cortical environments. Due to the ability to account for highly folded

morphology, the Laplacian model has been used extensively in research, especially when cal-

culating neocortical thickness. In principal, the technique generates a scalar field, or gradient,

between the defined boundary conditions (often referred to as source and sink). Here, we de-

fined the source as the pial-background boundary and the sink as the grey matter-white matter

surface. The Laplacian solution provides a smooth gradient from the defined boundary con-

ditions. Streamlines can be generated from the gradient of the Laplacian solution and can be

used to sample cortical profiles and accurate cortical thickness measures. To solve the Lapla-

cian equation, we used a modified version of the open-source software from the following

git repository: https://github.com/jordandekraker/HippUnfolding/tree/master/

tools/Laplace_solver. An example of solved Laplacian on a cortical slide is shown in

Figure 2.3 c).

2.3.3 Sampling cortical profiles

The streamlines (Figure 2.3d) were used to sample intensities from the given feature maps,

producing a 2D image vertically indexed by cortical depth (Figure 2.3e). Prior to extracting

the profiles, each feature map was smoothed by a 3x3 averaging filter to reduce noise [4]. The

unfiltered images caused periodic variations [104] and local changes in neighbouring tissue.

Due to the differences in cortical thickness and thus differences in streamline length, each

profile was standardized to encompass 1000 values corresponding to the cortical depth from

0% to 100%. This was done by resampling the data evenly using linear interpolation.

https://github.com/jordandekraker/HippUnfolding/tree/master/tools/Laplace_solver
https://github.com/jordandekraker/HippUnfolding/tree/master/tools/Laplace_solver
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2.3.4 Macroscopic Features

In addition to extracting cortical profiles, the streamlines generated from the equipotential mod-

els were used to extract macroscopic cortical features which are defined here as the cortical

thickness and local curvature and are obtained for each streamline. Cortical thickness was

defined as the pathlength along a streamline Eq.2.1 and can be useful in identifying cortical

regions that are sampled poorly. Note that x and y refer to the coordinates along a single

streamline.

Pathlength =

n−1∑
i=1

|Pi − Pi+1| (2.1)

|Pi − P(i+1)| =
√

(xi − xi+1)2 + (yi − yi+1)2 (2.2)

In order to estimate curvature, it is required that we must first identify a 2D curve that models

the shape of the histological sample. This was done by identifying the 2D curve at 50% depth

along with the cortical tissue. Due to the potentially distorted cortical surface, curvature values

can be difficult to estimate directly from the noisy 2D curves. To overcome this difficulty, we

smoothed our extracted curves using a moving averaging filter. Once we obtained our smooth

curves, we applied the classical definition of curvature, described in Eq.2.3. Note x and y in

Eq.2.3 refer to the coordinates along the defined 2D curve.

κ =
x′y′′ − y′x′′

3
√

(x′)2 + (y′)2
(2.3)

Both curvature and thickness values were smoothed by a moving averaging, and median filter

to eliminate abrupt local variability.

2.4 Cortical Layer Correction

The 2D cortical profiles shown in Figure 1e provide an image representation, namely an

equipotential modelling of the cortex, that is meant to account for the complex folding of
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the cortex. This approach was popularized with 3D cortical thickness analyses [105] since

it provides a smooth mapping between the pial and white surfaces. Ideally, the Laplacian

streamlines define cortical columns, and cortical laminae can be defined from the rows in these

images. However, these rows are distorted due to the aforementioned issues with out-of-plane

sampling and anatomical differences between gyral and sulcal regions of cortex.

2.4.1 Iso-Area Correction

The seminal paper by Bok [90] explained the observed laminar differences in gyral and sulcal

peaks as conservation of volume within each lamina. An equi-volume, or ’iso-volume,’ ap-

proach was proposed more recently [89] to correct for these differences in high-resolution 3D

imaging data. In the current work, we develop an equivalent 2D or ’iso-area’ implementation

in which equipotential derived profiles are resampled at equal areas instead of equal volumes.

We computed estimates of the area along the profile by examining adjacent streamlines, then

shifted the profile vertices based on the cumulative area along the profile. The profiles were

then reparameterized evenly to 1000 vertices. Prior to resampling the profiles at equal areas,

we normalized the total area along each streamline and performed Gaussian smoothing of the

shifting function across vertices in order to avoid abrupt changes between neighbouring pro-

files. When applying the iso-area model, we effectively stretch and compress the profiles in a

way that counters the curvature dependent variability seen in gyral and sulcal regions.

2.4.2 Iterative Warping Correction

After iso-area correction, distortions in the layers can remain due to histological sampling that

varies across the slide, or from cytoarchitectural differences that exist between brain areas.

One approach to this problem is to perform a transformation to each vertical profile, effec-

tively bringing all the columns into alignment. Methods for spectral alignment used in nuclear

magnetic resonance aim to achieve an analogous goal, that is, correcting for shifts and warps

in NMR spectra (1-D profiles) [106]. We adopted a commonly used technique in this do-
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main, correlation optimized warping (COW) [107]. This alignment algorithm stretches and

compresses segments of the profiles, using piecewise interpolation, in order to maximize the

overall Pearson correlation coefficient between profiles and the chosen reference. Specifically,

the sample and reference profile are split into segments, of length m, and the boundaries of the

segment are allowed to be stretched or compressed a certain number of data points in either

direction – the local flexibility of alignment or slack size t. The slack size and segment length

are two parameters that were required by the COW algorithm and were set through trial and

error. The optimal alignment is found by finding the optimal combination of warped segments

using Pearson correction and our reference as our cost function.

Figure 2.5: Example image describing the correlation optimized warping (COW) algorithm . a) Uncor-
rected profile b) Reference profile chosen from the data set. c) Aligned profile after a single iteration of
COW. Note t represents the amount of allowable stretching or compressing and m represents the length
of segments. Dotted lines represent the boundaries of the segments before (a-b) and after correction (c).

We developed an iterative approach for defining the reference, initialized by the profile with

the minimum average Euclidean distance from all other density profiles. With each further

iteration, we performed COW to align all profiles to the existing reference, then averaged those
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aligned profiles to obtain a new reference profile. We iterated until the change in the average

reference profile met a predefined threshold of 0.01 or 10 iterations (this typically occurs after

2 to 5 iterations). Prior to applying each transformation obtained from the COW registration,

we smoothed each transformation with neighbouring profiles using a Gaussian filter in order to

avoid abrupt changes between neighbouring profiles. An example of the corrected profiles is

shown in Figure 2.3f. In order to increase the correspondence of layers between subjects and

slides, the data were normalized to a common reference. This was done by concatenating the

data across subjects and slides and applying our iterative reference-based warping correction

to the iso-area corrected slides. An overview of this process is shown in Figure 2.6.

Figure 2.6: Overview of alignment correction across multiple slides and subjects. a) Concatenated
uncorrected neuron density profiles across subjects b) iterative reference based registration applied to
profiles using Correlation Optimized Warping (COW) c) Aligned profiles across all subjects and slides

2.5 Validation of Cortical Layer Alignment

For qualitative validation, we performed the proposed alignment approach on 4 slides from 3

subjects and evaluated our ability to align the cortical gray matter effectively. The qualitative

assessment was evaluated by assessing the average profiles and the degree of variation before

and after correction. In general, distortions or misalignment in the data contribute to a greater
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variance in the average profiles; this ultimately leads to smoothing of characteristic profile

shape features, such as smoothing of peaks corresponding to layers with high-density neurons

or large average neuron size. Ideally, the average profile from the neuron density feature map,

if aligned, will have two peaks, which correspond to the highly-dense granular neuronal layers

II, IV. In addition, we also expect layers III and V to have peaks in the average profile corre-

sponding to the neuron size feature map. A depiction of the cortical layers is shown in Figure

2.7 a) which shows the expected trajectory along the cortical layer for both neuron density and

size (Figure 2.7 b-c).

Figure 2.7: a) Representation of neuronal cell bodies along cortical layers. b) Average neuron density
profile c) Average neuron size profile. Density and size profiles obtained from average across subjects.

To evaluate the cortical layer alignment quantitatively, we binned the profiles across sub-

jects into three groups based on their cortical thickness measures, which can be a measure

of the quality of sectioning. Specifically, we grouped the profiles into low, medium and high

thickness groups. These groups were defined from the mean and standard deviation of the

cortical thickness measure. Specifically, medium thickness profiles were defined as profiles

with thickness within two standard deviations from the mean thickness. Whereas, high and



Chapter 2. Method 44

low thickness profiles were defined as profiles with thickness measure above and below two

standard deviations from the mean respectively. We then calculated the Euclidean distance be-

tween the average profile in each bin and individual profile across subjects before and after the

cortical layer correction. In general, a decreased Euclidean distance between the average and

individual profile is indicative of better alignment (refer to section 3.2.3 Figure 3.9).

2.6 Morphological Clustering

We used the macroscopic features derived from our coordinate system and applied unsuper-

vised clustering to eliminate processing artifacts and identify sub-regions that differ in cell

morphology. The following section defines the specific inherent anatomical biases and pro-

cessing artifacts seen within the data and provides a solution for accounting for this source of

variability.

Effects induced by cortical folding: Another major challenge in analyzing high resolution

cortical histological data is that there are differences in cell morphology across the gyri, sulci,

and straight cortex regions [25] due to the effects induced by the cortical folding. These dif-

ferences in cell morphology can affect both the density feature maps and other features that

quantify cell morphology. Ultimately these differences, when not accounted for, can result in

poor comparative analysis in downstream processing.

Cutting effects: In addition, the angle of sectioning relative to the cortical mantle affects

the observed structural architecture, and thus, non-optimal sections must not be interpreted as

structural features of the tissue shown. The pathologist typically ignores these areas where

sectioning is cut obliquely as they distort the laminar pattern and provide less reliable infor-

mation. A common solution is to optimize the sampling scheme to reduce or eliminate this

artifact, however, due to the anisotropic nature of the cortex even with optimized sectioning

areas within the sample may still result in obliquely sectioned regions. Many of the features

used to describe and summarize our histological data greatly vary if the orientation of the plane
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of sectioning changes and, thus, are sensitive to deviations from optimal sectioning.

One solution is to identify the different sub-regions (gyri, sulci, straight cortex, and oblique

section regions) such that analysis downstream can be contained within an individual region

of interest. In order to identify such sub-regions, it is required to choose suitable quantifi-

able metrics that accurately divide the data into such regions. Figure 2.8 depicts the typical

Figure 2.8: Depiction of typical cortical morphology in a 2D histological slice.

morphology of a 2D cortical slide. From this figure, it is clear that thickness and curvature

are suitable metrics to subdivide the mentioned sub-regions. Specifically, when observing the

overall low power morphology of the cortex, there are a few obvious trends such as:

1. The gyri regions are relatively thick and have high negative curvature. Whereas, the

sulcus is a relatively thin piece of cortex with high positive curvature

2. The area between the sulcus and gyrus, namely the straight segments of cortex, has low

curvature with thicker cortex at the sulci, and thinner than at gyri.

3. The oblique sectioned regions typically have the greatest cortical thickness with no

bound on curvature.
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Therefore, to achieve this goal, we used cortical thickness and curvature (Figure 2.9 b) and k

means cluster (k=4) to cluster the data appropriately (Figure 2.9 c, d). Figure 2.9 depicts an

overview of this process.

Figure 2.9: Morphological Clustering pipeline: a) examples of equi-potential streamlines used to derive
morphological metrics b) Derived macro-anatomy features, namely cortical curvature and thickness c)
K means clustering result on morphological data across subjects, this sub-figure depicts the normalized
data d) Result of clustering as a segmentation.

2.7 Dimension Reduction

The procedure for accurately grouping (clustering) data is based on finding the smallest sub-

set of relevant features that can exaggerate differences between the groups within the data set.

Here we have chosen histological features that are associated with cortical lesions; these in-

cluded the following: neuron density, size, and eccentricity. We obtained these feature maps

across all subjects and using the coordinate system we obtained profiles which described the

laminar specific data from each map. Once the profiles from each feature map across subjects

were normalized to a common reference, we extracted quantifiable metrics that describe pro-

file shape using a set of 10 features and applied principal component analysis to reduce and

eliminate redundancies in the feature set.
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2.7.1 Profile Shape Feature Extraction

Differences in the shape of neuronal profiles can be a feature of dysplasia. Profile shape was

quantified using a set of 10 attributes extracted from each profile and its absolute derivative.

The attributes extracted from each profile included the mean amplitude and the first four central

moments around the mean (the mean, standard deviation, skewness and kurtosis). The selection

of these 10 attributes that describe a profile shape was derived using a heuristic approach from

Schleicher et. al [85]. In total there are 30 attributes 10 from a profile of each feature map. The

individual 10 attributes were normalized, using z-score normalization, across subjects in order

to maintain equal weight to each attribute. Figure 2.10 illustrates the profile feature extraction.

Figure 2.10: Density Profile attribute extraction example illustrating the features extracted from an
individual profile which describe the profile shape. Note there are 30 extracted attributes, 10 from a
profile of each feature map.These attributes were extracted across all streamlines.

2.7.2 Principal Component Analysis

After extracting profile shape attributes, it was noticed that there were correlations between

attributes within feature maps but also between them. Correlations between variables in a mul-

tivariate analysis can result in poor predictive or clustering performance. Therefore, we applied

principal component analysis (PCA) to eliminate the redundancies found within our data. PCA

summarizes the variation in correlated multivariate attributes to a set of non-correlated compo-

nents, where each component is a linear combination of the original variables or features. The
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goal of PCA is to reduce the dimensionality by extracting the smallest number of components

that account for most of the variations within the original dataset. In this study, we choose a

number of principal components that provided a total of 95% of the variation in the original

data (Figure 2.11). This resulted in 10 principal components, whereas the original number of

attributes was 30. The remaining principal components that made up 5% of the variation were

discarded as they form the most residual part of the data and most likely represent noise and

redundancies.

Figure 2.11: Explained variance by principal components. The x-axis represents the principal compo-
nents listed in order by the percentage of variance they explain. The y-axis shows both the explained
variance from the individual principal component as the blue column and the cumulative variance in the
red curve.
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2.8 Cortical Architectural Specific Anomaly Detection

In general, anomaly detection algorithms are a class of algorithms used to identify rare or suspi-

cious observations. There are two assumptions required when employing these models. Firstly,

the majority of the samples within a data-set are normal (i.e. highly biased data-set). In other

words, the resected neocortical tissue we are studying contains sparse abnormalities. Secondly,

the normal instances form a distinct pattern defined by the attributes selected, while patholo-

gies will be deviate from this pattern. Since the data is normalized to a common reference and

many of the artifacts and inherent biases in the data are accounted for, deviant observations are

likely to come from areas of abnormal tissue.

We have adopted a commonly used model in the machine learning domain, isolation for-

est. The isolation forest model effectively attempts to isolate each point in the data through a

series of random partitioning. The isolation forest model isolates observations by selecting an

attribute at random and then randomly selecting a split value between the defined maximum

and minimum values of the selected attribute. In each iteration the maximum or minimum val-

ues are updated, this random partitioning is repeated until the point of interest is isolated. The

general assumption made by the algorithm is that random partitioning of data would require

fewer divisions for data points that are deviant (i.e. outliers) from the normal pattern defined

by the data-set. Whereas, normal data points require many random partitions in order to isolate

as they are seen within dense regions in the data space. The number of partitions required to

isolate a point can be treated as a distance measure which can be used to calculate an anomaly

score. As with other outlier detection methods, the anomaly score is required to decide nor-

mal observations from anomalies. The isolation forest model was used to detect whether an

observed profile across subjects was normal versus abnormal. Each profile was described by

10 principal components as described in the section above. Abnormal profiles were defined

as regions in which the cytoarchitecture are deviant from the majority of the data (i.e. normal

data). We applied this anomaly detection algorithm to each parcellated region as described in

the Morphological Clustering section and evaluated the detected anomalies.
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Results

3.1 Histological Quantification of Cortical Architecture

Feature maps describing neuron cell density, cell size, and eccentricity were obtained across

multiple subjects and slides (N= 53 slides). Figure 3.1 illustrates an example of the NeuN

stained image and the corresponding extracted features. In total, there were 27 patients selected

for analysis in this study. Inclusion of these subjects was determined based on the availability of

histology with few or no processing artefacts. The extracted feature maps were generated from

the high-resolution NeuN stained images using the automated neuron segmentation results and

a patch-based analysis. From each 100µm x 100µm patch summarized measurements were

obtained. For example, the neuron density feature map (Figure 3.1 b) represents the number

of neurons found within each 100µm x 100µm patch, yellow regions represent high neuronal

density, whereas blue represents low neuronal density.

Figure 3.1 c) shows the obtained average neuron cell size feature map summarized from the

100µm x 100µm patch-based analysis across a whole slide example. Notably, areas with high

neuronal density (layers II and IV) which also are known to have low average neurons size

are seen in examples in Figure 3.1 b) and Figure 3.1 c), as high and low-intensity regions

respectively. This suggests that the features selected can accurately summarize and depict the

51
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Figure 3.1: Example of feature maps generated from a) Neuronal Nuclei stained image for b) Neuron
Density c) Neuron cell size, and d) Eccentricity. Feature maps were generated from averaged values
within 100µm patch.

cortical layers. Eccentricity maps, which summarize the average circularity of neuron cell

bodies with the 100µm patches are illustrated in Figure 3.1 d). The eccentricity maps are

represented as a scalar between 0 and 1 for each neuron, 0 representing a perfectly circular

neuron and 1 representing an ellipse.

The central theme illustrated in Figure 3.2 when comparing the NeuN stained image to the

extracted feature maps, is that the extracted features are sensitive to the changes in cortical

architecture. In particular, Figure 3.2 illustrates slide examples in which there are subtle and

drastic cortical architectural deformities, which can be seen in the extracted features. Examples

include the presence of vasculature (Figure 3.2a), substantial and subtle focal reduction of

neuronal density (Figure 3.2b-c) compared to the surrounding tissue, and presence of obliquely

sectioned cortical region (Figure 3.2d).
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Figure 3.2: Examples of cortical slide with a) presence of vasculature, b) Drastic focal neuronal re-
duction highlighted with red arrows, c) Subtle focal neuronal reduction d) obliquely sectioned cortical
regions. Extracted feature maps are shown on the bottom of each example, illustrating how the extracted
features summarize and represent these subtle and gross changes in cortical architecture.

3.2 Cortical Coordinate Extraction

3.2.1 Laplacian Derived Coordinate System

From the Laplacian solution, we derived radial streamlines that were used to define a coordi-

nate system suitable for sampling cortical laminae. In particular, the defined coordinate system

allows sampling along the cortical depth from the pia to CWM junction and along the length

of cortical tissue being examined. Figure 3.3 a-c) shows examples across three subjects of the



Chapter 3. Results 54

equi-potential derived streamlines overlaid on top of the density feature maps. These stream-

lines can be represented as a three-dimensional coordinate system, Figure 3.3 d) shows an

example of the extracted profiles from the example in Figure 3.3 c). The colour of the stream-

lines in Figure 3.3 represents the ordering of the streamlines, where white streamlines indicate

the beginning of the cortical ribbon and black represents the end.

Figure 3.3: Coordinate system examples a)-c) show examples of equ-potential streamlines laid on-top
of feature maps across 3 subjects. The streamline colour represents the order of streamlines j=1 (black),
whereas j=N (white). d) Labeled coordinate system and extracted profiles from example c)

3.2.2 Sampling Cortical Lamina & Correction

From the obtained feature maps and equi-potential derived coordinate system, it was possible

to extract cortical profiles which define relevant laminar characteristics of the cortical slides.

The examples in Figure 3.4 show three individual samples with different degrees of cortical

folding. As mentioned previously, the degree of distortion seen in the extracted profiles is
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dependent on the degree of cortical folding. Furthermore, Figure 3.4 shows examples of the

original distorted extracted density profiles and corrected profiles using the iso-area and iter-

ative warping correction technique. The rows in the profiles in Figure 3.4 represent cortical

depth, whereas the columns represent location along the length of the tissue. In comparing the

corrected profiles relative to the original profiles, it is clear from the examples in Figure 3.4 that

the columns within-subjects show better agreement along the cortical profiles after performing

our two step correction.

(a) Subject P085 density feature map and extracted uncorrected and corrected profiles

(b) Subject P040 density feature map and extracted uncorrected and corrected profiles

Figure 3.4: Examples of extracted cortical laminae before and after correction.
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Profiles were also obtained from the size and eccentricity maps. To account for the dis-

tortions seen due to cortical folding, the transformations applied to the density profiles were

applied to the size and eccentricity profiles. Figure 3.5 and Figure 3.6 show examples of the

originally extracted profiles before applying the necessary transformations and after applying

the corrective transformations for both the size and eccentricity maps.

Figure 3.5: Example of cortical layer alignment for size and eccentricity feature maps. a) Original
NeuN stained slide (Subject P085). b) Size feature map c) Original and corrected extracted neuronal
size profiles d) eccentricity feature maps. e) Original and corrected extracted eccentricity profiles.

Figure 3.6: Example of cortical layer alignment for size and eccentricity feature maps. a) Original
NeuN stained slide (Subject P040). b) Size feature map c) Original and corrected extracted neuronal
size profiles d) eccentricity feature maps. e) Original and corrected extracted eccentricity profiles.

A summary figure showing the aligned profiles across subjects for the neuron density, size,

and eccentricity is shown in Figure 3.7. The profiles in Figure 3.7 were normalized to a com-

mon reference across subjects and between feature maps.
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Figure 3.7: Alignment across subjects for density, size and eccentricity profiles.

3.2.3 Validation of Cortical Lamina Alignment

To validate the quality of the layer alignment, we evaluated the average profiles in the un-

corrected and corrected space across 4 slide examples. Figure 3.8 shows the original density

feature maps, the extracted uncorrected profiles, the corrected profiles and their respective av-

erage profiles across multiple subjects. The average profiles are shown in the black curves, and

Figure 3.8: Alignment correction results across multiple slides and subjects registered to a common
reference. Native Images represent neuron density feature maps. Red arrows show an example of the
cortical folding distortion on the extracted profiles and density feature map.

the variation along these curves is shown in grey for each slide. It is important to note that the

corrected profiles in the examples in Figure 3.8 are normalized to a common reference. This

can be seen from the fact that the highly dense regions in the profiles, layers II and layer IV,

occur at relatively the same location across these examples. The distortions seen in the un-
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corrected space contribute to a greater variance in the average profile, this ultimately leads to

smoothing of characteristic profile shape features, such as smoothing of peaks corresponding

to layers with high density neurons. Ideally, the average profile from the neuron density fea-

ture map, if aligned, will have 2 peaks, which correspond to the highly dense granular neuronal

layers II, IV. We can see that once the distortions are corrected, the average profile results show

relatively less variation and sharper peaks in the profile shape, suggesting global agreement

across individual profiles.

Figure 3.9 illustrates distributions of euclidean distances between the average profiles and

individual profiles across all subjects before (red) and after corrections (blue). Notably, prior to

extracting the distances, the profiles were separated based on their cortical thickness measures.

Figure 3.9 shows the distribution before and after correction for profiles with low cortical

thickness Figure 3.9 a), whereas the Figure 3.9 b) and Figure 3.9 c) depict distributions for

profiles with medium and high cortical thickness respectively. Using a paired-sample t-test,

the results within each thickness group showed a significant decrease (p <0.01) in distances

between the average profile in each bin and individual profiles across subjects. This can be

seen in Figure 3.9 as a shift to the left in the blue distribution corresponding to the corrected

data, suggesting that there is a higher similarity between the data and the average trend within

each bin after applying the correction.

Figure 3.9: Distribution of Euclidean distances between average profile and individual profiles across
all slides (n=53) with: a) Low, b) Medium, and c) High Thickness Before (red) and After Correction
(blue).
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3.3 Morphological Clustering

Cortical thickness and curvature metrics were defined for each sample and were used as fea-

tures in the morphological clustering. Figure 3.10 b) and Figure 3.10 c) illustrate examples of

the extracted cortical thickness and curvature measures respectively. Figure 3.10 a) illustrates

the original cortical slides which the thickness and curvature metrics were extracted from. The

cortical thickness was defined as the pathlength of an individual streamline, and these stream-

lines can be seen in the second column in Figure 3.10 b). The colour of the individual stream-

Figure 3.10: Example of cortical thickness and curvature measures across three cortical slides. a)
Corresponding cortical slides shown as neuron density feature maps. b) Cortical thickness measure
results displayed as a colour map on top of individual streamlines. c) Cortical curvature along 2D curve
at 50% depth along the cortical tissue. Colour of the individual point along the 2D curve is indicative of
the instantaneous curvature at the point.

lines indicate the length of the streamline, high cortical thickness is represented by the colour

yellow and blue for low cortical thickness. The curvature was defined as the instantaneous

curvature along the 2D curve at 50 % depth along the cortical tissue. The extracted curve is
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shown in the third column in Figure 3.10 c). The colour along the curve indicates the resulting

curvature, yellow indicate high positive curvature, whereas the dark blue represents negative

curvature. The cortical thickness and curvature results followed expected trends as described

in section 2.6.

The normalized cortical thickness and curvature across subjects were used to perform the

morphological clustering using k-means (k=4). The normalized clustered data can be visu-

alized in Figure 3.11 c). In addition, the silhouette plot for the various clusters is shown in

Figure 3.11 b). The silhouette coefficient was used to interpret and validate the consistency,

within clusters, of the data. In general, the silhouette coefficient ranges from -1 to 1. High

values indicate points are well matched to that particular cluster and poorly matched to neigh-

bouring clusters. The average silhouette coefficient was 0.393. Despite this value being on

the lower end, the morphological clustering effectively identifies the regions of interest (Figure

3.11 a). Figure 3.11 a) illustrates the resulting segmentation from the morphological clustering,

which aims to identify the gyri, sulci, straight cortex, and oblique sectioned areas.

Figure 3.11: Example of morphological clustering using k-means clustering (k=4). a) Segmentation
results across multiple cortical slides. b) Silhouette plot from the k-means cluster (Silhouette score =

0.393). c) Visualization of the normalized thickness and curvature data across all subjects. The gyri,
sulci, straight cortex, and oblique section regions are illustrated by the colors purple, red, green, and
blue respectively.
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3.4 Dimension Reduction

3.4.1 Profile Shape Feature Extraction

We extracted laminar profiles along the Equi-potential laminar solution and then summarized

these profiles using the same 10 profile shape features consistently used by Amunts et al. (1999)

[85]. The resulting data is illustrated in Figure 3.12. In total there were 30 features, 10 from

each feature map. Features describing density profiles are shown in red, area in green, and

eccentricity in blue. The high-dimensional representation of the data in Figure 3.12 revealed

a high correlation between several features describing profile shape within feature maps but

also between feature maps (Figure 3.13 a). The uncolored regions of this figure illustrate the

relationships of the data between the profile shape features across feature maps.

Figure 3.12: Visualization of data after profile shape feature extraction. In total there were 30 profile
shape features across 3 feature maps, profile features describing density feature maps are shown in red,
area in green, and eccentricity in blue.
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3.4.2 Principal component analysis

Of the features used in this analysis, many were highly correlated with each other (Figure

3.13a). As a result, the data from Figure 3.12 was reduced to 10 dimensions using principal

component analysis, which preserved 95% of the original data variation. Figure 3.13 b) shows

the high dimensional representation of the data after applying PCA, which ultimately reduced

the dimensions, noise, and redundancies in the data. The diagonal of Figure 3.13 illustrates the

one-dimensional distribution of the individual components using the kernel density estimation

(KDE) plots. Comparing the data from Figure 3.12 and Figure 3.13, it was evident that the re-

sulting data showed weaker correlations and the distributions were more normally distributed.

Figure 3.13: High dimensional representation of data after applying principal component analysis. The
diagonal of the pair-plot illustrates the one-dimensional distribution using the kernel density estimation
(KDE) plots.

In order to better understand the anatomical meaning of the principal components, we exam-

ined the average loading’s of the original features for each principal component (Figure 3.14).

Specifically, the absolute weighting across the features describing each feature map (i.e. den-

sity, area, eccentricity) were averaged for each principal component and plotted using a radar

plot. The first and most prominent component which explained 42.6% of the data’s variation
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was roughly weighted equally among the metrics describing density, area, and eccentricity,

with a slightly higher weight on the area and eccentricity metrics. In other principal com-

ponent examples, we do not see this equal weighting, as one feature tends to dominate the

weighting of the principal component. For example, principal components 2, 3, 5, and 8 seem

to be dominated by features describing the density profiles. Whereas, principal components 4,

6, and 9 are dominated by features describing area and 7, and 10 are weighted more by features

describing eccentricity metrics.

Figure 3.14: Principal component loadings illustrating the absolute average weightings of the profile
shape features for each principal component.
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3.5 Anomaly Detection

Briefly, the goal of this section was to detect abnormal profiles from the data across subjects

within each sub-region and to evaluate whether the anomalies in the data resembled abnormal-

ities in the cortical slides. In order to reduce the unwanted morphological differences in the

data, the anomaly detection algorithm was applied to each parcellated region as determined

from the morphological clustering. As an example, Figure 3.15 a) illustrates the data found

within the straight segments of cortex, the colours represent observations grouped as either

anomaly (blue) or normal (orange). As expected, the isolation forest algorithm was able to

detect observations that were deviant from the dense regions of the data (Figure 3.15 a). This

general trend was also observed for the data across each parcellated region (gyri, sulci, and

straight cortex regions). Figure 3.15 b) illustrates and summarizes the proportion of anoma-

lies found within each slide within straight segments of cortex. In addition, a summary of

the histopathological clinical data, the percentage of anomalies detected within each sample,

and the total number of profiles within each sample is summarized in table 3.1. The results

revealed that the majority of the slides contained no or very few (0-10%) anomalies. However,

there were a few exceptions which were further investigated.

Figure 3.15: a) Visualization of the data after applying the anomaly detection algorithm to the par-
cellated region. Note blue observation represent detected anomalies in data and orange is the normal
observations. b) Distribution of the proportion of anomalies found within straight segments of cortex.
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Figure 3.16: Examples of normal and anomalous cortical architecture at gyral segments.a) Illustrates
the comparison of abnormal regions within subjects. Examples include histological slide images and the
associated extracted features: neuron density, average neuron size, and eccentricity maps. b) Average
Neuron density and size profiles for normal and abnormal cases in the sulcal cortical regions.

We investigated the histological samples in addition to the extracted features (Figure 3.16-

3.18 a) for samples with a high percentage of anomalies. Figure 3.16 a) illustrates areas within

cortical samples in which the algorithm detected as either a normal region (top row) or an

anomaly (bottom row) within segments of straight cortex. Comparisons between normal and

abnormal cortical areas were made within the same subject as shown in the columns of Figure

3.16 a). A general trend we saw from the feature maps from these examples was that regions

detected as anomalous tended to have decreased neuronal density with increased average neu-

ron size compared to the normal counterpart. Note that these trends were not obvious when

visually evaluating the original histological images. Inspection of the average profiles across

slides from the straight cortical segments (Figure 3.16 b) revealed similar trends as to what was

shown from the visual inspections from the feature maps — a decrease in neuronal density and

an increase in neuronal size. However, the profiles in Figure 3.16 b) tended to deviate from

the overall observed trend near the cortical boundaries. These deviations may be due to the

variability caused by the quality of our segmentations and the stretching and compressing from

our iterative warping technique.
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Figure 3.17: Example of normal and anomalous cortical architecture at sulcal depths. a) illustrates
comparison of abnormal regions within subjects. Examples include histological slide images and the
associated extracted features: neuron density, average neuron size, and eccentricity maps. b) Average
Neuron density and size profiles for normal and abnormal cases in the sulcal cortical regions.

A comparison between normal and abnormal cortical areas in the sulci region is illustrated

in Figure 3.17 a). The comparison is made between cortical sections within the same subject

(P084), the figure depicts both the histological slide and extracted feature maps for both exam-

ples. An interesting observation that can be seen from the histological slide in the anomalous

example is that there is vasculature within the sulcal region, which is not present in the normal

example. The presence of the vasculature seems to affect the feature maps in this region, as

shown in the neuronal density, size, and eccentricity feature maps. Ultimately, the presence

of an extraneous structure, such as a vein or artery, can affect the extracted profiles in these

regions, which could be a significant reason for the profiles being classified as abnormal. Fur-

thermore, it was clear that the anomalous example had diminished neuronal density compared

to the normal example, as seen in the feature maps and the histological slide. On average,

the average neuron density profile showed a slight increase in density, while the average size

profile showed a decrease in the anomalous observations.
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Figure 3.18: Example of anomaly detection in gyral cortical regions.a) Illustrates the comparison of
abnormal regions within subjects. Examples contain histological slide and the following extracted fea-
tures: neuron density, average neuron size, and eccentricity maps. b) Average neuron density and size
profiles for normal and abnormal cases in the sulcal cortical regions.

The comparison of the two groups in Figure 3.18 also revealed a decrease in neuronal den-

sity in the region classified as abnormal. Interestingly, the changes in neuronal density can be

visually identified when comparing the two histological images. Evidently, the corresponding

feature maps showed a decrease in neuronal density, area, and eccentricity in the identified

abnormal region compared to its normal counterpart. These results suggest that the extracted

feature maps are sensitive to these gross changes seen visually in the histological images, and

these changes can be identified as anomalies in the data. Examination of the average profiles

in Figure 3.18 b) showed a slight decrease overall in the density and the average neuronal size

profiles, with the exception of areas near the cortical boundaries. This trend was in agreement

with what was observed in the above example.

In order to evaluate the two groups, more precisely, we compared the average principal

component weight for each group and sub-region (Figure 3.19). Notably, the first and most

prominent principal component, which explained 42.6% of the variance, showed the most dif-

ference between the two groups across sub-regions. The first principal component was roughly

weighted equally among the metrics describing density, area, and eccentricity, with a slightly

higher weight on the area and eccentricity metrics (Figure 3.14). Suggesting that all three
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Figure 3.19: Radar plots comparing the average principal component weight for each group and for
each sub-region: a) straight, b) sulcal, and c) gyral cortical regions. The normal group shown in green
and red for the anomalous data

features were crucial in determining differences seen between the two groups. principal com-

ponents 2 and 4 were weighted heavily on metrics describing density and area, respectively

(refer to Figure 3.14), with an explained variance of 14.2% and 9.84% respectively. The prin-

cipal components 2 and 4 also showed notable differences between the groups and among the

sub-regions. Overall, as expected, these results indicate that there was not one anatomical fea-

ture that drove the differences between the two groups, but the amalgamation of these features.
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Subject ID No. of Slides
per Subject

Histopathology FCD Other Pathology Perc. of Anomalies
per Slide (%)

No. Of Profiles
per Slide

15 1 GM - - 0 368
16 1 GO - atypical cells in WM 69.3 659
21 3 GM - - 0, 0, 33.1 864, 887, 454
22 1 GM - - 0 270
24 1 G - - 12.1 214
27 2 G - - 24.1, 0 315, 449
31 1 GM - - 0 117
32 2 G - - 0, 12.1 213, 380
33 3 G - - 21.7, 0, 8.6 304, 477, 994
34 2 GO - arteriosclerosis 0, 0 450, 509
35 1 G - - 0 362
36 3 GF FCD 1b - 0, 30.4, 14.8 813, 880, 826
37 1 GMEF FCD 1a - 7.6 476
40 3 GM - - 36.7, 0, 0 714, 286, 972
41 2 GM - - 11.5, 100 305, 143
43 2 G - - 0, 31.4 377, 455
46 2 G - - 13.1, 15.1 712, 636
51 3 GO - cortical scar 25.2, 35.6, 0 610, 447, 483
58 3 ? - - 0, 0, 0 829, 520, 395
66 3 G - - 16.1, 0, 0 442,72, 235
70 1 GM - - 100 161
78 2 G - - 0, 0 372, 316
79 3 FO FCD 3a/b glioneuronal tumour 8.8, 5.8, 0 725, 599, 545
81 2 GMEO - gangliocytoma 0, 0 304, 662
83 2 G - - 42.4, 0 401, 304
84 2 GMEO - leptomeningeal fibrosis 0, 100 622, 121
85 1 GE - - 35 1157

Table 3.1: Summary of histopathological clinical data, the percentage of anomalies detected within
each sample, and the total number of profiles within each sample. histopathology abbreviations are as
follows: G-gliosis, M-minor architectural abnormality, E-electrode scar, F-FCD, O-other
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Discussion

4.1 Thesis Contributions

In our work, we have utilized a feature extraction tool to extract relevant features associated

with cortical architectural abnormalities and created a coordinate system for sampling cortical

laminae in 2D histological data. The features extracted showed sensitivity to subtle changes

in the cortical slides relevant to the detection of architectural abnormalities. We developed an

innovative method to normalize our data across samples to reduce inherent anatomical biases

affecting the detection of cortical architectural abnormalities. These artifacts include cortical

layer distortions and morphological differences caused by cortical folding effects, as well as

processing artifacts. This framework was then applied to detect abnormalities across multiple

subjects and cortical samples using an unsupervised anomaly detection algorithm. The results

suggest that the technique is able to identify anomalies that correspond to visually-identifiable

histo-architectural irregularities. The frequency of abnormalities was found to differ among

patients; however, the clinical significance of these findings is yet to be investigated.

70
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4.2 Histological Quantification

High-resolution neuronal nuclei (NeuN) stained cortical slides can provide extraneous detail

about the cortical architecture, which makes quantitative and qualitative evaluation of the slides

challenging to interpret when determining whether a specific pathology is present within the

tissue sample. Summarized features can represent the relevant cortical architectural qualities of

interest; ultimately reducing the irrelevant information and making qualitative and quantitative

evaluation more efficient, sensitive, and specific [96]. Prior studies have noted the importance

of neuronal density, size, and morphology when evaluating focal cortical dysplasias in the neo-

cortical slides [108, 109, 42]. In fact, one study has shown significant differences in the mor-

phological parameters such as neuronal density, size, cortical thickness, and grey-white matter

boundary clarity when evaluating the different ILAE classification of FCD [42]. However,

their methodology presents a semi-quantitative approach in assessing cortical tissue slides, and

further work is required to accurately measure whole slide cortical tissue in histology samples.

In our study, we utilize a fully automated approach that is capable of characterizing whole

sections of cortical tissue and focused on assessing the neuronal size, density, and eccentricity

feature maps [101]. When evaluating the quality of the images produced in the feature maps,

both neuron density and size, provide clear images of cortical architecture, as shown in the

example in Figure 3.1. In particular, layer II and IV are known to have high neuronal density

and small average neuronal size, while layers III and V have the inverse characteristics. These

regions with contrasting neuronal density and size are more clearly seen in the feature maps

compared to the original histological image (Figure 3.1 a-b). The qualitative results provide

evidence that layer architecture can be more easily represented and summarized using the ex-

tracted feature maps, which is an important feature when assessing most types of FCDs with

abnormal cortical layering [41, 3]. In addition, the feature maps were sensitive to both gross

and subtle changes in architecture such as complete loss and subtle reduction in neuronal den-

sity (Figure 3.2 a-b) and the effects of extraneous structures such as penetrating vessels (Figure

3.2 c), which mimicked an area of neuronal hypo-density. As mentioned in a previous study,
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density was a significant feature in assessing several FCD sub-types [42, 3]. The sensitivity to

the vasculature is also an important feature, as FCD III c are classified as cortical lamination

abnormalities with the presence of vascular deformations. Finally, the finding in Figure 3.2 d)

suggests that the feature maps are sensitive to oblique planes of sectioned regions and for this

reason excluded from analysis using the morphological clustering technique (Figure 3.11).

4.3 Anomalies in Cortical Architecture and how they Relate

to Histopathology

As shown in Figure 3.16 - 3.18, we found preliminary support for our hypothesis about anoma-

lies in the data resembling abnormalities in histopathology. Specifically, we hypothesized that

cortical architectural anomalies associated with epilepsy, would be structurally distinct from

the surrounding healthy tissue and the selected features can identify these differences. In our

study, we tested this hypothesis by performing an unsupervised anomaly detection algorithm

to the corrected and extracted data and evaluated the histological regions corresponding to the

detected anomalies. Overall, the results showed gross and subtle changes that can be quanti-

fied and visualized using the selected feature maps (as discussed in the section above) and that

these changes can be identified as irregularities in the data-set. These included cortical regions

with subtle (Figure 3.16) and clear (Figure 3.18) neuronal density reductions as well as the

identifications of regions with focal cortical disruptions by non-neuronal elements. There were

several identified anomalies with no apparent visual irregularities in either the feature map or

the corresponding histology slide, suggesting that the method may be overly sensitive or that it

can detect abnormal cortical regions beyond visual inspection. Whether these cases are false-

positive examples or subtle architectural abnormalities, is unclear and further investigation is

required.

Table 3.1 summarizes the histopathological data and the percentage of anomalies detected

within each sample. Overall, the number of identified anomalies found within the FCD samples
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was lower than expected and showed inconsistent trends compared to the rest of the samples.

However, the frequency of the abnormalities was found to differ among patients and slides, and

the identified anomalies corresponded to visually-identifiable histo-architectural irregularities

(Figure 3.16 - 3.18). The inconsistency found within the results may be due to the variability in

the data due to the presence of multiple pathologies, and remaining artifacts and interpretation

of these results should be taken with caution. It is difficult to assess the clinical significance of

this tool without quantitatively evaluating the performance of this tool compared to the ground

truth annotations. The current study was limited by the lack of annotations of the identified

pathologies.

4.4 Remaining Challenges & Limitations of Study

Our analysis was limited by the number of available samples. The lack of samples may have

limited the power to observe differences between healthy and dysplastic tissue in our study.

In addition, there was a lack of control tissue from non-epilepsy cases. The assumption that

our study made was that the majority of the obtained samples contained normal cortical ar-

chitecture and pathologies found were limited and occurred in localized regions of the cortical

slides. However, in future investigations, it would be beneficial to include control tissue from

non-epilepsy cases in order to represent the histopathological characteristics of healthy tissue

better and thereby increase the accuracy and prediction of detection in pathological tissue. Our

data-set also included a variety of cortical pathologies, which included of gliosis, and minor

architectural abnormalities. Due to the presence of multiple pathologies, the results from our

method must be interpreted with caution since the detected anomalies are more likely to be

associated with other pathologies. In future studies, it would be beneficial to limit cases with a

limited set of confirmed pathologies, thereby limiting the noise and variability seen within the

data.

As mentioned in the literature review, the architecture of the layers differs from one cortical
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region to another, in ways that are related to function [110]. Individual layers exhibit distinct

cellular compositions and distributions [25], developmental trajectories [26], and functional

roles [27]. Therefore, it is challenging to establish a clear distinction between healthy and

dysplastic tissue, due to the cytoarchitectural heterogeneity of the different subregions within

the anterior portion of the temporal lobe (e.g., Brodmann area 38, 37, 34, 35, 36, 30, 28, 27,

21 and 20). Ultimately, making the differentiation between normal architecture and subtle cor-

tical disorganization quite difficult without accounting for the variability amongst Brodmann

regions [32]. According to a prior study, the granular layers ( layers II and IV ) of the tempo-

ral cortex were shown to be quite variable amongst the different Brodmann subregions, with

the variability decreasing towards the temporal pole (Brodmann 38) [111]. Our method of

normalizing profiles across subjects and slides aimed to account for differences in layer ge-

ometry due to curvature, subject variability, and variations due to the Brodmann subregions

(Figure 3.7). However, the normalization does not fully account for all of the cytoarchitec-

tural differences seen within these subregions. Future work would benefit from analysis within

location-matched subregions to account for the differences in architecture amongst the Brod-

mann regions.

Currently, our method is limited to cell density, size, and eccentricity features; however, the

incorporation of other features that can provide additional information of the cortical architec-

ture and may improve detection of dysplasias in future formal implementation. For example,

there have been other quantitative maps described by a previous investigator that can provide

additional information about the cortical architecture relevant for FCD identification, such as

neuron clustering, and neuron orientation [101]. Furthermore, our research focused on features

primarily related to specific cortical architecture and lamination defects related to FCD, while

other features related to FCD such as the presence of radial micro-columns or density of WM

neurons were not included but are vital for future studies. Additionally, the effect of sex and

age were not accounted for in our study, as both age and sex can affect the density and cortical

thickness as described by [112]. Further research should be done to investigate the impact of
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sex, age, seizure lateralization, age of seizure onset, and other variables have when differen-

tiating FCD pathologies. An interesting and more automated method for extracting features

in the future may be to incorporate auto-encoders, instead of manually hand-crafting features.

Briefly, auto-encoders can decompose sets of images to thousands of relevant features that can

be used to reconstruct the original sets of images fully. The main benefit of this approach is

that the decomposed features are ensured to be useful and meaningful, whereas manual feature

selection is limited and often selected features are redundant as seen in our approach (Fig-

ure 3.12). Sets of the autoencoder features can then be selected to train a classifier to detect

epilepsy lesions, potentially improving performance. However, this proposed solution would

require a very large data set to work effectively.

Our method for detecting architectural pathologies using an anomaly detection algorithm

showed promising results for future implementation as a computer-assisted diagnostic tool.

Because of the time constraints and limited resources (pathologist annotation), we have not

yet evaluated the sensitivity or specificity of the tool. These are essential statistical metrics,

especially in the medical field, for evaluating the performance of a model in machine learning.

To further improve and evaluate detection of epileptogenic lesions it would be beneficial for

future work to test and validate different anomaly detection models, such as robust covariance

and one-class SVM, paired with accurate pathologist annotations.
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4.5 Future Directions

Significant increases in computation power and improvements to image analysis algorithms

have allowed the development and advancement of computer-assisted diagnosis (CAD) ap-

proaches in radiological data. As mentioned previously, digital histology has become a com-

mon practice among pathologist and has become amenable to CAD methods and machine

learning techniques. Similar to the role of CAD algorithms in medical imaging to complement

radiologist opinion, CAD systems in digital histology has the potential to become a tool that

can complement pathologists in disease detection, diagnosis and prognosis prediction. In par-

ticular, more automated CAD tools can complement pathologists in the detection of epilepsy

lesions, ultimately reducing inter-rater variability and pathology workflow. The anticipated

improved detection of epilepsy lesions with CAD systems can provide accurate ground truth

information for future MRI-histology studies. For example, with the increasing demand for

MRI epilepsy lesion detection tools, annotations from histology can provide ground truth anno-

tations for validating and improving performance in-vivo, ultimately providing more accurate

in-vivo diagnostic tools. Furthermore, our method for detecting anomalies in patient slides can

be used to predict surgical outcomes. Specifically, the proportion of anomalies found within

each patient can be used as a predictive measure of likely prognosis of patient outcome, with

lower proportions indicating potentially better surgical outcomes.
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