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Abstract 

There is a collective prediction among ecologists that climate change will enhance 

phytoplankton biomass in temperate lakes. Yet there is noteworthy variation in the 

structure and regulating functions of lakes to make this statement challengeable and, 

perhaps, inaccurate. To generate a common understanding on the trophic transition of 

lakes, I examined the interactive effects of climate change and landscape properties on 

phytoplankton biomass in 12,644 lakes located in relatively intact forested landscapes. 

Chlorophyll-a (Chl-a) concentration was used as a proxy for phytoplankton biomass. Chl-

a concentration was obtained via analyzing Landsat satellite imagery data over a 28-year 

period (1984-2011) and using regression modelling. The most common lake trophic state 

was oligotrophic (median Chl-a < 2.6 μg L-1), while the least common was hyper-

eutrophic (median Chl-a > 56 μg L-1). Lake volume was the most important factor in 

determining the present trophic state of the lakes. The majority of the lakes (91.6%) did 

not show a change in trophic state over an almost 3-decade long sampling period; only 

4.0% of the lakes became more eutrophic, and 4.4% of the lakes became more 

oligotrophic. Lakes with smaller volumes were further responsive to temperature 

(warmer lakes were more eutrophic), while lakes with larger volumes were more 

responsive to precipitation (wetter lakes were more oligotrophic). Early warning 

indicators of change in trophic state were examined in the patterns of the residuals of the 

time series of Chl-a once non-stationary and stationary trends were removed. 

Remarkably, the majority (56.5%) of the lakes showed patterns in the residuals that were 

not defined by a single trophic metric but fluctuated among different trophic states. There 

was an unexpected instability among some lakes as they switched between oligotrophic 

and eutrophic states (12.5%) or were transitioning from eutrophic towards oligotrophic 

states (23.4%), or from oligotrophic towards eutrophic states (20.6%). The complex 

responses of phytoplankton biomass to climate change suggests that our ability to predict 

the future trophic state of lakes will be limited but enhanced if we recognize that lakes 

and their catchments will be both impacted by climate change. 
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Summary for Lay Audience 

The impact that climate change will have on Canadian temperate lakes remains poorly 

understood. There are several reasons for our lack of confidence in describing the effect 

of climate change. First, many lakes that are near human populations are also impacted 

by the anthropogenic pressures – direct or indirect use of surface waters for consumption 

and the use of lakes for the intended or unintended deposits of wastes. Second, our ability 

to predict the changes in lake ecology is hampered by our slow observance of changes 

that are currently taking place. It appears that lakes may be changing from clear water 

states to turbid productive water states with an increased incidence of potentially harmful 

algal blooms. Although undesirable, these changes can be either gradual (i.e., linear), or 

small and non-linear, and the latter is much harder to identify. Finally, since lakes are of 

many shapes and sizes (i.e., they have different morphometry), they will not be impacted 

by climate change equally. Thus, reports on climate change about the functioning of lakes 

might be too general. This thesis attempts to avoid these problems by studying over 

12,000 lakes in the temperate forest region of Canada. Using satellite records of lake 

chlorophyll-a (a proxy measure of algal biomass in lakes) over 28 years, I have 

determined that climate change affects ~44 % of the lakes, with ~21 % of the lakes 

becoming more productive and ~23 % of the lakes becoming less productive. The 

remaining lakes either do not respond to the changing climate or oscillate between low 

and high productivity. The trends documented in this thesis indicate how the lakes might 

look like in the future (as climate change continues) and if they can be used as a healthy 

water supply for the next generations. 
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1 Introduction 

1.1 Problem statement  

Despite continued efforts to understand drivers of phytoplankton biomass in freshwater 

ecosystems, a more complete understanding of their nature remains challenging (Baines 

et al., 2000; Kosten et al., 2012; de Senerpont Domis et al., 2013). Recently, climate 

change (climate warming, in particular) has been implicated in the increase in 

phytoplankton biomass, changes in lake trophic state and production of algal blooms, 

especially in remote lakes located on relatively pristine landscapes with no history of 

direct discharge of chemical fertilizers (Scheffer & Van Nes, 2007; Capon & Bunn, 2015; 

Randsalu-Wendrup et al., 2016; Sinha et al., 2017). Climate is a temporally dynamic 

mixture of non-stationary patterns (trends) and stationary signals (cycles). As a result, 

understanding climatic controls on lake ecosystems is challenging (Capon et al., 2015). 

Further, climate changes in terms of rising air temperature and changing precipitation 

patterns provides little explanation to why some lakes from the same geographical area 

experience an increase in phytoplankton biomass while others do not (Oliver et al., 2017; 

Richardson et al., 2018). Landscape features–catchment and morphometry of lake 

basins–affect the source, storage and transport of water and nutrients (Baines et al., 2000; 

Staehr et al., 2012) that are essential for phytoplankton growth (Wetzel, 2001). However, 

catchment heterogeneity make it difficult to understand the interactive impacts of sources 

and sinks of nutrients (Fraterrigo & Downing, 2008; Anderson, 2014; Hipsey et al., 2015; 

Capon & Bunn, 2015). Thus, there is a need for detailed analyses of long-term time series 

(decades) of phytoplankton (or chlorophyll-a as a proxy for phytoplankton biomass) in 

conjunction with time series of climatic drivers (temperature and precipitation) and 

landscape features to better understand interactions and feedbacks among these 

environmental variables. Better understanding of these interactions and feedbacks will 

help shed light on phytoplankton development now and in the future under the reality of 

climate change.  
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1.2 Scientific rationale 

The shape, productivity and trophic functioning of lakes have changed rapidly in the last 

50 years–more rapidly than at any other time in human history (Hipsey et al., 2015). In 

general, these changes could hardly be called positive as they often lead to an emergence 

of harmful algal blooms (O’Neil et al., 2012). The frequency and duration of harmful 

algal blooms is increasing globally (Svrcek & Smith, 2004; Carey et al., 2012) as well as 

within the temperate forest biome of North America (Winter et al., 2011). This is 

possible evidence of eutrophication of lakes, and the shifts towards nutrient-rich 

condition. While eutrophication has long been ascribed to either direct discharge of waste 

products and chemical fertilizers into surface waters (Glibert et al., 2005) or land cover 

changes (e.g., deforestation, wetland drainage; Foley et al., 2005), there is incomplete 

understanding of the factors leading to algal blooms in lakes that have never recorded 

eutrophic conditions (Winter et al., 2011; Carey et al., 2012). Newly eutrophied lakes are 

located on relatively undisturbed landscapes at considerable distances from urban areas 

and agricultural lands–such as those within the temperate forest biome in central Ontario 

(Winter et al., 2011). Further, the temperate forest biome rests on phosphorus-poor 

Precambrian rocks of the Canadian Shield (Ontario Geological Survey, 2003)–the 

landscape that should not have the natural capacity to support lakes with a high trophic 

conditions. Thus, it is becoming clear that algal blooms are no longer a strict 

anthropogenic eutrophication (nutrient enrichment) problem (Paerl & Huisman, 2008; 

Posch et al., 2012). Existing conceptual models that attempt to describe the factors 

regulating the trophic state of lakes and drivers contributing to a change in phytoplankton 

biomass are insufficient to explain eutrophication in these remote temperate lakes.  

With the absence of direct anthropogenic activities on relatively undisturbed landscape of 

the temperate forest biome in central Ontario, the recent reports on algal blooms may be 

partly explained by climate-associated temporal and landscape-related spatial factors. 

Although both direct (e.g., Blenckner, 2005; Adrian et al., 2009; Posch et al., 2012; 

Richardson et al., 2018) and indirect (via regional hydrology influencing water and 

nutrient transport; e.g., George et al., 2008; Whitehead et al., 2009) effects of climate 

change on lake ecosystems have been widely described, the role of climate change as a 

http://www.lingvo-online.ru/ru/Search/Translate/GlossaryItemExtraInfo?text=%d1%81%d0%b5%d0%bb%d1%8c%d1%81%d0%ba%d0%be%d1%85%d0%be%d0%b7%d1%8f%d0%b9%d1%81%d1%82%d0%b2%d0%b5%d0%bd%d0%bd%d1%8b%d0%b9&translation=agricultural&srcLang=ru&destLang=en
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regulator of phytoplankton biomass and eutrophication remains poorly understood 

(Scheffer & Van Nes, 2007). For example, although some studies suggest that climate 

warming might promote the turbid (eutrophic) state in temperate lakes (Jeppesen et al., 

2003; Mooij et al., 2007), there is evidence that it might favor the clear state (Rooney & 

Kalff, 2000; Lottig et al., 2014). Some recent studies suggest that although increasing air 

temperature should be taken into account, changes in precipitation patterns might be 

more important in driving eutrophication (Sinha et al., 2017).  

The characteristics of the contributing source areas of water and nutrients (i.e., catchment 

size, topography, presence of wetlands) affect the source, storage and transport of water 

and nutrients to lakes (Blenckner, 2005; Staehr et al., 2012). In addition, the 

characteristics of the receiving waters (e.g., lake depth, volume, size of littoral zone) 

affect the fate of the nutrients within lakes (Søndergaard et al., 2005; Nõges, 2009; Orihel 

et al., 2017). Only a few studies have assessed the coupled terrestrial-aquatic systems 

upon which lake ecosystems depends (e.g., Anderson, 2014; Hipsey et al., 2015). From 

these studies, there is evidence that higher proportions of wetlands in lake catchments 

contribute to maintaining either turbid or clear state in lakes depending on the location of 

the wetlands (e.g., upstream or downstream) and lake basin morphometry (Cobbaert et 

al., 2015). Further, despite the fact that the lake’s littoral zone is known to be an 

important sink for allochthonous nitrogen (N) and phosphorus (P) (Klimaszyk et al., 

2015), there is incomplete understanding of the role of this zone in providing a source of 

nutrients to phytoplankton (Kornijów et al., 2016). 

Eutrophication and an increased frequency of algal blooms might also indicate that 

temperate lakes are experiencing functional changes in their inherent properties. The 

concept of ecological resilience developed by Holling in 1973 (Holling, 1973) describes 

conditions in which an ecosystem loses its resilience, becomes unstable, and shifts into 

another regime of behavior (or stability domain), therefore implying that the ecosystem 

can have at least two stable states separated by unstable or transitional state(s). Holling 

(1973) defined resilience as the amount of disturbance that a system can withstand while 

keeping the same structure and function before it shifts into an alternative stable state. 

Ecosystem stability can be defined as the ability of a system to remain relatively 
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unchanged under perturbation, and to return to the initial state quickly once the 

perturbation is over (Angeler & Allen, 2016). Over time, the structure and function of an 

ecosystem with high resilience remain relatively stable. However, gradually changing 

external conditions (i.e., an enduring pressure such as increasing air temperature) can 

lead to a gradual loss of resilience up to a point where even a small disturbance can push 

the system into a new stability domain, where the system reorganizes into a new stable 

(often radically different) state (Scheffer et al., 2012). Once in a new stable state, the 

system is maintained by internal feedback dynamics (e.g., prevalence of buoyant 

cyanobacteria), making the recovery to a previous state difficult (Scheffer et al., 2001; 

Scheffer et al., 2012). 

Changes in the biomass of the phytoplankton and the associated lake trophic states are 

assessed using chlorophyll-a concentration (Chl-a)–the proxy for phytoplankton biomass 

(Thiemann & Kaufmann, 2000). However, ecological time series (such as time series of 

Chl-a) are typically too short and noisy to draw robust statistical measures, especially 

when analyzing resilience and stability of system states (Carpenter & Brock, 2006; 

Lenton et al., 2012; Boettiger et al., 2013). Therefore, it is important to use long-term 

(decades) time series and filter signals resulting from intrinsic ecosystem dynamics from 

various kinds of environmental noise including non-stationary and stationary signals 

(Lenton et al., 2012; Arnoldi et al., 2016). 

Here a multi-scale approach (space: lake-catchment-region, and time: from one year to 

year 28) and statistical techniques are used to explore spatial and temporal patterns in 

phytoplankton biomass (measured as Chl-a) in thousands of small (< 10,000 ha) lakes in 

a large area of the temperate forest biome in Ontario, Canada. Although, the temperate 

forest biome is relatively pristine as a whole, there are some areas (e.g., some lowlands 

along Lake Huron, and the Greater Sudbury region) that have a greater intensity of 

anthropogenic activities (e.g., forest management, mining); these areas were still included 

in the analysis for comparison purposes. The temperate forest biome shows noticeable 

annual climate variability and landscape spatial heterogeneity in terms of topography 

(from lowland areas along the Great Lakes to Algoma and Madawaska Highlands), 

morphometry of lake basins (e.g., maximum depth ranges from 1 m to 59 m), and lake 
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trophic states (from oligotrophic to hyper-eutrophic). The 30-year climatic record 

(McKenney et al., 2011) indicates that, since 1984, average air temperature has increased 

by 2°C in the temperate forest biome, while annual mean precipitation has decreased by 

almost 20 mm in the central-northern areas and increased by 10 mm in the southern areas 

of the region. 

1.3 Necessitated techniques  

Traditional field sampling and therefore monitoring of lake phytoplankton biomass (or 

Chl-a) in lakes is often logistically limited (especially for remote northern areas). 

Furthermore, even in logistically accessible areas (e.g., southern regions of the temperate 

forest biome), representativeness, spatial and temporal coverage, and frequency of filed 

measurements are usually inadequate (Palmer at al., 2015). Satellite missions and the 

availability of satellite imagery data since the 1970s (e.g., data provided by Landsat 1), 

however, allow for the estimation of phytoplankton biomass over large spatial extents 

and over long periods of time at relatively low costs. 

Remote sensing methods rely on the measurement of radiation received from the surface 

of Earth in particular areas (i.e., bands) of the electromagnetic spectrum (Matthews, 

2011). Satellite sensors detect the fraction of incoming solar irradiance reflected by a 

subject (e.g., water body) or a constituent (e.g., Chl-a), which is defined as reflectance 

(Dall'Olmo et al., 2003). Phytoplankton detection is possible because all 

phytoplanktonic organisms have spectrally active photosynthetic pigments, such as Chl-a. 

Chl-a concentration is the most common parameter derived in remote sensing of inland 

waters that is used as an indicator of the abundance of phytoplankton in water and a 

proxy of lake trophic condition (Han & Jordan, 2005; Matthews, 2011). The absorption 

and reflectance characteristics of Chl-a are: strong absorption between 400–500 nm 

(blue) and at near-680 nm (red), and reflectance maximums at near-550 nm (green) and 

700 nm (near-infrared: NIR) (Figure 1.1; Han & Jordan, 2005). However, due to the 

optical complexity of inland waters, these characteristics may differ from lake to lake; for 

example, the Chl-a reflectance maximum can shift to the longer wavelength (red) in 

turbid lakes owing to the presence of particulate material in the water column (Spitzer & 

Dirks, 1986). Satellite sensors do not directly measure Chl-a concentration; instead it is 
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usually estimated through empirical models based on correlations of band reflectance 

values with near-simultaneous ground-based measurements (Gitelson et al., 2000). 

 

Figure 1.1 Reflectance spectra of water, Chl-a and CDOM. Colors symbolize Landsat 

TM/ETM+ bands: blue–B1, green–B2, red–B3, and gray–B4 (near-infrared) (modified 

from Olmanson et al., 2016). 

These days there are numerous satellites acquiring imagery at various spatial resolutions 

(e.g., Landsat, SPOT, MERIS, MODIS, IKONOS, etc.). However, most have relatively 

coarse spatial resolution (usually between 250 m and 1000 m) that does not allow for 

modelling Chl-a in small inland waters. Additionally, these satellites have only recently 

started to operate (e.g., MODIS and IKONOS were launched in 1999); therefore, they 

cannot be used for long-term (decades) monitoring of lake phytoplankton biomass (or 

Chl-a). Landsat Thematic Mapper (TM) and Enhanced TM (ETM+) sensors, on the other 

hand, have adequate spatial resolution (30 m) and provide a continuous record of 

satellite-based data between 1984 and 2011. Additionally, Landsat images and all 

associated data are available free of charge and can be uploaded directly from the U.S. 

Geological Survey (USGS) official website upon request. 
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Despite the benefits, there are several challenges in using Landsat sensors for Chl-a 

retrieval in inland waters that should be accounted for. First, Landsat sensors are 

primarily designed for terrestrial landscapes; therefore, application of atmospheric 

correction methods associated with these sensors (e.g., dark object subtraction methods –

DOS and COST) over lakes may impact the performance of Chl-a retrieval algorithms 

(Palmer at al., 2015). One possible solution to this problem is a partial atmospheric 

correction that does not require the selection of the dark objects (Guanter et al., 2010; 

Keith et al., 2018). Second, Dekker et al. (2002) pointed out that owing to Landsat’s 

coarse spectral resolution, its sensitivity to spectral differences is relatively low, which 

can lead to more severe adjacency effects. The majority of inland waters are small and 

relatively shallow (Wetzel, 2001); therefore, there is a possibility of erroneous reflectance 

values originated from pixels adjacent to shorelines (littoral zones with abundant aquatic 

vegetation) and sediments (shallow areas). In this case, careful selection of lakes in terms 

of their size (e.g., using a criterion of minimal lake size) and depth, as well as removal of 

littoral zones from lakes, is strongly recommended (Verpoorter et al., 2012).  

Finally, reflectance and absorption spectra of Chl-a and colored dissolved organic matter 

(CDOM) overlap on the electromagnetic spectrum (Figure 1.1). Landsat’s course spectral 

bands cannot resolve Chl-a narrow reflectance peaks only (Matthews, 2011). Therefore, 

there is a concern that covarying effects of CDOM and some other surface water 

constituents (e.g., total suspended solids: TSS) can hamper the interpretation of 

reflectance values associated with Chl-a (Dekker et al., 2002; Brezonik et al., 2005). 

CDOM is predominantly comprised of humic and fulvic acids originated from 

decomposition of plant material in soils and wetlands (Brezonik et al., 2005). Humic 

components absorb strongly in the blue band, turning the water brown; therefore, they 

might be a significant contributor to water color, especially if the concentration of these 

components is high (Matthews, 2011). One possible solution to minimize the effect of 

these constituents is using empirical approaches such as band ratios or band algorithms 

(especially three band algorithms) instead of using single bands (Östlund et al., 2001; 

Vincent et al., 2004; Keith et al., 2018). These algorithms can also eliminate some 

residual errors of atmospheric correction (Stumpf et al., 2016). This is because while 

dividing one reflection by another, surface reflection and atmospheric influence are likely 
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to be constant with wavelength being removed, and therefore the ratio is primary 

impacted by the water leaving radiance (Strömbeck & Pierson, 2001). 

1.4 Research foundation 

The research foundation for this thesis was study done by Paltsev (2015). The author 

used Landsat TM/ETM+ imagery to analyze natural variation in modelled Chl-a 

concentration in more than 6,000 temperate lakes. In this study, I adopted several 

approaches initially developed by Paltsev (2015). For example, I also used remote 

sensing (Landsat series in particular), a linear regression for Chl-a modelling, and the 

analysis of variance (ANOVA) to decompose the variation in Chl-a into three 

components (i.e., space, time and space×time interaction) according to Wiley et al. 

(1997). However, in this study, not only different methods were used for pre-processing 

of Landsat images but also more attention was payed to the selection of the Landsat 

spectral algorithm that would be more appropriate for Chl-a modelling, considering 

spectral properties of Landsat series and possible interference of Chl-a with other water 

constituents (e.g., CDOM).  

Full atmospheric correction methods such as those used in Paltsev (2015; COST) are 

primarily designed for land applications (see Palmer at al., 2015). A partial atmospheric 

correction, on the other hand, is thought to be more appropriate when dealing with 

optically complex inland waters (Guanter et al., 2010); hence, a partial atmospheric 

correction was applied in this study. Although single bands were used for Chl-a retrieval 

in the past (e.g., Sass et al., 2007), recently developed band ratio (or band algorithm) and 

semi-analytical methods are found to produce more accurate models, which take into 

account covarying effects of CDOM and TSS (Odermatt et al., 2012; Keith et al., 2018). 

Therefore, a band algorithm was used in this study as compared to a single band (band 3: 

red) used in Paltsev (2015). Furthermore, Paltsev (2015) did not solve the problem of 

missing Chl-a values, which were a result of erroneous reflectances caused by haze and 

clouds on Landsat images. This decreased the number of lakes used for temporal analysis 

to around 6,000, and may have produced biased results while analyzing spatial patterns in 

Chl-a (i.e., averaged values over time). In this study, this flaw was corrected by applying 

a kriging technique (Cressie & Wikle, 2011) that resulted in more than 12,000 lakes with 
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continuous Chl-a time series. Finally, I performed more in-depth analyses of temporal 

patterns in Chl-a by applying the non-parametric Mann-Kendall test on individual lakes. 

This allowed me to identify lakes with significant trends in Chl-a over 28 period, and 

describe spatial patterns that these “trending lakes” had (e.g., the proximity to Sudbury, 

cottage regions, and the Great Lakes). 

1.5 Thesis goal, objectives and hypotheses 

The goal of the thesis was to improve understanding of the interactive effects of climate 

changes and landscape properties on phytoplankton biomass in lakes located in intact 

forested landscapes in the temperate forest biome. 

The following objectives were completed and associated hypotheses and predictions were 

assessed to reach this goal.  

Objective 1. Describe the spatial and temporal patterns in lake Chl-a and determine the 

total variation in the Chl-a in space and time. 

I hypothesized that there are temporal (trends) and spatial (clusters) patterns in Chl-a and 

associated trophic states in lakes of the study region. I predicted, however, that most of 

the variation in Chl-a will be due to lake-specific factors (e.g., lake morphometry) which 

will not produce any visible “broad-scale” patterns.  

Objective 2. Explore the role of climate factors and landscape characteristics on lake 

Chl-a. 

I hypothesized that there is a relationship between Chl-a (and associated trophic states) 

and landscape properties that cause different patterns in nutrient loading into lakes and 

nutrient availability within lakes. I predicted that lakes with similar landscape properties 

will respond coherently to increasing temperature and changing precipitation. 

Objective 3. Assess ecosystem stability of lakes and determine lakes experiencing 

regime shifts in lake trophic states.  



10 

 

 

 

I hypothesized that alternative stable states exist in the lakes of the study region. I 

predicted that there will be two stable stables–oligotrophic and eutrophic–and several 

transitional (e.g., eutrophying and/or oligotrophying) and/or unstable state(s). 

Objective 4. Explore the role of climate in contributing to lake instability and the 

rationale between changing trophic state in some lakes (eutrophying or oligotrophying 

lakes) with lakes expressing a stable state. 

I hypothesized that there is relationship between climate (in terms of increasing 

temperatures and changing precipitation patterns), landscape properties and lakes that are 

eutrophying or oligotrophying. I predicted that increasing temperatures are driving the 

eutrophication of some lakes, while increasing precipitation and associated increased 

runoff is driving the oligotrophication of other lakes. 

1.6 Thesis organization 

This thesis has been prepared in the integrated article format and is comprised of three 

manuscripts (the first manuscript is related to Objective 1, the second manuscript is 

related to Objective 2, and the third manuscript is related to Objectives 3 and 4). The 

introduction (Chapter 1) provides an overview of the theoretical approach, the research 

problem, questions, hypotheses and objectives that form the basis of the thesis. The first 

manuscript (Chapter 2) presents a method to estimate Chl-a concentration from remote 

sensing imagery and applies the method to estimate Chl-a from archived Landsat imagery 

from 1984 to 2011 for thousands of temperate lakes. This chapter also characterizes the 

variation in Chl-a by using a statistical approach for decomposing variance into spatial, 

temporal, and space×time interaction components. The second manuscript (Chapter 3) 

examines relationship between Chl-a of 275 representative lakes and climate drives (air 

temperature and precipitation) and landscape (catchment and lake morphometric features) 

properties. Detailed descriptions of “typical” landscape features identified for each lake 

trophic state are provided in this chapter. The third manuscript (Chapter 4) applies an 

analytical framework to identify indicators of changes in lake ecosystem stability 

(instability) and regime shifts by analyzing anomalies; i.e., differences in behavior of 

residuals from Chl-a time series of 12,644 lakes. Additionally, this manuscript 
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investigates the role of climate (in terms of air temperature and precipitation) and 

landscape characteristics as drivers of changes of lake stability in a subset of 78 lakes 

experiencing transitional states. The final chapter (Chapter 5) summarizes the major 

conclusions of the study, discusses the anticipated significance, and presents future 

research directions. 
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2 Understanding patterns in remotely-sensed Chlorophyll-
a in temperate lakes: spatial and temporal perspectives  

2.1 Introduction 

Biological communities in lakes can be sensitive to environmental changes (Adrian et al., 

2009). Small and shallow lakes are especially sensitive to these changes (Choi, 1998); 

those located in remote areas can provide abundant information about the particular 

effects of these changes in the absence of confounding anthropogenic land cover signals. 

Of various “lake sentinels”, phytoplankton is of special interest because this group of 

photosynthetic organisms can respond rapidly to environmental changes (Williamson et 

al., 2009), especially if these changes lead to eutrophication. The most notorious response 

of phytoplankton to eutrophication is the increasing emergence of harmful algal blooms 

(HABs) (O’Neil et al., 2012) which are frequently comprised of toxin-producing 

cyanobacteria (cyanoHABs) (Havens, 2008).  

In contrast with natural eutrophication processes that occur over hundreds or thousands of 

years (Wetzel, 2001), anthropogenic eutrophication can happen within much shorter 

periods of time (e.g., decades or years). Anthropogenic eutrophication is usually ascribed 

to either direct discharge of waste products and chemical fertilizers into surface waters 

(Glibert et al., 2005) or land cover changes (e.g., deforestation, wetland drainage) (Foley 

et al., 2005). However, these explanations provide no insight into the emergence of lake 

eutrophication in areas that have never recorded eutrophic conditions (i.e., areas located 

on relatively undisturbed landscapes at considerable distances from urban areas and 

agricultural lands). Stoddard et al. (2016) found a dramatic reduction in the number of 

oligotrophic lakes in the United States located within relatively undisturbed catchments, 

possibly as a result of increased atmospheric deposition of phosphorus. Climate change 

(and, in particular, climate warming) also causes the raising of surface water temperatures 

and strengthening of the vertical stratification of lakes that are advantageous to many 

bloom-forming cyanobacteria species (Paerl & Huisman, 2008). 

Given these phenomena, it is important to gain understanding of the relative contributions 

of spatial and temporal factors to lake eutrophication. This may be achieved only through 

http://www.lingvo-online.ru/ru/Search/Translate/GlossaryItemExtraInfo?text=%d1%81%d0%b5%d0%bb%d1%8c%d1%81%d0%ba%d0%be%d1%85%d0%be%d0%b7%d1%8f%d0%b9%d1%81%d1%82%d0%b2%d0%b5%d0%bd%d0%bd%d1%8b%d0%b9&translation=agricultural&srcLang=ru&destLang=en
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long-term surveys (time series) of phytoplankton biomass covering large regional scales. 

These are not directly available due in part to the laborious nature of systematic sampling 

in difficult-to-access locations. The routine availability of remote sensing imagery since 

the 1980s, however, can allow for the estimation of phytoplankton biomass and, by 

extension, lake trophic state over large spatial extents over extended time periods. 

Phytoplankton detection is possible through the optical properties of a spectrally active 

pigment of phytoplankton: Chlorophyll-a (Chl-a). Chl-a has been widely used as a proxy 

of phytoplankton biomass (e.g., Wynne et al. 2013; Kudela et al., 2015) and is often 

denoted as a biological indicator of lake trophic state (e.g., Thiemann & Kaufmann, 

2000; Song et al., 2013).  

A number of satellite sensors have been used for Chl-a quantification in inland waters 

(reviewed by Matthews, 2011). Some sensors (e.g., MERIS) have fine spectral resolution 

that allows for measuring distinguishing features of wavelength absorption of the 

phycocyanin pigment, allowing for the detection of cyanoHABs. Their coarse spatial 

resolution, however, does not allow for mapping Chl-a concentration in small lakes. 

Moreover, the relatively short spans of records from these sensors do not allow for 

construction of long-term surveys. Landsat Thematic Mapper (TM) and Enhanced TM 

(ETM+) sensors, on the other hand, provide a continuous record of satellite-based 

observations from 1984-2011 at moderate (30 m) spatial resolution that have been used to 

successfully quantify phytoplankton Chl-a in lakes (e.g., Lathrop et al., 1991; Svab et al., 

2005; Karakaya et al., 2011; McCullough et al., 2012; Tebbs et al., 2013; Giardino et al., 

2014).  

While Landsat TM/ETM+ data have the potential for estimating Chl-a in lakes, only a 

handful of studies have used the data to quantify Chl-a concentration in large numbers of 

lakes covering a range of trophic states (e.g., Allan et al., 2011; Torbick et al., 2013). 

Even fewer studies have used time series of Landsat TM/ETM+ data to map long-term 

Chl-a patterns (e.g., Sass et al., 2007; Allan et al., 2015). The most common approach 

used in applications of Landsat TM/ETM+ to estimate Chl-a is to develop empirical 

models that involve statistical association of satellite reflectance from wavelength band(s) 

with near-simultaneous ground-based Chl-a measurements (Gitelson et al., 2000). 
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However, since Landsat TM/ETM+ are not initially designed for Chl-a retrieval, their 

spectral bands do not exactly correspond to Chl-a absorption and reflectance peaks; this 

often limits the ability of this satellite series to accurately model Chl-a concentration 

(Palmer et al., 2015).  

One possible solution is to use band ratios or band algorithms instead of single bands 

(Odermatt et al., 2012). Band ratios and band algorithms can also offset some residual 

errors in atmospheric correction (Stumpf et al., 2016) and reduce the effects of other 

optically active components on reflectance such as colored dissolved organic matter 

(CDOM) and total suspended solids (TSS) (Brivio et al., 2001; Keith et al., 2018). In 

optically-complex waters (e.g., lakes), the components can seriously complicate the 

interpretation of reflectance values associated with Chl-a. 

In this study, a 28-year (1984-2011) times series of Landsat TM/ETM+ satellite products 

was used to estimate annual Chl-a concentrations in thousands of small (< 10,000 ha) 

lakes in a large area of the temperate forest biome in Ontario, Canada. This extensive 

spatial and temporal dataset was used to determine the relative influences of spatial and 

temporal factors leading to variations of Chl-a concentration. The specific objectives 

were as follows: (1) to develop a regression model relating lake Chl-a concentration to 

TM and ETM+ optical reflectance using a band ratio algorithm; (2) to apply the model to 

estimate annual Chl-a concentrations in thousands of lakes over a continuous 28-year 

period, and (3) to decompose the total variation in annual Chl-a concentration into space, 

time and (space×time) interaction domains. The results of the study will help identify 

factors associated with increasing phytoplankton biomass and eutrophication and allow 

researchers to target geographical areas where lakes are more susceptible to 

eutrophication for future monitoring efforts. 

2.2 Study region 

The study region is located between 44.44 °N and 48.38 °N in the temperate forest biome 

within the Boreal (Canadian) Shield in Ontario, Canada (Figure 2.1). Climate in the 

region is humid continental; precipitation is influenced by the Great Lakes (Baldwin et 

al., 2000). 
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Figure 2.1 Study region (the temperate forest biome) and locations of sampled Ontario 

and Alberta lakes. 

Mean annual air temperature in the study region for the period of 1984-2011 was +5.1°C, 

ranging between +7.4°C in the south-east and +2.8°C in the north. Mean annual total 

precipitation for the same period was 960 mm yr-1, ranging from 740 mm yr-1 in the 

southern areas of the region to 1180 mm yr-1 in the north-west (McKenney et al., 2011). 

Mean annual July-October (i.e., months that are under consideration in the study – see 

Chapter 3 for details) maximum temperatures increased significantly at a mean rate of 

0.046°C yr-1 over the 1984–2011 period (p < 0.05). Trends in mean annual July-October 

total precipitation for the same period are less clear; the precipitation was variable from 

year to year with decreasing trends (a mean rate of -0.24 mm yr-1) in western areas and 

increasing trends (a mean rate of  0.17 mm yr-1) in central and south-eastern areas of the 
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study region. The frost-free period extends from April to November in the warmer and 

more humid southern portions of the region, and from May to September in the northern 

portions (Baldwin et al., 2000).  

Bedrock geology of the study region is primarily composed of silicate greenstone with 

outcrops of more felsic igneous rocks of the Precambrian origin (Ontario Geological 

Survey, 2003). These rocks are covered with glacio-fluvial outwash (average depth is 1-2 

m), which consists of sandy loam ablation till with river and deltaic deposits and a 

compacted lower slit loam basal till (Ontario Geological Survey, 2003; Appendix A: 

Figure A.1). Organic (Holocene) deposits are frequent in depressions and wetlands near 

rivers and lakes, and are predominantly comprised of peat and muck. Elevations range 

from 150 to 555 m a.s.l.; topography varies from flats and depressions along the shore of 

the Great Lakes to uplands (e.g., Algoma Highlands). Soils are thin brunisols in the 

southern portions of the region, and thick and differentiated orthic ferro-humic podzols in 

central and northern portions (Canada Soil Survey Committee, 1978). Wetlands cover 

from a small (< 3%) to a substantial part (25%) of lake catchments (average wetland 

cover is 12%; Eimers et al., 2009) and are generally comprised of ferric humisols with 

highly humified organic deposits (Canada Soil Survey Committee, 1978). Forests in the 

region belong to the Great Lakes-St. Lawrence Forest Biome and lie in a transitional zone 

between deciduous and coniferous, with the latter being more prevalent in the northern 

areas. 

2.3 Materials and Methods 

2.3.1 Ground-based Chlorophyll-a and DOC measurements 

Ontario lakes 

Ground-based measurements of Chl-a concentration (Chl-aobs) were made throughout the 

ice-free season (May-October) in 26 lakes of the study region located in the Algoma 

Highlands in Ontario (hereafter referred to as Ontario lakes) during a three-year (2009 to 

2011) field campaign conducted by Ryan Sorichetti (Western University) (Sorichetti et 

al., 2014; Appendix A: Table A.1, Figure A.1). Of 26 sample lakes, 9 lakes were sampled 

in more than one year, making the total sample size equal to 35. As a whole, the Algoma 
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Highlands have similar physiographic characteristics (i.e., geology, topography, soil and 

forest type) as the entire study region. Surficial geology of the Algoma Highlands is 

represented by double layered glacial till (sandy loam ablation till with overlying a 

compacted lower silt loam basal till). Soils are orthic ferro-humic podzols with dispersed 

pockets of ferric humisols. Topographic relief of this region ranges from hills (with 

gentle to steep hillslopes) to flats and depressions containing mineral or organic soils, 

which are often saturated. Forests are comprised of deciduous and coniferous species 

with the former being more prevalent (Mengistu et al., 2014).  

The sampled lakes are predominantly oligotrophic and mesotrophic with respect to Chl-a 

concentration (Carlson & Simpson, 1996), with maximum depth between 1.3 m to 42.7 m 

(average maximum depth is 7.6 m) and surface area between 16.5 ha to 1033.0 ha 

(average area is 143.6 m), thermally stratified during summer and mixed during spring 

snowmelt and fall storms (Appendix A: Table A.1, see also Sorichetti, 2014). Water 

samples integrated to 1.0 m depth were collected at lake centers (which were assumed to 

be the deepest part of lakes) outside of a phytoplankton bloom if present (Sorichetti, 

2014). The samples were collected in 500 mL pre-rinsed polyethylene bottles, stored on 

ice, filtered onto Whatman GF/F filters, and analyzed for Chl-a concentration (μg L-1) 

using a Turner 10-AU field fluorometer (excitation at 436 nm, emission at 680 nm) (Arar 

& Collins, 1997).  

Alberta lakes 

Chl-aobs collected in mid-August of 1999, 2001 and 2002 in 54 lakes of the Utikuma 

Uplands located in the Boreal Plain ecozone of northern Alberta by Sass et al. (2007) was 

also used in this study (hereafter referred to as Alberta lakes; Appendix A: Table A.1, 

Figure A.2). Of 54 lakes, 8 lakes were sampled in more than one year, making the total 

sample size equal to 69. The Utikuma Uplands are considered relatively intact from 

human activities. The region is primary comprised of various glacial landforms ranging 

from moraine forms (hummocky regions with silt and clay) to outwash plain (with sand), 

to lacustrine plain (flats with clay) (Sass et al., 2007; Figure A.2). The sample lakes 

ranged from oligotrophic to hypereutrophic (with respect to Chl-a concentration; Carlson 

& Simpson, 1996) with mean depth between 0.5 m to 2.0 m and surface area between 4.5 
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ha to 275.0 ha (average area is 30.5 m) (Table A.1; also see Sass, 2006). Water samples 

were collected at 0.2-0.4 m depth at lake centers (outside of algal blooms if present), 

filtered, frozen, and extracted with acetone. The extract was then analyzed for Chl-a 

concentration (μg L-1) using a spectrophotometer at 750, 665 and 649 nm wavelengths 

according to EPA Method 446.0 (Bergmann & Peters, 1980).  

Dissolved organic carbon (DOC) measurements 

Dissolved organic carbon (DOC) is often used as a proxy for measuring CDOM in lakes 

(which is the photo-active component of DOC) (Brezonik et al., 2005; Zhu et al., 2014). 

DOC was measured in both Ontario and Alberta lakes using a standard 0.45 μm filter 

from a sub-sample of the water collected for Chl-a determination. DOC concentration 

(mg L-1) was determined using infrared detection (Shimadzu TOC 5000A, detection limit 

of 4 ppb). There were 23 DOC samples from Ontario lakes and 51 DOC samples from 

Alberta lakes. Lakes of the Boreal Plain are known to have elevated concentration of 

DOC (Bayley & Prather, 2003). However, Sass et al. (2007) did find any statistically 

significant correlation between Landsat band 3 (B3 – the band the authors used for Chl-a 

retrieval) and DOC; therefore, the authors concluded that DOC from sample lakes did not 

have a detectable influence on B3 and Chl-a retrieval procedure. 

Details about concentration of Chl-a and DOC for Ontario and Alberta lakes are 

presented in Appendix A: Table A.1. 

2.3.2 Landsat data acquisition and processing 

1,067 Landsat TM (1984-2011) and 159 ETM+ (1999-2003) images intersecting the 

locations of ground-based measurements and containing less than 50% cloud or haze 

cover were acquired from US Geological Survey archives for the period from August to 

October (the period of the peak phytoplankton biomass known for the study region 

(Winter et al., 2011). Several Landsat processing steps were undertaken, as follows: 

(1) Bands 1-5 of Landsat images (blue: 0.45-0.52 μm; green: 0.52-0.60 μm; red: 0.63-

0.69 μm; near infrared: 0.76-0.90 μm wavelengths; shortwave infrared: 1.547-1.749 μm) 

were radiometrically normalized (i.e., made radiometrically comparable) by converting 8-
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bit scaled and offset stored digital numbers (DN) to top of atmosphere (TOA) radiance 

values (Lsat): 

Lsat  =  (DN– B)/G           [2.1] 

where B and G are published post-launch image gain and bias provided in image 

metadata. 

(2) Since the full atmospheric correction over inland waters could result in erroneous 

reflectance values (due to high uncertainty in accounting for aerosol scattering; Guanter 

et al., 2010; Lobo et al., 2015), a partial atmospheric correction was applied in this study. 

This included calculation and subsequent subtraction of the Rayleigh scattering radiance 

from the total TOA radiance (Lsat).  

Rayleigh scattering contribution was calculated for each Landsat band using the formula 

given by Gilabert et al. (1994): 

Lr = {
(E0∗cos θ0∗Pr)

4π(cosθ0+cosθv)
} ∗ {1 − exp [−τr (

1

cos θ0
+

1

cos θv
)]} ∗ toz                   [2.2] 

where: 

Lr is atmospheric radiance due to Rayleigh scattering; 

Eo is solar irradiance at the top of the atmosphere; 

Pr is Rayleigh scattering phase function; 

ϴ0 is the solar zenith angle and ϴv is the view zenith angle;  

τr is Rayleigh optical thickness; and 

toz is ozone transmittance. 

The solar zenith angle was obtained from image metadata, while the view zenith angle 

was equal to scattering angle (Ω), which is: 180–ϴ0 (Gilabert et al., 1994). The Rayleigh 

scattering phase function was calculated following Chandrasekhar (1960):  

Pr =
3

4
∗  

1−γ

1+2γ
(1 + cos2Ω) +

3γ

1+2γ
       [2.3] 

where γ is a term used to account for the depolarization factor pn following Bucholtz 

(1995):  

γ = pn/(2 − pn)         [2.4] 

pn was obtained from Bucholtz (1995) for band 1–4.  
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The Rayleigh optical thickness was calculated using an approximate expression provided 

by Gilabert et al. (1994): 

τr = 0.008569λ−4 (1 + 0.0113λ−2 +  0.00013λ−4)    [2.5] 

where λ is the central wavelength of each band (bands 1–4). 

Ozone transmittance was calculated according to Bird & Riordan (1986): 

toz  = exp(−A ∗ 03 ∗ M)        [2.6] 

where A is the ozone absorption coefficient, O3 is the ozone amount, and Mo is the ozone 

mass. O3 was assumed to be 0.3 atm cm-1 (Jorge et al., 2017), while A was obtained from 

Bird & Riordan (1986), and M was calculated following the same authors:  

𝑀 = (1 +
h

6370
) (cos2ϴ0 +

2h

6370
)

0.5

        [2.7] 

where h is the height of the maximum ozone concentration, assumed as 22 km (Bird & 

Riordan, 1986). 

The Rayleigh-corrected radiance values (Lsat-r ) were then calculated as: 

Lsat−r  = Lsat − Lr         [2.8] 

(3) Lsat-r were converted to TOA unitless reflectances (ρρ), following Chander et al. 

(2009): 

𝜌𝜌 =
π∗Lsat−r∗d2

Esun ∗cos θ0
           [2.9] 

where d is the earth-sun distance in astronomical units (taken from lookup tables 

according to image capture date); Esun is an exoatmospheric solar constant (taken from 

lookup tables according to satellite sensor). 

(4) Besides the effects of Rayleigh scattering, the sun-glint effect was considered for 

deriving accurate TOA radiances. According to Mustard et al. (2002) and Dekker & 

Hestir (2012), sun-glint effects are avoided if solar zenith angles are constrained to angles 

between 30° and 60°. Therefore, all Landsat images were manually checked to identify 

those corresponding to solar zenith angles falling beyond the 30° to 60° constraint. 

Although no images with solar zenith angles less than 30° were found, there were four 

images (all taken on October 30 or 31) that had solar zenith angles greater than 60°. 

These images were discarded from further analysis. These four images fell in the years 
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that had two more available images in each year for the August-October time period, so 

the removal of the former from the dataset did not result in missing data.  

2.3.3 Lake identification 

Pixels accounting for surface water in each image were identified from the local 

minimum in the bimodal histogram distribution of band 5 DNs; as shortwave infrared 

radiation is strongly absorbed by water, numbers below the minimum were classified as 

surface water (Frazier et al., 2003). Contiguous water pixels were then converted to 

polygons. Because water polygons accounted for not only lakes but also for other water 

features such as rivers and streams, non-lake polygons were manually removed. 

A software package Fmask 3.2 was used to generate cloud and cloud shadow masks from 

DNs (Zhu & Woodcock, 2012). In this package, the physical properties of clouds (e.g., 

temperature, brightness) and the darkening effect of cloud shadows in band 4 are used to 

classify cloud and cloud shadow pixels. Fmask was also used to detect pixels 

representing snow; this was important for analyzing images captured in late October in 

the norther areas of the region. Those lake polygons that overlapped or intersected any 

pixels classified as cloud, cloud shadow or snow were removed.  

2.3.4 Lake selection for regression modeling 

Several authors (e.g., Kloiber et al., 2002; Verpoorter et al., 2012) have highlighted 

potential errors in the prediction of lake parameters (e.g., Chl-a) in small waterbodies 

because of potential errors (i.e., mixed reflectance values due to adjacency effects) where 

mixed reflectances appear in pixels adjacent to shorelines (littoral zones – areas with 

shallow water and/or areas with aquatic vegetation). In order to reduce this problem, a 

minimum lake area criterion of 4.5 ha (30 m × 30 m pixels) was applied; lake polygons 

with a smaller area were discarded. The remaining lake polygons were buffered inside to 

a distance of 15 m (1/2 pixel distance); this further minimized the potential effects of 

mixed reflectance pixels from lake shorelines.  

Further, potential errors can also arise from mixed reflectance pixels from sediments or 

emergent aquatic vegetation in shallow lakes, or in deep lakes with patchy phytoplankton. 
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Therefore, I applied an additional criterion by calculating the standard deviation (SD) of 

band 5 TOA radiance values in each buffered lake polygon (Sass et al., 2007) and 

selecting those polygons with SD lower than or equal to the median SD of all lakes in an 

image (the remaining lake polygons were discarded). This criterion is based on the 

assumption that reflectance in band 5 is minimal in deep and clear water bodies due to 

strong absorption in this band (Smith & Baker, 1981) and hence should have relatively 

lower heterogeneity that can be expressed as low SD (Sass et al., 2007).  

Of 104 lake samples (both Ontario and Alberta lake datasets combined), 53 samples were 

matched with their lake polygons, meaning that 51 samples were either (1) cloud covered 

at the time of image capture, or (2) smaller than 4.5 ha, or (3) had high SD of radiance in 

band 5 (Table A.2). Mean TOA reflectance values for each band 1-4 were extracted 

within each buffered lake polygon (Table A.3).  

2.3.5 Chlorophyll-a modeling 

Pearson correlation was used to relate values of Chl-aobs and natural log transformed Chl-

aobs (hereafter ln Chl-aobs) to mean lake TOA reflectance in each band 1-4 as well as six 

band ratios/band algorithms from 53 samples. Band ratios/band algorithms were chosen 

on the basis of a review of studies conducted for inland waters (reviewed by Ho et al., 

2017; also Brivio et al., 2001; Brezonik et al., 2005; Keith et al., 2018). Pearson 

correlation coefficients (r) were calculated to quantify the strength of linear relationships 

between Chl-aobs and ln Chl-aobs and lake reflectance values. The highest r coefficients 

(representing the strongest correlation) were analyzed. The same procedure was 

conducted on DOC and natural log transformed DOC (i.e., ln DOC) for the samples that 

had DOC data (i.e., of 53 samples with Chl-aobs, 31 samples had DOC data).  

For model development, outliers identified as data points where Cook's distance of ln 

Chl-aobs versus mean lake reflectance were greater than 3/n in three iterations were 

removed. The reaming dataset was divided into two independent subsets, one for model 

development (80%) and the other for model validation (20%); ln Chl-aobs in each subset 

was compared to produce approximately even ranges (Tables 2.1, 2.2). A linear 

regression model was developed with ln Chl-aobs as the dependent variable and 
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reflectance of the selected band algorithm as the independent variable. The resulting 

equation was applied to mean lake reflectance in the validation dataset; linear regression 

of ln Chl-aobs versus modeled ln Chl-a (ln Chl-amod) was applied to test whether predicted 

values fit to observed values in a 1:1 line. Reflectance was averaged for each year in each 

lake polygon (resulting in time series of annual reflectance values). The model equation 

was then applied to 20,930 lake polygons to generate annual ln Chl-amod (hereafter ln 

Chl-amod). To generate a continuous 28-year (1984-2011) ln Chl-amod time series for each 

lake, missing ln Chl-amod values in lakes were interpolated using the space-time kriging 

method (see Appendix B for details). This resulted in the continuous time series of ln 

Chl-amod for 12,644 lakes, which was used for further analysis. 
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Table 2.1 Description of water chemistry and morphometry of Ontario lakes selected for the regression model. (Note: 
observations identified as outliers are not shown in this table). 

Lake 

ID 

Sample 

Name/ID Longitude Latitude 

Lake 
maximum 

depth (m) 

Lake 
area 

(ha) 

Sample 

date 

Trophic 

state 

Chl-

a 
(μg 

L-1) 

DOC 
(mg 

L-1) 

TP 
(μg 

L-1) 

Secchi 
depth 

(m) 

(B1−B3)∕B2 

reflectance 

Used in 

the 

regression 

(R) or 
validation 

(V) 

25on Caysee2 -84.66 47.18 1.3 16.5 16-Jun-10 Oligotorphic 2.5 8.3 23.2 1.3 0.3655 R 

7on Little Turkey -84.41 47.04 7.3 18.9 16-May-10 Oligotorphic 0.5 16.4 3.2 7.3 0.6262 R 
17on Appleby1 -83.35 46.43 5.1 24.3 26-Jun-09 Mesotrophic 4.6 - 10.8 2.3 0.4080 R 

1on Negick2 -84.49 47.21 5.3 26.6 16-Jun-10 Oligotorphic 2.3 2.6 12.8 3.5 0.3733 R 

23on Twin -83.93 46.23 3.8 30.0 27-Jul-11 Eutrophic 7.4 - 10.3 1.7 0.4197 R 

10on Sill -84.25 46.77 7.4 41.7 20-Jun-10 Oligotorphic 0.9 - 10.8 7.2 0.5579 R 

19on Woodrow2 -83.33 46.41 2.0 48.8 24-Aug-10 Oligotorphic 0.6 7.1 3.8 2.0 0.6616 R 
5on Big Turkey -84.42 47.05 42.7 51.8 16-May-10 Oligotorphic 1.4 3.8 5.0 5.6 0.4563 R 

22on Eaket1 -83.25 46.35 4.5 56.7 26-Jun-09 Mesotrophic 2.8 - 9.2 2.9 0.3627 R 

12on Reception1 -83.25 46.48 2.8 88.7 26-Jun-09 Eutrophic 10.0 - 14.7 1.3 0.2840 R 

26on Carp -84.56 46.97 1.5 112.1 16-Jun-10 Mesotrophic 3.7 5.6 17.2 1..5 0.2966 R 

16on Constance1 -83.23 46.43 7.8 120.1 26-Jun-09 Oligotorphic 1.1 - 6.9 4.7 0.5154 R 
20on Round -83.83 46.39 3.2 128.4 24-Jun-09 Mesotrophic 3.3 - 19.5 2.7 0.4195 R 

2on Upper Griffin -84.40 47.09 7.8 155.3 16-Jun-10 Oligotorphic 0.7 3.8 7.2 7.7 0.5779 V 

8on Upper Tilley2 -84.39 47.02 6.1 163.1 15-May-10 Oligotorphic 2.1 4.8 9.2 2.9 0.4804 V 

24on Dean2 -83.18 46.23 14.9 219.5 25-Jul-11 Mesotrophic 3.2 - - 6.0 0.4652 R 

14on Cloudy -83.93 46.44 7.4 248.8 24-Jun-09 Oligotorphic 0.5 - 9.4 4.8 0.5497 R 
13on Rock -83.77 46.43 1.9 1033.2 24-Jun-09 Mesotrophic 3.7 - 13.4 1.8 0.4150 R 
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Table 2.2 Description of water chemistry and morphometry of Alberta lakes selected for the regression model. (Note: 
observations identified as outliers are not shown in this table). 

Lake 
ID 

Sample 
Name/ID Longitude Latitude 

Lake 

mean 

depth 
(m) 

Lake 

area 
(ha) 

Sample 
date Trophic state 

Chl-

a 

(μg 
L-1) 

DOC 

(mg 
L-1) 

TP 

(μg 
L-1) 

Secchi 

depth 
(m) 

(B1−B3)∕B2 
reflectance 

Used in the 

regression 

(R) or 

validation 
(V) 

68ab 61 -113.91 55.92 2 20.4 12-Aug-01 Oligotorphic 2.0 22.1 68.0 1.3 0.5069 R 

98ab 16 -115.55 56.11 0.9 36.7 13-Aug-02 Eutrophic 12.0 22.5 68.5 0.9 0.2101 R 

53ab 201 -115.71 56.12 1.2 35.1 13-Aug-01 Eutrophic 30.3 23.2 46.3 0.6 0.2950 R 
78ab 27 -115.52 56.07 0.6 4.5 11-Aug-01 Eutrophic 12.4 25.9 25.9 48.4 0.4037 R 

53ab 2012 -115.71 56.12 1.2 34.6 13-Aug-02 Eutrophic 13.0 27.1 58.5 0.8 0.3166 R 

24ab 12 -115.88 56.10 1.3 4.6 11-Aug-01 Eutrophic 15.9 27.9 58.2 1.3 0.4123 R 

16ab 101 -114.75 56.31 1.8 39.2 13-Aug-01 Oligotorphic 2.0 38.6 17.9 1.8 0.5722 R 

2ab 42 -115.16 56.30 1.1 7.4 11-Aug-01 Eutrophic 40.8 40.9 117.0 0.6 0.3035 R 
58ab 111 -115.43 56.03 0.6 5.0 14-Aug-01 Mesotrophic 2.8 48.8 39.2 0.6 0.4722 R 

70ab 1211 -115.35 56.01 0.7 6.8 15-Aug-01 Mesotrophic 3.5 50.3 58.8 0.7 0.5302 V 

5ab 7 -115.63 56.29 0.8 15.6 11-Aug-01 Mesotrophic 4.4 56.7 43.5 0.8 0.2975 R 

37ab 1681 -115.20 55.99 0.7 11.2 15-Aug-01 Mesotrophic 6.4 58.3 102.4 0.7 0.3609 R 

70ab 1212 -115.35 56.01 0.7 6.1 13-Aug-02 Eutrophic 12.1 58.5 105.9 0.5 0.2942 R 
7ab 4 -115.68 56.42 0.6 6.4 11-Aug-01 Mesotrophic 2.8 59.9 233.9 0.6 0.4042 R 

108ab 75 -114.85 55.96 0.9 31.4 12-Aug-01 Eutrophic 34.2 60.2 118.6 0.5 0.1629 R 

101ab 5992 -115.38 56.07 1.6 19.7 14-Aug-02 Eutrophic 28.6 60.3 100.8 0.3 0.2212 R 

80ab 55 -114.16 56.32 1.1 7.4 12-Aug-01 Eutrophic 61.5 60.7 246.4 0.4 0.0700 R 

92ab 1223 -115.35 56.01 0.7 5.9 12-Aug-02 Eutrophic 31.4 68.9 123.0 0.3 0.2829 R 
37ab 1682 -115.20 55.99 0.7 10.6 12-Aug-02 Mesotrophic 3.8 74.9 120.8 0.7 0.2878 V 

75ab 87 -115.12 55.73 0.5 9.1 12-Aug-01 Eutrophic 7.4 79.6 57.2 0.5 0.4055 V 

70ab 121 -115.35 56.01 0.7 6.4 15-Aug-99 Eutrophic 46.0 - 150.8 0.7 0.1435 V 

92ab 122 -115.35 56.01 0.7 6.9 15-Aug-99 Hypereutrophic 58.0 - 77.7 0.6 0.1377 R 
38ab 171 -115.19 55.98 0.6 8.5 15-Aug-99 Eutrophic 47.1 - 421.7 0.6 0.2145 R 

46ab 165 -115.26 55.96 - 8.5 19-Aug-99 Hypereutrophic 63.4 - 178.6 0.5 0.2163 R 

28ab 57 -115.39 56.08 0.6 9.8 15-Aug-99 Eutrophic 8.7 - 119.3 0.0 0.3494 V 

55ab 81 -115.56 56.03 - 19.9 15-Aug-99 Eutrophic 9.2 - 54.4 0.5 0.3140 R 

45ab 131 -115.60 55.96 - 27.1 15-Aug-99 Eutrophic 18.5 - 135.8 0.3 0.2519 V 
53ab 2011 -115.71 56.12 1.2 34.4 15-Aug-99 Eutrophic 20.2 - 64.9 0.5 0.3693 R 

67ab 127 -115.18 56.01 - 201.8 19-Aug-99 Hypereutrophic 57.2 - 212.4 0.8 0.0790 V 

102ab 88 -115.50 56.04 1.1 274.7 15-Aug-99 Mesotrophic 3.7 - 30.2 0.7 0.4832 R 

56ab 89 -115.51 56.02 - 311.9 15-Aug-99 Mesotrophic 3.5 - 66.7 0.4 0.3927 V 
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2.3.6 Decomposition of variation in Chlorophyll-a 

In the framework used in this study (Wiley et al., 1997), a two-way ANOVA decomposes 

variation into three components: space, time and space×time interaction, which is 

statistically expressed as the sum of squares in space (SSspace), time (SStime), and 

space×time (SSspace×time) (Wiley et al., 1997). The space component reflects broad-scale 

landscape characteristics such as topography or soil types, while the time component 

reflects changes over time such as climate change or land cover development. The 

space×time interaction component reflects lake-specific biological and morphological 

attributes that may influence Chl-a concentration (see Sass et al., 2007; Figure 2.2). 

Additionally, space×time interaction component reflects an error term (Wiley et al., 

1997), which may be a result of the absence of replicates in ground sampled lakes or 

errors and uncertainties in reflectance values (Sass et al., 2007). Because it is impossible 

to separate lake-specific factors from the error term within the space×time interaction 

component, I acknowledged that the proportion constituting the error term may be 

considerable and caution should be exercised while analyzing the space×time interaction 

component. 
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Figure 2.2 Schematic model of variation in lake ln Chl-amod (modified from Sass et al., 

2007). In bold: sources of variation in ln Chl-amod (in %) estimated by the two-way 
ANOVA in this study. 

ANOVAs were calculated on matrices of Chl-amod, in which years were represented by 

columns and lakes were represented by rows (Paltsev, 2015). For a given lake: the spatial 

component was the difference between the 28-year average Chl-amod and the 28-year 

average of all lakes; the temporal component was the difference between the average 

Chl-amod of all lakes for a specific year and the 28-year average of all lakes; and the 

space×time interaction component was the difference between the total variation and the 

sum of variation in the spatial and temporal components (i.e., SSspace×time = SStotal − SSspace 

− SStime) (Sass et al., 2007). 
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2.3.7 Analysis of spatial and temporal patterns in 

Chlorophyll-a 

For an analysis of spatial patterns, ln Chl-amod was back-transformed using an exponential 

function and median Chl-amod values were calculated for each lake. Then, the lakes were 

classified to trophic states following Carlson & Simpson (1996): oligotrophic (< 2.6 μg L-

1); mesotrophic (2.6-7.3 μg L-1); eutrophic (7.3-56.0 μg L-1); and hyper-eutrophic (> 56.0 

μg L-1). To identify trends in ln Chl-amod, a non-parametric Mann-Kendall test (Kendall, 

1975) was conducted on individual lakes using MATLAB (R2013b, the WathWorks Inc). 

Trends were considered significant at p < 0.05. 

2.4 Results  

2.4.1 Chlorophyll-a modeling 

Chl-aobs versus reflectance in visual bands (bands 1–3) showed an increase in correlation 

with increasing wavelength; ln-transformed Chl-aobs (i.e., ln Chl-aobs) versus reflectance 

yielded better results with the strongest correlation between ln Chl-aobs and band 3 (r = 

0.45; Table 2.3).  

Correlation between Chl-aobs or ln Chl-aobs and reflectance from various band 

ratios/algorithms performed much better (i.e., higher r) than for single bands. Correlation 

between ln Chl-aobs and the ratio of band 3 to band 1 (B3/B1) showed the strongest 

relationship (r = 0.88; p < 0.0001); correlation with three-band algorithm of (B1-B3)/B2 

was almost as strong (r = -0.85; p < 0.0001).  

The results of Pearson correlation showed that, of all bands, band 3 showed the strongest 

correlation with both ln Chl-aobs and ln DOC (Table 2.3). Covariance between Chl-aobs 

and DOC was also relatively high (r = 0.34). Therefore, it was important to select a band 

ratio or algorithm where the effect of ln DOC was minimal, while correlation with ln Chl-

aobs was still high. The (B1-B3)/B2 algorithm produced poor correlation with ln DOC (r = 

-0.29); in contrast, B3/B1 yielded stronger and significant correlation (r = 0.47; p < 0.05). 

The (B1-B3)/B2 was also recommended by Matthews (2011) as the most appropriate 
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algorithm for Chl-a retrieval in sensors with broad spectral resolutions (i.e., Landsat 

TM/ETM+). The (B1-B3)/B2 was chosen for the model development.  

From the 53 sample lake dataset, four observations were identified as outliers in the 

relationship between ln Chl-aobs and (B1-B3)/B2 reflectance and removed, leaving a 

dataset of 49 lake samples (see Tables 2.1, 2.2 for Ontario and Alberta lakes). Chl-aobs in 

39 lakes selected for model development ranged from 0.45 to 63.4 μg L-1 with a mean of 

14.4 μg L-1 and median of 4.6 μg L-1; Chl-aobs in 10 lake samples selected for model 

validation ranged from 0.65 to 57.2 μg L-1 with a mean of 15.1 μg L-1 and median of 5.6 

μg L-1.  

A linear regression model developed from ln Chl-aobs and (B1-B3)/B2 reflectance values 

in the 39-lake model development dataset explained 76% of variation in ln Chl-amod (r2 = 

0.76, p < 0.01; Figure 2.3a). There was a strong and significant correlation between ln 

Chl-aobs and ln Chl-amod in the model validation dataset (r2 = 0.85, p < 0.01; Figure 2.3b). 

The slope of the best-fit function ln Chl-amod versus ln Chl-aobs was 0.867 (not 

significantly different from 1, p = 0.71); the intercept was not significantly different from 

zero (p = 0.32). The root means square error (RMSE) of Chl-amod prediction was 0.55. 

In the 39-lake model development dataset, 23 lakes had in-situ DOC measurements; 

hence, I conducted a linear regression between ln DOC and (B1-B3)/B2 reflectance 

values to see if the former can be predicted from the latter. DOC can seriously interfere 

with Chl-a reflectance in optically complex inland waters (Brezonik et al., 2005). (B1-

B3)/B2 produced a relatively high correlation with ln Chl-a (the second highest after the 

B3/B1), but the correlation with ln DOC was poor and insignificant (r2 = 0.14, p = 0.09; 

Figure 2.4). The latter indicates that DOC is unlikely to have a substantial effect on (B1-

B3)/B2 reflectance in lakes in the study region. Appendix C provides analytical support 

with extended lake datasets that confirm that modeled Chl-a results in this study are not 

influenced by DOC. Appendix D provides analyses with extended lake datasets to 

determine if lake phosphorus (P) can be used in future work as a proxy for lake Chl-a to 

validate Chl-amod over time series.
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Table 2.3 Pearson correlation coefficients (r) between optically-related variables (Chl-aobs and DOC) and Landsat TM/ETM+ 
bands and commonly used band combinations/band algorithms (* p < 0.05; ** p < 0.0001). ln indicates natural log 

transformed values. 

 DOC ln DOC B1 B2 B3 B4 B2∕B1 B2∕B3 B3∕B1 B3∕B4 (B1−B3) ∕B2 

(1/B1-1/B2) 

B4 

Chl-aobs, n = 53 0.34  0.04 0.27* 0.41* 0.04 0.48* -0.57* 0.79** 0.45* -0.74** 0.49* 

ln Chl-aobs, n = 53  0.59* 0.06 0.31* 0.45* 0.03 0.56** -0.67** 0.88** 0.53** -0.85** 0.54** 

DOC, n = 31   0.38* 0.40* 0.47* 0.41 0.06 -0.61* 0.48* 0.15 -0.31 0.06 

ln DOC, n = 31   0.48* 0.49* 0.55* 0.43* 0.05 -0.63** 0.47* 0.26 -0.32 0.04 
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Figure 2.3 (a) Scatterplot of reflectance from (B1-B3)/B2 band algorithm regressed 

against ln Chl-aobs; (b) comparison of ln Chl-aobs (validation dataset) and ln Chl-amod. The 
solid line represents the 1:1 line. 
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Figure 2.4 Scatterplot of reflectance from (B1-B3)/B2 band algorithm regressed against 
ln DOC. 

2.4.2 Decomposition of Chlorophyll-a variation into space, 

time and space×time interaction components 

Decomposition of variation in ln Chl-amod revealed that the space component explained 

17.4%, the time component explained 8.6%, while the space×time interaction component 

explained 74.0% of the variation (Figure 2.2).  

2.4.3 Spatial patterns in modeled Chlorophyll-a 

Two distinct spatial patterns can be observed in a map of median Chl-amod (Figure 2.5). 

First, the highest density of oligotrophic lakes was found along the topographic divides 

between regional (Great Lakes, St. Lawrence River and Hudson Bay) drainage basins 

forming an “oligotrophic belt” (Figure 2.5b). Second, most eutrophic and hypereutrophic 

lakes were found to form clusters. In the north, these lakes tended to be located in the 
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proximity to the Great Lakes, while in the south, they tended to be concentrated near the 

southernmost tip of the study region (Figure 2.5d).  

2.4.4 Temporal patterns in modeled Chlorophyll-a 

The Mann-Kendall tests conducted on individual lakes found a number of significant 

positive and negative trends (p < 0.05) in ln Chl-amod: 500 lakes displayed positive trends, 

and 561 lakes displayed negative trends (Figure 2.6). Positive trending lakes tended to be 

located along the southern boundary of the study region; there was also a large cluster of 

these lakes in the relatively populated industrial and mining areas surrounding Sudbury. 

No positive trending lakes were found within the Hudson Bay Basin. Negative trending 

lakes seemed to concentrate in the northern portion of the study region; there was also a 

small cluster of these lakes in the south-eastern tip of the region.  

Trends in ln Chl-amod also showed approximately the same distribution of slopes (i.e., rate 

of change/year; Figure 2.6b and c). However, there were more negative trending lakes 

with higher rates of change in ln Chl-amod, than positive trending lakes. For example, there 

were 16 negative trending lakes with slopes < -0.15, and 6 positive trending lakes with 

slopes > 0.15. 
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Figure 2.5 (a) Spatial distribution of lakes (based on lake trophic state calculated as median Chl-amod over the 1984–2011 
period), and Kernel density of: (b) oligotrophic, (c) mesotrophic, and (d) eutrophic and hypereutrophic lakes. In Kernel 

density, the default search radius was based on the number of lakes. 
 



40 

 

 

 

 

 

Figure 2.6 (a) Distribution of trends (p < 0.05) in ln Chl-amod over 28 years, and 

frequency distribution of slopes (i.e., ln Chl-a yr-1) in ln Chl-amod for lakes with: (b) 
positive ln Chl-a yr-1, (c) negative ln Chl-a yr-1, and (d) no significant (p > 0.05) ln Chl-a 

yr-1
. 
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2.5 Discussion 

Remote sensing of Chl-a 

In this study, I used a three-band reflectance model based on reflectance values from 

Landsat TM and ETM+ sensors to model Chl-a concentration in thousands of temperate 

lakes. Several studies show that, to date, three-band algorithms have produced some of 

the most promising results for accurate modeling of Chl-a concentration using Landsat 

imagery in inland waters (see Brivio et al., 2001; Allan et al., 2011; Stumpf et al., 2016; 

Keith et al., 2018).  

(B1-B3)/B2 reflectance related the peaks of Chl-a absorptions in both blue (at around 441 

nm) and red bands to the peak of reflectance in the green band. (B1-B3)/B2 has been also 

used to reduce the effects of TSS and DOC on the reflectance of Chl-a (Mayo et al., 

1995, Brivio et al., 2001). The effect of TSS might be especially pronounced in lakes 

with low Chl-a concentration (i.e., oligotrophic), which often show an increase in 

reflectance with increasing wavelengths caused by backscattering of TSS (Odermatt et 

al., 2012). The subtraction of reflectance in band 3 from the reflectance in band 1 is 

assumed to correct for this additional “TSS-produced” reflectance (Brivio et al., 2001).  

Poor correlation between Chl-a and band 1 reflectance was likely due to a reflectance 

minimum of Chl-a near 440 nm (near the edge of band 1; Gitelson et al., 2000) or the 

presence of carotenoids that have a reflectance minimum at 490 nm and could mask 

increasing Chl-a capacity towards band 2 (i.e., green wavelength; Yacobi et al., 1995). 

Chl-a has a green reflectance peak at ~550 nm (near the center of band 2), hence 

correlation is stronger in this band. 

Although Chl-a has a second reflectance minimum at 670 nm, I found a degree of 

correlation between Chl-a and band 3 reflectance. The correlation in the red part of 

spectrum was described by other studies (e.g., Sass et al., 2007; Allan et al., 2015), and 

might be attributed to the fact that light scattering by cell walls offsets this Chl-a 

absorbance, especially in situations with high algal density (Gitelson et al., 2000). Poor 
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correlation in band 4 might be explained by the assumption that reflectance in the NIR 

channel is close to zero due to strong absorption by water (Yacobi et al., 1995). 

Patterns in modeled Chl-a 

The contribution of temporal (climatic drivers) and spatial (landscape drivers) factors to 

phytoplankton biomass has not been clearly understood. This is partly because these 

factors operate at different spatial and temporal scales which can be difficult to evaluate 

and incorporate into a single model. In this study, I identified spatial and temporal 

patterns of ln Chl-amod (as a proxy for phytoplankton biomass) in 12,644 lakes that 

covered a large (> 150,000 km2) region of the temperate forest biome in North America 

over a 28-year period (1984-2011).  

I did not intend to quantify specific drivers of ln Chl-amod. Rather, I intended to identify 

the relative contribution of temporal and spatial factors to variation in ln Chl-amod. This 

contribution was determined using a two-way ANOVA.  

The effect of climate on phytoplankton has been widely described (e.g., Smol & 

Cumming, 2000; Paul, 2008; Whitehead et al., 2009; Posch et al., 2012; Rigosi et al., 

2014; Sinha et al., 2017). Significant trends found in the 28-year time series of ln Chl-

amod might be driven by increases in air temperature (O'Reilly et al., 2015) or changes 

(increases or decreases) in precipitation patterns over the same period (Yeung et al., 

2018). However, these trends were found only in 8.4% of all lakes (Figure 2.6). Similar 

results have been described by other authors. For example, in a recent study conducted on 

2,913 lakes located in the Northeastern United States, Oliver et al. (2017) found that only 

a minority (~22%) of lakes had significant trends in Chl-a for the period from 1990 to 

2013. 

The effect of climate on phytoplankton has been widely described (e.g., Smol & 

Cumming, 2000; Paul, 2008; Whitehead et al., 2009; Posch et al., 2012; Rigosi et al., 

2014; Sinha et al., 2017). Significant trends found in the 28-year time series of ln Chl-

amod might be driven by increases in air temperature (O'Reilly et al., 2015) or changes 

(increases or decreases) in precipitation patterns over the same period (Yeung et al., 

2018). However, these trends were found only in 8.4% of all lakes (Figure 2.6). Similar 
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results have been described by other authors. For example, in a recent study conducted on 

2,913 lakes located in the Northeastern United States, Oliver et al. (2017) found that only 

a minority (~22%) of lakes had significant trends in Chl-a for the period from 1990 to 

2013.  

Paltsev (2015) used single Landsat band (band 3) to model Chl-a in lakes of the 

temperate forest biome, and did not find any significant trends in time series of Chl-a. 

This might be due to the fact the author: (1) used much smaller lake dataset (the number 

of lakes with continuous Chl-a concentration was 6,384 versus 12,644 lakes used in this 

study), which might not have included lakes that had significant trends, and (2) analyzed 

average Chl-a (over all 6,384 lakes), while in this study I performed time series analysis 

(the Mann-Kendall trend test) on individual lakes; hence trends in Chl-a of each lake 

were captured (as opposed to averaged Chl-a values of all lakes). The latter indicates the 

importance of analyzing individual times series as opposed to time series of average or 

medium values (i.e., data that were aggregated over entire datasets).  

The direct correlation between climate and phytoplankton may be weak as both landscape 

and lake properties filter or modify climate signals differently (Magnuson et al., 1990). 

The climate signals are filtered (and hence modified) through spatially heterogeneous 

landscape control elements (i.e., space component) and inherent lake-specific features 

(i.e., space×time interaction component) influencing nutrient supply to lakes (Anderson, 

2014). I found that both positive and negative trending lakes were often in close 

proximity to each other. The clustering pattern of lakes with either positive or negative 

trends (i.e., coherent behavior of these lakes) suggests that landscape and lake properties 

make some lakes more sensitive to changes in temperature while other lakes are more 

sensitive to changes in precipitation.  

There were fewer positive trending lakes than negative trending lakes. One might expect 

that increasing temperatures in the region (Bush et al., 2014, Yeung et al., 2018) would 

lead to higher phytoplankton biomass (O’Neil et al., 2012), higher frequency of algal 

blooms reports (Winter et al., 2011), both indicative of widespread eutrophication. 

However, I found that there were fewer positive trending lakes than negative trending 
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lakes (Figure 2.6). This contradicts findings of Oliver et al. (2017) in their study region of 

the Northeastern United States where positive trending lakes dominated. 

It is also important to make certain that changes in ln Chl-amod are ecologically 

meaningful. For example, the annual rate of change in Chl-amod of 1 μg L-1 (i.e., ln Chl-a 

yr-1 is ~ 0.04) would show a 10 μg L-1 change in Chl-amod per decade. This is large enough 

to move lakes from an oligotrophic to a eutrophic state or vice versa (Carlson & Simpson, 

1996). My results show that 237 (out of 500) positive trending lakes and 313 (out of 561) 

negative trending lakes had annual rate of change > 1 μg L-1. These lakes indeed 

experienced ecologically meaningful changes that might be referred to as eutrophication 

(for lakes with positive trends) and oligotrophication (for lakes with negative trends).  

Although landscape controls such as forest cover and soil type (Sand-Jensen & Staehr, 

2007; Klimaszyk & Rzymski, 2011) have been referred as important contributors to 

variations in phytoplankton biomass, the contribution of the space component in 

explaining variation in Chl-a was relatively small (Figure 2.2). However, some “broad-

scale” spatial patterns in Chl-amod can still be observed. For example, spatial factors most 

likely contribute to “lake effect” observed in this study (i.e., lakes of eutrophic and hyper-

eutrophic states tend to be located near the Great Lakes) (Figure 2.5d).  

The interaction of lakes with the catchments is implicit and is carried out via nutrient 

loading from catchments to lakes. This loading, in turn, depends on spatially variable 

controls (i.e., the space component) such as elevation, presence of wetlands, soils and 

forest type (Blenckner et al., 2007; Staehr et al., 2012). Therefore, the lakes located on 

the lower reaches of the local rivers near the Great Lakes may be affected not so much by 

the neighboring Great Lakes but rather by water flows bringing increasing organic matter 

and nutrients from upstream areas. Lakes located on the lower reaches of the local rivers 

or lowlands are likely to receive more nutrients than those located on uplands. Nõges 

(2009) analyzed chemistry and morphometry of 1,337 European lakes and found that 

concentration of organic matter, N, P, and Chl-a was much higher in lowland lakes than 

in upland lakes. Catchments with lower elevation (lowland catchments) generally have 

more gentle slopes than upland catchments. The proportion of wetlands and riparian 
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zones is also greater in catchments with lower relief. This influences the residence time 

that water and associated nutrients spend in catchments before being flushed to receiving 

lakes (McGuire et al., 2005); residence times are usually longer in catchments with gentle 

slopes and higher proportion of wetlands (Harms et al., 2016). Longer water residence 

times and as result slower flows increase the opportunity of higher flux of dissolved 

organic carbon, dissolved organic nitrogen and P to receiving waters (Creed et al., 2008; 

Mengistu et al., 2014).  

In support of the importance of elevation in regulating ln Chl-amod in study lakes, there is 

another important pattern found in the study region. My results show that there is a high 

concentration of oligotrophic lakes (i.e., lakes with lower ln Chl-amod) in the central 

portions of the study region (Figure 2.5b) that somewhat corresponds to the natural 

topographical and hydrological boundaries between main drainage basins–the region 

where nutrients are less likely to accumulate but are instead washed out to downstream 

areas via surface and groundwater flows.  

Although temperate forest biome is a relatively intact region, there are some areas of 

greater anthropogenic development. Greater intensity of anthropogenic activities 

(including mining and forest management activities; Carleton, 2000) in areas along the 

Lake Huron and near Sudbury may also contribute to elevated Chl-amod in lowland lakes. 

Logging practices increase erosion and lead to changes in nutrient composition in local 

soils and wetlands (Kreutzweiser et al., 2008) and subsequent increased nutrient 

accumulations in downstream lakes and increased phytoplankton biomass (Devito et al., 

2005). This may explain the fact that many reports of HABs are described for lowland 

areas along the Great Lakes and near the Sudbury eutrophic lake cluster (Figure 2.5; 

Winter et al., 2011).  

The space×time interaction component accounted for variation in ln Chl-amod that 

represented interactive effects of spatial and temporal factors on phytoplankton (Wiley et 

al., 1997) rather than exclusively spatial or temporal patterns (Sass et al., 2007). I found 

that the space×time interaction component explained the majority of variation in ln Chl-

amod. This suggests that phytoplankton biomass in these lakes were influenced by lake-
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specific physical, chemical and biological factors. The majority of variation explained by 

the space×time interaction was also found by Wiley et al. (1997) for two insect species 

(77% and 44% accordingly) and Sass et al. (2007) for lake trophic states (measured as 

Chl-a concentration; 43%) in the boreal lakes in Alberta.  

These lake-specific factors may be classed into two groups: top-down factors, such as 

zooplankton grazing on phytoplankton (Baines et al., 2000); and bottom-up factors such 

as lake-specific physical properties (e.g., depth, volume, the extent of littoral zone) that 

influence water mixing, dilution of nutrients in water column and sedimentation, which in 

turn control nutrient concentrations that affect primary production (Hakanson, 2005; 

Nõges, 2009; Orihel et al., 2017).  

Future perspectives on the improvement of the Chl-a retrieval algorithm using remote 

sensing  

In this study, my intention was to make use of long-term time series provided by Landsat 

TM and ETM+ and simple but robust linear regression model to estimate Chl-a 

concentration in a large region within the same climatic and eco-zone. The launch of new 

type of satellites with better spectral and spatial resolutions continue to enhance Chl-a 

retrieval models in optically-complex inland waters. For example, Sentinel-2 satellite 

launched in 2015 and operated by EU Copernicus Programme has the Multi-Spectral 

Instrument sensor with 13 spectral bands from 443 to 2190 nm with spatial resolution of 

10, 20 and 60 m. This fine spectral resolution also allows for identification of 

cyanobacteria by distinguishing the accessory pigment phycocyanin. For instance, 

MERIS satellite imagery has already been successfully used for quantification of 

cyanobacteria blooms in relatively large lakes (Simis et al., 2005; Lunetta, et al., 2015; 

Tomlinson et al., 2016). 

Furthermore, significant progress has been made on the improvement of semi-analytical 

methods (including band ratio algorithms) that provide new solutions to the problem of 

co-varying effect between Chl-a and CDOM. Keith et al. (2018) used three-band 

algorithm comprised of reflectances from bands 1, 3 and 5 (near-infrared band: NIR) of 

the Landsat-8 Operational Land Imager (OLI) sensor to accurately estimate Chl-a 
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concentration in several CDOM-dominated productive lakes in Rhode Island. More 

sophisticated artificial neural network techniques have also showed promising results in 

Chl-a estimation in lakes, and particularly in separation of Chl-a reflectances from 

reflectances of other water constituents (e.g. for application of neural network for Landsat 

see Sudheer et al., 2006). Although these state of art methods still require more in-situ 

data for validation of results (especially for temporally and spatially dynamic 

environments such as the temperate forest biome), they nevertheless may be used for the 

improvement of the model developed in this study in future. 

2.6 Conclusions 

Unprecedented increases in the eutrophication of lakes in North America established a 

need to understand the spatial and temporal factors that may be contributing to this 

phenomenon. Developing such understanding requires large datasets of spatially and 

temporally extensive information on lake Chl-a concentration generated through remote 

sensing products and modeling. To the best of my knowledge, this is the first time when 

Chl-a concentration was modelled in 12,644 lakes located in a large (> 150,000 km2) 

portion of the northern temperate zone and for an extended period of time (almost three 

decades) by using satellite imagery (archived Landsat TM/ETM+ products).  

The observed spatial and temporal patterns in modelled lake Chl-a and associated lake 

trophic states were analyzed for the whole region. By analysing different factors that 

might be contributing to variation in Chl-a, I found that space×time interaction (i.e., 

lakes-specific) factors were the most important (74 % of total variation in Chl-amod). My 

results also provide evidence that, although not as common as expected, there were lakes 

which Chl-amod concentration was changing over a 28-year period, and sometimes these 

lakes altered their trophic states (i.e., the change in Chl-amod was ecologically 

meaningful). I observed that there was no “unidirectional” trend in the change in lake 

trophic state; some lakes were becoming more eutrophic, whereas other lakes were 

shifting to be more oligotrophic. In contrast to conventional wisdom, more lakes were 

experiencing oligotrophication than eutrophication. Future work will focus on 

quantifying drivers of ln Chl-amod including climate, contributing catchment properties 

(e.g., presence of wetlands) and lake-specific properties such as lake volume and depth. 
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3 Changes in phytoplankton biomass as seen through the 
prism of lake morphometry and catchments 

characteristics 

3.1 Introduction 

Temperate ecosystems are being affected by global environmental changes (Kirtman et 

al., 2013). Increasing air temperatures and changing precipitation patterns with associated 

hydrological intensification are leading to fundamental changes in land-aquatic 

biogeochemical linkages. These effects can be best studied and, in fact, have been already 

observed in lake ecosystems, as lakes integrate atmospheric, terrestrial and aquatic 

processes (Williamson et al., 2009). Signs of changes in phytoplankton composition, 

eutrophication and algal blooms have been found even in remote temperate lakes located 

far from any human activities (O’Neil et al., 2012; de Senerpont Domis et al., 2013). 

Phytoplankton biomass is a product of a complex interaction between external forces and 

internal processes (Baines et al., 2000; Blenckner et al., 2005). External forces are broad-

scale climate-related variables such as air temperature and precipitation (Hollert et al., 

2018). Although the direct effect of temperature on phytoplankton biomass has been a 

major focus of research in recent years, the results of the studies are contradictory. For 

example, a temperature increase was found to cause an increase (Jeppesen et al., 2009; 

Kraemer et al., 2017) or a decrease in phytoplankton biomass (Tadonléké, 2010), or to 

have no significant effect (Kosten et al., 2012; Rasconi et al., 2017). However, there is 

consensus that the growth rates of many cyanobacteria generally increase with 

temperature (O’Neil et al., 2012). Some recent studies suggest that although increasing 

temperature should be taken into account, changes in precipitation (and runoff) patterns 

might be more important in influencing phytoplankton biomass in lakes (Klimaszyk & 

Rzymski, 2011; Sinha et al., 2017). This is because precipitation influences nutrient 

delivery and composition in lake catchments via runoff. Given that phytoplankton 

depends on nutrient availability, even a slight change in precipitation patterns might 

trigger a change in phytoplankton biomass (Scheffer & Van Nes, 2007; O’Neil et al., 

2012). 
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The response of lakes to climatic factors may be expected to be synchronous in a region 

with similar climate patterns (e.g., Magnuson et al., 1990; Baines et al., 2000). However, 

catchment- and lake-specific properties modify regional climate signals (Blenckner, 

2005; Palmer et al., 2014; Hollert et al., 2018). Previous studies have shown that lakes 

with more similar catchment properties or lake morphometry have the highest synchrony 

in the response to climate (e.g., see Blenckner, 2005). Catchment morphological 

properties (i.e., catchment size, topography, presence of wetlands, forest and soil type) 

affect the source, storage and transport of water and nutrients (e.g., dissolved organic 

matter (DOM), nitrogen (N) and phosphorus (P)) to receiving waters (Nõges, 2009; 

Staehr et al., 2012). For example, several studies have shown strong relationships 

between catchment topography and amount and composition of nutrient export (Devito et 

al., 2000; Klimaszyk & Rzymski, 2011; Harms et al., 2016). Wetlands in lake catchments 

have been found to be sinks of inorganic solutes (e.g., nitrate–NO3
-) and sources of 

organic solutes, especially dissolved organic carbon (DOC), dissolved organic nitrogen 

(DON) and P (Mengistu et al., 2014; Li et al., 2015; Harms et al., 2016), while deciduous 

forests are generally associated with higher export of N and P than coniferous forest 

(Klimaszyk & Rzymski, 2011). Properties of receiving lake basins (e.g., lake depth, 

volume) affect the fate of the nutrients within lakes (Søndergaard et al., 2005; 

Søndergaard, 2007). Smaller-volume and shallower lakes usually have shorter P retention 

time in the sediments than larger-volume lakes because P can be easily re-suspended due 

to wind disturbance or fluctuations of water level (Nõges, 2009). Similarly, lakes with 

well-developed littoral zones (i.e., wide and with established communities of 

macrophytes) retain more nutrients and organic matter in the surface waters than lakes 

with small littoral zones (Vadeboncoeur et al., 2002; Kornijów et al., 2016). 

In contrast to the many studies where the properties of the lake were used to explore lake 

physics and chemistry (Magnuson et al., 1990; Palmer et al., 2014; Orihel et al., 2017; 

Sharma et al., 2019), there are relatively few studies where the properties of the coupled 

terrestrial-aquatic system (catchments + receiving lakes) were studied (e.g., Staehr et al., 

2012; Read et al., 2015). Even fewer studies used the coupled terrestrial-aquatic system 

in a large number of lakes to assess phytoplankton biomass (or Chlorophyll-a: Chl-a) 

concentration as a proxy for phytoplankton biomass) (Nõges, 2009; Stomp et al., 2011; 
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Kosten et al., 2012). One of the explanations is that phytoplankton biomass in lakes is not 

expected to show synchronous behavior in response to climate change, as the biomass is 

principally determined by processes that affect the availability of nutrients (especially 

growth-limiting nutrients such as P and N), the composition of phytoplankton (e.g., 

presence of N-fixing cyanobacteria taxa), and the presence of grazing zooplankton 

(Baines et al., 2000). It is difficult to separate the direct response of phytoplankton 

biomass to climate from “indirect” direct responses (i.e., signals) that have been modified  

by the landscape properties (Palmer et al., 2014).  

The goal of this study was to explore the effect of climate and the properties of the 

coupled terrestrial-aquatic system on Chl-a in 275 lakes in the temperate forest biome of 

Canada. The study region was selected on the premise that it had minimal local human 

activities, so that lakes can be analyzed in terms of the natural response to climate with 

minimal anthropogenically-caused nutrient discharge. I hypothesized that lake Chl-a is 

regulated by the combined effects of climatic factors and landscape characteristics, where 

the latter modify the response of individual lakes to regional climate. My predictions 

were: (1) Chl-a will increase with increasing air temperature and decreasing precipitation, 

lake volume and lake depth; (2) lakes with the lowest Chl-a receive relatively more 

precipitation and have the largest volumes and depths (nutrient dilution); and (3) lakes 

with the highest Chl-a receive relatively less precipitation and have catchments with a 

large proportion of wetlands (nutrient sources) and lakes with well-developed littoral 

zones (nutrient deposition areas that are accessible by phytoplankton in the surface 

waters). This study builds on Chapter 2, where remote sensing techniques were used to 

model Chl-a in the lakes of the temperate forest biome over a 28-year period.  

3.2 Study region and Sites 

The study region is the temperate forest biome located between 44.44°N and 48.38°N in 

central Ontario, Canada, within the Great Lakes–St. Lawrence forest region (Figure 3.1a). 

Climate in the region is humid continental. Mean annual air temperature was +5.1°C, 

ranging between +7.4°C in the south-east and +2.6°C in the north (based on the period 

from 1984 to 2011). Mean annual precipitation for the same period was 960 mm, ranging 

from 740 mm in the southern areas of the region to 1180 mm in the north-west 
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(McKenney et al., 2011). Precipitation is influenced by lake effects from the Great Lakes 

and local orographic effects in areas of relatively high relief (Baldwin et al., 2000). 

 

Figure 3.1 (a) Map showing location of the study region (temperate forest biome) and 

275 lakes selected for the analysis; and distribution of Chl-a (ln-transformed modelled 
Chl-a: ln Chl-amod) in (b) 275 lakes (subset of lakes selected for a landscape analysis), 

and (c) all 12,644 lakes. 

The region rests on the Precambrian rocks (primarily comprised of silicate greenstone) of 

the Boreal (Canadian) Shield (Ontario Geological Survey, 2003). Topography varies 

from flats and depressions along the shore of the Great Lakes to hills and uplands 

(Algoma and Madawaska Highlands). Soils are thin and undifferentiated brunisols (in the 

south), and thick and differentiated orthic ferro-humic podzols (in central areas and in the 

north). Forests in the region lie in the transitional zone between deciduous and coniferous 

forests, with the latter being more prevalent in the northern areas (Baldwin et al., 2000). 

A subset of lakes (n = 275) were selected from a large (n = 12,644) dataset of temperate 

lakes with modeled Chl-a (Chl-amod, see Chapter 2). Lakes were selected on the basis of 

the following factors: (1) lake trophic state (covering the natural range of trophic 

conditions found in the region, which was based on Chl-a concentration in accordance 

with Carlson & Simpson, 1996); (2) lake maximum depth and lake area showing 



61 

 

 

approximately the same distribution as in lakes of the dataset used for the model 

development (Ontario dataset, Appendix E, also see Chapter 2); and (3) the availability of 

lake bathymetric data. The subset of 275 lakes represented approximately the same 

distribution of trophic states (in %) (Table 3.1) and Chl-a (Table 3.2, Figure 3.1b) as 

dataset of 12,644 lakes. Eutrophic and hyper-eutrophic lakes were merged into one group 

and called “eutrophic” for simplicity. Of 275 lakes, 229 lakes were oligotrophic, 34 lakes 

were mesotrophic, and 12 lakes were eutrophic (Carlson & Simpson, 1996). The lakes 

ranged in maximum depth from very shallow (0.6 m) to deep (45.0 m), and ranged in 

lake area from 5.2 ha to 1394.2 ha (Table 3.2, also Table E.1). 

Table 3.1 Number and proportion of lakes according to the trophic state for all lakes (n = 

12,644) and a subset of lakes (n = 275) used for climate and landscape control analysis. 

  Oligotrophic lakes Mesotrophic lakes Eutrophic lakes All lakes 

All lakes 
n 10,105 2,000 539 12,644 
% 80 16 4 100 

Lakes (subset) 
n 229 34 12 275 
% 83 12 4 100 

Table 3.2 General descriptive statistics of Chl-amod, maximum depth and surface area of 

lakes used in this study (n = 275) and for each trophic state. 

 Statistics 

Oligotrophic 

lakes (n = 229) 

Mesotrophic 

lakes (n = 34) 

Eutrophic 

lakes (n = 12) 

All lakes   

(n = 275) 

Chl-a (μg L-1) 

Mean 0.8 3.6 17.1 1.9 
Median 0.6 3.0 12.5 0.7 

Min 0.1 2.2 7.3 0.1 
Max 2.3 7.3 41.3 41.3 

SD 0.5 1.6 12.4 4.7 

Lake 
maximum 
depth (m) 

Mean 11.4 9.7 4.5 10.6 
Median 9.8 7.6 1.5 9.1 

Min 1.3 1.5 0.6 0.6 
Max 45.0 30.5 15.0 45.0 

SD 7.0 7.5 5.0 6.9 

Lake surface 
area (ha) 

Mean 109.9 98.1 129.4 99.6 

Median 52.1 36.0 20.5 46.5 
Min 5.2 6.3 7.3 5.2 

Max 1394.2 660.1 1258.8 1394.2 
SD 170.7 162.7 356.8 161.4 
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3.3 Materials and Methods 

3.3.1 Modeled Chlorophyll-a time series 

Chl-a was modeled for the lakes of the temperate forest biome using remote sensing 

techniques (see Chapter 2). In brief, 1,067 Landsat 4-5 TM (1984-2011) and 159 Landsat 

7 ETM+ (1999-2003) 30-meter images for the period of August to October were acquired 

over a 152,231 km2 area (Figure 3.1) from United States Geological Survey archives. 

Lake locations and boundaries in each image were determined by reclassifying pixels 

below the local minimum in the bimodal distribution of band 5 images (shortwave 

infrared) as surface water. To avoid the problem of mixed reflectance due to adjacency 

near or along lake shorelines (areas with very shallow water and abundant aquatic 

vegetation), lakes with area less than 4.5 ha (i.e., 30-meter pixels) and high standard 

deviation of reflectance in band 5 were discarded. The remaining lakes were buffered 

inside to a distance of 15 meters (1/2 pixel distance). A partial atmospheric correction 

was conducted, which included subtraction of the Rayleigh scattering radiance from top 

of atmosphere (TOA) radiance. TOA radiance values were then converted to TOA 

unitless reflectance. An algorithm based on TOA reflectance values of three Landsat 

bands [(Band 1-Band 3)/Band 2)] was developed, and derived reflectance values were 

used in a regression model. The regression model was performed with mean lake 

reflectance values as the predictor variable and natural log transformed Chl-a (ln Chl-a) 

observations in 39 sampled lakes as the response variable. The regression model equation 

was then applied to all mean lake reflectance values in the Landsat archive. A time series 

of modeled ln Chl-amod of 12,644 lakes was generated. Universal space-time kriging was 

used to interpolate missing ln Chl-amod data found in some lakes as a result of clouds 

obscuring lake pixels. Median values of Chl-amod for the 28-year period were calculated 

for each lake. In this study, a subset of 275 lakes with available lake morphometry was 

used. 

3.3.2 Extraction of temperature and precipitation values  

Summer peak Chl-a occurs between August and October in the study region. Annual 

mean July-October maximum air temperature (Tmax) and annual mean July-October total 
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precipitation (Pr) data for 1984-2011 were extracted from 300 arc-second resolution 

monthly grid climate data (McKenney et al., 2011) for each of 275 lakes. Median values 

were then calculated for the 28-year period. The period of July–October was chosen over 

August–October (that would correspond to the peak Chl-a period) because of a delay in 

phytoplankton response to climate factors (e.g., temperature and precipitation); one 

month is considered a reasonable period of time for phytoplankton to respond to changes 

in climate conditions during the summer period (Wetzel, 2001). 

3.3.3 Landscape data acquisition and processing 

Lake bathymetric data for 60 lakes were obtained from Ontario Ministry of Natural 

Resources and Forestry (OMNR) (available upon request at: 

www.ontario.ca/data/ministry-natural-resources-and-forestry-topographic-map) in a 

vector polyline format (i.e., the lakes were digitized). Lake bathymetric data for the 

remaining 215 lakes were obtained as analog maps from the Western University Map and 

Date Centre (www.lib.uwo.ca/madgic) and these bathymetric data were georeferenced 

and converted to a digitized polyline format. Lake polylines were interpolated to raster 

bathymetry grids at 20 m resolution for each lake.  

Catchment topographic data were derived from the 20 m resolution Ontario Digital 

Elevation Model (DEM) (version 2.0.0; obtained from Scholars Geoportal at 

http://geo2.scholarsportal.info/#r/details/_uri@= 658779033). DEM hydrological 

conditioning was performed using the “Fill Depressions” and “Flow Direction” tools in 

ArcGIS (version 10.2). The raster bathymetry grids of the lakes were added to the DEMs 

and catchment boundaries for each lake were delineated from the DEMs.  

Catchment wetland data were derived from the Ontario Ministry of Natural Resources 

Ontario Wetland Inventory Database (revised 2015 version; 

www.ontario.ca/data/wetlands) and added to the DEMs.  

3.3.4 Landscape controls of Chlorophyll-a 

Eighteen landscape variables (Table 3.3) were assumed to act as metrics of landscape 

controls of lake Chl-amod on the basis of their potential contribution to Chl-amod 
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concentration and lake trophic states (Nõges, 2009; Staehr et al., 2012). Figure 3.2 shows 

the conceptual model of hypothesized climatic (direct and indirect) and landscape 

controls of Chl-amod of temperate lakes.  

 

Figure 3.2 Conceptual model of hypothesized climatic (direct and indirect) and 
landscape controls on Chl-amod of temperate lakes (modified from Hollert et al., 2018). 

Climatic controls analyzed in the current study are in bold. 

Simple variables (e.g., lake depth) were automatically calculated in ArcGIS, while 

compound variables (e.g., dynamic ratio) were calculated separately in Excel. The littoral 

zone of a lake is defined as the area adjacent to lake shore with depth of ≤ 2 m and 

bathymetric slope ≤ 2°. Some very shallow study lakes had mean depth ≤ 2 m or less; 

therefore, in this case the area of the littoral zone was equal to lake surface area of these 

lakes.  

Correlations among landscape variables were determined using the Pearson correlation 

test. The variables that did not meet the assumption of normality were ln-transformed (all 

variables except latitude, altitude, wetland cover, relative depth, development shoreline 

index, sphericity, and dynamic ratio). Variables found to have significant correlations (p 

< 0.05) with each other (i.e., have collinearity) were excluded from further analysis. 
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Table 3.3 Hypothesized landscape controls, their possible effects on lakes and proposed metrics to describe the controls. 

Hypothesized landscape 

controls 

Examples of hypothesized effects (with 

examples from literature) Metric 

Indicators of 

source areas 

Indicators of 

hydrological 

flushing 

Indicators of 

nutrients’ 

fate 

Location The duration of ice-free period, 

spring/autumn runoff (Stomp et al., 2011; 

Kosten et al., 2012) 

Latitude  

 ✓  

Catchment size, 

topography and wetlands 

Larger catchments, more complex 

topography and/or more wetlands 

indicate that nutrients spend more time in 

catchment, more input of nutrients (e.g., 

DOC, DON, P) (Creed & Band, 1998; 

Verhoeven et al., 2006; Mengistu et al., 

2014) 

Altitude, catchment 

area and length, 

catchment slope, 

wetland cover, 

drainage area  to lake 

area ratio 

✓ ✓ ✓ 

Lake surface area and 

mean depth, fetch 

Higher dynamic ratios or larger fetches 

indicate increased probability of wind-

driven sediment resuspension, more 

exposure to the sun/wind (Bachmann  et 

al., 2000; Hakanson, 2005) 

Lake surface area, 

fetch (length of 

longest lake axis; 

Wetzel, 2001), mean 

depth, 

dynamic ratio (square 

root of lake surface 

area divided by mean 

depth; Hakanson, 

2005) 

✓  ✓ 

Lake volume and depth 

 

Lakes with larger volumes lead to higher 

nutrient dilution in water, enhanced 

stratification (Nõges, 2009; Staehr et al., 

2012). 

Lake volume, mean 

depth, max depth, 

relative depth 

(Hutchinson, 1957) 

✓  ✓ 

Development of littoral 

zones (describes the littoral 

effect on lake and lake 

connection to surrounding 

landscape) 

Wider littoral zones lead to development 

of rooted aquatic plants; increase the 

potential for enhanced nutrient loading 

(Kornijow et al., 2016) 

Littoral zone, 

sphericity 

(Hutchinson, 1957), 

shoreline development 

(Hutchinson, 1957), 

bathymetric slope 

✓  ✓ 
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3.3.5 Statistical analysis 

Regression tree analysis was used to investigate environmental controls of ln Chl-amod. 

Regression tree analysis is a nonparametric recursive method that iteratively partitions 

data into mutually exclusive homogeneous groups with the smallest within-group 

variance for the response variable (De’ath & Fabricius, 2000). The analysis is particularly 

suited for ecological and environmental data, because these data often exhibit complex 

nonlinear relationships among predictor variables (De’ath & Fabricius, 2000; De’ath, 

2002). Regression tree analysis was performed using landscape metrics and two climatic 

controls (i.e., Tmax and Pr) as predictor variables to investigate environmental controls of 

ln Chl-amod. The regression tree was pruned at the branch where the complexity 

parameter minimized the cross-validation error (De’ath & Fabricius, 2000).  

Since regression tree analyses may produce unstable models (Breiman, 2001; De’ath, 

2002), the random forests analysis was also performed. Random forests overcome this 

flaw by producing numerous (up to 1,000 and more) trees, and then aggregating the 

predictions of each individual tree to a single model prediction (Breiman, 2001). This 

prediction can be presented on the “variable importance plot” showing the most important 

variables in an increasing order of importance. The “importance” can be based on two 

measures – either mean square-error (“%IncMSE”) or node purity (“IncNodePurity”) 

(De’ath, 2002). Random forest analysis was performed with setting the forest size 

(number of trees) at 1,000 (Breiman, 2001). %IncMSE was used to calculate the 

importance of predictor variables; the variable having the lowest absolute value (i.e., 

lowest %IncMSE) was considered  “unimportant”, as suggested by Strobl et al. (2009).  

Both regression tree and random forest analyses were performed in R (R Core Team, 

2018) using “rpart”, “party”, and “randomForest” (for the random forests) packages. 
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3.4 Results 

3.4.1 Correlation analysis 

Pearson correlation analysis between various landscape variables showed that larger lakes 

(in terms of the surface area) had larger volumes, deeper depths, and larger catchments 

(Table 3.4). Both wetland cover and littoral zone area were positively correlated with 

catchment area and lake surface area but negatively correlated with altitude, lake depth, 

and catchment and bathymetric slopes. Littoral zone area was also strongly positively 

correlated with drainage area/lake area ratio. Dynamic ratio was poorly (but significantly) 

positively correlated with catchment area, catchment length and lake surface area, but 

negatively correlated with catchment and lake slopes and lake depth. 

Pearson correlation analysis also revealed that most landscape variables were correlated 

with each other (i.e., collinearity of independent variables was present), which could 

potentially affect the results of the regression analysis (Kosten et al., 2012). Therefore, I 

chose only those variables that did not have significant correlations with other variables, 

and at the same time could explain almost as much variation in ln Chl-amod as all 

variables.  

Five variables representing various catchment and lake controls of ln Chl-amod were 

selected: lake volume (V), dynamic ratio (DR), littoral zone area (LZ), wetland cover 

(W%), and latitude (LAT). I chose V over lake surface area and lake depth because: (1) it 

can be a proxy of the other two lake properties; and (2) it is indicative of amount (i.e., 

volume) of water, and therefore, more suitable for description of processes associated 

with nutrients such as mixing and dilution in water column. I chose W% over other 

catchment properties because of the important role wetlands play in the storage and 

delivery of nutrients from catchments to receiving waters.  
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Table 3.4 Pearson correlation coefficients (r) between various landscape (catchment and lake) variables. All variables except 
latitude, altitude, wetland cover, relative depth, development shoreline, sphericity, and dynamic ratio were ln-transformed. 

Coefficients in bold indicate significant (p < 0.05) correlation. 
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Latitude 0.49 -0.00 0.00 0.19 0.05 -0.06 -0.06 -0.02 -0.02 -0.02 0.02 0.05 -0.01 0.02 -0.05 0.03 -0.01 

Altitude (m)  -0.18 -0.19 0.38 -0.41 -0.14 -0.10 -0.03 -0.10 0.10 0.16 0.18 -0.19 -0.07 0.04 0.17 -0.17 

Catchment area (ha)   0.98 -0.09 0.15 0.75 0.69 0.56 0.66 0.12 0.21 -0.34 0.28 0.36 -0.25 -0.15 0.14 

Catchment length (m)    -0.08 0.15 0.75 0.68 0.55 0.66 0.11 0.20 -0.37 0.29 0.39 -0.26 0.15 0.14 

Catchment slope (°)     -0.60 -0.03 -0.09 0.07 0.11 0.29 0.26 0.21 -0.16 -0.10 -0.03 0.40 -0.34 

Wetland cover (%)      0.03 0.18 0.02 0.16 -0.25 -0.26 -0.28 0.14 0.08 0.00 -0.45 0.13 

Drainage area/lake area       0.04 -0.02 0.11 -0.12 0.08 -0.15 0.72 0.06 -0.10 -0.07 0.07 

Lake surface area (ha)        0.88 0.92 0.31 0.40 -0.42 0.56 0.49 -0.26 -0.15 0.14 

Lake volume (m3)         0.81 0.70 0.72 -0.05 0.14 0.44 -0.20 0.26 0.13 

Lake fetch (m)          0.26 0.37 -0.42 0.56 0.67 -0.56 -0.06 0.11 

Lake mean depth (m)           0.89 0.54 -0.26 0.09 -0.04 0.76 -0.70 

Lake max depth (m)            0.54 -0.01 0.24 -0.12 0.68 -0.54 

Lake relative depth             -0.52 -0.21 0.15 0.69 -0.47 

Littoral zone area (ha)              0.41 -0.24 -0.47 0.13 

Development shoreline                -0.53 0.05 0.07 

Sphericity                -0.18 0.02 

Bathymetric slope (°)                 -0.73 
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3.4.2 Regression tree analysis 

Regression tree analysis revealed complex interactions between climatic controls, 

landscape metrics and ln Chl-amod (Figure 3.3). Eleven groups were identified in the 

model. V was the most important predictor of Chl-a, making the first split in the tree at 

13 ln m3 (442 × 103 m3), and clearly differentiating lakes with large (> 13 ln m3) from 

lakes with small volumes (< 13 ln m3). After V, Pr was the next most important predictor 

of ln Chl-amod in larger-volume lakes, while Tmax was the next most important predictor 

of ln Chl-amod in lakes with smaller (< 13 ln m3) volumes. Landscape metrics (DR, W% 

and LZ) explained part of ln Chl-amod but appeared in the regression tree only for the 

larger-volume lakes. LAT did not appear in the tree and was the least significant variable 

reported by the random tree analysis (Figure 3.3b). The response variable (ln Chl-amod) in 

each group showed an overall increase from the first group (median Chl-amod = 0.9 ln μg 

L-1) to the last group (median Chl-amod = 2.6 ln μg L-1).  
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Figure 3.3 (a) Regression tree, and (b) results of the random forests analysis depicting 

climate and landscape determinants of ln Chl-amod. Panels with colors below the 
regression tree depict general patterns (increase or decrease) of the most important 

determinants of ln Chl-amod over an increase ln Chl-amod from left to right. Abbreviations: 
Pr–precipitation, Tmax–maximum air temperature, V–lake volume, DR–dynamic ratio, 
WET%–wetland cover, LZ–littoral zone, LAT–latitude; ln indicates ln-transformed 

values. 
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3.4.3 Conceptual panels on lake trophic states 

Conceptual panels describing “typical landscape features” (i.e., median values based on 

landscape metrics identified in the regression tree analysis) for each lake trophic state 

were generated (Figure 3.4). Median values of Tmax and  Pr were also provided for each 

trophic state.  

 

Figure 3.4 Conceptual panels depicting “typical landscape features” for each lake trophic 
state. Values of climate and landscape determinants of ln Chl-amod are median (except for 
max depth, for which values are mean). Abbreviations are metrics developed to describe 

the landscape determinants: V–volume, DR–dynamic ratio. 

Tmax increased from oligotrophic (19.7°C) and mesotrophic (20.2°C) to eutrophic (21°C) 

lakes. In contrast, Pr decreased following the same order as Tmax (Pr for oligotrophic lakes 

= 92 mm, mesotrophic lakes = 85 mm and eutrophic lakes = 83 mm).  
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V was largest in oligotrophic lakes (255 × 104 m3), followed by mesotrophic (93 × 104 

m3) and eutrophic (184 × 103 m3) lakes. Eutrophic lakes had the highest DR (0.60) with 

max DR reaching 3.60; mesotrophic lakes had the second highest DR (0.28) followed by 

oligotrophic lakes (0.15). W% increased from oligotrophic (4.4%) to mesotrophic (5%) 

and eutrophic (9.9%) lakes. Maximum W% was also found in eutrophic lakes where it 

reached 64% (in comparison to maximum W% of oligotrophic and mesotrophic lakes 

where it was 22% and 38% accordingly). Oligotrophic lakes had the smallest median LZ 

(1.9 ha), followed by mesotrophic lakes (3.7 ha) and eutrophic lakes (15.7 ha). 

3.5 Discussion 

I examined the interactive effects of climate (air temperature and precipitation) and 

landscape properties on phytoplankton biomass and associated trophic condition. Based 

on the analysis of dataset of 275 temperate lakes covering the whole range of lake trophic 

states (from oligotrophic to mesotrophic to eutrophic), I found a relationship between 

Tmax and Pr and ln Chl-amod. However, I also found a relationship between several 

landscape metrics (i.e., V, DR, W%, LZ and Lat) and ln Chl-amod, providing evidence that 

both climate and landscape properties are important predictors of Chl-a in lakes.  

Climate controls 

Climate was an important factor in determining Chl-a, but in unexpected ways. Pr was an 

important predictor of ln Chl-amod in larger-volume lakes, where ln Chl-amod decreased as 

Pr increased (Figure 3.3a). In contrast to Pr, Tmax predicted ln Chl-amod only in smaller-

volume lakes. Further, even in smaller-volume lakes, Tmax was the sole climatic predictor 

of ln Chl-amod in only seven lakes; in all other smaller-volume lakes Pr came into play. 

This finding indicates that Pr but not Tmax is the main driver of phytoplankton biomass in 

the lakes of the study region. 

The relationship between Pr and phytoplankton biomass remains unclear (O’Neil et al., 

2012; de Senerpont Domis et al., 2013). While more precipitation mobilizes nutrients on 

land, potentially leading to increasing nutrient enrichment of receiving waters in some 

regions (Paerl & Huisman, 2008), the relatively undisturbed region in this study is known 
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to have naturally low P in soils (Jeffries & Snyder, 1983), and to have experienced 

steadily decreasing deposition of P (Eimers et al., 2009) and total N for at least the last 20 

years (Mengistu et al., 2014; Geddes & Martin, 2017). Therefore, it seems unlikely that 

high precipitation (and associated runoff) significantly contributes to increased nutrients 

and by extension phytoplankton biomass in the study lakes, at least at present. Further, 

larger-volume lakes can mitigate the impact of nutrient loading by the effect of dilution 

(de Senerpont Domis et al., 2013; De Sousa Barroso et al., 2016). Larger-volume lakes 

generally have “more water” resulting in shorter water residence times, lower 

concentration of nutrients and, therefore, lower phytoplankton biomass (Staehr et al., 

2012).  

To my knowledge, there are very few studies that describe the effects of natural dilution 

of nutrients in lakes caused by precipitation (e.g., Abongwa & Atekwana, 2018). Most of 

studies on lake dilution address “artificial” dilution as a generally successful (but 

nevertheless expensive) technique to control algal blooms and minimize 

agricultural/industrial eutrophication (so-called “lake restoration measure”; see Welch et 

al., 1972). In these studies, the effect of artificial dilution on lake water column refers to 

reducing nutrient concentration to growth-limiting levels of algae and decreasing water 

residence time, which lead to slowing down the growth rate of the algae and eventually to 

a decrease in algal biomass (Welch et al., 1972; Shinohara et al., 2008). Although 

described as a restoration measure for human-induced eutrophication in lakes, the same 

chain of events might happen in a natural system (especially in a larger-volume lake) as 

well, where high precipitation reduces residence times, facilitating water exchange, and 

diluting nutrients in a water column (Tang et al., 2019).  

The relationship between temperature and phytoplankton biomass also remains unclear. 

The idea that temperature (and increasing air temperature in particular) drives 

phytoplankton biomass and contributes to eutrophication has a little support in the field 

studies and laboratory experiments. Most of the studies on temperature-phytoplankton 

relationship show that this relationship is very complex and depends upon nutrient 

availability, the rate of temperature increase, changes in precipitation patterns, structure 

of phytoplankton and zooplankton, etc. (Gerten & Adrian, 2002; Moss et al., 2003; 
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Blenckner et al., 2007; Striebel et al., 2016; Richardson et al., 2018). Therefore, 

depending on these and many other factors, an increase in temperature can have a 

positive, negative or no effect on phytoplankton biomass (Jeppesen et al., 2009; 

Tadonléké, 2010; Kraemer et al., 2017; Rasconi et al., 2017). Further, many studies (e.g. 

Gerten & Adrian, 2002; Jöhnk et al., 2008; Mosley, 2015) examined temperature-

phytoplankton relationship during prolonged periods of droughts and/or exceptionally 

warm years or seasons, hence emphasizing phytoplankton behavior under extreme 

conditions but not under regular (e.g., yearly averaged) or gradually increasing 

temperature.  

Of all lakes, the seven lakes for which Tmax was the sole climatic predictor of ln Chl-amod 

had the smallest V and the smallest depth (median max depth = 1.5 m). This might 

indicate that direct physical factors associated with temperature (e.g., heat distribution 

through the water column) play a major role in driving phytoplankton biomass in these 

lakes. Indeed, the water column of smaller-volume lakes generally warms up faster and 

deeper (often all the way down to lake bottom) than that of larger-volume lakes (Johnson 

et al., 2014; Sharma et al., 2019). My findings also suggest that phytoplankton in 

smaller-volume lakes is more susceptible to drier/dry conditions (i.e., with reduced 

precipitation). This interpretation is consistent with many other studies demonstrating 

that smaller-volume lakes are generally more sensitive to broad scale climate stressors 

(e.g., temperature and precipitation) due to the lower capacity to buffer these stressors 

(Choi, 1998; Whitehead et al., 2009; Sharma et al., 2019). 

The interactive effects of higher temperatures accompanied by reduced precipitation or 

prolonged droughts can lead to longer water residence times (Zwart et al., 2017), lower 

dilution potential, and increasing nutrient levels in water column (Mosley, 2015) – all of 

which lead to higher ln Chl-amod. These climatic factors can cause a significant decrease 

in water level of smaller-volume lakes, resulting in sediments being in a direct contact 

with the trophogenic layer (the upper photosynthetically active layer of the lake) 

(Søndergaard, 2007; Nõges, 2009). In this case, lake sediments might be easily disturbed 

by winds (especially in lakes with relative large surface areas), leading to intensified 

internal nutrient loading. Nõges et al. (2007) analyzed internal nutrient loading of two 
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Estonian lakes and found that shallower lakes have lower P retention in the sediments; 

hence, P availability in the water column of these lakes was found to be higher than in 

deeper lakes. The intensified internal nutrient loading can also happen in relatively 

deeper lakes (without direct sediment contact with the trophogenic layer) caused by 

anoxia. This condition is often met when high temperatures and reduced precipitation 

lengthen the period of thermal stratification, leading to reduced vertical mixing of water 

column (Winder & Sommer, 2012) and as a result promoting lower levels of dissolved 

oxygen and anoxic conditions (Nürnberg, 2009; Dittrich et al., 2013). However, it has 

been demonstrated by previous studies that oligotrophic and mesotrophic lakes of the 

temperate forest biome (the Muskoka region in particular) tend to have relatively low 

rates of internal P loading (Nürnberg & LaZerte, 2004; Orihel et al., 2017). 

While climatic factors contribute selectively to the growth of eukaryotic phytoplankton 

(depending on species; Striebel et al., 2016), they favor most of the cyanobacteria taxa 

(Jöhnk et al., 2008; Kosten et al., 2012). Cyanobacteria have growth optima at higher 

temperatures than other phytoplankton (Carey et al., 2012; Lürling et al., 2013) and they 

have the ability to regulate buoyancy, especially during periods of stratification (O’Neil 

et al., 2012). These abilities together with an elevated nutrient concentration of internal or 

external origin create a perfect environment for cyanobacteria to thrive and develop algal 

blooms (Paerl & Huisman, 2008), resulting in increased overall phytoplankton biomass. 

Although Kosten et al. (2012), who studied 143 lakes from subarctic Europe to southern 

South America, did not determine a significant relationship between higher temperatures 

and higher overall phytoplankton biomass, they found that the proportion of 

cyanobacteria in phytoplankton communities of shallow lakes significantly increased 

with temperature.  

Landscape controls 

Landscape was also an important factor in determining Chl-a. Landscape properties are 

known to be key controls on nutrient accumulation, transformation and transport within a 

coupled catchment-lake system (Magnuson et al., 1990; Baines et al., 2000). Lake 

volume (V) was found to be the most important predictor ln Chl-amod (Figure 3.3). As a 
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surrogate of lake surface area and depth, V describes lake features such as exposure to the 

sun and wind, residence time, and mixing of water and nutrients within lakes (Nõges, 

2009). Therefore, V can be used for assessing the relative importance of both d irect 

atmospheric and indirect landscape-filtered controls on lakes (Magnuson et al., 1990). 

My finding that Chl-a increases with decreasing lake volume and depth is in good 

agreement with other studies (e.g., Duarte & Kalff, 1989; Stomp et al., 2011; Staehr et 

al., 2012). Stomp et al. (2011) analyzed Chl-a and phytoplankton composition in 540 

lakes throughout the continental USA and found that shallow lakes generally had higher 

Chl-a concentration. The fact that lake volume (but not climatic factors) makes the first 

split in the regression tree (Figure 3.3a) might indicate that indirect controls (i.e., filtered 

by landscape characteristics) are more important in regulating Chl-a in the study lakes.  

Increases in DR, W% and LZ were correlated to ln Chl-amod. DR was initially developed 

to identify the relative area of lake bottom influenced by wind-driven resuspension and 

has often been used for an assessment of lake bottom dynamics and the intensity of wave 

disturbance (Qin et al., 2004; Hakanson, 2005; Zhu et al., 2015). Higher DR represents a 

higher risk for wind-induced sediment resuspension events (Bachmann et al., 2000; 

Hakanson, 2005) and the influx of nutrients from sediments that promote phytoplankton 

growth (Søndergaard et al., 2001). In smaller-volume lakes, DR may serve as an 

indicator of a nutrient source, while in larger-volume lakes (i.e., where sediments are less 

influenced by wave-induced sediment resuspension), DR may serve as an indicator of a 

nutrient sink (i.e., nutrient sedimentation and accumulation at the bottom of the lake). 

The residence time of nutrients is generally longer and their content is more uniform (i.e., 

less disturbed) in sediments of larger lakes than in sediments of small or shallow lakes 

(Søndergaard, 2007). Although DR was the third most important predictor of ln Chl-amod 

in larger-volume lakes, it did not appear in the smaller-volume lake section of the 

regression tree. 

Increases in W% were related to increases in ln Chl-amod. Wetlands typically covered a 

small portion of catchments (e.g., median proportion of wetlands in catchments of 

oligotrophic lakes in the study region is only 4.4%). Despite this, their contribution to the 

nutrient loading to lakes and streams is extremely important (Mitsch & Gossilink, 2000; 
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Verhoeven et al., 2006). This is due to their position in catchment and biogeochemical 

processes occurring within them (Marton et al., 2015). Wetlands are often located in 

hydrologically-connected depressions, areas with low relief and near lakes, and therefore 

a large proportion of catchment discharge waters pass through them on their way to 

receiving waters (Creed & Band, 1998). Wetlands also affect water residence time in 

catchments (McGuire et al., 2005; Pelster et al., 2008). Generally, water residence time 

increases with increasing wetland cover, as wetlands slow flows on the way to discharge 

waters (McGuire et al., 2005). While intercepted in wetlands, water chemistry is 

changed–nutrients are retained, removed or transformed to different forms until they are 

flushed out with the next runoff (Harms et al., 2016).  

Increases in LZ were related to increases in ln Chl-amod. Littoral zone area can indicate 

both fate and source of nutrients in lakes (Kornijów et al., 2016; Orihel et al., 2017). 

However, in this study, I could not separate one role from another because I did not 

differentiate LZ from the pelagic part of lake–in this sense, lake V and lake LZ were 

interconnected. However, some patterns describing the effect of LZ on ln Chl-amod still 

can be observed in the regression tree. For example, an increase in ln Chl-amod with 

increasing LZ is likely due to the fact that more developed LZ (i.e., larger littoral areas) 

means a closer connection of lakes with their catchments. This in turn reflects the 

potential for enhanced external nutrients loading (Vadeboncoeur et al., 2002) and as a 

result increased ln Chl-amod.  

Further, it is reasonable to assume that LZ in some of my lakes might act as a buffer 

where external material (i.e., sediments and nutrients) accumulate and/or are taken up by 

macrophytes and attached algae. For example, oligotrophic and mesotrophic lakes that 

are under mesic condition (i.e., relatively wet; Figure 3.3a) receive a reasonable amount 

of water and nutrients from runoff. Lake volumes (V) may not be large enough for the 

high rate of dilution, while the depth may not be small enough to initiate sediment 

resuspension and/or allow water column to warm down to the bottom. However, the lakes 

still might have some reasonably shallow areas for the development of LZ with 

communities of rooted macrophytes, which act as the buffer, and presumably protect 

these lakes from shifting to more eutrophic condition. Some studies on regime shifts in 
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lakes exemplify this sequence of events (e.g., Scheffer & Van Nes, 2007; Winder & 

Sommer, 2012). 

Conceptual model 

My findings suggest that landscape properties influenced ln Chl-amod in temperate lakes 

and its response to climatic factors (Tmax and Pr) by modifying these climatic factors 

directly (e.g., temperature versus phytoplankton biomass of smaller-volume lakes) and 

indirectly (e.g., through surface water and nutrients discharge). Based on these 

observations, I developed a simple conceptual model based on different climate 

conditions (in relation with Tmax and Pr) and landscape properties for each lake trophic 

state (oligotrophic, mesotrophic and eutrophic; Figure 3.4) within the temperate forest 

biome. 

Oligotrophic lakes received the highest Pr and hence higher runoff (for July–October). 

Increased inflow of water results in shorter water residence times (Cardille et al., 2004; 

Nõges, 2009). Low W% of surrounding landscapes indicates relatively low nutrient 

concentration in the runoff. Additionally, oligotrophic lakes have reduced connections 

with their catchments due to small LZ. Since oligotrophic lakes have the largest V and 

increased Pr, they are prone to nutrient dilution. Further, these lakes are not susceptible to 

wind-driven sediment resuspension, which is indicated by the low DR index and by the 

fact that oligotrophic lakes are also the deepest (i.e., sediments are unlikely to be 

disturbed by wind especially under high Pr).  

Mesotrophic lakes received less Pr, but are characterized by higher external nutrient 

loading than oligotrophic lakes. This is because these lakes have more wetlands (i.e., 

larger W%), which are well-connected to the lakes by more developed LZ. Since 

mesotrophic lakes have smaller V, the process of nutrient dilution is less pronounced 

there, while their moderate depth, higher DR and more developed LZ indicate higher rate 

of resuspension from lake sediments. Additionally, LZ of these lakes are likely to be 

occupied by communities of rooted macrophytes (Wetzel, 2001; Kornijów et al., 2016). 
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Eutrophic lakes received the least Pr and were warmer (they have the highest Tmax) than 

oligotrophic and mesotrophic lakes. Although eutrophic lakes have the smallest V 

indicating shorter water residence time, reduced water inflow makes water “stay longer” 

in the lakes, therefore extending the residence time. Further, because of high Tmax and 

shallow depth, water column of eutrophic lakes might warm down to the bottom, leading 

to reduced concentration of dissolved oxygen and enhanced internal nutrients loading 

from sediments (Nõges, 2009). This is supported by large LZ (which indicates extensive 

shallowness) and very high DR. The latter also means eutrophic lakes have large fetches 

and hence are susceptible to wind disturbance. Finally, these lakes have high loading of 

allochthonous material because of extensive W%. 

3.6 Conclusions 

Phytoplankton biomass in the lakes of the temperate forest biome is influenced by air 

temperature and precipitation and filtered through catchment and lake characteristics. Of 

all metrics developed do describe landscape controls on ln Chl-amod, V is found to be the 

most important, as it regulates water mixing, and nutrient dilution and resuspension. I 

found that lakes with lower ln Chl-amod had larger V, were sensitive to Pr and were 

mostly oligotrophic (lakes with minimum sediment resuspension, less-developed LZ and 

water discharged from catchments with small W%). On the other hand, lakes with the 

higher ln Chl-amod had smaller V, were sensitive to Tmax and were either mesotrophic or 

eutrophic (lakes that were very sensitive to wind-driven sediment resuspension with 

developed LZ, which were better connected to their catchments with higher W%).  
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4 Ecological stability in trophic state of temperate lakes 

4.1 Introduction 

Increased reports of potentially harmful algal blooms in northern intact landscapes (Carey 

et al., 2008; Winter et al., 2011) may be evidence of lakes experiencing regime shifts 

between alternative stable states (Scheffer & Van Nes, 2007). While anthropogenic 

eutrophication is undoubtedly an important driver of the shift from oligotrophic towards 

eutrophic states, there is mounting evidence that these regime shifts may also be a 

consequence of the impaired stability of lake ecosystems caused by long-term effects of 

climate change (Scheffer, 2001; Scheffer & Van Nes 2007; de Senerpont Domis et al., 

2013; Wagner & Adrian 2009; Dakos et al. 2014). For example, potentially harmful algal 

blooms have been reported in temperate lakes in relatively pristine landscapes at large 

distances from urban areas or agricultural lands (Winter et al., 2011). 

Climate change may have little apparent immediate effect on an ecosystem but can still 

undermine its stability and cause loss of resilience over time (Scheffer et al. 2001). 

Ecological resilience theory suggests that an ecosystem has at least two stable states that 

are separated by an unstable state(s) (Holling, 1973). An ecosystem becomes increasingly 

unstable until a bifurcation point is passed, at which the ecosystem shifts to a new stable 

state (Andersen et al., 2009; Scheffer et al., 2012). In colloquial terms, this is referred to 

as “the tipping point.” As an unstable ecosystem approaches the bifurcation point, its 

response to small perturbations slows–a phenomenon called “critical slowing down” 

(Andersen et al., 2009).  

Indicators of the critical slowing down phenomenon in time series–and therefore 

instability and regime shift–include abrupt rises in short-term autocorrelation and 

variance (Carpenter & Brock, 2006; Dakos et al., 2008; Wang et al., 2012) and a shift to 

lower variance frequencies of ecosystem variables (Kleinen et al., 2003). Temporal 

variance in time series (expressed in standard deviations: SD) is the most commonly used 

indicator due to its comparative ease of measurement (Scheffer et al., 2009; Lindegren et 

al. 2012; Boettiger et al., 2013). Temporal variance in time series generally increases as 
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an ecosystem accumulates the effects of shocks from small perturbations and approaches 

the bifurcation point (Kuehn, 2011). 

Detection of critical slowing down indicators can fail or, in the worst case, result in false 

alarms (Lenton et al., 2012; Boettiger et al., 2013). False alarms can arise because 

indicator measurements may be due to extrinsic rather than to intrinsic factors influencing 

ecosystem dynamics (Carpenter & Brock, 2006). It is therefore important to isolate 

variance resulting from intrinsic factors from extrinsic factors that include non-stationary 

(e.g., annual temperature increase as a constituent of climate change) and stationary (i.e., 

climate oscillations) signals. De-trending is already commonly used to remove non-

stationary signals from ecological time series (Lenton et al., 2012). Sophisticated spectral 

methods (e.g., wavelet analysis) have since emerged to identify stationary signals in time 

series (Sabo & Post, 2008; Mengistu et al., 2013a; Ruhí et al., 2015). After non-

stationary and stationary signals are removed from a time series, residuals in the 

distribution of the remaining signals represent variance due to intrinsic ecosystem 

dynamics (Fung et al., 2013). Low and high variation in SDs of residuals in sliding time 

series windows indicate ecosystem stability and instability respectively, while increasing 

or decreasing trends in SDs of residuals over time indicate movement towards new stable 

states (Dakos et al., 2014; Arnoldi et al., 2016). 

In the face of reports of eutrophication and algal blooms in temperate forest regions, I 

posed three questions: (1) How stable are trophic states of temperate lakes? (2) Are 

regime shifts in lake trophic states occurring? And (3) if temperate lakes are losing their 

resilience and experiencing any change in their stability (i.e., become unstable), is this 

driven by climate change in terms of rising temperatures and changing precipitation 

patterns? To respond to these questions, I removed non-stationary and stationary signals 

from a 28-year (1984-2011) time series of chlorophyll-a concentration (Chl-a) (as a 

proxy of phytoplankton biomass) in 12,644 lakes in a relatively undisturbed temperate 

forest biome in central Ontario, Canada, and used SDs of the residuals as an indicator of 

lake stability. I used the conceptual (“stability landscapes”) model developed by Scheffer 

et al. (2001) as a template to classify patterns in the SDs of the residuals of Chl-a times 

series into lake stability classes which I compared to lake trophic conditions (i.e., trophic 
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states). This conceptual model is illustrated in Figure 4.1 with two alternative stable 

states and several transitional/unstable states of temperate lakes embedded into the 

stability landscapes of a relatively intact landscape. Over time, the structure and function 

of a lake ecosystem with high resilience (e.g., lake with an oligotrophic condition) remain 

relatively stable. However, changing external conditions (e.g., increasing air temperature) 

can lead to a gradual loss of resilience up to a point where even a small disturbance can 

push the ecosystem into a new stability domain, where the system reorganizes into a new 

and radically different (e.g., oligotrophic versus eutrophic) stable state (Scheffer et al., 

2012). Once in a new stable state, the lake ecosystem is kept there by internal feedback 

dynamics of that state (e.g., prevalence of buoyant cyanobacteria), making the recovery 

to a previous state difficult (Scheffer et al., 1993; Scheffer et al., 2012). Lakes found to 

experience changes in trophic states (transitional lakes) were then related to changes in 

temperature and precipitation to determine how these climate factors can drive lake 

instability and regime shifts towards new trophic states. 

 

Figure 4.1 “Multiple stable states” concept depicted using “stability landscapes” (as 

exemplified by freshwater lakes). Valleys represent stability domains, in which a stable 
system, represented by the ball, is kept by internal feedback mechanisms until an external 

pressure is long and “stressful” enough to move the ball into a new stability domain, 
where the system reorganizes into a new stable state (modifed from Scheffer et al., 2001). 
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4.2 Study region 

The study region is the temperate forest biome located within the Great Lakes–St. 

Lawrence Forest region in Ontario, Canada (Figure 4.2). Climate in the region is humid 

continental, with precipitation influenced by lake effects from the Great Lakes and local 

orographic effects in areas of high relief (Baldwin et al., 2000). Mean annual air 

temperature in the study region for the period of 1984-2011 was +5.1°C, ranging between 

+7.4°C in the south-east and +2.6°C in the north. Mean annual precipitation for the same 

period was 960 mm, ranging from 740 mm in the southern areas of the region to 1180 

mm in the north-west (McKenney et al., 2011). Geology is the Precambrian rocks 

comprised of silicate greenstone of the Boreal (Canadian) Shield (Ontario Geological 

Survey, 2003). Topography varies from flats and depressions along the shore of the Great 

Lakes to hills and uplands (Algoma and Madawaska Highlands). Soils are thin and 

undifferentiated brunisols (in the south), and thick and differentiated orthic ferro-humic 

podzols (in central areas and in the north) (Canada Soil Survey Committee, 1978). 

Forests in the region lie in a transitional zone between deciduous and coniferous with the 

latter being more prevalent in the northern areas (Baldwin et al., 2000). 

Climate is changing in the temperate forest biome. Simple linear regression analysis 

shows that annual mean July-October (i.e., months that are under consideration in the 

study) maximum daily temperatures increased significantly at a mean rate of 0.045°C yr-1 

over the 1984–2011 period (p < 0.05). Trends in mean annual July-October total 

precipitation for the same period are less clear; the precipitation was variable from year to 

year with decreasing trends (a mean rate of -0.24 mm yr-1) in western areas and 

increasing trends (a mean rate of 0.17 mm yr-1) in central and south-eastern areas of the 

study region.  

 



91 

 

 

 

Figure 4.2 Map showing location of the study region (the temperate forest biome) and 

eutrophying (n = 36) and oligotrophying (n = 42) lakes used for the analysis of 
environmental controls of transitional lakes. 

4.3 Materials and Methods 

4.3.1 Modeled Chlorophyll-a time series 

Landsat 4-5 TM (1984-2011) (1,067 images) and Landsat 7 ETM+ (1999-2003) (159 

images) 30 m products for the period of August to October were acquired from the 

United States Geological Survey archives covering a 152,231 km2 area (Figure 4.2; see 

Chapter 2). Lake locations and boundaries in each image were determined by 

reclassifying pixels below the local minimum in the bimodal distribution of band 5 

images (shortwave infrared) as surface water. To avoid the problem of mixed reflectance 

due to adjacency near or along lake shorelines (areas with very shallow water and 

abundant aquatic vegetation), lakes with area less than 4.5 ha (i.e., 30 m pixels) and high 

SD of reflectance in band 5 were discarded, and the remaining lakes were buffered inside 

to a distance of 15 meters (1/2 the pixel distance). Atmospheric correction was conducted 
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by subtracting the Rayleigh scattering radiance from top of atmosphere (TOA) radiance. 

The atmospherically corrected TOA radiance values were then converted to TOA unitless 

reflectances. An algorithm based on TOA reflectance values from three Landsat bands 

[(band 1-band 3)/band 2)] was developed and related to natural log transformed Chl-a (ln 

Chl-a) observed in lakes. This relationship was then applied to all mean lake reflectance 

values in the Landsat archive, generating a times series (28 years from 1984 to 2011) of 

modeled annual August-October Chl-a (ln Chl-amod) for 12,644 lakes. See Chapter 2 for 

further details. 

4.3.2 Climate and landscape variables 

Climate variables include time series of annual mean July to October maximum air 

temperature (Tmax) and annual mean July to October total precipitation (Pr) grids for 

1984-2011 that were calculated from 300 arc-second resolution monthly grid climate data 

(McKenney et al., 2011). The period of July to October was chosen over August to 

October (the period of ln Chl-amod measurements) because phytoplankton biomass 

generally delays in responding to environmental factors (e.g., temperature and 

precipitation) (Wetzel, 2001). Tmax and Pr grid values were extracted at lake centroids and 

annual rates of change were calculated as the slope parameters.  

Landscape variables were selected as proxies of potential controls of ln Chl-a and lake 

stability (see Chapter 3 for sources of data and derivation of metrics). These variables 

included lake volume (V), dynamic ratio (DR), wetland cover (W%), littoral zone area 

(LZ), and geographical latitude (LAT). The landscape metrics were computed for 36 

eutrophying and 42 oligotrophying lakes. Calculations were implemented in ArcGIS 

(ArcMap, version 10.2) and Microsoft Excel.  

4.3.3 Non-stationary and stationary signals in Chlorophyll-a 

time series 

Non-stationary and stationary signals in the time series of ln Chl-amod were removed 

following the steps presented in Figure 4.3 using MATLAB (R2013b, the WathWorks 

Inc). 
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Non-stationary signals (trends) in the ln Chl-amod time series for each lake were identified 

using the Mann-Kendall non-parametric trend test (Kendall, 1975). Time series with 

significant (p < 0.05) trends were de-trended by subtracting linearly regressed ln Chl-amod 

(i.e., ln Chl-amod regressed to year as the predictor variable) from ln Chl-amod. 

Stationary signals (oscillations) in the ln Chl-amod time series for each lake were 

identified and sequentially removed using wavelet analysis. Wavelets are defined as 

small “groups” of waves with specific frequencies that approach zero at both ends.  
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Figure 4.3 Flowchart summarizing steps for removing non-stationary and stationary 

signals from ln Chl-amod time series and identification lake trophic stability classes. 
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Wavelet analysis allows for decomposition of a time series into a time-frequency domain 

where dominant periodicities can be detected (Torrence & Compo, 1998; Labat, 2010). 

Wavelet power spectrums in ln Chl-amod time series (both de-trended time series and 

original time series with no significant non-stationary signals, hereafter called “time 

series”) were obtained for each lake. Wavelet power spectrums were computed by 

convoluting the time series with a scaled version of a transforming wavelet function. The 

continuous Morlet wavelet was applied because it provides a good time/frequency 

resolution compared to other wavelet types (Labat, 2010), and it has been successfully 

used in many analyses conducted on ecological, climatological and hydrological time 

series (e.g., Cazelles et al., 2008; Kogovšek et al., 2010; Santos & de Morais, 2013; 

Mengistu et al., 2013b). 

Global wavelet power spectrum (GWPS) coefficients were computed by time-averaging 

wavelet spectrum values over the local spectra. Scales with large GWPS coefficients 

were assumed to contribute more and significant spectral energy, while scales with small 

GWPS coefficients were assumed to contribute small or insignificant spectral energy 

(Mengistu et al., 2013a). Stationary signals with the largest GWPS coefficients were 

identified and sequentially removed from the time series of ln Chl-amod in each lake. A 

sensitivity analysis was conducted to identify the number of stationary signals to be 

removed. After removal of each stationary signal (i.e., at the end of each step), the 

median values of the residuals from all 12,644 lakes were calculated and plotted, and the 

point at which a polynomial line of the residuals leveled off was considered the 

maximum number of stationary signals that should be removed. 

4.3.4 Lake stability classification 

A moving window of the time series of SDs of residuals of ln Chl-amod were extracted in 

3-, 5-, 7- and 10-year lengths in 2,000 randomly selected lakes. Significance (p-value) of 

Kendall rank correlation coefficients (τ) in the time series of SDs of residuals from linear 

trends within the moving windows were calculated using Mann-Kendall non-parametric 

trend tests to determine the window length with the most significant (smallest p-value) 

correlation in the majority of lakes. Time series of SDs of residuals (SDmv) were then 
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calculated in all lakes using the window length found to be most significantly correlated 

in 95% of 2,000 randomly selected lakes. 

Lake stability classes were identified. First, to identify lakes experiencing gradual 

changes in stability (i.e., transitional lakes), trends in SD of residuals were evaluated in 

each lake by calculating τ in time series of SDmw using Mann-Kendall non-parametric 

trend tests. Lakes with significant (p < 0.05) and positive τ were classified as 

eutrophying, while lakes with significant (p < 0.05) and negative τ were classified as 

oligotrophying. Second, to identify lakes experiencing “instability”, the coefficient of 

variations (CV) of SDmw was calculated for each remaining lake (Lindegren et al., 2012). 

Lakes having CVmw ≥ 0.5 in more than 90% of time series of SDmw were classified as 

unstable. Third, the remaining lakes were classified as stable eutrophic if their Chl-amod 

concentration was ≥ 7.3 μg L-1 (minimum Chl-a concentration for eutrophic lakes; 

Carlson & Simpson, 1996) in more than 90% of 28 years, and differences in mean SDmw 

between these lakes and remaining lakes (i.e., stable oligotrophic) was significant (p < 

0.05). Significance was determined by applying a t-test. Those lakes that were not 

identified as eutrophic were identified as oligotrophic. 

The statistical significance of differences among lake stability classes (except for stable 

oligotrophic versus stable eutrophic) was examined using one-way analysis of variance 

on ranks (ANOVA on ranks). The statistical significance of differences between the 

classes was assessed by pair-wise comparison test (Dunn’s test). Kernel density surfaces 

were generated from lake centroids in each classification to illustrate spatial patterns. 

4.3.5 Analysis of non-stationary and stationary signals 

Pearson correlation tests were performed to evaluate relationships between rates of 

change in ln Chl-amod (μg L-1 yr-1) and rates of change in Tmax (ºC yr-1) and in Pr (mm yr-

1) in lakes where significant (p < 0.05) trends in ln Chl-amod (μg L-1) were found from 

1984-2011. The tests were performed separately on lakes with positive and negative 

trends in ln Chl-amod. Pearson correlation tests were also performed to identify 

relationship between stationary signals and the global climate oscillations. In this study, 

the Multivariate El Niño Southern Oscillation Index (MEI), Atlantic Multidecadal 
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Oscillation (AMO), Northern Atlantic Oscillation (NAO) and Pacific Decadal Oscillation 

(PDO) indices were selected due to their pronounced effect on global climate and lake 

ecosystems (Blenckner et al., 2007). Global climate oscillation indices data were 

obtained from the National Center for Atmospheric Research (open resource: 

www.cgd.ucar.edu). Pearson correlation tests were performed on each stationary signal; 

the correlation was considered significant at p < 0.1. 

4.3.6 Analysis of environmental controls of transitional lake 

classes 

Classification tree and random forest analyses were performed to investigate if 

environmental controls (climate and landscape) were related to eutrophying and 

oligotrophying lakes. The random forest analysis was performed using 1,000 trees 

(Breiman, 2001) and the node purity (“IncNodePurity”) was used to determine the 

importance of predictor variables (De’ath, 2002); the variable having the lowest absolute 

value of IncNodePurity was considered “unimportant” (Strobl et al., 2009). The rates of 

change in temperature (Tmax yr-1) and precipitation (P yr-1), and five landscape properties 

– V, DR, W%, LZ and LAT – were used as predictor variables, while the lake stability 

class (eutrophying and oligotrophying) was used as the response variable in the 

classification tree and random forests analyses. 

4.4 Results 

4.4.1 Non-stationary signals in Chlorophyll-a time series 

Mann-Kendall non-parametric trend tests revealed significant (p < 0.05) trends ln Chl-

amod from 1984 to 2011 in 1,061 lakes (500 lakes had positive trends and 561 lakes had 

negative trends; Appendix F: Figure F.1).  

The correlation analysis between ln Chl-a yr-1 and Tmax yr-1 did not reveal any significant 

relationship (r < 0.01, p = 0.87), while there was a significant but weak correlation 

between ln Chl-a yr-1 and P yr-1 (r = 0.15, p < 0.0001). However, when I performed 

Pearson correlation on positive trending and negative trending lakes separately, I found 

that ln Chl-a yr-1 of positive trending lakes demonstrated significant correlation with both  
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Tmax yr-1 and  P yr-1 (Figure 4.4). Ln Chl-a yr-1 increased with increasing Tmax yr-1 (r = 0.25, 

p < 0.0001) and decreasing P yr-1 (r = -0.15, p = 0.0007). I also found that ln Chl-a yr-1 of 

negative trending lakes did not have significant correlation with Tmax yr-1 (r = -0.03, p = 

0.46), while there was a significant positive correlation between ln Chl-a yr-1 and  P yr-1 (r 

= 0.19, p < 0.0001). 

 

Figure 4.4 Rates of change (slopes) of Chl-amod (ln Chl-a yr-1), max air temperature (Tmax 
yr-1), precipitation (Pr yr-1) for (a) positive trending lakes (n = 500) and (b) negative 

trending lakes (n = 561); and (c) Pearson correlation coefficients (r) between ln Chl-a yr-1 
for positive and negative trending lakes and  climate forces (i.e., rates of change in max air 

temperature – Tmax yr-1 and precipitation – P yr-1). Whiskers depict standard deviation. 

4.4.2 Stationary signals in chlorophyll-a time series 

There were multiple stationary signals in ln Chl-amod time series. By analyzing the results 

of sensitivity analysis (Figure 4.5) and time series of median residuals of ln Chl-amod for 

12,644 lakes (Figure 4.6) I determined that removal of six signals was appropriate to 

eliminate most detectable stationary patterns from the time series. The correlation 

between residuals and global climate oscillation indices revealed that the first and the 

second stationary signals had significant correlations (p < 0.1) with the AMO index 

(Table 4.1).  
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Figure 4.5 Sensitivity analysis to identify a threshold when removal of stationary signals 

should be stopped. Vertical dashed line indicates the threshold (the sixth stationary 
signal). 
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Figure 4.6 (a) Original (de-trended) ln Chl-amod time series (median over 12,644 lakes), 

and (b–g) stationary signals identified in the time series. Six stationary signals are 
depicted for all 12,644 lakes (median ln Chl-amod residuals) in accordance with letter 
from b (first signal) to g (sixth signal). 

Table 4.1 Correlation between identified stationary signals and climatic indices. Values 
in bold show significant correlation at p < 0.1. 

Stationary signal Climate index r p value 

1 

MEI -0.04 0.83 

NAO -0.06 0.74 

PDO -0.05 0.79 

AMO 0.36 0.04 

2 

MEI -0.06 0.75 

NAO -0.05 0.78 

PDO -0.06 0.76 

AMO 0.33 0.08 

3 

MEI -0.09 0.61 

NAO -0.03 0.85 

PDO -0.07 0.72 

AMO 0.27 0.16 

4 

MEI -0.14 0.47 

NAO -0.01 0.94 

PDO -0.07 0.75 

AMO 0.17 0.37 

5 

MEI -0.19 0.57 

NAO -0.00 0.96 

PDO -0.08 0.89 

AMO 0.19 0.39 

6 

MEI -0.21 0.58 

NAO -0.00 0.96 

PDO -0.08 0.90 

AMO 0.22 0.40 
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4.4.3 Lake trophic stability classes 

Time series of SDs of residuals within 5-year moving windows (SD5) were observed to 

be most significantly correlated in 95% of the randomly selected lakes (Appendix G 

Figure G.1); therefore, time series of 24 SD5 were calculated in all lakes. Stable, unstable 

and transitional (eutrophying and oligotrophying) lake stability classes were identified by 

analyzing the time series of SD5. I identified 5,344 lakes (42.3%) as stable oligotrophic 

(low SD5 and low Chl-a in concentration in ln Chl-amod across time), 146 lakes (1.2%) as 

stable eutrophic (low SD5 and high Chl-a concentration in ln Chl-amod), 1,586 lakes 

(12.5%) as unstable (high SD5 across time), 2,605 lakes (20.6%) as eutrophying (SD5 

increasing over time), and 2,963 lakes (23.4%) as oligotrophying (SD5 decreasing over 

time). Significant differences (p < 0.05) in the mean SD5 between all stability classes 

were observed.  

I assessed the relation of lake stability classes to lake trophic condition (i.e., trophic state: 

oligotrophic, mesotrophic, eutrophic/hyper-eutrophic). For this, Chl-amod of individual 

lakes in each lake stability class was averaged across 5-year intervals from 1985 to 2009 

and plotted as a box-plot (Figure 4.7). Both stable oligotrophic and stable eutrophic lakes 

did not show any clear change across 5-year intervals from 1985 to 2009 (i.e., they were 

stable). However, eutrophying lakes were shifting from oligotrophic to mesotrophic and 

eutrophic states, while oligotrophying lakes were shifting from eutrophic to mesotrophic 

and oligotrophic states. Unstable lakes were largely mesotrophic throughout the 1985-

2009 period; however, these lakes still showed “short-term” (within several years) 

patterns where the lakes “switched” from oligotrophic to eutrophic and back to 

oligotrophic states.  
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Figure 4.7 Temporal distribution of lake stability classes (based on time series of SD5 of 

residuals from ln Chl-amod) in relation to trophic states (based on ln Chl-amod 
concentration). 

I found no discernible pattern in the spatial distribution of lakes of stable oligotrophic 

class across the study region (Figure 4.8a), but I did observe clusters in the distribution of 

lakes in the other stability classes (Figures 4.8b, c, d, e).  
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Figure 4.8 Spatial distribution and Kernel density of lakes for various lake stability 

classes (based on time series of SD5 of residuals from ln Chl-amod): (a) stable oligotrophic 
(n = 5,344), (b) eutrophying (n = 2,605), (c) unstable (n = 1,586), (d) stable eutrophic (n 
= 146), and (e) oligotrophying (n = 2,963) classes. In Kernel density, the default search 

radius was based on the number of lakes. 

4.4.4 Environmental controls of transitional lakes 

Pearson correlation tests indicated that the selected landscape variables did not 

significantly correlate with each other (i.e., there was no co-linearity found between 

variables; see Chapter 3). I related two climate factors (i.e., rates of change in 

temperature and precipitation: Tmax yr-1 and P yr-1) and five landscape factors (i.e., V, DR, 
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W%, LZ and LAT) to the transitional lakes in the classification tree and random forest 

models to determine if these variables are associated with eutrophying or oligotrophying 

lakes. Six lake groups were identified in the classification tree (Figure 4.9a). The rate of 

change in precipitation (P yr-1) was the most significant predictor of transitional lakes, 

followed by lake volume (V). In the larger-volume lakes, W% was the next most 

important variable, whereas in smaller-volume lakes, DR and LZ were the next most 

important variables. Tmax yr-1 and  LAT did not appear in the classification tree and were 

the least significant variables in the random forests (Figure 4.9b). Overall, the percentage 

of oligotrophying lakes increased with more precipitation (i.e., a low rate of precipitation 

decrease or increasing precipitation) and larger W% and LZ but with smaller V and DR. 

On the other hand, the percentage of eutrophying lakes increased with less precipitation 

(i.e., a high rate of precipitation decrease) and smaller W% and LZ but with larger V and 

DR. 
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Figure 4.9 (a) Correlation tree, and (b) results of the random forests showing the 

environmental (climatic and landscape) controls of transitional lakes (n = 78). Climatic 
controls: rate of change of air max temperature and precipitation (Tmax yr-1 and Pr yr-1), 
landscape controls: V–volume, DR–dynamic ratio, W%–wetland cover, LZ–littoral zone, 

LAT–latitude; ln indicates ln-transformed values. Red dashed lines on the tree indicates 
larger- and smaller-volume sections of the tree (with Pr yr-1 ≥ -0.36 mm). 
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4.5 Discussion 

The goal of this study was to investigate whether temperate lakes in a relatively 

undisturbed forested region undergo any noticeable changes in ecosystem stability in 

response to climate change. In an earlier study (Chapter 2), I observed that only 8.4% of 

lakes in the study region had a significant trend in the ln Chl-amod time series, of which 

4.0% were eutrophying and 4.4% were oligotrophying. Climate modification through 

landscape filters that regulated water residence time and nutrient sources, transport and 

fates were important determinants of whether lakes showed eutrophying or 

oligotrophying trends (Chapter 3). However, when examining more subtle signals of 

ecosystem stability such as the standard deviation (variance) in the residuals of the time 

series once non-stationary and stationary signals were removed, I observed that 56.5% of 

my study lakes showed ecosystem instability, with 12.5% of the lakes unstable (or 

switching between oligotrophic and eutrophic), 20.6% eutrophying and 23.4% 

oligotrophying. Of the remaining lakes, 42.3% were stable oligotrophic and 1.3% were 

stable eutrophic.  

Lake instability 

A significant increasing trend in variance over time indicated that 20.6% of lakes in the 

region are losing their resilience and shifting towards a new stable eutrophic state 

(eutrophying). Contrary to my expectations and studies showing significant increases in 

phytoplankton biomass (Winter et al., 2011) and P (as a principal limiting nutrient 

of phytoplankton growth) (Stoddard et al., 2016, but see Eimers et al., 2009), a larger 

percentage of lakes (23.4%) were found to show a significant decreasing trend in SD of 

residuals over time, i.e., shifting towards a new stable oligotrophic state (oligotrophying). 

Spatial and temporal patterns of eutrophying lakes appear to mirror those of 

oligotrophying lakes (i.e., spatial clusters of eutrophying lakes appear in areas of low 

oligotrophying lake density and vice versa (Figures 4.8b and e)), and 5-year average 

annual ln Chl-amod in eutrophying lakes increases proportionately with decreases in 

oligotrophying lakes over time (Figure 4.7). The temporal mirroring suggests that both 

eutrophying and oligotrophying lakes are responding to the same environmental driver(s) 
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but that the different direction of response is likely due to some intrinsic characteristics of 

lakes in each class. The relatively monotonic nature of trends in variance of eutrophying 

and oligotrophying lakes implies that these trends caused by long-lasting (over years) 

environmental drivers but not short-term factors (e.g., extreme weather events). The fact 

that around 50% of eutrophying and around 75% of oligotrophying lakes crossed the 

mesotrophic-eutrophic and mesotrophic-oligotrophic boundary implies that regime shifts 

to a new stable state (either eutrophic or oligotrophic) might have occurred in these lakes, 

while it may occur in the remaining lakes (50% eutrophying and 35% oligotrophying) in 

the future.  

Correlation tree analysis revealed complex interactions between precipitation (rate of 

change – Pr yr-1), landscape controls, and the direction of transitional lakes (i.e., 

eutrophying or oligotrophying). The correlation tree analysis indicated that higher rates of 

precipitation decrease were related to eutrophying lakes (Figure 4.9). The role of 

precipitation as a driver of phytoplankton growth is less known than that of temperature 

(Sinha et al., 2017). While more precipitation mobilizes nutrients on land, potentially 

leading to increasing nutrient enrichment of receiving waters and thereby promoting 

eutrophication (Adrian et al., 2013; Paerl & Huisman, 2008), the study region is known 

to have naturally low soil P (Jeffries & Snyder, 1983) and to have experienced steadily 

decreasing deposition of P (Eimers et al., 2009) and total N for at least the last 20 years 

(Mengistu et al., 2013b; Geddes & Martin, 2017). There is evidence that less 

precipitation can promote eutrophication as well (Cobbaert et al., 2015). Decreasing 

precipitation can lead to less volume for nutrient dilution in a water column and lower 

concentration of dissolved oxygen (Whitehead et al., 2009; Xia et al., 2016). In addition, 

more intense precipitation is likely to lead to higher levels of soil saturation, hindering 

water infiltration and, therefore, the ability of water to flush nutrients out from the soils in 

catchments (Knapp et al., 2008).  

While the rates of change in Pr were variable, ranging from negative (-0.24 mm yr-1) to 

positive (0.17 mm yr-1), all areas of the region experienced an increase in Tmax (mean rate 

= 0.045°C yr-1). Correlation tree analysis revealed that temperature (rate of change of 

maximum air temperature–Tmax yr-1) did not appear to have a significant influence on 
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transitional lakes (Figure 4.9a). The low “variable importance” for Tmax yr-1 revealed by 

the random forests analysis supports this observation (Figure 4.9b). However, the mean 

annual air temperature for 1984-2011 in the region was only +5.1°C, while mean annual 

July-October maximum air temperature for the same period was 17.2°C, suggesting that 

the temperatures remain below what is optimal for phytoplankton growth. 

The presence of landscape factors in the classification tree indicates that surrounding 

catchment and lake-specific characteristics influence transitional lakes. While V, DR and 

LZ might affect the fate of the nutrients within lakes (Vadeboncoeur et al., 2002; 

Hakanson, 2005; Nõges, 2009), wetland cover (W%) might affect the source, storage, 

and transport of water and nutrients to lakes (Mitsch & Gossilink, 2000; Harms et al., 

2016). Contrary to expectations, lakes with smaller volume do not seem to favor 

eutrophication; in fact, the number of eutrophying lakes is the same in both larger- and 

smaller-volume sections of the classification tree (n = 14) (Figure 4.9a). I do not have an 

explanation for this discrepancy, but one of the possible reasons might be the differences 

in lakes depth. The presence of DR in the smaller-volume section of the classification 

tree partly supports this suggestion. The great majority of lakes (~81%) with low DR (< 

0.19) are oligotrophying. Lakes with low DR are less prone to wind-driven sediment 

resuspension (Bachmann et al., 2000; Hakanson, 2005). These lakes are generally deep 

with relatively small fetches; therefore, the sediments are unlikely to get in direct contact 

with a trophogenic layer or to get disturbed by wind activity. This condition might be 

favored by increased water fluxes caused by increasing precipitation. In contrast, higher 

DR indicates higher rates of sediment resuspension that might bring nutrients (especially 

P) from sediments back into water column (Nõges, 2009) and therefore promote 

eutrophication. 

Interestingly, larger littoral zones areas (LZ) seemed to favor oligotrophying lakes. 

Besides being indicative of very shallow depths within lakes and lake connections to 

catchments (Vadeboncoeur et al., 2002; Kornijów et al., 2016), extended littoral zones 

also increase the probability of development of communities of rooted aquatic plants 

(macrophytes; Kornijów et al., 2016). These fringing communities are known to act as 

the buffer, where external material and associated nutrients accumulate and are quickly 
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taken up by the macrophytes and attached algae (Schindler & Scheuerell, 2002). 

Additionally, littoral zones provide refuges for zooplankton; hence, zooplankton 

abundance is generally larger in lakes with developed macrophyte P (Kornijów et al., 

2016). In this case, due to grazing pressure of zooplankton on phytoplankton, the lakes 

might be more prone to oligotrophication than eutrophication or have cyclic behavior 

(i.e., vegetated versus phytoplankton states; Van Nes et al., 2007; Scheffer & Van Nes, 

2007).   

In lakes with larger volumes, wetlands (W%) became an important predictor of 

transitional lakes. Higher proportions of wetland area may contribute to the maintenance 

of oligotrophic states in lakes (Cobbaert et al., 2015) due to the ability of wetlands to 

remove and retain N (primarily in the form of NO3
-; Verhoeven et al., 2006). However, 

other studies showed that wetlands in fact may act as a large source of P, dissolved 

organic nitrogen (DON), and DOM (Mengistu et al., 2014; Harms et al., 2016), and 

therefore they might contribute to eutrophication. In respect with the study region, in 

Chapter 3 I found that lakes with higher Chl-a concentration generally had higher 

wetland cover in the catchments. This seems to contradict my finding that higher W% 

mostly drives oligotrophying lakes. However, it is important to consider the temporal 

factor; in the current study I analyzed a long-term change in a system, while in Chapter 3 

the static condition of lakes was considered (i.e., median precipitation and median Chl-a). 

Therefore, a lake that is changing over time (i.e., eutrophying or oligotrophying) might be 

with low, median or high Chl-a concentration (i.e., be oligotrophic, mesotrophic or 

eutrophic) at any given period of time. Similarly, wetlands might be a source of nutrients 

at any given time, but they might also act as sinks for nutrients over a long period of time.  

The mechanism behind the “switching behavior” of the lakes with unstable states may 

belong to “slow-fast cyclic transitions” proposed by Rinaldi & Scheffer (2000) in which, 

after lakes shift to a new regime, a negative feedback starts to “pull” environmental 

conditions back until a shift to the previous regime occurs (Dakos et al., 2014). This 

phenomenon has been described for cyclic shifts between “vegetated” and “barren” states 

in shallow Dutch lakes caused by the build-up of organic matter and resulting anaerobic 

conditions at the bottom of the lakes (Van Nes et al., 2007), and between vegetated and 
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phytoplankton states in Canadian Boreal Plain lakes caused by differences in water level 

(Cobbaert et al., 2015) and harsh winter conditions (Bayley et al., 2007). 

Lake stability 

The dominance of stable oligotrophic lakes versus stable eutrophic lakes (42.3% versus 

1.3% of all lakes) in the relatively undisturbed temperate forest study region may be 

explained by naturally low soil P levels (the major limiting nutrient of phytoplankton 

growth; Smith, 2003) in the Precambrian Canadian Shield underlying the region (see 

Jeffries & Snyder, 1983). Three spatial clusters of stable eutrophic lakes (Figure 4.8d) are 

present in areas of relatively greater anthropogenic development: two in “cottage 

country” areas in the south of the study region, and one surrounding the Greater Sudbury 

urban region where intense mining practices accompanied by land clearing and logging in 

the 1960s and 1970s may have led to intensified soil erosion and, as a result, increased P 

leaching (Pearson et al., 2002). Further, during the same time period (1970s to 1980s), 

many lakes of the Sudbury region were found to have heavy metal content (e.g., Ni, Cu, 

and Zn) caused by direct runoff from mining sites and atmospheric deposition of metallic 

dust (Semkin & Kramer, 1976; Pearson et al., 2002). This contamination created toxic 

conditions for local fishes and zooplankton (Spry & Weiner, 1991; Pearson et al., 2002), 

possibly leading to serious modification in and even collapse of food chains (Carpenter et 

al., 2014; Dakos et al., 2014). In the absence of pressure from phytoplankton feeders, 

regime shifts to the lakes with a phytoplankton-dominated eutrophic state might have 

occurred. Since the 1990s, some recovery of fish and invertebrate communities in many 

Sudbury lakes has been observed (Valois et al., 2011; Keller et al., 2018), and more time 

might be needed for a return in their ecosystems to pre-disturbance state (Carpenter et al., 

2014). Only 30% of stable eutrophic lakes were found outside these clusters where 

regional-scale anthropogenic development is not apparent (although local-scale 

development may have occurred).  
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4.6 Conclusions 

More than half of the almost 13,000 lakes experienced changes in their ecological 

stability during the study period. Contrary to expectations, the dominant trend was 

towards oligotrophication rather than eutrophication. Both transitions occurred in 

response to an external climate factor (precipitation) and the extent of change was 

modified by landscape properties. Changes in precipitation patterns seemed to be more 

important in altering lake stability in lakes. Higher rates of precipitation decrease tended 

to drive eutrophication in lakes, while smaller rates of precipitation decrease or 

precipitation increases tended to result in oligotrophying lakes. In the absence of 

confounding land use, the changes in precipitation patterns anticipated as consequences 

of climate change can be used to understand regional patterns of eutrophication and 

oligotrophication in the temperate lakes; however, these patterns will still be largely 

depended on catchment and lake-specific properties. 
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5 Summary 

The major contributions of this thesis include: (1) modeling Chl-a concentration (as a 

proxy of lake phytoplankton biomass) in lakes in the temperate forest biome of central 

Ontario through space and time; (2) finding spatial and temporal trends in Chl-a and 

developing an understanding of the role that climatic and landscape factors play in lake 

Chl-a concentration in the study area; (3) developing a framework for classifying lake 

trophic stability over time (and for identifying possible signs of regime shifts in lake 

trophic state); and (5) developing an understanding of the importance of climate in 

driving lake instability to understand why some lakes change over time while others 

remain in a stable state (oligotrophic or eutrophic).  

5.1 Research findings 

The lakes of the study area are located in the relatively intact region of the temperate 

forest biome within the Boreal (Canadian) Shield in central Ontario. The study region 

was selected on the assumption that human activities and anthropogenically-driven 

nutrient discharges in the area are minimal, so that changes in lake Chl-a concentration 

can be considered as natural responses to climate changes. The study lakes differ in 

volume, size, depth, and trophic state (from oligotrophic to hyper-eutrophic, based on 

modeled Chl-a).  

Remote sensing was employed to model Chl-a concentration using archived Landsat 

TM/ETM+ satellite products obtained from August to October (the peak phytoplankton 

biomass for the temperate regions of North America) from 1984 to 2011. Reflectance 

values from the archived images and sample lake Chl-a concentration measurements 

were used to develop a regression model to estimate Chl-a in 12,644 lakes over a 28-year 

period. A two-way ANOVA showed that the temporal (variation in climate) and spatial 

(regional landscape controls) components accounted for 26% of the total variation in Chl-

a concentration, while the interaction (lake-specific controls) component accounted for 

the remainder of the variation (74 %). A high density of oligotrophic lakes were found in 

a belt formed by topographic divides while clusters of eutrophic and hyper-eutrophic 
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lakes were found near the Great Lakes and Sudbury, and at the southernmost parts of the 

study region. However, correlations between Chl-a concentration in different lake trophic 

states and topography were weak. Temporal trends in Chl-a concentration were found to 

correlate with climatic controls, where lakes with increasing Chl-a concentration were 

more correlated with increasing air temperature (r = 0.25, p < 0.0001) and lakes with 

decreasing Chl-a concentration were more correlated with increasing precipitation (r = 

0.19, p < 0.0001).  

Air temperature, precipitation, and various landscape properties (lake volume, dynamic 

ratio, wetland cover in catchment, littoral zone area, and latitude) were used in the 

regression tree model to explain median Chl-a concentration in a subset of 275 lakes. 

Lakes with the highest Chl-a concentration had smaller volumes (< 442 × 103 m3) and 

were more sensitive to temperature change. On the other hand, lakes with lower Chl-a 

concentration had larger volumes (> 442 × 103 m3), were more sensitive to precipitation 

change, and were mostly oligotrophic (but also mesotrophic). These findings indicate 

that: (1) lakes with smaller volumes were more responsive to climate change and that this 

response was more “typical” and more “direct” (higher temperatures = higher Chl-a); and 

(2) lakes with larger volumes were generally less responsive to climate change, but 

shallower large-volume lakes (and with larger littoral zones) behaved similarly to lakes 

with smaller volumes.  

Non-stationary and stationary trends were removed from the time series of lake Chl-a 

concentration, and trends in the standard deviations of residuals within a moving time 

window were categorized into five classes of lake trophic stability. Two of these classes 

were characterized as stable (either oligotrophic or eutrophic), one as unstable, and two 

as transitional (either eutrophying or oligotrophying). The majority of lakes (42.3%) were 

stable oligotrophic, and the minority (1.2%) were stable eutrophic, while 12.5% of lakes 

were unstable. There were more lakes experiencing oligotrophication (23.4%) compared 

to those experiencing eutrophication (20.6%). This indicates that despite the fact that both 

eutrophication and oligotrophication are occurring simultaneously in the region, 

eutrophication is still not as ubiquitous as one might think. Additionally, the fact that 

stable oligotrophic is still a dominating state in the region indicates that many lakes 
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exhibit a large degree of resilience to the environmental changes observed in the northern 

temperate ecosystems. Classification tree models and random forests analysis showed 

that both transitional lake classes are driven by changes in precipitation patterns (high 

rate of decrease in precipitation or an increase in precipitation) but not by temperature 

increase. Precipitation is likely to drive changes in lake stability via changes in nutrient 

loading patterns that are manifested through catchment (i.e., wetland coverage) and lake 

morphometric characteristics.  

5.2 Research significance 

This thesis provides a valuable contribution to understanding of the controls of Chl-a 

concentration in temperate lakes. To my knowledge, this study is the first meta-analysis 

comparing the importance of climate, catchment and lake controls on phytoplankton 

biomass and lake trophic stability.  

The thesis provides an insight into how phytoplankton from lakes with different 

morphometry responds to changing climate (Chapter 3). The finding that lakes with 

different volumes respond differently to precipitation controls may help inform 

development of different methods of lake protection under changing climate scenarios 

(Steffen et al., 2018).   

This thesis provides a framework for identifying the trophic stability of lakes over time 

(Chapter 4). Variance of residuals has been long used as an indicator of ecosystem 

stability and regime shifts (Dakos et al., 2014). However, to my knowledge, this is the 

first time when variance of residuals has been used to identify stability classes in 

accordance with the conceptual model developed by Scheffer et al. (2001), where some 

lakes exhibit change over time while others remain in a stable state. This framework can 

be applied as a template for assessing the trophic stability of lakes located in different 

regions and under different climatic or environmental conditions.  

5.3 Future research needs 

Understanding the processes regulating phytoplankton biomass have proven to be 

challenging; complicated not only by changing patterns of temperature and precipitation 



121 

 

 

but also by variability in catchment characteristics and lake morphometry acting on 

different spatial and temporal scales. This thesis examined the processes and patterns that 

help to explain the heterogeneity in phytoplankton biomass (estimated as Chl-a 

concentration). However, there are two main areas that need to be addressed in further 

research, which include: 

1. Explaining trends in limiting to algal growth nutrients, as they may affect changes 

in lake Chl-a concentration. Sufficient long-term measurements of lake P, N in 

areas within (or near) the study region may be particularly useful. For example, 

Eimers et al. (2009) had temporally extensive (around 20 years) measurements of 

P in eleven catchments draining into three lakes in Boreal Shield (and therefore 

encompassing the study region). In this study, however, I did not intend to 

compare long-term trends in nutrients with trends in Chl-a; my intention was to 

explain general relation between climate, landscape factors and Chl-a, and offer 

possible explanation on how these factors might affect nutrient loading into lakes 

and hence Chl-a concentration within these lakes;  

2. Estimating the effect of brownification in the study lakes. This phenomenon was 

found to be caused by increasing runoff of terrestrially derived DOM to receiving 

lakes, which can result in reduced primary productivity and nutritionally poorer 

lake food webs (Creed et al., 2018). Brownification might potentially explain 

trends with decreasing Chl-a found in some study lakes. Lake instability might 

also be partly influenced by this phenomenon under the condition of gradually 

increasing supply of DOM to the study lakes.  
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Appendices  

Appendix A: Description of lake samples used for the development of the regression 

model in Chapter 2. 

Table A.1 Description of lake samples (sample date, lake morphometry and chemistry) 

Lake 

ID 

Sample 

Name/ID Location Longitude Latitude Sample date 

Lake 

mean 
depth 

(m) 

Lake 

maxim

um 
depth 

(m) 

Lake 
area 

(ha) 

Chl-a 

(μg L-1) 

DOC 
(mg 

L-1) 

TP (μg 

L-1) 

Secchi 
depth 

(m) 

Turbidi
ty 

(NTU) 

Selected 

for final 
model 

(Yes/No) 

10on Sill Ontario -84.25 46.77 June 20, 2010 - 7.4 41.7 0.9 - 10.8 7.4 - Yes 
12on Reception1 Ontario -83.25 46.48 June 26, 2009 - 2.8 88.7 10.0 - 14.7 1.3 - Yes 

13on Rock Ontario -83.77 46.43 June 24, 2009 - 1.9 1033.2 3.7 - 13.4 1.8 - Yes 

14on Cloudy Ontario -83.93 46.44 June 24, 2009 - 7.4 248.8 0.5 - 9.4 4.8 - Yes 

16on Constance1 Ontario -83.23 46.43 June 26, 2009 - 7.8 120.1 1.1 - 6.9 4.7 - Yes 

17on Appleby1 Ontario -83.35 46.43 June 26, 2009 - 5.1 24.3 4.6 - 10.8 2.3 - Yes 
19on Woodrow2 Ontario -83.33 46.41 August 24, 2010 - 2.0 48.8 0.6 7.1 3.8 2.0 - Yes 

1on Negick2 Ontario -84.49 47.21 June 16, 2010 - 5.3 26.6 2.3 2.6 12.8 3.5 - Yes 

20on Round Ontario -83.83 46.39 June 24, 2009 - 3.2 128.4 3.3 - 19.5 2.7 - Yes 

22on Eaket1 Ontario -83.25 46.35 June 26, 2009 - 4.5 56.7 2.8 - 9.2 2.9 - Yes 

23on Twin Ontario -83.93 46.23 July 27, 2011 - 3.8 30.0 7.4 - 10.3 1.7 - Yes 
24on Dean2 Ontario -83.18 46.23 July 25, 2011 - 14.9 219.5 3.2 - - 6.0 - Yes 

25on Caysee2 Ontario -84.66 47.18 June 16, 2010 - 1.3 16.5 2.5 8.3 23.2 1.3 - Yes 

26on Carp Ontario -84.56 46.97 June 16, 2010 - 1.5 112.1 3.7 5.6 17.2 1..5 - Yes 

2on 

Upper 

Griffin Ontario -84.40 47.09 June 16, 2010 - 7.8 155.3 0.7 3.8 7.2 7.8 - Yes 
5on Big Turkey Ontario -84.42 47.05 May 16, 2010 - 42.7 51.8 1.4 3.8 5.0 5.6 - Yes 

7on 

Little 

Turkey Ontario -84.41 47.04 May 16, 2010 - 7.3 18.9 0.5 16.4 3.2 7.3 - Yes 

8on 

Upper 

Tilley2 Ontario -84.39 47.02 May 15, 2010 - 6.1 163.1 2.1 4.8 9.2 2.9 - Yes 
101ab 5992 Alberta -115.38 56.07 August 14, 2002 1.6 - 19.7 28.6 60.3 100.8 0.3 - Yes 

102ab 88 Alberta -115.50 56.04 August 15, 1999 1.1 - 274.7 3.7 - 30.2 0.7 - Yes 

108ab 75 Alberta -114.85 55.96 August 12, 2001 0.9 - 31.4 34.2 60.2 118.6 0.5 7.3 Yes 

16ab 101 Alberta -114.75 56.31 August 13, 2001 1.8 - 39.2 2.0 38.6 17.9 1.8 0.4 Yes 

24ab 12 Alberta -115.88 56.10 August 11, 2001 1.3 - 4.6 15.9 27.9 58.2 1.3 0.9 Yes 
28ab 57 Alberta -115.39 56.08 August 15, 1999 0.6 - 9.8 8.7 - 119.3 0.0 - Yes 

2ab 42 Alberta -115.16 56.30 August 11, 2001 1.1 - 7.4 40.8 40.9 117.0 0.6 3.3 Yes 

37ab 1681 Alberta -115.20 55.99 August 15, 2001 0.7 - 11.2 6.4 58.3 102.4 0.7 1.2 Yes 
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Lake 

ID 

Sample 

Name/ID Location Longitude Latitude Sample date 

Lake 

mean 

depth 

(m) 

Lake 

maxim

um 

depth 

(m) 

Lake 

area 

(ha) 

Chl-a 

(μg L-1) 

DOC 

(mg 

L-1) 

TP (μg 

L-1) 

Secchi 

depth 

(m) 

Turbidi

ty 

(NTU) 

Selected 

for final 

model 

(Yes/No) 
37ab 1682 Alberta -115.20 55.99 August 12, 2002 0.7 - 10.6 3.8 74.9 120.8 0.7 - Yes 

38ab 171 Alberta -115.19 55.98 August 15, 1999 0.6 - 8.5 47.1 - 421.7 0.6 - Yes 

45ab 131 Alberta -115.60 55.96 August 15, 1999 - - 27.1 18.5 - 135.8 0.3 - Yes 

46ab 165 Alberta -115.26 55.96 August 19, 1999 - - 8.5 63.4 - 178.6 0.5 - Yes 

53ab 201 Alberta -115.71 56.12 August 13, 2001 1.2 - 35.1 30.3 23.2 46.3 0.6 10.6 Yes 
53ab 2012 Alberta -115.71 56.12 August 13, 2002 1.2 - 34.6 13.0 27.1 58.5 0.8 20.0 Yes 

53ab 2011 Alberta -115.71 56.12 August 15, 1999 1.2 - 34.4 20.2 - 64.9 0.5 - Yes 

55ab 81 Alberta -115.56 56.03 August 15, 1999 0.8 - 19.9 9.2 - 54.4 0.5 - Yes 

56ab 89 Alberta -115.51 56.02 August 15, 1999 - - 311.9 3.5 - 66.7 0.4 - Yes 

58ab 111 Alberta -115.43 56.03 August 14, 2001 0.6 - 5.0 2.8 48.8 39.2 0.6 1.3 Yes 
5ab 7 Alberta -115.63 56.29 August 11, 2001 0.8 - 15.6 4.4 56.7 43.5 0.8 1.3 Yes 

67ab 127 Alberta -115.18 56.01 August 19, 1999 - - 201.8 57.2 - 212.4 0.8 - Yes 

68ab 61 Alberta -113.91 55.92 August 12, 2001 2.0 - 20.4 2.0 22.1 68.0 1.3 1.1 Yes 

70ab 1211 Alberta -115.35 56.01 August 15, 2001 0.7 - 6.8 3.5 50.3 58.8 0.7 0.7 Yes 

70ab 1212 Alberta -115.35 56.01 August 13, 2002 0.7 - 6.1 12.1 58.5 105.9 0.5 19.3 Yes 
70ab 121 Alberta -115.35 56.01 August 15, 1999 0.7 - 6.4 46.0 - 150.8 0.7 - Yes 

75ab 87 Alberta -115.12 55.73 August 12, 2001 0.5 - 9.1 7.4 79.6 57.2 0.5 1.2 Yes 

78ab 27 Alberta -115.52 56.07 August 11, 2001 0.6 - 4.5 12.4 25.9 48.4 0.6 1.8 Yes 

7ab 4 Alberta -115.68 56.42 August 11, 2001 0.6 - 6.4 2.8 59.9 233.9 0.6 0.6 Yes 

80ab 55 Alberta -114.16 56.32 August 12, 2001 1.1 - 7.4 61.5 60.7 246.4 0.4 19.0 Yes 
92ab 1223 Alberta -115.35 56.01 August 12, 2002 0.7 - 5.9 31.4 68.9 123.0 0.3 - Yes 

92ab 122 Alberta -115.35 56.01 August 15, 1999 0.7 - 6.9 58.0 - 77.7 0.6 - Yes 

98ab 16 Alberta -115.55 56.11 August 13, 2002 0.9 - 36.7 12.0 22.5 68.5 0.9 - Yes 

58ab 1111 Alberta -115.43 56.03 August 19, 1999 0.6 - 5.2 2.7 - 32.8 0.8 - No/outlier 

62ab 33 Alberta -115.58 56.17 August 11, 2001 2.1 - 89.7 2.9 43.0 17.8 1.7 0.8 No/outlier 
92ab 1222 Alberta -115.35 56.01 August 15, 2001 0.7 - 7.0 78.8 50.0 126.4 0.6 4.6 No/outlier 

9ab 47 Alberta -114.85 56.49 August 12, 2001 1.8 - 9.4 2.0 41.3 23.7 1.7 0.4 No/outlier 

11on Echo Lake Ontario -83.98 46.56 June 20, 2010 - 5.3 1124.1 2.0 4.9 11.6 1.1 - No 

12on Reception2 Ontario -83.25 46.48 August 24, 2010 - 2.8 85.7 27.7 12.8 32.0 0.5 - No 

15on Gordon Ontario -83.83 46.42 June 24, 2009 - 1.6 605.1 2.5 - 11.5 1.5 - No 
16on Constance2 Ontario -83.23 46.43 August 31, 2009 - 7.8 115.2 1.2 3.9 9.3 6.0 - No 

17on Appleby2 Ontario -83.35 46.43 August 31, 2009 - 5.1 21.7 8.6 9.4 18.1 1.8 - No 

18on Desbarats Ontario -83.93 46.39 June 24, 2009 - 6.9 396.6 3.1 - 30.2 0.6 - No 

19on Woodrow1 Ontario -83.33 46.41 June 26, 2009 - 2.0 51.8 0.5 - 10.3 2.0 - No 

1on Negick1 Ontario -84.49 47.21 
September 2, 
2009 - 5.3 31.1 3.0 4.9 11.4 2.6 - No 

21on Ottertail Ontario -83.75 46.38 May 17, 2009 - 2.5 424.0 4.7 7.9 23.7 0.3 - No 

22on Eaket2 Ontario -83.25 46.35 August 24, 2010 - 4.5 52.3 3.2 2.1 8.6 3.6 - No 

24on Dean1 Ontario -83.18 46.23 August 24, 2010 - 14.9 222.8 7.6 7.1 23.2 1.8 - No 
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Lake 

ID 

Sample 

Name/ID Location Longitude Latitude Sample date 

Lake 

mean 

depth 

(m) 

Lake 

maxim

um 

depth 

(m) 

Lake 

area 

(ha) 

Chl-a 

(μg L-1) 

DOC 

(mg 

L-1) 

TP (μg 

L-1) 

Secchi 

depth 

(m) 

Turbidi

ty 

(NTU) 

Selected 

for final 

model 

(Yes/No) 

25on Caysee1 Ontario -84.66 47.18 

September 2, 

2009 - 1.6 16.5 4.3 8.7 16.3 1.6 - No 

3on 

Lower 

Griffin Ontario -84.42 47.08 May 16, 2010 - 7.5 24.8 0.4 4.4 2.0 7.5 - No 

4on 

Upper 
Batchawan

a Ontario -84.39 47.07 May 16, 2010 - 7.5 5.2 0.5 4.0 14.2 6.8 - No 

6on Wishart Ontario -84.40 47.05 May 16, 2010 - 3.0 17.5 1.0 3.7 14.4 1.0 - No 

8on 

Upper 

Tilley1 Ontario -84.39 47.02 

September 2, 

2009 - 6.1 163.1 4.0 5.3 8.0 2.7 - No 

9on 

Lower 

Tilley Ontario -84.39 47.00 May 15, 2010 - 1.6 143.6 2.5 3.5 18.4 1.6 - No 

100ab 62 Alberta -115.28 56.07 August 19, 1999 - - 13.6 10.1 - 72.9 0.6 - No 

101ab 59 Alberta -115.38 56.07 August 14, 2001 1.6 - 22.1 86.1 43.6 264.2 0.5 4.4 No 

101ab 5991 Alberta -115.38 56.07 August 19, 1999 1.6 - 22.6 10.6 - 57.6 0.9 - No 
103ab 79 Alberta -114.93 56.05 August 12, 2001 1.6 - 94.9 32.4 62.3 32.6 1.4 0.8 No 

107ab 2051 Alberta -115.16 55.96 August 12, 2002 - - 13.0 6.0 77.0 61.8 - - No 

107ab 205 Alberta -115.16 55.96 August 19, 1999 - - 17.4 41.9 - 134.3 0.7 - No 

109ab 17 Alberta -116.04 55.84 August 11, 2001 1.5 - 5.4 18.5 34.6 354.9 0.9 1.2 No 

12ab 5 Alberta -115.56 56.33 August 11, 2001 0.7 - 21.1 1.9 51.8 175.7 0.7 0.9 No 
14ab 52 Alberta -114.32 56.40 August 12, 2001 1.1 - 7.1 28.2 23.7 98.1 0.6 1.8 No 

17ab 53 Alberta -114.32 56.38 August 12, 2001 0.9 - 4.5 22.9 24.8 66.5 0.6 0.7 No 

19ab 29 Alberta -115.66 55.75 August 11, 2001 1.0 - 6.2 20.7 23.5 65.7 0.7 1.3 No 

33ab 31 Alberta -115.50 56.07 August 13, 2002 - - 6.7 7.2 71.2 68.3 0.3 - No 

34ab 80 Alberta -115.04 56.07 August 12, 2001 0.9 - 11.3 9.1 56.4 46.9 0.9 0.6 No 
37ab 168 Alberta -115.20 55.99 August 15, 1999 0.7 - 11.1 31.0 - 248.3 1.0 - No 

38ab 1711 Alberta -115.19 55.98 August 15, 2001 0.6 - 8.2 23.7 49.8 175.3 0.4 2.1 No 

38ab 1712 Alberta -115.19 55.98 August 12, 2002 0.6 - 7.6 3.4 65.8 79.3 0.4 - No 

43ab 95 Alberta -114.56 56.14 August 13, 2001 1.6 - 9.2 5.9 68.3 22.3 1.4 0.9 No 

47ab 599 Alberta -113.84 56.04 August 12, 2001 1.1 - 16.5 55.2 35.4 281.3 0.7 2.0 No 
52ab 39 Alberta -115.17 56.12 August 11, 2001 2.0 - 93.2 12.8 20.0 38.3 1.6 1.7 No 

54ab 71 Alberta -113.96 55.95 August 12, 2001 1.3 - 24.2 136.4 37.9 264.8 0.4 7.9 No 

58ab 1112 Alberta -115.43 56.03 August 14, 2002 0.6 - 5.0 32.6 54.2 129.7 0.5 - No 

60ab 38 Alberta -115.18 56.17 August 11, 2001 3.2 - 8.9 13.6 19.9 41.1 2.0 1.0 No 

63ab 34 Alberta -115.49 56.17 August 11, 2001 1.4 - 59.6 3.9 23.3 19.6 1.1 1.1 No 
65ab 777 Alberta -115.55 56.10 August 13, 2002 1.3 - 92.6 3.8 21.8 22.9 - - No 

66ab 19 Alberta -115.92 55.80 August 11, 2001 1.6 - 28.8 5.8 30.9 70.5 1.1 0.4 No 

69ab 8 Alberta -115.79 56.17 August 11, 2001 2.9 - 6.4 5.2 22.7 28.4 2.0 1.1 No 

6ab 54 Alberta -114.23 56.36 August 12, 2001 1.5 - 12.9 49.5 48.3 47.4 0.6 0.9 No 

73ab 888 Alberta -115.21 55.78 August 12, 2001 0.5 - 6.5 59.6 - 152.1 0.4 8.1 No 
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Lake 

ID 

Sample 

Name/ID Location Longitude Latitude Sample date 

Lake 

mean 

depth 

(m) 

Lake 

maxim

um 

depth 

(m) 

Lake 

area 

(ha) 

Chl-a 

(μg L-1) 

DOC 

(mg 

L-1) 

TP (μg 

L-1) 

Secchi 

depth 

(m) 

Turbidi

ty 

(NTU) 

Selected 

for final 

model 

(Yes/No) 
76ab 2 Alberta -115.60 56.10 August 15, 1999 0.9 - 220.8 13.5 - 102.0 0.6 - No 

77ab 23 Alberta -115.77 55.66 August 11, 2001 1.6 - 11.5 20.1 29.3 63.4 1.0 1.6 No 

81ab 102 Alberta -114.77 56.31 August 13, 2001 1.4 - 9.4 4.8 26.9 38.2 1.4 0.9 No 

82ab 18 Alberta -116.00 55.82 August 11, 2001 3.0 - 4.7 30.2 39.0 128.3 1.0 0.7 No 

86ab 21 Alberta -115.93 55.75 August 11, 2001 1.7 - 28.6 15.9 25.9 46.1 1.5 0.8 No 
97ab 577 Alberta -113.72 56.13 August 12, 2001 0.6 - 10.0 5.6 34.2 58.7 0.5 0.7 No 
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Table A.2 Correspondence of 53 lake samples with dates of Landsat image capture. 

 

Lake ID  Sample Name/ID Location Longitude Latitude Sample date Satellite overpass date Difference in days 

78ab 27 Alberta -115.52 56.07 August 11, 2001 August 13, 2001 2 

24ab 12 Alberta -115.88 56.10 August 11, 2001 August 13, 2001 2 

58ab 1111 Alberta -115.43 56.03 August 19, 1999 August 15, 1999 4 

58ab 111 Alberta -115.43 56.03 August 14, 2001 August 13, 2001 1 

7ab 4 Alberta -115.68 56.42 August 11, 2001 August 13, 2001 2 
70ab 1211 Alberta -115.35 56.01 August 15, 2001 August 13, 2001 2 

70ab 1212 Alberta -115.35 56.01 August 13, 2002 August 8, 2002 5 

70ab 121 Alberta -115.35 56.01 August 15, 1999 August 15, 1999 0 

92ab 1223 Alberta -115.35 56.01 August 12, 2002 August 8, 2002 4 

92ab 122 Alberta -115.35 56.01 August 15, 1999 August 15, 1999 0 
92ab 1222 Alberta -115.35 56.01 August 15, 2001 August 13, 2001 2 

2ab 42 Alberta -115.16 56.30 August 11, 2001 August 13, 2001 2 

80ab 55 Alberta -114.16 56.32 August 12, 2001 August 13, 2001 1 

38ab 171 Alberta -115.19 55.98 August 15, 1999 August 15, 1999 0 

46ab 165 Alberta -115.26 55.96 August 19, 1999 August 15, 1999 4 
75ab 87 Alberta -115.12 55.73 August 12, 2001 August 13, 2001 1 

9ab 47 Alberta -114.85 56.49 August 12, 2001 August 13, 2001 1 

28ab 57 Alberta -115.39 56.08 August 15, 1999 August 15, 1999 0 

37ab 1682 Alberta -115.20 55.99 August 12, 2002 August 8, 2002 4 

37ab 1681 Alberta -115.20 55.99 August 15, 2001 August 13, 2001 2 
5ab 7 Alberta -115.63 56.29 August 11, 2001 August 13, 2001 2 

25on Caysee2 Ontario -84.66 47.18 June 16, 2010 June 17, 2010 1 

7on Little Turkey Ontario -84.41 47.04 May 16, 2010 16-May-2010 0 

101ab 5992 Alberta -115.38 56.07 August 14, 2002 August 8, 2002 6 
55ab 81 Alberta -115.56 56.03 August 15, 1999 August 15, 1999 0 

68ab 61 Alberta -113.91 55.92 August 12, 2001 August 13, 2001 1 

17on Appleby1 Ontario -83.35 46.43 June 26, 2009 June 23, 2009 3 

1on Negick2 Ontario -84.49 47.21 June 16, 2010 June 17, 2010 1 

45ab 131 Alberta -115.60 55.96 August 15, 1999 August 15, 1999 0 
23on Twin Ontario -83.93 46.23 July 27, 2011 July 31, 2011 4 

108ab 75 Alberta -114.85 55.96 August 12, 2001 August 13, 2001 1 

53ab 2012 Alberta -115.71 56.12 August 13, 2002 August 8, 2002 5 

53ab 2011 Alberta -115.71 56.12 August 15, 1999 August 15, 1999 0 

53ab 201 Alberta -115.71 56.12 August 13, 2001 August 13, 2001 0 
98ab 16 Alberta -115.55 56.11 August 13, 2002 August 8, 2002 5 

16ab 101 Alberta -114.75 56.31 August 13, 2001 August 13, 2001 0 

10on Sill Ontario -84.25 46.77 June 20, 2010 June 17, 2010 3 

19on Woodrow2 Ontario -83.33 46.41 August 24, 2010 August 29, 2010 5 

5on Big Turkey Ontario -84.42 47.05 May 16, 2010 16-May-2010 0 
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Lake ID  Sample Name/ID Location Longitude Latitude Sample date Satellite overpass date Difference in days 

22on Eaket1 Ontario -83.25 46.35 June 26, 2009 June 23, 2009 3 

12on Reception1 Ontario -83.25 46.48 June 26, 2009 June 23, 2009 3 

62ab 33 Alberta -115.58 56.17 August 11, 2001 August 13, 2001 2 
26on Carp Ontario -84.56 46.97 June 16, 2010 June 17, 2010 1 

16on Constance1 Ontario -83.23 46.43 June 26, 2009 June 23, 2009 3 

20on Round Ontario -83.83 46.39 June 24, 2009 June 23, 2009 1 

2on Upper Griffin Ontario -84.40 47.09 June 16, 2010 June 17, 2010 1 

8on Upper Tilley2 Ontario -84.39 47.02 May 15, 2010 16-May-2010 1 
67ab 127 Alberta -115.18 56.01 August 19, 1999 August 15, 1999 4 

24on Dean2 Ontario -83.18 46.23 July 25, 2011 July 31, 2011 6 

14on Cloudy Ontario -83.93 46.44 June 24, 2009 June 23, 2009 1 

102ab 88 Alberta -115.50 56.04 August 15, 1999 August 15, 1999 0 

56ab 89 Alberta -115.51 56.02 August 15, 1999 August 15, 1999 0 
13on Rock Ontario -83.77 46.43 June 24, 2009 June 23, 2009 1 
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Table A.3 TOA radiance values for Landsat bands 1–5, standard deviation (SD) of radiance in band 5 and TOA reflectance 
values (with partial atmospheric correction) for Landsat bands 1–4 for 53 ground-sampled lakes. LT = Landsat 5; LE = 

Landsat 7. 

Lake  

ID 

Sample 

Name/ID 

Landsat scene ID (LT 

or LE) 

TOA 

radiance 

B1 

TOA 

radiance 

B2 

TOA 

radiance 

B3 

TOA 

radiance 

B4 

TOA 

radiance 

B5 

Standard 

deviation 

(SD) B5 

TOA 

reflectan

ce B1 

TOA 

reflectan

ce  B2 

TOA 

reflectan

ce  B3 

TOA 

reflectan

ce  B4 

101ab 5992 

LT05 044021 

20020808 33.34 21.32 12.28 11.99 0.44 0.28 0.02 0.02 0.02 0.05 

10on Sill LT50220272010168 40.85 24.92 12.58 12.32 0.70 0.43 0.03 0.02 0.01 0.04 

102ab 88 

LE07 045021 

19990815 33.37 20.25 10.52 6.05 0.29 0.23 0.02 0.02 0.01 0.03 

108ab 75 

LE07 044021 

20010813 44.51 30.10 18.01 12.18 0.54 0.21 0.05 0.04 0.04 0.05 

1on Negick2 LT50220272010168 41.71 26.17 14.61 13.86 1.07 0.48 0.03 0.03 0.02 0.05 

12on Reception1 LT50210282009174 47.32 32.62 18.40 17.46 0.75 0.43 0.04 0.04 0.03 0.06 

13on Rock LT50210282009174 46.99 29.99 16.97 12.34 0.50 0.29 0.04 0.03 0.02 0.04 

14on Cloudy LT50210282009174 46.76 29.29 15.26 13.19 0.60 0.37 0.04 0.03 0.02 0.05 

16ab 101 

LE07 044021 

20010813 40.32 24.36 13.40 12.21 0.93 0.44 0.04 0.03 0.02 0.05 

16on Constance1 LT50210282009174 46.13 29.35 16.45 15.69 0.82 0.45 0.04 0.03 0.02 0.04 

17on Appleby1 LT50210282009174 45.49 28.70 16.33 16.49 0.85 0.46 0.03 0.03 0.02 0.06 

19on Woodrow2 LT50210282010241 34.87 20.44 10.22 7.95 0.42 0.27 0.02 0.02 0.01 0.03 

20on Round LT50210282009174 47.62 31.60 16.84 14.43 0.64 0.36 0.04 0.04 0.02 0.05 

2ab 42 

LE07 044021 

20010813 40.94 27.07 15.88 12.19 0.62 0.21 0.04 0.04 0.03 0.05 

2on 

Upper 

Griffin LT50220272010168 41.34 24.74 12.87 10.73 0.62 0.37 0.03 0.02 0.01 0.04 

22on Eaket1 LT50210282009174 45.90 29.81 16.88 16.58 0.93 0.51 0.04 0.03 0.02 0.06 

23on Twin LT50210282011212 45.54 28.90 16.61 13.96 0.83 0.22 0.04 0.03 0.03 0.05 

24ab 12 

LE07 044021 

20010813 42.75 28.04 15.63 14.82 0.75 0.38 0.04 0.04 0.03 0.06 

24on Dean2 LT50210282011212 42.33 26.91 14.24 9.57 0.53 0.19 0.03 0.03 0.02 0.04 

25on Caysee2 LT50220272010168 41.35 25.76 14.54 13.12 0.87 0.49 0.03 0.02 0.02 0.05 

26on Carp LT50220272010168 44.44 29.50 16.75 12.89 0.89 0.39 0.03 0.03 0.02 0.05 

28ab 57 

LE07 045021 

19990815 33.47 20.54 11.39 17.28 0.53 0.2 0.02 0.02 0.02 0.07 

37ab 1681 

LE07 044021 

20010813 44.41 29.90 17.05 18.13 0.79 0.29 0.05 0.04 0.03 0.08 

37ab 1682 

LT05 044021 

20020808 34.30 21.76 12.39 10.00 0.47 0.17 0.03 0.02 0.02 0.04 

38ab 171 

LE07 045021 

19990815 34.60 22.01 12.93 9.61 0.41 0.23 0.03 0.02 0.02 0.04 

45ab 131 

LE07 045021 

19990815 34.46 22.54 12.40 8.01 0.36 0.26 0.03 0.02 0.02 0.03 
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Lake  

ID 

Sample 

Name/ID 

Landsat scene ID (LT 

or LE) 

TOA 

radiance 

B1 

TOA 

radiance 

B2 

TOA 

radiance 

B3 

TOA 

radiance 

B4 

TOA 

radiance 

B5 

Standard 

deviation 

(SD) B5 

TOA 

reflectan

ce B1 

TOA 

reflectan

ce  B2 

TOA 

reflectan

ce  B3 

TOA 

reflectan

ce  B4 

46ab 165 

LE07 045021 

19990815 33.89 20.54 12.62 7.66 0.41 0.26 0.02 0.02 0.02 0.03 

5ab 7 

LE07 044021 

20010813 43.52 29.72 17.32 19.23 0.66 0.24 0.05 0.04 0.03 0.08 

5on Big Turkey LT50220272010136 38.59 23.61 12.55 9.34 0.83 0.43 0.02 0.02 0.01 0.03 

53ab 2011 

LE07 045021 

19990815 34.40 21.67 11.64 5.13 0.28 0.19 0.03 0.02 0.02 0.02 

53ab 201 

LE07 044021 

20010813 44.41 30.99 17.74 10.10 0.51 0.25 0.05 0.04 0.03 0.04 

53ab 2012 

LT05 044021 

20020808 33.18 20.92 11.49 5.48 0.29 0.23 0.02 0.02 0.02 0.02 

55ab 81 

LE07 045021 

19990815 33.99 21.63 11.75 7.30 0.34 0.24 0.02 0.02 0.02 0.03 

56ab 89 

LE07 045021 

19990815 34.04 21.72 11.16 6.69 0.24 0.18 0.02 0.02 0.02 0.03 

58ab 1111 

LE07 045021 

19990815 32.63 19.02 9.71 7.54 0.43 0.22 0.02 0.02 0.01 0.03 

58ab 111 

LE07 044021 

20010813 42.57 27.07 15.09 14.21 0.67 0.25 0.04 0.04 0.03 0.06 

62ab 33 

LE07 044021 

20010813 42.04 25.23 13.76 10.38 0.53 0.27 0.04 0.03 0.02 0.04 

67ab 127 

LE07 045021 

19990815 35.18 25.48 14.24 9.71 0.30 0.18 0.03 0.03 0.02 0.04 

68ab 61 

LE07 044021 

20010813 44.03 27.51 15.63 14.76 0.72 0.33 0.05 0.04 0.03 0.06 

70ab 121 

LE07 045021 

19990815 33.52 21.08 12.76 7.94 0.38 0.21 0.02 0.02 0.02 0.03 

70ab 1211 

LE07 044021 

20010813 43.08 27.04 14.80 14.73 0.76 0.33 0.04 0.04 0.03 0.06 

70ab 1212 

LT05 044021 

20020808 33.71 21.20 12.01 8.07 0.38 0.17 0.02 0.02 0.02 0.03 

7ab 4 

LE07 044021 

20010813 43.14 28.40 15.93 25.53 1.04 0.47 0.05 0.04 0.03 0.11 

7on 

Little 

Turkey LT50220272010136 37.41 22.05 11.78 8.76 0.73 0.43 0.02 0.02 0.01 0.03 

75ab 87 

LE07 044021 

20010813 42.88 26.96 16.19 14.04 0.66 0.3 0.04 0.04 0.03 0.06 

78ab 27 

LE07 044021 

20010813 43.36 27.93 16.26 17.24 1.09 0.3 0.05 0.04 0.03 0.07 

80ab 55 

LE07 044021 

20010813 43.23 32.30 20.23 15.20 0.64 0.28 0.05 0.05 0.04 0.07 

8on 

Upper 

Tilley2 LT50220272010136 38.72 24.34 12.15 7.53 0.41 0.3 0.02 0.02 0.01 0.03 
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Lake  

ID 

Sample 

Name/ID 

Landsat scene ID (LT 

or LE) 

TOA 

radiance 

B1 

TOA 

radiance 

B2 

TOA 

radiance 

B3 

TOA 

radiance 

B4 

TOA 

radiance 

B5 

Standard 

deviation 

(SD) B5 

TOA 

reflectan

ce B1 

TOA 

reflectan

ce  B2 

TOA 

reflectan

ce  B3 

TOA 

reflectan

ce  B4 

9ab 47 

LE07 044021 

20010813 39.72 23.23 12.43 12.65 0.77 0.49 0.04 0.03 0.02 0.05 

92ab 122 

LE07 045021 

19990815 34.29 23.61 13.12 8.78 0.38 0.24 0.03 0.03 0.02 0.04 

92ab 1222 

LE07 044021 

20010813 45.37 32.48 18.99 15.16 0.66 0.25 0.05 0.05 0.04 0.06 

92ab 1223 

LT05 044021 

20020808 33.93 21.43 12.22 9.35 0.45 0.26 0.02 0.02 0.02 0.04 

98ab 16 

LT05 044021 

20020808 33.52 23.94 12.04 6.90 0.28 0.2 0.02 0.03 0.02 0.03 
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Figure A.1 Location of Ontario lakes within study region, and surficial geology of study 

region. Lake numbers on the map correspond to Lake IDs in Tables 2.1, A.1, A.2 and 
A.3. 
  



133 

 

 

 

Figure A.2 Location of Alberta lakes, and surficial geology of the site (Utikuma 

Highlands). Lake numbers on the map correspond to Lake IDs in Tables 2.2, A.1, A.2 
and A.3. 
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Appendix B: Interpolation of missing Chlorophyll-a values: 

kriging 

Of 20,930 lakes in the study region, only 6,300 were found to have complete Chl-amod 

time series (i.e., for all 28 years). The spatial distribution of ln Chl-amod time series was 

uneven with large alternating north-south swathes of complete (where Landsat ground 

tracks overlap) and incomplete time series (see Figure B.1).  

Considerable effort was undertaken to select an appropriate algorithm for interpolating 

gaps in the time series of ln Chl-amod values. Most existing methods consider cases when 

data are correlated either in time or space (Tobin et al., 2011; Moreno et al., 2014). 

Recently developed spatio-temporal kriging methods allow for correlation in both spatial 

and temporal dimensions (Cressie & Wikle, 2011). For this study, the universal space-

time kriging (hereafter referred to as kriging) was adapted because it has been widely 

used for relatively unbiased prediction (Kilibarda et al., 2014) of environmental variables 

(e.g., Heuvelink & Van Egmond, 2010; Wang et al., 2015; Tonini et al., 2016). 

Several pre-processing steps were undertaken to prepare the time series of ln Chl-amod for 

kriging. Due to a large proportion of missing data (for some lakes it reached 89%), the 

first step was to identify the trade-off between the proportion of missing data acceptable 

for getting unbiased results and equal distribution of lakes throughout the study region. 

Lakes with more than five years missing were removed from the lake inventory and no 

interpolation efforts were applied. Remaining lakes accounted for 4.8% of missing data, 

within a 5% threshold considered to be acceptable for large datasets containing missing 

values (Schafer, 1999). Kriging was performed in R environment with using spacetime, 

gstat, and rgdal packages (R Core Team, 2013) following the procedure described by 

Tonini et al. (2016).  

Consider a variable z (s i, t i) that varies within a spatial domain S and a time interval T. 

Let z be observed at n space-time points (s i, t i), i =1 … n. The idea thus is to predict z (s 

0, t 0) at a point (s 0, t 0) at which z was not observed (Heuvelink et al., 2012). In kriging, 

predictions are obtained by analyzing spatio-temporal covariances between observed 

variables z (s i, t i). This might be done by using a spatio-temporal sample variogram, 
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which is empirically derived from the residuals of the data (i.e., Chl-amod). The variogram 

measures the average dissimilarity between data separated by a given spatial and 

temporal lag (h, u) defined as Equation A1 (Kilibarda et al., 2014): 

γ(h, u) =
1

2n(h,u)
∑ [z(si , ti) − z(si + h, ti + u)]

n(h,u)

i=1
²             [B1] 

where h is the Euclidean distance and u is the time interval. 

Once the sample variogram γ(h, u) is obtained, a theoretical spatio-temporal variogram 

model may be fitted. Of the diverse range of models (e.g., metric model, product-sum 

model), the sum-metric model was applied in this study because it allows maximum 

flexibility between the spatial and temporal correlation domains (Kilibarda et al., 2014). 

The sum-metric variogram structure is defined as Equation A2:                                            

γ(h, u) = γS(h) + γT(u) + γST  (√h2 + (α − u)2 )                      [B2] 

where γ(h, u) stands for the semivariance for h and u units of spatial and temporal 

distance, respectively. γS and  γT  describe the purely spatial and temporal components, 

while γST space-time describes the interaction component; α is a parameter of the spatio-

temporal anisotropy (Kilibarda et al., 2014). The spatio-temporal anisotropy was 

calculated following Tonini et al. (2016), while other parameters (i.e., sill, nugget and 

range) were estimated by visual judgement of the sample variogram surface. The sum-

metric model variogram was fitted using an exponential, Gaussian and spherical 

functions (Tonini et al., 2016).  

Interpolated ln Chl-amod values of the reconstructed time series were evaluated in terms of 

prediction accuracy. Two hundred lakes with continuous ln Chl-amod covering the entire 

range of Chl-amod (from minimum to maximum values) were selected. ln Chl-amod values 

were artificially removed with a different missing pattern from one to five years missing. 

Kriging was applied with one more iteration on all lakes including the new subset of 200 

lakes. Both resulting interpolated ln Chl-amod values for 200 lakes and original ln Chl-amod 

values were averaged in each dataset, and then regressed against each other.  

The constructed sample space-time variogram of residuals of ln Chl-amod (Figure B.2) 

indicated that these residuals were correlated in both space and time, and therefore 

kriging was applicable. Table B.1 summarizes the parameter estimates of the sum-metric 
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variogram model. Kriging interpolated missing ln Chl-amod accurately (r2 = 0.99, p < 

0.001, RMSE = 0.16; Figure B.3), resulting in 12,644 lakes with continuous Chl-amod 

time series. Lakes that had more than five years of missing ln Chl-amod values were not 

used in further analyses. 

 

Figure B.1 Number of years (out of entire period: 28 years) of ln Chl-amod data by lake. 
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Figure B.2 (a) Sample space–time variogram of residuals from ln Chl-amod; (b) Fitted 

sum-metric model used in kriging. 

Table B.1 Parameters of the fitted sum-metric variogram model for ln Chl-amod used in 
kriging. 

Variogram component Model Nugget Sill Range Anisotropy ratio 

Space Exponential 0.10 0.80 99.0 km  
Time Gaussian 0 0.14 10.2 year  
Joint  
(space-time ) Spherical 0.14 0.64 150.0 km 4.51 km/year 
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Figure B.3 Prediction accuracy of kriging preformed on ln Chl-amod from 200 randomly 

selected lakes to interpolate missing values. The solid line represents the 1:1 line. The 
root means square error (RMSE) of Chl-a interpolation was 0.16. 
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Appendix C: Effect of lake DOC on modeling of lake 

Chlorophyll-a (Chapter 2) 

The purpose of this appendix is to confirm that modeled Chl-a results in this study are not 

influenced by DOC. In Chapter 2, I found a weak and non-significant correlation (r2 = 

0.14, p = 0.09; Figure 2.4) between (B1-B3)/B2 reflectance values and ln DOC in 23 

lakes in the 39-lake model development dataset, suggesting that ln DOC may not have a 

likely effect on (B1-B3)/B2 reflectance in lakes in the study region.  

Given the strong correlation between observed and modeled Chl-a (r2 = 0.76, p < 0.01; 

Figure 2.3a), I tested the difference between observed Chl-a and DOC in lakes in the 

study region to demonstrated that these parameters are not correlated and to validate the 

suggestion that lake DOC is not affecting modeled Chl-a results. To improve upon the 

small sample size in the model development and testing, I have searched for all potential 

in-situ lake datasets with Chl-a and DOC within the study region and have identified that 

only three have been validated, each obtained by members of Dr. Irena Creed’s research 

team in the Department of Biology at Western University. The datasets collected by Ryan 

Sorichetti (Sorichetti dataset) for the years 2009-2011 and by Gabor Sass in Alberta lakes 

(Sass dataset) for the years 1999-2002 have already been used in the model development 

and validation. A third dataset was collected by Oscar Senar (Senar dataset) in 72 Ontario 

lakes for the years 2015-2016 (Table C.1). 

Using all the lakes in each of the three datasets (Figure C.1), I found weak and non-

significant correlations between observed lake Chl-a and DOC in the Sorichetti and Sass 

datasets consistent with the finding in Chapter 2 (Sorichetti: r2 = 0.14, p = 0.367, n = 8; 

Sass: r2 = 0.01, p = 0.741, n = 20). In contrast, however, there was a significant and 

stronger (but not strong) correlation between observed lake Chl-a and DOC in the Senar 

dataset (r2 = 0.44, p < 0.001, n = 70). When all lakes in all three datasets are included in 

the same regression, the correlation between observed Chl-a and lake DOC remains weak 

but becomes significant (r2 = 0.25, p < 0.001, n = 98; Figure C.2). 

Given the limited range of observed lake DOC values in the Sorichetti and Senar datasets 

(max DOC = 16.40 and 12.40 mg L-1, respectively), I consider it appropriate to include 
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the Sass dataset in this comparison (similarly, the Sass dataset was included in the Chl-a 

model development dataset to compensate for the limited trophic range in the Sorichetti 

dataset). Therefore, I conclude that lake DOC is not strongly affecting modeled Chl-a 

results, and this conclusion is supported by a weak and non-significant correlation 

between modeled Chl-a and lake DOC in the Sorichetti and Sass datasets (Sorichetti: r2 = 

0.06, p = 0.556, n = 8; Sass: r2 = 0.04, p = 0.379, n = 20; all lakes: r2 = 0.11, p = 0.082, n 

= 28; Figure C.3). However, a coefficient of determination of 0.44 supports a degree of 

caution in the confidence of this conclusion. 

Table C.1 Samples used to evaluate effect of lake DOC on modeled lake Chl-a. 

Dataset Sample Name/ID Year 

 

Latitude Longitude 

DOC (mg L-

1) 

Chl-a (μg L-

1) 

Sass 4 2001  56.42 -115.68 59.92 2.82 

Sass 7 2001  56.29 -115.63 56.70 4.42 

Sass 12 2001  56.10 -115.88 27.85 15.87 

Sass 16 2002  56.11 -115.55 22.51 12.00 

Sass 27 2001  56.07 -115.52 25.88 12.38 

Sass 42 2001  56.30 -115.16 40.92 40.80 

Sass 55 2001  56.32 -114.16 60.68 61.51 

Sass 57 1999  56.08 -115.39 - 8.70 

Sass 59 2002  56.07 -115.38 60.25 28.60 

Sass 61 2001  55.92 -113.91 22.11 1.95 

Sass 75 2001  55.96 -114.85 60.21 34.20 

Sass 81 1999  56.03 -115.56 - 9.18 

Sass 87 2001  55.73 -115.12 79.58 7.38 

Sass 88 1999  56.04 -115.50 - 3.66 

Sass 89 1999  56.02 -115.51 - 3.54 

Sass 101 2001  56.31 -114.75 38.63 2.00 

Sass 111 2001  56.03 -115.43 48.78 2.82 

Sass 121 1999  56.01 -115.35 - 46.00 

Sass 121 2001  56.01 -115.35 50.29 3.48 

Sass 121 2002  56.01 -115.35 58.50 12.10 

Sass 122 1999  56.01 -115.35 - 58.01 

Sass 122 2002  56.01 -115.35 68.92 31.40 

Sass 127 1999  56.01 -115.18 - 57.20 

Sass 131 1999  55.96 -115.60 - 18.51 

Sass 165 1999  55.96 -115.26 - 63.40 

Sass 168 2001  55.99 -115.20 58.34 6.42 

Sass 168 2002  55.99 -115.20 74.91 3.77 

Sass 171 1999  55.98 -115.19 - 47.10 

Sass 201 1999  56.12 -115.71 - 20.21 

Sass 201 2001  56.12 -115.71 23.19 30.27 

Sass 201 2002  56.12 -115.71 27.06 13.00 

Sorichetti Appleby 2009  46.43 -83.35 - 4.61 

Sorichetti Carp 2010  46.97 -84.56 5.64 3.72 

Sorichetti Caysee 2010  47.18 -84.66 8.27 2.48 

Sorichetti Cloudy 2009  46.44 -83.93 - 0.50 

Sorichetti Constance 2009  46.43 -83.23 - 1.11 

Sorichetti Dean 2011  46.23 -83.18 - 3.18 
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Dataset Sample Name/ID Year 

 

Latitude Longitude 

DOC (mg L-

1) 

Chl-a (μg L-

1) 

Sorichetti Eaket 2009  46.35 -83.25 - 2.76 

Sorichetti L4 (Little Turkey) 2010  47.04 -84.41 16.40 0.45 

Sorichetti L5 (Big Turkey) 2010  47.05 -84.42 3.76 1.39 

Sorichetti Negick 2010  47.21 -84.49 2.63 2.35 

Sorichetti Reception 2009  46.48 -83.25 - 9.99 

Sorichetti Rock 2009  46.43 -83.77 - 3.70 

Sorichetti Round 2009  46.39 -83.83 - 3.30 

Sorichetti Sill 2010  46.77 -84.25 - 0.92 

Sorichetti Twin 2011  46.23 -83.93 - 7.44 

Sorichetti Upper Griffin 2010  47.09 -84.40 3.81 0.65 

Sorichetti Upper Tilley 2010  47.02 -84.39 4.18 2.10 

Sorichetti Woodrow 2010  46.41 -83.33 7.15 0.56 

Senar Bass Lake 2016  44.68 -78.53 5.80 2.36 

Senar Bat Lake 2015  45.15 -78.63 4.50 2.57 

Senar Bearpaw Lake 2015  44.93 79.49 9.00 18.75 

Senar Bella Lake 2016  45.45 -79.02 2.60 2.00 

Senar Bigwind Lake 2015  45.06 -79.05 4.00 10.52 

Senar Boshkung Lake 2015  45.05 -78.72 3.80 2.50 

Senar Brandy Lake 2016  45.11 -79.52 9.50 7.89 

Senar Buck Lake (2) 2015  45.41 -79.39 7.20 2.48 

Senar Burrow's Lake 2016  44.84 -79.66 5.50 5.79 

Senar Cassels Lake 2015  47.07 -79.72 5.90 2.38 

Senar Chub Lake (2) 2015  45.21 -78.98 6.20 2.67 

Senar Cinder Lake 2016  45.06 -78.92 6.00 4.67 

Senar Clear Lake (1) 2015  46.10 -79.77 4.80 3.64 

Senar Clear Lake (2) 2015  45.45 -77.22 4.90 2.56 

Senar Couchiching, Lake 2016  44.65 -79.36 5.30 3.47 

Senar Crystal Lake 2016  44.76 -78.48 4.90 1.67 

Senar Dark Lake 2015  45.00 -79.59 4.20 3.90 

Senar Davis Lake 2016  44.79 -78.71 5.30 1.73 

Senar Deer Lake 2015  46.48 -80.22 8.80 13.27 

Senar Depensiers Lake 2016  46.31 -79.41 9.10 12.52 

Senar Devil's Lake 2016  44.87 -78.83 4.20 3.87 

Senar Dore, Lake 2015  45.63 -77.09 6.50 6.44 

Senar Dreany Lake 2016  46.29 -79.36 12.40 18.22 

Senar Eagle Lake (2) 2015  45.13 -78.50 4.10 2.52 

Senar Fawn Lake 2015  45.17 -79.26 9.00 8.04 

Senar Fletcher Lake 2015  45.35 -78.78 4.20 6.55 

Senar Fosters Lake 2015  45.25 -77.67 8.50 2.57 

Senar Four Mile Lake 2016  44.67 -78.74 5.60 - 

Senar Fox Lake 2016  45.39 -79.36 7.10 7.33 

Senar Gull Lake (1) 2015  44.59 -76.99 6.30 4.27 

Senar Gull Lake (2) 2016  44.84 -78.79 3.50 1.61 

Senar Head Lake 2016  44.74 -78.90 4.40 3.80 

Senar Kamaniskeg Lake 2015  45.39 -77.68 4.50 2.61 

Senar Kashagawigamog Lake 2016  44.99 -78.59 4.20 1.91 

Senar Koshlong Lake 2016  44.97 -78.49 3.80 2.38 

Senar Leggat Lake 2015  44.71 -76.73 3.90 4.91 

Senar Leonard Lake 2015  45.07 -79.44 4.80 2.96 

Senar Loom Lake 2016  44.75 -78.46 5.90 2.86 

Senar Loon Lake 2016  45.01 -78.38 5.20 3.57 

Senar MacLean Lake 2016  44.82 -79.66 7.40 11.45 

Senar Maple Lake 2016  45.10 -78.66 3.70 1.24 

Senar Mary Lake 2016  45.26 -79.24 5.10 2.15 
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Dataset Sample Name/ID Year 

 

Latitude Longitude 

DOC (mg L-

1) 

Chl-a (μg L-

1) 

Senar McKenzie Lake 2015  45.37 -78.01 5.30 3.24 

Senar Menominee Lake 2016  45.19 -79.14 7.10 3.44 

Senar Mink Lake 2016  46.18 -79.22 9.80 11.98 

Senar Moot Lake 2015  45.14 -79.17 6.40 4.61 

Senar Morrison Lake 2016  44.87 -79.45 5.50 2.91 

Senar Muskosung Lake 2015  46.49 -80.05 6.70 7.07 

Senar Norway Lake 2015  45.34 -76.71 8.70 2.31 

Senar Nosbonsing Lake 2016  46.20 -79.25 3.90 9.55 

Senar Otter Lake 2015  45.28 -78.87 4.10 3.36 

Senar Oxbow Lake 2016  45.44 -78.97 4.00 1.58 

Senar Paint Lake 2016  45.22 -78.95 3.90 3.62 

Senar Raven Lake 2016  45.21 -78.85 3.50 3.37 

Senar Red Chalk Lake 2015  45.19 -78.95 3.10 2.08 

Senar Red Squirrel Lake 2015  47.16 -80.02 3.80 2.03 

Senar Rib Lake 2015  47.22 -79.72 4.10 1.56 

Senar Ril Lake 2016  45.17 -79.01 4.10 4.04 

Senar Riley Lake 2016  44.84 -79.18 4.70 3.97 

Senar Rosseau, Lake 2015  45.24 -79.64 3.60 3.21 

Senar Shadow Lake 2015  44.73 -78.79 3.90 1.95 

Senar Siding Lake 2015  45.28 -79.32 8.00 6.77 

Senar Skeleton Lake 2016  45.24 -79.47 2.00 2.23 

Senar Skootamata Lake 2015  44.84 -77.23 5.80 3.27 

Senar Sparrow lake 2016  44.81 -79.38 4.90 2.63 

Senar St. John Lake 2016  44.69 -79.33 9.30 24.21 

Senar Tea Lake 2016  44.87 -79.65 6.30 3.89 

Senar Three Mile Lake 2016  45.17 -79.46 4.30 8.86 

Senar Twelve Mile Lake 2016  45.02 -78.71 3.20 - 

Senar Wasi Lake 2016  46.14 -79.23 7.90 6.31 

Senar Wicksteed Lake 2015  46.76 -79.69 7.80 4.85 

Senar Wood Lake 2016  45.02 -79.07 4.00 2.32 
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Figure C.1 Study region (green area) and location of in-situ Chl-a, TP and DOC data. 

 

Figure C.2 Relationship between observed Chl-a and DOC. 
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Figure C.3 Relationship between modeled Chl-a and observed DOC. 
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Appendix D: Using Total Phosphorus as a proxy for 

Chlorophyll-a (Chapter 2) 

The purpose of this appendix is to provide support for future validation of modeled Chl-a 

temporal trend analyses as given in Chapter 2.4.4 and 4.5.3.  

The datasets used for validation in Appendix C (Sass, Sorichetti and Senar datasets) do 

not contain time series of observed Chl-a and therefore do not support validation of the 

trend analyses presented in this study. Forthcoming validation of large time series 

datasets from Environment Canada, the Ontario Ministry of Natural Resources and 

Forestry, and the Ministry of the Environment, Conservation and Parks (Lake Partnership 

Program) may be expected in future work to help validate these results, but these datasets 

are largely limited to records of lake total phosphorus (TP) and DOC. Because P is the 

major limiting nutrient for phytoplankton growth in lakes, and because phytoplankton 

biomass is generally measured by Chl-a concentration, TP can potentially be used as a 

proxy for Chl-a. 

I tested the viability of using this proxy with the Sorichetti, Senar and Sass lake datasets 

(Figure C.1; Table D.1) that include in-situ lake TP and Chl-a. After removing 22 outliers 

from a potential dataset of 117 matching observed lake TP and Chl-a (Cook’s distance > 

4/n), I found a strong (r2 = 0.72) and significant (p < 0.001) correlation (Figure D.1). 

However, the strength of this correlation is the product of the correlation between 

observed lake TP and Chl-a in the Sass dataset (r2 = 0.83, p < 0.001, n = 18); in contrast, 

the correlations in the Sorichetti and Senar datasets were weak (r2 = 0.24 and 0.36, 

respectively) and less significant in the Sorichetti dataset (p = 0.056; Senar: p < 0.001). 

These differences may be the result of differences in collection times, sampling depths, 

and collection or analysis methods. Therefore, I do not conclude that we can be confident 

using multiple datasets of different origins for time series analysis or validation. Any 

records of observed lake Chl-a in the forthcoming datasets should be added to the 

comparison to test the validity of using lake TP as a proxy for lake Chl-a. In the future, I 

would recommend that the use of this proxy should be dependent on standardized 

datasets using consistent sampling depths and methods. 
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Table D.1 Samples used to evaluate correlation between lake TP and lake Chl-a. 

Dataset Lake Name/ID Year Latitude Longitude TP (μg L-1) Chl-a (μg L-1) 

Sass 4 2001 56.42 -115.68 233.90 2.82 

Sass 7 2001 56.29 -115.63 43.50 4.42 

Sass 12 2001 56.10 -115.88 58.20 15.87 

Sass 16 2002 56.11 -115.55 68.50 12.00 

Sass 27 2001 56.07 -115.52 48.40 12.38 

Sass 42 2001 56.30 -115.16 117.00 40.80 

Sass 55 2001 56.32 -114.16 246.40 61.51 

Sass 57 1999 56.08 -115.39 119.30 8.70 

Sass 59 2002 56.07 -115.38 100.80 28.60 

Sass 61 2001 55.92 -113.91 68.00 1.95 

Sass 75 2001 55.96 -114.85 118.60 34.20 

Sass 81 1999 56.03 -115.56 54.40 9.18 

Sass 87 2001 55.73 -115.12 57.20 7.38 

Sass 88 1999 56.04 -115.50 30.20 3.66 

Sass 89 1999 56.02 -115.51 66.70 3.54 

Sass 101 2001 56.31 -114.75 17.90 2.00 

Sass 111 2001 56.03 -115.43 39.20 2.82 

Sass 121 1999 56.01 -115.35 150.80 46.00 

Sass 121 2001 56.01 -115.35 58.80 3.48 

Sass 121 2002 56.01 -115.35 105.90 12.10 

Sass 122 1999 56.01 -115.35 77.70 58.01 

Sass 122 2002 56.01 -115.35 123.00 31.40 

Sass 127 1999 56.01 -115.18 212.40 57.20 

Sass 131 1999 55.96 -115.60 135.80 18.51 

Sass 165 1999 55.96 -115.26 178.60 63.40 

Sass 168 2001 55.99 -115.20 102.40 6.42 

Sass 168 2002 55.99 -115.20 120.80 3.77 

Sass 171 1999 55.98 -115.19 421.70 47.10 

Sass 201 1999 56.12 -115.71 64.90 20.21 

Sass 201 2001 56.12 -115.71 46.30 30.27 

Sass 201 2002 56.12 -115.71 58.50 13.00 

Sorichetti Appleby 2009 46.43 -83.35 10.83 4.61 

Sorichetti Carp 2010 46.97 -84.56 17.20 3.72 

Sorichetti Caysee 2010 47.18 -84.66 23.20 2.48 

Sorichetti Cloudy 2009 46.44 -83.93 9.10 0.50 

Sorichetti Constance 2009 46.43 -83.23 6.87 1.11 

Sorichetti Dean 2011 46.23 -83.18  3.18 

Sorichetti Eaket 2009 46.35 -83.25 9.20 2.76 

Sorichetti L4 (Little Turkey) 2010 47.04 -84.41 3.20 0.45 

Sorichetti L5 (Big Turkey) 2010 47.05 -84.42 5.00 1.39 

Sorichetti Negick 2010 47.21 -84.49 12.80 2.35 

Sorichetti Reception 2009 46.48 -83.25 14.70 9.99 

Sorichetti Rock 2009 46.43 -83.77 13.43 3.70 

Sorichetti Round 2009 46.39 -83.83 19.50 3.30 

Sorichetti Sill 2010 46.77 -84.25 10.80 0.92 

Sorichetti Twin 2011 46.23 -83.93  7.44 

Sorichetti Upper Griffin 2010 47.09 -84.40 7.20 0.65 

Sorichetti Upper Tilley 2010 47.02 -84.39 9.20 2.10 

Sorichetti Woodrow 2010 46.41 -83.33 3.80 0.56 

Senar Bass Lake 2016 44.68 -78.53 10.70 2.36 

Senar Bat Lake 2015 45.15 -78.63 14.40 2.57 

Senar Bearpaw Lake 2015 44.93 79.49 10.70 18.75 

Senar Bella Lake 2016 45.45 -79.02 6.50 2.00 
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Dataset Lake Name/ID Year Latitude Longitude TP (μg L-1) Chl-a (μg L-1) 

Senar Bigwind Lake 2015 45.06 -79.05 8.00 10.52 

Senar Boshkung Lake 2015 45.05 -78.72 7.70 2.50 

Senar Brandy Lake 2016 45.11 -79.52 48.50 7.89 

Senar Buck Lake (2) 2015 45.41 -79.39 9.20 2.48 

Senar Burrow's Lake 2016 44.84 -79.66 10.40 5.79 

Senar Cassels Lake 2015 47.07 -79.72 12.90 2.38 

Senar Chub Lake (2) 2015 45.21 -78.98 5.40 2.67 

Senar Cinder Lake 2016 45.06 -78.92 10.80 4.67 

Senar Clear Lake (1) 2015 46.10 -79.77 12.70 3.64 

Senar Clear Lake (2) 2015 45.45 -77.22 14.90 2.56 

Senar Couchiching, Lake 2016 44.65 -79.36 12.60 3.47 

Senar Crystal Lake 2016 44.76 -78.48 21.30 1.67 

Senar Dark Lake 2015 45.00 -79.59 5.80 3.90 

Senar Davis Lake 2016 44.79 -78.71 8.10 1.73 

Senar Deer Lake 2015 46.48 -80.22 19.60 13.27 

Senar Depensiers Lake 2016 46.31 -79.41 20.40 12.52 

Senar Devil's Lake 2016 44.87 -78.83 11.80 3.87 

Senar Dore, Lake 2015 45.63 -77.09 25.50 6.44 

Senar Dreany Lake 2016 46.29 -79.36 42.30 18.22 

Senar Eagle Lake (2) 2015 45.13 -78.50 10.70 2.52 

Senar Fawn Lake 2015 45.17 -79.26 21.90 8.04 

Senar Fletcher Lake 2015 45.35 -78.78 6.70 6.55 

Senar Fosters Lake 2015 45.25 -77.67 9.10 2.57 

Senar Four Mile Lake 2016 44.67 -78.74 6.80  
Senar Fox Lake 2016 45.39 -79.36 11.10 7.33 

Senar Gull Lake (1) 2015 44.59 -76.99 8.80 4.27 

Senar Gull Lake (2) 2016 44.84 -78.79 5.10 1.61 

Senar Head Lake 2016 44.74 -78.90 11.30 3.80 

Senar Kamaniskeg Lake 2015 45.39 -77.68 4.60 2.61 

Senar Kashagawigamog Lake 2016 44.99 -78.59 7.80 1.91 

Senar Koshlong Lake 2016 44.97 -78.49 6.60 2.38 

Senar Leggat Lake 2015 44.71 -76.73 9.00 4.91 

Senar Leonard Lake 2015 45.07 -79.44 6.20 2.96 

Senar Loom Lake 2016 44.75 -78.46 7.40 2.86 

Senar Loon Lake 2016 45.01 -78.38 9.30 3.57 

Senar MacLean Lake 2016 44.82 -79.66 18.70 11.45 

Senar Maple Lake 2016 45.10 -78.66 7.50 1.24 

Senar Mary Lake 2016 45.26 -79.24 12.40 2.15 

Senar McKenzie Lake 2015 45.37 -78.01 6.80 3.24 

Senar Menominee Lake 2016 45.19 -79.14 11.40 3.44 

Senar Mink Lake 2016 46.18 -79.22 18.40 11.98 

Senar Moot Lake 2015 45.14 -79.17 28.90 4.61 

Senar Morrison Lake 2016 44.87 -79.45 9.00 2.91 

Senar Muskosung Lake 2015 46.49 -80.05 11.10 7.07 

Senar Norway Lake 2015 45.34 -76.71 25.60 2.31 

Senar Nosbonsing Lake 2016 46.20 -79.25 32.20 9.55 

Senar Otter Lake 2015 45.28 -78.87 7.30 3.36 

Senar Oxbow Lake 2016 45.44 -78.97 7.20 1.58 

Senar Paint Lake 2016 45.22 -78.95 10.40 3.62 

Senar Raven Lake 2016 45.21 -78.85 6.00 3.37 

Senar Red Chalk Lake 2015 45.19 -78.95 4.30 2.08 

Senar Red Squirrel Lake 2015 47.16 -80.02 7.10 2.03 

Senar Rib Lake 2015 47.22 -79.72 11.60 1.56 

Senar Ril Lake 2016 45.17 -79.01 10.90 4.04 

Senar Riley Lake 2016 44.84 -79.18 14.90 3.97 
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Dataset Lake Name/ID Year Latitude Longitude TP (μg L-1) Chl-a (μg L-1) 

Senar Rosseau, Lake 2015 45.24 -79.64 6.10 3.21 

Senar Shadow Lake 2015 44.73 -78.79 11.50 1.95 

Senar Siding Lake 2015 45.28 -79.32 29.70 6.77 

Senar Skeleton Lake 2016 45.24 -79.47 7.80 2.23 

Senar Skootamata Lake 2015 44.84 -77.23 6.80 3.27 

Senar Sparrow lake 2016 44.81 -79.38 13.40 2.63 

Senar St. John Lake 2016 44.69 -79.33 167.00 24.21 

Senar Tea Lake 2016 44.87 -79.65 7.50 3.89 

Senar Three Mile Lake 2016 45.17 -79.46 20.00 8.86 

Senar Twelve Mile Lake 2016 45.02 -78.71 8.10  
Senar Wasi Lake 2016 46.14 -79.23 31.80 6.31 

Senar Wicksteed Lake 2015 46.76 -79.69 5.60 4.85 

Senar Wood Lake 2016 45.02 -79.07 10.70 2.32 

 

Figure D.1 Relationship between observed Chl-a and TP. 
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Appendix E: Morphological characteristics of lakes used in landscape analysis 

(Chapter 3) and trend analysis (Chapter 4) 

Table E.1 Morphological characteristics of 275 lakes selected for landscape and trend analyses 
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17631 -81.82 48.17 6.6 7.3 659.0 1.1 485 1569.5 0.1 0.6 1.27 0.7 3.6 66545.5 2.70 No 
47148 -76.37 45.12 38.1 12.9 101.0 2.3 646.5 4376.8 0.1 0.9 1.25 0.1 14.8 10115.3 3.59 No 

47267 -76.31 45.05 41.3 20.9 167.0 0.8 748.8 85062.8 0.4 0.9 1.16 0.4 64.0 16576 1.14 No 
47380 -76.37 44.96 30.9 25.5 102.3 1.8 991.4 185007.3 0.7 1.0 1.32 0.4 39.6 10251 0.72 No 
47542 -76.25 44.84 12.1 12.3 34.3 2.6 807.4 79504.2 0.7 1.0 1.46 0.6 12.5 3417.4 0.50 No 
34022 -79.55 44.82 0.5 47.4 239.2 2.4 1764 259945.2 0.6 1.3 2.42 1.2 14.7 22484.8 1.15 No 

47995 -76.28 44.51 2.0 68.8 1159.2 3.5 1310.1 346710.2 0.5 1.5 1.83 1.0 5.0 116406.8 1.66 No 
13626 -82.42 46.69 5.2 24.1 274.8 8.5 1021.5 158383.4 0.7 1.5 1.41 2.8 3.0 27331.5 0.70 No 
33160 -78.81 45.20 1.7 6.9 41.1 6.6 551.1 45066 0.7 1.5 1.34 4.2 0.0 4107.2 0.38 No 
46588 -76.90 45.29 7.2 20.0 149.2 7.4 807.8 183351.7 0.9 1.5 1.88 1.5 1.6 14910.4 0.50 Yes 

47098 -76.46 45.14 12.8 37.4 531.6 4.2 939.1 338451.9 0.9 1.5 1.57 0.9 7.1 53403.4 0.68 No 
36117 -78.37 46.18 0.3 43.3 1658.5 3.0 1062.5 520707.1 1.2 1.5 1.4 0.8 12.6 166724.9 0.55 Yes 
18009 -80.60 48.06 1.2 29.2 1584.0 4.5 1839.3 250355.6 0.9 1.8 2.54 1.7 1.8 141111.1 0.60 No 
46103 -77.60 45.50 2.7 15.2 99.1 6.3 755 123004.1 0.9 2.0 1.52 1.0 0.1 9636.4 0.43 No 

45988 -77.88 45.54 2.3 19.3 146.6 8.0 1081.3 307822.2 1.8 2.0 1.77 4.1 0.0 7755.7 0.24 Yes 
1681 -83.60 47.85 3.0 174.8 555.1 2.8 3013.2 3380434.6 1.8 2.0 2.83 0.8 4.8 29828.6 0.73 No 
18726 -80.53 47.89 2.4 8.7 53.2 3.1 590.6 67715.7 0.8 2.0 1.33 1.6 0.0 4585.4 0.37 Yes 

41377 -77.91 44.63 1.4 19.1 43.4 2.4 798.4 322882.3 1.8 2.1 1.39 1.4 29.1 2605.9 0.24 No 
34150 -79.30 44.67 6.4 152.4 2994.4 1.0 2089.3 1404465.4 0.9 2.7 1.23 0.3 30.1 288235.3 1.37 No 
34010 -79.75 44.83 1.0 50.1 517.9 1.1 2191.4 739876.6 1.5 2.9 2.79 1.1 26.5 34556.7 0.47 No 
47942 -76.33 44.54 5.1 64.7 2016.0 4.2 2991.1 621702.6 1.0 3.0 3.4 2.4 14.4 170875 0.80 No 

6115 -83.00 46.26 1.6 111.7 59801.8 5.9 2880.2 1923632 1.7 3.0 1.88 2.1 2.9 3424000 0.62 No 
47078 -76.42 45.15 13.7 8.8 62.0 2.5 530 164623.8 2.1 3.0 1.25 2.7 14.5 3049 0.14 No 
33942 -79.51 44.88 0.7 41.3 810.0 2.1 2339.2 732846.8 1.9 3.0 3.34 2.2 12.9 44549 0.34 No 
33156 -78.97 45.20 2.1 7.0 33.5 8.3 501.2 147526.3 2.3 3.0 1.47 3.5 0.0 1485.7 0.12 No 

32181 -79.52 46.82 0.7 135.3 1745.1 2.2 3552.1 3399080 1.6 3.0 4.11 2.1 12.4 110512.8 0.73 No 
37919 -79.01 45.56 1.4 38.3 3543.9 6.8 2409.6 500154.2 1.4 3.0 2.67 2.0 5.0 251272.7 0.44 No 
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5977 -83.01 46.33 0.9 8.6 237.2 5.1 445.3 199767.8 2.3 3.3 1.26 4.4 1.7 9111.1 0.13 No 
27339 -80.20 45.50 0.7 12.1 304.7 1.2 894.4 200634.4 1.8 3.4 1.81 2.5 21.2 15900 0.19 Yes 
19040 -80.73 47.82 0.6 15.3 1301.6 5.0 1333.1 237554.1 1.7 3.7 2.2 2.2 0.3 77333.3 0.23 Yes 
27368 -80.01 45.48 1.2 11.1 296.9 2.1 1172.7 197610.1 2.2 3.8 2.26 2.9 8.5 11351.4 0.15 No 

16788 -81.53 46.16 0.5 32.6 286.9 5.1 2434.1 1130399.8 3.8 3.8 2.83 6.1 1.8 7539.8 0.15 Yes 
36107 -78.47 46.18 1.3 10.5 39.6 3.1 535.8 137488.9 1.4 4.0 1.33 1.8 0.0 2988.7 0.23 Yes 
5987 -83.24 46.33 0.4 46.8 684.8 4.3 1210.6 1157802 2.5 4.0 1.4 2.8 5.2 24235.3 0.27 No 

46419 -77.35 45.38 3.0 8.1 36.9 9.9 557.4 113168.8 1.4 4.0 1.43 2.5 1.2 2690.9 0.20 No 
10646 -83.45 47.36 0.3 53.8 1686.0 6.5 2264.6 1232736.8 2.4 4.0 2.91 2.7 9.8 92125 0.31 Yes 
40863 -77.22 44.87 0.7 122.4 681.0 2.2 2278.1 4180612.2 3.1 4.5 2.45 1.5 15.3 26155.6 0.36 No 
21993 -80.70 47.12 0.6 25.4 56744.2 5.3 1394.8 414793 1.8 4.7 1.99 5.7 10.6 0 0.28 Yes 

46497 -77.08 45.35 1.9 28.4 256.3 5.6 856.6 1041147.5 3.5 4.8 1.78 2.4 3.1 7135.1 0.15 No 
19586 -80.67 47.70 0.5 117.4 13740.1 4.0 2697.7 3974203.3 3.1 4.8 1.88 1.6 5.6 491555.6 0.35 No 
5886 -82.49 46.40 0.6 20.8 8968.2 6.0 753.8 572491.9 2.3 5.0 1.5 2.8 4.2 398000 0.20 No 
6091 -83.00 46.28 0.7 39.9 104.4 10.3 1726.6 1383587.4 3.6 5.0 1.8 4.3 2.2 2397.9 0.18 No 

47235 -76.38 45.06 1.8 27.8 2431.5 2.5 1221.1 441009 1.5 5.0 1.55 1.7 12.2 185818.2 0.35 No 
24266 -80.84 46.71 2.4 9.3 110.1 6.6 613.1 222274.6 2.7 5.0 2.03 4.7 0.3 5142.9 0.11 Yes 
11035 -83.18 47.29 0.6 169.0 3852.6 6.2 4440.7 4535448.3 2.6 5.0 3.82 1.1 6.4 162909.1 0.50 No 
23430 -81.16 46.86 0.5 111.7 1153.6 4.1 4778.5 3510041.7 2.7 5.0 4.74 2.8 10.3 56000 0.39 No 

34042 -79.47 44.80 1.1 45.3 1101.7 1.5 2325.9 1756370.3 3.4 5.1 4.51 4.7 12.6 51122 0.20 No 
6058 -82.98 46.31 0.5 264.2 1474.6 5.4 3861.1 9968518.3 3.6 5.4 2.21 2.4 6.5 31530.7 0.45 No 
6100 -82.94 46.27 2.8 56.9 3747.6 5.6 1262.7 1256600.7 2.2 5.5 1.27 1.2 6.1 184266.7 0.34 No 

6076 -83.00 46.29 1.0 45.9 714.2 4.6 1691.3 1535248.2 3.2 5.8 2.01 3.0 5.0 22875 0.21 No 
27345 -79.90 45.47 1.9 1394.2 40626.2 3.2 8587.2 100440473 4.6 6.0 7.71 2.7 4.8 1845647 0.81 Yes 
21469 -80.85 47.21 2.4 73.8 970.7 4.9 1539 2086297.1 2.7 6.0 1.65 1.3 2.2 36421.1 0.32 No 
46204 -77.63 45.45 1.4 52.1 1237.0 6.9 1627.2 1991124.9 3.9 6.0 1.5 2.3 3.5 25904.8 0.19 Yes 

37522 -78.07 45.64 6.6 68.9 58633.2 4.4 3181.6 1050672.6 1.4 6.1 2.88 3.3 9.6 5132000 0.59 No 
10702 -82.08 47.37 0.3 104.3 1375.8 2.3 1699.8 1984055.4 1.9 6.1 1.73 0.9 9.9 81000 0.54 Yes 
39605 -77.46 45.25 7.2 13.1 708.2 5.9 564.4 258666.1 2.0 6.1 1.13 2.9 2.7 39333.3 0.18 No 
39677 -77.34 45.22 1.3 18.5 197.9 10.5 765.8 497630.7 2.7 6.1 1.31 3.0 1.7 8680.9 0.16 No 

45915 -77.67 45.59 0.9 68.2 8042.8 4.6 2048.6 1899056.4 2.8 6.1 1.96 3.6 4.4 303500 0.29 No 
16141 -82.00 46.39 0.5 44.2 726.8 5.3 921.5 1649260.5 3.7 6.1 1.18 1.7 15.3 21245.9 0.18 No 
5916 -83.50 46.37 0.4 14.7 136.3 4.6 1372.8 506830.7 3.9 6.1 2.47 6.6 1.0 3703.7 0.10 Yes 
40713 -77.27 44.92 0.7 7.7 232.0 3.8 692.7 165466.9 2.5 6.5 1.66 3.5 5.4 11151.5 0.11 No 

30804 -79.82 47.10 0.8 32.9 695.2 3.6 1311 884378.9 2.8 6.5 1.69 2.9 6.0 31744.7 0.20 Yes 
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40405 -77.11 45.00 0.9 38.3 3233.9 4.1 1088.3 1220585.6 3.3 6.5 2.22 2.8 4.8 149000 0.19 Yes 
40334 -77.94 45.05 0.8 38.1 281.6 7.3 1556.1 1279906.9 3.4 6.5 1.74 3.8 3.8 10459.3 0.18 Yes 
41446 -77.82 44.57 0.6 265.1 82500.1 4.2 4190.1 11751726 3.8 6.5 2.81 2.3 8.1 2738667 0.43 Yes 
44355 -77.67 46.16 0.3 74.1 1097.6 3.7 1818 2837129.5 3.9 6.5 2.52 3.1 6.2 33970.1 0.22 No 

8912 -81.88 47.83 1.0 8.0 488.5 6.6 208.8 291921.3 4.0 6.5 1.51 6.4 1.4 19750 0.07 No 
41472 -78.41 44.55 3.3 360.1 1808.9 2.1 4779.7 15687220 4.2 6.5 2.02 1.5 19.9 81226.1 0.45 No 
32863 -78.84 45.29 0.4 58.9 890.1 4.9 1632.1 2580583.1 4.4 6.5 1.93 3.0 8.1 23939.4 0.17 No 

33293 -78.87 45.16 1.0 23.6 148.3 6.7 1618.3 1050681.6 4.8 6.5 2.39 5.5 6.5 3320.8 0.10 No 
27350 -80.05 45.46 1.0 219.7 2680.6 2.5 7945.5 12590324 5.1 6.5 5.66 5.6 9.8 86731.7 0.29 Yes 
20623 -80.65 47.38 1.0 22.3 83.1 8.1 1181.1 1245451.1 5.9 6.5 1.82 5.5 2.1 1567.2 0.08 Yes 
40711 -76.90 44.91 2.6 220.4 1637.7 4.3 3074.2 6044002.4 2.0 6.7 2.08 2.1 7.7 91703.7 0.74 Yes 

33610 -79.09 45.03 0.3 21.2 207.2 5.1 849.6 585513.4 2.8 6.7 1.49 2.9 1.9 7456.3 0.16 No 
32038 -79.80 46.85 0.7 15.6 50.2 3.7 661.4 513914.8 3.3 6.7 1.59 2.8 12.7 1602.6 0.12 No 
41083 -78.21 44.79 0.5 40.0 401.2 3.8 1437.6 1252567 3.1 6.8 2.55 3.1 10.3 20560 0.20 No 
27416 -80.16 45.42 0.5 38.2 167.5 3.0 1340.5 1033881.4 2.7 7.0 1.86 2.7 4.0 6193 0.23 Yes 

34147 -79.33 44.69 3.6 656.8 5615.2 0.9 4005.6 33842622 4.2 7.0 1.84 0.7 34.1 133162.4 0.61 Yes 
27140 -80.35 45.64 0.5 251.6 18514.8 3.0 10716 16417466 6.6 7.0 5.81 6.6 6.7 444000 0.24 No 
10218 -83.36 47.48 0.3 231.5 10022.9 3.7 5165.3 5099200.4 2.1 7.0 4.71 2.3 7.4 583826.1 0.72 No 
34083 -79.49 44.79 0.5 209.3 1081.7 1.5 5620.6 8217450.4 3.6 7.0 6.06 2.5 16.1 49927.5 0.40 No 

40901 -77.06 44.85 1.5 10.7 56.7 4.7 649.8 660713.6 6.9 7.0 1.83 8.6 1.0 744.7 0.05 Yes 
41453 -77.85 44.56 0.7 68.3 155.6 4.7 2161.2 2552545 3.6 7.2 2.28 2.7 4.4 5813.2 0.23 Yes 
38119 -78.84 45.50 2.7 12.2 162.1 7.3 455.4 409258.3 3.5 7.2 1.21 5.5 3.8 7093.3 0.10 Yes 

38410 -79.07 45.41 0.2 36.2 270.3 5.5 1039.9 2331283.2 6.5 7.2 1.73 4.2 2.0 8656.7 0.09 No 
23121 -80.95 46.93 0.5 94.9 1414.6 5.6 2083.8 3871238.2 2.8 7.2 3.48 2.9 5.5 70388.1 0.35 No 
32941 -78.65 45.26 0.5 56.0 246.5 6.2 2739.7 1438761.2 2.5 7.3 2.76 2.6 2.8 12722.5 0.30 Yes 
5253 -82.36 46.61 0.7 57.1 265.2 7.0 1841.1 2378587.7 4.4 7.3 2.64 3.7 0.1 6325.6 0.17 Yes 

40377 -76.94 45.00 3.3 12.5 93.8 6.8 885.8 259118.1 2.3 7.6 1.7 6.7 0.7 4992.5 0.15 No 
45193 -77.58 45.89 0.4 31.9 384.6 5.5 1187.5 1175304.5 3.8 7.6 1.48 2.9 6.3 11373.5 0.15 No 
33526 -78.93 45.06 0.6 89.7 1178.7 4.2 2851.8 5771834.4 6.1 7.8 4.07 6.0 6.6 40684.2 0.16 No 
17902 -80.58 48.07 0.7 187.1 2930.1 3.4 3350 6667314.6 2.2 7.9 2.93 1.9 2.9 153125 0.62 No 

27377 -79.99 45.48 0.8 165.3 2410.1 2.6 3671.9 6439957.5 2.7 7.9 4.36 2.9 4.3 90260.9 0.48 No 
21639 -81.23 47.18 0.4 51.9 227.0 3.5 1530.8 1613129.5 3.2 7.9 1.99 2.4 4.4 6157.2 0.23 No 
33800 -78.37 44.93 1.4 107.4 848.2 3.4 1973.3 6478490 5.6 8.0 2.19 3.2 2.4 41889.8 0.19 No 
46418 -77.42 45.38 1.8 43.9 157.0 3.6 1099.5 707858.4 1.7 8.0 1.75 1.8 3.0 11785.7 0.39 Yes 

40507 -76.83 44.97 2.7 8.6 83.6 4.8 486.9 274301.1 3.5 8.0 1.5 4.4 10.9 2796.1 0.08 No 
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33657 -78.45 45.00 1.2 74.1 7606.8 5.5 1441.9 2648708.4 3.6 8.0 1.45 1.8 5.6 260800 0.24 No 
16914 -81.00 46.13 0.7 135.7 2369.6 2.5 4625 5892854.5 4.5 8.0 3.84 3.9 6.5 39719.3 0.26 No 
17944 -80.36 48.08 1.1 99.7 3493.8 4.1 2720.4 7400642.3 7.2 8.0 1.8 4.3 7.6 89655.2 0.14 No 
34016 -78.86 44.81 0.6 67.1 476.1 3.4 1513.8 4700390.4 4.8 8.0 1.96 4.2 4.9 6383 0.17 No 

39929 -77.34 45.14 2.3 10.4 46.6 7.4 715.8 601847.6 6.1 8.0 1.6 7.5 1.9 1148 0.05 Yes 
15840 -81.47 46.48 0.6 101.0 9163.0 6.2 1683.9 7318376.9 7.2 8.0 1.4 2.8 11.1 170181.8 0.14 No 
31411 -79.88 46.98 0.9 53.2 1195.2 4.1 1904.5 2705628.6 5.2 8.0 3.2 4.4 4.7 46090.9 0.14 No 

33993 -79.63 44.84 0.6 62.7 177.8 2.7 1672.7 1937156.9 2.9 8.1 3.23 2.8 25.3 9461.8 0.27 No 
5680 -82.23 46.49 4.8 15.6 817.0 6.9 979.9 404749.3 2.8 8.2 2.05 7.6 3.3 28421.1 0.14 No 
11017 -82.65 47.29 0.5 63.8 501.4 7.0 2195.7 2558950.5 3.7 8.2 3.25 3.0 4.8 24724.4 0.22 No 
3897 -84.36 47.11 0.5 102.2 1090.8 7.3 2276.5 9655720.4 9.0 8.3 3.1 7.3 4.9 17702.1 0.11 No 

40942 -77.57 44.85 1.3 89.7 1283.7 3.4 2462.8 2980322.6 3.1 8.5 1.96 2.0 2.1 51085.7 0.31 No 
32410 -79.35 46.75 0.7 30.9 69.1 0.7 913.2 1081601.6 3.6 8.6 2 3.4 0.5 2514.5 0.15 No 
3937 -84.62 47.11 0.9 105.8 217.5 6.4 1983.5 3706271.2 3.1 8.8 2.18 2.0 4.2 12262.8 0.33 No 
19245 -80.73 47.77 1.0 48.2 10697.3 4.4 3055.1 1691409.9 3.4 8.8 3.54 5.2 7.2 351200 0.20 No 

27477 -79.85 45.36 1.4 134.8 2247.5 3.3 2964.9 7581053 3.6 8.8 3.85 3.7 5.9 82800 0.32 No 
33872 -79.58 44.91 0.5 21.1 153.2 3.7 1063.5 1050559.7 4.3 8.8 2 4.7 21.8 4927.5 0.11 No 
31701 -79.80 46.92 0.5 37.8 1468.0 4.8 1733.3 1572897.2 4.4 8.8 2.42 5.0 2.2 46307.7 0.14 Yes 
47102 -76.41 45.14 3.1 31.2 421.7 2.2 1222.1 1557132.6 4.8 8.8 2.31 4.6 5.2 13027 0.12 Yes 

5389 -82.85 46.56 0.4 78.9 353.0 6.6 3048.4 3816405.7 5.0 8.8 3 5.7 1.4 8017.9 0.18 Yes 
41196 -78.15 44.74 0.7 96.3 428.2 4.2 3452.2 5722949.6 5.0 8.8 3.89 4.7 9.9 14151.1 0.20 No 
41380 -78.20 44.64 0.8 33.4 2430.5 3.2 1403.5 1731751.9 5.3 8.8 2.17 5.3 5.7 53428.6 0.11 No 

20556 -80.66 47.40 0.4 38.2 2320.1 7.0 1067.7 2164772.6 5.5 8.8 1.4 3.5 1.4 83750 0.11 No 
33931 -79.27 44.89 0.8 85.1 8460.2 3.0 3088 6191023.4 6.3 8.8 3.49 6.1 6.4 180800 0.15 No 
18697 -81.01 47.89 0.7 13.0 138.5 3.4 841.4 806478.4 6.6 8.8 1.53 6.5 0.0 2978.7 0.05 No 
20635 -80.63 47.38 0.6 85.8 1178.0 8.0 3071.6 6966029.7 6.7 8.8 2.58 4.6 2.0 23835.6 0.14 No 

47049 -76.48 45.18 1.8 8.9 265.8 4.2 514.4 598414 7.1 8.8 1.29 6.5 1.6 2666.7 0.04 No 
26759 -79.87 45.91 0.3 30.8 342.7 4.5 1079.9 2685162.9 8.9 8.8 1.49 5.6 9.3 5200 0.06 No 
47515 -76.22 44.84 35.5 660.1 4327.4 1.9 7065.7 63110680 7.8 9.0 3.76 3.1 19.2 121699.3 0.33 Yes 
31826 -79.71 46.90 0.9 83.4 750.1 6.1 2970.7 3294186 4.0 9.0 2.17 3.3 7.4 23603.6 0.23 No 

38061 -78.82 45.51 0.5 16.6 445.8 7.8 736.4 1024359.7 5.4 9.0 1.55 5.4 2.1 11567.6 0.08 No 
37133 -78.14 45.77 0.5 61.1 238.2 7.3 1382 3611446.2 5.8 9.0 1.32 5.6 4.4 6484.4 0.13 No 
47589 -76.21 44.81 1.3 80.5 1244.2 2.8 2065.3 3414418.9 4.2 9.0 2.94 4.0 12.5 50400 0.21 Yes 
21112 -80.82 47.27 0.8 240.1 5253.0 6.4 4770.6 17615197 7.2 9.0 3.14 3.5 5.3 133217.4 0.22 No 

2008 -84.71 47.76 0.6 31.9 1077.4 7.0 1448 758896.9 2.4 9.1 3 4.3 3.4 61733.3 0.24 Yes 
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2625 -84.70 47.57 0.7 44.6 1561.5 7.7 1846.3 1046893.8 2.4 9.1 3.26 2.3 0.3 71034.5 0.28 Yes 
5168 -83.51 46.61 0.6 33.2 1661.4 7.4 1306.8 772315.9 2.4 9.1 2.03 2.4 2.3 102200 0.24 No 
45703 -77.69 45.67 1.9 47.8 41804.0 4.8 1274.6 1255046.5 2.4 9.1 1.58 2.7 7.9 2404000 0.29 No 
19556 -80.69 47.69 1.4 21.6 68.2 8.3 748.7 547054.8 2.6 9.1 1.57 2.2 0.0 3343.8 0.18 Yes 

45681 -77.70 45.67 2.9 79.5 40652.9 4.8 1519.2 2210047.1 2.6 9.1 1.55 2.7 7.9 1898000 0.34 No 
46097 -77.62 45.50 1.7 10.8 1093.1 6.1 665.6 327378.1 2.8 9.1 1.44 2.9 9.3 38800 0.12 No 
5947 -83.49 46.35 0.3 35.1 440.0 6.4 1260.1 1769685.6 5.2 9.1 1.69 6.9 7.8 7850 0.11 Yes 

17078 -81.40 46.02 0.5 6.5 23.0 5.8 532.6 343482.5 6.8 9.1 1.76 9.4 2.2 70.9 0.04 No 
21239 -80.81 47.25 1.2 86.8 11827.7 6.9 2084.2 2118124.8 2.5 9.2 2.59 1.6 4.4 521142.9 0.37 Yes 
40718 -77.40 44.92 0.7 143.2 1933.8 4.0 4171.6 8110398.3 5.6 9.2 3.63 3.6 10.3 35729.7 0.21 Yes 
40247 -76.79 45.06 1.0 264.9 1336.8 5.8 4861.1 16985254 6.1 9.3 2.89 6.4 4.0 43838.4 0.27 No 

33274 -78.95 45.17 1.2 15.4 1583.8 6.6 885.5 430718.3 3.9 9.4 1.96 3.8 0.1 57600 0.10 No 
36311 -78.39 46.09 0.2 239.2 4916.6 3.9 4743.7 15744140 6.5 9.4 3.02 3.3 11.5 139510.2 0.24 Yes 
33751 -78.37 44.96 0.6 208.6 3317.1 3.9 2565.6 25043458 8.0 9.4 1.86 4.3 6.2 35111.1 0.18 Yes 
1817 -84.71 47.84 0.3 155.4 1479.0 8.2 3614.3 12981142 8.4 9.4 2.14 4.5 3.1 18552.4 0.15 No 

40561 -77.29 44.97 1.2 46.4 1231.8 3.8 1169.7 1530913 3.3 9.8 1.55 2.1 7.0 38000 0.21 Yes 
6015 -83.15 46.31 0.6 88.9 2323.3 5.3 1300.6 1412819.5 2.3 10.0 1.3 1.9 6.8 90315.8 0.41 No 
25288 -79.94 46.66 1.4 14.5 275.0 2.9 795.3 332732.8 2.4 10.0 2.06 3.2 17.7 16301.9 0.16 No 
31842 -79.51 46.89 0.8 69.5 2585.7 2.9 2703.8 1887037.7 2.8 10.0 2.61 2.7 7.8 121037 0.30 Yes 

21199 -80.79 47.26 0.8 25.9 5327.5 7.8 855.6 905150.3 3.6 10.0 1.55 2.6 4.6 176800 0.14 No 
46215 -77.75 45.45 0.9 113.4 1077.4 6.9 1898 8188179.4 7.2 10.0 1.72 3.5 3.3 28533.3 0.15 Yes 
21135 -81.38 47.27 0.3 6.0 14.6 1.3 358.4 488489.4 8.4 10.0 1.09 9.3 0.0 194.2 0.03 No 

38272 -78.99 45.46 0.2 159.2 2309.2 4.9 3902.1 10945529 6.7 10.0 2.72 4.4 3.8 58898.6 0.19 No 
27659 -79.95 45.17 1.5 137.1 6941.6 3.5 3625.5 3915161.2 2.7 10.0 3.19 2.0 9.9 249000 0.43 No 
33098 -78.98 45.22 0.6 36.9 148.5 6.1 1393.2 2874352.7 7.8 10.0 2.23 7.1 0.0 3096.8 0.08 No 
37920 -78.11 45.54 0.7 132.6 5904.9 6.6 3032.9 22521641 6.2 10.0 2.42 5.2 5.8 190545.5 0.19 Yes 

2546 -83.73 47.57 0.8 15.2 42.2 2.9 837.2 862678.6 6.2 10.0 1.65 6.7 1.3 657.4 0.06 Yes 
45666 -77.61 45.68 2.2 52.5 9838.8 5.1 2289.6 2153297.3 4.0 10.0 2.5 5.3 8.2 418400 0.18 Yes 
47956 -76.37 44.52 2.2 240.5 4261.1 4.9 5089.3 18173317 5.7 10.0 3.29 3.7 11.3 112285.7 0.27 Yes 
23409 -80.79 46.87 2.3 160.7 2041.8 5.9 2817.2 11078853 5.9 10.0 3.67 4.1 3.2 84911.4 0.21 No 

5589 -83.49 46.50 0.4 33.1 168.6 4.6 1037.7 2052232 6.4 10.0 1.8 5.8 3.4 4285.7 0.09 No 
33329 -78.94 45.15 0.7 11.8 88.6 10.6 779.4 523410.6 4.7 10.1 1.5 6.3 0.0 2406 0.07 No 
34009 -78.44 44.82 0.4 177.3 663.9 3.1 2626.4 26114519 12.2 10.1 2.37 6.6 29.4 11191 0.11 No 
33531 -79.01 45.06 0.3 14.6 823.8 3.7 779.5 714977.8 5.2 10.2 1.65 5.4 0.1 14888.9 0.07 No 

27048 -80.37 45.70 0.4 339.9 2824.7 1.6 5719.8 14357568 3.7 10.2 6.51 2.9 8.9 134400 0.50 No 
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47566 -76.26 44.82 1.2 12.0 1642.1 1.6 590.9 495417.5 4.5 10.2 1.3 4.3 23.0 38857.1 0.08 No 
19356 -80.63 47.75 0.5 27.5 9668.9 4.0 1244.7 1339076.5 5.0 10.2 1.8 5.2 7.9 224000 0.10 Yes 
1729 -83.42 47.82 0.7 9.4 220.0 4.0 622 510572.2 5.9 10.2 1.69 7.1 3.1 4837.2 0.05 No 
22160 -81.28 47.09 0.5 32.4 287.3 6.3 1023.3 1381966.9 6.4 10.2 1.44 5.1 1.5 3787.6 0.09 Yes 

25967 -80.58 46.26 1.3 27.7 90.8 4.1 1361.1 1731824.8 6.6 10.2 2.42 7.8 2.9 1809.8 0.08 No 
41159 -78.26 44.76 0.2 160.8 918.8 4.7 2489.1 14082426 6.6 10.2 2.1 3.6 5.6 12571.4 0.19 Yes 
46464 -77.09 45.36 1.1 14.6 359.6 7.5 987.9 959792.9 6.8 10.2 1.74 7.4 3.8 10634.1 0.06 No 

4273 -84.15 46.83 0.8 21.4 294.0 9.7 908.4 1477769.5 7.1 10.2 1.51 6.3 0.0 5972.6 0.07 No 
32229 -79.29 46.80 2.3 25.5 156.9 3.2 926.2 2065196.2 8.2 10.2 1.46 5.6 3.9 3950.6 0.06 Yes 
34149 -78.74 44.68 0.5 756.1 5086.7 1.8 6425.6 73450074 8.3 10.2 2.03 1.5 31.3 75516.8 0.33 No 
16931 -81.59 46.11 0.4 73.1 427.5 5.7 2348.9 7901838.1 10.6 10.2 2.57 8.7 0.9 8046.8 0.08 No 

20379 -80.71 47.45 1.8 159.3 14550.2 6.9 4225.9 6878379.2 4.4 10.2 3.78 3.2 3.0 764727.3 0.29 No 
32439 -79.40 46.74 0.4 168.1 1391.9 0.8 2542.2 13975907 8.2 10.3 1.96 3.2 7.9 29487.6 0.16 No 
34031 -79.65 44.82 9.3 112.3 1567.0 3.4 2792.7 5275134.7 4.7 10.4 2.46 2.1 16.9 43722.2 0.23 No 
33548 -79.89 45.07 0.3 35.7 890.5 2.7 1212.6 1837465.5 5.2 10.4 1.97 3.8 3.9 21100 0.11 No 

2125 -83.62 47.70 1.0 31.3 232.0 1.8 1058.4 2021681.6 6.8 10.5 2.1 6.2 8.1 3763 0.08 Yes 
33255 -78.95 45.17 0.9 12.2 1435.1 6.5 600.3 432894 2.9 10.7 1.5 2.6 0.1 36888.9 0.12 No 
33202 -78.97 45.19 0.7 17.4 124.6 8.5 911.6 552615 3.4 10.7 1.72 3.9 0.0 4086.3 0.12 No 
38154 -78.96 45.49 0.3 33.5 227.0 4.3 1051.8 1140046.1 3.5 10.7 1.65 4.1 0.0 9687.1 0.17 No 

39949 -76.91 45.12 8.7 23.2 335.8 4.2 1626.7 308161.3 1.5 11.0 2.75 3.0 4.6 26260.9 0.32 Yes 
40060 -77.31 45.11 6.3 17.2 251.4 7.6 1473.4 377768.5 2.4 11.0 2.35 4.5 1.5 15768.1 0.17 No 
24253 -81.13 46.71 1.1 6.4 122.7 10.5 588.4 196565.6 3.5 11.0 1.5 7.9 6.5 4000 0.07 No 

40936 -77.88 44.85 1.0 16.4 139.2 4.0 707.5 758013.5 4.5 11.0 1.33 3.2 1.9 3593.2 0.09 Yes 
33680 -78.91 45.00 0.5 47.8 269.6 3.8 1332.9 4273061.5 8.9 11.0 2.65 6.7 8.0 4610.2 0.08 No 
5478 -82.98 46.53 5.6 22.3 241.3 8.3 3122.2 16094377 9.2 11.0 9.16 6.0 4.8 37376.3 0.05 No 
2809 -84.35 47.50 0.6 86.9 537.9 5.8 1949.2 8404632.9 9.6 11.0 2.36 5.7 4.4 10543.2 0.10 No 

11166 -83.49 47.25 0.3 31.6 245.9 6.6 1448.6 2144862.9 6.9 11.2 1.94 6.5 1.7 3907 0.08 No 
26594 -79.89 46.00 2.0 65.3 3823.3 3.5 3764.8 2240619.4 3.1 11.3 4.94 5.0 10.4 145411.8 0.26 No 
40124 -76.80 45.08 2.6 6.3 39.9 5.6 633.8 200566.5 3.5 11.3 1.61 6.5 0.6 1645.6 0.07 Yes 
2189 -84.88 47.72 0.3 43.5 237.6 10.2 1457.8 3139591.3 7.2 11.4 2.1 5.2 0.0 6491.8 0.09 Yes 

6047 -82.92 46.30 0.4 26.1 233.8 5.9 871.3 1220176.2 4.6 11.8 1.69 5.0 1.6 5535.7 0.11 No 
33910 -79.33 44.89 0.9 26.3 1170.8 3.0 1412.7 1078475.2 4.4 12.0 3.98 5.2 6.7 57454.5 0.12 No 
33031 -78.69 45.23 1.0 21.3 81.4 7.0 891.2 955565.7 4.6 12.0 1.62 4.8 2.1 2381.7 0.10 No 
34047 -79.71 44.82 0.5 398.8 184783.7 1.7 4089.3 34141145 6.4 12.0 3.86 2.9 15.2 4746000 0.31 No 

33073 -78.22 45.20 0.6 220.9 977.1 5.9 3496.4 15945319 7.2 12.0 2.65 3.8 2.0 17415.9 0.21 Yes 
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46582 -76.84 45.30 1.9 102.7 34888.0 4.7 2525.8 10907266 9.6 12.0 1.74 5.1 8.2 996000 0.11 No 
44778 -77.56 46.04 0.7 62.1 187.2 4.2 1742.3 2692312.2 4.2 12.0 1.87 3.0 9.8 8108.4 0.19 No 
22057 -81.24 47.11 0.5 13.2 271.2 5.1 751.2 1066645.9 8.3 12.0 1.89 11.3 2.9 4244.9 0.04 No 
21288 -80.77 47.24 0.2 114.8 784.7 8.0 4089.8 12677917 11.2 12.0 2.6 6.8 0.6 10904.1 0.10 No 

48016 -76.50 44.50 1.3 22.6 62.9 5.3 962.1 2722166.1 11.9 13.0 1.78 9.3 3.9 1822.2 0.04 No 
47743 -76.56 44.66 1.3 95.1 28375.2 2.7 1924.7 6681891 7.1 13.0 2.13 3.9 8.5 842666.7 0.14 No 
40101 -76.91 45.08 3.3 40.7 202.9 4.6 2208.9 822232.9 2.0 13.1 2.91 4.1 2.8 14328.4 0.32 No 

27406 -80.19 45.44 0.6 180.4 1477.3 3.2 4427.8 9293776.5 3.2 13.1 3.37 3.6 7.7 50557.4 0.42 Yes 
27323 -79.92 45.51 0.5 20.6 125.0 2.5 880.7 1118247.5 5.3 13.4 1.48 4.4 0.0 3757.6 0.09 No 
2575 -84.86 47.59 0.3 27.6 1148.4 8.8 1354.3 1460162.1 5.5 13.7 1.77 5.1 0.0 28500 0.10 Yes 
6049 -83.29 46.30 0.4 141.8 384.6 5.3 2636.1 8201145.9 5.7 13.7 1.75 3.0 0.0 9105.7 0.21 No 

12560 -82.50 46.99 0.5 663.6 31747.0 4.0 8401 70006159 8.9 14.1 5.34 4.4 4.5 696190.5 0.29 No 
5279 -83.59 46.59 0.2 128.7 2448.0 8.2 2408.9 13359060 10.9 14.8 1.77 4.2 1.5 4830.2 0.10 No 
9255 -82.04 47.72 16.8 1258.8 6508.2 3.5 8225.9 50208806 2.9 15.0 2.87 0.8 5.3 238549.2 1.22 No 
39380 -78.02 45.36 0.3 313.6 5343.7 5.1 4185.6 27400977 8.7 15.0 2.15 4.7 3.7 132067.8 0.20 No 

46314 -77.36 45.43 1.2 87.7 1866.8 5.0 2484.3 6491663.8 7.1 15.6 2.15 5.3 5.4 61872.3 0.13 No 
21605 -80.96 47.19 0.5 46.8 267.6 7.5 1839.8 2502527.3 5.4 16.0 1.85 4.3 0.0 7474.3 0.13 No 
47591 -76.69 44.80 1.2 8.5 292.5 2.7 455.6 759131.1 9.8 16.0 1.22 8.6 6.1 1379.3 0.03 Yes 
40444 -76.93 44.99 7.3 11.7 169.2 5.9 597.6 646681.8 5.9 16.0 1.7 8.7 4.9 3652.2 0.06 Yes 

47066 -76.51 45.17 3.5 22.4 745.9 4.6 820.7 2677484.1 12.3 16.0 1.34 8.6 3.2 6666.7 0.04 No 
4101 -84.62 47.03 0.2 148.5 537.9 11.6 2993.1 17451483 11.8 16.0 2.08 6.1 0.6 6188.4 0.10 No 
5800 -82.97 46.44 0.2 85.9 3088.2 7.3 3065 5426888.7 6.5 16.2 2.22 7.9 4.3 34428.6 0.14 No 

40067 -77.38 45.11 0.4 153.3 1682.1 5.6 2668.5 21099217 13.4 16.2 2.44 6.6 2.6 16615.4 0.09 No 
32382 -79.25 46.75 1.3 10.2 233.5 2.1 577.2 536571.5 5.6 16.3 1.28 6.1 13.0 6232.6 0.06 No 
19615 -80.71 47.68 0.5 15.5 62.4 5.6 915.5 737973.2 4.9 16.5 1.8 5.1 0.0 1879.5 0.08 No 
9278 -83.39 47.72 0.2 12.4 74.9 1.7 590.6 659551.4 5.6 16.5 1.53 6.8 0.4 1939.4 0.06 No 

26756 -80.28 45.91 0.4 15.8 268.1 1.2 739.7 1074894.7 7.1 16.5 1.43 6.6 5.6 4339 0.06 No 
33967 -79.46 44.87 0.8 317.8 7000.1 2.7 2752.1 17199627 3.0 16.8 1.7 2.1 5.9 298755.6 0.59 No 
47940 -76.47 44.54 0.5 42.1 804.5 4.1 1269.6 2982537.1 7.2 16.8 2.33 5.4 3.7 14384.6 0.09 Yes 
5824 -82.95 46.42 0.1 91.6 454.0 8.2 1796.9 13571090 14.3 17.0 1.5 6.6 0.8 3465.3 0.07 No 

15004 -81.29 46.67 0.5 43.3 137.6 6.8 1306.8 4673017.6 11.1 17.0 1.84 7.8 7.5 1460.3 0.06 Yes 
27325 -80.08 45.51 0.5 71.5 2081.8 3.1 2038.7 5754173.3 6.8 17.0 2.8 7.1 8.8 80470.6 0.12 Yes 
32957 -78.41 45.25 0.5 78.7 833.3 4.6 1534.8 11031808 13.8 17.0 1.79 8.1 4.2 14170.2 0.06 No 
5910 -82.98 46.38 0.2 54.9 224.5 11.0 1599.6 5454021.4 10.1 17.2 1.78 8.5 1.4 2377 0.07 No 

2383 -84.61 47.65 1.0 15.3 243.6 6.4 1337.4 485267.5 3.5 17.5 2.49 6.2 0.0 12190.5 0.11 No 
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33946 -78.74 44.87 1.2 49.5 303.4 5.5 1186.3 2302311.3 4.7 17.7 1.65 3.0 5.0 12736.2 0.15 No 
21503 -80.99 47.21 0.6 98.7 1213.4 8.5 3149 6604114.7 6.8 18.0 2.87 4.2 4.3 37086.4 0.15 No 
22773 -80.77 46.98 0.4 504.1 4170.7 5.0 4233.8 53160156 7.4 18.0 2.52 3.6 4.0 105586.8 0.30 Yes 
39086 -78.23 45.07 0.7 221.9 5078.9 6.1 2928 33826241 15.3 18.0 1.75 5.2 4.1 40909.1 0.10 No 

5642 -83.70 46.48 0.2 26.9 117.2 10.7 684.3 2943626.4 11.2 18.0 1.15 7.4 0.0 1659.4 0.05 No 
19204 -80.65 47.77 0.7 121.9 26446.6 4.1 3615.5 14472315 12.0 18.0 2.87 7.8 6.3 436800 0.09 No 
40074 -76.89 45.09 0.9 27.7 100.5 7.3 1388.8 2087089.5 8.3 18.5 2.25 8.9 0.4 797.1 0.06 No 

23754 -81.24 46.82 0.6 157.4 1463.0 5.3 2914.6 13330161 6.4 18.5 3.39 4.9 10.0 45666.7 0.20 Yes 
27309 -80.21 45.52 0.5 178.8 2187.9 1.2 4654.7 9768876.7 3.8 18.6 5.42 3.2 20.9 71756.1 0.35 No 
47981 -76.48 44.52 1.2 32.9 1532.7 3.9 1577.3 2104655.3 5.6 18.9 2.59 7.4 9.7 56000 0.10 No 
38471 -78.98 45.39 0.3 21.1 407.1 8.5 999.1 1379658.5 6.7 18.9 1.53 6.2 0.5 9923.1 0.07 Yes 

33399 -78.59 45.12 1.0 113.9 24082.2 5.2 1812.6 8183235.3 7.2 19.0 1.3 2.4 5.8 360000 0.15 No 
40754 -77.17 44.91 0.4 87.4 3326.8 4.0 1911 11103627 12.6 19.0 1.6 6.4 5.7 52153.8 0.07 Yes 
40178 -76.93 45.07 0.6 111.9 713.6 5.0 2778.7 8191692.7 7.3 19.8 2.74 5.3 3.9 13936.3 0.14 No 
21444 -80.92 47.21 0.4 96.3 453.6 7.2 2749 6366801.8 5.3 20.0 2.69 4.5 1.2 11226.4 0.19 No 

23738 -80.89 46.83 0.6 16.1 56.4 4.2 670.2 1172663.5 7.4 20.0 1.58 6.8 0.0 1052.6 0.05 Yes 
46406 -76.98 45.40 1.9 618.4 26427.4 4.8 5230 36125312 4.6 20.1 3.49 1.6 8.2 1310435 0.54 No 
41423 -77.91 44.60 0.4 327.9 1216.6 2.9 3347.6 27111450 6.1 20.2 2.11 3.4 24.1 39807.4 0.30 No 
1969 -84.17 47.77 0.7 173.7 1549.8 7.3 2960.2 9917117.4 4.0 20.5 3.93 4.0 4.3 58000 0.33 No 

38414 -78.97 45.41 0.3 18.1 74.8 5.5 963.2 1097299.2 6.3 21.0 1.83 7.0 0.1 1933.9 0.07 No 
39568 -76.89 45.24 1.8 5.2 91.2 6.9 439.4 485800.7 10.8 21.0 1.4 15.0 6.6 905.3 0.02 No 
39604 -77.01 45.24 1.5 170.0 907.3 5.9 1397.2 4155734.9 12.2 21.0 0.8 9.2 1.9 2866.3 0.11 No 

46636 -76.71 45.25 0.9 17.7 51.8 6.6 906.9 2061429.7 11.9 21.0 1.94 9.2 7.1 985.3 0.04 No 
46080 -77.76 45.51 0.5 271.4 2681.2 7.2 2973.9 35712748 13.1 21.0 1.69 4.6 3.2 52356.4 0.13 No 
34074 -78.80 44.80 0.7 189.6 110129.0 4.7 2524.6 13948270 7.2 21.9 2.61 3.5 4.7 2134000 0.19 No 
5182 -82.37 46.63 0.3 46.5 331.8 7.3 1633 3901740.8 8.6 22.0 2.51 7.6 2.7 5514.3 0.08 Yes 

39698 -77.00 45.21 0.7 133.6 906.2 6.8 2878.6 25856953 19.5 22.0 2.26 9.9 4.9 6775.5 0.06 No 
33164 -79.05 45.20 0.4 74.3 120.9 6.3 1368.4 6717722.7 9.0 22.9 1.57 4.2 0.0 1928.3 0.10 No 
47623 -76.51 44.78 1.2 53.2 207.9 5.9 1439 5963822.1 11.3 23.8 1.72 6.2 7.4 2843.8 0.06 No 
5674 -82.38 46.49 0.3 24.9 693.4 5.2 973.7 2359911.8 9.4 24.0 2.14 4.0 6.4 17111.1 0.05 Yes 

39595 -76.74 45.23 1.6 14.6 250.0 6.6 1020 700070 4.4 24.4 2.04 6.3 4.2 9310.3 0.09 No 
5170 -83.59 46.60 0.2 30.5 123.7 10.7 1147 2681174.6 9.0 24.4 1.84 8.5 0.0 2292.7 0.06 No 
4309 -83.95 46.78 0.6 196.7 384.7 13.9 2314.3 21490761 10.7 36.6 1.35 3.9 1.0 8641.9 0.13 No 
40467 -77.88 45.02 0.7 42.7 374.5 5.7 1693.4 4852956.8 11.4 37.0 2.1 8.8 5.6 7754.4 0.06 No 

40232 -77.01 45.05 0.6 34.9 939.0 6.8 1371.5 5543611.1 17.6 39.0 1.68 15.6 4.3 7135.1 0.03 No 
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27132 -80.23 45.65 0.3 235.9 3252.9 3.6 5216 35016148 14.1 40.5 0.88 8.1 4.8 37260.3 0.11 Yes 
33542 -78.32 45.05 0.3 260.6 1738.3 6.6 3236.2 50626835 19.2 41.0 1.95 6.4 4.6 15040 0.08 No 
16910 -81.43 46.10 1.6 874.0 10327.8 8.2 10386 169174344 11.7 45.0 8.97 8.8 3.6 255435.3 0.25 Yes 
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Appendix F: Non-stationary signals in time series of modeled 

Chlorophyll-a.  

 

Figure F.1 Significant (p < 0.05) non-stationary signals in ln Chl-amod time series (1984–

2011) for: (a) positive trending lakes (n = 500), and (b) negative trending lakes (n = 561). 
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Appendix G: Sensitivity analysis to identify the most 

appropriate size of mowing window standard deviation.  

 

Figure G.1 Averaged results of the sensitivity analysis of 95% of 2,000 randomly 
selected lakes to identify the most appropriate size of mowing window standard deviation 

(SDmv, years) measured by the Kendall’s statistics (Kendall tau (τ) and p values). 
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