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i 

 

Abstract 

Post-translational modifications (PTM) are vital regulators of protein function and 

homeostasis. The role of dynamic regulations of non-histone lysine methylated proteins 

(NHKMP) recently began to be recognized in DNA damage repair, apoptosis and 

transcriptional pathways. My goal was to identify components of the NHKMP network to 

understand its importance in a healthy versus diseased cellular state. I used membrane 

peptide arrays to systematically characterize nine naturally occurring lysine methyl binding 

domains (KMBD). Five KMBDs were chosen based on their overlapping specificities to 

achieve maximum coverage of lysine methylated peptides. These five KMBDs was used to 

enrich for methylated lysine peptides from a trypsinized HEK293 cell lysate and followed by 

mass spectrometry identification. We identified 229 NHKMP and 301 novel sites from 

HEK293. The amount of NHKMPs and sites that I have identified in total was 

unprecedented: this allows us to gain valuable insights into components of the lysine 

methylome network. 

Keywords 

Protein methylation, lysine methylation, non-histone protein methylation, peptide array, mass 

spectrometry  
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Summary for lay audience 

Proteins can have many modifications post-synthesis, called post-translational modification. 

These PTMs are responsible for regulating vital pathways within the cells and ensure the 

survival of the cells. In this thesis, I studied one type of PTM called protein lysine 

methylation. Protein lysine methylations are found in DNA regulation, cell regulation and 

other pathways. It is also very common to have dysregulation of protein methylation within 

cancer cells. To understand how protein lysine methylation works within the cell, we first 

need to identify the proteins that are methylated. Current methods cannot identify a huge 

range of methylated lysine proteins within one experiment. Therefore, for my thesis, I 

developed a method to enrich and identify methylated lysine proteins. In this thesis, I was 

able to identify several novel proteins that were methylated within the cell.  
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Chapter 1  

1 General Introduction 

Protein post-translational modifications (PTM) are vital regulators of protein function. 

These PTMs can give a protein a specific function and can alter the protein-protein 

interaction (PPI) network. PTMs are a very energy-efficient way to alter protein function 

1. Thus, PTMs can give a protein the potential of interacting with a variety of partners 

depending on the needs of the cell. Such as turning an enzyme on or off with one or more 

PTMs. PTMs are tightly regulated in cellular processes to maintain homeostasis. 

Aberrations in PTMs can result in a diseased cell state through dysregulation of DNA 

damage repair (DDR), apoptosis, metabolic and other essential pathways 2,3.  

There are many known PTMs such as phosphorylation, acetylation, ubiquitination, 

glycosylation, methylation and others. One of the most studied PTM is protein 

phosphorylation 4. Protein phosphorylation is highly regulated, highly dynamic and 

commonly found perturbed in diseased cells, such as cancer. Protein phosphorylation is 

known for signalling cascades and signalling transduction. Phosphorylation is a relatively 

fast PTM that can occur seconds to hours after stimulus 5. Protein phosphorylation is 

regulated by a protein kinase, a “writer,” where it puts on the signal. Then the signal gets 

read by a “reader” protein. Finally, the signal gets removed by a phosphatase, an “eraser.” 

Some of the other PTMs and other pathways are regulated via the writer-reader-eraser 

mechanism.  

 

1.1 Protein methylation 

Protein methylation is a very small, hydrophobic modification onto the side chains of 

many residues. There are at least nine different residues that could be methylated in the 

cell: Met, Cys, Lys, Arg, His, Gln, Asn, Glu and Asp 6. However, the most common 

methylated residues are found on lysine and arginine. The addition of one or more 

methyl-groups onto Arg or Lys residues will not affect their overall charge (Fig. 1.1) 7. 
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The first protein methylation was reported in 1959 8, and it was fascinating at the time. 

However, not much interest soon followed. It was not until the late 1990s and early 2000s 

when protein methylation gained more popularity 9. The stagnation in the study of protein 

methylation was partly due to the dogma that protein methylation was irreversible, and it 

does not have much biological relevance 10. With technological advances of the late 

1990s, gene regulation by histones was a hot topic 11. Histone methylation on lysine and 

arginine are important in gene regulation 12. A hypothesis was conceived, the “histone 

code,” where histone PTMs, like methylation, acetylation and phosphorylation, 

contributing to gene regulation 13. It catalyzed an interest to investigate further about 

protein methylation. Several histone methyltransferases, both arginine and lysine, were 

discovered at the time 9. However, it was not known whether methylation is dynamic or 

static modification until 2004, where the first lysine demethylase was discovered 14. The 

discovery of a demethylase, an eraser, abolished the 45 years of dogma that protein 

methylation was a static and irreversible modification.  

Protein methylation gained a lot of interest in the past few years because of its biological 

relevance, finally being unravelled, starting with the discovery of the first lysine 

methyltransferase (KMT) in 1996 15. Protein methylation is involved in many key 

essential pathways 9, for example, DNA damage repair, RNA processing, metabolism, 

cell cycle regulation, apoptosis and others 3,16. Aberrations in protein methylation often 

lead to diseased cell states such as inflammation and cancer 3,17. 

Unlike other PTMs, protein methylation is seen as a slow form of regulation that lasts for 

a longer time than some other PTMs 18. Some methylation events can take hours to even 

days after a stimulus is introduced, and the turnover rate may also not be as fast as other 

PTMs, such as phosphorylation 19. Protein methylation is regulating genes on an 

epigenetic level through histone modifications 20. 
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Figure 1.1. A general overview of protein methylation. A) Lysine methylation can 

occur in four modification states, none, mono-, di- or tri-methylation on the ɛ-N-methyl 

lysine. B) Arginine methylation can also have four different states, none, mono-, di-

methylation. However, dimethylarginine can be asymmetrical or symmetrical. C) The 

writer, reader, eraser of a dynamic post-translational modification. The writer puts on a 

methyl-group, it is read by a reader to transduce the signal, and finally, the methyl-group 

gets removed by an eraser to stop the signal. It is similar to other dynamic PTMs, such as 

phosphorylation and acetylation. Figure adapted from Dr. Kyle Biggar 21. 
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1.2 Protein lysine methylation  

Sanger first observed methylated lysine residue in 1943 22. He observed that the methyl-

group is attached to the side chain amino group of the lysine residue (ɛ-N-methyl-lysine) 

and not on the terminal amino group (Fig. 1.1A). Sanger observed that ɛ-methyl-lysine 

residues could substitute lysine residues and were demethylated in the kidney slices 23. 

However, his discovery was very advanced in his times. Now, more about lysine 

methylated proteins are being discovered and understood. Dedicated lysine 

methyltransferases and demethylases (KDM) were discovered3.  

Lysine methylation follows many PTMs with the writer-reader-eraser model. For the 

lysine residue, one, two or three methyl-groups could be attached to the ɛ-amino group, 

named mono, di, tri-methylated lysine, respectively. (also known as Kme1, Kme2, 

Kme3). The transfer of a methyl group to a lysine residue is facilitated by a lysine 

methyltransferase (KMT), the writer. It generates three different modifications with 

increasing hydrophobicity as more methyl-groups are added 21. The addition of a methyl-

group does not affect the charge of the residue. After the modification is added, there are 

about 148 different lysine methyl-binding domains (KMBD) that can read the 

modification24. These reader domains on effector proteins, transducing the signal or as a 

recruiting site to recruit other proteins 25–27. Furthermore, these reader domains are also 

found on the writers and erasers to facilitate binding to their substrates. The removal of 

the methyl-group requires a lysine demethylase, the eraser. There are several mechanisms 

involved in removing a methyl-group 28. Some demethylases can remove mono- or di-

methylation; some can remove tri-methylation only, and some can remove all three 3.  

There are a lot more arginine methylation sites that have been uncovered, and a lot of 

these correspond to important regulatory pathways within the cell 29. However, protein 

lysine methylation sites are far fewer compared to arginine methylation, 5,300 to 14,100 

sites, respectively 24. There are roughly three times more methylated arginine sites than 

lysine sites currently found (Fig. 1.2A), and the majority of both are mono-methylated 

sites. However, by comparing the number of unique proteins, the discrepancy is not as 

drastic (Fig. 1.2B). An interesting comparison is that there are a lot of proteins containing 
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both arginine and lysine methylation (Fig. 1.2C). It adds to the complexity of methylation 

and crosstalk between lysine and arginine methylation as well as other PTMs. 
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Figure 1.2. Comparison between protein lysine and arginine methylation. All the 

data were obtained from PhosphoSitePlus 24. A) Current protein lysine and arginine 

methylated sites, lysine methylation, only has about 5,300 sites discovered so far. 

Whereas about 14,100 sites were found for arginine methylation. B) Comparing lysine 

and arginine methylation when those sites are corresponding to proteins. Several arginine 

methylated protein has many sites. C) Looking at the crosstalk between methylated lysine 

and arginine proteins. There are about 1,220 proteins that have both lysine and arginine 

methylation sites. 
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1.2.1 Lysine methyltransferases and demethylases  

Lysine methyltransferase adds one or more methyl-groups onto a lysine residue. The 

cofactor used by KMTs is S-adenosyl-L-methionine (SAM), the sulphur on the 

methionine serves as the electrophile that transfers the methyl-group in an SN2 reaction 

30. There are several families of KMTs, the [Su(var)3-9, Enhancer-of-zeste and Trithorax] 

(SET), nuclear-receptor-binding SET domain (NSD), mixed-lineage leukemia (MLL), 

Suv, and the SET and MYND domain-containing proteins (SMYD) family transferases 

31. Some of the KMTs have different specificities where it can be only able to add one out 

of the three modification states. Whereas other KMTs may add more than one 

modification states 31. Moreover, there is an overlap between several KMTs, where they 

transfer to the same substrates, but they are expressed in different tissues or at different 

cell cycle stages 32. For instance, SETD7 is known only to monomethylate lysine residues 

33. It monomethylates H3K4, and a starts a building block for other KMTs, such as 

MLL1/2 to di- or tri-methylate the substrate 34. There are about 49 known KMTs, some 

are reviewed, and some are predicted and unvalidated 24. Table 1.1 lists KMTs, as well as 

KDMs with their histone substrates and their modification preferences, common cancers 

that are linked to KMTs and KDMs. 

Lysine demethylase removes the methyl-group from Kmes. There are fewer erasers 

known than writers. There are about 28 KDMs, and three of them are unvalidated yet 24. 

There are several families of KDMs as well, and they use a different mechanism to 

remove the methyl group. There are four families of KDMs: lysine-specific histone 

demethylase 1 (LSD1), JmjC domain (JMJD), ubiquitously transcribed tetratricopeptide 

repeat on chromosome X (UTX) and JARID family 35. The first-ever discovered KDM is 

lysine-specific histone demethylase 1 (LSD1) 14. LSD1 demethylates mono- and di-

methylated lysine of H3K4 and H3K9. LSD1 uses a cofactor flavin adenine dinucleotide 

(FAD) to oxidize the methylated lysine to remove the methyl-group 14. Since LSD1 

cannot remove Kme3, there must be other enzymes with another mechanism to remove 

Kme3s. Another family, the JMJD family, uses iron (II) and 2-oxoglutarate-dependent 

deoxygenation 35. The JMJD family can remove methyl-groups from all three 
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modification states. The UTX and JARID core catalytic domain is JmjC, using a similar 

mechanism as JMJD family 31. 
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Table 1.1 A list of human lysine methyltransferase and demethylases with their 

substrates, inhibitors and common cancers. 

LYSINE METHYLTRANSFERASES           

FAMILY Gene Alias Substrate Non-

histone 

Kme 

Mods 

Inhibitors Cancers Ref 

SET1 KMT2E  MLL5 H3K4 - kme1/2 - Colorectal, breast, 

prostate, lung, 

liver 

24,36,37 

SET1 KMT2C HALR H3K4 - kme1/2/3 - Breast, 

glioblastoma, 

melanoma, MLL, 

oesophageal, 

pancreatic, 

stomach 

24,36–38 

SET1 SETD1A Set1 H3K4 HSP70 kme3 - Bladder, CRC, 

HCC, lung and 

RCC 

24,36,37,39 

SET1 EZH2  WVS H1.4K25; 

H3K4; 

H3K9; 

H3K27 

RORα, 

STAT3 

kme1/2/3 E7438, GSK2816126, 

CPI-1205, GSK343, 

GSK126, UNC1999 

AML, bladder, 

breast, CCC, 

CML, CRC, 

glioblastoma, 

lymphoma, 

NSCLC, 

oesophageal, 

osteosarcoma, 

SCLC, RCC 

3,24,36,37,4

0–45 

SET1 EZH1 KMT6B H3K27 - kme1/2/3 - Colorectal, breast, 

prostate, lung, 

liver 

24,36,37 

SET1 KMT2A  HRX H3K4 - kme1 - AML, ALL, MLL 24,36,37 

SET1 SETD1B KMT2G H3K4 - kme3 - Colorectal, breast, 

prostate, lung, 

liver 

24,36,37 

SET1 KMT2D ALR H3K4 ERα kme1/kme

3 

- Hepatocellular 

carcinoma, HCC, 

24,36,37 

SET1 KMT2B HRX2 H3K4 - kme3 - Stomach, 

endometrial, 

bladder, lung 

24,36,37 

                
 

SET2 NSD2 WHSC1 H3K27, 

H3K26, 

H4K20 

- kme1 - Bladder, breast, 

CCC, CML, HCC, 

multiple myeloma, 

NSCLC, 

oesophageal, 

osteosarcoma, 

prostate, RCC and 

SCLC 

24,36,37,46 

SET2 ASH1L KMT2H H3K4, 

H3K36 

- kme1 - Colorectal, breast, 

prostate, lung, 

liver 

24,36,37 

SET2 NSD3 WHSC1L

1 

H3K36, 

H3K4, 

H3K27 

- kme2 - Bladder, breast, 

lymphoma, SCLC 

24,36,37,46 

SET2 NSD1 STO H3K36, 

H4K20 

- kme1/2/3 - AML, 

glioblastoma, 

lung, multiple 

myeloma 

24,36–38,46 

SET2 SETD2 HYPB H3K36 - kme3 - Colorectal, breast, 

prostate, lung, 

liver 

24,36,37 
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RIZ PRDM1 BLIMP

1 

H3K9 -     RENAL, LUNG, 

ENDOMETRIA

L, STOMACH 

24,36,37,47 

RIZ PRDM2 RIZ H3K9 - kme1/2 - Testicular, 

breast, liver, 

bone, lung, colon 

24,36,37,48–50 

RIZ PRDM12 PFM9 H3K9 - kme2 - Lung, colorectal, 

endometrial 

24,36,37 

RIZ PRDM5 BCS2 H3K9 - kme2 - Endometrial, 

stomach, bladder, 

lung 

24,36,37 

RIZ PRDM16 MEL1 K3K9 - kme1 - Bladder, 

endometrial, 

stomach, lung 

24,36,37 

RIZ PRDM8 PFM5 H3K9 -     Stomach, kidney, 

lung, endometrial 

24,36,37,51 

RIZ PRDM9 PFM6 H3K4 - kme2/3 - Lung, colorectal, 

endometrial, 

stomach 

24,36,37 

                
 

SUV39 SUV39H1 MG44 H3K9 - kme3 - Endometrial, 

stomach, lung 

24,36,37 

SUV39 SETDB2 CLLD8 H3K9 - kme3 - Colorectal, 

bladder, stomach, 

lung 

24,36,37 

SUV39 SETDB1 ESET H3K9 - kme3 - Endometrial, 

stomach, lung, 

colorectal 

24,36,37 

SUV39 SUV39H2 KMT1B H3K9 - kme3 - Bladder, cervical, 

NSCLC, 

oesophageal, 

osteosarcoma, 

prostate and STT 

24,36,37 

SUV39 SETMAR Mar1 H3K36 - kme2 - Endometrial, 

stomach, 

colorectal 

24,36,37 

SUV39 EHMT1 GLP H3K9, 

H1.2K186 

p53   kme1/2 BIX-01294, E72, 

UNC0321, UNC0638 

Endometrial, 

Stomach, lung, 

head/neck, lung 

24,36,37,52–56 

SUV39 EHMT2 G9A H3K9, 

H3K27, 

H3K56, 

H1.2K186, 

H1.4K25 

p53, 

CDYL, 

WIZ, 

ACIN1, 

DNMT1, 

HDAC1, 

ERCC6, 

KLF12 

kme1/2 BIX-01294, 

UNC0642, A-366, 

BRD9539 

AML, bladder, 

breast, CCC, 

CML, NSCLC, 

oesophageal, 

prostate, SCLC 

3,24,36,37,52,53,

55–57 

                
 

SUV4-20 SUV420H

1 

KMT5B H4K20 - kme3 A-196 Breast, 

esophagus, 

prostate, bladder 

24,36,37,58 

SUV4-20 SUV420H

2 

KMT5C H4K20 - kme3 A-196 Stomach, 

head/neck, breast 

24,36,37,58 

                24,36,37 

SMYD SMYD1 BOP H3K4 - kme1/2/

3 

-   24,36,37 

SMYD SMYD2 KMT3C H3K4, 

H3K36 

p53, RB1, 

PARP1, 

HSP90AB1

, Erα 

kme1/2 AZ505, BAY-598, 

LLY-507 

Bladder, breast, 

cervical, CRC, 

HCC, head and 

neck, lymphoma, 

oesophageal, 

ovarian, 

pancreatic, 

prostate, 

seminoma and 

skin 

3,17,24,36,37,59–

61 

SMYD SMYD3 KMT3E H3K4 VEGFR1, 

MAP3K2 

kme2/3 - AC, breast, CCC, 

cervical, CRC, 

HCC, lung, 

MTC, 

oesophageal, 

pancreatic and 

prostate 

3,24,36,37 
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OTHER SETD6   H2A.ZK4me

1;  

NF-Kβ kme1 -   24,36,37,62 

OTHER SETD7 KMT7 H3K4; 

H4K20 

TAF10, 

p53, 

PPP1R12A

, NF-Kβ, 

E2F1, 

DNMT1, 

STAT4 

kme1 PFI-2 breast, multiple 

myeloma 

3,24,33,36,37,63 

OTHER SETD8 SET8 H4K20 p53, PCNA kme1 - breast, CML, 

HCC, NSCLC 

and SCLC 

3,24,36,37 

OTHER DOT1L KMT4 H4K79 - kme1/2/

3 

EPZ004777, EPZ-

5676, SGC0946 

MLL, bladder, 

stomach, lung 

24,36,37,64–66 
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LYSINE 

DEMETHYLASES 

              

FAMILY Gene Alias Substrate Non-

histone 

Kme Inhibitors Cancers Ref 

LSD_KDM1 KDM1A LSD1 H3K4me1/2, 

H3K9 

PPP1R12A

, p53, ERα 

and 

STAT3 

kme1/2 trans-2-

phenylcyclopropylamin

e, polyamine analogues, 

CBB1007 

Bladder, lung, 

endometrial, 

stomach 

3,24,36,37,67

–69 

                
 

JARID KDM5D SMCY H3K4me2/3 - kme2/3 - Lung, bladder, 

colorectal, lung 

24,36,37 

JARID KDM5A RBP2 H3K4me1/2/3 - kme1/2/

3 

- AML, lung, 

endometrial, 

stomach, 

bladder 

24,36,37 

JARID KDM5B PLU-1 H3K4 - kme1/2/

3 

PDCA Endometrial, 

stomach, 

colorectal, lung 

24,36,37,70,7

1 

JARID KDM5C SMCX H3K4me2/3 - kme2/3 - Kidney, 

endometrial, 

stomach, 

colorectal 

24,36,37 

                24,36,37 

JHDM1 KDM2B FBXL10 H3K4me3, 

H3K36me1/2 

- kme2 - Stomach, 

endometrial, 

lung 

24,36,37 

JHDM2 KDM2A KDM2A H3K4me3, 

H3K36me1/2 

- kme2 - Endometrial, 

lung, stomach, 

bladder 

24,36,37 

                
 

JHDM2 KDM3A JHDM2

A 

H3K9, 

H3K36 

- kme2 - Stomach, 

bladder, 

colorectal, 

endometrial 

24,36,37 

JHDM2 KDM3B JHDM2

B 

H3K9 - kme3 - Endometrial, 

stomach, 

bladder, 

colorectal 

24,36,37 

JHDM2 JMJD1C   H3K9 - kme2 - Stomach, 

endometrial, 

bladder, 

head/neck 

24,36,37 

                
 

JHDM3 KDM4A JMJD2A H3K9, 

H3K36 

- kme3 N-oxalylglycine, 8-

hydroxyquinoline 

Lung, 

endometrial, 

bladder, 

stomach 

24,36–

38,72,73 

JHDM3 KDM4C JMJD2C H3K9me3, 

H3K36me3 

- kme2/3 N-oxalylglycine, 8-

hydroxyquinoline, 

methylstat 

Endometrial, 

stomach, 

colorectal, lung 

24,36–38,72–

74 

JHDM3 KDM4B JHDM3

B 

H3K9me3 - kme3 - Stomach, lung, 

endometrial 

24,36,37 

JHDM3 KDM4D JMJD2D H3K9 - kme2/3 8-hydroxyquinoline Endometrial, 

stomach, lung, 

bladder 

24,36–38,73 

JHDM3 KDM4E   H3K9 - kme2  - Endometrial, 

lung 

24,36,37 

                
 

PHF2_PHF8 KDM7A JHDM1

D 

H3K9me2, 

H3K27me2, 

H4K20 

- kme1/2/

3 

- Stomach, 

endometrial, 

lung, head/neck 

24,36,37 

PHF2_PHF8 PHF8 ZNF422 H3K9me1/2, 

H3K27me2, 

H4K20me1, 

H3K4me3 

- kme1/2/

3 

- Endometrial, 

stomach, lung, 

colorectal 

24,36,37 

                24,36,37 

UTX_UTY KDM6B JMJD3 H3K4, 

H3K27me2/3 

- kme2/3 Methylstat, GSK-J1 Stomach, lung, 

endometrial, 

colorectal 

24,36,37,74,7

5 

UTX_UTY KDM6A UTX H3K27me2/3, 

H3K4 

- kme2/3 GSK-J1 Bladder 24,36,37,75 
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UTX_UTY KDM6C UTY H3K27me3 - kme3 - Bladder, 

colorectal 

24,36,37 

                
 

JMJC_ONL

Y 

KDM8 JMJD5 H3K36me2 - kme2 - Endometrial, 

lung, stomach 

24,36,37 

JMJC_ONL

Y 

NO66 ROX, 

MAPJD 

H3K4me1/2/3

, 

H3K36me2/3 

- kme1/2/

3 

- CRC 24,36,37 

JMJC_ONL

Y 

MINA   H3K9me3 - kme3 - Endometrial, 

stomach, 

bladder 

24,36,37 

Table 1.1. A list of lysine methyltransferases and demethylases.  This list contains 

some of the lysine methyltransferases and demethylases, with their histone substrates, 

their catalytic modifications, any known non-histone proteins, the cancer types that it 

occurs most in, and if there are any inhibitors for this enzyme. Abbreviations: CRC, 

colorectal cancer; HCC, hepatocellular carcinoma; RCC, renal cell carcinoma; MLL, 

mixed-lineage leukaemia; AML, acute myeloid leukaemia; CCC, cholangiocarcinoma; 

CML, chronic myelogenous leukaemia; NSCLC, non-small cell lung carcinoma; SCLC, 

small cell lung carcinoma; ALL, acute lymphocytic leukemia; STT, soft tissue tumour; 

MTC, medullary thyroid cancer.  
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1.2.2 Lysine methyl binding domains 

The reader domains are the modular domains that recognize methylated lysine residues 

(Fig. 1.3). Since there are four different lysine-methylated states, these reader domains 

need to be able to recognize Kme0, Kme1, Kme2 or Kme3. There are several families of 

lysine methyl-binding domains: tudor domain, chromodomain, plant homeodomain 

(PHD) finger domain, PWWP (Pro-Trp-Trp-Pro), WD-40 and others 24. There are about 

148 reader domains. However, about 40% of them are unvalidated 24. Reader domains are 

found on KMTs, KDMs or other effector proteins. They help the writer and erasers to 

find their substrate and others to conduct their signalling cascade. 

One of the big family of KMBD is the Tudor domain family. There are about thirty 

mammalian Tudor containing proteins, for example, p53 binding protein 1 (53BP1), 

KDMs, PHD finger protein family and others 24. Tudor domain was first found in 

Drosophila on the tud gene 76. Tudor domain has about sixty residues, and it is folded in 

4-5 antiparallel beta-strand sheets 25. It can read methylated lysine, as well as some 

methylated arginine residues 77. Tudor domains attached to different proteins have 

different specificities. For example, 53BP1-tudor are known to read Kme1/2 78. Whereas, 

PHF1 and PHF19 tudor domains can read H3K36me2/3 modifications 79.  

Another big family reader domain is chromodomain (CD). CDs bind to Kmes using an 

“aromatic cage” 27. Just like tudor family protein, where structurally conserved CD has 

diverse binding specificity to Kmes 80. CDs can bind to all three Kmes, but varying 

affinity depending on the protein 81. One of the most studied CD is HP1β, where it has a 

high affinity to H3K9 82. The CD of HP1β can bind to all three Kmes, but highest affinity 

on Kme3, then Kme2 with the worst affinity for Kme1 residues 81. 

Different readers have different specificity and affinity towards their substrates. 

However, for most reader domains, their binding specificities were only tested against 

methylated histones and histone peptides 20. Only a few were tested for non-histone 
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methylated proteins and peptides 4. There has not been a study to investigate non-histone 

methylated substrates for these reader domains. 
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Figure 1.3. Overview of lysine methyl binding domain. Lysine methyl binding 

domains (KMBD) are mostly known to bind to histone lysine methylated proteins. There 

are several big family groups of reader groups listed above. They are part of bigger 

enzyme complexes to read the information and pass it onwards. These KMBDs all have 

different specificities and different expression rates. Chromodomain uses an aromatic 

cage to bind to its substrates. 53BP1-tudor domain forms a similar cage structure 81,83,84. 
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1.3 Histone methylation – methyllysine  

With the advancement of genomic techniques, a lot of protein methylation found in the 

1990s and 2000s was on histone tails 9. These histone methylations, along with other 

PTMs, contribute to the global chromatin organization 13. Histone lysine methylation 

contributes to gene repression and gene activation. For example, H3K9 methylation 

contributes to gene silencing and forming heterochromatin 85. There are several KMTs 

which target H3K9, such as SETDB1 facilities mono-methylation, providing a substrate 

for SUV39H1/2 to di and tri-methylated lysine residues on H3K9 in heterochromatin 

region 86–88. Several KDMs can remove the attached methyl-groups to H3K9 31. Another 

well-studied histone methylation is H3K4, where it is found to activate a gene 89. The 

degrees of methylation is found at distinct regions of an active gene; Kme1s at the 

enhancer region, Kme2s at 5’ end of the transcribing gene and Kme3s are mostly found at 

the promoter region of the active gene 90. Several methyltransferases and demethylases 

are responsible for adding and removing the methyl-groups. Table 1.1 has a list of KMTs 

and KDMs for the most commonly known lysine histone modifications. H3K27, H3K36 

methylation contributes to gene repression 31. Whereas H3K79 methylation is associated 

with active transcription 91. Moreover, H4K20 methylation is associated with genome 

stability 92. 

Many cancer cells are found to have dysregulated histone methylations31. For example, 

the dysregulation of KMTs at the H3K4 site increases the chance of various cancers, such 

as infant leukemia 93. The majority of the infant leukemia resulted from a translocation of 

the MLL1 gene onto different genes 94. However, uncontrolled H3K4 methylation by 

MLL1-AF9 requires the entire MLL1 gene 95. Efforts are pouring into finding MLL1 

inhibitors to combat this subtype of leukemia cancer cells 96. There are also diseases 

associated with dysregulated KDMs on the H3K4 site, where overexpression of JARID1 

contributes to breast and testicular cancer 97. Other dysregulated KMT and KDM on other 

histone sites are summarized in table 1.1. 
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Since the early 2000s and for the next decade, a lot of focus in the field of protein 

methylation was on histone methylation 9. Indeed, histone methylation incorporates a lot 

of information, and its regulation is still far from being understood.  

1.4 Non-histone methyllysine proteins 

Early on, most of the methylation sites were found on histones and thought they only 

occur on histones 31. However, with the gaining of interest in the protein methylation and 

their dynamic regulation, other non-histone methylated proteins were identified 9. One of 

the most studied oncogenic protein p53 was found to have four methylation sites: K370, 

K372, K373 and K382 98. P53K372me1 increases the stability of p53, whereas 

p53K373me2 is an inhibitory mark 99. Different degree of methylation of K370 and K382 

determines the stability and activity of p53 100. K370 and K382 di-methylation contribute 

to p53 stabilization via p53BP1 binding protein. Whereas their mono-methylation 

reduces p53 activity 98. One fascinating crosstalk between p53 PTM is by methylating 

K370/382; it blocks the lysine sites from being ubiquitinated and subsequent degradation 

101. The dynamic regulation of lysine methylation contributes to another level of protein 

regulation. Thus, it begs the question of what the other non-histone methylated proteins 

are and what are their functions. 

The Janus kinase (JAK) – signal transducer and activator of transcription (STAT) 

signalling pathway play an important role in development and homeostasis in humans 102. 

Lysine methylation on STAT3 plays an important regulatory role 21. There are two key 

residues on STAT3 for lysine methylation: K180 and K140. STAT3 can be activated via 

the addition of a methyl-group by EZH2 methyltransferase to K180 103. The 

phosphorylation facilitates the activation of EZH2 at S21 by protein kinase B. STAT3 

activity could also be shut down by di-methylation at K140 by SETD7 methyltransferase 

104. This pathway demonstrates the importance of methylation, which can modulate the 

activity of STAT3. It also highlights the crosstalk between methylation and other PTMs. 
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However, the disparity in the amount of research between histone and nonhistone 

methylation is drastic (Fig. 1.4). There are thousands of papers being published on 

histone methylation where only a few dozen in the recent years on nonhistone methylated 

proteins and even less for lysine methylated proteins.  

There are more and more lysine methylated sites and proteins being discovered. Figure 

1.5 shows the biological processes with enriched lysine methylated proteins 105. These 

proteins are involved in many vital pathways such as DNA damage repair, apoptosis, 

metabolism, cell cycle regulation etc. It demonstrates the importance of lysine 

methylation.  
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Figure 1.4. Published papers on histone methylation versus nonhistone methylation 

in the past 50 years. The number of publications in histone methylation versus 

nonhistone methylation in the past 50 years. The data was obtained through Pubmed. 

There are about a dozen or so papers published on nonhistone methylation while 

hundreds and in the thousands of histone methylation papers being published in the past 

ten years. 

  

H is to n e  v s . n o n h is to n e   m e th y a tio n  p u b lic a tio n s

Y e a r

N
u

m
b

e
r
 o

f 
P

u
b

li
c

a
ti

o
n

s

1 9 7 0 1 9 8 0 1 9 9 0 2 0 0 0 2 0 1 0

0

5 0 0

1 0 0 0

1 5 0 0

2 0 0 0

N o n h is to n e  m e th y la tio n

H is to n e  m e th y la tio n



 

 

20 

 

 

Figure 1.5. BiNGO analysis of major biological processes where lysine methylation 

was enriched. This BiNGO analysis shows overrepresented Gene Ontology (GO) 

categories 105. There are many NHKMPs involved in all the circled pathways: DNA 

repair, apoptosis, cell cycle regulation, chromatin organization, translation, RNA 

processing steroid pathways and metabolic processes. Image adapted from Dr. Kyle 

Biggar. 
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1.5 Previous studies  

Due to the limited amount of methyllysine antibodies, pan-specific antibodies and the 

huge cost associated with developing these antibodies, another way of enriching for 

methyllysine proteins must be developed 9. Previously our lab and other labs have 

attempted to use naturally occurring lysine methyl-binding domains to enrich for 

methyllysine peptides 4,106. 

In our lab previously, Dr. Liu used a chromodomain (CD), HP1β, to enrich for Kme 

peptides 4. HP1β CD binds to H3K9 and H3K23, and it is a good candidate to look at 

DNA damage repair where protein methylation is involved 82. Dr. Liu covalently linked 

his HP1β CD onto magnetic beads to enrich for Kme peptides from digested HEK293 

lysate. They used a variety of proteases: trypsin, GluC, ArgC, elastase and chymotrypsin. 

This enrichment, followed by mass spectrometry analysis, yielded a total of 109 

methyllysine proteins 4. Furthermore, Dr. Liu used a peptide array to characterize HP1β 

CD specificities. It gave us insights into HP1β CD binding profile and was able to use 

this to predict novel substrates. 

Another group, about the same time as our lab, used 3x MBT domain 107. They attempted 

to enrich for as many Kme peptides as possible and to monitor the changes between 

different treatment groups. Their technique showed better enrichment for Kme peptides 

from current Kme antibodies 107. They conjugate their GST-3x MBT domain and GST-3x 

MBTD355N onto GSH-sepharose beads. They used stable isotope labelling by amino acids 

(SILAC) of heavy and light conditions to compare different treatments. However, they 

had only enriched 79 proteins. Within the 79 proteins, 30% were ribosomal proteins and 

some histone proteins; only about 40 nonhistone methylated proteins. 

Another popular method of enriching methylated peptide is the strong cation exchange 

(SCX) 108. However, this method works best for methyl-arginine peptides and does not 

work very well for methyl-lysine peptides. The methylated residue still carries a positive 

charge and usually not at the C-terminal end of the peptide due to less efficient digestion 
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by trypsin 109. One group enrichment using SCX, the majority of the peptides enriched 

were methyl-arginine peptides 108. They enriched 250 methylated arginine proteins and 

only about 11 lysine methylated proteins.  

1.6 Rationale and objectives  

Currently, there are about five thousand methylated lysine sites recorded, and less are 

validated. By comparing lysine methylation to tyrosine phosphorylation, we believe there 

is a lot of non-histone lysine methylated protein that has not been discovered.  For 

tyrosine phosphorylation, there are around 90 tyrosine kinases, 31 protein tyrosine 

phosphatases and over 100 tyrosine binding domains 110. More than 47,000 tyrosine 

phosphorylation sites have been discovered 111. Compared to around 50 lysine 

methyltransferases, 30 lysine demethylases and over 100 KMBDs. But, only 4,500 sites 

recorded, corresponding to 2,740 proteins 24. Drawing parallel from tyrosine 

phosphorylation, with a half the writers and similar erasers and readers, we believe there 

should be at least 25,000 sites.  

Many of the currently known lysine methylated proteins are involved in essential 

pathways in the cell, and when they are perturbed, cells are in stress and can result in 

diseases 3. Thus, by expanding on the current lysine methylome, it can give us insight 

into other components of the lysine methylome and potential hubs of regulation. 

One of the impediments in discovering the lysine methylome is missing a high-

throughput, high-coverage enrichment method 9. The low abundance of methyl-lysine 

within the cell means we must enrich them first before mass spectrometry. Previous 

attempts using antibody enrichment methods have its downfalls. First, the cost of making 

a specific antibody to each type of methylation state (Kme1, Kme2 and Kme3) is high 112. 

Second, the methyl-groups are small, hydrophobic modifications and a pan-specific 

antibody for all three will have a weak affinity. Third, even for single methylation state 

antibodies, their affinity is not great, due to the size and non-charge nature of the 
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modification 7. Other approaches using a single natural KMBD were not able to capture 

all the targets 4,107. 

The goals of this thesis were to develop a high-throughput, high-coverage enrichment and 

identification method to monitor the lysine methylome between different treatment 

groups. First, I aimed to establish a method to enrich as many Kme peptides as possible. 

Since using a single domain gave a limited set of data, my objective was to conjugate 

several different KMBDs onto beads and then combine them into a super-column. 

Subsequently, I used this super-column to enrich for Kme peptide from HEK293 cell 

lysate to see how many peptides I can identify in a single experiment. 

My Specific aims were to: 

1. Systematically characterize the binding specificities of KMBDs to determine the 

combination to be used for super-column. 

2. Test different binding and eluting conditions for Kme peptides onto KMBDs for 

mass spectrometry  

3. Analyze the identified peptides from mass spectrometry data of the enriched Kme 

peptides 
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Chapter 2  

2 Methods 

2.1 Protein expression and purification 

Plasmid construction was done by our collaborator from Structure Genomics Consortium 

at the University of Toronto. Nine lysine methyl-binding domains were received (Table. 

3.1). In brief, the p28BIOH-LIC plasmids were constructed from pET28a (Novagen), 

with the protein of interest, N-terminal AviTag for in vivo biotinylation and C-terminal 

6X HIS tag. Plasmids were amplified using E. coli DH5α via standard transformation 

protocol. The plasmids were purified using the EZ-10 Spin Column Plasmid DNA 

Miniprep kit (Bio Basic) according to the manufacturer’s instructions. The KMBDs were 

biotinylated in vivo via the bacteria. Another plasmid pBirAcm (Avidity), encodes a 

biotin ligase, chloramphenicol resistant (10 µg/mL). Both p28BIOH-LIC and pBirAcm 

were transformed into E. coli BL21, with chloramphenicol (10 µg/mL), kanamycin (50 

µg/mL) and D-biotin (50 µg/L) in Luria Broth (Bio Basic). Bacteria culture was grown at 

37 °C with shaking to an OD600 of 0.6-0.8 absorbance before induction. 1 mM IPTG 

was used to induce the expression of BirA and KMBD and temperature was lowered to 

18 °C to grow overnight. Bacteria were pelleted by 8000g centrifugation at 4 °C for 15 

minutes and washed with 4 °C PBS. These bacteria were lysed with 1 mg/mL lysozyme 

(Bio Basic), with 2% (v/v) Triton-X100 (Sigma), 25 units/mL benzonase (Sigma) and 

100 mM PMSF in PBS at 37 °C on a shaker for 40 minutes. The lysate was centrifuged at 

25,000g for 30 minutes at 4 °C. His-tagged KMDBs were purified by His-Select Nickel 

Affinity Gel (Sigma). The column was equilibrated with 20 column volumes of PBS. The 

supernatants were loaded onto the equilibrated column, washed with 20 column volumes 

of PBS, 10 column volumes of 10 mM imidazole (Sigma) and 10 column volumes of 20 

mM imidazole. The desired proteins were eluted with 250 mM imidazole in 1 mL 

fractions until no proteins were detected via simple Bradford assay (5 µL protein into 200 

µL Bradford assay). The protein quality was analyzed via Coomassie-stained bis-tris 
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SDS-PAGE. The purified proteins were dialyzed in PBS overnight at 4 °C. The dialyzed 

proteins were also analyzed with a western blot to see if they are biotinylated.  

2.2 Bradford Assay 

Concentrated Bradford solution was purchased from (Bio-Rad), the working solution was 

4-part water, 1-part Bradford concentrate. Protein standard were diluted from 2 mg/mL 

albumin standard (Thermo) to 1000, 750, 500, 250, 125, 62.5, 31.25, 0 µg/mL albumin. 

The assay was done in 96-well plates, 200 µL of Bradford reagent was added to each 

well. 5 µL of sample and standards were loaded into the wells, with triplicate repeats and 

taking the average of the three for best accuracy. The plate was shaken on a microplate 

shaker to ensure adequate mixing. The readings were read on EnVision 2103 Multilabel 

Reader (Perkin Elmer) at 595 nm. 

2.3 Bis-Tris SDS-PAGE and Coomassie staining  

Bis-Tris SDS-PAGE was used with MOPS running buffer. For the best protein 

separation, 10% gel was chosen. Brief recipe: 0.36 M bis-tris, 10% (w/v) acrylamide 

adjust total volume to 5 mL with water, 25 µL 10% (w/v) APS, 10 µL TEMED. A 20x 

MOPS running buffer was prepared: 1 M MOPS (Bio Basic), 1 M tris-base (Bio Basic), 

69.3 mM SDS (Sigma), 20.5 mM EDTA (Bio Basic). 1x running buffer was diluted on 

the day of gel and used for only one run. The Coomassie blue staining recipe was 

composed of 45% (v/v) methanol (Sigma) with 0.05% (w/v) Coomassie Brilliant Blue R-

250 (Bio Basic) and 10% (v/v) acetic acid (Sigma) and 45% (v/v) dH2O. The destain 

composed of 10% (v/v) acetic acid, 20% (v/v) methanol and 70% (v/v) dH2O. The gels 

were running at 120V for 50 minutes (Bio-Rad Mini-Protean) in 1x MOPS. Gels were 

stained with Coomassie blue for 30 minutes on a shaker, and destained overnight with 

Kimwipes (Kimtech) to soak the excess dye. Images were taken via ChemiDocTM XRS+ 

system (Bio-Rad). 
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2.4 Western blot 

Samples were prepared, and an equal amount of protein was loaded into each lane 

following the bis-tris SDS-PAGE method. The proteins were transferred onto 

polyvinylidene fluoride (PVDF) membrane (Sigma) pre-activated with methanol. The 

transfer cassette was placed in a cold room with an ice bath on the outside to cool down 

the transfer buffer. Transfer performed at 100V for 1 hour in 1x transfer buffer: 25 mM 

Tris, 190 mM glycine and 20% (v/v) methanol. After transfer, the PVDF membrane was 

washed in TBS-T (20 mM Tris, pH 7.5, 150 mM NaCl, 0.1% (v/v) Tween 20, all 

chemicals from Sigma) for three times for 5 minutes each time. The membrane was 

blocked in 15 mL of 5% (w/v) skim milk powder (Bio Basic) or 3% (w/v) BSA (Sigma) 

in TBS-T for 1-2 hours at room temperature with shaking. The membrane was incubated 

with primary antibody diluted in the blocking buffer at 4 °C overnight. The next day, the 

membrane was washed with 20 mL TBS-T three times for 5 minutes each time. The 

membrane was incubated with 10 mL of secondary antibody crosslinked to horseradish 

peroxidase (HRP) diluted in blocking buffer for 30 minutes at room temperature with 

shaking. The membrane was washed three times again for 5 minutes, each with 20 mL of 

TBS-T. For detection, using 5 mL of our in-house HRP substrate at room temperature for 

2 minutes. Solution A: 2.5 mM Luminol, 400 µM p-Coumaric acid and 100 mM Tris-Cl, 

pH 8.8; Solution B: 0.02% (v/v) hydrogen peroxide in 100 mM Tris-Cl, pH 8.8 (all 

chemicals purchased from Sigma). Images were taken via ChemiDocTM XRS+ system. 

2.5 Peptide membrane array synthesis  

The methods used here were previously described methods4. In brief, the peptide 

membrane was synthesized in-house from 24 cm Whatman 1 filter paper (Whatman) to 

make them amino-functional; they were cut into 12 cm by 8 cm rectangular shapes to fit 

the Intavis MultiPep SRi peptide synthesizer. The peptides were chosen from known and 

predicted methylated peptides from the human proteome. The membranes were 

synthesized according to the manufacturer’s instructions using Fmoc (N-(90fluorenyl) 

methoxycarbonyl) chemistry113. In brief, the peptides were synthesized from C-terminal 
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to N-terminal due to the amino-functional processed filter membrane. A total of 600 spots 

were available to be synthesized into any peptide; each amino acid was spotted twice to 

ensure no miss dotting. After membrane synthesis was completed, the membrane needed 

to go through post-synthesis treatment. First, this involves a TFA cocktail: 95% (v/v) 

trifluoracetic acid (TFA), 3% (v/v) tri-isoproplsilane (TIPS) and 2% (v/v) dH2O 

(chemicals bought from Fisher). Incubate the newly synthesized peptide membrane with 

100 mL of 50% (v/v) TFA cocktail and 50% (v/v) dH2O for 1 hour with no shaking, and 

this cleaves the protected groups on the peptides. This step is important, and the TFA 

cocktail will make membrane fragile, too much shaking can break the membrane. Pour 

off the TFA cocktail carefully and incubated with 100 mL of 100% TFA cocktail for 30 

minutes, no shaking. After, the membrane was washed with 100 mL of dichloromethane 

(DCM), three times for two minutes each time. Followed by washing the membrane with 

100 mL of DMF, three times for two minutes each time. Finally washed with 100 mL of 

ethanol, three times for two minutes each. Let the membrane air dry and stored in 

darkness in -20 °C. 

2.6 Peptide membrane binding and analysis 

The processed membrane was taken out of -20 °C and incubated with 40 mL of 100% 

ethanol for 1 second, and it was diluted with 40 mL of dH2O for 15 minutes at room 

temperature with shaking. After the membrane was washed 60 mL with 100% dH2O, 

three times, each for 15 minutes with shaking at room temperature. After the membrane 

was incubated with 60 mL of PBS-T, washed three times, each for 5 minutes with 

shaking. The membrane was blocked with 5% (w/v) BSA in PBS-T overnight with 

shaking at 4 °C. The membrane was blotted with the protein of interest at a pre-

determined concentration in 40 mL of 5% (w/v) BSA in PBS-T overnight at 4 °C with 

shaking. The next day, the primary antibody was diluted into the blocking buffer and 

incubated for two hours with shaking. The membrane was washed three times, with 40 

mL of PBS-T for 5 minutes each. The secondary antibody was diluted in blocking buffer 

for one hour with shaking at room temperature. If no primary antibody required, one can 
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proceed directly to the secondary antibody. For HRP linked secondary antibody, the 

method was covered in 2.4. The image was saved in a TIFF file and transferred to the 

analysis computer. The intensity of each spot was read by Array-Pro Analyzer 4.5 

(Meyer Instruments). It analyzed the intensity of each spot, and the program detected the 

location of the spots and numbered them following the synthesis file. The darker the spot, 

the more protein it bound, but we could not determine the KD from the peptide array. The 

intensities were compared with known substrates to the binding domain, for example, 

H4K20me2 for the 53BP1-tudor domain.   

2.7 In-solution peptide synthesis  

The in-solution peptides were synthesized either on Tentagel resin (Intavis) or Wang 

resin (Sigma) on the MultiPep SRi peptide synthesizer (Intavis). It also used the Fmoc 

chemistry113. These peptides were also synthesized from the C-terminal to the N-

terminal. The yield for each peptide was about 2 µmol. However, the uneven distribution 

of resin could result in varying yield of the final peptide amount. These peptides were 

mostly used to track binding to protein and fluorescence polarization; thus, at the end of 

their N-terminal, they were labelled with either biotin (Sigma) or 6-carboxyfluorescein 

(Sigma). After the synthesis, the peptides were cleaved with the TFA cocktail mentioned 

in 2.5. The peptides were precipitated with cold-ether and centrifuged at 1000g for 5 

minutes. They were washed three more times with cold-ether and dried overnight in the 

fume hood. The peptides were stored in darkness at 4 °C. The peptides can be 

resuspended in 100 µL of water or DMSO depending on their solubility. 

2.8 Mammalian cell culture  

HEK293 cells were cultured in DMEM – high glucose (Sigma) supplemented with 10% 

(v/v) FBS (Wisent), 100 U/mL penicillin-streptomycin (Gibco), 2 mM L-glutamine 

(Wisent), 1 mM sodium pyruvate (Gibco) at 37 °C humidified incubator (Napco) with 

5% CO2. Cells were grown in T-75 flasks (Thermo) to about 80% confluent and passaged 

to avoid senescence. The cells were washed carefully with pre-warmed 37 °C PBS 
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(Wisent) once and quickly aspirated. Cells were incubated with 10 mL of 37 °C PBS for 

3 minutes and shaken to dislodge cells from the flasks. Cells were collected into a 15 mL 

falcon tube and centrifuged at 1000 RPM for 3 minutes. The supernatant was aspirated, 

and the cell pellet was resuspended in 1 mL of media. The cell pellet was pipetted several 

times to break cell clumps to allow the cells to separate into singlets. A hemocytometer 

checked the quality of separation under the microscope. Cells were passaged 1:5 to 

remain at a higher rate of cell growth.  

Cell lysis for mass spectrometry analysis was done by washing 80-90% confluent 

HEK293 cells with warm PBS, followed by a three-minute incubation of PBS. The flasks 

were shaken to release the cells from the bottom. Cells were collected into a 15 mL 

falcon tube and centrifuged at 1000 RPM for 3 minutes. The supernatant was aspirated 

and resuspended in 1 mL of PBS and transferred into a 1.5 mL Eppendorf tube. The cells 

were pelleted at 1000 RPM for 3 minutes, and the supernatant aspirated. The cell pellet 

was lysed using 1 mL of freshly made 8 M urea with 50 mM Tris-HCl at pH 7.4. The cell 

lysate was put on an end-over-end rotator for 30 minutes in 4°C cold room to allow lysis 

to complete. The lysate was sonicated at strength 4-5 for 10 seconds on ice and rest for 30 

seconds on ice three times. The lysates were centrifuged at 15,000 RPM on a tabletop 

centrifuge (Eppendorf) at 4 °C for 1 hour. After the supernatants were precipitated with 

five times the volume of supernatant with ice-cold acetone/ethanol/acetic acid 

(50%/50%/0.1% v/v), the solution was stored in -20 °C. Proteins were left to precipitate 

overnight at 4 °C. The precipitated proteins were pelleted with 5000 RPM at 4 °C for 15 

minutes. Pellet was resuspended in freshly made 8 M urea and 50 mM Tris. The final 

protein concentration was determined via Bradford assay. The proteins were reduced by 5 

mM DTT (Sigma) with head-to-toe rotation for 1 hour at 37 °C and followed by 

alkylation by 14 mM IAA (Sigma) in darkness, where tubes were wrapped with tin foil 

with rotation for 1 hour. The addition of 5 mM DTT neutralized the unreacted IAA and 

rotated for 1 hour in darkness. These proteins were followed by trypsin digestion using 

sequencing grade modified trypsin (Promega), following manufacturer’s instructions. The 
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enzyme to protein ratio used was 1:50 (w/w) and digested at 37 °C overnight in a shaker. 

The peptide mixture was stored at -80 °C for future experiments. 

2.9 Streptavidin pull-down 

For the pull-down experiment, streptavidin sepharose (GE Healthcare) was used. 30 µL 

of beads were used for one plate of HEK293 cells, about 1-1.5 mg of total protein. All the 

buffers used here were mass spectrometry grade to minimize mass spec contamination. 

The streptavidin beads were washed three times with 1 mL of water (Fisher), followed by 

three washes of 1 mL 50 mM ammonium bicarbonate pH 8. The beads were washed with 

1 mL binding buffer 1x PBS pH 7.4 for three times. For each wash, the Eppendorf tubes 

were put on an end-over-end rotator at 4 °C for 3 minutes and centrifuged at 2000 RPM 

for 2 minutes at 4 °C. After the beads were washed, 3 mg of the desired biotinylated 

KMDB was conjugated to the streptavidin beads at 4 °C on an end-over-end rotator for 2 

hours. The protein-bead conjugate was washed stringently six times to remove any non-

biotinylated proteins. After the wash, 10 µL of bead-protein was taken and incubated 

with a 4x protein loading buffer and boiled at 100 °C for 5 minutes. The sample was 

loaded onto bis-tris SDS-PAGE stained with silver staining to detect if there are any other 

contaminants bound to the beads. 

2.10 Silver staining  

The silver staining was used to detect if any trace amounts of non-specific proteins 

binding to the streptavidin beads. After the bis-tris SDS-PAGE of KMDB on streptavidin 

beads, the gel was stained for silver staining. This protocol was adapted from Rockefeller 

University. First, the gel was fixed in 150 mL of 50% (v/v) methanol with 10% (v/v) 

acetic acid for 30 minutes. Then washed with 150 mL of 50% methanol for 20 minutes. 

Followed by washing with dH2O 3 times 10 minutes each. 150 mL of 0.02% (w/v) 

sodium thiosulfate was prepared and incubated the gel for 1 minute and washed three 

times with dH2O for 1 minute each. For the silver reaction, the gel was incubated in 150 

mL of 0.1% (w/v) silver nitrate with 0.08% (v/v) formaldehyde (37%) for 30 minutes. 
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The gel was washed three times in dH2O for 2 minutes each. For developing, the gel was 

incubated in 150 mL of 2% (w/v) sodium carbonate with 0.04% (v/v) formaldehyde 

(37%) until the desired staining intensity. The reaction was stopped by 150 mL 5% (v/v) 

acetic acid for 10 minutes. 

2.11 Mass spectrometry  

The samples after KMBD enrichment were desalted via Strat-X columns (Phenomenex) 

following the manufacturer’s instructions. In brief, the column was washed with 1 mL of 

100% ACN, followed by 1 mL of 50% (v/v) ACN, after washed 3x with 1 mL MS grade 

H2O. The samples were loaded and washed 3x with 1 mL MS grade H2O. The enriched 

methylated peptides were eluted with 2x 200 µL of 75% (v/v) ACN in 0.1% (v/v) FA. 

The eluted peptides were tried via the speed vac and resuspend in 20 µL of 0.1% (v/v) 

FA. The mass spectrometry’s parent mass tolerance was set to 10.0 ppm. Maxed missed 

cleavage was 3, with non-specific cleavages. The masses of Kme1, Kme2 and Kme3 are 

14.02 Da, 28.03 Da, 42.05 Da, respectively.   

2.12 Fluorescence polarization assay 

Fluorescein labelled peptides were taken out of the 4 °C and carefully diluted to the 

working concentration. The working concentration can vary, but the fluorescence 

intensity should be between 20,000 and 60,000 units when measuring emission at 520 nm 

on Envision 2103 Multilabel Reader (Perkin Elmer). Due to the difficulty of measuring 

peptide concentration, we decided to dilute the peptides within a range. Using a 384-well 

plate, the total volume in each well was 35 µL, 30 µL of protein and 5 µL of the peptide. 

The peptide concentration was the same in all wells, and the protein concentration varied. 

Dialyzed KMBDs were concentrated to a range from 100 to 200 µM; they were 

subsequently diluted 14 times, half each time with PBS. The experiment was done in 

duplicate to minimize technical error. A multichannel peptide (Eppendorf) was used to 

minimize human error. The proteins were incubated in darkness with the peptide at room 

temperature for 10 minutes. The fluorescence polarization was measured at the emission 
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of 520 nm, and it was excited at 480 nm. The binding curve and KD were determined 

using Prism 6.0 software (GraphPad Software Inc.) with formulas from Rossi 114. 

2.13 Systematic clustering of lysine methylated peptides 

All the known reported methylated peptides recorded in PhosphoSitePlus were collected. 

The known peptides were separated into unique peptide sequences with modified lysine 

at the center and ± 5 residues. Clusters were formed using an algorithm based on local 

amino acid similarities. Taking consideration of the charge, polarity and size of the amino 

acid residue. Two peptides with similar sequences will be grouped into the same cluster. 

At the time when the clustering was done, there was a total of 2018 unique methylysine 

peptides. The maximum number of clusters is 2018, where all the clusters have exactly 

one peptide. Due to the testing limit, we were only able to fit 140 clusters onto one 

membrane of 600 spots with adequate control peptides. Each of the peptides chosen will 

have four variants: none, mono-, di- or tri-methylated central lysine. 
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Chapter 3  

3 Results 

3.1 Characterizing lysine methyl binding domain specificity 

3.1.1 Expression and purification of lysine methyl binding domains 

To determine the best enrichment method and combination of domains to use, we first 

had to determine the specificities and binding patterns of each domain that we are going 

to use. With the help of Dr. Brown and his team from SGC Toronto, we were able to 

obtain nine different KMBD plasmids (Table. 3.1). These domains have an N-terminal 

biotinylation tag and will be biotinylated in vivo during the induction phase. All the 

domains contain a purification 6xHis-Tag at the C-terminal. Using a nickel-NTA column 

to purify the protein from the whole bacterial lysate. The average yield was about 10 mg 

of protein from 1 L of culture. From one single nickel-NTA purification, the proteins 

were above 90% pure. A sample purification of CHD1-CD, MPP8-CD, PHF1-tudor is 

shown in Figure 3.1. Proteins were dialyzed to remove imidazole and ready for the other 

experiments. 
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Figure 3.1. Coomassie blue-stained gel of his-tagged lysine methyl binding domain 

purification: CHD1-CD, MPP8-CD, PHF1-tudor. The proteins were grown in BL21 

(DE3) E. coli, induced with 1 mM IPTG, grown for 18 hours after induction at 18 °C. 

Bacterial cells were lysed with 1 mg/mL lysozyme, 1 mM PMSF, 2% (v/v) triton-X. 5 µL 

of lysate, flow-through (FT) and 10 µL of wash and elution were mixed with 4x SDS 

loading buffer. Protein ladder is labelled on the left side, and the expected protein 

molecular weights are CHD1 25.1 kDa, MPP8 10.5 kDa, PHF1 16.5 kDa. 
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Name Domain Residues MW 
(kDa) 

MW + His 
Tag (kDa) 

Extinction 
Coefficient 
(M-1 cm-1) 

Site 

53BP1 Tudor like 1480-1606 14.7 18.0 31985 H4K20me2 

PHF1 Tudor 30-147 13.2 16.5 31440 H3K36me3 

PHF19 Tudor 1-155 17.3 20.6 37400 H3K36me3 

L3MBTL2 4x MBT 170-625 52.1 55.4 116155 H4K20me2 

CBX7 Chromo 1-70 8.4 11.7 28420 H3K9me3 

CBX8 Chromo 1-70 8.4 11.7 26930 H3K9me3 

CHD1 2x Chromo 265-450 21.8 25.1 55600 H3K4me2 

P100 (SND1) Tudor 650-910 29.8 33.1 38975 H4K20me3 

MPP8 Chromo 58-118 7.2 10.5 19940 H3K9me3 

Table 3.1. List of lysine methyl binding domains used in this study. Table showing 

where the domains were from, the residues sequences, their molecular weight (MW), 

total MW with his-tag as well as biotinylation tag, their extinction coefficient and also the 

known histone binding sites for these binding domains 4,84,115–118. All proteins used are all 

human proteins. Structural Genomics Consortium Toronto provided plasmids of these 

proteins. 
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3.1.2 Biotinylation of KMBD 

The domains were used to link to streptavidin beads. Thus, I checked whether these 

proteins were properly biotinylated. A western blot was prepared for each KMBD using 

streptavidin-HRP (Thermo 21124) secondary antibody (Fig. 3.2). This western blot 

confirmed that the in vivo biotinylation process was conserved and little to no unintended 

biotinylated proteins. The exact amount of purified protein with biotin was not 

calculated; however, from Fig. 3.2, it demonstrated that the majority of the protein of 

interest was biotinylated. 

The protein biotinylation was also tested by incubating L3MBTL2-3xMBT biotinylated 

proteins with streptavidin beads for them to conjugate for 30 minutes at room 

temperature. Due to the nature of biotin and streptavidin binding affinity, the conjugate 

was washed ten times to ensure all the proteins left were biotinylated. The beads 

conjugate was boiled in a 4x loading buffer for 15 minutes at 100 ºC to denature the 

streptavidin beads and the KMBD. The denatured sample was loaded onto a gel with 

original stock protein and the wash fractions (Fig. 3.2). From this, I observed the major 

band at the desired protein molecular weight. Very little proteins in the washes suggested 

that most of the bound proteins were biotinylated. The bottom band at around 14 kDa 

were streptavidin monomers from the streptavidin beads. The streptavidin proteins were 

released from the beads after they were boiled for 15 minutes in a 4x SDS loading buffer. 
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Figure 3.2. MPP8-CD purification and western blot with streptavidin-HRP. MPP8-

CD is his-tagged and expressed in BL21 (DE3) E. coli, induced with 1 mM IPTG, grown 

for 18 hours after induction at 18 °C. Bacterial cells were lysed with 1 mg/mL lysozyme, 

1 mM PMSF, 2% triton-X. A) The protein purification, as seen in Fig. 3.1. B) western 

blot with streptavidin-HRP, 2 µL of elution was taken and transferred onto the PVDF 

membrane. The membrane was blocked with TBS-T for 2 hours and incubated with 

streptavidin-HRP for 30 mins at room temperature with shaking. 
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Figure 3.3. Coomassie blue staining of L3MBTL2-3xMBT binding to streptavidin 

beads. The nickel-IMAC column purified His-tagged L3MBTL2-3xMBT domain. 30 µL 

of purified proteins were incubated with 10 µL of streptavidin beads for 30 minutes at 

room temperature. The conjugated protein-beads were washed ten times. After, the 

conjugated beads were boiled for 15 minutes in a 4x SDS loading buffer. L3MBTL2-

3xMBT had an expected molecular weight of 55.4 kDa. The bottom band around 14 kDa 

were streptavidin monomers from the streptavidin beads. 
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3.1.3 53BP1-tudor binding to standard peptides 

To proceed with further experiments, I had to make sure the protein domains were 

functionally active. I first used the 53BP1-tudor domain to test its binding to H4K20 

peptides. 53BP1-tudor domain is known to bind to H4K20me1/2 and with a 42.5 ± 24.6 

µM affinity for H4K20me2 106. I synthesized four variants of H4K20, with K20 at the 

center and seven flanking residues on each side of the central K20, with fluorescein at the 

N-terminus of the peptides. The peptide sequence is Fluro-GGAKRHRKVLRDNIQ. 

Fluorescence polarization was performed on the 53BP1-tudor domain with fluorescently 

labelled H4K20me0/1/2/3 peptides (Fig. 3.4). The purified 53BP1-tudor domains were 

concentrated to 100 µM and diluted 14 times to 0.006 µM. The experiment was 

performed on a 384-well dark plate, each well with 30 µL of protein with 5 µL of the 

peptide. The proteins and peptides were mixed via pipetting and left to incubate for 10 

minutes at room temperature in the dark. This experiment was done in two replicates. The 

fluorescence polarization was measured at the emission of 520 nm, and it was excited at 

480 nm. The binding curve and KD was determined using the formula from 114. From this 

result, the biotinylated 53BP1-tudor was active and can bind to H4K20me2 with 40.0 ± 

12.1 µM affinity, which was similar to previously reported data. The binding to 

H4K20me1 was also relatively strong at 41.6 ± 18.1 µM. However, H4K20me0/3 did not 

have a determinable KD. The undetermined KD could be the result of their low-affinity 

nature, or they did not bind. Previously reported H4K20me0/3 also had no binding to the 

53BP1-tudor domain 4. 
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Figure 3.4. The kinetic dissociation constant of 53BP1-tudor with H4K20 peptides 

was determined by fluorescence polarization. H4K20 peptides were synthesized with 

fluorescein at the N-terminus: Fluro-GGAKRHRKVLRDNIQ. The bolded lysine has 

four different variants, Kme0/1/2/3. The kinetic dissociation constant (KD) of the 53BP1-

tudor domain to these four H4K20 peptides was determined. The calculations were based 

on two replicates. The concentrations of the 53BP1-tudor domain used starting from 100 

µM, diluted 14 times to 0.006 µM and one control at 0 µM. 
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3.1.4 Peptide membrane array to probe KMBD specificity  

To investigate the specificities and binding pattern of each KMBD in a high throughput 

manner, I used peptide membrane arrays. The initial array consisted of 70 proteins where 

their peptides were methylated or predicted to be methylated in cells. Each peptide was 

15 amino acid residues in length with lysine at the center and seven residues flanking the 

lysine from both sides (Table S.1). Each peptide had four different variants: none 

methylated (Kme0), mono (Kme1), di (Kme2), or trimethylated (Kme3) center lysine 

residue. The protein peptides were picked based on a previous prediction experiment 

done in our lab, where they were potential lysine methyltransferase targets. Thus, these 

peptides were good candidates for the KMBD binding experiments. As well, histone 

peptides like H4K20 and H3K9 were included as controls.  

All the KMBDs were expressed and purified from BL21 (DE3) E. coli. The peptide 

membrane was processed and blocked by 5% BSA overnight at 4 °C. 1 µM of purified 

KMBD was incubated with the membrane overnight at 4 °C. The next day, the binding 

was detected by streptavidin HRP and chemiluminescence via ECL solutions.  

All the KMBDs were probed individually onto the membrane as well as some 

combination KMBDs to see whether it will impact the binding patterns (Fig. 3.5). To 

observe the preferred binding patterns, they were all compared to the Km0 variant of 

each peptide. Here, I assumed that the binding domains have a higher affinity to the 

methylated peptide than the non-methylated copy. Red means higher affinity compared to 

Kme0 and green means weaker affinity than Kme0, whereas yellow means neutral. Since 

these are methyl-binding domains, I assessed more carefully for the interactions that were 

red and orange.  

From figure 3.5, there were some distinct binding patterns for each KMBD. For instance, 

the 53BP1-tudor domain and CBX7 chromodomain have a strong Kme1 binding 

preference, whereas PHF1 and CHD1 have more affinity towards Kme3. There were 



 

 

42 

 

others with more Kme1/Kme3 preferences like L3MBTL2 and MPP8. SET8 is a 

methyltransferase, and it was included as a control. I expected SET8 to bind to Kme0 

with the strongest affinity since it adds a methyl group to its substrates. Thus, for SET8, 

the Kme1/2/3 was mostly green. 53BP1-tudor domain was known to bind to H4K20me1 

and H4K20me2 78. In my experiment, H4K20me1/2 was strongly bound to by 53BP1-

tudor domain compared to Kme0. Suggesting that the quality of my peptide membrane 

array was good, and the results were trustworthy. 
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Figure 3.5. Lysine methyl binding domain binding heat map to 70 proteins peptide 

array. This 70 proteins peptide array was derived from a previous prediction experiment, 

where these proteins were predicted to be methylated within the cells. All KMBDs were 

expressed and purified from BL21 (DE3) E. coli. 1 µM of KMBD was incubated with the 

blocked peptide membrane at 4 °C overnight with shaking. The results of Kme1/2/3 were 

compared to Kme0. If the bindings were stronger than Kme0, it would be red; if they 

were weaker than Kme0, then it would be green. The Kme0 peptides were used as the 

negative control. 53BP1-tudor and CBX7 showed strong Kme1/2 preference. Whereas 

MPP8 showed Kme3 preference. SET8 was used as a control since SET8 is a Kme1 

methyltransferase; it should have the greatest affinity for Kme0 substrates. The majority 

of the SET8 binding patterns were green. 
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3.2 Lysine methyl binding domain substrate prediction  

3.2.1 Construction of lysine methylated peptide based on a 
phylogenetic tree approach  

Mapping out and predicting KMBD domain substrate specificity requires a wild variety 

of substrates to be tested. I wanted to make a high-throughput screening method to map 

out the KMBD binding specificities. I used peptide membrane array for the assay. To 

pick the most representative group of peptides to test, I decided to use a phylogenetic-like 

approach. From the PhosphoSitePlus database, we downloaded all the currently validated 

lysine methylated peptides. With the help of Dr. Li Lei and Eric Liu from our lab, we 

grouped the peptides into different clusters based on their similarity to each other. In the 

beginning, each of the 2018 peptides was individually clustered, as we lessen the total 

amount of total clusters, peptides with similar residues were grouped into the same 

cluster. Due to the testing limit, we can only spot 600 peptides onto a membrane, and 

each peptide must have four modification states: none methylated, mono-, di- and tri-

methylated. We picked 140 clusters of lysine methylated peptides to be spotted on a 

peptide array (560 spots), and 40 spots of controlled peptides (Table S.2). This peptide 

array later will be referred to as the 140-cluster array. 

By grouping similar clusters together, I was able to test the widest array of different 

potential substrates in a systematic fashion.  

3.2.2 Results from the 140-cluster peptide array 

The peptide arrays were synthesized and probed with all nine of the KMBDs.  

In figure 3.6, it showed the raw binding using the 53BP1-tudor domain on the 140-cluster 

array. Note the positive control H4K20me1/2 was shown in the red box (Fig. 3.6). From 

this experiment, by looking at the top 5% of highly bound substrates, I observed that the 

53BP1-tudor domain bound strongly to Kme1 and Kme2 peptides. It was expected from 

my previous experiment. However, I did not see much binding of Kme3 peptides. Even 

though 53BP1-tudor domain bound well to Kme1/2 peptides, some Kme0 peptides were 
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bound. The binding to Kme0 peptides could suggest that local amino acid composition 

may play a more significant role in the 53BP1-tudor binding to its substrates (Fig. 3.6). 

From the 53BP1-tudor 140-cluster result, I also wanted to assess what the amino acid 

compositions of the strong binding peptides versus the weak binding peptides. I looked at 

the residue logos of the top 5% binding Kme1 compared to the bottom 5% of Kme1 

peptides (Fig. 3.7). The positions -2 to +3 has the most differences in terms of how the 

53BP1-tudor domain bound to its substrates. In the top 5%, I saw several positively 

charged amino acids and no acidic residues within this region. Whereas in the bottom 

5%, there were a lot of negatively charged amino acids within this region. To further 

validate these findings, I decided to take a look at the structure of the 53BP1-tudor 

domain 78. From the 53BP1-tudor domain structure, I saw that the important residues in 

the binding interface were Trp1495, Tyr1502, Phe1519 and Asp1521. The negatively 

charged D1521 which complements well to substrate peptides with positively charged 

residue around the methyl-lysine. The data corresponded very well to the structural data. 

Thus, this added another level of validation for our peptide membrane array to tease out 

binding patterns of KMBDs. 
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Figure 3.6. 140-cluster peptide array binding with the 53BP1-tudor domain. The 

140-cluster peptide array membrane was blotted with 1 µM 53BP1-tudor domain at 4 °C 

overnight with shaking. Subsequently was bound by streptavidin-HRP and developed 

with an ECL solution. The darker the spots, the more binding it has occurred. The blue 

box contains the control peptides H3K9me0/1/2/3 vertically. The green box contains 

H3K27me0/1/2/3, and the red box contains the control peptide H4K20me0/1/2/3. From 

left to right, every four dots in a row are Kme0/1/2/3. The last two columns on the right 

control peptides. 
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Figure 3.7. Logos of top and bottom 5% of Kme1 peptides to the 53BP1-tudor 

domain from 140-cluster peptide array. All the Kme1 peptides were ranked based on 

the binding intensity from the 140-cluster array. The top and bottom 5% were separated, 

and their sequences were compared using a sequence logo 119. In the top 5%, Kme1s with 

strong binding to 53BP1-tudor in the -2 to +3 (4,5,7,8,9) positions contained mainly basic 

residue and no acidic residue. On the other hand, the bottom 5% Kme1s with little to no 

binding contained various acidic residues in the -2 to +3 region. 
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Figure 3.8. Lysine methyl binding domain heatmap of 140-cluster peptide array. The 

Kme1/2/3 peptides were compared to the Kme0 peptides. A bigger and more systematic 

expansion from the 70 proteins array. Here, 53BP1-tudor showed a strong Kme1/2 

binding preference. While MPP8-CD appeared to be a balanced binder of all Kme 

modifications. PHF1-tudor preferred Kme3 peptides. As well as CBX7 preferred Kme1 

substrates.   
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3.2.3 KMBD biding specificity from 140-cluster array versus 
previous 70-protein array 

The 140-cluster array (Fig. 3.8) was a systemic expansion of the previous 70 proteins 

array (Fig. 3.5). The 140-cluster array peptides were chosen from a database of 

methylated peptides discovered from human cell lines. From the 140-cluster array, at 

least one variant of the methylation was observed in a cell. Whereas the 70 proteins array 

some were real, some were predictions and may not exist in a cell. 

The 140-cluster array contained the patterns found in the 70-protein array and magnified 

it and became more systematic. Both data support each other, and the 140-cluster array 

gave us a big picture of the protein specificity and preferences. 

Note from the figure. 3.6, the binding affinity was not raw intensity, but it was the 

Kme1/2/3 peptides compared to its Kme0 peptide. Thus, some of the weak binding 

substrates even though it showed an enriched preference for Kme1/2, but their actual 

affinity might not be very high. For example, in Fig. 3.6 in blue, it showed three dots, and 

in green, it showed two faint dots. Even though the blue and green boxes, their Kme1/2 

were both red in Fig 3.8, but their actual binding affinity was not the same. 53BP1-tudor 

bound to the blue box was much tighter than the green box substrates. Another issue is 

some Kme0s have more binding than other peptide kme1/2s. It was observed again in 

Fig. 3.6, where the Kme0 of the blue box was darker than the kme1/2 of the green box. 

Fig. 3.8 gave us an idea of what kind of substrates the protein may prefer; however, it 

does not tell us about its affinity to the peptide. 

The raw binding intensity can infer binding affinity. I could not determine the precise KD, 

but I could determine the relative binding strength between the two peptides. The darker 

the spot, the stronger the protein binds to the substrate. The pattern was important, but we 

also need to keep in mind about the raw intensity (Fig. 3.9A). The majority of the 

Kme0/3s were not super high intensity; there were a few that bound well to 53BP1-tudor. 
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3.2.4 53BP1-tudor domain binding substrate prediction 

53BP1-tudor domain shown to have the most diverse binding amongst all nine KMBDs 

that were tested. Thus, we wanted to use it to make a specificity pattern to predict 

potential substrates. We first organized the binding data, which allowed us to see the 

distribution of peptide binding separated into their individual modifications (Fig. 3.9A). 

Based on the positive control data for H4K20me2 having a net intensity of 107.8, we 

decided to use 100 as a cut-off to find the enriched amino acids amongst the peptides 

with at least 1 out of 4 modifications over 100 net intensity (Fig. 3.9C). From this 

enriched pattern, we saw a lot of basic residues that were enriched compared to the rest of 

the peptides having less than 100 net intensity. This enriched pattern will be the primary 

prediction feature. Subsequently, when there is a tie between a couple of peptides, we 

will need to use the secondary prediction features (Fig. 3.9D). The secondary prediction 

features were formed by taking a lower cut-off than the primary prediction features. For 

the secondary features, we took a cut-off of 50 and compared to the peptides with less 

than 50 net intensity. 

Out of the first 140 clusters, we found some interesting binding substrates, and one that 

caught our eyes was NHEJ1, involved in the DNA damage repair pathway. From WT 

peptide, it had 4/6 basic residues enriched pattern, and it was a very strong binding 

substrate (Fig. 3.9). Thus, we wanted to perform a permutation array on this already 

strong binding peptide. Permutation array replaces each amino acid with 19 different 

amino acids at that spot to see if there were any critical amino acids involved and also to 

test our enriched features. In this permutation array (Fig. 3.10), the total protein used was 

significantly reduced due to the strong binding nature. This permutation array showed 

that our enriched features were accurate, with only a few places of differences. The 

interesting discovery was the residue at the -5 positions. By changing the arginine into a 

lysine, it showed a markedly increased intensity compared to the WT. Also, by changing 

the serine at the -1 position to arginine, the intensity went up compared to the WT. Out of 

the rest of the 18 amino acids, only the histidine residue increased binding a bit, as 

predicted, and everything else was either neutral or worse than WT. More interestingly, 
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when -2 to +3 region is permutated with an acidic residue, the peptide binding went 

down. Surprisingly by having proline, leucine and isoleucine, it could also increase the 

binding affinity towards the peptide. 

Thus, I believe a consensus sequence exists for the identification of putative substrates of 

the 53BP1-tudor domain. 
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Figure 3.9. Using 140-cluster data to construct binding prediction logos for the 

53BP1-tudor domain. A) The binding intensity was plotted based on their modification. 

For Kme1/2, there were a lot of high scoring peptides compared to Kme0/3. B) General 

peptide logo of all 600 peptides to see if there were any biases from our 140-cluster array. 

C) The primary prediction features, residue enrichment from peptides scoring above an 

intensity of 100 compared to those that were less. Many basic residues were enriched for 

53BP1-tudor binding. D) Secondary prediction features were enriched using all peptides, 

with an intensity score of 50. 
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Figure 3.10. Permutation array of NHEJ1, the number one predicted substrate for 

the 53BP1-tudor domain. NHEJ1 was predicted to be the best substrate for the 53BP1-

tudor domain. A permutation array was done on its WT sequence. By changing one 

amino acid at one time per position, using all amino acids except cysteine. The 

permutation array results agreed with our primary prediction features. By changing -5 to 

lysine, the binding affinity went up. As well as changing -1 position to an arginine. 

Acidic residues within -2 to +3 region decreased the binding affinity to 53BP1-tudor. 
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3.2.5 53BP1-tudor domain predicted substrates 

By using the 53BP1-tudor binding features from above, I wanted to try to predict 

peptides substrates from the known methylated peptide list from PhosphoSitePlus  24. 

There are currently 5,355 recorded Kme sites, and some are not validated. Out of the 

5,355 sites, we filtered out the peptide sequences that were the same, to a list of 4,642 

unique sequences. The amino acid residues from the peptide were separated from -5 to +5 

with the modified lysine at the center, 0. Each position was assigned a score based on the 

enrichment logo features. First, the peptides with acidic residues from -2 to +3 were 

separated and moved to the bottom of the list. From our previous experiments, these 

peptides did not have a good binding with the 53BP1-tudor domain. The primary 

prediction score came from the 100 or higher net intensity enrichment logos. After the 

secondary scores came from the 50 or higher net intensity enrichment logo to break the 

ties in certain situations to rank the peptides. The sum of the score of each amino acid 

was added and ranked (Fig. 3.11). From this list, I saw there was a group of high scoring 

candidates and flanked by candidates scoring 0. Several of the known 53BP1-tudor 

binding substrates were all ranked in the top 15% of the prediction. For example, H3K9 

ranked in the top 1%, p53K370 ranked in the top 3%, p53K382 ranked in the top 9%, and 

H4K20 ranked in the top 14% of all the peptides. With known binding substrates scoring 

in the top 15%, we have strong confidence in the predicted proteins. 

We dove further into the top 100 predicted non-histone binding substrates of the 53BP1-

tudor domain (Fig. 3.12). Here, we observed that the top 100 substrates belonged to five 

biological processes: Transcription regulation, RNA and mRNA processing, cell division, 

apoptosis regulation and DNA damage repair pathways. The predicted proteins fit into 

the current knowledge of the 53BP1-tudor domain, which binds to p53 and is involved in 

DNA damage repair 120.  

Several known 53BP1-tudor binding domains scored high on our prediction ranking, and 

the predicted biological processes fit into the role of the 53BP1-tudor domain. Thus, I am 
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confident that there will be some valid and novel substrates for the 53BP1-tudor domain 

identified in this prediction. 
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Figure 3.11. Prediction ranking of all known methyllysine sites to a 53BP1-tudor 

domain based on peptide array data. All of the currently known methyllysine peptides 

from PhosphoSitePlus were obtained 24. All peptides were ranked using primary and 

secondary features developed in Figure 3.9. A peptide with an acidic residue in -2 to +3 

region will receive a prediction score of 0, due to the less likely chance of binding. Each 

residue within the primary and secondary feature receives a score and a weight. In the 

end, the total score is added based on all residues within the peptide. Many of the known 

53BP1-tudor domain substrates were within the top 10%. 
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Figure 3.12. Biological pathway analysis of the top 100 predicted 53BP1-tudor 

binding substrate. Looking at the top 100 predicted substrates of the 53BP1-tudor 

domain and their biological processes. These five biological processes are vital to the cell 

but also corresponds to the function of 53BP1 within the cell. 
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3.3 Lysine methylome identification  

3.3.1 Elution conditions for KMBD using standard peptides 

Several parameters must be considered for peptide binding and eluting to ensure KMBD-

biotin is linked to streptavidin beads during the elution condition but strong enough to 

release the bound peptides. Additionally, the binding and washing processes must be 

taken into consideration since the binding affinity for methylated substrates is quite low 

due to their small, non-polar modification. The final consideration was whether to pull-

down whole proteins or digested peptides from the whole cell lysate. 

3.3.1.1 Testing KMBD-biotin and streptavidin binding strength 

During the enrichment process, we did not want to elute our binding protein off the 

streptavidin beads. It was critical to identify the conditions where their binding may be 

disrupted. Here, I used a varying concentration of urea (0 – 8 M) and varying pH (2 – 6 

pH) (Fig. 3.13). In this experiment, MPP8-CD-biotin was purified and conjugated to the 

streptavidin beads. We saw that neither urea nor low pH was able to elute MPP8-CD-

biotin off the streptavidin beads. To make sure that our protein was accurately bound to 

the beads, I boiled the bead conjugate with a loading buffer at 100 ºC for 15 minutes. 

Only when the beads were boiled, MPP8-CD-biotin was in the solution and at the same 

molecular weight as the stock protein.  

To ensure that no protein was coming off during the harsh conditions, I performed silver 

staining on p100-tudor binding to streptavidin beads (Fig. 3.14). The proteins were 

purified and conjugated to streptavidin beads. Excess protein was washed off, followed 

by several washes to ensure all the nonbinding proteins were washed off. After increasing 

various concentrations of urea and decreasing the pH, no protein was eluted off the 

streptavidin beads. The final protein-beads were boiled, and p100-tudor was on the beads. 

Thus, confirming that pH and urea conditions tested were safe to use and will not elute 

off any of our KMBDs. 
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Figure 3.13. Coomassie blue staining of MPP8-CD binding to streptavidin beads at 

varying urea concentration and pH. Purified MPP8-CD was conjugated to streptavidin 

beads. 10 µL of streptavidin beads were used and were conjugated to saturation. A) 

Testing streptavidin and MPP8-CD-biotin binding to the beads with varying 

concentrations of urea. After MPP8-beads were conjugated, they were rigorously washed 

before starting the urea test. We saw that at concentrations 2, 5 and 8 M urea, no proteins 

came off. After the beads were boiled at 100 °C for 15 minutes, the proteins came off the 

beads. B) Testing streptavidin and MPP8 binding with varying pH. We saw at pH 2, the 

proteins were still intact and could only be found in the boiled beads. The wavy band was 

due to an unbalanced pH before running the gel. 
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Figure 3.14. Silver staining of p100 binding to streptavidin beads at varying pH and 

urea concentrations. Testing streptavidin beads binding to the biotinylated protein, we 

used p100-tudor to test binding. The sensitivity was higher when using silver staining 

than Coomassie blue-staining. It allowed us to monitor small changes in p100-tudor and 

if it fell off the beads. The red box represents p100-tudor. A) Varying pH did not remove 

any conjugated proteins from the beads. B) Varying concentration of urea did not remove 

p100-tudor from streptavidin beads. 
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3.3.1.2 pH elution of standard peptides with 53BP1-tudor 

After knowing that pH 2 will not elute our binding proteins from the streptavidin beads, I 

wanted to determine the conditions where I could elute the bound peptide from the 

KMBDs. I used the 53BP1-tudor domain for testing the conditions needed. Standard 

peptides of H4K20me0/2 were made with a fluorescein tag on the N-terminus. Peptides 

were added to the conjugated 53BP1-tudor-streptavidin beads in the dark. They were on 

an end-to-end rotator for 30 minutes at room temperature for binding. After washing 

several times, the peptides were eluted with varying pH comparing the two peptides (Fig. 

3.15). In this experiment, it showed that the proportion of Kme0 peptides bound to the 

conjugated beads were much lower than Kme2 peptides. It showed us that the majority of 

peptides were eluted off 53BP1-tudor at pH 4 and most if not all were eluted at pH 3. 

Whereas on the basic spectrum, at pH 11, virtually eluted all the peptides off. 

Taking consideration that low pH was better for the next step processing for mass 

spectrometry, I decided to use low pH elution for the rest of the experiments. 

Interestingly, 0.1% FA, used in MS processing, is about pH 2.7, which was great for 

eluting these peptides because most of the peptides will be eluted at that pH. 
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Figure 3.15. Using fluorescein tagged H4K20me0/2 peptide testing elution conditions 

with varying pH. Purified 53BP1-tudor domain was conjugated to streptavidin beads. 

Fluorescent H4K20me0/2 were incubated with the protein-beads, with the experiment 

done in duplicates. The starting point was pH 7.4 and serial addition of lower or high pH 

until pH 2 and 13, respectively. The pH of the elution was adjusted to pH 7.4 due to 

fluorescein sensitivity to change in pH. At pH 4 and pH 11 majority of the peptides will 

be eluted from 53BP1-tudor. 
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3.3.1.3 Strong cation exchange column  

Several groups used strong cation exchange columns (SCX) to enrich their digested 

peptides for MS processing 108. However, the majority of the paper where SCX applied 

was enriching for arginine methylated peptides. Although only a few have used SCX to 

enrich for lysine methylated peptides, I decided to see if I could utilize SCX to increase 

the amount of lysine methylated peptides in my enrichment process. Using the 

fluorescein tagged H4K20me0/2 peptides (Fig. 3.16), I found that no significant 

differences between the methylated peptide versus the non-methylated peptide. It could 

be because methyl-group does not affect the charge of the lysine residue being modified 

29.  
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Figure 3.16. Using fluorescein tagged H4K20me0/2 peptide testing SCX conditions 

with varying pH. Testing if SCX could separate methylated or non-methylated peptides 

by using fluorescent H4K20me0 versus H4K20me2. The binding condition was with 50 

mM sodium acetate at pH 4.5. By increasing pH from 4.5 to 12, we saw that most of the 

peptides were eluted around pH 11. However, SCX did not distinguish between 

methylated or non-methylated peptide. 
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3.3.1.4 Whole protein pull-down 

The canonical method of affinity purification of cell lysate was trypsinized whole cell 

lysate. However, I wanted to try to do an undigested protein pull-down using one of our 

KMBDs, 53BP1-tudor domain. I wanted to see if and how many intact proteins I could 

enrich using our domains. I used a protocol by Cold Spring Harbor, a non-denaturing cell 

lysis protocol with lots of protease inhibitors 121. Following their protocol, I was able to 

obtain non-denatured protein lysate from HEK293 cells. I incubated the lysate with 

conjugated 53BP1-tudor-streptavidin beads for 1 hour at room temperature in PBS pH 

7.4. After, it was washed 3x with PBS and eluted with 0.1% FA. The elution was put onto 

a western blot with a pan-lysine-methyl antibody (Fig. 3.17A). The only detectable band 

was p53. The elution was trypsinized 1:50 concentration of trypsin to protein at 37 °C 

overnight with shaking. The sample was prepared and sent to MS. The results were not 

great, and we were only able to pull-down four non-histone methylated proteins.  

Thus, I believe the majority of methyllysine proteins bind with µM to mM affinity 122. 

The interactions were weak and transient. Pulling down the intact proteins would be 

difficult, and the proteins could be lost due to the washing step. Thus, I next decided to 

attempt enriching methyllysine proteins from trypsinized whole cell lysate. 
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Figure 3.17. Western blot and a far-western blot of intact protein pulldown from 

HEK293 lysate via the 53BP1-tudor domain. HEK293 cells were lysed in a non-

denaturing lysis buffer with protease inhibitors. The purified 53BP1-tudor domains were 

conjugated onto 30 µL of packed streptavidin beads. The intact proteins from HEK293 

lysate were mixed with 53BP1-tudor-beads for 2 hours at room temperature on an end-

over-end rotator. Control was streptavidin beads with biotin with HEK293 lysate. A) 

Using a pan-methyllysine antibody to monitor the elution results. We saw there were lots 

of methylated proteins in the cell. However, there was only one band around the size of 

p53 was observed. B) Using 53BP1-tudor-biotin to do a far-western blot to observe 

where 53BP1-tudor were binding to on the lysates and flow through. From this, we saw 

there were lots of proteins that 53BP1-tudor could have bound onto from the lysate. 

However, they were washed away or lost during elution. 
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3.3.2 Methyl peptide enrichment  

Based on the peptide arrays data, we picked five KMBDs: 53BP1-tudor, CBX7-CD, 

L3MBTL2-3xMBT, MPP8-CD, PHF1-tudor. These domains complement each other in 

their binding specificity to have the highest overall coverage. The domains 53BP1-tudor 

and CBX7-CD preferred Kme1/2 peptides, especially 53BP1-tudor (Fig. 3.8). 

L3MBTL2-3xMBT domain was one of the balanced domains, where it had the potential 

to bind to all three Kme modifications. Lastly, MPP8-CD and PHF1-tudor domains 

preferred Kme3 peptides, which will complement the 53BP1-tudor and CBX7-CD. Thus, 

these five KMBDs had their preferences, and with these preferences, we can have the 

highest coverage of all three modifications of Kme. 

I have done experiments of enriching HEK293 cell lysate with the single domain as well 

as a combination of five “in a super-column.” In these experiments, the HEK293 cells 

were not stimulated with any stressors. HEK293 cells were grown to a confluence of 80% 

and lysed via 8 M urea. One replicate was done with two 10 cm culture dishes, to a final 

protein concentration of 2 mg of total protein. The sample was prepared and processed by 

mass spectrometry for peptide identification.  

3.3.2.1 Methyl peptide enrichment by 53BP1-tudor 

I wanted to test a few single domains to monitor the enrichment amount and compare it to 

the five KMBDs super-column. I used freshly purified and dialyzed 53BP1-tudor domain 

for this enrichment. The starting protein concentration was 2 mg/mL (111 µM) 53BP1-

tudor. I used 120 µL of streptavidin beads mixture, 50:50 solution to beads, with a 

packed beads volume of 60 µL. The beads were washed vigorously to avoid any 

contaminants and polymers. After, 1 mg of protein was added to the beads and mixed for 

10 minutes at room temperature. Excess proteins were washed off with PBS. To ensure 

the streptavidin beads were saturated, I added another 500 µg of protein onto the beads. 

The unbound protein was determined via Bradford assay to be around 500 µg; thus, I 

concluded that the streptavidin beads were saturated. The experiments were done with 

two biological repeats. The conjugated protein-beads were divided equally into two 
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Eppendorfs, each with 30 µL of packed protein-beads. Then, two biological repeats of 2 

mg of digested HEK293 cell lysates were incubated with each correctly labelled 

Eppendorf tube. The tubes were put on an end-to-end rotator for 2 hours at room 

temperature for peptide binding. They were washed twice with 1 mL of PBS. The 

peptides were eluted twice with 100 µL of 0.1% FA. Samples were desalted via C18 

column following the manufacturer’s instructions. The eluted peptides were vacuum 

dried and resuspended in 20 µL of 0.1% FA for MS identification.  

The MS results were analyzed by PEAKS 5.3 program 123. By combining the 

identification from both replicates, I was able to identify 84 Kme sites and corresponding 

to 56 proteins. Out of the 84 sites, 29 were Kme1, 54 were Kme2 and 1 Kme3 peptide 

(Fig. 3.18A). These Kme sites further correspond to 20 Kme1 proteins, 37 Kme2 proteins 

and 1 Kme3 protein (Fig. 3.18B). From this experiment, I observed that not a lot of 

proteins overlap in terms of methyl modifications. There were 30 proteins overlap in both 

biological replicates, which consists of 54% of the total discovered proteins (Fig. 3.18C). 

Fig. 3.18D showed the percentages of replicate proteins and sites compared to the total 

number of proteins and sites found in this experiment. Out of the total 84 Kme sites 

identified, 77 sites were found to be novel by manually inserting into PhosphoSitePlus 

database 24. Furthermore, out of the 56 proteins found, 23 proteins were unreviewed on 

Uniprot. There were 33 peptides associated with the 23 unreviewed proteins and were 

classified as a novel since there was no data on these proteins.  
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Figure 3.18. Methyllysine sites and proteins identified via 53BP1-tudor affinity 

purification of HEK293 cell lysate followed by MS. Two biological replicates of 

HEK293 cells were lysed using 8 M urea and processed for trypsinization. Purified 

53BP1-tudor-biotin were conjugated to 30 µL of packed streptavidin beads. Trypsinized 

HEK293 peptides were mixed with protein-beads for 2 hours at room temperature on an 

end-to-end rotator. A) Total enriched Kme sites, as well as how many per replicate. B) 

The Kme sites were corresponding to proteins, a Venn diagram of Kme1/2/3 proteins. 

Not many proteins pulled out have more than one type of modification. C) The overlap of 

proteins between the two biological replicates. D) Percentage of replicate enriched 

proteins and sites compared to the combined proteins and sites across both replicates. As 

well as the known and novel sites. 
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3.3.2.2 Methyl peptide enrichment by MPP8-CD 

Furthermore, we have tested another single domain enrichment of HEK293 trypsinized 

lysate with MPP8-CD. MPP8-CD purified well and had great results from the 140-cluster 

peptide array (Fig. 3.8). Moreover, it had a balanced preference for all Kme substrates 

instead of Kme1/2 focused like 53BP1-tudor. The same procedure was followed as the 

53BP1-tudor domain enrichment. One process that was different from a 53BP1-tudor 

domain was the MS identification software. We switched from PEAKS to Maxquant 

software for identification 124. The results are shown in Fig. 3.17. I was able to identify 48 

Kme peptides, corresponding to 33 proteins. Interestingly, for MPP8-CD enrichment, the 

Kme peptides were balanced, with 17 Kme1, 16 Kme2 and 15 Kme3 peptides. This result 

also affirms our 140-cluster peptide array experiment. Moreover, all the peptides 

identified in this experiment were novel. It was particularly strange to not enrich any 

known sites for MPP8 in two biological replicates. Even though the overlap of the two 

experiments was low, neither of the two was able to enrich any known sites. 
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Figure 3.19. Methyllysine sites and proteins identified from HEK293 cell lysate via 

MPP8-CD affinity purification and MS. Two biological replicates of HEK293 cells 

were used. Purified MPP8-CD was conjugated to the streptavidin beads for affinity 

purification. A) The total number of Kme1/2/3 and the number of Kmes for each 

replicate. B) Venn diagram of Kme1/2/3 proteins and only three proteins overlap 

Kme2/3. C) The number of proteins being identified in each replicate, with an overlap of 

about 30%. D) Percentage of proteins and sites from individual replicate comparing to 

combined proteins and data from both replicates. 
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3.3.2.3 Methyllysine peptide enrichment by combined super 
column 

After the single binding enrichments, the next step was to test the combination of five 

KMBDs to see if I could enrich more peptides. To keep everything consistent, I used 30 

µL of packed beads. All KMBDs were 1:1:1:1:1 ratio, thus each KMBD was 6 µL of the 

total packed beads. The KMBDs were conjugated to streptavidin beads individually, and 

all beads were loaded to saturation. After the protein-beads were diluted and equivalent to 

6 µL of packed beads were pipetted into an Eppendorf tube. Two biological replicates 

were used. The KMBD super-column experiment was performed twice, both were on 

HEK293 cells, but spanned multiple months apart. These experiments will be referred to 

as KMBD-1 (Exp 1) and KMBD-2 (Exp 2). 

Overall, by combining both experiments, with four biological replicates, 8 mg of total 

cell lysate and 120 µL of conjugated protein-beads, I was able to enrich 214 Kme sites, 

corresponding to 148 proteins. Out of the 148 proteins, only three histone proteins were 

identified, and 145 NHKMPs were identified. From the 214 Kme sites identified, there 

were 82 Kme1, 103 Kme2 and 29 Kme3 sites (Fig. 3.20D). Those sites corresponded to 

67 Kme1 proteins, 84 Kme2 proteins and 27 Kme3 proteins (Fig. 3.20C). From Fig. 

3.20C, I observed that several proteins had multiple Kme states, and seven proteins had 

all three methylation states found on the same residue. These sites were very interesting 

because it was regulated heavily by various KMT and KDMs. 

By looking at the two experiments separately, they did not have a high overlap in terms 

of proteins enriched in both experiments (Fig. 3.20B). Only 16 proteins were enriched 

from both experiments, and the majority of the proteins and sites were enriched from the 

individual experiments. In KMBD-1, it enriched 93 proteins and 134 sites. However, the 

overlap between replicate 1 and 2 was only about 25% (Fig. 3.20A). On the other hand, 

KMBD-2 had about 51% overlap between replicates, but the amount of protein and sites 

were a bit lower as well, 71 and 98, respectively. However, I ran into a problem during 

the MS injection. The signal from one injection was too strong that not all the sample was 
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processed. Thus, this injection problem could contribute to the variation between 

replicates and, as well, between experiments. 

Nonetheless, the five KMBD super-column was far superior to the single domain 

enrichment. With similar amounts of proteins as a single domain enrichment, I was able 

to get twice as many sites and proteins from the KMBD super-column.  
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Figure 3.20. Methyllysine sites and proteins identified from HEK293 cells via five 

KMBD super-column followed by MS. 53BP1-tudor, MPP8-CD, CBX7-CD, PHF1-

tudor and L3MBTL2-3xMBT domains were used to form the super-column. Each 

domain is 6 µL of packed streptavidin beads. Two separate experiments were done E1 

(Experiment 1) and E2 (Experiment 2), each with two biological repeats. A) Percentage 

of proteins per replicate compared to the combined proteins identified from both 

replicates. E1 had about half the overlap between replicates as E2. B) The number of 

Kme proteins identified from each experiment with 16 proteins overlap. C) The Kme 

protein distribution. Interesting, seven proteins contained all three modifications, and 

some were on the same residue. D) The number of sites identified from both experiments 

as well as novel sites being discovered. 
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Table 3.2. List of all the enriched Kme sites from HEK293 cells by KMBDs. 

Exp Mod Uniprot 
ID 

Gene Site Sequence Found 
(Y/N) 

53BP1 Kme2 A0A075   207 GGDRGGFKNFGGHRD N 

53BP1 Kme2 A0A087 recA 601 LQQSGTNKEFYYDIK N 

53BP1 Kme2 A0A0C4   679 QAWTDKQKGLEEKHR N 

53BP1 Kme2 A0A0C4   380 RLQAWTDKQKGLEEK N 

KMBD-2 Kme2 A1L390 PKHG3 953 RPPLQWEKVAPERDG N 

53BP1 Kme2 A6NC78 GOG8I 327 GALQAQVKNNQRISL N 

MPP8 Kme3 A8MV72 YH009 277 LQQGNMRKNMRVLSR N 

53BP1 Kme2 B4DUK8 PRKAG3 263 SPLRSTCKAASSLWS N 

53BP1 Kme2 B7ZBI5 COL20A1 124 RVGLQGPKGMRGLEG N 

53BP1 Kme2 C9JIG9 OXSR1 297 FFQKAKNKEFLQEKT N 

53BP1 Kme2 C9JIG9 OXSR1 295 HKFFQKAKNKEFLQE N 

53BP1 Kme2 D6REQ7 ZGRF1 34 KITHLGNKIQCL___ N 

53BP1 Kme1 E9PFJ4 MLIP 181 KSRILLKKEEEVYEP N 

53BP1 Kme1 F8VU51 YLPM1 490 KTWQGHMKATQSYLQ N 

53BP1 Kme1 F8VU51 YLPM1 483 QEYEKQWKTWQGHMK N 

53BP1 Kme2 H0YAN8 ARHGEF10 815 PRLQGIPKVTGRGMV N 

53BP1 Kme2 H0YAW0 TRPA1 562 CKEYLLMKWLAYGFR N 

53BP1 Kme1 H0YES2 DEPDC1 292 FQERCAKKMQLVNLR N 

53BP1 Kme1 H0YFD6 HADHA 111 INMLAACKTLQEVTQ N 

53BP1 Kme2 H0YFD6 HADHA 625 LLTQMVSKGFLGRKS N 

53BP1 Kme2 H0YNE0 MORF4L1 80 VPESRVLKYVDTNLQ N 

53BP1 Kme2 H0YNE0 MORF4L1 88 YVDTNLQKQRELQKA N 

53BP1 Kme1 H3BNL9 TUBGCP4 506 QMQRKHLKSNQTDAI N 

53BP1 Kme1 H3BNL9 TUBGCP4 57 SNQTDAIKWRLRNHM N 

53BP1 Kme2 H7C5H8 CLIP2 23 AMRSCPDKAQDKH__ N 

53BP1 Kme2 I3L2Y3 RNF167 112 IPTHDYQKGDQYDVC N 

53BP1 Kme2 I3L520 DNAH2 1125 IDYEGTQKLLALDPS N 

53BP1 Kme1 J3QSZ5 SON 356 GEGLGKNKEGNKEPI N 

53BP1 Kme2 K7EJJ0 ABCA9 23 LCKNCLKKWRMKRQT N 

53BP1 Kme2 K7EJJ0 ABCA9 22 LLCKNCLKKWRMKRQ N 

53BP1 Kme2 K7EJJ0 ABCA9 18 QTWALLCKNCLKKWR N 

53BP1 Kme1 K7EK07 H3F3B 79 REIAQDFKTDLRFQS Y 

53BP1 Kme2 K7EK07 H3F3B 79 REIAQDFKTDLRFQS Y 

53BP1 Kme2 M0QYA0 ZNF649 26 QFLSPAQKDLYRDVM N 

KMBD-1 Kme2 O00148 DDX39A 333 LSRYQQFKDFQRRIL N 

KMBD-1 Kme1 O00571 DDX3X 81 SRSDSRGKSSFFSDR Y 

53BP1 Kme2 O14578 CTRO 653 KAESLSDKLNDLEKK N 
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MPP8 Kme1 O14734 ACOT8 204 QLQRMEPKQMFWVRA N 

KMBD-2 Kme2 O14979 HNRDL 405 GQQSTYGKASRGGGN N 

MPP8 Kme3 O43151 TET3 1446 QLVFYQHKNLNQPNH N 

KMBD-2 Kme2 O43704 ST1B1 259 SKSPFMRKGTAGDWK N 

MPP8 Kme1 O43819 SCO2 89 KERLQQQKRTEALRQ N 

KMBD-1 Kme3 O60476 MAN1A2 143 EIQTEKNKVVQEMKI N 

MPP8 Kme2 O60522 TDRD6 1930 LSLGVSQKAQESMCT N 

KMBD-2 Kme2 O60673 REV3L 1784 LNRSSVSKEVFLSLP N 

KMBD-2 Kme2 O60673 REV3L 1730 LSPEIFEKSTIDSNE N 

KMBD-1 Kme2 O60870 KIN 135 CKVDETPKGWYIQYI Y 

KMBD-1 Kme3 O60870 KIN 135 CKVDETPKGWYIQYI N 

KMBD-1 Kme1 O60882 MMP20 140 MSSVEVDKAVEMALQ N 

KMBD-1 Kme2 O60882 MMP20 128 TLTYRISKYTPSMSS N 

KMBD-2 Kme1 O60885 BRD4 177 EIMIVQAKGRGRGRK Y 

MPP8 Kme1 O60885 BRD4 349 PAPEKSSKVSEQLKC N 

MPP8 Kme1 O75179 ANR17 1394 EEIEAKNKENFELQA N 

MPP8 Kme1 O75179 ANR17 1254 KLEEIEAKNKENFEL N 

53BP1 Kme1 O75373 ZN737 435 EECGKAFKCFSILTT N 

53BP1 Kme1 O75373 ZN737 432 FKCEECGKAFKCFSI N 

53BP1 Kme1 O75373 ZN737 426 HTGQQPFKCEECGKA N 

KMBD-2 Kme2 O75586 MED6 51 TCNNEVVKMQRLTLE N 

53BP1 kme2 O75592 MYCB2 2885 KKMPLTEPLRGR N 

KMBD-1 Kme1 O75616 ERAL1 126 LGAPNAGKSTLSNQL N 

KMBD-2 Kme2 O75747 P3C2G 978 PDAVTLAKIHRHSGL N 

KMBD-1 Kme3 O76021 RSL1D1 440 KIKEEAVKEKSPSLG N 

KMBD-1 Kme1 O94776 MTA2 173 SDNRNQQKMEMKVWD Y 

53BP1 Kme1 O95628 CNOT4 207 LKNMQCPKPDCMYLH N 

KMBD-1 Kme1 O95801 TTC4 97 FKEKDYKKAVISYTE N 

KMBD-1 Kme3 P00451 F8 1091 SNKTTSSKNMEMVQQ N 

KMBD-2 Kme2 P01270 PTHY 57 ERVEWLRKKLQDVHN N 

KMBD-1 Kme1 P05060 CHGB 455 VQENQMDKARRHPQG N 

KMBD-2 Kme3 P05141 ADT2 52 ITADKQYKGIIDCVV Y 

KMBD-1 Kme2 P05423 POLR3D 231 RDEEEEAKMKAPPKA N 

KMBD-2 Kme1 P09651 ROA1 183 EVRKALSKQEMASAS N 

KMBD-2 Kme2 P09651 ROA1 183 EVRKALSKQEMASAS N 

KMBD-1 Kme1 P0CG12 CHTF8 2 ______MKEPRIFPR Y 

KMBD-2 Kme1 P0DN76 U2AF5 39 RCSRLHNKPTFSQTI N 

KMBD-2 Kme3 P0DP25 CALM3 116 VMTNLGEKLTDEEVD Y 

53BP1 Kme1 P11021 HSPA5 585 DKEKLGGKLSSEDKE Y 

53BP1 Kme1 P11021 HSPA5 591 GKLSSEDKETMEKAV Y 

KMBD-1 Kme3 P11021 HSPA5 585 DKEKLGGKLSSEDKE Y 

53BP1 Kme1 P11142 HSPA8 561 EDEKLQGKINDEDKQ Y 
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53BP1 Kme1 P11142 HSPA8 159 DSQRQATKDAGTIAG N 

53BP1 Kme1 P11142 HSPA8 567 GKINDEDKQKILDKC Y 

53BP1 Kme1 P11142 HSPA8 557 KATVEDEKLQGKIND Y 

KMBD-1 Kme3 P11142 HSPA8 561 EDEKLQGKINDEDKQ Y 

53BP1 Kme2 P12036 NFH 886 AKAKEPSKPAEKKEA N 

53BP1 Kme2 P12036 NFH 953 EPSKPAEKKEAAPEK N 

KMBD-1 Kme1 P12883 MYH7 1895 QANTNLSKFRKVQHE N 

KMBD-1 Kme2 P13611 VCAN 2698 TSLPIPRKSATVIPE N 

KMBD-1 Kme1 P13639 EEF2 519 KNPADLPKLVEGLKR N 

KMBD-1 Kme1 P13639 EEF2 525 PKLVEGLKRLAKSDP Y 

KMBD-1 Kme2 P13639 EEF2 519 KNPADLPKLVEGLKR N 

KMBD-1 Kme3 P13639 EEF2 525 PKLVEGLKRLAKSDP N 

53BP1 Kme2 P15924 DESP 1054 ANSENCNKNKFLDQN N 

53BP1 Kme2 P15924 DESP 1056 SENCNKNKFLDQNLQ N 

MPP8 Kme3 P15924 DESP 1965 SLFQAMNKELIEKGH N 

KMBD-2 Kme2 P16104 H2AX 76 NAARDNKKTRIIPRH N 

KMBD-1 Kme2 P19622 EN2 242 PKKKNPNKEDKRPRT N 

KMBD-1 Kme2 P21399 ACO1 639 KLFFWNSKSTYIKSP N 

KMBD-2 Kme2 P21549 SPYA 61 YQIMDEIKEGIQYVF N 

MPP8 Kme1 P21817 RYR1 3942 DVIEEQGKRNFSKAM N 

KMBD-1 Kme2 P22059 OSBP 97 AREGWLFKWTNYIKG N 

KMBD-2 Kme1 P22061 PIMT 113 VIGIDHIKELVDDSV N 

KMBD-2 Kme2 P23246 SFPQ 703 EEYEGPNKKPRF___ N 

53BP1 Kme2 P23416 GLRA2 271 RRQKRQNKEEDVTRE N 

53BP1 Kme2 P25101 EDNRA 30 MEFYQDVKDWWLFGF N 

MPP8 Kme3 P26583 HMGB2 141 SEQSAKDKQPYEQKA N 

KMBD-1 Kme2 P31150 GDI1 293 YIPDRVRKAGQVIRI N 

MPP8 Kme1 P32297 ACHA3 474 AQEIQQLKRKEKSTE N 

MPP8 Kme1 P32297 ACHA3 476 EIQQLKRKEKSTETS N 

MPP8 Kme1 P32297 ACHA3 466 NEAKEEQKAQEIQQL N 

KMBD-2 Kme1 P32302 CXCR5 339 DLSRLLTKLGCTGPA N 

KMBD-2 Kme1 P32302 CXCR5 50 GPLMASFKAVFVPVA  N 

53BP1 Kme1 P33176 KINH 739 DLQDQNQKMMLEQER N 

KMBD-2 Kme2 P35637 FUS 306 ESVADYFKQIGIIKT N 

KMBD-2 Kme2 P35637 FUS 348 FDDPPSAKAAIDWFD N 

KMBD-1 Kme2 P38432 COIL 287 SKEEPSTKNTTADKL N 

KMBD-1 Kme1 P42681 TXK 68 TGRVQPSKRKPLPPL N 

KMBD-2 Kme2 P46783 RS10 59 LKSRGYVKEQFAWRH N 

KMBD-2 Kme2 P46783 RS10 139 VPPGADKKAEAGAGS N 

KMBD-2 Kme2 P50402 EMD 79 DMYDLPKKEDALLYQ N 

KMBD-2 Kme1 P50991 TCPD 65 DKMIQDGKGDVTITN N 

53BP1 Kme2 P61129 ZC3H6 770 IPRQDIRKPSESAPL N 
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KMBD-1 Kme1 P61978 HNRNPK 198 RVVLIGGKPDRVVEC N 

KMBD-2 Kme2 P67936 TPM4 13 SLEAVKRKIQALQQQ N 

KMBD-2 Kme1 P68104 EF1A1 172 KRYEEIVKEVSTYIK Y 

KMBD-2 Kme1 P68104 EF1A1 165 TEPPYSQKRYEEIVK Y 

KMBD-2 Kme2 P68104 EF1A1 55 EMGKGSFKYAWVLDK Y 

KMBD-2 Kme2 P68104 EF1A1 179 KEVSTYIKKIGYNPD N 

KMBD-2 Kme1 P68431 H31 79 REIAQDFKTDLRFQS Y 

KMBD-1 Kme2 P68431 H31 27 LATKAARKSAPATGG Y 

KMBD-2 Kme2 P68431 H31 79 REIAQDFKTDLRFQS Y 

KMBD-1 Kme3 P68431 H31 27 LATKAARKSAPATGG Y 

MPP8 Kme3 P82987 ATL3 948 KSLIQWEKDGRCLQN N 

KMBD-2 Kme2 P98179 RBM3 7 _MSSEEGKLFVGGLN N 

KMBD-2 Kme1 Q00839 HNRPU 516 GKTTWVTKHAAENPG Y 

KMBD-1 Kme2 Q00839 HNRNPU 544 MMVAGFKKQMADTGK N 

KMBD-1 Kme3 Q00839 HNRNPU 543 KMMVAGFKKQMADTG N 

KMBD-1 Kme1 Q01082 SPTBN1 927 HPSEKEIKAQQDKLN N 

KMBD-2 Kme2 Q01804 OTUD4 1074 VRSEESWKGQPSRSR N 

KMBD-1 Kme1 Q01844 EWSR1 641 GGRGGPGKMDKGEHR N 

KMBD-2 Kme2 Q01844 EWS 441 DFQGSKLKVSLARKK N 

KMBD-1 Kme1 Q06033 ITIH3 352 QEARTFVKSMEDKGM N 

KMBD-1 Kme2 Q07065 CKAP4 283 LEESEGNKQDLKALK N 

KMBD-2 Kme2 Q07666 KHDR1 432 APPARPVKGAYREHP N 

KMBD-2 Kme2 Q07666 KHDR1 185 GPQGNTIKRLQEETG N 

KMBD-1 Kme2 Q0VDD8 DNAH14 216 EKKYEDVKPLETQPA N 

MPP8 Kme2 Q12789 TF3C1 1142 SYIINQAKKENTAAE N 

MPP8 Kme2 Q12789 TF3C1 1143 YIINQAKKENTAAEN N 

MPP8 Kme3 Q12789 TF3C1 1142 SYIINQAKKENTAAE N 

MPP8 Kme3 Q12789 TF3C1 1143 YIINQAKKENTAAEN N 

KMBD-1 Kme1 Q12830 BPTF 10 GRRGRPPKQPAAPAA N 

KMBD-1 Kme2 Q12830 BPTF 10 GRRGRPPKQPAAPAA N 

KMBD-2 Kme2 Q12834 CDC20 163 ATPGSSRKTCRYIPS N 

KMBD-2 Kme2 Q12834 CDC20 236 ISSVAWIKEGNYLAV N 

KMBD-1 Kme3 Q12873 CHD3 1582 EAENQEEKPEKNSRI N 

KMBD-1 Kme1 Q12906 ILF3 617 GGPKFAAKPHNPGFG Y 

KMBD-1 Kme1 Q12906 ILF3 613 VPVRGGPKFAAKPHN Y 

53BP1 Kme2 Q12933 TRAF2 295 KIEALSSKVQQLERS N 

KMBD-2 Kme2 Q13042 CDC16 67 LRSRKLDKLYEACRY N 

KMBD-2 Kme2 Q13151 ROA0 211 RDQNGLSKGGGGGYN N 

KMBD-1 Kme1 Q13185 CBX3 50 GKVEYFLKWKGFTDA Y 

KMBD-1 Kme1 Q13185 CBX3 34 PEEFVVEKVLDRRVV Y 

KMBD-2 Kme1 Q13185 CBX3 44 DRRVVNGKVEYFLKW N 

KMBD-2 Kme1 Q13185 CBX3 21 KQNGKSKKVEEAEPE N 
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KMBD-1 Kme2 Q13185 CBX3 44 DRRVVNGKVEYFLKW N 

KMBD-1 Kme2 Q13185 CBX3 21 KQNGKSKKVEEAEPE N 

KMBD-1 Kme2 Q13185 CBX3 34 PEEFVVEKVLDRRVV N 

KMBD-1 Kme3 Q13185 CBX3 21 KQNGKSKKVEEAEPE N 

KMBD-1 Kme1 Q13895 BYSL 5 ___MPKFKAARGVGG Y 

KMBD-2 Kme2 Q14103 HNRPD 341 NQQSGYGKVSRRGGH N 

KMBD-2 Kme2 Q14140 SRTD2 47 IFNISLMKLYNHRPL N 

KMBD-2 Kme1 Q14157 UBP2L 161 ENGLDGTKSGGPSGR N 

KMBD-2 Kme2 Q14157 UBP2L 161 ENGLDGTKSGGPSGR N 

MPP8 Kme1 Q14964 RB39A 60 LLEIEPGKRIKLQLW N 

KMBD-1 Kme1 Q14999 CUL7 211 SQQEAIEKHLDFDSR N 

KMBD-2 Kme2 Q15047 SETB1 1170 STRGFALKSTHGIAI Y 

KMBD-1 Kme1 Q15370 TCEB2 36 RIVEGILKRPPDEQR Y 

KMBD-2 Kme1 Q15758 AAAT 522 EEGNPLLKHYRGPAG N 

KMBD-1 Kme3 Q15858 SCN9A 1910 YRLRQNVKNISSIYI N 

KMBD-2 Kme2 Q1KMD3 HNRL2 342 GFDGRGLKAENGQFE N 

KMBD-2 Kme2 Q1KMD3 HNRL2 479 YAKENPEKRYNVLGA N 

KMBD-1 Kme3 Q2NL82 TSR1 476 AKMLEKYKQERLEEM N 

KMBD-1 Kme1 Q3BBV2 NBPF8 32 RPQLAENKQQFVNLK N 

KMBD-1 Kme2 Q4VCS5 AMOT 775 RSRKEPSKTEQLSCM N 

KMBD-1 Kme1 Q53EZ4 CEP55 29 KSETTLEKLKGEIAH N 

KMBD-1 Kme2 Q53GS7 GLE1 566 EQQDNFLKRMSGMIR N 

KMBD-1 Kme3 Q53RT3 ASPRV1 194 VFANSMGKGYYLKGK Y 

KMBD-1 Kme2 Q5BJF6 ODF2 512 KLENERLKASFAPME N 

53BP1 Kme2 Q5T2B5 CUL2 621 IKSLLDVKMINHDSE N 

53BP1 Kme2 Q5T2B5 CUL2 615 KELTKTIKSLLDVKM N 

KMBD-1 Kme2 Q5T8P6 RBM26 766 LEKNKTMKSEDKAEI N 

53BP1 Kme1 Q5THK1 PR14L 1186 SHYGQQDKGTSLRET N 

MPP8 Kme2 Q5UIP0 RIF1 1454 EEEKPLQKSPLHIKD N 

MPP8 Kme2 Q5UIP0 RIF1 1449 ERRKEEEKPLQKSPL N 

KMBD-1 Kme2 Q5VSY0 GKAP1 295 ARNAQLLKMLQEGEM N 

KMBD-1 Kme3 Q5VSY0 GKAP1 295 ARNAQLLKMLQEGEM N 

KMBD-1 Kme1 Q5VTE0 EF1A3 179 KEVSTYIKKIGYNPD Y 

KMBD-1 Kme1 Q5VTE0 EF1A3 172 KRYEEIVKEVSTYIK N 

KMBD-1 Kme1 Q5VTE0 EF1A3 165 TEPPYSQKRYEEIVK Y 

53BP1 Kme2 Q5VTE0 EF1A3 165 TEPPYSQKRYEEIVK N 

KMBD-1 Kme2 Q5VTE0 EF1A3 55 EMGKGSFKYAWVLDK N 

KMBD-1 Kme2 Q5VTE0 EF1A3 179 KEVSTYIKKIGYNPD N 

KMBD-1 Kme2 Q5VTE0 EF1A3 172 KRYEEIVKEVSTYIK N 

KMBD-1 Kme2 Q5VTE0 EF1A3 62 KYAWVLDKLKAERER N 

53BP1 kme3 Q5VTE0 EF1A3 80 GITIDISLWKFETSK N 

KMBD-1 Kme3 Q5VTE0 EF1A3 172 KRYEEIVKEVSTYIK Y 
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KMBD-1 Kme3 Q5VTE0 EF1A3 79 TIDISLWKFETSKYY N 

KMBD-1 Kme1 Q5VUA4 ZNF318 1001 DSREPTEKPGKAEKS N 

KMBD-1 Kme1 Q5VUA4 ZNF318 1004 EPTEKPGKAEKSKSP Y 

53BP1 Kme1 Q5VUR7 A20A3 255 QQQILEHKKKILKKE N 

KMBD-1 Kme2 Q68DI1 ZNF776 122 GFGAYEKKLDDDANH N 

MPP8 Kme2 Q68E01 INT3 136 ILMEKYLKLQDTCRT N 

MPP8 Kme2 Q68E01 INT3 133 INQILMEKYLKLQDT N 

KMBD-1 Kme3 Q6NWY9 PRPF40B 813 AGKESDEKEQEQDKD Y 

KMBD-1 Kme1 Q6PJG2 ELMSAN1 186 VRPMMPQKVQLEVGR N 

KMBD-1 Kme2 Q6PJG2 ELMSAN1 186 VRPMMPQKVQLEVGR N 

KMBD-1 Kme1 Q6ZMT4 KDM7A 484 EENGKPVKSQGIPIV N 

KMBD-1 Kme1 Q6ZN16 MAP3K15 751 PMKEPTIKFYTKQIL N 

KMBD-1 Kme1 Q6ZN16 MAP3K15 755 PTIKFYTKQILEGLK N 

KMBD-1 Kme2 Q6ZN16 MAP3K15 751 PMKEPTIKFYTKQIL N 

KMBD-1 Kme3 Q6ZN16 MAP3K15 755 PTIKFYTKQILEGLK N 

53BP1 Kme2 Q6ZN92 DUTL 134 LTQEQKTKHCMFSLH N 

53BP1 Kme2 Q6ZN92 DUTL 132 SKLTQEQKTKHCMFS N 

53BP1 Kme1 Q6ZRR7 LRRC9 247 LADTTAMKKIMYYNM N 

KMBD-1 Kme1 Q6ZV73 FGD6 964 VKKGPYLKMYSTYIK N 

MPP8 Kme1 Q7L775 EPMIP 449 DELKQQNKEDEKIFD N 

MPP8 Kme1 Q7L775 EPMIP 445 REVVDELKQQNKEDE N 

MPP8 Kme3 Q7Z2K8 GRIN1 232 TYTVSPRKEDPGSLR N 

KMBD-1 Kme3 Q7Z401 DENND4A 1826 DAFDKEYKMAYDRLT N 

KMBD-1 Kme1 Q7Z699 SPRED1 312 PKDSVVFKTQPSSLK N 

KMBD-2 Kme2 Q7Z6G3 NECA2 265 LIGRLESKALWFDLQ N 

53BP1 Kme2 Q86T96 RN180 206 LSKASEPKYQLFVPQ N 

KMBD-2 Kme2 Q86UK7 ZN598 106 DIYFADGKVYALYRQ N 

KMBD-2 Kme2 Q86UK7 ZN598 97 HQLQHEKKYDIYFAD N 

KMBD-2 Kme2 Q86V81 THOC4 161 ERKADALKAMKQYNG N 

MPP8 Kme1 Q8IWJ2 GCC2 1196 EIKIQKQKQETLQEE N 

MPP8 Kme1 Q8IWJ2 GCC2 1194 EQEIKIQKQKQETLQ N 

KMBD-2 Kme2 Q8IXJ9 ASXL1 726 EDLPSLRKEESCLLQ N 

MPP8 Kme3 Q8IXJ9 ASXL1 1302 SNVTGQGKKLFGSGN N 

53BP1 Kme2 Q8IY18 SMC5 337 DIKEASQKCKQKQDV N 

53BP1 Kme2 Q8IY18 SMC5 339 KEASQKCKQKQDVIE N 

KMBD-1 Kme2 Q8IYJ2 C10orf67 154 DRILEIEKHYQQNED N 

KMBD-1 Kme1 Q8IYP9 ZDHHC23 8 MTQKGSMKPVKKKKT N 

53BP1 Kme2 Q8N1E6 FXL14 308 AQGLDGLKSLSLCSC N 

53BP1 Kme2 Q8N567 ZCHC9 108 EEIAVALKKDSRREG N 

53BP1 Kme2 Q8N567 ZCHC9 109 EIAVALKKDSRREGR N 

MPP8 Kme3 Q8N954 GPT11 38 EARRKEEKQQEANLK N 

MPP8 Kme3 Q8N954 GPT11 45 KQQEANLKNRQKSLK N 
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KMBD-2 Kme2 Q8N9B5 JMY 134 RLRSPGSKGAESRLR N 

KMBD-1 Kme3 Q8NA19 L3MBTL4 159 PKGYRKDKFVWMDYL N 

53BP1 Kme2 Q8NB14 UBP38 995 LQVSWKYKLYLLKIL N 

53BP1 Kme2 Q8NB14 UBP38 993 LYLQVSWKYKLYLLK N 

MPP8 Kme2 Q8NCX0 CC150 1068 QEKDQDVKHDVMSNQ N 

MPP8 Kme3 Q8NCX0 CC150 1063 GEDRWQEKDQDVKHD N 

KMBD-1 Kme3 Q8ND07 CCDC176 76 KKQCKMEKDIMSVLS N 

KMBD-1 Kme3 Q8ND82 ZNF280C 311 GVTEKEPKTYTTFKC Y 

KMBD-1 Kme1 Q8NDH2 CCDC168 560 TREQEEEKVQKVKSG N 

KMBD-1 Kme2 Q8NDV7 TNRC6A 1279 ERNPYFDKDGIVADE N 

MPP8 Kme2 Q8NEN0 ARMC2 263 EILINLIKQINENIK N 

KMBD-1 Kme1 Q8NFC6 BOD1L1 786 TKLSSDDKTERKSKH N 

KMBD-1 Kme2 Q8NGA6 OR10H5 303 KELKVAMKKTCFTKL N 

KMBD-2 Kme1 Q8NGM1 OR4CF 311 LMVVSDEKENIKL__ N 

KMBD-2 Kme2 Q8NGM1 OR4CF 311 LMVVSDEKENIKL__ N 

KMBD-2 Kme1 Q8NHY3 GA2L2 479 LPLRDEAKGAFFQFR N 

KMBD-1 Kme2 Q8NI35 INADL 1187 QNQDTQEKKEKRQGT N 

KMBD-1 Kme1 Q8TAC1 RFESD 12 GSAQDPEKREYSSVC N 

KMBD-2 Kme2 Q8TBM8 DJB14 367 ALSMDNCKELERLTS N 

KMBD-2 Kme2 Q8TC76 F110B 359 IKWLYSIKQARESQK N 

MPP8 Kme2 Q8TCX1 DC2L1 119 VLVLDLSKPNDLWPT N 

KMBD-2 Kme2 Q8TF45 ZN418 255 HQRVHTGKRPYECGE N 

KMBD-2 Kme1 Q8WUM4 PDC6I 751 PRTMPPTKPQPPARP Y 

53BP1 Kme1 Q8WXA3 RUFY2 309 INIEMYQKLQGSEDG N 

53BP1 Kme1 Q8WXA3 RUFY2 318 QGSEDGLKEKNEIIA N 

KMBD-2 Kme1 Q8WXF1 PSPC1 519 GNFEGPNKRRRY___ Y 

KMBD-2 Kme2 Q8WYA0 IFT81 637 GPNMKQAKMWRDLEQ N 

MPP8 Kme1 Q92628 K0232 683 SSANMLGKTQSRLLI N 

KMBD-2 Kme2 Q92734 TFG 155 SASDSSGKQSTQVMA N 

KMBD-2 Kme1 Q92804 RBP56 576 DRGGYGGKMGGRNDY N 

KMBD-2 Kme2 Q92804 RBP56 576 DRGGYGGKMGGRNDY Y 

KMBD-2 Kme1 Q969Q0 RL36L 53 SGYGGQTKPIFRKKA Y 

KMBD-2 Kme1 Q96E39 RMXL1 86 IKVEQATKPSFERGR N 

KMBD-1 Kme2 Q96E39 RBMXL1 86 IKVEQATKPSFERGR N 

KMBD-1 Kme1 Q96E52 OMA1 390 FNRPYSRKLEAEADK N 

53BP1 Kme2 Q96F24 NRBF2 179 ATKIADLKRHVEFLV N 

53BP1 Kme2 Q96F24 NRBF2 174 IIEEQATKIADLKRH N 

53BP1 Kme2 Q96F24 NRBF2 164 SKAPKDDKTIIEEQA N 

KMBD-1 Kme1 Q96IZ6 METTL2A 53 QAAAAERKVQENSIQ N 

KMBD-1 Kme1 Q96KQ7 EHMT2 200 GQPPVPEKRPPEIQH N 

KMBD-1 Kme1 Q96KQ7 EHMT2 189 RARKTMSKPGNGQPP Y 

KMBD-1 Kme2 Q96KQ7 EHMT2 189 RARKTMSKPGNGQPP N 
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KMBD-2 Kme2 Q96KQ7 EHMT2 114 ILLGHATKSFPSSPS N 

KMBD-1 Kme3 Q96KQ7 EHMT2 189 RARKTMSKPGNGQPP N 

53BP1 Kme1 Q96PY6 NEK1 507 FNERQQIKAKLRGEK N 

MPP8 Kme1 Q96Q89 KI20B 1300 TDAKKQIKQVQKEVS N 

KMBD-1 Kme2 Q96T58 SPEN 902 PVEKLKAKLDNDTVK N 

KMBD-2 Kme1 Q99729 ROAA 232 EIKVAQPKEVYQQQQ N 

KMBD-2 Kme1 Q99729 ROAA 190 IELPMDPKLNKRRGF N 

KMBD-2 Kme2 Q99729 ROAA 232 EIKVAQPKEVYQQQQ N 

KMBD-2 Kme2 Q99729 ROAA 330 GGHQNNYKPY_____ N 

KMBD-1 Kme2 Q99880 HIST1H2BL 58 PDTGISSKAMGIMNS N 

53BP1 Kme1 Q9BRV8 SIKE1 178 AQLELENKELRELLS N 

KMBD-1 Kme2 Q9BUP0 EFHD1 9 ASEELACKLERRLRR N 

KMBD-2 Kme1 Q9BYN0 SRXN1 61 PSVLDPAKVQSLVDT N 

KMBD-1 Kme1 Q9C0H9 SRCIN1 813 QRLDGLLKRCRGVTD N 

KMBD-1 Kme1 Q9H0D6 XRN2 858 RGQAQIPKLMSNMRP Y 

KMBD-1 Kme1 Q9H0V9 LMAN2L 150 PVFGNMDKFVGLGVF N 

MPP8 Kme2 Q9HAH1 ZN556 426 QIGQKPSKCEKCGKA N 

MPP8 Kme2 Q9HAH1 ZN556 423 VRTQIGQKPSKCEKC N 

KMBD-2 Kme2 Q9HAZ2 PRD16 824 GGGREPRKNHVYGER N 

KMBD-1 Kme1 Q9HCF6 TRPM3 1370 SFYSVNMKDKGGIEK N 

MPP8 Kme1 Q9NPF5 DMAP1 35 KDIINPDKKKSKKSS N 

KMBD-1 Kme1 Q9NPG3 UBN1 238 SKEKKKKKYSGALSV N 

KMBD-1 Kme1 Q9NPG3 UBN1 246 YSGALSVKEMLKKFQ N 

KMBD-2 Kme2 Q9NS66 GP173 166 VFDVGTYKFIREEDQ N 

MPP8 Kme2 Q9NS91 RAD18 462 EAWEASHKNDLQDTE N 

KMBD-2 Kme1 Q9NVQ4 FAIM1 42 DGKEEIRKEWMFKLV N 

KMBD-2 Kme2 Q9NVQ4 FAIM1 95 KYMEDRSKTTNTWVL N 

KMBD-2 Kme2 Q9NWH9 SLTM 476 MKKENDEKSSSRSSG N 

KMBD-1 Kme1 Q9NXG0 CNTLN 1289 TFVKALAKELQNDVH N 

KMBD-1 Kme3 Q9NXG0 CNTLN 720 EGNKKLMKENDFLKS N 

KMBD-1 Kme3 Q9NXG0 CNTLN 1003 SVLQNAKKTAELSVK N 

KMBD-2 Kme1 Q9NZM5 NOP53 410 PRRLGRLKYQAPDID N 

KMBD-1 Kme2 Q9P2H0 CEP126 65 QILLQQQKICRNRAR N 

53BP1 Kme1 Q9P2P6 STAR9 786 QRLLEAQKRLEKLTT N 

KMBD-1 Kme3 Q9UIF9 BAZ2A 695 TDNRPLKKLEAQETL N 

KMBD-1 Kme1 Q9UIH9 KLF15 319 NPAAELIKMHKCTFP N 

53BP1 Kme2 Q9UIV8 SPB13 214 IDKISPEKLVEWTSP N 

53BP1 Kme2 Q9UIV8 SPB13 209 WMNKIIDKISPEKLV N 

KMBD-2 Kme2 Q9UKV8 AGO2 381 DRQEEISKLMRSASF N 

53BP1 Kme2 Q9ULL0 K1210 1416 KKFSQGSKNPIKSIP N 

53BP1 Kme2 Q9ULL0 K1210 1420 QGSKNPIKSIPAPAT N 

KMBD-1 Kme1 Q9UPW6 SATB2 722 AEEENADKSKAAPAE N 
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KMBD-1 Kme1 Q9UPW6 SATB2 724 EENADKSKAAPAEID N 

KMBD-1 Kme2 Q9UPW6 SATB2 722 AEEENADKSKAAPAE N 

KMBD-1 Kme2 Q9UPW6 SATB2 724 EENADKSKAAPAEID N 

KMBD-2 Kme2 Q9Y233 PDE10 754 DNLSQWEKVIRGEET N 

KMBD-2 Kme2 Q9Y233 PDE10 328 EIRFSIEKGIAGQVA N 

KMBD-2 Kme2 Q9Y233 PDE10 402 KTDENNFKMFAVFCA N 

KMBD-1 Kme1 Q9Y283 INVS 315 FLKHPSVKDDSDLEG N 

MPP8 Kme2 Q9Y2H2 SAC2 509 QVQQNELKKMFIQCQ N 

MPP8 Kme2 Q9Y2H2 SAC2 510 VQQNELKKMFIQCQT N 

MPP8 Kme3 Q9Y2H2 SAC2 509 QVQQNELKKMFIQCQ N 

MPP8 Kme3 Q9Y2H2 SAC2 510 VQQNELKKMFIQCQT N 

53BP1 Kme2 Q9Y2W1 TR150 202 DNQGDEAKEQTFSGG N 

53BP1 Kme1 Q9Y3R5 DOP2 886 VLWNQLNKETREHHV N 

MPP8 Kme2 Q9Y471 CMAH 494 TNEPNRNKFSVENKA N 

MPP8 Kme3 Q9Y6N7 ROBO1 51 EPATLNCKAEGRPTP N 

 

Table 3.2. List of all the enriched Kme sites from HEK293 cells by KMBDs. This 

table lists all the Kme sites enriched with KMBDs, all four experiments from HEK293 

cells. The lysine modification is labelled under Mod. The table also has Uniprot ID, gene 

name where applicable. The sequence is ± 7 residue from the central modified lysine, 

where protein is at the end or beginning, “__” indicates the number of spaces. Found 

column signify whether this site has been previously reported, where Y means known site 

and N means novel site. 
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4 Discussion and future directions  

4.1 General discussion and conclusions  

4.1.1 Systematic characterization of KMBD binding profile 

4.1.1.1 Probing KMBD binding via membrane peptide array 

Membrane peptide array is a powerful tool for high throughput substrate screening 125. In 

this project, three different peptide membranes were generated. First, designed by Dr. 

Kyle Biggar from his prediction experiments, and we picked the top 70 protein 

candidates and made four different variants of it with Kme0, 1, 2 and 3 (Fig 3.5). Each of 

the peptides was 15 amino acid residues with lysine at the center. The second peptide 

array used was the 140-cluster array from the phylogenetic-like clustering approach (Fig. 

3.8). By grouping similar peptide sequences based on similarity and origin, we were able 

to pick out 140 clusters with four different modifications of the center lysine with some 

control peptides. These peptides were also 15 residues in length with center lysine. The 

third array was a permutation array of NHEJ1 peptide (Fig. 3.10). This permutation array 

was 11 residues in length with center lysine. Each of the amino acid residues was 

permutated to another amino acid residue, except for cysteine. Cysteines during reaction 

could result in sulphide bridges to complicate the synthesis 4,106. The permutation array 

was used to assess whether any one type of residue can impact the affinity of the peptide 

for the protein, whether it can increase or decrease binding affinity 125.  

There were several important factors to achieve maximum results from these membrane 

peptide arrays — first, the background binding to the membrane. Achieving the best data 

from the membrane peptide array requires the background binding to be kept to a 

minimum. The background should be white to minimize signal interference for positive 

binding. The higher the background, the harder to distinguish if a spot was binding or it 

was just background noise. One way to minimize the background was to block the 

membrane in 5% BSA in PBS at 4 °C overnight with mild shaking. Blocking the 
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membrane 12-24 hours achieved the best results to have minimal background noise. 

Second, the purity of the purified protein would determine the amount of binding and can 

increase the background noise if the protein sample was not pure. Even though the 

sample was 90% pure, it was best to run another column to make the purity even higher. 

With pure proteins, there will be less contamination, less undesired binding and cleaner 

background. Third, the protein concentration blotting onto the peptide array. Choosing 

the correct concentration of binding protein was important. Too much protein could result 

in over binding or over-saturation of a spot 126. Too little protein could result in less than 

ideal binding or very weak signals from the spots. The best way to determine what 

protein concentration to use is by trial and error. Last, the chemiluminescence solution 

that was being used and the exposure time. Depending on the enhanced 

chemiluminescence (ECL) used, the incubation time and exposure time could be 

different. Too many substrates could result in very dark spots across all spots and make 

the background very dark as well. Too little substrates could result in underdeveloped 

spots. We used our house-made ECL and substrates to incubate our membrane for two 

minutes and manual exposure of one picture every five seconds for 60 seconds. With the 

continuous exposure, I could pick the picture with the most optimal exposure for all the 

spots and a clear background. 

There were several controls that one needs to do before the start of the experiment. First, 

the freshly synthesized membrane was blotted with the antibody (or antibodies) to assess 

whether there were any interactions from the antibody with the peptides and the 

membrane. This step will ensure that all the interactions seen on the membrane happened 

between our protein of interest and the membrane peptides. Second, evaluate the antibody 

(or antibodies) binding to our protein of interest. Third, assess whether the membranes 

could be stripped and reused. If the proteins could be stripped off the membrane without 

a trace and reblotting yield similar results, the reuse of membranes will be cost-effective. 

I used two stripping buffers to strip the proteins of our membranes (Fig. S.1). After 

stripping the proteins, the membrane was exposed to ECL and substrate to see if there 

were any residual antibodies left on the membrane. Subsequently, I incubated the 
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membrane with antibody assess whether any proteins were left on the membrane. In 

figure S.1, it showed that the stripped membrane was protein-free and reblotting the 

membrane yielded similar data. 

One important quality control (QC) was the sequence fidelity of the peptides on the 

membrane; how accurate were they? It was a very important question and a hard one to 

answer. I needed to make sure that each spot was what we intended, and no mutations 

occur during synthesis. However, it was difficult to do QC on every single membrane. 

There were groups using membrane peptide array to synthesize peptides and cleave them 

for MS studies 127. They would design tryptic peptides and use trypsin to digest the 

peptides off the membrane. However, our designed peptides, most of the time, were not 

tryptic. Only peptide sequences with one lysine or arginine at the C-terminal could work. 

In the past, our group tried the tryptic digestion method for QC. However, the digestion 

was poor. Now, I included control peptides during our synthesis for each batch of 

synthesis. For example, I would include GGpYGG peptide, which can be bound by the 

4G10 antibody, placing this peptide in a few positions on the membrane to make sure the 

dotting was robust. Furthermore, I included biotin on the N-terminal ends of peptides, 

with the random amino acid composition of various lengths, up to the maximum length of 

our peptide on the membrane. These biotinylated peptides were done in duplicates, one 

with biotin and the other without. When the synthesis was complete, the control peptides 

were blotted and evaluated. Through these control peptides, I assumed the rest of the 

synthesis was good. 

One of the drawbacks of using peptide array was that stronger signal does not necessarily 

translate to a higher affinity. However, the stronger signal does suggest the interaction 

was strong, but we could not determine the actual KD from comparing the signals of 

control to another peptide. We could determine that our protein had bound with this 

peptide, and they have a good interaction or a weak interaction. The actual KD could not 

be determined by this method. The peptide arrays are a great screening tool to assess 

binding or no binding. There were several reasons why a stronger signal does not 
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translate to a stronger binding. First, we did not know the precise number of peptides that 

were on each spot; Intavis gave us a rough estimate of 1 µM of the peptide. The synthesis 

has a range of peptides being spotted into each spot, but the precise number of peptides 

per spot could not be determined easily. Thus, two same peptides with different quantities 

will result in one having a stronger signal. Second, Kon and Koff could not be determined 

since the membrane was already at equilibrium 128. Last, signal saturation and over-

exposure. There was a certain range where the signal has a linear response 129. However, 

after a certain range, the signal did not respond linearly anymore. Thus, we could not 

infer any binding affinity from peptides with strong signals. Since the analysis program 

also has a maximum pixel density, by overexposing the image, it will not behave linearly 

130. However, strong signal, stronger than positive control would mean a positive binding, 

even though the binding affinity could not be determined. 

4.1.1.2 Substrate binding affinity via fluorescence polarization 

Fluorescence polarization (FP) is a powerful tool to test protein-substrate binding affinity 

114. The fluorescent-labelled peptides, when excited, it will rotate rapidly, and when 

bound to a protein, its rotation will be slowed, and the emitted light is polarized 131. With 

our FP experiments, the control experiments with 53BP1-tudor and H4K20 peptides 

showed binding to Kme1/2 (Fig. 3.4). However, in some other experiments, the change in 

fluorescence polarization (ΔFP) was low. With the H4K20 experiment, I had ΔFP max 

around 200 mP. However, with the other ones, the ΔFP max was only 50 mP. There were 

experiments with max ΔFP less than 25 mP, where the data was ambiguous, hard to 

distinguish a positive binding or just background noise. Some known binding peptides to 

our proteins showed weak ΔFP and sometimes no ΔFP. There had been a few peptides 

that were giving me a hard time. 

After all the peptides were synthesized, I sent all the peptides to MALDI to examine if 

the synthesis was successful. All in-solution peptides used in the project were validated 

via MALDI, and all the peptides were correctly synthesized. One important aspect of FP 

is the pH of the peptides and the proteins. Fluorescein is sensitive to pH, and its emission 
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will change upon different pH 132. All the proteins and peptides were diluted with PBS. 

However, a lot of the methylated peptides have many basic residues, where their pI was 

above 12. These Kme peptides were diluted more than 1,000 times. Thus, their pH should 

be the same as PBS at pH 7.4. Before I began the experiments, I used a pH paper to test 

the pH of our peptide solution and the protein solution. Both were the same, had a pH of 

7.4. However, this did not solve that several peptides were not giving good FP results. 

Resulting in elusive KD in some interesting peptides that I wanted to know. 

4.1.2 53BP1-tudor substrate prediction 

The 53BP1-tudor domain had the best binding performance compared to the other eight 

KMBDs that I had tested. It had lots of interactions with various degrees of binding (Fig. 

3.6). Based on that, I was able to make an enriched amino acid logo for the top 5% from 

the peptide array. As well as, taking into consideration of the amino acid composition of 

the top 5% Kme1s versus the bottom 5% of Kme1s (Fig. 3.7), I was able to find a pattern 

that acidic residues from -2 to +3 region will have poor interaction with the 53BP1-tudor 

domain. This binding pattern was supported by the structure of 53BP1-tudor binding 

pocket from crystallography data 78. There was an acidic residue, D1521, in the binding 

pocket of the 53BP1-tudor domain. 

From the predicted substrate list, by looking at the top-ranked candidates, and grouping 

them by biological processes, it gave us important hints to the 53BP1-tudor domain 

interactions with several major pathways. It was already known that 53BP1-tudor binds 

to p53 during cellular stress and during DNA damage events 25. All the top predicted 

pathways were very important and related to 53BP1 and its tudor domain. 53BP1, its 

name is p53 binding protein 1, it binds to p53 during cellular stress 25. Since it binds to 

p53, it is involved in apoptosis regulation, DNA damage pathway, cell division 3. During 

DNA double-strand break (DSB), 53BP1-tudor recognizes histone markers H3K9, 

H3K79 and H4K20 and important in the DSB repair pathway 78,120. I observed some of 

the best-predicted proteins were involved in DNA damage repair: NHEJ1, ETAA1 and 

SETX. 53BP1-tudor domain relation to RNA process could be led by tudor interacting 
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repair regulator protein (TIRR). TIRR inhibits the 53BP1-tudor domain by binding onto 

it during no stress conditions 133. It prevents the 53BP1-tudor binding to H4K20 and other 

substrates. During DNA damage, TIRR interacts with RNA molecule and releases 

53BP1, and it is recruited to DSB site 134. Thus, the categories of predicted proteins fell in 

line with the function of 53BP1. 

The amount of data used to generate the enriched logo was still a little less than ideal. By 

taking consideration of NHEJ1 permutation data, I was able to rank all the currently 

known Kme peptides. However, there were still several peptides that were tied in score, 

and this can be observed by the sudden dips and horizontal dots from Fig. 3.11. I am in 

the process of generating another set of arrays to validate the prediction list. Choosing the 

top 400 peptides, along with 50 peptides at 25%, 50%, 75% and 100% percentile. This 

second array is to validate the predicted substrates, and I also wanted to have more data 

points to refine the enrichment logo. 

If I can get the data from our prediction array, I could potentially have enough data points 

to use a deep learning model to predict 53BP1-tudor substrate from all human proteins 

135. Based on its binding specificity, I could identify novel methylated sites. These sites 

will require in vitro, as well as in vivo validation. In vitro validation could be done using 

the peptide array. Whereas, in vivo validation would require using cell lines to enrich for 

the specific site. The in vivo validation could be achieved by using a Q-TRAP MS to pick 

out the peptide transitions and screen for peptides that match our predicted transitions 136. 

4.1.3 Methyllysine peptide enrichment by KMBDs 

Previously, many groups used KMBDs to enrich for methyllysine peptides 4,107. 

However, they only used one domain for their enrichment. Here, I differ by using five 

different domains and five relatively less commonly used in Kme peptide enrichment. I 

first systematically characterized all the nine KMBDs that were available, then based on 

their complementary binding profile, I picked five KMBDs. These KMBDs were 53BP1-

tudor, CBX7-CD, L3MBTL2-3xMBT, MPP8-CD, PHF1-tudor. Overall, the results of all 
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four experiments combined, the number of proteins found were 229 with 301 novel Kme 

sites. With lots of Kme1/2 sites as well as many Kme2 novel sites. Since the number of 

discovered Kme2 sites was small compared to Kme1, there are more out there to be 

discovered. Thus, pulling out several hundred novel Kme2 sites was not very surprising. 

There were several factors to improve the enrichment of Kme peptides. One, optimize the 

washing step after peptide incubation. Unlike other AP approaches where their substrate 

affinities are in the nanomolar range 137. The affinity of KMBDs to their substrates was 

much lower, sub-micromolar at best to high micromolar to even millimolar range 122. Due 

to their lower binding affinity to their substrates, the amount of washing after incubation 

with trypsinized cell lysate needs to be specially optimized. In my current method, I 

washed the KMBDs twice, with a total of 400 times the dilution factor. I did not want to 

wash too much to dislodge the Kme substrates and those weak binding Kme substrates. 

At the same time, I wanted to remove as many unspecific binders as possible. Thus, I 

kept the washing at a minimum, but there were many non-modified peptides within the 

final sample. It could be the result of inadequate washing. More interestingly, it could 

also be the result of a non-modified form of the Kme peptides. From the binding data, I 

observed that some of the Kme0s had higher binding or higher affinity than Kme1/2/3 of 

another peptide. Since the KMBD recognition was mostly sequence-based, Kme0 of a 

high-affinity substrate could be higher affinity than other methyllysine peptides (Fig. 

3.6). This, however, could potentially replace methylated substrate and leaving the non-

modified peptide in the binding pocket. This theory should be considered in future 

experiments and check the whole MS spectra to see any of these non-methylated high-

affinity peptides do exist in the enrichment. 

Another factor to consider was that the peptides used for the test conditions and peptide 

arrays were not trypsinized peptides. It could affect how the KMBDs binds to their 

substrates and our characterization of their binding specificity. Trypsinized peptides will 

end with lysine or an arginine residue, and it is common to find these residues within ± 5 

residues around the modified lysine. It could potentially cut off parts of the substrate and 
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making the KMBD binding to this truncated substrate weaker. There was also the 

possibility that the modified lysine was the last residue on the peptide. These truncated 

peptides could abolish half of the binding recognition, making it an even weaker 

substrate. However, trypsin did have less efficiency to cleave at modified lysines due to 

the methyl-groups 109. But there will be some methylated peptides having C-terminus 

modified lysines. Truncated Kme peptides and C-terminus Kme peptides were not tested 

in this project. It would be an interesting experiment to assess the binding differences 

between the full-length peptide versus the truncated peptides. 

Another crucial factor in having a good enrichment was the amount of conjugated 

KMBDs, and the starting digested cell lysates that were used. Previously, people used 

from 5 mg to upwards of 30 mg of starting cell lysate 138–140. Here, in this project, I used 

30 µL of packed streptavidin beads and 2 mg of starting cell lysate. I chose to use less 

cell lysate was particularly due to our MS machine injection limit of 500 ng. Since 

protein methylation events are low in the cells, it would be better to increase the amount 

of starting material. However, more starting material could potentially translate to more 

unspecific substrates. I kept the amount of KMBDs the same since more binders could 

result in more unspecific binding and more non-modified peptides into the MS. Also, the 

more abundant non-modified peptides could interfere by masking the lower abundant  

Kme peptides signals 141. By using more starting material, and keeping KMBDs constant, 

with improved enrichment method, I believe I can achieve higher enrichment numbers. 

During sample preparation for mass spectrometry, several key factors could determine 

the number of peptides going through for detection. One crucial factor was peptide loss 

through cleaning steps. I lost, on average, about 30% of our peptides during C18 

desalting step 142. By our current method using two C18 cleaning steps, I am losing about 

50% of enriched peptides. I could use another method involves using a 10 kD 

concentrator method 143. By switching to this method, I could remove all the trypsin and 

undigested peptides, which could cause problems in the MS. It will ensure only digested 

peptides passes through; I also would lose fewer peptides compared to a C18 cleanup. 
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And this leads to another issue in sample preparation for MS, which is the undigested or 

partially digested peptides. When digesting proteins overnight with trypsin, there may be 

some undigested proteins and partially digested peptides, due to the decreasing activity of 

trypsin over time 144. However, acidifying the solution would precipitate trypsin but not 

partially digested peptides. And C18 columns bind hydrophobic peptides and partially 

digested could also bind to it. Thus, it creates a problem down the line and into the MS 

machine. By using the new method, the partially digested peptides would be sequestered, 

buffers changed without a C18 cleanup. It could potentially increase the quality of the 

MS sample, as well as more peptides retained. The last important issue was the sample 

was not clean, or some impurities were causing problems with the MS column 145. It will 

reduce the MS sensitivity and reduce the usage of the column. Here, MS grade buffers 

and clean glassware were to be used all the time to reduce contamination. Plastic tubes, 

Eppendorf tubes were all prewashed with the harshest buffers to clean up any residual 

polymer contaminants. All reagents, buffers, proteins, lysates were handled with extreme 

care in MS grade buffers to ensure minimal contamination. However, there were 

contaminants in the final MS sample, which could be due to partially digested peptides or 

polymers from tubes or beads. One important factor mentioned above was the washing 

step after lysate and KMBDs incubate. This step could be optimized to minimize 

contamination. 

4.1.4 Strong cation exchange column in methyllysine enrichment 

Strong cation exchange column could potentially add another layer of filtering and 

purification before the KMBD domains. In my preliminary test for SCX, I used the non-

methylated H4K20 and H4K20me1/2 to compare their binding to the SCX column. The 

mechanism of SCX is that Kme peptides get retained on the column longer than other 

peptides due to the extra lysine or arginine positive charge. Trypsin has less efficiency at 

cleaving modified lysine and arginine residues 109. As mentioned before, methylated 

lysine or arginine did not suppress its charge. Thus, in a perfectly tryptic peptide should 

have only one positive charged residue and locate at the C-terminus of the peptide. The 

modified lysine or arginine will remain uncut and retain one extra positive charge. It was 
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different from my testing condition, where the number of charges for both modified and 

non-modified lysine peptides was the same. Thus, resulting in no enrichment for 

H4K20me1/2 (Fig. 3.16). This experiment could be redone using tryptic peptides with a 

non-modified peptide with exactly one basic residue and modified having two basic 

residues. 

The SCX column should be used in conjunction with KMBDs enrichment by enriching 

Kme peptides using our KMBD super column first to extract as many Kme peptides as 

possible. After, the flow-through and the washed off peptides are enriched using the SCX 

column. Combining the SCX column will allow us to capture Rme peptides, as well as 

some escaped Kme peptides. Especially those Kme peptides having modified lysine 

residues near the C-terminus. From this addition, I could analyze the whole methylome 

inside the cell and comparing the differences between treatments. 

4.1.5 Mass spectrometry identification and database search 

MS database searching software is every important in obtaining reliable data, as well as 

novel sites. There was a huge difference when switching from PEAKS to Maxquant 146. 

The 53BP1-tudor AP-MS was searched using PEAKS. I was able to get almost twice as 

many proteins and peptides as the Maxquant search of MPP8-CD. However, the 

databases the software used were different. PEAKS had a putative protein database, any 

peptides that “hit” will be a novel site since it is a putative, non-reviewed protein. I had 

gotten 23 of these proteins in my 53BP1-tudor experiment. Whereas Maxquant searched 

from the reviewed Uniprot list. However, this could miss a few actual putative proteins 

that exist in the cells. 

With the combination of all four experiments, I was able to identify 229 NHKMPs, 404 

Kme sites and 301 out of 404 were novel Kme sites. Even more interesting was the 

number of Kme1/2 sites I was able to identify; 129 Kme1 and 173 Kme2 sites. Moreover, 

107 out of 129 Kme1 sites were novel, composing 83% of total Kme1s identified. 

Furthermore, 169 out of 173 Kme2 sites were novel, composing 97.7% of total Kme2 
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identified. Currently, the number of Kme2/3 sites are very low compared to Kme1 (Fig. 

1.2). There were only 610 Kme2 sites known to date 24. In my experiments, I identified 

173 Kme2 sites, with 169 novel Kme2 sites. The amount of novel site that has been 

identified here was about 28% more than what was currently published. Kme2, as a 

methyl marker, is unique. It is in a transition modification with lots of KDM and KMTs 

that could act on them (Table 1.1). It can be built up or broken down, a very versatile 

middle modification. 

The number of sites being reported could depend on how the search parameters were set 

up during the database search. With less stringent parameters, when a shift of 15 Da for 

Kme1, 30 Da for Kme2, 45 Da for Kme3 were found, the placement of the modified 

residue depends on the parameters set 147. Due to trypsin inefficiency at digesting 

methylated lysine residues, it can result in missed cleavages around Kme residue 

resulting in multiple lysines or arginine residues within proximity to each other 109. By 

having a loose search parameter, if there were two lysine residues, the Kme1 could be 

designated to either one or the other lysine, making this a two-site “hit.” Kme2 could also 

follow the same lose parameter. It has even more ways of placing the Kmes, assigning 

one Kme1 to each lysine or assigning Kme2 to either one or the other lysine, thus making 

this a three-site “hit.” Thus, the possibility of Kme3s is even greater. These site 

identifications could cause a problem due to poor search parameters and dumping lots of 

potential sites but not valid sites. Thus, the data processing must be stringent and robust 

to ensure the highest quality of data. 

One interesting group of proteins that I thought were going to mask other Kmes due to 

their high abundance but was not very abundant in our enrichment were the histone 

proteins. Histones are full of Kme and other PTM modifications 27. However, not many 

histone proteins were enriched. One reason was due to many basic residues within 

histone proteins 148. When histones were digested by trypsin, it resulted in many small 

peptides that were too small for the MS detection 149. Another possibility was the 

partially digested histone proteins that contained a few basic residues were cleaned up by 
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the C18 column 150. By using 0.1% FA, all the side chains on these basic residues will be 

protonated and having a positive charge. There retention time on the C18 column was 

greatly reduced and washed off. Thus, resulting in very little histone proteins being 

enriched and detected via MS.  

4.2 Future Directions 

With the results achieved here, the immediate future would be to test two different 

conditions on a cell line. One condition could be using doxorubicin to treat HEK293 cells 

and compare the lysine methylome changes with and without treatment. Since a lot of 

proteins being pulled out in the DNA damage repair and RNA processing pathways, with 

doxorubicin disrupting DNA stability, would stimulate a response from the cell 151. It 

could signal a starting point, and if there were important key lysine methylated proteins 

in play between the two conditions, I could use SILAC to quantify the amount of increase 

or decrease 109. 

Another direction to take the project is to characterize all the KMBDs and, based on their 

binding specificity, make a prediction logo or algorithm and integrate deep learning into 

the prediction 135. From this, I could predict their potential substrates from the current 

known lysine methylated database. But more importantly, to generate a database from all 

the human proteins ± 5 residues from a central lysine and predict the chances of this 

being methylated. And I could validate this approach via AP-MS from cell culture. Only 

the positive results could confirm our predictions.  

Another direction in the future would be to optimize the purification, digestion, binding 

and washing conditions. By having pure proteins, to begin with, this would minimize 

contamination. Binding and washing conditions would need to be optimized to have the 

highest amount of peptide binding and washing away the unmodified peptides. Currently, 

the washing step was not great due to lots of non-modified peptides being found in the 

elution. For protein digestion, there may be a lot of undigested proteins or large 

undigested peptides. We can use another method of protein digestion to minimize the 
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number of undigested proteins and filter out large undigested peptides using a 10k spin 

column 143. Instead of digesting proteins in diluted urea, we can treat the cell lysate 

before and add the trypsin onto precipitated proteins. This way, it is easier to monitor the 

digestion. Also, by using the 10k spin column, it can filter out all the trypsin and 

undigested proteins 143. This step could potentially save one C18 cleaning and can 

achieve a higher yield of peptides for the KMBD enrichment. 

The application of this research could be applied to identifying key regulatory markers 

between cancer and healthy cells by monitoring the changes in lysine methylome 

between different cells. This method can track the changes of protein methylation status 

that are different between the cell lines to identify novel regulatory proteins. Thus, this 

method could identify novel targets for therapeutic intervention. 
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6 Supplemental Data 

Table S.1. List of peptides used in the 70-protein array. 

Position Peptide Sequence Protein Site Modification 

1 EETRGVLKVFLENVI H4K59 k59 kme3 

2 TSLARFLKKTLSEKK MYO15A k577 kme3 

3 IKHLDFLKEIKWFAV SAMD9L k436 kme3 

4 DRMTYAIKNFVEEKM DNAH17 k3829 kme3 

5 AQEREQIKVLNDKFA KRT74 k145 kme3 

6 AVLHSFQKQNVTIMD iNOS k422 kme3 

7 TKRKMNLKIQELRRQ CCDC150 k212 kme3 

8 ILASKYLKMLKEEKR CHRAC1 k105 kme3 

9 KESKSGLKIIKLTDS DNAH6 k3099 kme3 

10 QEIKGEVKVLNNITN MSR1 k245 kme3 

11 KKQKEIIKKLIERKQ PCAF k671 kme3 

12 RAHSSHLKSKKGQST p53 k370 kme3 

13 KGLGMQLKGPLGPGG AVEN k230 kme3 

14 RTKQTARKSTGGKAP H3K9 k9 kme3 

15 EETRGVLKVFLENVI H4K59 k59 kme2 

16 TSLARFLKKTLSEKK MYO15A k577 kme2 

17 IKHLDFLKEIKWFAV SAMD9L k436 kme2 

18 DRMTYAIKNFVEEKM DNAH17 k3829 kme2 

19 AQEREQIKVLNDKFA KRT74 k145 kme2 

20 AVLHSFQKQNVTIMD iNOS k422 kme2 

21 TKRKMNLKIQELRRQ CCDC150 k212 kme2 

22 ILASKYLKMLKEEKR CHRAC1 k105 kme2 

23 KESKSGLKIIKLTDS DNAH6 k3099 kme2 

24 QEIKGEVKVLNNITN MSR1 k245 kme2 
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25 KKQKEIIKKLIERKQ PCAF k671 kme2 

26 RAHSSHLKSKKGQST p53 k370 kme2 

27 KGLGMQLKGPLGPGG AVEN k230 kme2 

28 RTKQTARKSTGGKAP H3K9 k9 kme2 

29 EETRGVLKVFLENVI H4K59 k59 kme1 

30 TSLARFLKKTLSEKK MYO15A k577 kme1 

31 IKHLDFLKEIKWFAV SAMD9L k436 kme1 

32 DRMTYAIKNFVEEKM DNAH17 k3829 kme1 

33 AQEREQIKVLNDKFA KRT74 k145 kme1 

34 AVLHSFQKQNVTIMD iNOS k422 kme1 

35 TKRKMNLKIQELRRQ CCDC150 k212 kme1 

36 ILASKYLKMLKEEKR CHRAC1 k105 kme1 

37 KESKSGLKIIKLTDS DNAH6 k3099 kme1 

38 QEIKGEVKVLNNITN MSR1 k245 kme1 

39 KKQKEIIKKLIERKQ PCAF k671 kme1 

40 RAHSSHLKSKKGQST p53 k370 kme1 

41 KGLGMQLKGPLGPGG AVEN k230 kme1 

42 RTKQTARKSTGGKAP H3K9 k9 kme1 

43 EETRGVLKVFLENVI H4K59 k59 kme0 

44 TSLARFLKKTLSEKK MYO15A k577 kme0 

45 IKHLDFLKEIKWFAV SAMD9L k436 kme0 

46 DRMTYAIKNFVEEKM DNAH17 k3829 kme0 

47 AQEREQIKVLNDKFA KRT74 k145 kme0 

48 AVLHSFQKQNVTIMD iNOS k422 kme0 

49 TKRKMNLKIQELRRQ CCDC150 k212 kme0 

50 ILASKYLKMLKEEKR CHRAC1 k105 kme0 

51 KESKSGLKIIKLTDS DNAH6 k3099 kme0 

52 QEIKGEVKVLNNITN MSR1 k245 kme0 

53 KKQKEIIKKLIERKQ PCAF k671 kme0 
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54 RAHSSHLKSKKGQST p53 k370 kme0 

55 KGLGMQLKGPLGPGG AVEN k230 kme0 

56 RTKQTARKSTGGKAP H3K9 k9 kme0 

57 SSPTNFSKLISNGYK LOC136288 k215 kme3 

58 KHRLLFFKHRLQCMT B4GALNT1 k524 kme3 

59 MGKEDFTKIPHGVSG CRMP5 k343 kme3 

60 GPDEAKIKALLERTG NSAP1 k125 kme3 

61 ISTEDFGKLWLSFAN AP4E1 k1028 kme3 

62 CQKPSTSKVILRAVA HILS1 k119 kme3 

63 IRHGKFQKMTLKLIL MRGPRB3 k288 kme3 

64 GRLAVFTKATLTTVQ PRLR iso 4 k369 kme3 

65 NISKKEYKLLYSMKE URG4 k371 kme3 

66 KKVWIGIKKLLMLIE NSF k708 kme3 

67 LYICDFHKNFIQSVR SAP30L k78 kme3 

68 LQPEMHSKEQILELL ZNF306 k82 kme3 

69 QMNVYHFKKGTEICN WIPI1 k89 kme3 

70 QSTSRHKKLMFKTEG P53 k382 kme3 

71 SSPTNFSKLISNGYK LOC136288 k215 kme2 

72 KHRLLFFKHRLQCMT B4GALNT1 k524 kme2 

73 MGKEDFTKIPHGVSG CRMP5 k343 kme2 

74 GPDEAKIKALLERTG NSAP1 k125 kme2 

75 ISTEDFGKLWLSFAN AP4E1 k1028 kme2 

76 CQKPSTSKVILRAVA HILS1 k119 kme2 

77 IRHGKFQKMTLKLIL MRGPRB3 k288 kme2 

78 GRLAVFTKATLTTVQ PRLR iso 4 k369 kme2 

79 NISKKEYKLLYSMKE URG4 k371 kme2 

80 KKVWIGIKKLLMLIE NSF k708 kme2 

81 LYICDFHKNFIQSVR SAP30L k78 kme2 

82 LQPEMHSKEQILELL ZNF306 k82 kme2 
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83 QMNVYHFKKGTEICN WIPI1 k89 kme2 

84 QSTSRHKKLMFKTEG P53 k382 kme2 

85 SSPTNFSKLISNGYK LOC136288 k215 kme1 

86 KHRLLFFKHRLQCMT B4GALNT1 k524 kme1 

87 MGKEDFTKIPHGVSG CRMP5 k343 kme1 

88 GPDEAKIKALLERTG NSAP1 k125 kme1 

89 ISTEDFGKLWLSFAN AP4E1 k1028 kme1 

90 CQKPSTSKVILRAVA HILS1 k119 kme1 

91 IRHGKFQKMTLKLIL MRGPRB3 k288 kme1 

92 GRLAVFTKATLTTVQ PRLR iso 4 k369 kme1 

93 NISKKEYKLLYSMKE URG4 k371 kme1 

94 KKVWIGIKKLLMLIE NSF k708 kme1 

95 LYICDFHKNFIQSVR SAP30L k78 kme1 

96 LQPEMHSKEQILELL ZNF306 k82 kme1 

97 QMNVYHFKKGTEICN WIPI1 k89 kme1 

98 QSTSRHKKLMFKTEG P53 k382 kme1 

99 SSPTNFSKLISNGYK LOC136288 k215 kme0 

100 KHRLLFFKHRLQCMT B4GALNT1 k524 kme0 

101 MGKEDFTKIPHGVSG CRMP5 k343 kme0 

102 GPDEAKIKALLERTG NSAP1 k125 kme0 

103 ISTEDFGKLWLSFAN AP4E1 k1028 kme0 

104 CQKPSTSKVILRAVA HILS1 k119 kme0 

105 IRHGKFQKMTLKLIL MRGPRB3 k288 kme0 

106 GRLAVFTKATLTTVQ PRLR iso 4 k369 kme0 

107 NISKKEYKLLYSMKE URG4 k371 kme0 

108 KKVWIGIKKLLMLIE NSF k708 kme0 

109 LYICDFHKNFIQSVR SAP30L k78 kme0 

110 LQPEMHSKEQILELL ZNF306 k82 kme0 

111 QMNVYHFKKGTEICN WIPI1 k89 kme0 
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112 QSTSRHKKLMFKTEG P53 k382 kme0 

113 ESRRCFVKVRAYRSE CILP k755 kme3 

114 LFIYIFTKISVDMYA SLC5A11 k157 kme3 

115 FLNDSYLKYVGWTLH STAG1 k333 kme3 

116 FSVKGHVKMLRLALT CKLF k22 kme3 

117 KYIKSHYKVGENADS H1F0 k59 kme3 

118 VASASSIKQILLEWC SMTNL2 k354 kme3 

119 EISQRLLKLYSDKFG DOCK9 k1834 kme3 

120 QEIRYRSKLKLIRAK PDGFRA k378 kme3 

121 EGKKWQAKIEGIRNK CEP290 k1921 kme3 

122 NMDNLIYKLLKPSTK B3GALT1 k190 kme3 

123 NEVTEFAKTCVADES Albumin k755 kme3 

124 PMDMSTIKSKLEARE BRD4 k404 kme3 

125 YQELMNAKLGLDIEI KRT84 k455 kme3 

126 GGAKRHRKVLRDNIQ H4K20 k20 kme3 

127 ESRRCFVKVRAYRSE CILP k755 kme2 

128 LFIYIFTKISVDMYA SLC5A11 k157 kme2 

129 FLNDSYLKYVGWTLH STAG1 k333 kme2 

130 FSVKGHVKMLRLALT CKLF k22 kme2 

131 KYIKSHYKVGENADS H1F0 k59 kme2 

132 VASASSIKQILLEWC SMTNL2 k354 kme2 

133 EISQRLLKLYSDKFG DOCK9 k1834 kme2 

134 QEIRYRSKLKLIRAK PDGFRA k378 kme2 

135 EGKKWQAKIEGIRNK CEP290 k1921 kme2 

136 NMDNLIYKLLKPSTK B3GALT1 k190 kme2 

137 NEVTEFAKTCVADES Albumin k755 kme2 

138 PMDMSTIKSKLEARE BRD4 k404 kme2 

139 YQELMNAKLGLDIEI KRT84 k455 kme2 

140 GGAKRHRKVLRDNIQ H4K20 k20 kme2 
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141 ESRRCFVKVRAYRSE CILP k755 kme1 

142 LFIYIFTKISVDMYA SLC5A11 k157 kme1 

143 FLNDSYLKYVGWTLH STAG1 k333 kme1 

144 FSVKGHVKMLRLALT CKLF k22 kme1 

145 KYIKSHYKVGENADS H1F0 k59 kme1 

146 VASASSIKQILLEWC SMTNL2 k354 kme1 

147 EISQRLLKLYSDKFG DOCK9 k1834 kme1 

148 QEIRYRSKLKLIRAK PDGFRA k378 kme1 

149 EGKKWQAKIEGIRNK CEP290 k1921 kme1 

150 NMDNLIYKLLKPSTK B3GALT1 k190 kme1 

151 NEVTEFAKTCVADES Albumin k755 kme1 

152 PMDMSTIKSKLEARE BRD4 k404 kme1 

153 YQELMNAKLGLDIEI KRT84 k455 kme1 

154 GGAKRHRKVLRDNIQ H4K20 k20 kme1 

155 ESRRCFVKVRAYRSE CILP k755 kme0 

156 LFIYIFTKISVDMYA SLC5A11 k157 kme0 

157 FLNDSYLKYVGWTLH STAG1 k333 kme0 

158 FSVKGHVKMLRLALT CKLF k22 kme0 

159 KYIKSHYKVGENADS H1F0 k59 kme0 

160 VASASSIKQILLEWC SMTNL2 k354 kme0 

161 EISQRLLKLYSDKFG DOCK9 k1834 kme0 

162 QEIRYRSKLKLIRAK PDGFRA k378 kme0 

163 EGKKWQAKIEGIRNK CEP290 k1921 kme0 

164 NMDNLIYKLLKPSTK B3GALT1 k190 kme0 

165 NEVTEFAKTCVADES Albumin k755 kme0 

166 PMDMSTIKSKLEARE BRD4 k404 kme0 

167 YQELMNAKLGLDIEI KRT84 k455 kme0 

168 GGAKRHRKVLRDNIQ H4K20 k20 kme0 

169 KKLADYLKVLIDNKH RUFY1 k225 kme3 
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170 KGRTDFIKGMKKKSR VWA5B1 k311 kme3 

171 FCEESFVKHRSSVMK DENND1B k362 kme3 

172 IQRELFSKLGELAVG PLZF k387 kme3 

173 MLSSVFQKQFYRLGG LYST k979 kme3 

174 ELYISIAKCLLEMTD FOCAD k1558 kme3 

175 ERQKFCFKVFDVDRD USP32 k274 kme3 

176 VEMDWVLKHTGPNSP hnRNP H2 k98 kme3 

177 QRSRYFKKAIPINNK CBWD2 iso3 k204 kme3 

178 DSCPAVSKILERSLK REV3  k2868 kme3 

179 SRSVSLLKGFAQDSQ C2CD4C k237 kme3 

180 YVNIYGLKIWQEEVS KIAA0196 k768 kme3 

181 RETKCMIKMKLDVPE DNAH k617 kme3 

182 LESYLHAKKYLKPSG CARM1 k276 kme3 

183 KKLADYLKVLIDNKH RUFY1 k225 kme2 

184 KGRTDFIKGMKKKSR VWA5B1 k311 kme2 

185 FCEESFVKHRSSVMK DENND1B k362 kme2 

186 IQRELFSKLGELAVG PLZF k387 kme2 

187 MLSSVFQKQFYRLGG LYST k979 kme2 

188 ELYISIAKCLLEMTD FOCAD k1558 kme2 

189 ERQKFCFKVFDVDRD USP32 k274 kme2 

190 VEMDWVLKHTGPNSP hnRNP H2 k98 kme2 

191 QRSRYFKKAIPINNK CBWD2 iso3 k204 kme2 

192 DSCPAVSKILERSLK REV3 k2868 kme2 

193 SRSVSLLKGFAQDSQ C2CD4C k237 kme2 

194 YVNIYGLKIWQEEVS KIAA0196 k768 kme2 

195 RETKCMIKMKLDVPE DNAH k617 kme2 

196 LESYLHAKKYLKPSG CARM1 k276 kme2 

197 KKLADYLKVLIDNKH RUFY1 k225 kme1 

198 KGRTDFIKGMKKKSR VWA5B1 k311 kme1 
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199 FCEESFVKHRSSVMK DENND1B k362 kme1 

200 IQRELFSKLGELAVG PLZF k387 kme1 

201 MLSSVFQKQFYRLGG LYST k979 kme1 

202 ELYISIAKCLLEMTD FOCAD k1558 kme1 

203 ERQKFCFKVFDVDRD USP32 k274 kme1 

204 VEMDWVLKHTGPNSP hnRNP H2 k98 kme1 

205 QRSRYFKKAIPINNK CBWD2 iso3 k204 kme1 

206 DSCPAVSKILERSLK REV3 k2868 kme1 

207 SRSVSLLKGFAQDSQ C2CD4C k237 kme1 

208 YVNIYGLKIWQEEVS KIAA0196 k768 kme1 

209 RETKCMIKMKLDVPE DNAH k617 kme1 

210 LESYLHAKKYLKPSG CARM1 k276 kme1 

211 KKLADYLKVLIDNKH RUFY1 k225 kme0 

212 KGRTDFIKGMKKKSR VWA5B1 k311 kme0 

213 FCEESFVKHRSSVMK DENND1B k362 kme0 

214 IQRELFSKLGELAVG PLZF k387 kme0 

215 MLSSVFQKQFYRLGG LYST k979 kme0 

216 ELYISIAKCLLEMTD FOCAD k1558 kme0 

217 ERQKFCFKVFDVDRD USP32 k274 kme0 

218 VEMDWVLKHTGPNSP hnRNP H2 k98 kme0 

219 QRSRYFKKAIPINNK CBWD2 iso3 k204 kme0 

220 DSCPAVSKILERSLK REV3 k2868 kme0 

221 SRSVSLLKGFAQDSQ C2CD4C k237 kme0 

222 YVNIYGLKIWQEEVS KIAA0196 k768 kme0 

223 RETKCMIKMKLDVPE DNAH k617 kme0 

224 LESYLHAKKYLKPSG CARM1 k276 kme0 

225 MDVFSFVKIAKLSSH FRMPD4 k8 kme3 

226 LKKYDQLKVYLEQNL PTPN23 k613 kme3 

227 NRLKSLMKILSEVTP OIP5 k215 kme3 
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228 TKHLDFLKEIKWFAV SAMD9 k432 kme3 

229 TVRDSNLKLTLAFGI ASCC3 k1609 kme3 

230 LETINRIKLYSESLA GDI1 k210 kme3 

231 DAGKYILKLENSSGS Titin k25023 kme3 

232 DLTRNKFKLLSGTEQ DNAH7 k1934 kme3 

233 TSRYWRIKSKNHAMS BBS2 k239 kme3 

234 SYTLQVIKLNLMSEE CEACAM8 k126 kme3 

235 SGLDMHTKPWVRARA BHMT k340 kme3 

236 TLVLNRLKVGLQVVA HSP60 k292 kme3 

237 AKRTGMQKVLYSTAM PIPK1B k301 kme3 

238 TSKNDFTKKESRAVS MDM1 k573 kme3 

239 MDVFSFVKIAKLSSH FRMPD4 k8 kme2 

240 LKKYDQLKVYLEQNL PTPN23 k613 kme2 

241 NRLKSLMKILSEVTP OIP5 k215 kme2 

242 TKHLDFLKEIKWFAV SAMD9 k432 kme2 

243 TVRDSNLKLTLAFGI ASCC3 k1609 kme2 

244 LETINRIKLYSESLA GDI1 k210 kme2 

245 DAGKYILKLENSSGS Titin k25023 kme2 

246 DLTRNKFKLLSGTEQ DNAH7 k1934 kme2 

247 TSRYWRIKSKNHAMS BBS2 k239 kme2 

248 SYTLQVIKLNLMSEE CEACAM8 k126 kme2 

249 SGLDMHTKPWVRARA BHMT k340 kme2 

250 TLVLNRLKVGLQVVA HSP60 k292 kme2 

251 AKRTGMQKVLYSTAM PIPK1B k301 kme2 

252 TSKNDFTKKESRAVS MDM1 k573 kme2 

253 MDVFSFVKIAKLSSH FRMPD4 k8 kme1 

254 LKKYDQLKVYLEQNL PTPN23 k613 kme1 

255 NRLKSLMKILSEVTP OIP5 k215 kme1 

256 TKHLDFLKEIKWFAV SAMD9 k432 kme1 



117 

 

117 

 

257 TVRDSNLKLTLAFGI ASCC3 k1609 kme1 

258 LETINRIKLYSESLA GDI1 k210 kme1 

259 DAGKYILKLENSSGS Titin k25023 kme1 

260 DLTRNKFKLLSGTEQ DNAH7 k1934 kme1 

261 TSRYWRIKSKNHAMS BBS2 k239 kme1 

262 SYTLQVIKLNLMSEE CEACAM8 k126 kme1 

263 SGLDMHTKPWVRARA BHMT k340 kme1 

264 TLVLNRLKVGLQVVA HSP60 k292 kme1 

265 AKRTGMQKVLYSTAM PIPK1B k301 kme1 

266 TSKNDFTKKESRAVS MDM1 k573 kme1 

267 MDVFSFVKIAKLSSH FRMPD4 k8 kme0 

268 LKKYDQLKVYLEQNL PTPN23 k613 kme0 

269 NRLKSLMKILSEVTP OIP5 k215 kme0 

270 TKHLDFLKEIKWFAV SAMD9 k432 kme0 

271 TVRDSNLKLTLAFGI ASCC3 k1609 kme0 

272 LETINRIKLYSESLA GDI1 k210 kme0 

273 DAGKYILKLENSSGS Titin k25023 kme0 

274 DLTRNKFKLLSGTEQ DNAH7 k1934 kme0 

275 TSRYWRIKSKNHAMS BBS2 k239 kme0 

276 SYTLQVIKLNLMSEE CEACAM8 k126 kme0 

277 SGLDMHTKPWVRARA BHMT k340 kme0 

278 TLVLNRLKVGLQVVA HSP60 k292 kme0 

279 AKRTGMQKVLYSTAM PIPK1B k301 kme0 

280 TSKNDFTKKESRAVS MDM1 k573 kme0 
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Table S.2. List of peptides used in the 140-cluster array. 

Position Peptide Mod* Gene Name Site Uniprot # 

1 KEPTIKFYTKQ 0 MAP3K15 K755 Q6ZN16 

2 KEPTIKFYTKQ 1 MAP3K15 K755 Q6ZN16 

3 KEPTIKFYTKQ 2 MAP3K15 K755 Q6ZN16 

4 KEPTIKFYTKQ 3 MAP3K15 K755 Q6ZN16 

5 ALRRQKKKDTL 0 CDH12 K641 P55289 

6 ALRRQKKKDTL 1 CDH12 K641 P55289 

7 ALRRQKKKDTL 2 CDH12 K641 P55289 

8 ALRRQKKKDTL 3 CDH12 K641 P55289 

9 AVTYAKVKHSR 0 LILRB4 K362 Q8NHJ6 

10 AVTYAKVKHSR 1 LILRB4 K362 Q8NHJ6 

11 AVTYAKVKHSR 2 LILRB4 K362 Q8NHJ6 

12 AVTYAKVKHSR 3 LILRB4 K362 Q8NHJ6 

13 AKSEPKPGLPE 0 CMSS1 K88 Q9BQ75 

14 AKSEPKPGLPE 1 CMSS1 K88 Q9BQ75 

15 AKSEPKPGLPE 2 CMSS1 K88 Q9BQ75 

16 AKSEPKPGLPE 3 CMSS1 K88 Q9BQ75 

17 GNKMAKARQYP 0 SEPTIN11 K251 Q9NVA2 

18 GNKMAKARQYP 1 SEPTIN11 K251 Q9NVA2 

19 GNKMAKARQYP 2 SEPTIN11 K251 Q9NVA2 

20 GNKMAKARQYP 3 SEPTIN11 K251 Q9NVA2 

21 IIGQAKKHPSL 0 NDUFA4 K10 O00483 

22 IIGQAKKHPSL 1 NDUFA4 K10 O00483 

23 IIGQAKKHPSL 2 NDUFA4 K10 O00483 

24 IIGQAKKHPSL 3 NDUFA4 K10 O00483 

25 DGDDKKRPVII 0 TARSL2 K663 A2RTX5 

26 DGDDKKRPVII 1 TARSL2 K663 A2RTX5 

27 DGDDKKRPVII 2 TARSL2 K663 A2RTX5 
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28 DGDDKKRPVII 3 TARSL2 K663 A2RTX5 

29 QSTSRHKKLMFKTEG 1 TP53BP1 K382 P04637 

30 TKRKMNLKIQELRRQ 3 CCDC150 K227 Q8NCX0 

31 GPDEAKIKALL 0 SYNCRIP K123 O60506 

32 GPDEAKIKALL 1 SYNCRIP K123 O60506 

33 GPDEAKIKALL 2 SYNCRIP K123 O60506 

34 GPDEAKIKALL 3 SYNCRIP K123 O60506 

35 DEGKLKAGQSV 0 CNN3 K158 Q15417 

36 DEGKLKAGQSV 1 CNN3 K158 Q15417 

37 DEGKLKAGQSV 2 CNN3 K158 Q15417 

38 DEGKLKAGQSV 3 CNN3 K158 Q15417 

39 EIDTIKHQNQE 0 ANKRD62 K579 A6NC57 

40 EIDTIKHQNQE 1 ANKRD62 K579 A6NC57 

41 EIDTIKHQNQE 2 ANKRD62 K579 A6NC57 

42 EIDTIKHQNQE 3 ANKRD62 K579 A6NC57 

43 EETGAKISVLG 0 KHDRBS1 K194 Q07666 

44 EETGAKISVLG 1 KHDRBS1 K194 Q07666 

45 EETGAKISVLG 2 KHDRBS1 K194 Q07666 

46 EETGAKISVLG 3 KHDRBS1 K194 Q07666 

47 VHSPQKSTKNH 0 AKAP10 K55 O43572 

48 VHSPQKSTKNH 1 AKAP10 K55 O43572 

49 VHSPQKSTKNH 2 AKAP10 K55 O43572 

50 VHSPQKSTKNH 3 AKAP10 K55 O43572 

51 EVEMLKGLQHP 0 WNK4 K223 Q96J92 

52 EVEMLKGLQHP 1 WNK4 K223 Q96J92 

53 EVEMLKGLQHP 2 WNK4 K223 Q96J92 

54 EVEMLKGLQHP 3 WNK4 K223 Q96J92 

55 GGEPSKKRKRR 0 POU6F1 K542 Q14863 

56 GGEPSKKRKRR 1 POU6F1 K542 Q14863 
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57 GGEPSKKRKRR 2 POU6F1 K542 Q14863 

58 GGEPSKKRKRR 3 POU6F1 K542 Q14863 

59 EGKKWQAKIEGIRNK 1 CEP290 K1919 O15078 

60 KKQKEIIKKLIERKQ 3 KAT2A K674 Q92830 

61 LGGAPKEPAKL 0 IRS1 K1161 P35568 

62 LGGAPKEPAKL 1 IRS1 K1161 P35568 

63 LGGAPKEPAKL 2 IRS1 K1161 P35568 

64 LGGAPKEPAKL 3 IRS1 K1161 P35568 

65 ATGEEKAATAP 0 TACC2 K1366 O95359 

66 ATGEEKAATAP 1 TACC2 K1366 O95359 

67 ATGEEKAATAP 2 TACC2 K1366 O95359 

68 ATGEEKAATAP 3 TACC2 K1366 O95359 

69 ATVNVKKDKED 0 PHF20 K177 P9BVI0 

70 ATVNVKKDKED 1 PHF20 K177 P9BVI0 

71 ATVNVKKDKED 2 PHF20 K177 P9BVI0 

72 ATVNVKKDKED 3 PHF20 K177 P9BVI0 

73 FYGTEKDKNSV 0 XRCC6 K92 P12956 

74 FYGTEKDKNSV 1 XRCC6 K92 P12956 

75 FYGTEKDKNSV 2 XRCC6 K92 P12956 

76 FYGTEKDKNSV 3 XRCC6 K92 P12956 

77 RIQEMKAKTTH 0 NKTR K637 P30414 

78 RIQEMKAKTTH 1 NKTR K637 P30414 

79 RIQEMKAKTTH 2 NKTR K637 P30414 

80 RIQEMKAKTTH 3 NKTR K637 P30414 

81 KPVSKKHGKLI 0 ARHGAP32 K338 A7KAX9 

82 KPVSKKHGKLI 1 ARHGAP32 K338 A7KAX9 

83 KPVSKKHGKLI 2 ARHGAP32 K338 A7KAX9 

84 KPVSKKHGKLI 3 ARHGAP32 K338 A7KAX9 

85 GKGLGKGGAKR 0 H4 K12 P62805 
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86 GKGLGKGGAKR 1 H4 K12 P62805 

87 GKGLGKGGAKR 2 H4 K12 P62805 

88 GKGLGKGGAKR 3 H4 K12 P62805 

89 EGKKWQAKIEGIRNK 0 CEP290 K1919 O15078 

90 TKRKMNLKIQELRRQ 1 CCDC150 K227 Q8NCX0 

91 ARRHLKMMHIA 0 ASPM K2260 Q8IZT6 

92 ARRHLKMMHIA 1 ASPM K2260 Q8IZT6 

93 ARRHLKMMHIA 2 ASPM K2260 Q8IZT6 

94 ARRHLKMMHIA 3 ASPM K2260 Q8IZT6 

95 KDVRHKGKRGK 0 SPART K382 Q8N0X7 

96 KDVRHKGKRGK 1 SPART K382 Q8N0X7 

97 KDVRHKGKRGK 2 SPART K382 Q8N0X7 

98 KDVRHKGKRGK 3 SPART K382 Q8N0X7 

99 RDFLRKEYGGL 0 CBR1 K79 P16152 

100 RDFLRKEYGGL 1 CBR1 K79 P16152 

101 RDFLRKEYGGL 2 CBR1 K79 P16152 

102 RDFLRKEYGGL 3 CBR1 K79 P16152 

103 KMNPPKFSKVE 0 MYH10 K83  P35580 

104 KMNPPKFSKVE 1 MYH10 K83  P35580 

105 KMNPPKFSKVE 2 MYH10 K83  P35580 

106 KMNPPKFSKVE 3 MYH10 K83  P35580 

107 DKMHKKATKWM 0 CCDC125 K353 Q86Z20 

108 DKMHKKATKWM 1 CCDC125 K353 Q86Z20 

109 DKMHKKATKWM 2 CCDC125 K353 Q86Z20 

110 DKMHKKATKWM 3 CCDC125 K353 Q86Z20 

111 APPESKASTPL 0 NACA K1768 E9PAV3 

112 APPESKASTPL 1 NACA K1768 E9PAV3 

113 APPESKASTPL 2 NACA K1768 E9PAV3 

114 APPESKASTPL 3 NACA K1768 E9PAV3 
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115 KDEMNKEIEAA 0 ODF2 K580 Q5BJF6 

116 KDEMNKEIEAA 1 ODF2 K580 Q5BJF6 

117 KDEMNKEIEAA 2 ODF2 K580 Q5BJF6 

118 KDEMNKEIEAA 3 ODF2 K580 Q5BJF6 

119 DLTRNKFKLLSGTEQ 1 DNAH7 K1892 Q8WXX0 

120 ILASKYLKMLKEEKR 1 CHRAC1 K105 Q9NRG0 

121 EKLQEKREKRR 0 KIF2A K169 O00139 

122 EKLQEKREKRR 1 KIF2A K169 O00139 

123 EKLQEKREKRR 2 KIF2A K169 O00139 

124 EKLQEKREKRR 3 KIF2A K169 O00139 

125 NDIHKKIALVK 0 DAG1 K626 Q14118 

126 NDIHKKIALVK 1 DAG1 K626 Q14118 

127 NDIHKKIALVK 2 DAG1 K626 Q14118 

128 NDIHKKIALVK 3 DAG1 K626 Q14118 

129 AEILLKKKIYK 0 IPO7 K445 O95373 

130 AEILLKKKIYK 1 IPO7 K445 O95373 

131 AEILLKKKIYK 2 IPO7 K445 O95373 

132 AEILLKKKIYK 3 IPO7 K445 O95373 

133 GGNRTKTPGPG 0 RPS14B K107 P39516 

134 GGNRTKTPGPG 1 RPS14B K107 P39516 

135 GGNRTKTPGPG 2 RPS14B K107 P39516 

136 GGNRTKTPGPG 3 RPS14B K107 P39516 

137 DNPGAKRILEL 0 XRCC6 K136 P12956 

138 DNPGAKRILEL 1 XRCC6 K136 P12956 

139 DNPGAKRILEL 2 XRCC6 K136 P12956 

140 DNPGAKRILEL 3 XRCC6 K136 P12956 

141 IHQLAKGDFGT 0 KPNA3 K379 O00505 

142 IHQLAKGDFGT 1 KPNA3 K379 O00505 

143 IHQLAKGDFGT 2 KPNA3 K379 O00505 
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144 IHQLAKGDFGT 3 KPNA3 K379 O00505 

145 DFGTQKEAAWA 0 KPNA4 K386 O00629 

146 DFGTQKEAAWA 1 KPNA4 K386 O00629 

147 DFGTQKEAAWA 2 KPNA4 K386 O00629 

148 DFGTQKEAAWA 3 KPNA4 K386 O00629 

149 ARTKQTARK 0 H3 K4 P68431 

150 KKQKEIIKKLIERKQ 1 KAT2A K674 Q92830 

151 AGFGSKGSSSS 0 DES K43 P17661 

152 AGFGSKGSSSS 1 DES K43 P17661 

153 AGFGSKGSSSS 2 DES K43 P17661 

154 AGFGSKGSSSS 3 DES K43 P17661 

155 ESGAGKTENTK 0 MYH11 K184 P35749 

156 ESGAGKTENTK 1 MYH11 K184 P35749 

157 ESGAGKTENTK 2 MYH11 K184 P35749 

158 ESGAGKTENTK 3 MYH11 K184 P35749 

159 GKVGRKDGQML 0 SF1 K191  Q15637 

160 GKVGRKDGQML 1 SF1 K191  Q15637 

161 GKVGRKDGQML 2 SF1 K191  Q15637 

162 GKVGRKDGQML 3 SF1 K191  Q15637 

163 EEMSEKPKKKK 0 NOP56 K478 O00567 

164 EEMSEKPKKKK 1 NOP56 K478 O00567 

165 EEMSEKPKKKK 2 NOP56 K478 O00567 

166 EEMSEKPKKKK 3 NOP56 K478 O00567 

167 AMFGPKGFGRG 0 CRIP1 K64 P50238 

168 AMFGPKGFGRG 1 CRIP1 K64 P50238 

169 AMFGPKGFGRG 2 CRIP1 K64 P50238 

170 AMFGPKGFGRG 3 CRIP1 K64 P50238 

171 KGANTKTYTLT 0 TTC7B K302 Q86TV6 

172 KGANTKTYTLT 1 TTC7B K302 Q86TV6 
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173 KGANTKTYTLT 2 TTC7B K302 Q86TV6 

174 KGANTKTYTLT 3 TTC7B K302 Q86TV6 

175 GGGGGKIRTRR 0 NUP153 K16 P49790 

176 GGGGGKIRTRR 1 NUP153 K16 P49790 

177 GGGGGKIRTRR 2 NUP153 K16 P49790 

178 GGGGGKIRTRR 3 NUP153 K16 P49790 

179 ARTKQTARK 1 H3 K4 P68431 

180 RTKQTARKSTGGKAP 1 H3 K9 P68431 

181 EYVVEKVLDRR 0 CBX5 K24 P45973 

182 EYVVEKVLDRR 1 CBX5 K24 P45973 

183 EYVVEKVLDRR 2 CBX5 K24 P45973 

184 EYVVEKVLDRR 3 CBX5 K24 P45973 

185 AKRHRKVLRDN 0 H4 K20 P62805 

186 AKRHRKVLRDN 1 H4 K20 P62805 

187 AKRHRKVLRDN 2 H4 K20 P62805 

188 AKRHRKVLRDN 3 H4 K20 P62805 

189 ELKRAKENQKN 0 NEBL K708 O76041 

190 ELKRAKENQKN 1 NEBL K708 O76041 

191 ELKRAKENQKN 2 NEBL K708 O76041 

192 ELKRAKENQKN 3 NEBL K708 O76041 

193 DEWLMKNMDPL 0 MYH10 K594 P35580 

194 DEWLMKNMDPL 1 MYH10 K594 P35580 

195 DEWLMKNMDPL 2 MYH10 K594 P35580 

196 DEWLMKNMDPL 3 MYH10 K594 P35580 

197 IKADMKAARDI 0 FBXO38 K686 Q6PIJ6 

198 IKADMKAARDI 1 FBXO38 K686 Q6PIJ6 

199 IKADMKAARDI 2 FBXO38 K686 Q6PIJ6 

200 IKADMKAARDI 3 FBXO38 K686 Q6PIJ6 

201 PLAGNKDNKFS 0 PHF2 K6231 O75151 
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202 PLAGNKDNKFS 1 PHF2 K6231 O75151 

203 PLAGNKDNKFS 2 PHF2 K6231 O75151 

204 PLAGNKDNKFS 3 PHF2 K6231 O75151 

205 AVEEEKGEELE 0 TP53BP1 K135 Q12888 

206 AVEEEKGEELE 1 TP53BP1 K135 Q12888 

207 AVEEEKGEELE 2 TP53BP1 K135 Q12888 

208 AVEEEKGEELE 3 TP53BP1 K135 Q12888 

209 ARTKQTARK 2 H3 K4 P68431 

210 TKRKMNLKIQELRRQ 0 CCDC150 K227 Q8NCX0 

211 FLRKLKADKEF 0 ZDHHC17 K296 Q8IUH5 

212 FLRKLKADKEF 1 ZDHHC17 K296 Q8IUH5 

213 FLRKLKADKEF 2 ZDHHC17 K296 Q8IUH5 

214 FLRKLKADKEF 3 ZDHHC17 K296 Q8IUH5 

215 FPNFDKQELRE 0 SMARCAD1 K268 Q9H4L7 

216 FPNFDKQELRE 1 SMARCAD1 K268 Q9H4L7 

217 FPNFDKQELRE 2 SMARCAD1 K268 Q9H4L7 

218 FPNFDKQELRE 3 SMARCAD1 K268 Q9H4L7 

219 ATGGVKKPHRY 0 H3 K40 P06352 

220 ATGGVKKPHRY 1 H3 K40 P06352 

221 ATGGVKKPHRY 2 H3 K40 P06352 

222 ATGGVKKPHRY 3 H3 K40 P06352 

223 NPMYQKERETP 0 SFPQ K472 P23246 

224 NPMYQKERETP 1 SFPQ K472 P23246 

225 NPMYQKERETP 2 SFPQ K472 P23246 

226 NPMYQKERETP 3 SFPQ K472 P23246 

227 GNSKSKVSSQF 0 EXOSC10 K835 Q01780 

228 GNSKSKVSSQF 1 EXOSC10 K835 Q01780 

229 GNSKSKVSSQF 2 EXOSC10 K835 Q01780 

230 GNSKSKVSSQF 3 EXOSC10 K835 Q01780 
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231 HMPLLKAVLKE 0 CYP27A1 K390 Q02318 

232 HMPLLKAVLKE 1 CYP27A1 K390 Q02318 

233 HMPLLKAVLKE 2 CYP27A1 K390 Q02318 

234 HMPLLKAVLKE 3 CYP27A1 K390 Q02318 

235 IQSMLKRAPSY 0 ST5 K676 P78524 

236 IQSMLKRAPSY 1 ST5 K676 P78524 

237 IQSMLKRAPSY 2 ST5 K676 P78524 

238 IQSMLKRAPSY 3 ST5 K676 P78524 

239 ARTKQTARK 3 H3 K4 P68431 

240 KKQKEIIKKLIERKQ 0 KAT2A K674 Q92830 

241 AEKLMKQIGVK 0 ATAD1 K60 Q8NBU5 

242 AEKLMKQIGVK 1 ATAD1 K60 Q8NBU5 

243 AEKLMKQIGVK 2 ATAD1 K60 Q8NBU5 

244 AEKLMKQIGVK 3 ATAD1 K60 Q8NBU5 

245 EEENSKVELKS 0 CASC3 K112 O15234 

246 EEENSKVELKS 1 CASC3 K112 O15234 

247 EEENSKVELKS 2 CASC3 K112 O15234 

248 EEENSKVELKS 3 CASC3 K112 O15234 

249 DVNSKKTLREV 0 APC K559 P25054 

250 DVNSKKTLREV 1 APC K559 P25054 

251 DVNSKKTLREV 2 APC K559 P25054 

252 DVNSKKTLREV 3 APC K559 P25054 

253 KELNGKQIYVG 0 PABPC1 K259 P11940 

254 KELNGKQIYVG 1 PABPC1 K259 P11940 

255 KELNGKQIYVG 2 PABPC1 K259 P11940 

256 KELNGKQIYVG 3 PABPC1 K259 P11940 

257 ESSPFKSGMSM 0 ADAD1 K500 Q96M93 

258 ESSPFKSGMSM 1 ADAD1 K500 Q96M93 

259 ESSPFKSGMSM 2 ADAD1 K500 Q96M93 
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260 ESSPFKSGMSM 3 ADAD1 K500 Q96M93 

261 EGIMVKQPLSI 0 LIG4 K432 P49917 

262 EGIMVKQPLSI 1 LIG4 K432 P49917 

263 EGIMVKQPLSI 2 LIG4 K432 P49917 

264 EGIMVKQPLSI 3 LIG4 K432 P49917 

265 ISTSIKTARKS 0 LCOR K450 Q96JN0 

266 ISTSIKTARKS 1 LCOR K450 Q96JN0 

267 ISTSIKTARKS 2 LCOR K450 Q96JN0 

268 ISTSIKTARKS 3 LCOR K450 Q96JN0 

269 KQTARKSTGGK 0 H3 K9 P68432 

270 CQKPSTSKVILRAVA 3 HILS1 K117 P60008 

271 ALKTQKTSERK 0 Titin K34143 A2ASS6 

272 ALKTQKTSERK 1 Titin K34143 A2ASS6 

273 ALKTQKTSERK 2 Titin K34143 A2ASS6 

274 ALKTQKTSERK 3 Titin K34143 A2ASS6 

275 EWYRKKMPFSY 0 HS3ST5 K142 Q8IZT8 

276 EWYRKKMPFSY 1 HS3ST5 K142 Q8IZT8 

277 EWYRKKMPFSY 2 HS3ST5 K142 Q8IZT8 

278 EWYRKKMPFSY 3 HS3ST5 K142 Q8IZT8 

279 KSLLVKAEKRK 0 SAP130 K878 Q9H0E3 

280 KSLLVKAEKRK 1 SAP130 K878 Q9H0E3 

281 KSLLVKAEKRK 2 SAP130 K878 Q9H0E3 

282 KSLLVKAEKRK 3 SAP130 K878 Q9H0E3 

283 IAAKKKMKKHK 0 UPT20 K2746 O75691 

284 IAAKKKMKKHK 1 UPT20 K2746 O75691 

285 IAAKKKMKKHK 2 UPT20 K2746 O75691 

286 IAAKKKMKKHK 3 UPT20 K2746 O75691 

287 NDSYLKYVGWT 0 STAG1 K340 Q8WVM7 

288 NDSYLKYVGWT 1 STAG1 K340 Q8WVM7 
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289 NDSYLKYVGWT 2 STAG1 K340 Q8WVM7 

290 NDSYLKYVGWT 3 STAG1 K340 Q8WVM7 

291 DEAKIKALLER 0 HNRNPR K128 O43390 

292 DEAKIKALLER 1 HNRNPR K128 O43390 

293 DEAKIKALLER 2 HNRNPR K128 O43390 

294 DEAKIKALLER 3 HNRNPR K128 O43390 

295 EEIKFKDRAVF 0 JAKMIP3 K218 Q5VZ66 

296 EEIKFKDRAVF 1 JAKMIP3 K218 Q5VZ66 

297 EEIKFKDRAVF 2 JAKMIP3 K218 Q5VZ66 

298 EEIKFKDRAVF 3 JAKMIP3 K218 Q5VZ66 

299 KQTARKSTGGK 1 H3 K9 P68432 

300 IRHGKFQKMTLKLIL 3 MRGPRB3 K288 Q91ZC1 

301 APGKKKAQYEE 0 SPAG17 K404 Q6Q759 

302 APGKKKAQYEE 1 SPAG17 K404 Q6Q759 

303 APGKKKAQYEE 2 SPAG17 K404 Q6Q759 

304 APGKKKAQYEE 3 SPAG17 K404 Q6Q759 

305 ALPGRKEQTPV 0 MSRA K41 Q9UJ68 

306 ALPGRKEQTPV 1 MSRA K41 Q9UJ68 

307 ALPGRKEQTPV 2 MSRA K41 Q9UJ68 

308 ALPGRKEQTPV 3 MSRA K41 Q9UJ68 

309 DEELNKLLGKV 0 H2A K96 Q4R3X5 

310 DEELNKLLGKV 1 H2A K96 Q4R3X5 

311 DEELNKLLGKV 2 H2A K96 Q4R3X5 

312 DEELNKLLGKV 3 H2A K96 Q4R3X5 

313 DSENIKHKNNI 0 DTHD1 K162 Q6ZMT9 

314 DSENIKHKNNI 1 DTHD1 K162 Q6ZMT9 

315 DSENIKHKNNI 2 DTHD1 K162 Q6ZMT9 

316 DSENIKHKNNI 3 DTHD1 K162 Q6ZMT9 

317 FKGFEKVKDVQ 0 TIMP4 K86 Q99727 
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318 FKGFEKVKDVQ 1 TIMP4 K86 Q99727 

319 FKGFEKVKDVQ 2 TIMP4 K86 Q99727 

320 FKGFEKVKDVQ 3 TIMP4 K86 Q99727 

321 KKLAAKGLRDP 0 NDUFB3 K39 O43676 

322 KKLAAKGLRDP 1 NDUFB3 K39 O43676 

323 KKLAAKGLRDP 2 NDUFB3 K39 O43676 

324 KKLAAKGLRDP 3 NDUFB3 K39 O43676 

325 EANKEKNLEQY 0 SMC3 K429 Q9UQE7 

326 EANKEKNLEQY 1 SMC3 K429 Q9UQE7 

327 EANKEKNLEQY 2 SMC3 K429 Q9UQE7 

328 EANKEKNLEQY 3 SMC3 K429 Q9UQE7 

329 KQTARKSTGGK 2 H3 K9 P68432 

330 LYICDFHKNFIQSVR 3 SAP30L K78 Q9HAJ7 

331 DSMVHKHGLEF 0 PRMT3 K79 O60678 

332 DSMVHKHGLEF 1 PRMT3 K79 O60678 

333 DSMVHKHGLEF 2 PRMT3 K79 O60678 

334 DSMVHKHGLEF 3 PRMT3 K79 O60678 

335 KQLATKAARKS 0 H3 K23 P68431 

336 KQLATKAARKS 1 H3 K23 P68431 

337 KQLATKAARKS 2 H3 K23 P68431 

338 KQLATKAARKS 3 H3 K23 P68431 

339 LLKNKKLKAHQ 0 PLCE1 K1522 Q9P212 

340 LLKNKKLKAHQ 1 PLCE1 K1522 Q9P212 

341 LLKNKKLKAHQ 2 PLCE1 K1522 Q9P212 

342 LLKNKKLKAHQ 3 PLCE1 K1522 Q9P212 

343 TDYMNKSDDFT 0 FILIP1L K195 Q4L180 

344 TDYMNKSDDFT 1 FILIP1L K195 Q4L180 

345 TDYMNKSDDFT 2 FILIP1L K195 Q4L180 

346 TDYMNKSDDFT 3 FILIP1L K195 Q4L180 
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347 QKFLEKPYKHK 0 ZNF491 K73 Q8N8L2 

348 QKFLEKPYKHK 1 ZNF491 K73 Q8N8L2 

349 QKFLEKPYKHK 2 ZNF491 K73 Q8N8L2 

350 QKFLEKPYKHK 3 ZNF491 K73 Q8N8L2 

351 AYELEKRTSPQ 0 NUFIP2 K569 Q7Z417 

352 AYELEKRTSPQ 1 NUFIP2 K569 Q7Z417 

353 AYELEKRTSPQ 2 NUFIP2 K569 Q7Z417 

354 AYELEKRTSPQ 3 NUFIP2 K569 Q7Z417 

355 ESNKRKSNFSN 0 CBX5 K91 P45973 

356 ESNKRKSNFSN 1 CBX5 K91 P45973 

357 ESNKRKSNFSN 2 CBX5 K91 P45973 

358 ESNKRKSNFSN 3 CBX5 K91 P45973 

359 KQTARKSTGGK 3 H3 K9 P68432 

360 CQKPSTSKVILRAVA 1 HILS1 K117 P60008 

361 AARGIKRKMMQ 0 ZNF326 K238 Q5BKZ1 

362 AARGIKRKMMQ 1 ZNF326 K238 Q5BKZ1 

363 AARGIKRKMMQ 2 ZNF326 K238 Q5BKZ1 

364 AARGIKRKMMQ 3 ZNF326 K238 Q5BKZ1 

365 AILKHKKSLQK 0 SH3BP1 K142 Q9Y3L3 

366 AILKHKKSLQK 1 SH3BP1 K142 Q9Y3L3 

367 AILKHKKSLQK 2 SH3BP1 K142 Q9Y3L3 

368 AILKHKKSLQK 3 SH3BP1 K142 Q9Y3L3 

369 FESRLKKEIDS 0 LEKR1 K208 Q6ZMV7 

370 FESRLKKEIDS 1 LEKR1 K208 Q6ZMV7 

371 FESRLKKEIDS 2 LEKR1 K208 Q6ZMV7 

372 FESRLKKEIDS 3 LEKR1 K208 Q6ZMV7 

373 DISENKRAVRR 0 HSPA8 K257 P11142 

374 DISENKRAVRR 1 HSPA8 K257 P11142 

375 DISENKRAVRR 2 HSPA8 K257 P11142 



131 

 

131 

 

376 DISENKRAVRR 3 HSPA8 K257 P11142 

377 EEIDEKIGFRN 0 MSANTD4 K114 Q8NCY6 

378 EEIDEKIGFRN 1 MSANTD4 K114 Q8NCY6 

379 EEIDEKIGFRN 2 MSANTD4 K114 Q8NCY6 

380 EEIDEKIGFRN 3 MSANTD4 K114 Q8NCY6 

381 LLSGEKRPESE 0 URB1 K89 O60287 

382 LLSGEKRPESE 1 URB1 K89 O60287 

383 LLSGEKRPESE 2 URB1 K89 O60287 

384 LLSGEKRPESE 3 URB1 K89 O60287 

385 FKSIMKKSPFS 0 RELA K314 Q04206 

386 FKSIMKKSPFS 1 RELA K314 Q04206 

387 FKSIMKKSPFS 2 RELA K314 Q04206 

388 FKSIMKKSPFS 3 RELA K314 Q04206 

389 TKAARKSAPAT 0 H3 K27 P68431 

390 IRHGKFQKMTLKLIL 1 MRGPRB3 K288 Q91ZC1 

391 DKHKDKIQINS 0 ANKRD12 K1036 Q6UB98 

392 DKHKDKIQINS 1 ANKRD12 K1036 Q6UB98 

393 DKHKDKIQINS 2 ANKRD12 K1036 Q6UB98 

394 DKHKDKIQINS 3 ANKRD12 K1036 Q6UB98 

395 VTESVKNIVPG 0 NUP153 K49 P49790 

396 VTESVKNIVPG 1 NUP153 K49 P49790 

397 VTESVKNIVPG 2 NUP153 K49 P49790 

398 VTESVKNIVPG 3 NUP153 K49 P49790 

399 KQAVRKPLEAV 0 MTA1 K532 Q13330 

400 KQAVRKPLEAV 1 MTA1 K532 Q13330 

401 KQAVRKPLEAV 2 MTA1 K532 Q13330 

402 KQAVRKPLEAV 3 MTA1 K532 Q13330 

403 AKALDKRQAHL 0 RPS12 K44 P47840 

404 AKALDKRQAHL 1 RPS12 K44 P47840 
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405 AKALDKRQAHL 2 RPS12 K44 P47840 

406 AKALDKRQAHL 3 RPS12 K44 P47840 

407 AQAKSKQAILA 0 EDF1 K25 O60869 

408 AQAKSKQAILA 1 EDF1 K25 O60869 

409 AQAKSKQAILA 2 EDF1 K25 O60869 

410 AQAKSKQAILA 3 EDF1 K25 O60869 

411 EDADRKYEEVA 0 TPM1 K161 P09493 

412 EDADRKYEEVA 1 TPM1 K161 P09493 

413 EDADRKYEEVA 2 TPM1 K161 P09493 

414 EDADRKYEEVA 3 TPM1 K161 P09493 

415 DVIRGKLGEKL 0 NAA25 K219 Q14CX7 

416 DVIRGKLGEKL 1 NAA25 K219 Q14CX7 

417 DVIRGKLGEKL 2 NAA25 K219 Q14CX7 

418 DVIRGKLGEKL 3 NAA25 K219 Q14CX7 

419 TKAARKSAPAT 1 H3 K27 P68431 

420 LYICDFHKNFIQSVR 1 SAP30L K78 Q9HAJ7 

421 NQQSLKRSANQ 0 MED27 K134 Q6P2C8 

422 NQQSLKRSANQ 1 MED27 K134 Q6P2C8 

423 NQQSLKRSANQ 2 MED27 K134 Q6P2C8 

424 NQQSLKRSANQ 3 MED27 K134 Q6P2C8 

425 GETKWKPVGMA 0 DNAJC6 K849 O75061 

426 GETKWKPVGMA 1 DNAJC6 K849 O75061 

427 GETKWKPVGMA 2 DNAJC6 K849 O75061 

428 GETKWKPVGMA 3 DNAJC6 K849 O75061 

429 DSVDKKDAVFQ 0 HEPHL1 K258 Q6MZM0 

430 DSVDKKDAVFQ 1 HEPHL1 K258 Q6MZM0 

431 DSVDKKDAVFQ 2 HEPHL1 K258 Q6MZM0 

432 DSVDKKDAVFQ 3 HEPHL1 K258 Q6MZM0 

433 ETALAKTPQKR 0 PCDHB5 K7 Q9Y5E4 
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434 ETALAKTPQKR 1 PCDHB5 K7 Q9Y5E4 

435 ETALAKTPQKR 2 PCDHB5 K7 Q9Y5E4 

436 ETALAKTPQKR 3 PCDHB5 K7 Q9Y5E4 

437 DREVRKIKQGL 0 ASS1 K309 P00966 

438 DREVRKIKQGL 1 ASS1 K309 P00966 

439 DREVRKIKQGL 2 ASS1 K309 P00966 

440 DREVRKIKQGL 3 ASS1 K309 P00966 

441 FSANPKELKGT 0 RGS1 K24 Q08116 

442 FSANPKELKGT 1 RGS1 K24 Q08116 

443 FSANPKELKGT 2 RGS1 K24 Q08116 

444 FSANPKELKGT 3 RGS1 K24 Q08116 

445 DEELPKRVKSR 0 KDM4A K1012 O75164 

446 DEELPKRVKSR 1 KDM4A K1012 O75164 

447 DEELPKRVKSR 2 KDM4A K1012 O75164 

448 DEELPKRVKSR 3 KDM4A K1012 O75164 

449 TKAARKSAPAT 2 H3 K27 P68431 

450 CQKPSTSKVILRAVA 0 HILS1 K117 P60008 

451 QAGPLKKDGPM 0 PRR11 K220 Q96HE9 

452 QAGPLKKDGPM 1 PRR11 K220 Q96HE9 

453 QAGPLKKDGPM 2 PRR11 K220 Q96HE9 

454 QAGPLKKDGPM 3 PRR11 K220 Q96HE9 

455 NLDDAKGLAES 0 FANCE K272 Q9HB96 

456 NLDDAKGLAES 1 FANCE K272 Q9HB96 

457 NLDDAKGLAES 2 FANCE K272 Q9HB96 

458 NLDDAKGLAES 3 FANCE K272 Q9HB96 

459 IHAPWKAIQKF 0 RNASE13 K80 Q5GAN3 

460 IHAPWKAIQKF 1 RNASE13 K80 Q5GAN3 

461 IHAPWKAIQKF 2 RNASE13 K80 Q5GAN3 

462 IHAPWKAIQKF 3 RNASE13 K80 Q5GAN3 
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463 DKEKGKHDDGR 0 RNF20 K614 Q5VTR2 

464 DKEKGKHDDGR 1 RNF20 K614 Q5VTR2 

465 DKEKGKHDDGR 2 RNF20 K614 Q5VTR2 

466 DKEKGKHDDGR 3 RNF20 K614 Q5VTR2 

467 KIPKDKDGKPK 0 RBM7 K45 Q9Y580 

468 KIPKDKDGKPK 1 RBM7 K45 Q9Y580 

469 KIPKDKDGKPK 2 RBM7 K45 Q9Y580 

470 KIPKDKDGKPK 3 RBM7 K45 Q9Y580 

471 KEQVSKMASVR 0 TPR K1105 P12270 

472 KEQVSKMASVR 1 TPR K1105 P12270 

473 KEQVSKMASVR 2 TPR K1105 P12270 

474 KEQVSKMASVR 3 TPR K1105 P12270 

475 AWVLDKLKAER 0 EF1A2 K62 P27592 

476 AWVLDKLKAER 1 EF1A2 K62 P27592 

477 AWVLDKLKAER 2 EF1A2 K62 P27592 

478 AWVLDKLKAER 3 EF1A2 K62 P27592 

479 TKAARKSAPAT 3 H3 K27 P68431 

480 IRHGKFQKMTLKLIL 0 MRGPRB3 K288 Q91ZC1 

481 RRPGEKTYTQR 0 SFPQ K291 P23246 

482 RRPGEKTYTQR 1 SFPQ K291 P23246 

483 RRPGEKTYTQR 2 SFPQ K291 P23246 

484 RRPGEKTYTQR 3 SFPQ K291 P23246 

485 GFIKMKSYPSS 0 AVIL K319 O75366 

486 GFIKMKSYPSS 1 AVIL K319 O75366 

487 GFIKMKSYPSS 2 AVIL K319 O75366 

488 GFIKMKSYPSS 3 AVIL K319 O75366 

489 EFNIRKPNEGA 0 SERBP1 K310 Q8NC51 

490 EFNIRKPNEGA 1 SERBP1 K310 Q8NC51 

491 EFNIRKPNEGA 2 SERBP1 K310 Q8NC51 
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492 EFNIRKPNEGA 3 SERBP1 K310 Q8NC51 

493 DNLIYKLLKPS 0 B3GALT1 K190 Q9Y5Z6 

494 DNLIYKLLKPS 1 B3GALT1 K190 Q9Y5Z6 

495 DNLIYKLLKPS 2 B3GALT1 K190 Q9Y5Z6 

496 DNLIYKLLKPS 3 B3GALT1 K190 Q9Y5Z6 

497 AQDHQKKETVV 0 BAZ1B K175 Q9UIG0 

498 AQDHQKKETVV 1 BAZ1B K175 Q9UIG0 

499 AQDHQKKETVV 2 BAZ1B K175 Q9UIG0 

500 AQDHQKKETVV 3 BAZ1B K175 Q9UIG0 

501 FGIEDKDKQII 0 RAD50 K20 Q92878 

502 FGIEDKDKQII 1 RAD50 K20 Q92878 

503 FGIEDKDKQII 2 RAD50 K20 Q92878 

504 FGIEDKDKQII 3 RAD50 K20 Q92878 

505 EAMRLKRANET 0 ZNF821 K331 O75541 

506 EAMRLKRANET 1 ZNF821 K331 O75541 

507 EAMRLKRANET 2 ZNF821 K331 O75541 

508 EAMRLKRANET 3 ZNF821 K331 O75541 

509 AKRHRKVLRDN 0 H4 K20 P62805 

510 QEIRYRSKLKLIRAK 3 PDGFRA iso3 k403 P16234 

511 AKKKSKISASR 0 TNNI3 K40 P19429 

512 AKKKSKISASR 1 TNNI3 K40 P19429 

513 AKKKSKISASR 2 TNNI3 K40 P19429 

514 AKKKSKISASR 3 TNNI3 K40 P19429 

515 DKSEDKVIAVY 0 HSPA9 K238 P38646  

516 DKSEDKVIAVY 1 HSPA9 K238 P38646  

517 DKSEDKVIAVY 2 HSPA9 K238 P38646  

518 DKSEDKVIAVY 3 HSPA9 K238 P38646  

519 DRQKTKETLQS 0 CD72 K196 P21854 

520 DRQKTKETLQS 1 CD72 K196 P21854 
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521 DRQKTKETLQS 2 CD72 K196 P21854 

522 DRQKTKETLQS 3 CD72 K196 P21854 

523 IAENRKFKSLM 0 VAV3 K735 Q9UKW4 

524 IAENRKFKSLM 1 VAV3 K735 Q9UKW4 

525 IAENRKFKSLM 2 VAV3 K735 Q9UKW4 

526 IAENRKFKSLM 3 VAV3 K735 Q9UKW4 

527 DIAAKKKMKKH 0 UTP20 K2745 O75691 

528 DIAAKKKMKKH 1 UTP20 K2745 O75691 

529 DIAAKKKMKKH 2 UTP20 K2745 O75691 

530 DIAAKKKMKKH 3 UTP20 K2745 O75691 

531 GKKQNKKKVEE 0 CBX1 K7 P83916 

532 GKKQNKKKVEE 1 CBX1 K7 P83916 

533 GKKQNKKKVEE 2 CBX1 K7 P83916 

534 GKKQNKKKVEE 3 CBX1 K7 P83916 

535 EEAIRKIESER 0 DSP K1880 P15924 

536 EEAIRKIESER 1 DSP K1880 P15924 

537 EEAIRKIESER 2 DSP K1880 P15924 

538 EEAIRKIESER 3 DSP K1880 P15924 

539 AKRHRKVLRDN 1 H4 K20 P62805 

540 EGKKWQAKIEGIRNK 3 CEP290 K1919 O15078 

541 IIDQDKHALLD 0 TJP1 K701 Q07157 

542 IIDQDKHALLD 1 TJP1 K701 Q07157 

543 IIDQDKHALLD 2 TJP1 K701 Q07157 

544 IIDQDKHALLD 3 TJP1 K701 Q07157 

545 ALGKLKHSQDP 0 NOL11 K346 Q5RB52 

546 ALGKLKHSQDP 1 NOL11 K346 Q5RB52 

547 ALGKLKHSQDP 2 NOL11 K346 Q5RB52 

548 ALGKLKHSQDP 3 NOL11 K346 Q5RB52 

549 EIATDKLSFPL 0 PIEZO2 K2622 Q9H5I5 
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550 EIATDKLSFPL 1 PIEZO2 K2622 Q9H5I5 

551 EIATDKLSFPL 2 PIEZO2 K2622 Q9H5I5 

552 EIATDKLSFPL 3 PIEZO2 K2622 Q9H5I5 

553 NKHGIKTVSQI 0 RSL1D1 K124 O76021 

554 NKHGIKTVSQI 1 RSL1D1 K124 O76021 

555 NKHGIKTVSQI 2 RSL1D1 K124 O76021 

556 NKHGIKTVSQI 3 RSL1D1 K124 O76021 

557 FSLVGKRAIST 0 COX4I1 K12 P13073 

558 FSLVGKRAIST 1 COX4I1 K12 P13073 

559 FSLVGKRAIST 2 COX4I1 K12 P13073 

560 FSLVGKRAIST 3 COX4I1 K12 P13073 

561 AKENQKNISNV 0 NEBL K712 O76041 

562 AKENQKNISNV 1 NEBL K712 O76041 

563 AKENQKNISNV 2 NEBL K712 O76041 

564 AKENQKNISNV 3 NEBL K712 O76041 

565 ASGSFKLNKKA 0 H1 K105 P10412 

566 ASGSFKLNKKA 1 H1 K105 P10412 

567 ASGSFKLNKKA 2 H1 K105 P10412 

568 ASGSFKLNKKA 3 H1 K105 P10412 

569 AKRHRKVLRDN 2 H4 K20 P62805 

570 DSCPAVSKILERSLK 3 REV3L k2868 O60673 

571 AINNSKSFADI 0 NRAS K88 P12825 

572 AINNSKSFADI 1 NRAS K88 P12825 

573 AINNSKSFADI 2 NRAS K88 P12825 

574 AINNSKSFADI 3 NRAS K88 P12825 

575 EPDSAKNVQLK 0 SAMD15 K73 Q9P1V8 

576 EPDSAKNVQLK 1 SAMD15 K73 Q9P1V8 

577 EPDSAKNVQLK 2 SAMD15 K73 Q9P1V8 

578 EPDSAKNVQLK 3 SAMD15 K73 Q9P1V8 
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579 DAWVYKRLVED 0 MELK K631 Q14680 

580 DAWVYKRLVED 1 MELK K631 Q14680 

581 DAWVYKRLVED 2 MELK K631 Q14680 

582 DAWVYKRLVED 3 MELK K631 Q14680 

583 AAETEKQVALA 0 FHOD1 K454 Q9Y613 

584 AAETEKQVALA 1 FHOD1 K454 Q9Y613 

585 AAETEKQVALA 2 FHOD1 K454 Q9Y613 

586 AAETEKQVALA 3 FHOD1 K454 Q9Y613 

587 KRMVEKSLPSK 0 MAGI3 K1364 Q5TCQ9 

588 KRMVEKSLPSK 1 MAGI3 K1364 Q5TCQ9 

589 KRMVEKSLPSK 2 MAGI3 K1364 Q5TCQ9 

590 KRMVEKSLPSK 3 MAGI3 K1364 Q5TCQ9 

591 AGKVTKSAQKA 0 EF1A2 K453 Q05639 

592 AGKVTKSAQKA 1 EF1A2 K453 Q05639 

593 AGKVTKSAQKA 2 EF1A2 K453 Q05639 

594 AGKVTKSAQKA 3 EF1A2 K453 Q05639 

595 IGDAAKNQVAM 0 HSPA1L K608 P34931 

596 IGDAAKNQVAM 1 HSPA1L K608 P34931 

597 IGDAAKNQVAM 2 HSPA1L K608 P34931 

598 IGDAAKNQVAM 3 HSPA1L K608 P34931 

599 AKRHRKVLRDN 3 H4 K20 P62805 

600 KGRTDFIKGMKKKSR 1 VWA5B1 K311 Q5TIE3 
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Figure 21 

Figure S. 1. Stripped 140-cluster array. A) The original membrane blotted with the 

53BP1-tudor domain. B) Stripped membrane blotted with streptavidin HRP to detect 

residual proteins left on the membrane. 
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