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Abstract 

 

The history of philosophy is rich with theories about objects; theories of object kinds, their nature, the status of 

their existence, etc. In recent years philosophical logicians have attempted to formalize some of these theories, 

yielding many fruitful results. This thesis intends to add to this tradition in philosophical logic by developing a 

second-order formal system that may serve as a groundwork for a multitude of theories of objects (e.g. concrete 

and abstract objects, impossible objects, fictional objects, and others). Through the addition of what we may call 

sortal quantifiers (i.e. quantifiers that bind individual variables ranging over objects of three unique sorts), a 

groundwork for a logic that captures concrete and non-concrete objects will be developed. We then extend this 

groundwork by the addition of a single new operator and the modal operators of a Priorian temporal logic. From 

this extension, our formal system can represent and define concrete, abstract, fictional, and impossible objects as 

well as formally axiomatize informal theories of them.  
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Summary for Lay Audiences 
 

First order languages pick out individual objects with constant symbols (e.g. c, d, c10, e) and variables 

(e.g. x, y, v10, z). Constants name individual objects and variables are assigned to individual objects (where 

assigning some object to a variable is a similar process to determining what a pronoun like ‘it’ denotes in natural 

languages). The objects in our formal system are ‘described’ using predicate symbols (e.g. B, L, P2, S). If a 

constant b names Bertrand Russell and the predicate P indicates a philosopher, then Pb is interpreted as, ‘Bertrand 

Russell is a philosopher’. Now, what happens when we want our formal language to represent an object like a 

square circle? We could name the square circle s, and indicate squareness and circularity with the predicates S 

and C (respectively) and have Ss & Cs mean (roughly) ‘the square circle is both square and circular’, but notice 

that, as a matter of fact, square things are not circular and circular things are not square. The square circle is 

impossible for this reason. This also means that to adequately represent the square circle in our formal language 

it would be implied that Cs & ¬Cs (where the ‘¬’ symbol is read ‘it is not the case that’). This is to say that ‘the 

square circle is circular and it’s not the case that the square circle is circular’. This is a contradiction and it 

essentially ruins our formal language by ensuring that the logic of it can prove everything. It is the aim of this 

thesis project to develop a formal language and logic that can represent impossible objects like the square circle, 

but others too that are of interest to philosophers. By adding a few new symbols, we can save ourselves from 

contradiction and keep our logic useful. Ideally, all important kinds of objects will be representable in the 

proposed language as well as important statements about them. From this formal groundwork, theories of objects 

can be formalized.    
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Chapter 1 
 

Introduction 

• 

The history of philosophy is rich with theories about objects; theories of object kinds, their nature, the 

status of their existence, etc. In recent years philosophical logicians have attempted to formalize some of these 

theories, yielding many fruitful results. My thesis intends to add to this tradition in philosophical logic by 

developing a second-order logical system that may serve as a groundwork for a multitude of theories of objects 

(e.g. concrete and abstract objects, impossible objects, fictional objects, and others). Through the addition of what 

we may call sortal quantifiers (i.e. quantifiers that bind individual variables ranging over objects of three unique 

sorts), a groundwork for a logic that captures concrete and non-concrete objects will be developed. We will then 

extend this groundwork by the addition of a single novel operator and the modal operators of a Priorian temporal 

logic. From this extension, our formal system can represent and define concrete, abstract, fictional, and impossible 

objects as well as formally axiomatize informal theories of them.  

From the first development (and application) of formal systems that could speak of all, some, and a single 

object, determining the truth of such talk was of the utmost importance. Because truth was of the utmost 

importance, an ability to deal with true statements about fictional objects was of utmost importance as, clearly, 

certain natural language statements speak of fictional entities, where, because formal logics translate many of 

these kinds of natural language statements, formal statements also speak of fictional entities. In considering these 

fictional entities, some philosophers - Gottlob Frege for instance - would treat any statement involving them as 

not subject to truth or falsity. Frege, instead, treated statements referencing fictional entities as sources of 

“aesthetic delight”1. For Frege, it didn’t matter whether or not a name like ‘Odysseus’ referred to a real world 

                                                        
1 Frege, 1892, pg 42. 
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entity, since Odysseus appears in a work of art. Bertrand Russell, a contemporary of Frege, had a different 

approach to fictional entities. Russell would treat names like ‘Odysseus’ (where it is important to note here that 

Russell treated all names this way, fictional or otherwise) as a shorthand for a grouping of descriptions that applied 

to the entity that was Odysseus2. These descriptions included, the subject of Homer’s ‘Odyssey’, the son of 

Laertes, the person Socrates found wily, etc. Since, should one speak of Odysseus they would be suggesting that 

there existed an entity that was the subject of Homer’s ‘Odyssey’, the son of Laertes, the person Socrates found 

wily, etc, and there was not an object that possessed these descriptive properties, Russell regarded such statements 

as false.  

I find Frege and Russell’s solutions unsatisfying. Both thinkers are attempting to formally account for 

ordinary language sentences involving fictional entities without a formal account of the ordinary language 

semantics assumed in their use. In ordinary language conversations about fictional entities, sentences involving 

them are perfectly meaningful and are often considered straightforwardly true.  Note though, that out of a spirit 

of pluralism, I only suggest that Frege and Russell’s solutions are unsatisfying. Frege’s solution is a solution that 

has certain applications, as is Russell’s (where Russell’s solution resulted in one of the more monumental of 

innovations in logic). I contend though, that a formal semantics that captures ordinary language semantics is also 

needed. That said, there have been very few developments in logic since Frege and Russell (save for some aspects 

of what are called ‘free logics’ in semantics and some syntactical innovations put forward by Edward Zalta and 

others) that have the ability to deal with the problem of fictional objects. Further, impossible objects (i.e. objects 

possessing self-contradictory properties) like the square circle, that are clearly of a different kind of object from 

the kind of object that Odysseus is, are not differentiated at all (and not given the proper formal treatment 

therefore). This lack of a more systematic delineation (in logic) of object kinds is another issue that this thesis 

intends to remedy. Although certain semantics deal with fictional and real entities, abstract and concrete entities, 

                                                        
2 Russell, 1905a, pg 491. 



 3 

etc., these entities are often grouped into one of only two nebulous categories3. More stratification and modality 

is required, I contend. 

To gain a better understanding of the disconnect between formal semantics and ordinary language 

semantics, consider the aforementioned property of Odysseus, that being, the person Socrates found wily. To 

anyone who has read Lesser Hippias, it would seem clear that Socrates accepted this of Odysseus4 and anyone 

considering what Socrates said, would take a statement like ‘Socrates found Odysseus wily’ to be true. However, 

on Frege’s view we would not know how to deal with such a statement as Frege only makes clear that there is no 

truth or falsity in regard to statements referring to fictional entities. Frege fails to inform us of what to do in cases 

of fictional entities relating to non-fictional ones. With Russell the statement would be straightforwardly false as 

it would break down into a series of conjunctions one of which suggests there exists an object possessing all of 

the properties sufficient for being Odysseus. Since there is no such object, this conjunct would be false and, 

therefore, so would the conjunction. Standard free logics tell us that if Odysseus exists, then he is wily (and 

Socrates believes this to be the case) where certain other logics of fictional objects suggest that Odysseus bears 

different singular and relational properties (or, at least, bears them differently) than Socrates, meaning Odysseus 

is not in the class of objects that exemplify wilyness, but bears this property in some other way5.   

The above attempts at dealing with fictional objects do not track ordinary language discussions of these 

same objects and so, relative to ordinary language semantics, cannot be correct. The underlying issue is that these 

attempts maintain that either no such objects exist (in any sense) or they provide these objects with a qualified 

status of existence. Therefore, fictional objects are not in the domains or relevant relations of any semantic 

structure. This results in statements like ‘Socrates found Odysseus wily’ turning out false because Odysseus 

                                                        
3 For example in Zalta, 1983 all object kinds are either concrete or abstract. Free logic semantics treat objects as either existing or not 
existing. Parsons, 1978 has more delineation (for example, possible/not-possible, complete/incomplete, and consistent/contradictory 
objects are informally defined), but, by Parsons’ admission he does not violate the law of noncontradiction (Parsons, 75 – Footnote 21), 
and so a particular conception of impossible object is absent.    
4 Plato, 2016, 371e. 
5 Cf. Parsons and Zalta. 
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cannot feature in a tuple with Socrates at all, or cannot first be said to feature in the domain of discourse, and then 

be said to relate to Socrates in the relevant way. Intuitively, however, we all accept that we (us extant persons) 

can be related to non-extant objects (in intentional ways and not). I can listen to Mr. Smith filibuster and I can be 

made perplexed by an impossible object like the square circle. In both cases I may be listening to and made 

perplexed by things that do not exist in space and time, but I do not seem to be listening to nothing; nor do I 

appear to be made perplexed by nothing. Common sense allows us to understand (and ordinary language use 

captures) such relations, but formal languages do not (and I think they should).      

To remedy this, I intend to complete a project that develops a logical notation and semantics that make 

more expressible our natural language statements as formal statements. My project involves both syntactic and 

semantic innovations of what are known as many sorted logics, modal logics, and the aforementioned free logics. 

My project requires that I go beyond what is allowable in modal logics as well as free logics. This is so, as these 

logics tend to only allow us to talk of things that may exist, where they are not fit to deal with things that can 

definitely not exist in any context but are spoken of by people all the same (i.e. impossible objects). I will, 

therefore, briefly elaborate on such innovations.  

My syntax will include the addition of the above mentioned sortal operators to be used in quantifying 

objects that are fictional, impossible, abstract, etc. In the case of non-extant entities bearing non-contradictory 

properties, such objects will be quantified as existing in an ‘initially-depictable-order’ (i.e. they may be thought 

of, imagined, and fleshed out in fictional works, but do not exist in the physical world). In the case of entities 

bearing contradictory properties (like, squareness and circleness simultaneously), such objects will be quantified 

in an ‘exclusively-sentential-order’ (i.e. they are not able to be represented imagistically and do not exist in the 

physical world - hence are only able to be represented linguistically/descriptively). Impossible objects are not just 

exclusively sentential however. Traditionally, impossible objects are described as such because to completely 

describe them is to violate the law of non-contradiction. An additional unary operator that allows for the violating 
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of this law will be included in the system’s vocabulary therefore. The third sortal quantifier will bind variables 

ranging over objects that are concrete, in an ‘extant-order’. Lastly, in later chapters, the system will be extended 

to include temporal operators representing points of time in the past and the future. All of these innovations will 

allow for non-extant objects to be spoken of and formulated in logical languages as well as modelled, but not lead 

to contradiction in derivation systems.  

The semantics will be a multi-domain, positive, free-logic semantics. I call this semantics ‘multi-domain’ 

as, when interpreting the statements of my augmented language, the domain (viz. the set of objects that we are 

talking about) consists of an overarching domain (named ‘the sentential domain’), a subset of that domain (named 

‘the domain of depictables) and finally, a subset of the domain of depictables (named ‘the domain of extants’). 

The semantics involves ‘free-logic’ as I have included unique domains that account for names that do not denote 

extant objects. Finally, the logic is ‘positive’ as, in the case of sentences speaking of non-extant objects, these 

objects will be accounted for in the sentential domain (and possibly in the domain of depictables). Names that 

denote such elements refer to something then, and are rendered true or false on appropriate interpretations. So, in 

the case of a sentence like ‘Homer Simpson is bald’, on this semantics, we can determine such a statement true 

since the name ‘Homer Simpson’ denotes an element in the domain of depictables, and this element is in the 

extension of people who are bald. 

Note then, that the above proposed logic allows for non-extant objects to exist but doesn’t just assert their 

existence by fiat. There is the appropriate delineation required, and so we do not have Homer Simpson existing 

as an object the same way that, say, Justin Trudeau does. Further, the logic is neutral as to just what realizes 

something like a Homer Simpson or the square circle, and only commits to the idea that something functions to 

make us laugh or perplex us, but is amenable to categorization as a psychological construction perhaps, or a 

Platonic particular, or just a bunch of descriptions on the page, etc. I think a logic such as this is ideal then, in that 
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it solves the above problems of philosophical logic, but doesn’t imply any undue ontological constraints (some 

of which are themselves counter-intuitive). 

The remainder of this thesis will progress according to the following structure, over five chapters. Our 

next chapter (chapter two) will present a minimal, but sufficient, informal theory of objects and object kinds, as 

well as an account of the logics that have attempted to represent these object kinds. Chapter three will provide the 

reader with an introduction to the object theory of Alexius Meinong, explain why Meinong’s theory is relevant 

to this project, and detail some logics that capture Meinong’s theory. In chapter four we will lay out the above 

mentioned groundwork (with the vocabulary required to represent impossible objects), and detail some of the 

system’s more important theorems and applications. In chapter five we prove important meta-results regarding 

the groundwork. Lastly, in chapter six, we extend the groundwork to a temporal logic that allows for the 

representation of object kinds relevant in philosophy and then tie up some loose ends. We move now, to a 

discussion of object kinds.  
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Chapter 2 

Object Kinds and Object Representation in Modal, Free, and Many-Sorted Logics 

• 

§2.1. Objects and Object Kinds 

In this brief chapter we provide an informal discussion of objects, some of the kinds of objects that there 

are, how various logical systems have represented these objects, and provide some critique of these 

representations. We start the discussion with the concept of object. By object we mean,  

any entity o that exemplifies a property (or properties) and determines instantiations of those properties as those only 

exemplified by o (where no other instantiated properties are exemplified by o).  

It is assumed uncontroversial that properties are able to be exemplified, instantiated, and individuated. So, when 

properties are exemplified, instantiated, and individuated, something must serve the function of exemplification, 

instantiation, and individuation. That function is an object. Because talk of objects invariably involves the 

exemplification and instantiation of properties as well as their individuation, at the very least, a definition of 

object should include these concepts. We leave the informal definition of object as basic as the one above though, 

in order that we allow for a sufficient understanding of what is meant when we speak of objects, but not put any 

undue constraints on metaphysicians who may find our proposed logic useful. In fact, as an aside, an avoidance 

of undue metaphysical constraints and an openness to pluralism will be a running theme of this project.   

By ‘kind’ we mean, the subsets of the set of objects determined by certain properties. By ‘object kind’, 

we mean the subset of objects determined by the modes in which these objects may exist. Lastly, by ‘mode of 

existence’, we mean any of the properties exists in space and time, is depictable imagistically, is representable 

verbally, is not described in a way that violates the law of non-contradiction, and is causally efficacious. So, if 

an object exists in space and time, it exists in that mode, and by that fact, is of a concrete kind. If an object is able 
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to be represented imagistically and verbally, but doesn’t exist in space and time, it exists in the former two modes 

and is of a non-concrete kind.  

The object kinds that this thesis concerns itself with are those that appear perennially in philosophical 

discussions. They are concrete objects, non-concrete objects, abstract objects (often considered the counterparts 

of concrete objects), fictional objects, impossible objects, and vague objects. As seen above, concrete objects are 

those that are said to exist in space and time (where being in space and time is a mode of existence). That said, it 

is also implied above that objects need not exist in just one mode. In fact, it is assumed that objects in space and 

time are both depictable imagistically and representable verbally. Further, objects that are depictable are assumed 

to be representable verbally. Perhaps we can better convey the aforementioned dynamics formally. If we treat the 

sets E, D, and S as the sets of objects that exist in space and time, are depictable imagistically, and are 

representable verbally, respectively, our informal dynamics translates to the formal claim E Í D Ù D Í S (hence 

E Í S). We could discuss in detail the dynamics that exist between the other object kinds, but that will be made 

clear in the chapters to follow. For now, it suffices to say that all objects of all kinds exist in some combination 

of modes E, D, and S, where all objects of all kinds exist, at least, in the mode represented by S. We will, from 

here on, refer to elements of E as extant, elements of D as depictable, and elements of S as sentential. 

We will close this passage on object kinds by informally explicating each kind according to the above 

modes. Each definition is meant to capture ordinary language descriptions of objects of these kinds. Note however 

that this thesis does not treat the following definitions as canonical. Instead, we only seek to define our object 

terms in a way that captures their ordinary use. We do this out of a spirit of pluralism (a pluralism that suggests 

such definitions ought to be represented formally). We define each object kind thus 

2.c. Concrete:   x is concrete iff x exists in space and time. 

2.d. Non-concrete:  x is non-concrete iff it is not the case that x is concrete. 

2.a. Abstract:    x is abstract iff x is non-concrete and not causally efficacious. 

2.f. Fictional:    x is fictional iff x is non-concrete, not abstract, and has never been (nor will ever be)  
    concrete. 
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2.i. Impossible:    x is impossible iff x is not depictable and to completely describe x would be to violate the  
    law of non-contradiction. 
 
2.v. Vague:    x is vague iff x is impossible due to being described as both identical to and not identical to  
    itself. 
 

The properties mentioned in the above definitions are often treated as essential to being an object of the respective 

kind. They are essential too, therefore, to philosophical theories of (or involving) such objects. But, it will be 

argued, these properties are not actually captured by many of the logics that intend (or at least purport) to represent 

objects of these kinds. It would be of use therefore, to have access to a logic that both formally captures the above 

definitions and is able to formally represent objects of the kinds defined above.    

§2.2. Representing Object Kinds Formally 

The remainder of this chapter will consist of a survey of each object kind and the formal systems that 

capture them. How these objects are represented formally, how they are modelled, and some critique of these 

maneuvers will be our focus. We start with concrete objects, where our discussion of them will be brief. It is 

assumed here that classical predicate logics represent concrete objects adequately, and therefore so do any 

extensions of these logics. If to be the variable x, bound by the quantifier $x, is to be (tacitly) concrete, then as 

long as the domains of any relevant structures accommodate this assumption, we do not run into any issues of 

representation. Should a statement like,  

$x(x = t) 

mean to convey the idea that t is concrete, then nothing further is required by way of formalism. Further, formulas 

featuring concrete objects can be reasoned with deductively without contradiction, as they are just formal 

representations of objects in the physical world, translated into standard first order languages. Should 

contradictions arise in derivation here, it would be an error of proper representation, or possibly the informal 

theory is itself inconsistent, but it would not be a shortcoming of the formal system per se.  
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Where we would run into problems would be in attempting to represent objects of other kinds in these 

systems. All objects would identify with some concrete object, after all, leaving all objects concrete. To represent 

an object t as non-concrete would result in, 

   ¬$x(x = t) 

where, presumably, we want t to exist as an object of some kind but, on standard semantics, this implies, 

   $x(x = t) 

which is a contradiction. Classical first order predicate logics can represent objects of different kinds but, as we 

have shown, they cannot do so through existentialization. The concept of sort would need to be introduced, either 

by extending the logic to a many-sorted one, or through the addition of more complexity to each formula (viz. by 

the introduction of additional predicates indicating the intended sort). We will move to a discussion of these 

innovations then, in order that we may show that concreteness and non-concreteness can be represented.  

Since many-sorted logics can be translated into first-order predicate logics, we will not discuss the latter 

but only the former. After all, what can be said in a many-sorted logic can be translated into first-order logic6. So, 

for ease of discussion we will use the language of many-sorted logic and we will assume that the more streamlined 

representation (from the more complex syntax and semantics) of many-sorted logics generate formulas and 

interpretations that have counterparts in standard first-order logics (where these counterparts are what would be 

presented should we attempt to capture the remaining object kinds in first-order logic). With a many sorted logic 

(abbreviated ‘MSL’) we can easily delineate concrete objects from non-concrete. We start by adding to a first 

order logic a set S whose elements are sorts (in our case let S = {c, d} where c indicates the concrete sort and d 

indicates the non-concrete sort). Next, we add (in place of individual variables: v0, v1, ...) a stock of individual 

variables for each sort, i.e. vc0, vc1, ... ; vd0, vd1, ... , where variables vci indicate concrete objects and variables vdi 

indicate non-concrete objects. In place of constants c0, c1, ... we add constants for each sort, i.e. cc0, cc1, ... ; cd0, 

                                                        
6 A proof of this result can be found in Bell, DeVidi, and Solomon p. 119-120. 
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cd1, ... , where constants cci indicate concrete objects and constants cdi indicate non-concrete objects. Lastly, to 

each of our predicate symbols P0, P1, ... , we add a signature 〈s1,...,sn〉of sorts s Î S, that indicate for each predicate 

Pi (of some arity n) the sorts of any terms t1,…,tn, where Pit1,…,tn (in other words, t1,…,tn are of the sorts s1,...,sn 

respectively). We model sentences in our many sorted logic according to structures containing a domain for each 

sort (in our case a domain of concrete objects and a domain of non-concrete objects), where denotations, 

assignments, and tuples must be of the sort respective to the constants, variables, and predicates that they interpret.  

Note that with the above MSL, we no longer treat non-concreteness as definable from concreteness, but 

instead as a primitive concept in its own right. However, if our sorts are disjoint (which, by 2.c. and 2.d., they 

should be), we can still capture this definability property with the following axiom (where x and y are variables 

of the relevant sort), 

"xd¬$yc(xd = yc) 

but it isn’t essential that we do this. What is essential however, is that we be able to represent the remaining object 

kinds in MSL, either by defining them according to the sorts that we already have, or by adding new sorts. It is 

likely the case that we will need additional sorts. For instance, if we added a sort e for causally efficacious objects 

and a sort t for points in time, we could define abstract and fictional objects according to 2.a. and 2.f. respectively. 

According to the following 

Abstract(td) abbreviates ¬$xe(xe = td)   

viz. the non-concrete object is not a causally efficacious object, hence abstract.  

 

Fictional(ud) abbreviates  ¬Abstract(ud) Ù ¬$ztEudzt              (where ‘Eudzt’ is read, ud was extant at time zt) 

viz. the non-concrete object is not abstract and there is no point in time that the non-concrete object is extant. Hence, the non-

concrete object is fictional.   

However, augmenting our MSL in this way would only be of use if, ultimately, we could define each and every 

one of our object kinds. But, it should be clear at this point that if we are to represent impossible objects (formally) 



 12 

as violating the law of non-contradiction, then no additional sort is needed, as impossible objects are represented 

as some t where for some predicate P, 

Pt Ù ¬Pt 

Simply adding to S a sort i for impossible objects would not just be superfluous, it would be counterintuitive 

(should there not be some additional feature of t that makes t self-contradictory). If we reason according to a 

consistent t, isn’t t possible? Regardless of our intuitions, it would certainly be the case that our terms ti0, …, tin 

would just be a subset of our terms td0, …, tdn as, syntactically, they function in the exact same way. But, we do 

not necessarily want to declare impossible objects to be concrete or nonconcrete. However, if for each ti, it would 

not be the case that for some predicate P 

Pti Ù ¬Pti 

then ti is just another term that is non-concrete. Alternatively, if each ti actually violated the law of non-

contradiction, the deduction system of our MSL would reduce theories involving impossible objects to absurdity. 

Since we are not intending our MSL to be paraconsistent, we want to avoid absurdity.   

Clearly, impossible objects pose a problem for MSL. However, there are other logical systems that may 

be able to represent impossible objects. The concept of possibility is made explicit in modal logics (and by 

extension, impossibility), and free logics are those systems that are capable of modelling statements involving 

names that do not refer to any object (might the names of impossible objects just be non-denoting terms?). Perhaps 

modal or free logics might be of use, and so we will investigate them in the subsequent passages. We will start 

with modal logics.                           

Consider the modal logics that employ the possibility operator ‘à’ and the necessity operator ‘¨’, and 

model statements featuring them according to a relation R on possible worlds w Î W. Since the informal concepts 

of possibility and necessity are explicitly captured in these systems, they represent impossible objects readily 

enough. Consider the square circle, where the predicate S indicates squareness and the predicate C indicates 
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circleness. We can represent the impossibility of the object ix(Sx Ù Cx) (i.e. the object x that is square and circular) 

thus 

    ¬à$y(y = [ix(Sx Ù Cx)]) 

However, if we wanted to say that the square circle is an object of philosophical interest (which seems a patent 

truth) we would represent it thus (let is of philosophical interest be represented by the predicate ‘P’),  

    P[ix(Sx Ù Cx)] 

But, with some logic we may derive 

    $y(y = [ix(Sx Ù Cx)]) 

and so, by the standard axioms of modal logics stronger than K, we may derive 

    à$y(y = [ix(Sx Ù Cx)]) 

which straightforwardly contradicts our account of the square circle as impossible. It seems we can either 

represent the square circle as impossible (but not talk about it) or talk about the square circle (but not as 

impossible). Notice too, that the square circle is impossible on this account not because ix(Sx Ù Cx) violates the 

law of noncontradiction but because there are no worlds w Î W, where $y(y = [ix(Sx Ù Cx)]) obtains. But, if we 

were to amend our definition of the square circle in order to capture its inconsistent features, we would reduce 

our theory of the square circle to absurdity.  In fact, because violating the law of noncontradiction is required, the 

standard definition of impossible cannot be met at all in modal logics. Straightforwardly, if we treated the square 

circle as ix[(Sx Ù ¬Sx) Ù (Cx Ù ¬ Cx)] (thereby violating the law of noncontradiction), it would be implied that 

$x[(Sx Ù ¬Sx) Ù (Cx Ù ¬ Cx)] 

which obviously leads to contradiction and cannot be modelled relative to any possible world. And, this is the 

case with any theory involving impossible objects. From this we see that modal logics are not equipped to deal 

with impossible objects should we want to reason beyond just the impossibility of their existence or define them 

according to the standard definition of impossible. Perhaps free logics can achieve this? 
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Call a first order logic free (abbreviated ‘FFOL’) if among the elements of its vocabulary there is a 

predicate E! that indicates existence, and the structures of its semantics are defined in such a way that they include 

a (possibly empty) domain M and a (non-empty) overarching domain M¢ where M Í M¢. Consider a free logic to 

be positive (abbreviated ‘PFFOL’) if a term t that does not denote/is-assigned-to an element of M, may 

nevertheless result in a true formula featuring t if t denotes/is-assigned-to an element in M¢. Since we are only 

interested in logics that may model sentences involving both extant and non-extant terms, we will focus just on 

PFFOL systems. One last thing to note, for any term t, E!t is true on a PFFOL structure if and only if the element 

b Î M¢ that is the denotation/assignment of t is also a member of M. With PFFOL logics, sentences like the quasi-

informal 

$x(Sherlock-Holmes(x) Ù Plays-The-Violin(x)) 

would be true on a PFFOL structure where the object b Î M¢ assigned to x is in the relation reserved just for 

Sherlock Holmes and in the relation of elements that play the violin. However, a statement like 

$x(E!x Ù Sherlock-Holmes(x) Ù Plays-The-Violin(x))  

would be false as, because Sherlock Holmes is fictional, it would not be the case that (for the element b Î M¢ that 

is the denotation of x) b Î M. 

From this it should be clear that PFFOL systems are more than capable of representing concrete and non-

concrete objects (let E! indicate not just existence, but concrete existence). Further, it should be clear that if we 

were to extend PFFOL to a many-sorted logic with the right sorts, we could formally delineate abstract objects 

from fictional. However, there doesn’t appear to be anything in the additional vocabulary and semantics of PFFOL 

systems that would allow us to represent theories involving impossible objects consistently (or model them). 

Again, if the law of non-contradiction is to be violated, then it does not matter whether say, for the element that 

is the square circle (call it ‘s’), s Î M¢ but s Ï M, as it is impossible for both  

s Î {x : x is square}  
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and  

s Ï {x : x is square}    

As well, we’re not saved from absurdity just because the square circle is said to not exist, viz. 

¬!Es Ù (Square(s) Ù ¬Square(s)) Ù (Circular(s) Ù ¬Circular(s))   ** 

Since because we may still derive either 

Square(s) Ù ¬Square(s) 

or 

Circular(s) Ù ¬Circular(s) 

from **, any theory featuring ** reduces to absurdity. Alternatively, any theory representing the square circle, 

that doesn’t define the square circle as self-contradictory is representing the square circle as a possible object 

therefore, hence is not actually representing the square circle. So it goes for any impossible object represented 

consistently, hence PFFOL (whether it be extended to a many sorted logic or not) cannot represent impossible 

objects as impossible.  

It follows from what was argued above, that of all the likely candidates for capturing a logic of objects 

that both carefully delineates these objects and adequately represents them, none of these candidates were able to 

do this without additional formalism. And, even if they were, the multiple extensions and qualifications required 

would likely make these systems so cumbersome to work with, that they would not be of any practical use. 

However, in the end, it was the impossible object (and by implication the vague object) that was not able to be 

represented no matter how we augmented the systems. No introduction of new operators, predicates, sorts, etc. 

enabled impossible objects to be represented. However, this just means we require a formalism beyond what is 

already available, that is, a kind which allows for the representation of impossible objects, in which sentences 

involving them can be modeled and the system of deduction not rendered inconsistent. Such logics do in fact 

exist. These logics are logics referred to as ‘Meinongian’, named after Austrian philosopher Alexius Meinong. 

They attempt to capture Meinong’s ontology, which included the existence of impossible objects like the square 
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circle. We move now to the next chapter in which we discuss Meinong’s ontology and two systems of logic that 

capture it.  
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Chapter 3  

Alexius Meinong and The Meinongian Logics of Terence Parsons and Edward Zalta 

• 

§3.1. The Object Theory of Alexius Meinong 

I imagine that the mention of a logic of objects that makes a special distinction between fictional and 

impossible objects (as well as grants them the same status of existence assumed of concrete objects), evokes in 

the metaphysician, Alexius Meinong’s theory of objects. Naturally, the question then arises, is the proposed logic 

of this thesis a Meinongian one? Not to get too far ahead of ourselves but the answer to that question is ‘no’, for 

reasons that will be made clear in what follows. However, before explaining why the proposed logic is non-

Meinongian, some discussion of Alexius Meinong and his work is required, as is some discussion of the nature 

of Meinongian logic. This chapter then, will briefly outline the key facets of Meinong’s theory of objects, describe 

the similarities and differences Meinong’s theory bears to our own, and end by discussing the Meinongian logics 

of Terence Parsons and Edward Zalta.       

Alexius Meinong’s main contributions to theories of objects was his conception of being and the ways in 

which different kinds of objects have being. Being, for Meinong, is less a synonym for existence, and more a term 

indicating an object that is either of the physical world or abstract. All objects to Meinong had what was called 

Außersien (roughly, ‘outside being’), but not all objects had being7. For example, my (physical) laptop sitting on 

my desk displaying an incomplete thesis has being, the (abstract) state of affairs in which my laptop sits on my 

desk displaying an incomplete thesis has being, but (my imagined) scenario in which my laptop sits on my desk 

displaying a complete thesis does not have being (just outside being). Meinong further delineates objects into 

                                                        
7 Jacquette, 2015, see Preface and Chs. 4 and 5. As well, Marek, 2019 features a helpful table of object kinds on pg. 32 of the PDF 
version of the article. 
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complete and incomplete categories8. An object is complete if, for any possible property p, it is able to be 

determined whether (or not) the object has property p. An object is incomplete if it is not complete.        

In regard to the ways in which objects might be (in addition to their having outside being), Meinong’s key 

insight came to him while studying intentionality of mind, that is, the fact that human thought is about things. We 

can think about something like a golden mountain, thought Meinong, yet a golden mountain doesn’t actually have 

being. However, since we cannot direct our attention towards that which doesn’t exist, but we direct our attention 

towards the golden mountain, the golden mountain must exist, if only in a different manner as that of, say, Mount 

Everest. To Meinong, a mountain like Everest had existence, that is, it existed in space and time, but the golden 

mountain did not. Instead, the golden mountain subsisted, that is, it had outside-being and was consistent in terms 

of its properties, but it did not have being in a concrete or temporal context, only as an object of thought. Lastly, 

as was already mentioned objects like the square circle only have outside being, as they are not consistent in terms 

of their properties (hence do not subsist). That is, they are objects, but they are neither concrete, nor are they the 

object of our thoughts (where Meinong seems to treat such objects as necessarily phenomenological). Although 

all objects have outside being, only a smaller subset have outside being only. Something like the square circle 

cannot exist in space and time, nor be imagined, hence it cannot be an object of thought and has outside being 

only. Something like a number cannot exist in space and time, so it subsists, but a number is not merely an object 

of thought, so it has being. It’s quite a complicated theory, and I’ve only really scratched the surface. But, from 

these concepts and one further principle of Meinongian object theory, we may proceed to our discussion of logics 

that capture Meinongian object theory, and therefore impossible objects. 

Meinong’s theory allows for any combination of properties to be exemplified by an object. For example, 

the single property blue permits of an object that is blue simpliciter, and the contradictory pair of properties blue 

all over and green all over permit an object that is simultaneously blue all over and green all over simpliciter. 

                                                        
8 Jacquette, 2015, pg. 15. 
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Additionally, his theory permits the outside-being of any conceivable object. Most Meinongian theorists (and 

detractors) agree that these two theorems stem from the more fundamental (but unstated) principle 

for any possible combination of describable properties, there exists an object that exemplifies all and only those 
properties9.  
 

Call this the naïve object theory (abbreviated ‘NOT’). For Meinongians, some approximation of NOT is 

essential to any theory of objects called ‘Meinongian’.  

The principle is not without problems however. For one, it conflicts with a quasi-tacit principle 

that our proposed logic abides by. And, now would be as good a time as any to present it. The principle is 

as follows,  

an object in which a property p is exemplified is describable as ‘possessing property p’, but it isn’t always 
the case that an object describable as ‘possessing property p’, has property p exemplified by it. 
 

which is incompatible with NOT. For example, our logic doesn’t assume that the object described as square and 

circular actually has these properties (in fact, it is assumed that the object does not). This makes our proposed 

logic a non-Meinongian one. Of course, our logic’s incompatibility with NOT only means an external 

inconsistency (maybe it is our principle that is flawed?). The bigger issue with NOT (believe many) is that it 

generates a theory of objects that is internally inconsistent. We will consider one such argument briefly. Since 

Bertrand Russell’s repudiation of NOT is both brief and considered most definitive, we will discuss it.  

Russell, an admitted admirer of some of Meinong’s work (but detractor in regard to Meinong’s object 

theory), was highly critical of NOT and famously, in ‘On Denoting’, argued that regardless of Meinong’s 

distinguishing between existence and subsistence in consistent objects, NOT still implied an object in Meinong’s 

ontology that possessed the properties goldness, mountainness, and existness. The object must then, by NOT, 

exist. But, because the object had no concrete being, it did not exist as well. This is a clear violation of the law of 

non-contradiction (and intolerable) thought Russell10. However, Russell need not have gone to the lengths he did 

                                                        
9 Zalta, 1983, pg. 6. 
10 Russell, 1905a, pg. 483. 
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to prove that contradiction. He had already acknowledged the outside-being of the square circle, an object that 

violates the law of non-contradiction in and of itself. Regardless, Russell was a little hard on Meinong. Meinong’s 

theory possessed enough room for nuance that there were ways of extending it to a consistent account of objects 

(impossible objects included). And, many Meinongians have formulated such theories. We close this chapter with 

a discussion of two of them.   

§3.2. The Meinongian Logics of Terence Parsons and Edward Zalta 

As mentioned, the logical system to be established in this thesis is non-Meinongian. But, that doesn’t 

mean that it isn’t Meinong inspired. Our system captures the concepts of existence, subsistence, and outside-being 

(essential to Meinongian theories of objects) but differs from Meinongian logics in that it does not satisfy the 

naïve object theory principle (‘NOT’). Meinongian logics then, are those logical systems that satisfy NOT as a 

matter of necessity, where our system does not. The remaining passages of this chapter will deal predominantly 

with the Meinongian logics of Terence Parsons and Edward Zalta. Parson’s and Zalta’s logics both capture the 

most current developments in Meinongian logics (and logics of objects in general) as well as parallel, in important 

ways, the system I’m proposing. Some comparison and commentary would therefore be useful, in order to indicate 

both sources of inspiration and essential departures. I will start then with a survey of Parson’s and Zalta’s logics 

and then provide the commentary.         

As stated, Parsons and Zalta’s logics are Meinongian, and so must satisfy the principle NOT. Because of 

a need to satisfy NOT, for Parsons and Zalta, an impossible object like the square circle, must be an object that 

in fact has the properties square-ness and circle-ness. This leads to contradiction of course as a square object is 

non-circular and a circular object is non-square. A square circle is impossible for this reason, but more 

importantly, in derivation systems, the square circle (adequately defined) leads to explosion (i.e. anything can be 

proven) and sentences featuring the square circle cannot be modelled (the object would have to both be a member 

and not be a member of the set of square things and the set of circular things). These properties are problematic 
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for any logician. Parsons and Zalta solve the problems above by creating second order systems capable of dealing 

with non-extant and impossible objects.  

The main innovation of Parsons’ system is its unique conception of object as well as kinds of properties. 

Parsons divides properties into two distinct kinds, nuclear and extranuclear. Informally, nuclear properties are 

those that constitute the object and extra-nuclear properties are those that are exemplified by the object but are 

not essential to it11. For example, the properties of square-ness and circle-ness are essential to the square circle, 

hence constitute it and are nuclear properties, but the property is thought about by Parsons is not essential, hence 

extranuclear. Formally, a nuclear property p (represented by the predicate Pn) is a function that maps a possible 

world w to a set of individuals of that world that have property p12. Objects (to Parsons) are not individuals but 

are sets of nuclear properties13. For example, the square circle is not an individual in some world in which square-

ness and circle-ness are exemplified by it, but the set {square-ness, circle-ness}. An object o has a nuclear property 

p just in case p Î o. An extra-nuclear property P (represented by the predicate Pe) is a function that maps a 

possible world w onto subsets of the set of objects O14. An object o has an extranuclear property P just in case o 

Î P(w). Lastly, an impossible object o is one where, in no world w is there an individual i whose nuclear properties 

are such that o Í ic (where ic represents the set of i’s nuclear properties)15.    

As for Zalta’s logic, the main innovation lies in his formalization of different ways in which objects bear 

properties. Zalta’s system retains the concepts of nuclear and extranuclear (as well as the informal definitions of 

them). However, he does not represent these concepts as kinds of properties, but instead as ways in which objects 

                                                        
 
11 Parsons, 1975, pg 569.  
 
12 Parsons, 1978, pg 138. 
 
13 Parsons, 1978, pg 139. 
 
14 Parsons, 1978, pg 141. 
 
15 Parsons, 1978, pg 140. 
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bear their properties. In Zalta’s system, an object doesn’t bear a nuclear property p in the standard sense, it encodes 

p but it does bear extranuclear properties P in the standard way, i.e. it exemplifies P16. Formally, concrete objects 

exemplify all of their properties (represented symbolically in the standard way, i.e. Px) whereas non-extant (for 

Zalta, ‘abstract’) objects encode at least one property (represented symbolically as xP)17.  

How these unique systems represent impossible objects but get around the above mentioned problems of 

explosion and satisfiability is explained thus. Let S = is square, C = is circular, the iota symbol i = the object ___ 

such that, and the lambda symbol l = the property of object(s) ___ such that18. With these symbols, on Parsons’ 

logic, we may define the square circle as  

ix(Snx  Ù Cnx)      (abbreviated ISP)19 

Informally: the object that has the nuclear properties of square-ness and circle-ness. 

Here we need not worry about contradictions arising from the fact that, in regard to individuals, a square object x 

implies x is non-circular and a circular object x implies x is non-square, as the square circle is a set of nuclear 

properties, not an individual. If the previous implications applied to objects, they would determine the square 

circle to be {square-ness, circle-ness, not-circle-ness, not-square-ness} (which is not the object that is the square 

circle, by definition). The assignment of x is just the object, {square-ness, circle-ness}. However, Parsons’ system 

does include objects like {square-ness, circle-ness, not-circle-ness, not-square-ness} where, instead of 

categorizing these objects as impossible, he defines them as contradictory20. We may formally define this object 

as follows (where ¯Pn indicates a negated nuclear property but isn’t equivalent to ¬Pn) 

                                                        
 
16 Zalta, 1983, pg 12. 
 
17 Zalta, 1983, pg 18. 
 
18 Zalta, 1983, pg 18.  
 
19 Note that the term forming iota (viz. the definite description operator) is not used in Parsons 1975 or Parsons 1978. 
However, I think this use is permissible here as the operator allows for greater clarity (we see clearly that impossible objects 
like the square circle are composed of consistent properties) and it does not alter the nature of Parsons’ logic in any way.  
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ix(Snx  Ù Cnx Ù ¯Snx Ù ¯Cnx)    (abbreviated CSP) 

Informally: the object that has the nuclear properties of square-ness and circle-ness and has the negated nuclear properties of 
square-ness and circle-ness.  
 

Here, we have no formal contradiction either, as there is no Pn such that from CSP we can derive Pnx Ù ¬Pnx 

(although, this is because a proviso like "¯Pn "Pn"x(¯Pnx « ¬Pnx) is not a tautology in Parson’s system).  

Zalta’s system does have a proviso similar to "¯Pn"Pn"x(¯Pnx « ¬Pnx) as a tautology formulable in it 

(i.e. his proof theory includes the schema ‘"x1, …, "xn([lv1, …, vn,  p]x1, …, xn « p(v1, …, vn/x1, …, xn)21’ that 

may take the form ‘"x([lv, ¬Pv]x « ¬Px’). But, as will be shown, his system avoids inconsistency due to its 

novel definition of predication. In Zalta’s system, we may define the square circle thus 

ix(xS  Ù xC)      (abbreviated ISZ) 

Informally: the object that encodes the properties of square-ness and circle-ness. 

As we can see, ISZ encodes square-ness and circle-ness but does not exemplify either. Granted, the square circle 

does exemplify not-square-ness and not-circle-ness, but to represent it as including these properties would still 

yield the consistent object 

ix(xS  Ù xC Ù [ly, ¬Sy]x Ù [ly, ¬Cy]x)   (abbreviated CSZ) 

Informally: the object that encodes the properties square-ness and circle-ness and exemplifies the properties not-square-ness 
and not-circle-ness. 
 

Here the negated properties of the square circle do not imply a formal contradiction since (with some omitted 

derivation) neither xS Ù ¬Sx nor xC Ù ¬Cx are of the form Px Ù ¬Px or xP Ù ¬xP.  

Before ending this survey, it will be helpful to give a sketch of how sentences involving impossible and 

contradictory objects may be modelled per Parsons’ and Zalta’s systems. On these systems statements like 

$x(Snx  Ù Cnx Ù ¯Snx Ù ¯Cnx)     

Informally: there is an object that has the nuclear properties of square-ness and circle-ness and has the negated nuclear 
properties of square-ness and circle-ness.  
 

                                                        
20 Parsons, 1978, pg 140. 
 
21 Zalta, 1983, pg 28. 
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and 

$x(xS  Ù xC Ù [ly, ¬Sy]x Ù [ly, ¬Cy]x) 

Informally: there is an object that encodes the properties of square-ness and circle-ness and exemplifies the properties not-
square-ness and not-circle-ness. 
 

are satisfiable just in case (per Parsons) x is assignable to an object that has square-ness, circle-ness, negated 

square-ness, and negated circle-ness as members of it22 and (per Zalta) x is assignable to an element that is in the 

set of encoded square and circular things and not in the set of exemplified square and circular things23. Since the 

domain of Parsons’ structure may contain the element named by CSP and, on Zalta’s structure, the element named 

by CSZ may be in the relation interpreting the encoded S (and not in the relation interpreting the exemplified S), 

both cases of satisfaction are possible in the respective systems. Now for the commentary  

In terms of any criticism I might have, the best I can do is say, I find Parson’s and Zalta’s solutions to  

defining and modelling problematic object kinds, slightly unsatisfying. Otherwise, it must be noted that their 

respective systems are ingenious, novel, and most importantly, applicable to many theories of metaphysics. 

Although I would have liked to have seen more delineation of object kinds (Zalta treats all objects as either 

concrete or abstract for instance), the main issue I have is that impossibility on these logics is, once again, defined 

in a non-ordinary manner. That is, the main criterion for ordinary conceptions of impossibility (i.e. the object, 

sufficiently described, leads to the violating of the law of non-contradiction) is not met. The criterion is not met 

as there is no object x where for some property P, Px and ¬Px.  

Now, this isn’t to say that Parsons and Zalta’s logics fail to do what Parsons and Zalta intended them to 

do. It is just that the views of impossible objects that they proffer do not capture the standard view of impossibility. 

                                                        
 
22 Parsons, 1975, pg 570. 
 
23 Zalta, 1983, pg 27. 
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I think a program in the logic of objects that delineates objects according to a greater variety of kinds as well as 

meets the criterion for impossibility mentioned above, while avoiding explosion and allowing for all informally 

true sentences to be modelled, is also a fruitful one. I think the reason why the impossibility criterion is difficult 

to meet is that logicians are trying to satisfy Meinong’s NOT principle and so, as mentioned, we will not seek to 

do this. I should make clear however that I am not saying that objects like the square circle do not actually have 

these properties, but I do want my logic to remain neutral in this regard. Impossible objects are simply those 

things that, according to our linguistic practice and thought processes, can only be talked about but, because they 

are contradictory when described, cannot be depicted. We now move to our chapter in which such concepts are 

formalized.  
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Chapter 4 

A Groundwork for A Logic of Objects (With Impossibility) 

• 

Here I will present the proposed system, starting with the new operators. I will explain that certain of the 

operators (the sortal quantifiers) are interdefinable and provide further instructions for determining recursively 

what constitutes a formula using these new operators. I will also provide some useful abbreviations (most of 

which are common logical symbols often treated as primitive in other systems). Then, as is customary, I will 

present the semantics and deduction theory of the groundwork, ending the chapter with demonstrations of 

derivation and modelling. At various places the presentation of the system will be interrupted by some 

commentary on the philosophical aspects of the system itself. This is necessary but might make it difficult to get 

an overall picture of the system. For this reason, I will include just the presentation of the system, its syntax and 

semantics, and its deduction theory as an appendix at the end of the chapter.   

Being as straightforward as it is, the groundwork itself will be presented along with the symbols required 

to define impossible objects. The simultaneous laying out of the groundwork and its partial application to a theory 

of impossible objects will both demonstrate the expressiveness of the system and save us from having to lay out 

the entire system all over again (just for the sake of a single new operator, definition, and abbreviation). The 

groundwork, then, is built from the vocabulary below, save for the operator ‘é ù’ (remove é ù as well as the rules 

for defining formulas whose main operator is é ù, and you have the groundwork vocabulary and syntax proper).  

The groundwork itself can account for concrete and non-concrete objects. In the case of non-concrete 

entities bearing non-contradictory properties, such objects will be quantified as existing in a ‘depictable-non-

extant-order’ - i.e. their properties may be imagined or depicted imagistically, according to some approximation 

(of sufficient accuracy). In the case of entities bearing incompatible properties (like, squareness and circularness), 

such objects cannot have properties like squareness and circularness approximated in any sense and so will be 
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quantified in an ‘exclusively sentential-order’ (i.e. they are only able to be described linguistically/descriptively). 

It is important to understand however, that at this point, an object like the square circle, although informally 

impossible, is not formally impossible on the system. Being an object that cannot have its relevant properties 

depicted imagistically, it is only said to be exclusively sentential. To be impossible is to violate the law of non-

contradiction, i.e. to have it be said of objects like the square circle (‘s’), that there is some predicate P where Ps 

Ù ¬Ps. Impossible objects, in general, cannot be formally defined as such with just the groundwork.  

Lastly, a third quantifier will range over objects that are concrete, in an ‘extant-order’. Note that, on this 

theory, objects that are extant are also depictable and sentential, and objects that are depictable are also sentential. 

These quantifiers will allow for non-concrete objects to be spoken of and represented in logical languages, but 

not lead to contradiction in derivation systems. Let ‘𝓖𝓛’ stand for the language of the groundwork and let ‘𝓘𝓛’ 

stand for the language of the groundwork capturing impossibility.  

Considering its nebulous nature, a note on the informal concept of depictability seems to be in order. We 

will provide that here before moving on to our presentation of 𝓘𝓛. First, it is assumed that the concepts extant and 

sentential are easily enough understood and uncontroversial in their treatment as ways that objects may exist. To 

be extant is to just exist in space and time, at the current time (which implies concreteness). And, to be sentential 

is just to exist as an object that can be described verbally. It is assumed that all objects may be described verbally 

(more or less truthfully), hence all objects are sentential at least. Depictable is a different way of being, however. 

Perhaps the nature of depictability is intuitively clear to certain readers, but perhaps not for others. To elucidate 

then, consider Russell’s account of accuracy, from ‘Vagueness’ - that is, the various degrees to which a 

representation approaches an isomorphism with its referent.  

Russell points out that representations like “maps, charts, photographs, and catalogues” bear much more 

properties in common with their referents than linguistic representations of the same referents do24. A map of 

                                                        
24 Russell, 1905b, pg. 89. 
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Hawaii, for example, has much more in common with the land mass that is Hawaii than the word ‘Hawaii’ does. 

The map shares the same outline, area (to scale), and orientation of sub regions (i.e. a region like Maui is south 

of a region like O’ahu on both Earth and the map), among other features. On the other hand, the verbal token 

‘Hawaii’ has much fewer properties in common with the actual land mass. But, it isn’t necessarily the case that 

the token has no properties in common with the land mass. In fact, it is highly likely that they share some 

properties (for example, it could be that the dot of the first ‘i’ in the token shares the same shape as a small island 

in the region). We may conclude then, that most representations of objects share some property in common with 

the object represented. From these notions, we will define the concept of depictability.   

Consider first that descriptions pick out properties of objects. The description ‘is square’ is meant to 

describe the purported squareness property of the relevant object, for instance. Descriptions map to properties in 

an informal sense then. With this in mind, we define ‘depictable’ as follows.  

An object is depictable, we will say, iff each subset of the set of descriptions true of it, when mapped to the relevant 
propert(ies), can have (in theory) all of the properties of any one of those subsets exemplified by at least one (not 
necessarily common) representation of the object.  

 
Mount Everest can be imagined, painted, constructed to scale via computer modelling, and depicted according to 

a multitude of other types of representations, all of which possess properties in common with the mountain itself. 

Consider that even the token ‘Mount Everest’ could have some property of it map to a property of Mount Everest 

itself (like, for example, an angle measurement in the letter ‘M’ being the same as an angle measurement of the 

southernmost precipice of Everest). Here the singleton {has features at an angle of n°} contains a property 

mapped from (on this hypothesis) a true description of Mount Everest and has all of the properties that are 

members of it exemplified by both the representation ‘Mount Everest’ and Mount Everest itself. Mount Everest 

(in principle) can have each subset of described properties (where the descriptions in question are true of Everest) 

feature in a verbal or imagistic representation of it. Mount Everest is accordingly depictable.  

An object like the square circle is not depictable however. The descriptions ‘is square’ and ‘is circular’ 

are true of the square circle and so feature in a subset of its set of descriptions. However, the properties of 
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squareness and circleness cannot both feature in any representation of the square circle. For example, any property 

of the token ‘the square circle’ that involves an arc negates squareness and any property of the token that involves 

a straight line or angle negates circleness. That exhausts the types of features of the token ‘the square circle’ (or 

any textual representation of the square circle) that can be treated as square or circular. Additionally, no utterance 

of ‘the square circle’ is either square or circular. And, lastly, it goes without saying that we cannot draw, paint, 

imagine, etc. squareness and circleness in one object. It follows that, because they imply at least one doubleton 

consisting of contradictory properties, the square circle and other impossible objects, are not depictable.  

We now move to the presentation of 𝓘𝓛. The system is laid out thus (as an extension of John L Bell’s 

presentation of first-order systems, with his permission): 

4.0. Preliminaries: 

Let λ be a function λ : I ® ω, that maps indices in I to natural numbers in ω. 
 
Let v be a function v : ω ® ω, that maps natural numbers to natural numbers in ω (not necessarily to 
themselves).   

 
4.1. Vocabulary: 
 

4.1.1. Vocabulary for A Standard Second-Order System 
v0, v1, ...        individual variables 
V0, V1, ...       predicate variables of degree v(n) 
for each i Î I, a predicate symbol Pi of degree λ(i)   predicate symbols  
for each j Î J an individual constant cj   individual constants  
=        equality symbol 
¬        logical operators: negation  
Ù        logical operators: conjunction 
$        existential quantifier symbol 
(, ), [, ]        punctuation symbols 
 
individual variables and constants are called individual terms, where t, u (possibly with subscripts) denote arbitrary 
individual terms. 
 
let T, U (possibly with subscripts) denote arbitrary predicate constants and predicate variables. 
 

4.1.2. 𝓘𝓛 Extension 
 
E$  (this quantifier binds extantial objects, or a concrete object) 
D$  (this quantifier binds depictable objects, or an object able to be represented imagistically) 
S$ (this quantifier binds sentential objects, or a verbally representable object) 
!E$  (this quantifier binds objects starting at extantiality, or a depictable, sentential, extant object) 
!D$  (this quantifier binds objects starting at depictability, or a depictable, sentential, non-extant object) 
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!S$ (this quantifier binds objects starting at sententiality, or an exclusively sentential object) 
é ù (read as it is said, and only said, that…) 
 
let C, D (possibly with subscripts) denote arbitrary individual constants and predicate constants.  
 
let X, Y (possibly with subscripts) denote arbitrary individual variables and predicate variables. 
 
let V, W (possibly with subscripts) denote variable and constant symbols of either kind. 
 

4.2. Formulas 

4.2.1.  Atomic formulas of 𝓛 := finite strings (of the basic symbols in 4.1.1.) either of the forms Tit1,...tλ(i), t = u, or T = U 
 
4.2.2.   Formulas of 𝓛 (or 𝓛-formulas) := finite strings (of the basic symbols (i) - (vii)) defined in the following recursive 
 manner: 

 
(a) any atomic formula is a formula 
(b.0) if p, q are formulas, so also are ¬p, p Ù q, $xp, $Xp (where x is any variable vn and X any variable Vn) 
(c) a finite string of symbols is a formula exactly when it follows from finitely many 
applications of (a) and (b) 

 
4.2.3.  A sentence is a formula with no free variables. 
 
(𝓘𝓛 Extension of 4.2.2.) 
 
(b.1). If p is a formula, then épù is a formula. 

 
(b.2). If p is a formula, then E$xp, D$xp, S$xp are formulas. 
 
(b.3). If p is a formula, then !E$xp, !D$xp, !S$xp are formulas. 
 
4.2.3. Form(𝓘𝓛) := {p : p is a formula of 𝓘𝓛}. 
 

  (Abbreviations) 
 
  4.2.4. if p and q are formulas, then 
 
   p Ú q  abbreviates ¬(¬p Ù ¬q) 
   p ® q  abbreviates ¬p Ú q 
   p « q  abbreviates (p ® q) Ù (q ® p)  
 
   "Xp  abbreviates ¬$X¬p  
 
   "xp  abbreviates ¬$x¬p  
    
   E"xp,   abbreviates ¬E$x¬p  
   D"xp,   abbreviates ¬D$x¬p  
   S"xp,   abbreviates ¬S$x¬p 
    
   !E"xp,   abbreviates ¬!E$x¬p  
   !D"xp,   abbreviates ¬!D$x¬p  
   !S"xp,   abbreviates ¬!S$x¬p  
 

p(['xq(x)]) abbreviates $x(q(x) Ù p(x)) 
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p([ixq(x)]) abbreviates $x[(q(x) Ù "y(q(y) ® y = x)) Ù p(x)] 
 

 Et   abbreviates E$x(x = t) 
 Dt   abbreviates D$x(x = t) 
 St   abbreviates S$x(x = t) 

 
   sTt  abbreviates éTt Ù ¬Ttù Ù !S$x(x = t)    
   sIt  abbreviates é¬t = tù Ù !S$x(x = t) 
 

Before moving on, some commentary in regard to the novel quantifiers, E$xp, !E$xp, D$xp, !D$xp, …, 

etc., is in order. Some may be anticipating that, considering the theories and semantics likely to follow from 𝓖𝓛, 

the symbols E, !E, D, !D, S, !S, etc. may just as easily be treated as sortals instead of appendages of existential 

quantifiers. In this event, the system can then be translated into a many-sorted logic. That 𝓖𝓛 is translatable into 

a many-sorted logic may very well be the case. However, should this be the case, the presentation of 𝓖𝓛 above 

would function as one identical to a many-sorted logic, but one that I suggest is far more economical. If 𝓖𝓛 were 

to be translated to a many-sorted logic we would need define a set S of sortals (where E, D, S Î S). We would 

need an additional stock of variables for each sortal (i.e. vE0, vE1, ... ; vD0, vD1, ... ; vS0, vS1, ... ). And finally, for 

each i Î I , predicates Ti and individual constants ci would require a signature s and 〈s1,...,sλ(i)〉 respectively (i.e. 

a formal indicator that ci is of the sort s Î S and a formal indicator that, for each t1,...tλ(i) where Tit1,...tλ(i), t1, ..., tλ(i) 

are of the sort(s) s1, ..., sλ(i) Î S, respectively). Clearly, these additions to the language mean more definitions will 

need to be added to the deduction system and semantics. 𝓖𝓛 on the other hand includes just an additional six 

symbols where the deduction system and semantics are defined in virtually the same way as in standard second 

order systems. So, if 𝓖𝓛 functions identically to a standard many-sorted logic, it does so with far less machinery. 

Alternatively, if 𝓖𝓛 cannot be translated into a many-sorted logic, then it simply stands as a logic of its own.     

4.3. Interdefinability 
 
4.3.1.  "y(!E$x(x = y)  «   [(E$x(x = y) Ù D$x(x = y)) Ù S$x(x = y)]) 
 
 !Ec  abbreviates !E$x(x = c) 
 
 (Let 4.3.1. be more generally labelled ‘Ax. !E$’)  
 
4.3.2.  "y(!D$x(x = y)  «   [(¬E$x(x = y) Ù D$x(x = y)) Ù S$x(x = y)]) 
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 !Dc  abbreviates !D$x(x = c) 
 
 (Let 4.3.1. be more generally labelled ‘Ax. !D$’)  
  
  
4.3.3.  "y(!$Sx(x = y)  «   [(¬E$x(x = y) Ù ¬D$x(x = y)) Ù S$x(x = y)]) 
 
 !Sc  abbreviates !S$x(x = c) 
 
 (Let 4.3.1. be more generally labelled ‘Ax. !S$’)  
 
Informally, 4.3.1. says, an object starting at extantiality is defined as an extant, depictable, and sentential 

object. 4.3.2. says, an object starting at depictability is defined as a non-extant but depictable and sentential object. 

4.3.3. says, an object starting at sententiality is defined as a non-extant and non-depictable, but sentential object.  

4.4. Concrete, Non-Concrete, Impossible (and sententializing variants) 

concrete(t)  abbreviates !Et 
 
non-concrete(t)  abbreviates !Dt   
 
T-impossible(t)  abbreviates sTt 
 
I-impossible(t)  abbreviates sIt 
 
Impossible(t)  abbreviates ($X)X-impossible(t) Ú I-impossible(t)   
 

   sConcrete(t)  abbreviates é!Et Ù ¬!Etù Ù !S$x(x = t)    
    

   sNon-concrete(t)  abbreviates é!Dt Ù ¬!Dtù Ù !S$x(x = t)    
     

   sT-Impossible(t)  abbreviates ésTt Ù ¬sTtù Ù !S$x(x = t)  
 
   sI-Impossible(t)  abbreviates ésIt Ù ¬sItù Ù !S$x(x = t) 
 

sImpossible(t)  abbreviates é($X)X-impossible(t) Ù ¬($X)X-impossible(t)ù Ù !S$x(x = t)   
     Ú 

        éI-impossible(t) Ù ¬I-impossible(t)ù Ù !S$x(x = t)     
  
4.5. Structure  
 

4.5.1.  𝓜 = (E, D, S, Sent(𝓘𝓛), 𝓒, 𝓟, 𝒱, {Ri : i Î I}, {ej : j Î J}, Ré ù,  𝓡) 

𝓜 denotes the structure, i.e. a undecuple. 𝓜 consists of a nonempty domain, S, which is a set with a well-defined 

subset D having a well-defined subset E.  
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What follows is a theory for defining the domain of 𝓜. Its employment, it must be said, is the choice of 

the logician’s. I suspect, however, that the theory captures an uncontroversial aspect of objects (uncontroversial, 

at least, to those who accept that descriptions exist and that they may be true of certain objects and not others), 

and so is tacitly true of any domain populated by any objects a formal theory is meant to capture. More importantly 

however, the theory provides an answer to the anticipated question, what exactly are the elements of the domain 

of your structure (especially the impossible elements)? We will define E, D, and S in accordance with the 

following theory, inspired by Terence Parsons definition of object25 (by way of some preliminary information).  

D1. Let A be an arbitrary set and P(A) be the power set of A, then  

   P+(A)  :=  P(A) – {Æ}  

D2. Let f be an arbitrary function, then  

   DOMf := {x : $y Î (x, y) Î f} and RANf := {y : $x Î (x, y) Î f}.  

D3. Define OB: 𝒱 ® P+(𝓓) to be a function (call it the ‘function of objects’). The function of objects maps the class 𝒱 to 

 P+(𝓓), where 𝒱 is the class of all elements o (where ‘o’ is an element name, possibly with subscripts) and 𝓓 is the set 

 of all descriptions d (where ‘d’ is a description, possibly with subscripts) and OB(o) is the set of descriptions for an 

 element o that completely describes o.  

D4. Let 𝒱 ÍOB be the Cartesian product of V and OB so that for each o Î 𝒱, we define OBo such that, 

   OBo =  {(o, y) : (o, (o, y)) Î 𝒱 ÍOB} 

Informally, OBo (for any o Î 𝒱) is a subset of OB (more specifically, OBo is a function, but this has yet to be proven). 

The condition on our definition of each OBo ensures that the only element that features in the domain of any OBo is o 

itself (where this will be proven below).   

D5. Let O be the set of OBo (for each o Î 𝒱). 

L1.  For each OBo Î O, OBo is a function. 
 
  Proof:  OBo Î O  Þ OBo  = {(o, y) : (o, (o, y)) Î 𝒱 ÍOB}  on D5 
     Þ (o, y) Î OBo Þ (o, y) Î OB  on D4 
     Þ OBo Í OB 
                                                        

25 For Parsons, objects are represented as sets of nuclear properties. In a similar vein, I represent objects as sets, more precisely, graphs 
(or, even more precisely, as functions) consisting of a single two-tuple, itself consisting of an element and the set of descriptions accurate 
of the element. This leaves the definition of the object nebulous (by design), but at the very least an entity, of which we can say, 
determines certain descriptions true of itself and other descriptions not true of itself. 
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   Where, because (x, y) Î OBo Þ (x, y) Î OB and because OB is a function, should it be the case that, 
   for any x, y1, y2,     
     
    (x, y1), (x, y2) Î OBo  and  y1 ≠ y2 

 
    then 
 
    (x, y1), (x, y2) Î OB  and  y1 ≠ y2   
 
   and we see that OB cannot be a function. This is a contradiction, hence 
 
    (x, y1), (x, y2) Î OBo  Þ  y1 = y2  
 
   which proves that OBo is a function.      ¨ 
 
*Call each function of O an ‘object function’.  
 
T1. For each OBo Î O, "y, x Î DOMOBo,  
 
  x = y and  OBo(x) = OBo(y) 
 
  Proof: (on D4)  for each x Î DOMOBo x = o 
 
   which means,  for any x, y Î DOMOBo, x = o = y 
 
   hence x = y and because OBo is a function (on L1), OBo(x) = OBo(y)   ¨ 
 

Informally, theorem T1 states that each object function OBo contains just a single element in its domain and a single 

element in its range. By D4, the element in the domain of any OBo is the object OBo is indexed to and the element in 

its range is the set of descriptions that completely describe the object that OBo is indexed to. Each OBo is essentially a 

function that determines a complete and accurate description of itself.      

*note that since each object function’s domain contains just the object it’s indexed to, there should be no confusion should we 
shorten ‘OBo(o)’ to ‘OB(o)’. Note too that for any OBo, OBo is essentially a restriction function f on OB that restricts OB to {o}. 
Since  
 

f[{o}] = {(x, y) : (x, y) Î OB Ù x Î {o}} = {(o, a)} (where a is the set of descriptions of o)  
 
and  
 

OBo  = {(o, y) : (o, (o, y)) Î 𝒱 ÍOB} = {(o, a)} (where a is the set of descriptions of o), 
 

we have it that, 
 

OBo = f[{o}]  
 

So, this is another way of looking at object functions.      
 

Here are some examples of object functions and their images:  

OB(The Square Circle)  =  {square, non-square, circular, non-circular, …}  
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and 
 
OB(Homer Simpson)   =  {the-father-from-The-Simpsons, bald, non-concrete, …}   
 
and 
 
OB(Mount Everest)  =  {the-tallest-mountain-on-earth, treacherous, concrete, …} 
    

Note that descriptive terms may be positive or negative. A variable +d indicates a positive descriptive term, viz. a 

descriptive term not prefixed with a ‘non’ (e.g. ‘square’) and -d indicates a negative term, viz. a descriptive term 

negated with a ‘non’, ‘not’, etc. (e.g. ‘non-square’). Lastly, let d(o1, …, on) indicate a described relation where o1 

is described as bearing relation d to objects up to and including on and all objects (save for o1) up to and including 

on are described as bearing relation d to o1 (and all objects ok bear relation d to o1, …, ok-1, ok+1, … on). So, if d(o1, 

o2) is the description ‘the father of’, d(o1) Î OB(o2) and d(o2) Î OB(o1). One instance of the previous case might 

be, ‘the father of Justin Trudeau’ Î OB(Pierre Trudeau) where conversely, ‘Pierre Trudeau is the father of’ Î 

OB(Justin Trudeau). Here is our last definition.  

  D6.  For each d Î 𝓓, Rd := {(OBo1, …, OBon) Î On : (+d(…, on) Î OB(o1) Ù … Ù +d(o1, …, on-1) Î OB(on))  
       
                Ù  
       
               (-d(…, on) Ï OB(o1) Ù … Ù -d(o1, …, on-1) Ï OB(on))} 
   
As an example of a D6 relation, let Ris-the-father-of be the set of ordered pairs (x, y) where x is described as being the 

father of y and y is described as having x as a father of him/her. Since  

‘is the father of Justin Trudeau’ Î OB(Pierre Trudeau) Ù ‘Pierre Trudeau is the father of’ Î OB(Justin Trudeau)  

Ù 

‘is not the father of Justin Trudeau’ Ï OB(Pierre Trudeau) Ù ‘Pierre Trudeau is not the father of’ Ï OB(Justin Trudeau)  

We have it that 

(OBPierre-Trudeau, OBJustin-Trudeau) Î Ris-the-father-of 

We may now define E, D, and S as follows (refer to this definition as ‘D7’)   

S  Î  P+(O)   
   
D := { OBo Î S : (‘concrete’ Î OB(o) Ú ‘non-concrete’ Î OB(o)) Ù for any d Î D, -d, +d  Ï OB(o)}  
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E := { OBo Î D : ‘concrete’ Î OB(o) Ù ‘non-concrete’ Ï OB(o) Ù for any d Î D, -d, +d  Ï OB(o)}  

 
To address a potential metaphysical concern, note that each domain (i.e. S, D, E) may contain object functions 

OBo despite the fact that functions are traditionally understood to be abstract objects and therefore, are not extant 

objects. However, despite our presenting these functions set theoretically, they are to be treated as representations 

of objects (of different kinds) that realize the function in question, where it is the represented object that is in our 

domain.  

For clarification, take for example, an extant object like Mount Everest. Clearly Mount Everest functions 

as an object that makes descriptions like ‘the-tallest-mountain-on-earth’, ‘treacherous’, etc. true descriptions of 

it. OBMount-Everest represents the object in S that functions to make the aforementioned set of descriptions a complete 

description of Mount Everest, i.e. OBMount-Everest represents Mount Everest itself. The nature of an object like 

Homer Simpson is not so easily determined, and hence what realizes the function OBHomer-Simpson is not either. 

However, whatever the object that Homer Simpson is (platonic particular, descriptions in a television script, 

animation cells, etc.) something functions to make the set of descriptions including ‘bald’, ‘non-concrete’, ‘the 

father from the Simpsons’, etc. a description of Homer Simpson. That something is what we represent with 

OBHomer-Simpson where we can certainly depict such an object but have not determined it to be extant. The same can 

be said for The Square Circle, save for the fact that (regardless of what object The Square Circle is) it functions 

to make the set of descriptions containing ‘square’ and ‘non-square’ a description of it, hence what realizes OBThe-

Square-Circle is not able to be depicted as a square and circular object (as a single representation), and is therefore 

exclusively sentential.  

Lastly, it should be pointed out that the theory of objects above in no way factors in satisfaction conditions 

for formulas and theories of 𝓘𝓛. The main role of the theory is establishing, to which domain, objects belong. A 

secondary role of the theory is determining certain constraints put on other facets of the structure in order to 

accommodate the odd nature of impossible objects. Other than the roles of answering the metaphysical question, 
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determining domain membership, and accommodating impossible objects, the above theory serves no other 

purpose in 𝓘𝓛. This might seem counterintuitive considering that each element comes prepackaged with a (at 

least) countable set of descriptions. One may be tempted to ask, why not define the relations on them too? The 

answer is, the principle established in the previous chapter, that is,  

an object in which a property p is exemplified is describable as ‘possessing property p’, but it isn’t always 
the case that an object describable as ‘possessing property p’, has property p exemplified by it. 
 

If the latter conjunct of this principle were false, then we could not have impossible objects. But, as was previously 

argued for, an eliminativism like this is not tenable. We move now to a discussion of the remaining elements of 

the above structure.            

Sent(𝓘𝓛) is a set containing the sentences of Form(𝓘𝓛). 𝓒, 𝓟, 𝒱, are the sets of constant, predicate, 

predicate variable symbols (respectively) of 𝓘𝓛. {Ri : i Î I} is a family of relations on S with the following 

condition, 

for any OBo Î S and any d Î D  
 
 +d, -d Î OB(o)  Þ  Rd  = Ri  (for some i Î I where l(i) = 1)  and OB(o) Ï Ri 

  
{ej : j Î J} is a family of designated elements of S with the following condition, 

for any OBo Î S and any d Î D  
 
 +d, -d Î OB(o)  Þ  OBo = ej   (for some j Î J) 

 
Ré ù is a relation on Sent(𝓘𝓛) with the following conditions, 

for any sentence s, if s Î Ré ù for any structure 𝓜, then it is not the case that 𝓜 satisfies s (more on ‘satisfaction in §4.7.).   
 
and 
 
for any OBo Î S and any d Î D, 
 
 if d ≠ ‘concrete’, ‘non-concrete’, ‘impossible’, ‘abstract’, ‘fictional’, or ‘vague’, then 
  
  +d, -d Î OB(o)  Þ OBo = ej   and  Rd = Ri  Þ ‘Picj Ù ¬Picj’ Î Ré ù 

  
 or 
  
 if d = ‘concrete’, ‘non-concrete’, ‘impossible’, ‘abstract’, ‘fictional’, or ‘vague’, then (where p captures the relevant 
 mode of existence)    
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  +d, -d Î OB(o)  Þ OBo = ej  Þ ‘p(cj) Ù ¬p(cj)’ Î Ré ù 

 
And lastly, let  

R abbreviate {Ri : i Î I}    

and 

ÈP(Sn) := P(S1) È P(S2) … for each n Î w 

So that,  

𝓡 Í ÈP(Sn), with the constraint, 

R Í 𝓡  

To augment the structure, let (λ, J) be the type of 𝓜 (where similar structures are structures of the same type). 

Although functors have not been included in 𝓘𝓛, should they be, any n-place operation (denoted, ‘f: Sn → S’) is 

an (n+1)-place single-valued relation on S. To close this section, let us put one final condition on the structure, 

namely, that any 𝓘𝓛 structure satisfy every instance of the comprehension axiom scheme, viz. 

$X"x1, …,"xn(Xx1,…,xn « p(x1,…,xn)) 

In essence then, should we satisfy all of the constraints listed above, our structure would meet all of the conditions 

required of a faithful Henkin structure. A Henkin structure is a second order structure 𝓜 where predicate variables 

range over a domain 𝓡, and is faithful if 𝓜 satisfies each instance of the comprehension schema. Henkin models 

will be of import when it comes time to prove certain meta-results of the system. The rationale behind choosing 

Henkin structures is the preference for completeness in addition to soundness. The ability to determine properties 

of the deductive system by virtue of semantic consequence in addition to properties of our structures by virtue of 

syntactic consequence (as opposed to just the latter) adds greater utility. Further, we may introduce certain 

constraints on our Henkin structures that allow them to behave as standard second-order semantic structures do 

(while leaving the semantics Henkin). For one example, we can achieve the same outcomes as a standard 

semantics if we limit our Henkin structures to those that are full (viz. 𝓡 = ÈP(Sn)), as our variables now range 

over all subsets of the domain. That said, standard second-order semantics cannot be augmented to feature the 
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same properties that Henkin semantics do (either the variables range over all subsets of the domain or they range 

over a select few subsets and the semantics become Henkin). With Henkin structures grounding our semantics 

we have far more options in deciding how we want our semantics to relate to our syntax.          

4.6. Interpretation 

4.6.1. (Variable Assignment) Given the structure, 𝓜 of type (λ, J), 
 
 A-sequence := a countable sequence of elements of S (denoted, ‘a = (a0, a1, …)’) 
 
  R-sequence := a countable sequence of elements of 𝓡 (denoted, ‘r = (R0, R1, …)’) with the following constraint: 
 
  For each n, the nth R in r is of degree v(n) 
 

 
4.6.2. (Interpreting the Symbols) Given 𝓜, a, r (where we read ‘V(𝓜, a, r)’ as the element of 𝓜 that V is interpreted-
by/names/is-assigned), 
 

Interpretation of 𝓘𝓛 in (𝓜, a, r)  :=  i) Pi(𝓜, a, r)  = Ri   
 
       ii) Vn(𝓜, a, r)  = Rn  
        
       iii) cj(𝓜, a, r)  = ei     
 
       iv) vn(𝓜, a, r)  =  an 

        
4.6.3. (Variant Assignment)  
 

For n Î ω, b Î S, 
 

 [n|b]a := (a0, a1 ,..., an–1, b, an+1, ...) 
 
For n Î ω, S Î 𝓡 (where S is of degree v(n)) 

 
[n|S]r := (R0, R1 ,..., Rn–1, S, Rn+1, ...)   
 
 

4.7. Satisfaction 

I will start with the satisfaction conditions for formulas of the standard second order language, then move 

on to define conditions for formulas unique to 𝓘𝓛. The conditions for the standard language are thus: 

4.7.1. For p Î Form(𝓘𝓛),  
 

a, r satisfy p in 𝓜 (denoted, ‘𝓜 ⊧a,r p’) :=  
 
   4.7.1.1.   for terms t, u, 

        
    𝓜 ⊧a,r t = u Û t(𝓜, a, r) = u(𝓜, a, r) 
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   for predicates T, U, 
 
     𝓜 ⊧a,r T = U Û T(𝓜, a, r) = U(𝓜, a, r)  
   
  4.7.1.2. for terms t1, …, tλ(i) and predicate Ti    
       
    𝓜 ⊧a,r Ti t1, …, tλ(i)  Û (t1(𝓜, a, r), …, tλ(i) (𝓜, a, r)) Î Ti(𝓜, a, r) 

 
  4.7.1.3.   𝓜 ⊧a,r ¬ p  Û it is not the case that 𝓜 ⊧a,r p   
 
  4.7.1.4.  𝓜 ⊧a,r p Ù q  Û 𝓜 ⊧a,r p and 𝓜 ⊧a,r q   
 
    4.7.1.5.  𝓜 ⊧a,r $Vnp  Û for some S Î 𝓡 of degree v(n), 𝓜 ⊧a [n|S]r  p   

 (𝓘𝓛 Extension) 

4.7.2. 𝓜 ⊧a,r épù  Û p contains free variables X1, …, Xn and for some C1 Î 𝓒 È 𝓟,…,  
     Cn Î 𝓒 È 𝓟, C1(𝓜, a, r) = X1(𝓜, a, r), …, and Cn(𝓜, a, r) = Xn(𝓜, a, r)  

 
     and  
      
     p(X1, …, Xn/ C1, …, Cn)  Î Ré ù  
 
     or 
 
     p does not contain free variables X1, …, Xn and p Î Ré ù  

 

We read 4.7.2. as, it is said, and only said, that p is true iff p (with possible substitutions) is a member of 

Ré ù. Here some explanation is required in order to clarify the notion of saying and only saying something. It would 

also be useful to elaborate on the nature of the operator é ù, and the fact that the process of satisfying formulas of 

form épù (with free variables in p) is as unconventional as it is. As a preliminary, let the condition  

p contains free variables X1, …, Xn and for some C1 Î 𝓒 È 𝓟,…, Cn Î 𝓒 È 𝓟, C1(𝓜, a, r) = X1(𝓜, a, r), …, and  
Cn(𝓜, a, r) = Xn(𝓜, a, r)  
 
and  
      
p(X1, …, Xn/ C1, …, Cn)  Î Ré ù  
 

be abbreviated ‘CON’.  

Syntactically/logically, é ù simply blocks any further decomposition of formulas of form épù in order to 

allow for the violating of the law of noncontradiction through assuming/derivation of formulas of the form éq(t) 

Ù ¬q(t)ù, but not allowing for the derivation of q(t) Ù ¬q(t) (from éq(t) Ù ¬q(t)ù) which would necessitate the 

negation of any assumption implying éq(t) Ù ¬q(t)ù ® q(t) Ù ¬q(t), hence lead to explosion. Semantically, é ù 
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captures an implicit aspect of our informal statements about impossible objects, and the condition CON captures 

an implicit aspect of the way we speak informally about impossible objects.  

In regard to our informal statements about impossible objects, it is the case that in ordinary philosophical 

conversation we speak about impossible objects without fearing any interlocutor will halt the conversation on the 

grounds that an impossible object is self-contradictory, hence our conversation is meaningless. We may say, for 

example, that the square circle is of philosophical interest and have this statement (despite the implied 

contradiction) come off as completely meaningful. In cases like this, we converse as though we have agreed to 

treat the property terms ‘square’ and ‘not-square’ and ‘circular’ and ‘not-circular’ as functioning differently from 

all other properties used to describe the square circle (with these properties facilitating meaning despite their 

being contradictory).  

What we observe of these conversations is that (in conversing) we do not speak as though the objects in 

question actually exemplify ‘square-ness’ and ‘not-square-ness’ and ‘circle-ness’ and ‘not-circle-ness’. This 

would imply that some of our statements are meaningless and elicit objections. And yet, no objections are made. 

In our conversing, we do not speak as though impossible objects lead to inconsistency in any way, but we 

recognize that these objects are themselves contradictory and impossible (suggesting we are not simply ignorant 

of these facts). Another observation we may make is this - when we talk about impossible objects like the square 

circle (as impossible) we differentiate easily between contradictory properties that make the object impossible 

and contradictory properties that do not (where we allow attribution of the former kind but not the latter). As an 

example of this, asserting that the square circle is square at one point in the conversation and then asserting that 

the square circle is not-square at another point is perfectly acceptable, but asserting that the square circle is 

interesting at one point in the conversation and then asserting that the square circle is not-interesting at another 

point is not. The latter case will elicit, in more perceptive listeners, the pointing out of an inconsistency.  
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These observations suggest that, in ordinary conversation, there is the aforementioned special function 

granted to properties (that make impossible objects impossible), where this special function allows for meaning 

and consistency. In addition, this special function is regularly applied to the relevant contradictory properties and 

denied of all others. That said, the nature of this special function is decidedly nebulous. How might this function 

be realized we may ask. One way this function may be realized, is through the following tacit qualification:  

it is said (and it is agreed26 that it is only said that) ‘___’.     (Q) 

Here, with an application of Q to a statement like  

the square circle is square and not-square as well as interesting and not-interesting  

we see that the statement is elliptical for  

it is said (and it is agreed that it is only said that) ‘the square circle is square and not-square’ and the square 
circle is interesting and not-interesting. 

 
In the elliptical case, it is perfectly meaningful (and possibly true) to say that it is said (and only said that) the 

square circle is square and not square. But, it is meaningless (and false) to say that the square circle is interesting 

and not interesting. é ù is the operator that makes explicit, in formal languages, the tacit Q in informal 

conversation.  

In regard to the way we speak informally about impossible objects, CON captures a subtle limitation, in 

ordinary conversation, of how we interpret pronouns in statements featuring Q. Consider an application of Q to 

it is square and not-square. This combination yields the following           

it is said (and it is agreed that it is only said that) ‘it is square and not-square’.    (QI) 
 

QI is infelicitous (in an ordinary language sense) should the object that it stands in for not be named in a previous 

statement where this name (call it ‘N’) features in a true stating of  

it is said (and it is agreed that it is only said that) ‘N is square and not-square’.    (QN) 
 

                                                        
26 Where ‘agreed’ here means an informal, even tacit, agreement to not do more than describe the contradictory object. We may infer 
such an agreement by the facts that all parties understand the contradictory nature of the object in question, but speak of it as though it 
may feature in consistent conversations, nonetheless. The only way to do this is to assume such a qualification. 
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This is so as (because we cannot depict nor be made acquainted with impossible objects), if QN (or something 

equivalent) has not been stated, then it is uninterpreted in QI, and because of this lack of an interpretation, any 

interlocutor will be ignorant as to what it stands in for and will not know whether or not to apply Q to ‘it is square 

and not square’. The average interlocutor will respond by asking, what do you mean by it? or by stating nothing 

is both square and not square, that’s impossible. Here QI is not actually QI, but just ‘it is square and not square’. 

In ordinary conversation, ‘it is square and not square’ cannot become QI until the object it stands in for is identified 

with a name N, where it is also established that ‘N is square and not square’. Obviously QN, if accepted in the 

conversation, will satisfy these conditions. In ordinary conversation then, we do not treat QI as true unless we 

treat QN (or something equivalent) as true - where conversely, if we treat QN as true (and establish that it stands 

in for the object that N names), then we treat QI as true. In ordinary conversation, QI is true just in case QN is 

true. Just to cover all of the bases, it should be mentioned that if any interlocutor were to actually accept QI 

without QN, then because the it in QI can stand in for any object, anything could be said (and only said to be) 

square and not square. This consequence is, as well, infelicitous. One final note, a formula like ‘Xx’ with free 

variables ‘X’ and ‘x’ would have a natural language analogue along the lines of ‘That’s the way it is’. So, the 

above rationale for pronouns applies, too, to indexicals picking out properties (i.e. cases where linguistic context 

is required to understand which property is being referred to), hence we extend the satisfaction conditions to 

include predicate variables, accordingly.    

If we treat free variables as analogous to unquantified indexicals, a variable assignment as analogous to 

interpreting an indexical, and lastly, we treat CON as analogous to the stipulation that a previous statement be 

made naming an impossible object or adjective describing an impossible object, then since é ù is analogous to Q, 

we see how CON formally mirrors our ordinary language treatment of indexicals standing in for impossible 

objects and their properties. Further, if CON is not stipulated, we run into the same problem formally, that we do 

informally, when we apply Q to a statement with an unquantified and unnamed pronoun. That is, if we simply 
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assign to a variable x in éPx Ù ¬Pxù some object in the domain and then establish ‘Px Ù ¬Px’ Î Ré ù, we would 

necessitate that éPx Ù ¬Pxù ® "xéPx Ù ¬Pxù be universally valid in 𝓘𝓛. This is clearly an undesirable 

consequence. For this reason, to satisfy a formula épù with free variables X1, …, Xn, we must apply what we 

might call a quasi-Robinsonian constraint, i.e. we must first find a constant(s) C1, …, Cn naming the object(s) 

that X1, …, Xn stand(s) in for, and then show that ‘p(X1, …, Xn/ C1, …, Cn)’ Î Ré ù. We may now move on to the 

sections on satisfaction for quantified formulas and abbreviations.                

4.7.3. 𝓜 ⊧a,r $vnp  Û for some b Î S, 𝓜 ⊧[n|b]a, r  p  
 
 𝓜 ⊧a,r E$vnp  Û E is non-empty and for some b Î E, 𝓜 ⊧[n|b]a, r  p    

     
 𝓜 ⊧a,r D$vnp  Û D is non-empty and for some b Î D, 𝓜 ⊧[n|b]a, r  p 
  
 𝓜 ⊧a,r S$vnp  Û for some b Î S, 𝓜 ⊧[n|b]a, r  p  
 
What is said in 4.7.3. is, a sentence positing an object of any kind is true iff some object in S assigned to 

vn, allows for p to be satisfied. A sentence positing an extant object is true iff some object in E, assigned to vn, 

allows for p to be satisfied, where the same can be said for D and S statements, save for the fact that objects are 

assigned from D, for D$vnp and S, for S$vnp. Note lastly, since S is the overarching domain of any 𝓘𝓛 structure, 

elements of S that satisfy $ sentences, satisfy S$ sentences and vice versa (in other words, sentences of the form 

S$vnp and $vnp are equivalent).     

4.7.4. 𝓜 ⊧a,r !E$vnp  Û E is non-empty and for some b Î E, 𝓜 ⊧[n|b]a, r  p 
  
 𝓜 ⊧a,r !D$vnp  Û D is non-empty and for some non-empty X Í D, X Ç E = Æ    
 
     and  
 
     for some b Î D (where b Ï E), 𝓜 ⊧[n|b]a, r  p     
 
 𝓜 ⊧a,r !S$vnp  Û for some b Î S (where b Ï E and b Ï D), 𝓜 ⊧[n|b]a, r  p  
 
What is said in 4.7.4. is, a sentence positing an object that starts at extantiality is true iff some object in E, 

assigned to vn, allows for p to be satisfied. The same can be said for !D and !S statements, save for the fact that 

objects are assigned from D (but not E) for !D$vnp, and S (but not D and S) for !S$vnp. 
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4.7.5.  for a term t   
     
  𝓜 ⊧a,r !Et Û 𝓜 ⊧a,r !E$x(x = t)  
 
  𝓜 ⊧a,r !Dt Û 𝓜 ⊧a,r !D$x(x = t) 
 
  𝓜 ⊧a,r !St Û 𝓜 ⊧a,r !S$x(x = t)  
 
What is said in 4.7.5. is, statements of the form !Et, !Dt, and !St are satisfied iff what they abbreviate (i.e. 

!E$x(x = t), !D$x(x = t), and !S$x(x = t) respectively) are satisfied.    

4.7.6.  for a term t   
     
  𝓜 ⊧a,r sPit Û 𝓜 ⊧a,r éPit Ù ¬Pitù and  𝓜 ⊧a,r !St  
 
  𝓜 ⊧a,r sVit Û 𝓜 ⊧a,r éVit Ù ¬Vitù and  𝓜 ⊧a,r !St  
 
What is said in 4.7.6. is, an atomic formula whose predicate is sententialized is satisfied iff it’s true that 

the sententialized object is only in the sentential domain and it’s true that the sententializing predicate P, said and 

only said to relate, and not relate, to the object t, is a formula in Ré ù. We now take a moment to prove a meta-

property of the model theory, that is:  

4.7.7. 𝓜 ⊧a,r "vnp  Û for all b Î S, 𝓜 ⊧[n|b]a, r  p 

Proof (let ‘it is not the case that’ be abbreviated ‘Not’): 

We assume here that a double negative makes a positive (call this metarule ‘DN’) and ‘for some, not’ is   

  equivalent to ‘not, for all’ (call this metarule ‘QN’). 

𝓜 ⊧a,r "vnp  Û 𝓜 ⊧a,r ¬$vn¬p       (on 4.2.5.) 

   Û Not 𝓜 ⊧a,r $vn¬p      (on 4.7.1.3.) 

    Û Not, for some b Î S 𝓜 ⊧[n|b]a,r ¬p    (on 4.8.2.) 

    Û Not, for some b Î S, NOT 𝓜 ⊧[n|b]a,r p   (on 4.7.1.3.)  

    Û Not, Not, for all b Î S 𝓜 ⊧[n|b]a,r p    (QN) 

    Û for all b Î S 𝓜 ⊧[n|b]a,r p     (DN) 

This concludes the proof. 

Note that virtually the same proof can be carried out to achieve the following: 
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4.7.8. 𝓜 ⊧a,r E"vnp  Û if E is non-empty, then for all b Î E, 𝓜 ⊧[n|b]a, r  p     

𝓜 ⊧a,r D"vnp  Û if D is non-empty, then for all b Î D, 𝓜 ⊧[n|b]a, r  p 
  
𝓜 ⊧a,r S"vnp  Û for all b Î S, 𝓜 ⊧[n|b]a, r  p  
 

4.7.9. 𝓜 ⊧a,r !E"vnp  Û if E is non-empty, then for all b Î E, 𝓜 ⊧[n|b]a, r  p 
  
 𝓜 ⊧a,r !D"vnp  Û if D is non-empty and for some non-empty X Í D, X Ç E = Æ,  
        then for all b Î D (where b Ï E), 𝓜 ⊧[n|b]a, r  p     
 
 𝓜 ⊧a,r !S"vnp  Û for all b Î S (where b Ï E and b Ï C), 𝓜 ⊧[n|b]a, r  p  
 
4.7.10.  We say that an 𝓘𝓛 formula p is satisfiable if for some 𝓘𝓛 structure 𝓜 and variable assignments a, r, 𝓜 ⊧a,r p.  
 
4.7.11.  We say that an 𝓘𝓛 formula p is valid if for some 𝓘𝓛 structure 𝓜 and all variable assignments a, r, 𝓜 ⊧a,r p.  
 
4.7.12.  We say that an 𝓘𝓛 formula p is universally valid (‘Æ ⊧ s’ or ‘⊧ s’)if for all 𝓘𝓛 structures 𝓜, 𝓜 ⊧ p.  
 
4.7.13.  For any G Í Sent(𝓘𝓛) and any 𝓘𝓛 structures 𝓜, we say that 𝓜 is a model of G (‘𝓜 ⊧ G’) if, for each s Î G, 𝓜 ⊧ s.  
 
4.7.14.  For any G Í Sent(𝓘𝓛) and any s Î Sent(𝓘𝓛), we say that G entails s (‘G ⊧ s’) if, for all 𝓘𝓛 structures 𝓜,  
 
      if  𝓜 ⊧ G,  then  𝓜 ⊧ s   
 

4.8. Natural Deduction of 𝓘𝓛. 
 

4.8.1. Inference Rules (where ‘⊳’ is read ‘from what preceded, infer…’ and open assumptions are 
sentences of 𝓘𝓛27) 
 

  

                                                        
27 Again, since we’re trying to do as little ‘reinventing of any wheels’ as possible, the form of these inference rules is fairly standard. 
Said form should be familiar, at least, to anyone who has read introductory logic texts like Bergmann et. al.’s The Logic Book, Arthur’s 
Natural Deduction, and others. 
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Note that we include the rules of the extended natural deduction system (i.e De Morgan, Transposition, 

quantifier negation, etc.) but, since the same results are derivable from all of the above (and are found in 

any logic textbook), we do not present them here. We do include the following axioms unique to 𝓘𝓛 and 

second-order logics however. 

 

 

Default Sententiality (DS) 
 
⊳ "x(!Ex Ú [!Dx Ú !Sx])      
 
(informally: all objects start, at least, at sententiality) 

  

No Proof (NP) 
 
⊳ ésù ® ¬s  
 
(informally: if we can say, but only say that s, then s does not obtain) 

 

 

Extensionality (Ex.) 
 
⊳ "X"Y(X = Y « "x(Xx « Yx)) 
 
(informally: If two predicates are identical, then any object relating to the one, relates to the other and vice-versa) 

Comprehension (Comp.) 
 
⊳ $X"x1, …,"xn(Xx1,…,xn « p(x1,…,xn)) 
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Lastly, definitions 4.3.1. – 4.3.3. are axioms of 𝓘𝓛. 

4.8.2. Proof.  

A proof (alternatively derivation) in 𝓘𝓛 of p from G (where, p Î Sent(𝓘𝓛) and G Í Sent(𝓘𝓛)) consists of a series: 
 

1.  G 
      . 
      . 
       ._ 
m.  q1 
  
      … 
 
n.  qn 

 
where ‘G . . .’ is a list of the sentences of G (where G is possibly empty), p = qn, q1 – qn are 𝓘𝓛-formulas, qn can be 

derived by application of some rule of inference to formulas on lines i < n, and qn falls only under the assumptions of 

‘G . . .’. 

4.8.2.0. p is provable from G (denoted ‘G ⊦ p’) iff there is a proof of p from G  
 
4.8.2.1. G is consistent (in 𝓘𝓛) iff for no 𝓘𝓛-formula p, G ⊦ p and G ⊦ ¬p 
 
4.8.2.2. Æ ⊦ p  is abbreviated  ⊦ p 
 
4.8.2.3. ⊦ p  indicates that  p is a theorem 
 

4.9. Theorems (where x and y are individual variables) 

4.9.0.  
 
4.9.0.1.    ⊦ E$xp(x) ® $yp(y) 
 
4.9.0.2.    ⊦ D$xp(x) ® $yp(y) 
 
4.9.0.3.    ⊦ S$xp(x) ® $yp(y) 
 
4.9.0.4.    ⊦ !E$xp(x) ® $yp(y) 
 
4.9.0.5.    ⊦ !D$xp(x) ® $yp(y) 
 
4.9.0.6.    ⊦ !S$xp(x) ® $yp(y) 
 

(informally: This is the axiom scheme of comprehension i.e. any sequence of objects that satisfy some formula p, 
relate to some predicate X and vice-versa) 
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Proof: Each of theorems 4.9.0.1. - 4.9.0.6. follow from the fact that in any case of existentialization (for example, in 
E$xp(x)) it follows by the relevant existential elimination rule (where some c is an arbitrary witness for x, i.e. p(c)) 
that $xp(x) is derived by existential introduction. 

 

4.9.1.  ⊦ "xS$y(x = y)       

 (informally: all objects are sentential) 

Proof: by DS, x either starts at extantiality, depictability, or sententiality. In any of those cases, sententiality is implied.   
 

  4.9.2.  ⊦ "x(E$y(x = y) ® [D$y(x = y) Ù S$y(x = y)])  
 
   (informally: if x is extant, then x is depictable and sentential) 
    

Proof: assume x is extant. By 4.9.1. x is sentential. If x is not depictable then (by 4.3.1.) x cannot start at extantiality. 
Further, because x is extant (by 4.3.3.), x cannot start at sententiality either. Since x neither starts at extantiality nor 
starts at sententiality, by DS, x must start at depictability and (by 4.3.2.) x is depictable. This is a contradiction, hence 
x is depictable.  

 
  4.9.3.   ⊦ "x(D$y(x = y) ® S$y(x = y)) 
 
   (informally: if x is depictable, then x is sentential) 
    

Proof: an immediate consequence of 4.9.1. 
 

4.9.4. ⊦ "x[¬(!Ex Ù !Dx) Ù ¬(!Dx Ù !Sx) Ù ¬(!Ex Ù !Sx)] 
 

Informally: all objects can start in just one order. 
 
Proof: Assume !Ex Ù !Dx. By 4.3.1., !Ex implies E$y(y = x)  and by 4.3.2., !Dx implies ¬E$y(y = x), a contradiction. 
The same logic applies to !Dx Ù !Sx and !Ex Ù !Sx.  
 

§4.10. A Demonstration of Derivation and of Modeling 

Before closing this chapter, I would like to provide a simple demonstration of how an informal argument 

may be represented in the language of 𝓘𝓛 (and its conclusion derived) and a demonstration of how a sentence 

involving an impossible object can be represented in 𝓘𝓛 and satisfied on an 𝓘𝓛 structure. To demonstrate how 

derivation in 𝓘𝓛 natural deduction works, we will translate Anselm’s ontological argument into 𝓘𝓛 and derive the 

existence of God. To demonstrate how modelling works in 𝓘𝓛, we will satisfy a formal statement positing the 

existence of a square circle. We start with the translation of Anselm’s argument and the derivation of the existence 

of God (on Anselm’s assumptions).  
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We present the informal version of Anselm’s argument as it appears (verbatim) in the article pertaining to 

it in the Internet Encyclopedia of Philosophy. The argument is thus, 

1. It is a conceptual truth (or, so to speak, true by definition) that God is a being than which none greater can be 
imagined (that is, the greatest possible being that can be imagined). 

2. God exists as an idea in the mind. 
3. A being that exists as an idea in the mind and in reality is, other things being equal, greater than a being that exists 

only as an idea in the mind. 
4. Thus, if God exists only as an idea in the mind, then we can imagine something that is greater than God (that is, 

a greatest possible being that does exist). 
5. But we cannot imagine something that is greater than God (for it is a contradiction to suppose that we can imagine 

a being greater than the greatest possible being that can be imagined.) 
6. Therefore, God exists. 

 
To get the preliminaries out of the way, for mnemonic purposes, we index each predicate to a symbol 

indicative of the property it picks out and we replace each constant ci naming an object in the above proof with 

the initial of the object named. Let constant g name God and PG indicate the greater than relation (i.e. ___is 

greater than___). The assumptions of the argument consist of two principles and two formulas positing the 

existence of God as an idea and the existence of something that exists in reality (statements 1, 3, 2, and (tacit in) 

4 respectively). We define our set of assumptions G thus 

G := {¬($v1)PGv1g, (E"v2)(!D"v3)PGv2v3, (D$v4)(v4 = g), (E$v5)(v5 = v5)} 

And carry out the proof as follows 

1. ¬($v1)PGv1g          Assumption 

2. (E"v2)(!D"v3)PGv2v3         Assumption 

3. (D$v4)(v4 = g)          Assumption 

4. (E$v5)(v5 = v5)          Assumption 

5.  ¬(E$v6)(v6 = g)         Aux. Assumption for ¬E 

6.  (c = c) Ù (E$v7)(v7 = c)       Aux. Assumption for E$E 

7.    ¬($v1)PGv1g       Aux. Assumption for ¬E 

8.   (E"v2)(!D"v3)PGv2v3      2 R 

9.   (E$v7)(v7 = c)       6 ÙE 

10.    (!D"v3)PGcv3       8, 9 E"E 
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11.   ¬(E$v6)(v6 = g) Ù (D$v4)(v4 = g)     5, 3 ÙI 

12.   (S$v8)(v8 = g)       Th. 4.9.1 

13.   [¬(E$v6)(v6 = g) Ù (D$v4)(v4 = g)] Ù (S$v8)(v8 = g)   11, 12 ÙI 

14.   (!D$v9)(v9 = g) « ([¬(E$v6)(v6 = g) Ù (D$v4)(v4 = g)] Ù (S$v8)(v8 = g)) Ax. 4.3.2. 

15.   (!D"v3)PGcv3       10 R 

16.   (!D$v9)(v9 = g)       14, 13 «E 

17.   PGcg        15, 16 D"E 

18.   ($v1)PGv1g       17 $I 

19.   ¬($v1)PGv1g       1 R 

20.  ($v1)PGv1g        7-19 ¬E  

21. ($v1)PGv1g         4, 6-20 E$E  

22. ¬($v1)PGv1g         1 R 

23. (E$v6)(v6 = g)          5-22 ¬E  ¨ 

We see here that Anselm’s argument is valid. However, the soundness of the argument is suspect. And, it 

is question begging. Simply evoking God as an entity that is greater than all things presupposes the reality of the 

entity to be proven real (or else all real things would be greater than the non-real God). If Anselm were being 

careful and rigorous, he would have made the qualified claim, if God exists in reality, then God is that which is 

greater than all things. But, that would have only resulted in the conclusion, if God exists in reality, then God 

exists in reality, where this is no proof of existence at all. Soundness is likely not a possibility anyhow, as it has 

been pointed out that the assumptions Anselm makes are prone to inconsistency. Christopher Viger has argued 

that putting no restrictions on PG implies that the set of all things God is greater than is U-{God} (this set, Viger 

labels ‘W’). Since the Russellian set ℝ (i.e. {x : x Ï x}) is in U and not identified with God, ℝ Î W. Hence God is 

greater than ℝ, and therefore something exists that is both a member of itself and not a member of itself28. This 

                                                        
28 Viger, 2003. 
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contradiction is derivable from Anselm’s initial assumptions, hence his set of assumptions are inconsistent. 

Question begging and inconsistency aside though, Anselm’s argument did provide decent fodder for exercising 

the natural deduction system of 𝓘𝓛. We end this demonstration of derivation then, and move to our demonstration 

of modelling.         

Take the sentence, there is an object that is simultaneously square and circular, as our example. In the 

language of 𝓘𝓛 we may represent this sentence as 

  $v1(sPsv1 Ù sPcv1) 

where again, for mnemonic purposes, our predicates Pi have been indexed to italicized lower-case initials of the 

properties they represent, and ‘s’ replaces the constant ci naming the square circle. Now, let our structure be 𝓜 

(with arbitrary assignments a and r) and the following conditions 

(Let OBThe-Square-Circle be abbreviated by ⊡) 
 
i. ⊡ Î S   and   ⊡ ÏD   and   ⊡ Ï E  
 
ii.  Ps (𝓜, a, r)   =  {(x) Î S1: x is square} 
 
iii. Pc (𝓜, a, r)   =  {(x) Î S1: x is circular} 
 
iv. s(𝓜, a, r)   = ⊡ 
 
v.  ‘Pss Ù ¬ Pss’ Î Ré ù  and  ‘Pcs Ù ¬ Pcs’ Î Ré ù  
 
vi.  [1|⊡]a   =  the variant individual variable assignment where a1 = ⊡. 
 
vii.  [2|⊡]a   =  the variant individual variable assignment where a2 = ⊡. 
 

Here is the demonstration, 

𝓜 ⊧a, r  $v1(sPsv1 Ù sPcv1)  Û for some b Î S,  𝓜 ⊧[1|b]a, r   sPsv1 Ù sPcv1 

     Û 𝓜 ⊧[1|⊡]a, r   sPsv1  and 𝓜 ⊧[1|⊡]a, r  sPcv1   (where b = ⊡) 

   Û 𝓜 ⊧[1|⊡]a, r éPsv1 Ù ¬Psv1ù  and 𝓜 ⊧[1|⊡]a, r  !Sv1 

    and 

    𝓜 ⊧[1|⊡]a, r éPcv1 Ù ¬Pcv1ù and 𝓜 ⊧[1|⊡]a, r  !Sv1 

   Û éPsv1 Ù ¬Psv1ù contains free variables v1, …, vn and for some c1 Î 𝓒, …, cn Î 𝓒,   
    c1(𝓜, a, r) = v1(𝓜, a, r), …, and cn(𝓜, a, r) = vn(𝓜, a, r) and ‘Pss Ù ¬Pss’ Î Ré ù  
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    and 
 
    𝓜 ⊧[1|⊡]a, r  !S$v2(v2 = v1) 
 
    and 
 
    éPcv1 Ù ¬Pcv1ù contains free variables v1, …, vn and for some c1 Î 𝓒, …, cn Î 𝓒,   
    c1(𝓜, a, r) = v1(𝓜, a, r), …, and cn(𝓜, a, r) = vn(𝓜, a, r) and ‘Pcs Ù ¬Pcs’ Î Ré ù  

     
    and 
 
    𝓜 ⊧[1|⊡]a, r  !S$v2(v2 = v1) 
 
   Û éPsv1 Ù ¬Psv1ù contains free variables v1, …, vn and for some c1 Î 𝓒, …, cn Î 𝓒,   
    c1(𝓜, a, r) = v1(𝓜, a, r), …, and cn(𝓜, a, r) = vn(𝓜, a, r) and ‘Pss Ù ¬Pss’ Î Ré ù  
 
    and 
 
    for some b Î S (b Ï E and b Ï D), 𝓜 ⊧[1|⊡]a, r  v2 = v1 
 
    and 
 
    éPcv1 Ù ¬Pcv1ù contains free variables v1, …, vn and for some c1 Î 𝓒, …, cn Î 𝓒,   
    c1(𝓜, a, r) = v1(𝓜, a, r), …, and cn(𝓜, a, r) = vn(𝓜, a, r) and ‘Pcs Ù ¬Pcs’ Î Ré ù  

 
    and 
 
    for some b Î S (b Ï E and b Ï D), 𝓜 ⊧[1|⊡]a, r  v2 = v1 

 

(1)   Û éPsv1 Ù ¬Psv1ù contains free variables v1, …, vn and for some c1 Î 𝓒, …, cn Î 𝓒,   
      c1(𝓜, a, r) = v1(𝓜, a, r), …, and cn(𝓜, a, r) = vn(𝓜, a, r) and ‘Pss Ù ¬Pss’ Î Ré ù  

 
    and 
 
(2)    v2(𝓜, [2|⊡][1|⊡]a, r) = v1(𝓜, [2|⊡][1|⊡]a, r)    (where b = ⊡)          
     
    and 
 
(3)    éPcv1 Ù ¬Pcv1ù contains free variables v1, …, vn and for some c1 Î 𝓒, …, cn Î 𝓒,   
    c1(𝓜, a, r) = v1(𝓜, a, r), …, and cn(𝓜, a, r) = vn(𝓜, a, r) and ‘Pcs Ù ¬Pcs’ Î Ré ù  

 
    and 
 
(4)    v2(𝓜, [2|⊡][1|⊡]a, r) = v1(𝓜, [2|⊡][1|⊡]a, r)    (where b = ⊡)             
 
 

By conditions iv, vi, and vii, v2(𝓜, [2|⊡][1|⊡]a, r) = a2 = ⊡ = s(𝓜, a, r) =  ⊡ = a1 = v1(𝓜, [2|⊡][1|⊡]a, r). So, by 

conditions iv, v, vi, and vii, we have it that (1), (2), (3), and (4) obtain. From this it follows that ‘$v1(sPsv1 Ù sPcv1)’ 

is satisfied. Thus, the demonstration of modelling is concluded, as is the chapter. 
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Appendix: Syntax, Semantics, and Deduction Theory of 𝓘𝓛  

4.0. Preliminaries: 

Let λ be a function λ : I ® ω, that maps indices in I to natural numbers in ω. 
 
Let v be a function v : ω ® ω, that maps natural numbers to natural numbers in ω (not necessarily to 
themselves).   

 
4.1. Vocabulary: 
 

4.1.1. Vocabulary for A Standard Second-Order System 
v0, v1, ...        individual variables 
V0, V1, ...       predicate variables of degree v(n) 
for each i Î I, a predicate symbol Pi of degree λ(i)   predicate symbols  
for each j Î J an individual constant cj   individual constants  
=        equality symbol 
¬        logical operators: negation  
Ù        logical operators: conjunction 
$        existential quantifier symbol 
(, ), [, ]        punctuation symbols 
 
* individual variables and constants are called individual terms, where t, u (possibly with subscripts) denote arbitrary 
individual terms. 
 
** let T, U (possibly with subscripts) denote arbitrary predicate constants and predicate variables. 
 

4.1.2. 𝓘𝓛 Extension 
 
E$  (this quantifier binds an extantial object, or a concrete object) 
D$  (this quantifier binds a depictable object, or an object able to be represented imagistically) 
S$ (this quantifier binds a sentential object, or a verbally representable object) 
!E$  (this quantifier binds an object starting at extantiality, or a depictable, sentential, extant object) 
!D$  (this quantifier binds an object starting at depictability, or a depictable, sentential, non-extant object) 
!S$ (this quantifier binds an object starting at sententiality, or an exclusively sentential object) 
é ù (read as it is said, and only said, that…) 
 
*** let C, D (possibly with subscripts) denote arbitrary individual constants and predicate constants.  
 
**** let X, Y (possibly with subscripts) denote arbitrary individual variables and predicate variables. 
 
**** let V, W (possibly with subscripts) denote variable and constant symbols of either kind. 
 

4.2. Formulas 

4.2.1.  Atomic formulas of 𝓛 := finite strings (of the basic symbols (i) - (iv)) either of the forms Tit1,...tλ(i), t = u, or T = U 
 
4.2.2.   Formulas of 𝓛 (or 𝓛-formulas) := finite strings (of the basic symbols (i) - (vii)) defined in the following recursive 
 manner: 
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 (a) any atomic formula is a formula 
 (b.0) if p, q are formulas, so also are ¬p, p Ù q, $xp, $Xp (where x is any variable vi and X any variable Vi) 

  (b.1). If p is a formula, then épù is a formula. 
  (b.2). If p is a formula, then E$xp, D$xp, S$xp are formulas. 
  (b.3). If p is a formula, then !E$xp, !D$xp, !S$xp are formulas. 

 (c) a finite string of symbols is a formula exactly when it follows from finitely many 
applications of (a) and (b) 

 
4.2.3.  Form(𝓘𝓛) := {p : p is a formula of 𝓘𝓛}. 
 
 A sentence is a formula with no free variables. 
 

  (Abbreviations) 
 
  4.2.4. if p and q are formulas, then 
 
   p Ú q  abbreviates ¬(¬p Ù ¬q) 
   p ® q  abbreviates ¬p Ú q 
   p « q  abbreviates (p ® q) Ù (q ® p)  
 
   "Xp  abbreviates ¬$X¬p  
 
   "xp  abbreviates ¬$x¬p  
    
   E"xp,   abbreviates ¬E$x¬p  
   D"xp,   abbreviates ¬D$x¬p  
   S"xp,   abbreviates ¬S$x¬p 
    
   !E"xp,   abbreviates ¬!E$x¬p  
   !D"xp,   abbreviates ¬!D$x¬p  
   !S"xp,   abbreviates ¬!S$x¬p  
 

p(['xq(x)]) abbreviates $x(q(x) Ù p(x)) 
p([ixq(x)]) abbreviates $x[(q(x) Ù "y(q(y) ® y = x)) Ù p(x)] 
 

 Et   abbreviates E$x(x = t) 
 Dt   abbreviates D$x(x = t) 
 St   abbreviates S$x(x = t) 

 
   sTt  abbreviates éTt Ù ¬Ttù Ù !S$x(x = t)    
   sIt  abbreviates é¬t = tù Ù !S$x(x = t) 
 
4.3. Interdefinability 

 
 Ax. !E$  "y(!E$x(x = y)  «   [(E$x(x = y) Ù D$x(x = y)) Ù S$x(x = y)]) 
 
  !Ec  abbreviates !E$x(x = c) 
  
 
Ax. !D$   "y(!D$x(x = y)  «   [(¬E$x(x = y) Ù D$x(x = y)) Ù S$x(x = y)]) 
 
  !Dc  abbreviates !D$x(x = c) 
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Ax. !S$   "y(!$Sx(x = y)  «   [(¬E$x(x = y) Ù ¬D$x(x = y)) Ù S$x(x = y)]) 
 
  !Sc  abbreviates !S$x(x = c) 
 

4.4. Concrete, Non-Concrete, Impossible (and sententializing variants) 

concrete(t)  abbreviates !Et 
 
non-concrete(t)  abbreviates !Dt   
 
T-impossible(t)  abbreviates sTt 
 
I-impossible(t)  abbreviates sIt 
 
Impossible(t)  abbreviates ($X)X-impossible(t) Ú I-impossible(t)   
 

   sConcrete(t)  abbreviates é!Et Ù ¬!Etù Ù !S$x(x = t)    
    

   sNon-concrete(t)  abbreviates é!Dt Ù ¬!Dtù Ù !S$x(x = t)    
     

   sT-Impossible(t)  abbreviates ésTt Ù ¬sTtù Ù !S$x(x = t)  
 
   sI-Impossible(t)  abbreviates ésIt Ù ¬sItù Ù !S$x(x = t)  

 
sImpossible(t)  abbreviates é($X)X-impossible(t) Ù ¬($X)X-impossible(t)ù Ù !S$x(x = t)   
     Ú 

        éI-impossible(t) Ù ¬I-impossible(t)ù Ù !S$x(x = t)  
    
4.5. Structure  
 

4.5.1.  𝓜 = (E, D, S, Sent(𝓘𝓛), 𝓒, 𝓟, 𝒱, {Ri : i Î I}, Ré ù, {ej : j Î J}, 𝓡) 

4.6. Interpretation 

4.6.1. (Variable Assignment) Given the structure, 𝓜 of type (λ, J), 
 
 A-sequence := a countable sequence of elements of S (denoted, ‘a = (a0, a1, …)’) 
 
  R-sequence := a countable sequence of elements of 𝓡 (denoted, ‘r = (R0, R1, …)’) with the following constraint: 
 
  For each n, the nth R in r is of degree v(n) 
 

 
4.6.2. (Interpreting the Symbols) Given 𝓜, a, r (where we read ‘V(𝓜, a, r)’ as the element of 𝓜 that V is interpreted-
by/names/is-assigned), 
 

Interpretation of 𝓘𝓛 in (𝓜, a, r)  :=  i) Pi(𝓜, a, r)  = Ri   
 
       ii) Vn(𝓜, a, r)  = Rn  
        
       iii) cj(𝓜, a, r)  = ei     
 
       iv) vn(𝓜, a, r)  =  an 
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4.6.3. (Variant Assignment)  
 

For n Î ω, b Î S, 
 

 [n|b]a := (a0, a1 ,..., an–1, b, an+1, ...) 
 
For n Î ω, S Î 𝓡 (where S is of degree v(n)) 

 
[n|S]r := (R0, R1 ,..., Rn–1, S, Rn+1, ...)   
 
 

4.7. Satisfaction 

4.7.1. For p Î Form(𝓘𝓛),  
 

a, r satisfy p in 𝓜 (denoted, ‘𝓜 ⊧a,r p’) :=  
 
   4.7.1.1.   for terms t, u, 

        
    𝓜 ⊧a,r t = u Û t(𝓜, a, r) = u(𝓜, a, r) 

 

   for predicates T, U, 
 
     𝓜 ⊧a,r T = U Û T(𝓜, a, r) = U(𝓜, a, r)  
   
  4.7.1.2. for terms t1, …, tλ(i) and predicate Ti    
       
    𝓜 ⊧a,r Ti t1, …, tλ(i)  Û (t1(𝓜, a, r), …, tλ(i) (𝓜, a, r)) Î Ti(𝓜, a, r) 

 
  4.7.1.3.   𝓜 ⊧a,r ¬ p  Û it is not the case that 𝓜 ⊧a,r p   
 
  4.7.1.4.  𝓜 ⊧a,r p Ù q  Û 𝓜 ⊧a,r p and 𝓜 ⊧a,r q   
 
    4.7.1.5.  𝓜 ⊧a,r $Vnp  Û for some S Î 𝓡 of degree v(n), 𝓜 ⊧a [n|S]r  p   

4.7.1. 𝓜 ⊧a,r épù  Û p contains free variables X1, …, Xn and for some C1 Î 𝓒 È 𝓟,…,  
     Cn Î 𝓒 È 𝓟, C1(𝓜, a, r) = X1(𝓜, a, r), …, and Cn(𝓜, a, r) = Xn(𝓜, a, r)  

 
     and  
      
     p(X1, …, Xn/ C1, …, Cn)  Î Ré ù  
 
     or 
 
     p does not contain free variables X1, …, Xn and p Î Ré ù  

 

4.7.2. 𝓜 ⊧a,r $vnp  Û for some b Î S, 𝓜 ⊧[n|b]a, r  p  
 
 𝓜 ⊧a,r E$vnp  Û E is non-empty and for some b Î E, 𝓜 ⊧[n|b]a, r  p    

     
 𝓜 ⊧a,r D$vnp  Û D is non-empty and for some b Î D, 𝓜 ⊧[n|b]a, r  p 
  
 𝓜 ⊧a,r S$vnp  Û for some b Î S, 𝓜 ⊧[n|b]a, r  p  
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4.7.3. 𝓜 ⊧a,r !E$vnp  Û E is non-empty and for some b Î E, 𝓜 ⊧[n|b]a, r  p 
  
 𝓜 ⊧a,r !D$vnp  Û D is non-empty and for some non-empty X Í D, X Ç E = Æ    
 
     and  
 
     for some b Î D (where b Ï E), 𝓜 ⊧[n|b]a, r  p     
 
 𝓜 ⊧a,r !S$vnp  Û for some b Î S (where b Ï E and b Ï D), 𝓜 ⊧[n|b]a, r  p  
 
4.7.4.  for a term t   
     
  𝓜 ⊧a,r !Et Û 𝓜 ⊧a,r !E$x(x = t)  
 
  𝓜 ⊧a,r !Dt Û 𝓜 ⊧a,r !D$x(x = t) 
 
  𝓜 ⊧a,r !St Û 𝓜 ⊧a,r !S$x(x = t) 
 
4.7.5.  for a term t   
     
  𝓜 ⊧a,r sPit Û 𝓜 ⊧a,r éPit Ù ¬Pitù and  𝓜 ⊧a,r !St  
 
  𝓜 ⊧a,r sVit Û 𝓜 ⊧a,r éVit Ù ¬Vitù and  𝓜 ⊧a,r !St  
 
4.7.6. 𝓜 ⊧a,r "vnp  Û for all b Î S, 𝓜 ⊧[n|b]a, r  p 

4.7.7. 𝓜 ⊧a,r E"vnp  Û if E is non-empty, then for all b Î E, 𝓜 ⊧[n|b]a, r  p     

𝓜 ⊧a,r D"vnp  Û if D is non-empty, then for all b Î D, 𝓜 ⊧[n|b]a, r  p 
  
𝓜 ⊧a,r S"vnp  Û for all b Î S, 𝓜 ⊧[n|b]a, r  p  
 

4.7.8. 𝓜 ⊧a,r !E"vnp  Û if E is non-empty, then for all b Î E, 𝓜 ⊧[n|b]a, r  p 
  
 𝓜 ⊧a,r !D"vnp  Û if D is non-empty and for some non-empty X Í D, X Ç E = Æ,  
       then for all b Î D (where b Ï E), 𝓜 ⊧[n|b]a, r  p     
 
 𝓜 ⊧a,r !S"vnp  Û for all b Î S (where b Ï E and b Ï C), 𝓜 ⊧[n|b]a, r  p  
 
4.7.9.  We say that an 𝓘𝓛 formula p is satisfiable if for some 𝓘𝓛 structure 𝓜 and variable assignments a, r, 𝓜 ⊧a,r p.  
 
4.7.10.  We say that an 𝓘𝓛 formula p is valid if for some 𝓘𝓛 structure 𝓜 and all variable assignments a, r, 𝓜 ⊧a,r p.  
 
4.7.11.  We say that an 𝓘𝓛 formula p is universally valid (‘Æ ⊧ s’ or ‘⊧ s’) if for all 𝓘𝓛 structures 𝓜, 𝓜 ⊧ p.  
 
4.7.12.  For any G Í Sent(𝓘𝓛) and any 𝓘𝓛 structures 𝓜, we say that 𝓜 is a model of G (‘𝓜 ⊧ G’) if, for each s Î G, 𝓜 ⊧ s.  
 
4.7.13.  For any G Í Sent(𝓘𝓛) and any s Î Sent(𝓘𝓛), we say that G entails s (‘G ⊧ s’) if, for all 𝓘𝓛 structures 𝓜,  
 
      if  𝓜 ⊧ G,  then  𝓜 ⊧ s   
 

4.8. Natural Deduction of 𝓘𝓛. 
 

4.8.1. Inference Rules (where ‘⊳’ is read ‘from what preceded, infer…’)  
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Note that we include the rules of the extended natural deduction system (i.e De Morgan, Transposition, 

quantifier negation, etc.) but, since they are derivable from all of the above (and are found in any logic 

textbook), we do not present them here. We do include the following axioms unique to 𝓘𝓛 and second-

order logics however. 
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Default Sententiality (DS) 
 
⊳ "x(!Ex Ú [!Dx Ú !Sx])      
 
(informally: all objects start, at least, at sententiality) 

  

 

No Proof (NP) 
 
⊳ ésù ® ¬s  
 
(informally: if we can say, but only say that s, then s does not obtain) 

 

 

 

 

Lastly, definitions Ax. !E$, Ax. !D$, and Ax. !S$ are axioms of 𝓘𝓛.  

4.8.2. Proof.  

A proof (alternatively derivation) in 𝓘𝓛 of p from G (where, p Î Sent(𝓘𝓛) and G Í Sent(𝓘𝓛)) consists of a series: 
 

1.  G 
      . 
      . 
       ._ 
m.  q1 
  
      … 
 
n.  qn 

 

Extensionality (Ex.) 
 
⊳ "X"Y(X = Y « "x(Xx « Yx)) 
 
(informally: If two predicates are identical, then any object relating to the one, relates to the other and vice-versa) 

Comprehension (Comp.) 
 
⊳ $X"x1, …,"xn(Xx1,…,xn « p(x1,…,xn)) 
 
(informally: This is the axiom scheme of comprehension i.e. any sequence of objects that satisfy some formula p, 
relate to some predicate X and vice-versa) 
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where ‘G . . .’ is a list of the sentences of G (where G is possibly empty), p = qn, q1 – qn are 𝓘𝓛-formulas, qn can be 

derived by application of some rule of inference to formulas on lines i < n, and qn falls only under the assumptions of 

‘G . . .’. 

4.8.2.0. p is provable from G (denoted ‘G ⊦ p’) iff there is a proof of p from G  
 
4.8.2.1. G is consistent (in 𝓘𝓛) iff for no 𝓘𝓛-formula p, G ⊦ p and G ⊦ ¬p 
 
4.8.2.2. Æ ⊦ p  is abbreviated  ⊦ p 
 
4.8.2.3. ⊦ p  indicates that  p is a theorem 
 

4.9. Theorems (where x and y are individual variables) 

4.9.0.  
 
4.9.0.1.   ⊦ E$xp(x) ® $yp(y) 
 
4.9.0.2.   ⊦ D$xp(x) ® $yp(y) 
 
4.9.0.3.   ⊦ S$xp(x) ® $yp(y) 
 
4.9.0.4.   ⊦ !E$xp(x) ® $yp(y) 
 
4.9.0.5.   ⊦ !D$xp(x) ® $yp(y) 
 
4.9.0.6.   ⊦ !S$xp(x) ® $yp(y) 
 
Proof: Each of theorems 4.9.0.1. - 4.9.0.6. follow from the fact that in any case of existentialization (for example, in 
E$xp(x)) it follows by the relevant existential elimination rule (where some c is an arbitrary witness for x, i.e. p(c)) 
that $xp(x) is derived by existential introduction. 

 

4.9.1.  ⊦ "xS$y(x = y)       

 (informally: all objects are sentential) 

Proof: by DS, x either starts at extantiality, depictability, or sententiality. In any of those cases, sententiality is implied.   
 

  4.9.2.  ⊦ "x(E$y(x = y) ® D$y(x = y) Ù S$y(x = y))  
 
   (informally: if x is extant, then x is depictable and sentential) 
    

Proof: assume x is extant. By 4.9.1. x is sentential. If x is not depictable then (by 4.3.1.) x cannot start at extantiality. 
Further, because x is extant (by 4.3.3.), x cannot start at sententiality either. Since x neither starts at extantiality nor 
starts at sententiality, by DS, x must start at depictability and (by 4.3.2.) x is depictable. This is a contradiction, hence 
x is depictable.  

 
  4.9.3.   ⊦ "x(D$y(x = y) ® S$y(x = y)) 
 
   (informally: if x is depictable, then x is sentential) 
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Proof: an immediate consequence of 4.9.1. 
 

4.9.4. ⊦ "x[¬(!Ex Ù !Dx) Ù ¬(!Dx Ù !Sx) Ù ¬(!Ex Ù !Sx)] 
 

Informally: all objects can start in just one order. 
 
Proof: Assume !Ex Ù !Dx. By 4.3.1., !Ex implies E$y(y = x)  and by 4.3.2., !Dx implies ¬E$y(y = x), a 
contradiction. The same logic applies to !Dx Ù !Sx and !Ex Ù !Sx.  
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Chapter 5 
 

Meta-Results for Impossible Logic: 
Soundness, Completeness, and Other Proofs 

 
• 
 

Note that in this chapter we prove important meta-results for 𝓘𝓛, where, because 𝓘𝓛 is just an extension 

of 𝓖𝓛 by a single additional operator, what is a meta-property of 𝓘𝓛 is a meta-property of 𝓖𝓛. We proceed with 

the following proofs in the manner standard of most texts on second-order logic. There is rarely a need to deviate 

from the standard proofs, as formulas featuring the new operators (of either 𝓖𝓛 and 𝓘𝓛) require the same 

reckoning as those of standard second order systems. For this reason, we limit certain proofs by cases or induction 

to just those formulas unique to 𝓘𝓛 (where indicated), and only sketch certain other details accessible in relevant 

textbooks29 (where indicated). It is important to note here that, although the logic is second-order, the semantics 

feature Henkin structures, and so completeness, compactness, and the Lowenheim-Skolem results follow in the 

usual way30. Secondly, because, by definition, each structure is Henkin Faithful (i.e. each structure satisfies every 

comprehension axiom), soundness follows as well31. We start this chapter with a quick lemma and then a proof 

of soundness. 

§5.1. Soundness 

We prove a simple lemma for satisfying formulas of the abbreviated form p Ú q. This result will make 

proving the universal validity of DS much simpler.  

 Disjunction Lemma (DL).   𝓜 ⊧ p Ú q  Û 𝓜 ⊧ p or 𝓜 ⊧ q 
 
  Proof.   
 
   𝓜 ⊧ p Ú q  Û 𝓜 ⊧ ¬(¬p Ù ¬q)      4.2.4. 
     Û NOT 𝓜 ⊧ ¬p Ù ¬q     4.7.1.3. 
     Û NOT 𝓜 ⊧ ¬p and 𝓜 ⊧ ¬q    4.7.1.4. 
     Û NOT Both      4.7.1.3. 

                                                        
29 See Bell, 2006 and Shapiro, 1991 for two examples. 
30 See Shapiro, 1991, Ch. 3. 
31 Again, see Shapiro, 1991, Ch. 3.   
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       NOT𝓜 ⊧ p and NOT 𝓜 ⊧ q 
     Û NOT NOT𝓜 ⊧ p or NOT NOT 𝓜 ⊧ q   DeMorgans 
     Û 𝓜 ⊧ p or 𝓜 ⊧ q       DN  
               ¨   
 
Soundness Theorem. Given a theory G Í Sent(𝓘𝓛) and an 𝓘𝓛 formula p, 
 

 G ⊢ s  Þ G ⊧ s   
 
Proof. We only provide the relevant aspects of the proof here. Since the proof follows the standard methods for 

establishing the fact that each inference rule preserves truth (these proofs being the same as those found in any 

logic textbook featuring natural deduction) we omit the proofs for ¬I, ¬E, ÙI, ÙE, =I, =E, $I, and $E, and focus 

on the inference rules and axioms unique to 𝓘𝓛. We proceed with a proof by induction on the number of open 

assumptions in an arbitrary 𝓘𝓛 derivation. Let pn indicate a formula listed at the nth position in an 𝓘𝓛 derivation. 

Let Gn be the set of assumptions open at position n. Sentence p1 of any derivation is either an axiom of 𝓘𝓛 or an 

open assumption. If p1 is an axiom then it is universally valid (to be proven in the subsequent passage) and entailed 

by any theory G (hence G1 ⊧ p1) and if p1 is an open assumption, then G1 ⊧ p1, as G1 = {p1} and {p1} ⊧ p1. We 

assume by inductive hypothesis (IH) that for an arbitrary position n > 1, Gm ⊧ pm for each position m < n. We now 

show that for each inference rule of 𝓘𝓛 natural deduction, if Gn ⊢ pn (by some inference rule), then Gn ⊧ pn.  

We start with !-Extant Existential Introduction (!E$I). If pn is derived from an application of !E$I then pn 

is of the form !E$vnq and is derived as follows 

h.   q(c/x) 
j.   !Ec  
… 
n.  !E$vnq  h, j !E$I 
 

By IH, Gj ⊧ !Ec and Gh ⊧ q(c/x). Further, since !E$vnq has access to the assumptions open at j and h,  
 

Gj È Gh  Í Gn 
 

hence what Gj È Gh entails, Gn entails, and so,  Gn ⊧ !Ec and Gn ⊧ q(c/x). It follows then that for an arbitrary 𝓘𝓛 

structure 𝓜 that satisfies Gn,  
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𝓜 ⊧ !Ec and 𝓜 ⊧ q(c/x)       
 

and (by 4.7.3.) we see that c𝓜a,r Î S, c𝓜a,r Î D, and c𝓜a,r Î E, and (by 4.7.3. again) 𝓜 ⊧ !E$vnq, hence  
 

Gn ⊧ !E$vnq 
 

therefore   
 

Gn ⊧ pn 

 
By the same reasoning (mutatis mutandis) we can show that Gn ⊧ pn when pn is derived by application of !D$I, 

!S$I, E$I, D$I, S$I. We omit these demonstrations for brevity.  

We now consider the derivation of pn by an application of !E$E. If pn is derived from an application of 

!E$E, then the derivation is as follows 

h.   !E$xq 
… 
j.    q(c/x) Ù !Ec 
… 
k.   pn 
… 

  n.  pn    h, j-k !E$E                    

By the above derivation, pn has access to the assumptions open at h and k (save for p(c/x) Ù !Ec), hence  
 

Gh  Í Gn 
 

and 
 

Gk  Í Gn È { q(c/x) Ù !Ec } 
 
By IH, Gh ⊧ !E$xq and since Gh Í Gn,  
 

Gn ⊧ !E$xq.  
 
By IH again, Gk ⊧ pn, and because Gk Í Gn È {q(c/x) Ù !Ec},  
 

Gn È {q(c/x) Ù !Ec} ⊧ pn.  
 
Note though that this implies that 
 

Gn ⊧ pn 
 

as Gn ⊧ !E$xq, and so (by 4.7.3.) for any 𝓘𝓛 structure 𝓜 that satisfies Gn, for some t𝓜,a,r Î E  
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𝓜 ⊧ q(t/x) Ù !Et     
 
And because the constant c, by the conditions on !E$E, does not appear in G, !E$xq, or pn, we have it that c is 

arbitrary and for any term t in place of x in q(t/x) Ù !Et, when {p(t/x) Ù !Et}is conjoined with G,  

G È {q(t/x) Ù !Et} ⊧ pn.  

It follows then, that because 𝓜 ⊧ G and 𝓜 ⊧ q(t/x) Ù !Et,        

𝓜 ⊧ pn     
 

hence 
 

Gn ⊧ pn 

 
By the same reasoning (mutatis mutandis) we can show that Gn ⊧ pn when pn is derived by application of !D$E, 

!S$E, E$E, D$E, S$E. Again, we omit these proofs for brevity. We now move on to the axioms of 𝓘𝓛. First, we 

consider the definitions, 

Ax. !E$   "y(!E$x(x = y)  «   [(E$x(x = y) Ù D$x(x = y)) Ù S$x(x = y)])  
 
Ax. !D$   "y(!D$x(x = y)  «   [(¬E$x(x = y) Ù D$x(x = y)) Ù S$x(x = y)]) 
  
Ax. !S$   "y(!$Sx(x = y)  «   [(¬E$x(x = y) Ù ¬D$x(x = y)) Ù S$x(x = y)]) 

 
Let pn = Ax. !E$ Because Ax. !E$ is an axiom, it can be derived from any theory G, hence Gn ⊢ Ax. !E$ To show 

that Ax. !E$ is universally valid is to show that it is entailed by any G, hence Gn ⊧ Ax. !E$. Let 𝓜 be an arbitrary 

structure of 𝓘𝓛 and let d be an arbitrary element of S in 𝓜. Then  

𝓜 ⊧[m|d]a, r !E$vn(vn = vm)  Û for some b Î E, 𝓜 ⊧[n|b][m|d]a, r vn = vm     4.7.3. 
      
      Û for some b Î E, 𝓜 ⊧[n|b][m|d]a, r  vn = vm    D7 
       and  
       for some b Î D, 𝓜 ⊧[n|b][m|d]a, r  vn = vm    
       and  
       for some b Î S, 𝓜 ⊧[n|b][m|d]a, r  vn = vm  
      
      Û  𝓜 ⊧[m|d]a, r E$vn(vn = vm)       4.7.2. 
       and  
       𝓜 ⊧[m|d]a, r D$vn(vn = vm) 
        and  
       𝓜 ⊧[m|d]a, r S$vn(vn = vm)          
      
     Û  𝓜 ⊧[m|d]a, r E$vn(vn = vm) Ù D$vn(vn = vm)    4.7.1.4.  
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       and  
       𝓜 ⊧[m|d]a, r S$vn(vn = vm) 
 

     Û  𝓜 ⊧[m|d]a, r (E$vn(vn = vm) Ù D$vn(vn = vm)) Ù S$vn(vn = vm)  4.7.1.4.   
 
Thus  
 

𝓜 ⊧[m|d]a, r !E$vn(vn = vm) « [(E$vn(vn = vm) Ù D$vn(vn = vm)) Ù S$vn(vm = vm)]  
 
Where, because d is arbitrary, 
 

𝓜 ⊧a, r "vm(!E$vn(vn = vm) « [(E$vn(vn = vm) Ù D$vn(vn = vm)) Ù S$vn(vm = vm)])  
  
And lastly, because 𝓜 is arbitrary, we have it that,   
 

⊧ "vm(!E$vn(vn = vm) « [(E$vn(vn = vm) Ù D$vn(vn = vm)) Ù S$vn(vm = vm)]) 
 
 Hence Ax. !E$ is entailed by any theory G, so  

Gn ⊧ (!E$vn(vn = vm) « [(E$vn(vn = vm) Ù D$vn(vn = vm)) Ù S$vn(vm = vm)]) 
 

therefore   
 

Gn ⊧ pn 

 

Ax. !D$ and Ax. !S$ can be shown universally valid according to the same proofs, hence entailed by any theory 

G, and so these proofs will, once again, be omitted for brevity.  Next consider  

⊳ "x((!Ex Ú !Dx) Ú !Sx)  DS 
 
First, note that DS abbreviates  
 

¬$x¬¬(¬(¬!E$y(y = x) Ù ¬!D$y(y = x)) Ù ¬!S$y(y = x)) 
 
But, we will use the disjunction lemma to prove universally valid the disjunctive equivalent, 
 

"x((!E$y(y = x) Ú !D$y(y = x)) Ú !S$y(y = x)) 
 
Consider an arbitrary structure 𝓜. By definition, the domain S of 𝓜 is non-empty. Let b Î S be an arbitrary 

element of 𝓜. By D7, either  

b Î S and b Î D and b Î E     Case 1 
 
or 
 

b Î S and b Î D and b Ï E    Case 2  
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or 
 

b Î S and b Ï D and b Ï E     Case 3 
 
To prove that DS is universally valid we show that in all of cases 1-3,  

 
"x((!E$y(y = x) Ú !D$y(y = x)) Ú !S$y(y = x)) 
 

is satisfied. Case 1. 
 
  b Î S and b Î D and b Î E  Þ vm(𝓜, [m|b][n|b]a, r) = vn(𝓜, [m|b][n|b]a, r)    4.6.2/3. 
        
       Þ for some b Î E, 𝓜 ⊧[m|b][n|b]a, r vm = vn   4.7.1.1. 
        
       Þ 𝓜 ⊧[n|b]a, r !E$vm(vm = vn)     4.7.3. 
        
       Þ 𝓜 ⊧[n|b]a, r !E$vm(vm = vn) or 𝓜 ⊧[n|b]a, r !EDvm(vm = vn)  DL 
 
       Þ 𝓜 ⊧[n|b]a, r !E$vm(vm = vn) Ú !EDvm(vm = vn)   DL  
 
       Þ 𝓜 ⊧[n|b]a, r !E$vm(vm = vn) Ú !EDvm(vm = vn)   DL 
        or 
        𝓜 ⊧[n|b]a, r !S$vm(vm = vn)  
        
       Þ 𝓜 ⊧[n|b]a, r (!E$vm(vm = vn) Ú !EDvm(vm = vn)) Ú !S$vm(vm = vn) DL 
 
Case 2. 
 
  b Î S and  b Î D and b Ï E  Þ vm(𝓜, [m|b][n|b]a, r) = vn(𝓜, [m|b][n|b]a, r)    4.6.2/3. 
        
       Þ for some b Î D (where d Ï E) 𝓜 ⊧[m|b][n|b]a, r vm = vn  4.7.1.1. 
        
       Þ 𝓜 ⊧[n|b]a, r !D$vm(vm = vn)     4.7.3. 
        
       Þ 𝓜 ⊧[n|b]a, r !E$vm(vm = vn) or 𝓜 ⊧[n|b]a, r !EDvm(vm = vn)  DL  
 
       Þ 𝓜 ⊧[n|b]a, r !E$vm(vm = vn) Ú !EDvm(vm = vn)   DL  
 
       Þ 𝓜 ⊧[n|b]a, r !E$vm(vm = vn) Ú !EDvm(vm = vn)   DL 
        or 
        𝓜 ⊧[n|b]a, r !S$vm(vm = vn)       
        
       Þ 𝓜 ⊧[n|b]a, r (!E$vm(vm = vn) Ú !EDvm(vm = vn)) Ú !S$vm(vm = vn) DL 
 
Case 3. 
 
  b Î S and  b Ï D and b Ï E  Þ vm(𝓜, [m|b][n|b]a, r) = vn(𝓜, [m|b][n|b]a, r)    4.6.2/3. 
        
       Þ for some b Î S (where b Ï D and b Ï E) 𝓜 ⊧[m|b][n|b]a, r vm = vn 4.7.1.1. 
        
       Þ 𝓜 ⊧[n|b]a, r !S$vm(vm = vn)     4.7.3. 
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       Þ 𝓜 ⊧[n|b]a, r !E$vm(vm = vn) Ú !EDvm(vm = vn)   DL 
        or 
        𝓜 ⊧[n|b]a, r !S$vm(vm = vn)       
        
       Þ 𝓜 ⊧[n|b]a, r (!E$vm(vm = vn) Ú !EDvm(vm = vn)) Ú !S$vm(vm = vn) DL 
 
Thus in all cases, DS is satisfied by 𝓜. Because b is arbitrary    
 

𝓜 ⊧a, r "vn((!E$vm(vm = vn) Ú !EDvm(vm = vn)) Ú !S$vm(vm = vn)) 
 

Further, Because 𝓜 is arbitrary, we have it that,   

⊧ "vn((!E$vm(vm = vn) Ú !EDvm(vm = vn)) Ú !S$vm(vm = vn)) 
 

Hence DS is entailed by any theory G, so  

Gn ⊧ "vn((!E$vm(vm = vn) Ú !EDvm(vm = vn)) Ú !S$vm(vm = vn)) 
 

therefore   
 

Gn ⊧ pn 

 
Finally, we move to 
 
  ⊳ ésù ® ¬s  NP  
 
Again, consider an arbitrary structure 𝓜 and let s Î Sent(𝓘𝓛) of 𝓜. Assume 𝓜 fails to satisfy ésù ® ¬s then,    

NOT 𝓜 ⊧a, r  ésù ® ¬s   Û  NOT 𝓜 ⊧a, r  ¬(¬¬ésù Ù ¬¬s)   4.2.4. 
 
      Û  NOT NOT 𝓜 ⊧a, r  ¬¬ésù Ù ¬¬s   4.7.1.3. 
 

     Û  𝓜 ⊧a, r  ¬¬ésù and 𝓜 ⊧a, r  ¬¬ s   DN, 4.7.1.4. 
 

      Û  NOT NOT 𝓜 ⊧a, r  ésù and NOT NOT 𝓜 ⊧a, r   s 4.7.1.3. 
 
      Û  𝓜 ⊧a, r  ésù and 𝓜 ⊧a, r   s    DN   
       

Since, for 𝓜 to fail to satisfy  ésù ® ¬s it would need to be the case that both 𝓜 ⊧a, r  ésù and 𝓜 ⊧a, r s. By 4.7.1., 

because 𝓜 ⊧a, r  ésù and s has no free variables, s Î Ré ù. Our constraints on Ré ù (in §4.5.) guarantee that NOT 𝓜 

⊧a, r s. This is contradictory, so it follows that it is not possible for 𝓜 to fail to satisfy ésù ® ¬s. Because these 

constraints apply to any 𝓘𝓛 structure 𝓜,  

  ⊧ ésù ® ¬s  
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Hence NP is entailed by any theory G, so  

Gn ⊧ ésù ® ¬s 
 

therefore   
 

Gn ⊧ pn 

 
As a final note, because each 𝓘𝓛 structure 𝓜 is Henkin faithful, each instance of the comprehension schema is 

satisfied by any 𝓜, hence Gn entails each comprehension axiom. And so, we see that each derivation rule unique 

to 𝓘𝓛 is truth preserving. And, because we have assumed that the standard derivation rules of second order logic 

are truth preserving, we may conclude that each derivation rule of 𝓘𝓛 is truth preserving. From this it follows that 

any sentence s in a derivation, because s follows from open assumptions in some G (or is an axiom), is entailed 

by G therefore, and we have it that     

G ⊢ s Þ G ⊧ s           ¨  
 

Corollary of Soundness. If G Í Sent(𝓘𝓛) has a model, then G is consistent. 
 

Proof: Assume an arbitrary G has a model 𝓜. Assume further that G is inconsistent. Then for some s Î 

Sent(𝓘𝓛), G ⊢ s and G ⊢ ¬s. By soundness G ⊧ s and G ⊧ ¬s. However, 𝓜 is a model of G, but by definition 

cannot be a model of both s and ¬s. 𝓜 is not a model of G after all then, and we have a contradiction. 

Therefore, G must be consistent.           ¨ 

       
§5.2. Completeness, Compactness, and Lowenheim-Skolem Results 

Before proving completeness, compactness, and the Loweheim-Skolem results, some important lemmas 

and theorems will have to be proven. We start with a handful of results that indicate features of the deduction 

system and semantics that are of general use to model theorists. Their proofs have either already been carried out 

above or are fairly simple, (once again) found in any logic text, and, for these reasons, will be omitted here. We 

then move on to the lemmas and theorems unique to completeness proofs in second order logic (with Henkin 

semantics restricted to faithful Henkin models). 
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Let us start with a presentation of some concepts and definitions essential for the following proofs. Here 

they are in no particular order: 

Let ‘⋀ni = 1 pi’ abbreviate formulas of the form ‘p1 Ù, …, Ù pn’ 
 
𝓘𝓛G is the subset of the vocabulary of 𝓘𝓛 where the individual constants and predicate constants of 𝓘𝓛G 
are all and only those among the sentences of G. 
 
Consistency. Given G Í Sent(𝓘𝓛)  
 

G is consistent (in 𝓘𝓛)   iff  for no 𝓘𝓛-formula p, G ⊦ p and G ⊦ ¬p 
 
Completeness. Given G Í Sent(𝓘𝓛) 
 

G is complete  iff  for any s Î Sent(𝓘𝓛), G ⊦ s or G ⊦ ¬s 
 
Extensions. Given 𝓘𝓛 of type (λ, J), 
 

i)  𝓘𝓛* is an extension of 𝓘𝓛  iff  𝓘𝓛* = {𝓘𝓛 È {{Pj : i Î I*}} È {{cj : j Î J*}}} 
 
  where  I* Ç I = Æ and  J* Ç J = Æ 
 
ii) G* Í Sent(𝓘𝓛*) is an 𝓘𝓛-saturated extension of G in 𝓘𝓛* when G ⊆ G* and, for any 𝓘𝓛-formula p (with at most 
one free variable x), there are constant symbols c1, c2, c3, c4, c5, c6, and c7 of 𝓘𝓛* such that,  
 

G* ⊦ $xp(x) → p(c1) 
G* ⊦ S$xp(x) → (p(c2) Ù Sc2) 
G* ⊦ D$xp(x) → (p(c3) Ù Dc3) 
G* ⊦ E$xp(x) → (p(c4) Ù Ec4) 
G* ⊦ !S$xp(x) → (p(c5) Ù !Sc5) 
G* ⊦ !D$xp(x) → (p(c6) Ù !Dc6) 
G* ⊦ !E$xp(x) → (p(c7) Ù !Ec7) 
 

And for any 𝓘𝓛-formula p (with at most one free variable X), there is a constant symbol P of 𝓘𝓛* such that, 
 

G* ⊦ $xp(X) → p(P) 
 

iii) G Í Sent(𝓘𝓛) is saturated when, for any 𝓘𝓛-formula p (with at most one free variable x), there are constant symbols 
c1, c2, c3, c4, c5, c6, and c7 of 𝓘𝓛 such that,  
 

G ⊦ $xp(x) → p(c1) 
G ⊦ S$xp(x) → (p(c2) Ù Sc2) 
G ⊦ D$xp(x) → (p(c3) Ù Dc3) 
G ⊦ E$xp(x) → (p(c4) Ù Ec4) 
G ⊦ !S$xp(x) → (p(c5) Ù !Sc5) 
G ⊦ !D$xp(x) → (p(c6) Ù !Dc6) 
G ⊦ !E$xp(x) → (p(c7) Ù !Ec7) 
 

And for any 𝓘𝓛-formula p (with at most one free variable X), there is a constant symbol P of 𝓘𝓛 such that, 
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G ⊦ $xp(X) → p(P) 
 

Expansions and Reductions.  
 

𝓘𝓛*-structure (denoted 𝓜*) :=  (E, D, S, Sent(𝓘𝓛*), 𝓒*, 𝓟*, 𝒱*, {Ri : i Î I È I*}, Ré ù, {ej : j Î J È J*}, 𝓡)  
 

𝓜 is called an 𝓘𝓛–reduction of 𝓜* (denoted ‘𝓜*|𝓘𝓛’)    
 

and    
 

𝓜* is called an 𝓘𝓛 *-expansion of 𝓜 
 

And, here are the theorems and lemmas essential to the proof of completeness (but taken for granted): 
 
Cardinality Lemma 1. |𝓘𝓛| = |Form(𝓘𝓛)| 
              ¨ 
 
Cardinality Lemma 2. |𝓘𝓛G| = max(À0, G)        ¨ 

 
Expansion Lemma. Let G Í Sent(𝓘𝓛), let 𝓘𝓛* be any extension of 𝓘𝓛, let 𝓜 be any 𝓘𝓛-structure, and 
let 𝓜* be any 𝓘𝓛*-expansion of 𝓜. Then    
 

𝓜 ⊧ G   «   𝓜* ⊧ G          ¨ 
 
Constants Lemma. 
 

𝓜 ⊧ p(c0, …, cn)  «   𝓜 ⊧ p[c0𝓜, …, cn𝓜]      
𝓜 ⊧ p(P0, …, Pn)  «   𝓜 ⊧ p[P0𝓜, …, Pn𝓜]     ¨ 
 
 

Quantifier lemma. If x does not occur free in p, then 
 
G ⊦ $x(p Ù q)   ↔  (p Ù $xq)  
G ⊦ $x(p → q)   ↔  (p → $xq)        ¨ 

 
Deduction theorem. If s Î Sent(𝓘𝓛), then for any formula p, 

 
G È {s} ⊦ p  «  G ⊦ s ® p          ¨ 
 

Finiteness theorem. Where G¢ is finite and G¢ Í G, 
  

G ⊦ p  ® G¢ ⊦ p          ¨ 
 
Soundness theorem (as proven above).  
 

G ⊦ p  ® G ⊧ p          ¨ 
 
Consistency lemma.  
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(i) G is consistent   «   G ⊬ p for some 𝓘𝓛-formula p  
(ii) G is consistent «   for every finite G¢ Í G, G¢ ⊬ p for some 𝓘𝓛-formula p   
(iii) s Î Sent(𝓘𝓛)  ®   G È {s} is consistent « G ⊬ ¬s    ¨ 

 
Generalization Lemma. If p(v0, ...,vn) Î Form(𝓘𝓛), then   

 
G ⊦ p  ®  G ⊦ "v0…"vnp         ¨ 
        

With the preliminaries out of the way, we may work our way to completeness. 
 

Lemma 1. Given G Í Sent(𝓘𝓛), where G is consistent, 
 

There is a consistent 𝓘𝓛-saturated extension G* (in an extension 𝓘𝓛* of 𝓘𝓛) where |𝓘𝓛*| = |𝓘𝓛| 
 

Proof. 
 

Let Fi Í Form(𝓘𝓛) where p Î Fi iff p has at most one free variable x and let FP Í Form(𝓘𝓛) where 

p Î FP iff p has at most one free variable X. For each p Î Fi, define constants cp, cEp, cDp, cSp, c!Ep, 

c!Dp, and c!Sp and for each p Î FP, define a predicate Pp. We now have an extension 𝓘𝓛* of 𝓘𝓛 

where, because I* and J* are denumerable, that makes I* È J* denumerable, and therefore |𝓘𝓛*| 

= |𝓘𝓛|. Now let 

G¢ := {$xp(x) → p(cp): p ∈ Fi} È {E$xp(x) → (p(cEp) Ù EcEp): p ∈ Fi} È  
 {D$xp(x) → (p(cDp) Ù DcDp): p ∈ Fi} È {S$xp(x) → (p(cSp) Ù ScSp): p ∈ Fi} È  
 {!E$xp(x) → (p(c!Ep) Ù !Ec!Ep): p ∈ Fi} È {!D$xp(x) → (p(c!Dp) Ù !Dc!Dp): p ∈ Fi} È  
 {!S$xp(x) → p(c!Sp) Ù !Sc!Sp): p ∈ Fi} È {$Xp(X) → p(Pp): p ∈ FP} 
 
G* := G È G¢ 
     

By definition, G* is an 𝓘𝓛-saturated extension of G in 𝓘𝓛*. To prove consistency of G*, assume 

the opposite for reductio. By the consistency lemma (ii), there is a finite subset G¢¢ Í G¢ where  

G È G¢¢ 
 

is inconsistent. By the consistency lemma (iii), for each p1, …, pn Î G¢¢, 
 

 G ⊢  ¬⋀ni = 1 pi   
 

By the definition above, we see that each p1, …, pn Î G¢¢ is of just one of the forms  
 

Case 1.  $xp(x)   →  p(cp), 
Case 2.   E$xp(x)   →  p(cEp) Ù EcEp,  
Case 3.  D$xp(x)   →  p(cDp) Ù DcDp,  
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Case 4.  S$xp(x)   →  p(cSp) Ù ScSp,  
Case 5.  !E$xp(x)  → p(c!Ep) Ù !Ec!Ep,  
Case 6.  !D$xp(x)  →  p(c!Dp) Ù !Dc!Dp,  
Case 7.  !S$xp(x)  →  p(c!Sp) Ù !Sc!Sp,  

or 
Case 8.  $Xp(X)   →  p(Pp)    
 

 For each i Î {1, …, 8}, we show that if G proves the negation of any case i, G proves a 

contradiction. From this it follows that each conjunct of ⋀ni = 1 pi is provable by G, hence   

G ⊢  ⋀ni = 1 pi   
 

and we see that G is inconsistent, which is contradictory. We limit the demonstration to Case 7 as 

each other case’s proof is virtually the same as Case 7’s. Assume G proves a negated formula of 

the form Case 7. That is, 

G ⊢ ¬[!S$xp(x)  →  p(c!Sp) Ù !Sc!Sp]    * 
 

Note that the formula to the right of the turnstile in * is neither an axiom nor a member of G (treat 

‘*’ as indicating this formula where there is no ambiguity). That * is not an axiom is obvious, and 

if * were a member of G, then because G Í Sent(𝓘𝓛), c!Sp Î 𝓘𝓛, hence !Sp Î J, and it follows that 

J and J* are not disjoint. This outcome contradicts a necessary constraint of Extensions (i), hence 

𝓘𝓛* would not be an extension (by definition). Since this is contradictory to our assumption, * Ï 

G. Because * is a derivation of G, by definition of proof, * falls only under the assumptions of G. 

So, any sub-derivations preceding * are discharged and their assumptions closed. c!Sp doesn’t 

feature in G, hence any open assumptions, and so (if we select a variable y not free in p) an 

application of "I in our proof gets us 

G ⊢ "y¬[!S$xp(x)  →  (p(y) Ù !Sy)]     
 

which by equivalence implies 
 

 G ⊢ ¬$y[!S$xp(x)  →  (p(y) Ù !Sy)] 
 

Where, because y is not free in p, the quantifier lemma gets us 
 



 82 

G ⊢ ¬[!S$xp(x)  →  $y(p(y) Ù !Sy)]      ¬** 
 

However, by !S$E, R, and $I in any derivation we can show 
 
 ⊢ !S$xp(x)  →  $y(p(y) Ù !Sy) 
 
So, clearly 
 

G ⊢ !S$xp(x)  →  $y(p(y) Ù !Sy) 
 
Since, by the same reasoning, we can show for each i Î {1, …, 6, 8}, G ⊢ **i for case i, it follows 

that for each pi Î G¢¢, 

if  G ⊢  ¬pi,   then  G ⊢  ¬**i and  G ⊢  **i     
 
As stated above, this implies G is inconsistent, which is contrary to our assumption. G* is consistent 

therefore.           ¨ 

Lemma 2. Given a consistent G Í Sent(𝓘𝓛), 
 

there exists a complete, consistent, G¢ Í Sent(𝓘𝓛) where G Í G¢. 
 
Proof. Let  
 
  C := {G¢ : G¢ Í Sent(𝓘𝓛) and G¢ is consistent and G Í G¢ or G¢ Í G} 
 
Order C by inclusion. Since the union of any two chains a, b Î C is itself consistent (as either a Í 

b or b Í a, so either a È b = b or a È b = a where both a and b are consistent) for any two chains 

a, b Í C, a È b Í C. Since C is closed under the union of chains, by Zorn’s lemma, C has a 

maximal element G¢. Clearly G Í G¢. Now consider some s Î Sent(𝓘𝓛). If G¢ ⊬ s, then by the 

consistency lemma (iii), G¢È{¬s} is consistent. Because G¢ is maximal consistent, ¬s Î G¢ or else 

G¢È{¬s} is itself a consistent set, where G¢ Ì G¢È{¬s}, hence G¢ is not maximal. This leads to 

contradiction, so ¬s Î G¢, hence G¢ ⊢ ¬s and G¢ is complete.      

Theorem 1. Given a consistent G Í Sent(𝓘𝓛),  
 

there exists an extension 𝓘𝓛+ of 𝓘𝓛 such that |𝓘𝓛+| = |𝓘𝓛| and a complete saturated consistent set G+ Í Sent(𝓘𝓛 +) such 
that G Í G+ 
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Proof. We omit the proof here as it is fairly clear how, by application of Lemma 1 to G we get a 

consistent 𝓘𝓛-saturated extension G* (of G) and by an application of Lemma 2 to G* we get a 

complete consistent saturated G+.         ¨ 

We now take a brief excursion to define a unique kind of 𝓘𝓛 structure, what we call a canonical structure. 

We define the canonical structure thus       

1.1 For an arbitrary, but consistent G Í Sent(𝓘𝓛) define the following: 
 
    𝒮 := {c Î 𝓒 : G ⊢ Sc} 
 
    𝒟 := {c Î 𝓒 : G ⊢ Dc} 
     
    ℰ := {c Î 𝓒 : G ⊢ Ec} 
 
   1.2. Then, for each c Î 𝓒, define: 
 
    c=  :=  {d Î 𝓒 : G ⊢ c = d} È {G} 
 

*Note that we define each c= as the union of the equivalence class of constants d where  

G ⊢ c = d and the singleton containing G. We do this in order to ensure each c= is unique to 

the theory that defines it. This (as will be made clearer in an upcoming proof) is necessary 

in order to deal with a potential conceptual issue that arises when treating certain classes 

c= as impossible.   

   1.3. Now, define: 
 
    S=  :=  {c= : c Î 𝒮} 
 
    D=  :=  {c= : c Î 𝒟} 
 
    E=  :=  {c= : c Î ℰ} 
 

1.4. Now define: 
 

    Ri  :=  {(c=1,…, c= λ(i)) : G ⊢ Pic1,…,c λ(i)}  
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 1.5. And let: 
 

𝓡 be the set of each Ri of {Ri : i Î I}   
 
   1.6. Finally, let our structure be: 
 
    𝓜G := (E=, D=, S=, Sent(𝓘𝓛), 𝓒, 𝓟, 𝒱, {Ri : i Î I}, Ré ù, {c=j : j Î J}, 𝓡) 
 
    With the following constraints: 
 

   G ⊢ P = Q   Û P(𝓜G, a, r) = Q(𝓜G, a, r)   
       

   G ⊢ épù   Û p contains free variables X1, …, Xn and for some  
       C1 Î 𝓒 È 𝓟,…, Cn Î 𝓒 È 𝓟,  
       C1(𝓜G, a, r) = X1(𝓜G, a, r) …, and  
       Cn(𝓜G, a, r) = Xn(𝓜G, a, r)  
 
       and  
      
       p(X1, …, Xn / C1, …, Cn)  Î Ré ù  
 
       or 
 

         p does not contain free variables X1, …, Xn and  
         p Î Ré ù 

 
Subsets Lemma (SL). For any canonical structure 𝓜G, E= Í D=, D= Í  S=, and E= Í  S=. 
 

Proof.   c= Î E= Þ G ⊢ Ec  1.1-1.3 
    Þ G ⊢ Dc  4.10.2, ÙE     
    Þ c= Î D= 1.1-1.3 

    Þ G ⊢ Dc  1.1-1.3     
    Þ G ⊢ Sc  4.10.1 

    Þ c= Î S=     1.1-1.3      ¨ 
    

We now continue with our proof of completeness. 
 
Theorem 2. For a consistent, saturated, complete G Í Sent(𝓘𝓛), 𝓜G ⊧ G. 
 
  Proof: By induction on the degree of sentences s, we show: 
 
   G ⊢ s  Û 𝓜G ⊧ s    EQ  
   
  We start with atomic formulas and formulas of the abbreviated forms Ec, Dc, Sc, !Ec, !Dc, and !Sc. 
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   For s of the form ‘c = d’ 
    
    G ⊢ s  Þ G ⊢ c = d   
       Þ d Î c=      by 1.2. 
      Þ G ⊢ d = d    by =I 
      Þ d Î d=     by 1.2. 
      Þ G ⊢ d = d    by 1.2. 
      Þ G ⊢ c = d    by =E 
      Þ d Î c= 
      Þ d Î c=  Û d Î d=     
      Þ  x Î c=  Û x Î d=   on 1.2., where x = G or x = d 
      Þ  c=  = d=     by extensionality 
      Þ  𝓜G ⊧ c = d    by 4.7.1.1. 
      Þ 𝓜G ⊧ s 
 
    and 
 
    𝓜G ⊧ s  Þ 𝓜G ⊧ c = d   
       Þ c=  = d=     by 4.7.1.1. 
  *    Þ d Î c=  Û d Î d=   by extensionality  
      Þ G ⊢ d = d    by identity axioms 
      Þ d Î d=     by 1.2. 
      Þ d Î c=      by *  
      Þ  G ⊢ c = d    by 1.2. 
      Þ  G ⊢ s 
 
   For s of the form ‘P = Q’ 
    
    G ⊢ s  Û G ⊢ P = Q   
      Û P(𝓜G, a, r) = Q(𝓜G, a, r)    by 1.6. 
      Û 𝓜G ⊧ P = Q    by 4.7.1.1.  
      Û 𝓜G ⊧ s 
 
   For s of the form ‘Sc’ 
    
    G ⊢ s  Û G ⊢ Sc   
      Û c= Î S=     by 1.1. - 1.3. 
      Û 𝓜G ⊧ Sc     by 4.7.2. 
      Û 𝓜G ⊧ s 
 

Similar proofs can be carried out for formulas of the form Dc and Ec, so we omit them 
here.  

 
   For s of the form ‘!Sc’ 
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    G ⊢ s  Û G ⊢ !Sc   
      Û G ⊢ ¬Ec and G ⊢ ¬Dc and G ⊢ Sc  by Ax. !S$ 
      Û G ⊬ Ec and G ⊬ Dc and G ⊢ Sc  by completeness/consistency 
      Û c= Ï E= and c= Ï D= and c= Î E=  by 1.1. - 1.3. 
      Û 𝓜G ⊧ !Sc     by 4.7.3. 
      Û 𝓜G ⊧ s 
 

Similar proofs can be carried out for formulas of the form !Dc and !Ec, so we omit them 
here.  

 
   For s of the form ‘Pi c1, …, cλ(i)’ 
    
    G ⊢ s  Û G ⊢ Pi c1, …, cλ(i)   
      Û (c=1, …, c=λ(i)) Î Ri    by 1.4. 
      Û 𝓜G ⊧ Pi c1, …, cλ(i)    by 4.7.1.2. 
      Û 𝓜G ⊧ s 
 

We now move on to molecular formulas (save for formulas of the forms Ec, Dc, Sc, !Ec, !Dc, and !Sc), 

where we assume, by inductive hypothesis, that for s of degree n > 0, EQ holds for sentences of degree m 

< n and, as was proven above, EQ holds for formulas of the forms Ec, Dc, Sc, !Ec, !Dc, and !Sc. 

   For s of the form ‘¬p’ 
    
    G ⊢ s  Û G ⊢ ¬p   
      Û G ⊬ p     by consistency  
      Û 𝓜G ⊭ p    by EQ 
      Û 𝓜G ⊧ ¬p     by 4.7.1.3. 
      Û 𝓜G ⊧ s 
 
   For s of the form ‘p Ù q’ 
    
    G ⊢ s  Û G ⊢ p Ù q   
      Û G ⊢ p and G ⊢ q     
      Û 𝓜G ⊢ p and 𝓜G ⊢ q   by EQ 
      Û 𝓜G ⊧ p Ù q     by 4.7.1.4. 
      Û 𝓜G ⊧ s    
    
   For s of the form ‘épù’ 
    
    G ⊢ s  Û G ⊢ épù   

     Û p contains free variables Z1, …, Zn and for some  
     C1 Î 𝓒 È 𝓟,…, Cn Î 𝓒 È 𝓟,  
     C1(𝓜G, a, r) = Z1(𝓜G, a, r), …, and Cn(𝓜G, a, r) = Zn(𝓜G, a, r)  
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     and  
      
     p(Z1, …, Zn/ C1, …, Cn)  Î Ré ù  
 
     or 
 

       p does not contain free variables Z1, …, Zn and     
       p Î Ré ù     
            by 1.6. 
      Û 𝓜G ⊧  épù     by 4.7.1 
      Û 𝓜G ⊧ s 
 
    For s of the form ‘!S$xp’ 
    
    G ⊢ s  Û G ⊢ !S$xp     !S$I 

     Û G ⊢ p(c) and G ⊢ !S(c)   by saturation 
    Û 𝓜G ⊧ p(c) and 𝓜G ⊧ !S(c)   by EQ 
    Û 𝓜G ⊧ p[c=] for some c= Î S  
      (where c= Ï D and c= Ï E)  by constants lemma 
     Û 𝓜G ⊧ !S$xp    by 4.7.3. 
    Û 𝓜G ⊧ s 
 
Note that the same proofs can be carried out for sentences of the form ‘!D$xp’, ‘!E$xp’, ‘S$xp’, ‘D$xp’, 

‘E$xp’, and ‘$xp’, so they will be omitted here.   

    For s of the form ‘$Xp’ 
    
   G ⊢ s  Û G ⊢ $Xp   

    Û G ⊢ p(P)    by saturation 
   Û 𝓜G ⊧ p(P)       by EQ 
   Û 𝓜G ⊧ p[P𝓜ar] for some P𝓜ar Î 𝓡  by1.5./1.4. & constants lemma  
    Û 𝓜G ⊧ $Xp    by 4.7.3. 
   Û 𝓜G ⊧ s 
 
Of course, that 𝓜G may satisfy sentences in G that involve abbreviations, follows from the fact that 𝓜G 

satisfies all sentences of G that the abbreviations abbreviate.      ¨ 

 
Corollary 1: Structures 𝓜G  defined on complete, consistent, saturated theories G are Henkin faithful. 
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Proof: Let G be a complete, consistent, saturated theory. Each instance of the comprehension axiom is provable 

by G (as it’s an axiom), hence  

G ⊢ $X"x1, …,"xn(Xx1,…,xn « p(x1,…,xn))  Û 𝓜G ⊧ $X"x1, …,"xn(Xx1,…,xn « p(x1,…,xn)) th. 2  
 
             ¨ 

 
  Note that a canonical structure 𝓜G will satisfy any complete, saturated, and consistent theory G, but 

appears to deviate significantly from the initial constraints we put on 𝓘𝓛 structures (i.e. the domains seem to be 

no longer populated by object functions). Further, there is the metaphysical question of how exactly a set of 

constants can be extant. And lastly, there is the question of how an equivalence class c= can be impossible (which 

it would need be if, for some c Î 𝓒 and some P Î 𝓟, ‘éPc Ù ¬Pcù Ù !Sc’ Î G). To address the second concern 

first, there is not necessarily an inconsistency in terms of the metaphysical properties of sets and vocabulary 

symbols. Theories have been proffered for representing both sets and symbols as concrete (cf. Charles Chihara’s 

work on type theory without abstract sets in Chihara 1990, Hartry Field’s work on foundations of math with 

space-time points instead of abstract entities in Field 1980, and the various programs in term formalism in Shapiro 

2000). These programs aren’t without objections, but they are fruitful nonetheless. For now, we will table 

discussions on the metaphysical nuance of such theories, as they do provide us with a means for treating (a 

possibly infinite number of) symbols and sets as concrete objects - where our logic works just fine regardless of 

these metaphysical assumptions.  

Next, we comment briefly on the question of the unorthodox domain. The canonical structure contains 

just sets of constants (and a theory) in each domain, which do not seem to be object functions. Remember 

however, object functions are not abstract mathematical entities, but actual objects that serve the function of 

making a set of descriptions accurate of themselves (we simply represent them as mathematical functions). The 

sets of equivalence classes in our domains are objects that serve the informal function of making certain 

descriptions accurate of them (like, is the union of an equivalence class and a singelton), just as all objects serve 
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this function in and of themselves. The equivalence classes are able to be described, and accurately. Nothing, 

therefore, precludes them from populating our set of objects U.  

Lastly we comment on the latter, impossibility, question. Let’s assume that c= is a denotation that is 

impossible on G. Consider that c= is a construction of 𝓜G (itself a construction) and so c= gets its properties by 

virtue of both the construction of 𝓜G and G. Note then that c=, by virtue of G, is described accurately as the 

denotation of a constant that relates to predicate P and not the denotation of a constant that relates to predicate 

P. This satisfies the condition that there is some d Î D where +d, -d Î OB(c=), hence OB(c=) is impossible on this 

construction. Further, c= is exclusively sentential. This is the case as we can’t depict the relevant contradictory 

properties in c= (where presumably, there is some way of representing, imagistically, non-contradictory classes of 

this type) or reify such a contradictory entity according to a term formalism (the same token would literally have 

to be a ‘P[c=]’ and a ‘¬P[c=]’ at the same point in physical space). Lastly, note that c=, being a construction 

defined from 𝓜G
  and G, is unique relative to 𝓜G

  and G. That is,  

Relativity Theorem. for any classes c= and c=¢ defined on structures 𝓜G and 𝓜G¢ respectively (where 𝓜G ≠ 𝓜G¢) and theories 
G and G¢ respectively (where G ≠ G¢), c= ≠ c=¢. 

 
Proof: by 1.2., G Î c=. Since G ≠ G¢, G Ï {G¢}, hence G Ï c=¢, and we have it that c= ≠ c=¢.     ¨      

 
We insist on this feature as without it there is the possibility that for two structures 𝓜G¢ and 𝓜G and 

equivalence classes c= and c=¢, c= = c=¢. There is the further possibility that c= be contradictory in 𝓜G¢ but not in 

𝓜G. If this were the case, then OB(c=) would be accurately described as the denotation of a constant that relates 

to a predicate P and doesn’t relate to a predicate P and not the denotation of a constant that relates to a predicate 

P and doesn’t relate to a predicate P, leaving c= defined on every G¢ as exclusively sentential (if it was defined 

that way on any G). Theorem 1.2.1. denies this possibility as no two equivalence classes defined on the same 

constant can be identical on different theories. 

Godel-Henkin Model Existence Theorem. Any consistent set G Í Sent(𝓘𝓛) has a model of cardinality at most, 
max(À0, |G|) 
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Proof: Let k = max(À0, |G|). k = |𝓘𝓛G| by cardinality lemma 2. By Theorem 1 we can extend G to 

a complete consistent saturated theory T in a simple extension 𝓘𝓛′ of 𝓘𝓛G where |𝓘𝓛′| = |𝓘𝓛G| = k. 

By Theorem 2, the canonical structure 𝓜T is a model of T and of G therefore. By the expansion 

theorem, the 𝓘𝓛G-reduction 𝓜′ of 𝓜T is a model of G, and any 𝓘𝓛 -expansion 𝓜 of 𝓜′ is also. 

Lastly, if 𝓒¢ is the set of constant symbols of 𝓘𝓛′, then |𝓜| = |𝓜T| ≤ |𝓒¢| ≤ |𝓘𝓛′| = |𝓘𝓛G| = k. 

          ¨ 

 

Completeness. Given a theory G Í Sent(𝓘𝓛) and an 𝓘𝓛 sentence s, 
  
G ⊧ s  Þ G ⊢ s 
 
Proof: If G ⊬ s, then, by the consistency lemma (iii), G È {¬s} is consistent and so, by the model existence 

theorem, has a model 𝓜. 𝓜 ⊧ ¬s therefore, where it follows that 𝓜 ⊭ s. Since 𝓜 is a model of G but 

not of s, it follows that G ⊭ s. So, G ⊬ s Þ G ⊭ s and by the converse, G ⊧ s Þ G ⊢ s.   

            ¨  

Compactness. For any G Í Sent(𝓘𝓛), G has a model iff every finite subset of G has a model. 
 
Proof. The proof from left to right is obvious. Conversely, if every finite subset of G has a model, then by 

corollary of soundness every finite subset of G is consistent and so G itself is consistent by the consistency 

lemma. Therefore G has a model by the model existence theorem.     ¨ 

 
Löwenheim-Skolem Theorem. If a set G of second-order sentences has an infinite faithful Henkin model, it has a 
faithful Henkin model of any cardinality k ≥ max(À0, |G|). 

 
Proof. Let 𝓘𝓛G¢ be the simple extension of 𝓘𝓛G obtained by adding a set {dj: j Î J} of new constant 

symbols, where |J| = k. Define an extension G¢ as follows:  

G¢ = G È {¬(dj = dk): j, k Î J Ù j ≠ k}. 
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Now, let G0 be any finite subset of G¢. Clearly, only finitely many sentences of the form ¬(dj = dk) occur in 

G0. Let dj1, ..., djn be a list of all constant symbols occurring in ¬(dj = dk) sentences in G0. For an infinite 

𝓘𝓛G-model 𝓜 of G, choose n distinct elements a1,..., an from its domain S. Define 𝓜¢ to be the 𝓘𝓛 G¢-

expansion of 𝓜 in which the interpretation of djp is ap for p = 1,..., n and let the interpretation of dj (such 

that j Ï {j1, ..., jn}) be an arbitrary element of 𝓜. It follows that 𝓜¢ is a model of G0 and so, every finite 

subset of G¢ has a model. Every finite subset of G¢ is consistent then, which means G¢ is consistent by the 

consistency theorem. Now, |G¢| = k and so the model existence theorem implies that G¢ has a model of 

cardinality ≤ k. Since the interpretations of the dj in any model of G¢ are distinct elements, these models 

must have a cardinality ≥ k. G¢ has a model of cardinality k therefore and its 𝓘𝓛 G-reduction is a model of 

G of cardinality k32.   ¨ 

And, that concludes the section on meta-results. Obviously, working with a deduction system and 

semantics that are both sound and complete is desirable of any logic, and so any justification for including their 

proofs is redundant. But, second order logics with standard semantics are capable of modelling arithmetic, hence, 

on Godel’s incompleteness theorem, are incomplete. We choose a Henkin semantics then, in order that we avoid 

this problem (where our structures’ faithfulness allow for soundness). Compactness holds on this semantics as 

any G featuring a sentence equivalent to 

¬$X["x"y"z(Xxy Ù Xyz → Xxz) Ù "x(¬Xxx & $yXxy)]    FIN  

(that posits the second-order property of a finite domain) and sentences (for each n Î w) that posit the existence 

of at least n elements, i.e. 

G = {FIN,  $x(x = x), $x$y(x ≠ y), $x$y$z(x ≠ y Ù x ≠ z Ù y ≠ z), …}   ***    

                                                        
32 See Bell, 2006 (and course notes) for the more detailed presentation of this form of the Löwenheim-Skolem proof. 
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 is satisfiable. On standard second-order semantics, G would not be satisfiable, as it essentially posits both a finite 

domain (since an infinite domain would have some subset of SÍS that is assignable to some X, that satisfies FIN) 

and an infinite domain. *** is not satisfiable on standard second-order semantics then, but each of the finite 

subsets of *** are satisfiable, hence compactness fails. On our Henkin semantics however, infinite structures exist 

where 

X(𝓜G, a, r) Ï 𝓡 (on any assignment r) 

that do satisfy ***, hence there are both models for each finite subset of G and G itself.  

Since it can be shown that the Lowenheim-Skolem results obtain with Henkin semantics (as does the 

compactness theorem), by Lindstrom’s theorem, our logic is (as many suspect second order logics with Henkin 

semantics to be) just a two-sorted first order logic33. Although our logic is capable of representing theories of 

arithmetic (and therefore generating a Gödel sentence G), our logic also features Henkin structures where G is 

not entailed, and so, Gödel’s incompleteness theorem does not apply. By the Lowenheim-Skolem theorem, 

however, categoricity is not possible. But, since our aim is to found philosophical theories of objects (and not 

mathematical theories), where the possibility of a lack of a standard model is not of any conceivable consequence, 

a lack of categoricity is not a problem either.  

  

                                                        
33 Shapiro, 1991, pg. 14. 
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Chapter 6 
 

Building on The Groundwork 
 
• 

 
In this chapter we will interpret the informal principles and definitions required of various theories of 

objects and formally axiomatize a Meinongian theory as a proof of concept. An extension for (and, in part, the 

axiomatization of) a theory of impossible and vague objects has already been achieved with 𝓘𝓛, as vague objects 

are just a subclass of impossible objects and impossible objects are defined in the 𝓘𝓛 system. Capturing the 

essential properties of abstract and fictional objects is not possible with 𝓘𝓛 however as, traditionally, abstract 

objects have been taken to be both non-concrete and causally inefficacious (where causal relations cannot be 

captured with just the language of 𝓘𝓛) and fictional objects are not just non-concrete currently, they have never 

been concrete. Plato is currently non-extant therefore non-concrete, but intuitively Plato isn’t fictional. At some 

point in time (in the past) Plato was extant. On the other hand, someone like Sherlock Holmes was never extant 

and is therefore fictional.  

§6.1. Extending 𝓘𝓛 to a Temporal Logic (𝓘𝓛𝒯) 
 

The reader might have noticed that in determining Plato and Sherlock Holmes non-fictional and fictional 

(respectively), the expressions ‘currently’, ‘have never’ and ‘in the past’ were used. This suggests that temporality 

plays a role in defining objects of this kind. Further, I suggest that with added temporal concepts a notion of 

causality similar to the one posited by John Stuart Mill can be captured in 𝓘𝓛, hence abstract objects can be 

represented formally. Since (despite the fact that we can represent impossible and vague objects with just 𝓘𝓛) we 

must add certain temporal concepts in order to represent abstract and fictional objects, we will extend 𝓘𝓛 to a 

temporal logic of Arthur Prior’s (where ‘𝓘𝓛𝒯’ indicates the language of the temporal extension), and then proceed 

to the axiomatization of our theory of objects. We present the following 𝓘𝓛𝒯 extension as we presented the 𝓖𝓛 

extension in chapter four (i.e. we simply add the additional items to the relevant sections). The following items 
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should be read as though they proceed immediately after the ‘𝓘𝓛𝒯 extensions’ in chapter four. As with chapter 

four, we provide an appendix featuring the complete presentation of the system. We start with the extension of 

our 𝓘𝓛𝒯 vocabulary.  

4.1. Vocabulary: 
 
4.1.3.  𝓘𝓛𝒯 Extension 

 
P  (this symbol is read it has at some time been the case that) 
F (this symbol is read it will at some time be the case that) 
 

4.2. Formulas 
 

(𝓘𝓛𝒯 Extension of 6.2.2.) 
 
(b.4). If p is a formula, then Pp and Fp are formulas. 
 
4.2.3.T. Form(𝓘𝓛𝒯) := {p : p is a formula of 𝓘𝓛𝒯}. 
 

  (Abbreviations) 
 
  4.2.4. if p and q are formulas, then 
 
   … 
 
   Hp   abbreviates ¬P¬p   ‘it has always been the case that’ 
   Gp   abbreviates ¬F¬p   ‘it will always be the case that’ 
   Ap   abbreviates Hp Ù p Ù Gp  ‘it is always the case that’ 
 
   *as a matter of convention, treat each formula as though it begins with a tacit ‘it is currently the case’. 
 
4.5. Structure  
 

𝓜T := (E, D, S, T, ≺, t, Sent(𝓘𝓛𝒯), 𝓒, 𝓟, 𝒱, 𝒯, Ré ù) 
 

𝓜T denotes the structure, i.e. a quattuordecuple. Like structures of 𝓘𝓛, 𝓜T consists of a nonempty domain S, 

which is a set with a well-defined subset D (possibly empty) having a well-defined subset E (possibly empty). 

We will define E, D, and S the same as we did for 𝓘𝓛, but with the following addition.  

Let dt abbreviate those d Î D that are read, ‘d at time t’ 

T is a set of points in time and ≺ is a relation on T (called a precedence relation) whose tuples (t, t¢) are read ‘t 

precedes t¢’ (where (t, t¢) Î ≺  is abbreviated t ≺ t¢). We assume certain constraints on ≺ here, where these 

constraints are defeasible and variations may be determined according to the logician’s requirements. For now, 



 95 

since we are modelling informal theories of objects according to ordinary language discussions of them, we will 

treat time in the standard linear and discrete manner. That is, ≺ is irreflexive, anti-symmetrical, transitive, and 

non-dense. Formally non-density is represented thus, ¬"t"t¢¢[t ≺ t¢¢® $t¢(t ≺ t¢ Ù t¢ ≺ t¢¢)]. t is the point in time 

that all t¢ Î T are relative to in 𝓜T (abbreviate ‘a structure at time t’ as ‘𝓜T(t)’), that is, when 𝓜T(t) satisfies some 

formula p, p is said to be satisfied by 𝓜T at time t. Where no t is present in the structure, assume t = now. 

Sent(𝓘𝓛𝒯), 𝓒, 𝓟, 𝒱 are defined as they are in 𝓘𝓛. 𝒯 is the set of temporally contingent elements of 𝓜T(t), that is, 

those elements that vary as t does.  

𝒯 = {{St}t Î T, {Dt}t Î T, {Et}t Î T, {{Ri : i Î I}t : t Î T}, {{ej : j Î J}t : t Î T}, {𝓡t : t Î T}.  

We define the elements of 𝒯 thus.          

{St}t Î T := {(t, OBo) : t Î T Ù OBo Î S Ù "t¢ t ≺ t¢, ‘came to exist at time t¢’ Ï OB(o)} 
 

where for each t Î T, 
 

St  := {OBo : (t, OBo) Î {St}t Î T }  
and 
 

{Dt}t Î T := {(t, OBo) : t Î T Ù OBo Î St Ù 
   [‘concrete at time t’ Î OB(o) Ú ‘non-concrete at time t’ Î OB(o)] Ù for any d Î D, -dt, +dt  Ï OB(o)} 

 
where for each t Î T, 

 
Dt  := {OBo : (t, OBo) Î {Dt}t Î T }  
 

and 
 

{Et}t Î T := {(t, OBo) : t Î T Ù OBo Î Dt Ù  
   ‘concrete at time t’ Î OB(o) Ù ‘non-concrete at time t’ Ï OB(o) Ù for any d Î D, -dt, +dt  Ï OB(o)} 

 
where for each t Î T, 

 
Et  := {OBo : (t, OBo) Î {Et}t Î T }  

 
and define {{Rit : i Î I}t : t Î T} to be a family of families of relations on S with the constraint,  
 

for each i Î I and t Î T,  
 

Rit Î {Rit : i Î I}t   Þ Rit Í Stl(i) 
 
where we add a final constraint that, for any OBo Î St and any d Î D  
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 +d, -d Î OB(o)  Þ  Rd  = Rit  (for some i Î I where l(i) = 1)  and  OB(o) Ï Rit 
 
next, define {{ejt : j Î J}t : t Î T} to be a family of families of designated elements of S with the constraint, 
 

for each j Î J and t Î T 
 

ejt  Î {ejt : j Î J}t   Þ  ejt Î St  
 

and (with Rt abbreviating {Ri : i Î I}t) 
 
{𝓡t : t Î T} is a family of sets of relations on S where for any t Î T and relation R on S, 

 
R Î 𝓡t  Þ R Î ÈP(Stn) 

 
and 

Rt Í 𝓡t  

Lastly, Ré ù is defined the same as in 𝓘𝓛 save for the fact that we change its constraint to  

for any OBo Î St and any d Î D, 
 
 if d ≠ ‘concrete’, ‘non-concrete’, ‘impossible’, ‘abstract’, ‘fictional’, or ‘vague’, then 
  
  +d, -d Î OB(o)  Þ OBo = ej   and  Rd = Ri  Þ ‘Picj Ù ¬Picj’ Î Ré ù 

  
 or 
  
 if d = ‘concrete’, ‘non-concrete’, ‘impossible’, ‘abstract’, ‘fictional’, or ‘vague’, then (where p captures the relevant 
 mode of existence)    
  
  +d, -d Î OB(o)  Þ OBo = ej  Þ ‘p(cj) Ù ¬p(cj)’ Î Ré ù 

 
4.6. Interpretation 

4.6.1. (Variable Assignment) Given the structure, 𝓜T of type (λ, J), 
 
 A-sequence := a countable sequence of elements of St (denoted, ‘at = (a0, a1, …)’) 
 
  R-sequence := a countable sequence of elements of 𝓡t (denoted, ‘rt = (R0, R1, …)’) with the following constraint: 
 
  For each n, the nth R in r is of degree v(n) 

4.6.2. (Interpreting the Symbols) Given 𝓜, at, rt, t (where we read ‘V(𝓜, at, rt, t)’ as the element of the domain of 𝓜 that V is 
interpreted-by/names/is-assigned-from-at-or-rt at time t), 
 

Interpretation of 𝓘𝓛 in (𝓜, at, rt, t)  :=  i) Pi(𝓜, at, rt, t)  = Rit   
 
       ii) Vn(𝓜, at, rt, t)  = Rn  
        
       iii) cj(𝓜, at, rt, t)  = eit     
 
       iv) vn(𝓜, at, rt, t)  =  an 
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4.6.3. (Variant Assignment)  
 

For n Î ω, b Î St, 
 

 [n|b]at := (a0, a1 ,..., an–1, b, an+1, ...) 
 
For n Î ω, S Î 𝓡t (where S is of degree v(n)) 

 
[n|S]rt := (R0, R1 ,..., Rn–1, S, Rn+1, ...)   
 

4.7. Satisfaction 

4.7.1. For p Î Form(𝓘𝓛𝒯),  
 

at, rt satisfy p in 𝓜T at time t (denoted, ‘𝓜T(t) ⊧ at, rt p’) :=  
 
… 
 
4.7.9.  𝓜T(t) ⊧ at, rt  Pp   Û  for some t¢ where t¢ ≺ t, 𝓜T(t¢) ⊧ at¢, rt¢   p 
 
 𝓜T(t) ⊧ at, rt  Fp   Û  for some t¢ where t ≺ t¢, 𝓜T(t¢) ⊧ at¢, rt¢    p 
 
(where two proofs similar to the one generating satisfaction rules for universalized statements gets us) 
 
4.7.10.  𝓜T(t) ⊧ at, rt  Hp   Û  for all t¢ where t¢ ≺ t, 𝓜T(t¢) ⊧ at¢, rt¢    p 
 
 𝓜T(t) ⊧ at, rt  Gp   Û  for all t¢ where t ≺ t¢, 𝓜T(t¢) ⊧ at¢, rt¢    p 
 

4.8. Deduction. 
 
Note that here we only provide the bare minimum set of temporal axioms and inference rules required for 

deducing sentences entailed by theories G on our above temporal semantics and that are universal validities on 

our above temporal semantics. We do this in order that we not put any undue ontological constraints on the system. 

Which modal system the logician chooses is up to them, hence, further axioms/inference rules may always be 

added, or current axioms/inference rules removed.    

4.8.3. Inference Rules  
 
(where ‘temporal scope’ denotes the scopes of assumptions including the scope of primary assumptions, 
Aux FE, Aux PE, Aux GE, Aux HE)  
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And that concludes the 𝓘𝓛𝒯 extension of 𝓘𝓛. However, before moving on to our discussion of representation of 

objects, it is worth taking a moment to discuss an interesting result of 𝓘𝓛𝒯.  

It is well known that a defect of many first-order and higher-order temporal logics is an inability to 

represent concepts involving ancestry and statements positing existence 34. The problem arises from a dilemma 

                                                        
34 Rescher, 1971 – Chapters 13 and 20.  
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temporal logicians face when defining the domains of their structures. Domains of 𝓛𝒯 structures must either 

remain fixed across all t Î T or contain only those elements extant at each t Î T. If the former is the case, then a 

true statement like ‘the present king of France does not exist’ is currently false, and if the latter is the case, then 

a true statement like ‘Pierre Trudeau is an ancestor of Justin Trudeau’ is currently false. The former statement is 

false as King Louis is in the domain currently as well as in the relation containing kings of France. King Louis 

exists on these structures therefore and satisfies the condition for being the king of France. Alternatively, should 

the domain be relative to t, the latter statement fails as Pierre Trudeau is not currently in the domain and therefore 

not in a tuple next to Justin in the ancestor relation.  

Issues like these do not arise in 𝓘𝓛𝒯 as, although the domain S in any structure 𝓜T(t) is defined relative 

to those objects that exist at t, the depictable and/or sentential domains for any t contain all elements that have 

ever existed up until t. Further, the informal predicate ‘exists’ is neither treated as a status captured by the 

existential operator nor as a primitive formal predicate. In 𝓘𝓛𝒯 ‘exists’ in this sense means, exists in space and 

time, and hence is captured by extantiality. Let ‘the present king of France does not exist’ be captured by  

(PK) $x[(Kx Ù "y(Ky ® y = x) Ù ¬!Ex)]      

Provided that  

x(𝓜, a, r t) Î K(𝓜, a, r t),  

K(𝓜, a, r t) = {x(𝓜, a, r t)},  

and  

x(𝓜, a, r t) Ï E,  

(PK) is satisfied by any 𝓜T(t) meeting both the above conditions and the condition that t be a point in time after 

the last king of France has died. Of course, on this way of looking at ‘the king of France’, we assume that once 

any king of France is succeeded, he is no longer in the relation of kings of France and, for any king of France, 

unless he has a successor, he remains king even after death. If, on the other hand, we read ‘the present king of 

France’ as denoting a fictional or abstract figure, then K(𝓜, a, r t) is not actually the relation containing real life 
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kings of France, but the relation containing a fictional king of France. Either way, unless France puts in place 

another king as its head of state,  

K(𝓜, a, r t) = {x(𝓜, a, r t)}  

Now, let ‘Pierre Trudeau is an ancestor of Justin Trudeau’ be captured by 

  (A) Apj 

 Where if 

(p(𝓜, a, r t), j(𝓜, a, r t)) Î A(𝓜, a, r t)   

then (A) is satisfied by any 𝓜T(t) where t is a point in time after the birth of Justin Trudeau. From this we see that 

the concept of ancestry, as well as definite descriptions, do not pose a problem for 𝓘𝓛𝒯. That aside, aside, we 

now return to our axiomatization of a theory of objects. 

§6.2. Defining Impossible, Vague, Abstract, and Fictional Objects 

We start with a brief discussion of the defining features of object kinds to be captured formally, and then 

we define each kind formally. Impossible objects in general have already been elaborated on, so we’ll focus on a 

subset of them that have featured in quite a lot of philosophical debate. Here, I’m speaking of vague objects. 

Vague objects are not to be confused with vague predicates. The latter’s vagueness is a matter of epistemic 

indeterminacy and the former’s is a matter of ontological indeterminacy. Vague predicates are those the 

extensions of which are not decidable (in an informal sense), that is, we are often not certain whether the predicate 

applies to a particular object or not. Take a color property like ‘reddish-orange’ for example. This could be said 

to be a vague property (therefore a referent of a vague predicate), as the greater preciseness of ‘reddish-orange’ 

leaves the problem of whether or not the property is exemplified by the object applicable to a much larger number 

of objects. To illustrate the problem better, picture four apples on a table – a granny smith apple, two gala apples, 

and a red delicious apple. Imagine you are asked to retrieve a particular apple, by request. If you were told to 

retrieve the apple that possessed a coloring, this lack of precision in description would ensure that you know 

without doubt which apples were candidates (as they all possess a coloring), but you wouldn’t know which one 
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to choose. Has a coloring is a non-vague (but imprecise) property for this reason. If you were asked to choose the 

apple that was reddish-orange however, the greater precision of this description would narrow your options down 

to the gala apples for certain, but what if, for either of the gala apples, you couldn’t decide whether it was reddish-

orange or orangish-red?  

This is a common issue we face when trying to determine the properties of objects. In this case, we see 

that reddish orange is a less decidable (but more precise) property. Properties (and the predicates that capture 

them), where cases of indeterminacy like this arise, are said to be vague (i.e. we just don’t know if the object has 

the property or not). Determining a vague object on the other hand has nothing to do with what we do or do not 

know - what we observe or do not observe. Vagueness on this account is a property of the object per se. In the 

case of the gala apple then, it’s being a vague object would mean that reddish-orangeness, even if there were no 

human beings (or any entity present) to observe the apple or describe it, would be a property that may or may not 

be exemplified by the apple. The apple would not be an object with and without reddish orangeness (hence T-

impossible) it is something more nebulous. The gala apple (and other vague objects) are those that, at best, we 

can say have fuzzy identity boundaries or, are objects that cannot be said to identify or not with certain objects. 

By appeal to the following argument35, we see that it must be the case that vague objects are objects that 

are not determined identical to themselves, hence impossible. Consider if an object a is vague it is said to be of 

indeterminate identity, i.e., for some object b it is indeterminate as to whether a = b. But, then b has the property 

of being an object x where it is indeterminate as to whether x = a where, because a = a, a does not have this 

property. So, if b has a property that a doesn’t have, by Leibnitz’ principle, it is not the case that a = b, hence it 

is able to be determined whether or not a = b, and a is not of indeterminate identity. It follows then that a is not a 

                                                        
35 This argument is based on Gareth Evans’ formalized version in Evans, 78. Note that by defining vague objects from this argument, 
we assume only one of many possible definitions of vague objects. We may treat ‘vague objects’ in this work as, more accurately, 
Evans-Vague Objects. We choose Evans’ formulation, as it is most common in the literature. That said, the system is amenable to other 
definitions of vague objects. For one example, vague objects may also be defined as real world incomplete objects (i.e. concrete objects 
o where there is at least one property p where it is indeterminate as to whether o has property p) where we (might) represent such an 
object as follows: ix[!Ex Ù é$X¬(Xx Ú ¬ Xx)ù] or, the extant object of which we say, but only say, ‘it is not the case that the object has 
or doesn’t have at least one property’. 
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vague object. Note though, that (on the above argument) if it were indeterminate as to whether a = a, it wouldn’t 

follow that b has a property that a doesn’t have. We have it then that if a is to be truly vague it must be the case 

that it not be determined identical to itself. Vague objects, then, are those objects that are not able to be determined 

identical to some object and are not determined identical to themselves. That said, it is too weak a claim, evidently, 

to say that a vague object o is an object that is not able to be determined identical to some object as o is an object 

not even identical to itself, hence not identical to any object. Vague objects are just I-Impossible objects that, 

because all objects are said to be identical to themselves, are - by definition (and a little redundantly) - impossible.     

Abstract objects are much simpler to define. They’re just non-concrete objects said to be causally 

inefficacious. However, though abstract objects are easy to define informally (if not easy to conceptualize), they 

are difficult to capture in formal logics. The problem isn’t non-concreteness, that concept has already been 

defined. The problem is a need to capture the concept of causality. There have been attempts to capture causality 

in formal theories. But, being theories that (if we employed them here) would require an additional extension to 

𝓘𝓛𝒯, these logics will not be employed (and therefore not surveyed either). Instead, the aim is to capture causality 

with just the machinery of 𝓘𝓛𝒯. With our present system, it is possible to capture a theory of causality similar to 

that of John Stuart Mill’s36 (albeit with a greater emphasis on interventionism).  

We will present the causal theory shortly. However, now that we have informally defined abstract objects, 

it would be a good time to informally define fictional objects. Intuitively, a fictional object is a non-concrete, non-

abstract object that is the creation of a (at one time) extant individual. From this, it may seem a natural conclusion 

that a new predicate be defined into 𝓘𝓛𝒯, one that captures the creation of a non-concrete, non-abstract object by 

an extant object. However, this is unnecessary. Should a non-concrete, non-abstract object exist that is said to 

have never been extant - that some extant object created it is implied. Since the object is discussed, but isn’t extant 

or abstract, the only way the object could have come into existence is through conception by some sentient being. 

                                                        
36 Mill, 2016 – Ch 5. 
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Fictional objects then, are just non-concrete, non-abstract objects that have never been (nor will they ever be) 

extant.  

We may now present our formal theory of causality. Let 

p ⥽ q abbreviate A[P(p ® Fq) Ù F(q ® Pp)] Ù A¬[p « q]  
 

Informally, we read p ⥽ q as ‘p causes q’ and the formula to the right can be read as ‘it is always the case that 

when the circumstance(s) captured by p have obtained, the circumstance(s) captured by q will obtain, and vice-

versa (but these circumstances do not occur simultaneously)’. This precludes a definition from being treated as a 

cause (as the necessary and sufficient conditions for p always occur simultaneously with q) but still allows for 

any possible u (in p(u)) to causally affect itself. The idea here then, is that when circumstances C1, …, Cn-1 always 

precede circumstance Cn (where if any of C1, …, Cn-1 do not occur, Cn will not occur) we treat C1, …, Cn-1 as the 

cause of Cn (cf. Mill, 2016 and Woodward, 2003). Further we treat any objects involved with C1 or, …, or Cn-1 as 

causally affecting any objects involved with Cn. From this, we get 

  Abstract(u) abbreviates !Du Ù A¬E$y(p(u) ⥽ q(y)) 
 
We can read this as ‘u is abstract iff it’s non-concrete and it’s always the case that there are no extant objects y 

that u causally affects’. Whether or not the abstract object itself is able to be causally affected is a matter for the 

metaphysician to decide. However, if one desires causal inefficacy to imply neither causing nor being causally 

affected, the following clause can be added to the above abbreviation:  

Ù A¬$z(r(z) ⥽ p(u)) 

Note that because the above definition is in schematic form, and because there is at least a denumerable set of 

formulas of 𝓘𝓛𝒯, there is no effective means of proving an object abstract nor representing it as such in the 

language (short of relying on the abbreviation). At this point, the best we can do is prove an object non-abstract 

by establishing a negation of an instance of the above schema. For this reason, we introduce an abstract predicate 

‘Abstract’ into the language of 𝓘𝓛𝒯 as follows 

4.1.3.  𝓘𝓛𝒯 Extension 
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…  
 
Abstract  (a predicate indicating an abstract object) 

 
where  
 

(𝓘𝓛𝒯 Extension of 4.2.1.) 
 

…  
 
‘Abstract(u)’ is an atomic formula of 𝓘𝓛𝒯  

 
Since ‘Abstract’ just acts as an abbreviating predicate for ‘!Dt Ù A¬E$y(p(u) ⥽ q(y))’, the satisfaction conditions 

for the new predicate will be as follows: 

4.7.11.  𝓜T(t) ⊧a,r  Abstract(u)  Û for some b Î D (where b Ï E) 𝓜T(t) ⊧[n|b]a, r vn = u    
 
     and  
 
     for some p, q Î Form(𝓘𝓛𝒯)  
       
      for all t, 𝓜T(t) ⊧a,r  
       
       ¬E$y(A[P(p(u) ® Fq(y)) Ù F(q(y) ® P p(u))]  
           Ù A¬[p(u) « q(y)]) 

Where obviously  
 

"x[Abstract(x) « (!Dx Ù A¬E$y(p(x) ⥽ q(y)))]  
 
is universally valid and so we add it as an axiom to 𝓘𝓛𝒯. Now we may speak of abstract objects without treating 

the abstraction predicate as an abbreviation of a conjunction, the number of conjuncts of which, are at least 

countably infinite. That said, all other object kind predicates can remain as abbreviations in 𝓘𝓛𝒯. The definitions 

are as follows. 

Concrete(u) abbreviates !Eu 
 
Non-concrete(u) abbreviates !Du   
 
Abstract(u) abbreviates !Du Ù A¬E$y(p(u) ⥽ q(y)) 
 
Fictional(u)  abbreviates !Du Ù (¬Abstract(u) Ù A¬!Eu) 
 
T-impossible(u) abbreviates sTu 
  
Vague(u)  abbreviates sIu 
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Impossible(u) abbreviates ($X)X-impossible(u) Ú Vague(u)   
  

Where the as yet accounted for abbreviations are 
 
sAbstract(u) abbreviates é(!Du Ù A¬E$y(p(u) ⥽ q(y))) Ù ¬(!Du Ù A¬E$y(p(u) ⥽ q(y)))ù Ù !Su    
 

sFictional(u) abbreviates é(!Du Ù (¬Abstract(u) Ù A¬!Eu)) Ù ¬(!Du Ù (¬Abstract(u) Ù A¬!Eu))ù Ù !Su    
 

sVague(u) abbreviates é sIu Ù ¬ sIuù Ù !Su    
 
To comment briefly on the soundness and completeness of 𝓘𝓛𝒯 – we will not prove these properties here. 

However, they may be assumed provable as we need only test our abstractness axiom for universal validity (which 

is clearly the case) as a necessary condition for soundness and account for atomic formulas of the form 

‘Abstract(t)’ in our definitions of canonical structures as a necessary condition for completeness. From here we 

add the required universal validities as axioms (if they cannot be proven) and carry out the same proofs that 

already exist for showing soundness and completeness for Priorian tense logics for 𝓘𝓛𝒯37.   

And that’s it. That is, that is all that can be added to the system without putting any unwarranted constraints 

on the metaphysician. Of course, even the definitions of the above kinds of objects need not be assumed in a logic 

of objects (Zalta, for instance, treats all non-concrete objects as abstract, drawing no further distinctions38). And, 

there are likely many other object kinds that can be defined from the machinery of 𝓘𝓛𝒯. But, it was the aim of 

this project to provide a system that could capture all of the desired delineation of object kinds, so it is at least 

necessary to show that 𝓘𝓛𝒯 can translate the informal definitions of object kinds that feature perennially in 

philosophical discussion. 

§6.3. Proof of Concept: A Meinongian Logic From 𝓘𝓛𝒯  

That said, even though this is not a project in metaphysics, for the sake of a proof of concept, we provide 

an example of a theory of objects that may be captured by 𝓘𝓛𝒯 (where the definitions and principles involved 

need not be assumed a facet of our system), and then address a few questions and concerns. We start by 

                                                        
37 For one such proof see Rescher, 1971 pg. 241. 
38 Zalta, 1983 
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representing a Meinongian theory of objects (or at least the cornerstones of a Meinongian theory). Although 𝓘𝓛𝒯 

is non-Meinongian (i.e. it allows for the capturing of theories of objects that do not satisfy the naïve object theory 

principle) Meinongian theories of objects can still be captured by 𝓘𝓛𝒯. Essential to a formal Meinongian theory 

is a formalization of the NOT principle, that is, for any possible combination of properties there exists an object 

that exemplifies all and only those properties. As well, the concepts of existence (i.e. material and temporal being), 

subsistence (i.e. non-temporal being), and outside-being (i.e. being an object that might neither exist nor subsist) 

need to be defined. Luckily, the three concepts track concreteness, abstractness, and sententiality respectively and 

so we need only apply the definitions that 𝓘𝓛𝒯 already provides. As for the NOT principle, something like the 

following axiom and schema pair (call them ‘NOT-Simpliciter’ and ‘NOT-Schema’ respectively) should do the 

trick, 

"Y$x(Yx  Ù "Z[Zx ® (Z = Y)])  NOT-Simpliciter 
 
*where Y is of degree 1. 
 

NOT-Simpliciter states that ‘for any one-place predicate, there exists some x that relates to that (and only that) 
predicate (or, for any property, there is an object that exemplifies that property simpliciter). Next, we have NOT-
Schema, 
 

"Y1, …, "Yn [(¬(Y1 = … Ù ¬(Y1 = Yn) Ù … Ù ¬(Yn-1 = Yn))  
     ® $x([(Y1x Ú sY1x) Ù … Ù (Ynx Ú sYnx)] Ù "Z(Zx ® [Z = Y1 Ú … Ú  Z  = Yn]))] 
 
*where for each i Î {1, …, n}, Yi is of degree 1.  
 

NOT-Schema states that ‘for any n distinct one-place predicates, there exists some x that relates to those (and 

only those) predicates (in either their standard or sententializing form). Pairing the NOT principle off into an 

axiom and an axiom schema makes the proof system a bit more cumbersome, but the two principles capture the 

general idea of NOT. As well, the possibility of sententialization denies any inconsistencies that may arise should, 

for any i, j Î {1, …, n}, Yix ® ¬Yjx. The NOT axioms of the Meinongian theory guarantee an object for every 

combination of predicates. As an example, consider that the following instance (presented in a qausi-formal 

manner) of the NOT-Schema,    

¬(Square = Circular) ® $x[(Square(x) Ú sSquare(x)) Ù (Circular(x) Ú sCircular(x)  Ù "Z(Zx ® [Z = Square Ú Z  = Circular])] 
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guarantees us the existence of the square circle, as (if the theory accurately represents the fact that square things 

are not circular things and vice-versa), with modus ponens, we get 

$x[(Square(x) Ú sSquare(x)) Ù (Circular(x) Ú sCircular(x)  Ù "Z(Zx ® [Z = Square Ú Z  = Circular])]  

where because the theory is assumed accurate, some logic shows that 

$x[(sSquare(x) Ù sCircular(x))  Ù "Z(Zx ® [Z = Square Ú Z  = Circular])] 

which is actually an abbreviation of 

$x[(éSquare(x) Ù ¬Square(x)ù Ù !Sx) Ù (éCircular(x) Ù ¬Circular(x)ù Ù !Sx))  Ù "Z(Zx ® [Z = Square Ú Z  = Circular])] 

So, the sentence is consistent in and of itself.  

Other objects of interest to Meinong, like the existent golden mountain can be represented too. Let’s adopt 

the convention of abbreviating $xp(x) Ù "y(p(y) ® y = x) as $!xp(x) in order that we may represent the existent 

golden mountain thus 

$!x([Golden(x) Ù Mountain(x)] Ù E!x) 

The existent golden mountain is straightforwardly modelled by structures that have an element in their domain 

that is in the golden and mountain relations (where nothing else in the domain is in both of those relations). Of 

course, we would be acting disingenuously if we failed to acknowledge that exists on Meinong’s account means 

concrete on ours. For this reason, we will represent the concrete golden mountain too. The concrete golden 

mountain is a bit problematic in terms of representation as the concrete golden mountain is not concrete. However, 

this just makes the concrete golden mountain impossible. So, we would represent it thus 

$!x([Golden(x) Ù Mountain(x)] Ù sConcrete(x)) 

which is actually an abbreviation of 

$x([Golden(x) Ù Mountain(x)] Ù [é!Ex Ù ¬!Exù Ù !Sx]) 

which is again, a sentence that is consistent in and of itself. We see then, that the foundation for a Meinongian 

theory of objects (as well as the objects that are mainstays of Meinongian theory) is able to be captured in 𝓘𝓛𝒯. 

A model of the Meinongian theory would be any 𝓘𝓛𝒯 structure that satisfies NOT-Simpliciter and each instance 
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of the NOT-Schema. However, what proceeds from the basic principles and definitions of the theory is a matter 

for the Meinongian scholar to determine. Since we are not Meinongian scholars, we end our presentation of the 

Meinongian theory of objects here.  

§6.4. Tying Up Loose Ends 

We will end this chapter with some commentary on other possibilities for extensions and, in general, the 

various directions we may take 𝓘𝓛𝒯. To start, there is an obvious question evoked, how do the impossible objects 

of 𝓘𝓛𝒯 compare to the impossible objects of standard modal possible world logics. It seems, should we extend 

𝓘𝓛𝒯 to include the possibility and necessity operators (‘à’ and ‘¨’ respectively), we would have possible 

impossible objects (i.e. à$xImpossible(x)), but could we also have impossible impossible objects (i.e. 

¬à$x[Impossible(x) Ù p(x)] or $x¬àImpossible(x)) too? And, isn’t the former notion counterintuitive and the 

latter redundant?  

To me, it seems like both representations are unproblematic. The former sentence is only counterintuitive 

when represented in natural language terms of inadequate description, and the latter sentence only seems 

redundant for the same reason. As for why I suspect that such representations are unproblematic - as well as 

potentially useful statements in theories of objects captured by modal extensions of 𝓘𝓛𝒯 - with more elaborate 

description we see that ‘à$xImpossible(x)’ actually says (in natural language terms) in some possible context there 

exists some x where x, as described, violates the law of non-contradiction. This statement should neither strike 

the reader as counter-intuitive nor contradictory per se. What may clear up the confusion is the informal 

convention, use ‘not-possible’ for objects not found in any world or context and use ‘impossible’ for objects 

described in such a way that they violate the law of non-contradiction. 

In regard to the dual possibilities for representing impossible impossible objects, i.e.  

¬à$x[Impossible(x) Ù p(x)]   (O1) 

and  



 109 

$x¬àImpossible(x)    (O2)      

with greater description we get the natural language translations there is no context where there is an x where x, 

as described, violates the law of non-contradiction and has certain other defining features and there is some x 

where there is no context where x, as described, violates the law of non-contradiction, respectively. The 

redundancy dissolves for both O1 and O2 when we establish, in natural language terms, what they actually mean 

when modelled formally. And, we want 𝓘𝓛𝒯 to have non-possible objects like x in O1. A possibility operator 

would be quite helpful for instance, should we want to indicate the non-possible property that is exemplified by 

say, the square circle, should it be said to be both of philosophical interest and not of philosophical interest 

simultaneously. If we let S, C, and P be square, circular, and of philosophical interest (respectively), it becomes 

clear that we would want a sentence like 

P[ix(sSx Ù sCx)] Ù ¬P[ix(sSx Ù sCx)] 

to not obtain in any possible world, as it is straightforwardly contradictory. Lastly, to comment briefly on O2, 

objects with consistent properties are not impossible in any context and, since O2 captures that fact with the use 

of the possibility operator, we see again the use a modal extension of 𝓘𝓛𝒯 would serve. I conjecture then, that the 

only potential for problems with a modal extension of 𝓘𝓛𝒯 would have been those that arise from representing 

impossible impossible objects and possible impossible objects, where because such problems have been shown 

unfounded, consistent modal extensions are not only desirable, but realizable. 

The above paragraph hints at an important feature of 𝓘𝓛. The feature is as follows - say/only-say sentences 

ésù cannot be derived. This isn’t strictly true of course, ésù may be derived from contradictory formulas of the 

form q Ù ¬q or ¬(t = t) via negation elimination. However, if this derivation were an option, we would be working 

with an inconsistent theory and anything could be derived. What is meant is that there is not (nor can there be) a 

derivation rule for the introduction of é ù. Say only say (‘S/OS’) formulas are defining features of impossible 

objects (i.e. informally, S/OS statements ‘sententialize’ objects, thereby making them impossible). If 𝓘𝓛 had an 
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inference rule that allowed us to introduce the operator é ù, there would be no conceivable conditions on this rule 

that would preclude any contradictory formula (of the forms demonstrated above) from being cornered by é ù. 

The only real option is the condition ‘s was previously cornered by é ù’. Of course, this is a condition that can 

never be met, as the no proof axiom ésù ® ¬s guarantees that a contradiction arises should both ésù and s feature 

in any derivation (which makes sense, since s - on this scenario - is either assumed or derived which means it’s 

not just said and only said). So, with no conceivable conditions on this hypothetical inference rule, we would be 

able to infer for any contradictory sentence s, ésù. From this fact, it follows that exclusively sentential terms u 

cannot possess contradictory properties as any predicate P where Pt Ù ¬Pt implies sPt. This means that formulas 

like  

P[ix(sSx Ù sCx)] Ù ¬P[ix(sSx Ù sCx)] 

would imply an informal contradiction. sP[ix(sSx Ù sCx)] is able to be derived if we allow the introduction of é ù, 

so the predicate P is both sententializing, hence P is contradictory but consistent, but is also straightforwardly 

contradictory, therefore inconsistent. This result is undesirable.  

Since we want 𝓘𝓛 to mirror ordinary language conversations about impossible objects, and impossible 

objects are able to be described - in ordinary conversations - in contradictory but consistent ways (according to 

certain properties) but also in contradictory and inconsistent ways (according to certain other properties), we do 

not allow for the introduction of the é ù operator in 𝓘𝓛. Instead, cornered formulas are decided as a matter of 

assumption when formulating a theory G in 𝓘𝓛. If the logician wants a theory of the square circle (call it ‘GSC’) 

then ix(sSx Ù sCx) is included in GSC at the logician’s discretion, hence the relevant cornered formulas are included 

too. This formal convention mirrors the informal convention of introducing impossible objects into ordinary 

language philosophical discussions at the interlocutor’s discretion (as discussed in §4.7). So, for any formulas of 

the form ésù (for any theory G), if G ⊦ ésù then ésù must feature in G itself (as a formula or subformula). In other 

words, 𝓘𝓛 doesn’t prove objects permissively inconsistent; it reasons according to objects that are assumed 
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permissively inconsistent. Again, this is in keeping with ordinary conversations too, as obviously, philosophers 

do not conceive of a square circle and then reason towards its squareness and circleness, they assume an object 

that is simultaneously square and circular (by hypothesis) and reason from there. 

Since this is a project on a logic of objects, it is only appropriate that we close this final chapter with a 

discussion of the objects defined in this logic. The nature of the objects of 𝓖𝓛 - viz. object functions - are decidedly 

nebulous. And that is exactly the point. As hinted at in §4.5, we do not explain here what realizes any type of 

object function, save for extant objects. This is, once again, done out of a spirit of pluralism and a need to not put 

any undue constraints on the metaphysician. Naturally, certain questions arise. For example, what realizes the 

object function that is Homer Simpson?, what happens to an object function that goes from being extant to not 

extant, but depictable, (like Pierre Trudeau from the above example)?, ‘depictability’ and ‘sententiality’ suggest 

a describer, is the existence of objects that start at depictability and sententiality contingent on the existence of 

an entity that first describes them?, and are objects that start at depictability and sententiality eternal?. 

We do not answer any of these questions here. We want it to be the case that Homer Simpson may be a 

Platonic particular, an object of a thought, a constitutive object (viz. an object constituted of the conception of 

Matt Groening, descriptions in a script, the voice acting of Dan Castellaneta, animation cells, etc.), or any other 

type of object. Further, we want it to be the case that formerly extant objects may exist as they were when extant, 

save for they exist outside of space and time, or they are transformed into objects of a different type, or they 

persist as ideas, etc. Lastly, we want the option of objects that start at depictability and sententiality being 

contingent on the existence of an entity that first describes such objects open to the metaphysician as well as the 

option that objects that start at depictability and sententiality are eternal. Note though, that this latter option is 

open in 𝓖𝓛 and 𝓘𝓛, but isn’t open in 𝓘𝓛𝒯 as 𝓘𝓛𝒯 is defined. That said, nothing stops the logician from defining 

𝓘𝓛𝒯 in such a way that these constraints are removed. So, other than positing the various modes of existence that 
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it does, 𝓖𝓛 and its extensions are otherwise agnostic in regard to how else objects might exist. We will leave such 

explication to the metaphysician.  

From the discussion above, we see that we have tied up all important loose ends and so, we conclude this 

chapter (and project). 
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Appendix: Syntax, Semantics, and Deduction Theory of 𝓘𝓛𝒯  

0. Preliminaries: 

Let λ be a function λ : I ® ω, that maps indices in I to natural numbers in ω. 
 
Let v be a function v : ω ® ω, that maps natural numbers to natural numbers in ω (not necessarily to 
themselves).   

 
1. Vocabulary: 
 

1.1. Vocabulary for A Standard Second-Order System 
v0, v1, ...        individual variables 
V0, V1, ...       predicate variables of degree v(n) 
for each i Î I, a predicate symbol Pi of degree λ(i)   predicate symbols  
for each j Î J an individual constant cj   individual constants  
=        equality symbol 
¬        logical operators: negation  
Ù        logical operators: conjunction 
$        existential quantifier symbol 
(, ), [, ]        punctuation symbols 
 
* individual variables and constants are called individual terms, where t, u (possibly with subscripts) denote arbitrary 
individual terms. 
 
** let T, U (possibly with subscripts) denote arbitrary predicate constants and predicate variables. 
 

1.2. 𝓘𝓛 Extension 
 
E$  (this quantifier binds an extantial object, or a concrete object) 
D$  (this quantifier binds a depictable object, or an object able to be represented imagistically) 
S$ (this quantifier binds a sentential object, or a verbally representable object) 
!E$  (this quantifier binds an object starting at extantiality, or a depictable, sentential, extant object) 
!D$  (this quantifier binds an object starting at depictability, or a depictable, sentential, non-extant object) 
!S$ (this quantifier binds an object starting at sententiality, or an exclusively sentential object) 
é ù (read as it is said, and only said, that…) 
 
*** let C, D (possibly with subscripts) denote arbitrary individual constants and predicate constants.  
 
**** let X, Y (possibly with subscripts) denote arbitrary individual variables and predicate variables. 
 
**** let V, W (possibly with subscripts) denote variable and constant symbols of either kind. 
 

1.3.  𝓘𝓛𝒯 Extension 
 
P   (this symbol is read it has at some time been the case that) 
F  (this symbol is read it will at some time be the case that) 
Abstract  (a predicate indicating abstractness) 
 

2. Formulas 
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2.1.T.  Atomic formulas of 𝓛 := finite strings (of the basic symbols (i) - (iv)) either of the forms Tit1,...tλ(i), Abstract(t), t = u, 
 or T = U 
 
2.2.   Formulas of 𝓛 (or 𝓛-formulas) := finite strings (of the basic symbols (i) - (vii)) defined in the following recursive 
 manner: 

 
 (a) any atomic formula is a formula 
  

(b.0) if p, q are formulas, so also are ¬p, p Ù q, $xp, $Xp (where x is any variable vi and X any variable Vi) 
  (b.1). If p is a formula, then épù is a formula. 
  (b.2). If p is a formula, then E$xp, D$xp, S$xp are formulas. 
  (b.3). If p is a formula, then !E$xp, !D$xp, !S$xp are formulas. 
  (b.4). If p is a formula, then Pp and Fp are formulas. 

 
(c) a finite string of symbols is a formula exactly when it follows from finitely many 
applications of (a) and (b) 

 
2.3.T. Form(𝓘𝓛𝒯) := {p : p is a formula of 𝓘𝓛𝒯}. 
 
 A sentence is a formula with no free variables. 
 

  (Abbreviations) 
 
  2.4. if p and q are formulas, then 
 
   p Ú q  abbreviates ¬(¬p Ù ¬q) 
   p ® q  abbreviates ¬p Ú q 
   p « q  abbreviates (p ® q) Ù (q ® p)  
 
   "Xp  abbreviates ¬$X¬p  
 
   "xp  abbreviates ¬$x¬p  
    
   E"xp,   abbreviates ¬E$x¬p  
   D"xp,   abbreviates ¬D$x¬p  
   S"xp,   abbreviates ¬S$x¬p 
    
   !E"xp,   abbreviates ¬!E$x¬p  
   !D"xp,   abbreviates ¬!D$x¬p  
   !S"xp,   abbreviates ¬!S$x¬p  
 

p(['xq(x)]) abbreviates $x(q(x) Ù p(x)) 
p([ixq(x)]) abbreviates $x[(q(x) Ù "y(q(y) ® y = x)) Ù p(x)] 
 

 Ec   abbreviates E$x(x = c) 
 Dc   abbreviates D$x(x = c) 
 Sc   abbreviates S$x(x = c) 

 
   sTt  abbreviates éTt Ù ¬Ttù Ù !S$x(x = t)    
   sIt  abbreviates é¬t = tù Ù !S$x(x = t) 
 
   Hp   abbreviates ¬P¬p   ‘it has always been the case that’ 
   Gp   abbreviates ¬F¬p   ‘it will always be the case that’ 
   Ap   abbreviates Hp Ù p Ù Gp  ‘it is always the case that’ 
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   *as a matter of convention, treat each formula as though it begins with a tacit ‘it is currently the case’. 
 
3. Interdefinability 

 
Ax. !E$   "y(!E$x(x = y)  «   [(E$x(x = y) Ù D$x(x = y)) Ù S$x(x = y)]) 
 
  !Ec  abbreviates !E$x(x = c) 
  
 
Ax. !D$   "y(!D$x(x = y)  «   [(¬E$x(x = y) Ù D$x(x = y)) Ù S$x(x = y)]) 
 
  !Dc  abbreviates !D$x(x = c) 
  
  
Ax. !S$   "y(!$Sx(x = y)  «   [(¬E$x(x = y) Ù ¬D$x(x = y)) Ù S$x(x = y)]) 
 
  !Sc  abbreviates !S$x(x = c) 
 

4. Concrete, Non-Concrete, Impossible (and sententializing variants) 

Concrete(u) abbreviates !Eu 
 
Non-concrete(u) abbreviates !Du   
 
Abstract(u) abbreviates !Du Ù A¬E$y(p(u) ⥽ q(y)) 
 
Fictional(u)  abbreviates !Du Ù (¬Abstract(u) Ù A¬!Eu) 
 
T-impossible(u) abbreviates sTu 
  
Vague(u)  abbreviates sIu 
 
Impossible(u) abbreviates ($X)X-impossible(u) Ú Vague(u)   
 
sConcrete(u) abbreviates é!Eu Ù ¬!Euù Ù !Su    
     

sNon-concrete(u) abbreviates é!Du Ù ¬!Duù Ù !Su    
      

sT-Impossible(u) abbreviates ésTu Ù ¬sTuù Ù !S$x(x = u)  
 
sAbstract(u) abbreviates é(!Du Ù A¬E$y(p(u) ⥽ q(y))) Ù ¬(!Du Ù A¬E$y(p(u) ⥽ q(y)))ù Ù !Su    
 

sFictional(u) abbreviates é(!Du Ù (¬Abstract(u) Ù A¬!Eu)) Ù ¬(!Du Ù (¬Abstract(u) Ù A¬!Eu))ù Ù !Su    
 

sVague(u) abbreviates é sIu Ù ¬ sIuù Ù !Su  
 
sImpossible(u) abbreviates é($X)X-impossible(u) Ù ¬($X)X-impossible(u)ù Ù !S$x(x = u)   
    Ú 
     éVague(u) Ù ¬Vague(u)ù Ù !S$x(x = u)       

  
5. Structure  
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5.1.  𝓜T := (E, D, S, T, ≺, t, Sent(𝓘𝓛𝒯), 𝓒, 𝓟, 𝒱, 𝒯, Ré ù) 
 

6. Interpretation 

6.1. (Variable Assignment) Given the structure, 𝓜T(t) of type (λ, J), 
 
 A-sequence := a countable sequence of elements of St (denoted, ‘at = (a0, a1, …)’) 
 
  R-sequence := a countable sequence of elements of 𝓡t (denoted, ‘rt = (R0, R1, …)’) with the following constraint: 
 
  For each n, the nth R in r is of degree v(n) 

6.2. (Interpreting the Symbols) Given 𝓜, at, rt, t (where we read ‘V(𝓜, at, rt, t)’ as the element of 𝓜 that V is interpreted-
by/names/is-assigned at time t), 
 

Interpretation of 𝓘𝓛 in (𝓜, at, rt, t)  :=  i) Pi(𝓜, at, rt, t)  = Rit   
 
       ii) Vn(𝓜, at, rt, t)  = Rn  
        
       iii) cj(𝓜, at, rt, t)  = eit     
 
       iv) vn(𝓜, at, rt, t)  =  an 

        
6.3. (Variant Assignment)  
 

For n Î ω, b Î St, 
 

 [n|b]at := (a0, a1 ,..., an–1, b, an+1, ...) 
 
For n Î ω, S Î 𝓡t (where S is of degree v(n)) 

 
[n|S]rt := (R0, R1 ,..., Rn–1, S, Rn+1, ...)   
 

7. Satisfaction 

7.1. For p Î Form(𝓘𝓛𝒯),  
 

at, rt satisfy p in 𝓜T at time t (denoted, ‘𝓜T(t) ⊧ at, rt p’) :=  
 
   7.1.1.   for terms t, u, 

        
    𝓜T(t) ⊧ at, rt t = u  Û t(𝓜, at, rt, t) = u(𝓜, at, rt, t) 

 

   for predicates T, U, 
 
     𝓜T(t) ⊧ at, rt T = U  Û T(𝓜, at, rt, t) = U(𝓜, at, rt, t)  
   
  7.1.2. for terms t1, …, tλ(i) and predicate Ti    
       
    𝓜T(t) ⊧ at, rt Ti t1, …, tλ(i)  Û (t1(𝓜, at, rt, t), …, tλ(i) (𝓜, at, rt, t)) Î Ti(𝓜, at, rt, t) 

 
  7.1.3.   𝓜T(t) ⊧ at, rt ¬ p  Û it is not the case that 𝓜T(t) ⊧ at, rt p   
 
  7.1.4.  𝓜T(t) ⊧ at, rt p Ù q  Û 𝓜T(t) ⊧ at, rt p and 𝓜T(t) ⊧ at, rt q   
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    7.1.5.  𝓜T(t) ⊧ at, rt $Vnp  Û for some S Î 𝓡t of degree v(n), 𝓜T(t)⊧at, [n|S]rt  p   

7.1.6. 𝓜T(t) ⊧ at, rt épù  Û p contains free variables X1, …, Xn and for some C1 Î 𝓒 È 𝓟,…,  
     Cn Î 𝓒 È 𝓟, C1(𝓜, a, r) = X1(𝓜, a, r), …, and Cn(𝓜, a, r) = Xn(𝓜, a, r)  

 
     and  
      
     p(X1, …, Xn/ C1, …, Cn)  Î Ré ù  
 
     or 
 
     p does not contain free variables X1, …, Xn and p Î Ré ù  

 

7.1.7. 𝓜T(t) ⊧ at, rt $vnp  Û for some b Î St, 𝓜T(t) ⊧[n|b]at, rt  p  
 
 𝓜T(t) ⊧ at, rt E$vnp  Û Et is non-empty and for some b Î Et, 𝓜T(t) ⊧[n|b]at, rt  p    

     
 𝓜T(t) ⊧ at, rt D$vnp  Û Dt is non-empty and for some b Î Dt, 𝓜T(t) ⊧[n|b]at, rt  p 
  
 𝓜T(t) ⊧ at, rt S$vnp  Û for some b Î St, 𝓜T(t) ⊧[n|b]a, r  p  
 
7.1.8. 𝓜T(t) ⊧ at, rt !E$vnp Û Et is non-empty and for some b Î Et, 𝓜T(t) ⊧[n|b]at, rt  p 
  
 𝓜T(t) ⊧ at, rt !D$vnp Û Dt is non-empty and for some non-empty X Í Dt, X Ç Et = Æ    
 
     and  
 
     for some b Î Dt (where b Ï Et), 𝓜T(t) ⊧[n|b]at, rt  p     
 
 𝓜T(t) ⊧ at, rt !S$vnp Û for some b Î St (where b Ï Et and b Ï Dt), 𝓜T(t) ⊧[n|b]at, rt  p  
 
7.1.9.  for a term t   
     
  𝓜T(t) ⊧ at, rt !Et Û 𝓜T(t) ⊧ at, rt !E$x(x = t)  
 
  𝓜T(t) ⊧ at, rt !Dt Û 𝓜T(t) ⊧ at, rt !D$x(x = t) 
 
  𝓜T(t) ⊧ at, rt !St Û 𝓜T(t) ⊧ at, rt !S$x(x = t) 
 
7.1.10.  for a term t   
     
  𝓜T(t) ⊧ at, rt sPit Û 𝓜T(t) ⊧ at, rt éPit Ù ¬Pitù and  𝓜T(t) ⊧ at, rt !St  
 
  𝓜T(t) ⊧ at, rt sVit Û 𝓜T(t) ⊧ at, rt éVit Ù ¬Vitù and  𝓜T(t) ⊧ at, rt !St  
 
7.1.11. 𝓜T(t) ⊧ at, rt "vnp  Û for all b Î St, 𝓜T(t) ⊧[n|b]at, rt  p 

7.1.12. 𝓜T(t) ⊧ at, rt E"vnp  Û if Et is non-empty, then for all b Î Et, 𝓜T(t) ⊧[n|b]at, rt  p   

  

𝓜T(t) ⊧ at, rt D"vnp Û if Dt is non-empty, then for all b Î Dt, 𝓜T(t) ⊧[n|b]at, rt  p 
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𝓜T(t) ⊧ at, rt S"vnp  Û for all b Î St, 𝓜T(t) ⊧[n|b]at, rt  p  
 

7.1.13. 𝓜T(t) ⊧ at, rt !E"vnp Û if Et is non-empty, then for all b Î Et, 𝓜T(t) ⊧[n|b]at, rt  p 
  
 𝓜T(t) ⊧ at, rt !D"vnp Û if Dt is non-empty and for some non-empty X Í Dt, X Ç Et = Æ,  
       then for all b Î Dt (where b Ï Et), 𝓜T(t) ⊧[n|b]at, rt  p     
 
 𝓜T(t) ⊧ at, rt !S"vnp Û for all b Î St (where b Ï Et and b Ï Dt), 𝓜T(t) ⊧[n|b]at, rt  p  
 
7.1.14.  𝓜T(t) ⊧ at, rt  Pp   Û  for some t¢ where t¢ ≺ t, 𝓜T(t¢) ⊧ at¢, rt¢   p 
 
 𝓜T(t) ⊧ at, rt  Fp   Û  for some t¢ where t ≺ t¢, 𝓜T(t¢) ⊧ at¢, rt¢   p 
 
(where two proofs similar to the one generating satisfaction rules for universalized statements gets us) 
 
7.1.15. 𝓜T(t) ⊧ at, rt  Hp   Û  for all t¢ where t¢ ≺ t, 𝓜T(t¢) ⊧ at¢, rt¢    p 
 
 𝓜T(t) ⊧ at, rt  Gp   Û  for all t¢ where t ≺ t¢, 𝓜T(t¢) ⊧ at¢, rt¢    p 
 
7.1.16.  𝓜T(t) ⊧ at, rt Abstract(u)  Û for some b Î Dt (where b Ï Et) 𝓜T(t) ⊧[n|b]at, rt vn = u    
 
     and  
 
     for all p, q Î Form(𝓘𝓛𝒯)  
       
      for all t, 𝓜T(t) ⊧ at, rt  
       
       ¬E$y(A[P(p(u) ® Fq(y)) Ù F(q(y) ® P p(u))]  
           Ù A¬[p(u) « q(y)]) 
 
7.1.17.  
We say that an 𝓘𝓛𝒯 formula p is satisfiable if for some 𝓘𝓛𝒯 structure 𝓜T(t) and variable assignments at, rt, 𝓜T(t) ⊧ at, rt p.  
 
7.1.18.  
We say that an 𝓘𝓛𝒯 formula p is valid if for some 𝓘𝓛𝒯 structure 𝓜T(t) and all variable assignments at, rt, 𝓜T(t) ⊧ at, rt p.  
 
7.1.19.  
We say that an 𝓘𝓛𝒯 formula p is universally valid (‘Æ ⊧ s’ or ‘⊧ s’) if for all 𝓘𝓛𝒯 structures 𝓜T(t), 𝓜T(t) ⊧ p.  
 
7.1.20.  
For any G Í Sent(𝓘𝓛𝒯) and any 𝓘𝓛 structures 𝓜T(t), 𝓜T(t) is a model of G (‘𝓜T(t) ⊧ G’) if, for each s Î G, 𝓜T(t) ⊧ s.  
 
7.1.21.  
For any G Í Sent(𝓘𝓛𝒯) and any s Î Sent(𝓘𝓛), we say that G entails s (‘G ⊧ s’) if, for all 𝓘𝓛𝒯 structures 𝓜T(t),  
 
      if  𝓜T(t) ⊧ G,  then  𝓜T(t) ⊧ s   
 

8. Natural Deduction of 𝓘𝓛𝒯. 
 

8.1. Inference Rules (where ‘⊳’ is read ‘from what preceded, infer…’) 
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*From here we assume that the introduction and elimination rules for each sortal quantifier feature the 
same conditions (mutatis mutandis) as the above quantifier introduction and elimination rules. 
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Note that we include the rules of the extended natural deduction system (i.e De Morgan, Transposition, 

quantifier negation, etc.) but, since they are derivable from all of the above (and are found in any logic 

textbook), we do not present them here. We do include the following axioms unique to 𝓘𝓛𝒯 and second-

order logics however. 

Default Sententiality (DS) 
 
⊳ "x(!Ex Ú [!Dx Ú !Sx])      
 
(informally: all objects start, at least, at sententiality) 

  

No Proof (NP) 
 
⊳ épù ® ¬p  
 
(informally: if we can say, but only say that p, then p does not obtain) 

 

 

 

  
 

Extensionality (Ex.) 
 
⊳ "X"Y(X = Y « "x(Xx « Yx)) 
 
(informally: If two predicates are identical, then any object relating to the one, relates to the other and vice-versa) 

Comprehension (Comp.) 
 
⊳ $X"x1, …,"xn(Xx1,…,xn « p(x1,…,xn)) 
 
(informally: This is the axiom scheme of comprehension i.e. any sequence of objects that satisfy some formula p, 
relate to some predicate X and vice-versa) 
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Lastly, definitions Ax. !E$, Ax. !D$,  Ax. !S$ are axioms of 𝓘𝓛𝒯.  

8.2. Proof.  

A proof (alternatively derivation) in 𝓘𝓛 of p from G (where, p Î Sent(𝓘𝓛) and G Í Sent(𝓘𝓛)) consists of a series: 
 

1.  G 
      . 
      . 
       ._ 
m.  q1 
  
      … 
 
n.  qn 

 
where ‘G . . .’ is a list of the sentences of G (where G is possibly empty), p = qn, q1 – qn are 𝓘𝓛-formulas, qn can be 

derived by application of some rule of inference to formulas on lines i < n, and qn falls only under the assumptions of 

‘G . . .’. 

8.2.0. p is provable from G (denoted ‘G ⊦ p’) iff there is a proof of p from G  
 
8.2.1. G is consistent (in 𝓘𝓛) iff for no 𝓘𝓛-formula p, G ⊦ p and G ⊦ ¬p 
 
8.2.2. Æ ⊦ p  is abbreviated  ⊦ p 
 
8.2.3. ⊦ p  indicates that  p is a theorem 
 

9. Theorems (where x and y are individual variables) 

9.0.  
 
9.0.1.    ⊦ E$xp(x) ® $yp(y) 
 
9.0.2.    ⊦ D$xp(x) ® $yp(y) 
 
9.0.3.    ⊦ S$xp(x) ® $yp(y) 
 
9.0.4.    ⊦ !E$xp(x) ® $yp(y) 
 
9.0.5.    ⊦ !D$xp(x) ® $yp(y) 
 
9.0.6.    ⊦ !S$xp(x) ® $yp(y) 
 

Abstract Schema (AS) 
 
⊳                 "x[Abstract(x) « (!Dx Ù A¬E$y(p(x) ⥽ q(y)))]      
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Proof: Each of theorems 9.0.1. - 9.0.6. follow from the fact that in any case of existentialization (for example, in 
E$xp(x)) it follows by the relevant existential elimination rule (where some c is an arbitrary witness for x, i.e. p(c)) 
that $xp(x) is derived by existential introduction. 

 

9.1.  ⊦ "xS$y(x = y)       

 (informally: all objects are sentential) 

Proof: by DS, x either starts at extantiality, depictability, or sententiality. In any of those cases, sententiality is implied.   
 

  9.2.  ⊦ "x(E$y(x = y) ® D$y(x = y) Ù S$y(x = y))  
 
   (informally: if x is extant, then x is depictable and sentential) 
    

Proof: assume x is extant. By 10.1. x is sentential. If x is not depictable then (by Ax. !E$) x cannot start at extantiality. 
Further, because x is extant (by Ax. !S$), x cannot start at sententiality either. Since x neither starts at extantiality nor 
starts at sententiality, by DS, x must start at depictability and (by !D$) x is depictable. This is a contradiction, hence x 
is depictable. That x is sentential follows from theorem 10.1.  

 
  9.3.   ⊦ "x(D$y(x = y) ® S$y(x = y)) 
 
   (informally: if x is depictable, then x is sentential) 
    

Proof: an immediate consequence of 9.1. 
 

9.4. ⊦ "x[¬(!Ex Ù !Dx) Ù ¬(!Dx Ù !Sx) Ù ¬(!Ex Ù !Sx)] 
 

Informally: all objects can start in just one order. 
 
Proof: Assume !Ex Ù !Dx. By Ax. !E$, !Ex implies E$y(y = x)  and by Ax. !D$, !Dx implies ¬E$y(y = x), a 
contradiction. The same logic applies to !Dx Ù !Sx and !Ex Ù !Sx.  
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