
Western University Western University 

Scholarship@Western Scholarship@Western 

Electronic Thesis and Dissertation Repository 

10-18-2019 2:30 PM 

Functionalization of Indoles and Donor-Acceptor Cyclopropanes Functionalization of Indoles and Donor-Acceptor Cyclopropanes 

and their Application Towards the Total Synthesis of Tronocarpine and their Application Towards the Total Synthesis of Tronocarpine 

and Dippinine B and Dippinine B 

Lauren C. Irwin 
The University of Western Ontario 

Supervisor 

Kerr, Michael A. 

The University of Western Ontario 

Graduate Program in Chemistry 

A thesis submitted in partial fulfillment of the requirements for the degree in Doctor of 

Philosophy 

© Lauren C. Irwin 2019 

Follow this and additional works at: https://ir.lib.uwo.ca/etd 

 Part of the Organic Chemistry Commons 

Recommended Citation Recommended Citation 
Irwin, Lauren C., "Functionalization of Indoles and Donor-Acceptor Cyclopropanes and their Application 
Towards the Total Synthesis of Tronocarpine and Dippinine B" (2019). Electronic Thesis and Dissertation 
Repository. 6585. 
https://ir.lib.uwo.ca/etd/6585 

This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted 
for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of 
Scholarship@Western. For more information, please contact wlswadmin@uwo.ca. 

https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/etd
https://ir.lib.uwo.ca/etd?utm_source=ir.lib.uwo.ca%2Fetd%2F6585&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/138?utm_source=ir.lib.uwo.ca%2Fetd%2F6585&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/etd/6585?utm_source=ir.lib.uwo.ca%2Fetd%2F6585&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wlswadmin@uwo.ca


ii 

 

Abstract 

The work disclosed in this dissertation outlines novel reactions involving indoles and their 

applications towards the total synthesis of natural products, tronocarpine and dippinine B. 

Showcased in Chapter 2 is a novel mode of activation for donor-acceptor cyclopropanes via 

an external hydrogen bond. The hydrogen bond increases the cyclopropane’s electrophilicity 

permitting indole nucleophiles to open the ring. The result is 3-postion functionalized 

indoles.  

An external hydrogen-bond donor, HFIP (1,1,1,3,3,3-hexafluoroisopropanol), is used as a 

solvent to provide the medium necessary for favourable hydrogen-bond interaction with 

donor-acceptor cyclopropanes.  Hydrogen bond activation of donor-acceptor cyclopropanes 

was successful in generating a multitude of functional indole products in high yields.  

Chapter 3 outlines the application of single electron transfer agent, Mn(OAc)3, to isolate 1,2-

annulated indoles in a one-pot procedure. The products generated in this novel methodology 

create molecular scaffolding that maps nicely onto natural products tronocarpine and 

dippinine B. The methodology accesses a variety of 1,2-substituted indoles that tolerated all 

substituents tested.  

Chapter 4 explores the progress towards realizing the synthesis of the molecules 

tronocarpine, and dippinine B. These natural products are desired for their anti-microbial and 

anti-fungal properties. Paired with their challenging framework, this makes them intriguing 

targets for synthetic chemists. The focal point of the synthetic pathways in this chapter 

involves the Mn(OAc)3 radical methodology disclosed in Chapter 3.  

Lastly, Chapter 5 reports a thermo-controlled, diastereoselective opening of oxime-ether 

tethered donor-acceptor cyclopropanes to generate bicyclic oxazines. The N-O heterocyclic 

products can be reductively cleaved to access substituted pyrrolidines with set 

stereochemistry from the controlled opening of the cyclopropane. This work reports high 

yields and diastereo-control generating cis/trans selective annulated products. Substituted 

pyrrolidines are highly sought for pharmaceuticals and natural product synthesis. 
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Summary for Lay Audience 

Important as a component of many pharmaceuticals, indole is a biological molecule found 

throughout the natural world. These pharmaceuticals are important components of treatments 

for cancer, depression, Alzheimer’s disease, viral infection, hypertension, and more. 

Chemists strive to develop modifications of indole molecules in search of easier, cheaper 

routes to both established, and novel pharmaceutical products. The research in this thesis 

outlines two new methods for the synthesis of further functionalized indole products. Method 

one involves radicals to cyclize an additional ring to an indole precursor. The products 

produced map onto the structure of important natural products found in Malaysian plant 

Tabernaemontana corymbosa. Method two functionalizes indoles by reacting them with 

strained three-membered ring molecules called cyclopropanes. This method is the first 

disclosed that does not require metals or high pressure as part of the reaction medium. Using 

the new methods developed, work towards natural products that have antifungal and 

antimalarial properties was under taken. The final component of this thesis develops a 

strategy to isolate highly substituted five-membered rings that contain nitrogen; these 

molecules are called pyrrolidines. The pyrrolidine structure is also highly desired in 

pharmaceutical targets. To access pyrrolidines, again cyclopropanes are used, but under 

specific reaction temperatures selective isomers of the pyrrolidine are isolated.  
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Chapter 1  

Introduction to the Reactivity and Functionalization of both 
Indoles and Donor-Acceptor Cyclopropanes: Including their 
Prevalence in Natural Products 

This introduction will cover the general reactivity of indole and some of the chemistry 

involved in its elaboration to more complex substrates.  It will delve into the novel 

transformations and functionalization of indoles using both, reactive donor-acceptor 

cyclopropanes, and, single electron oxidants. It also will cover some of the vast uses for 

donor-acceptor cyclopropanes due to their uniquely reactive behavior — and specifically 

how they can impart functionality on indoles. Additionally, this introduction will describe 

a selection of natural products that contain indole, and their importance as synthetic 

targets for organic chemists. This will put in place the foundation for the works reported 

in this dissertation.  

1.1  Indole 

1.1.1 Lord of the Rings: Indole. And Why We Should Care.  

Benzo[b]pyrrole, trivially known as indole (Figure 1) is a heterocyclic, aromatic moiety 

abundant throughout the natural world. Indole (1-1) was first discovered in 1866 from 

studies pertaining to the dye indigo (1-2).1 It was these studies that involved both indigo 

and oleum (fuming sulfuric acid) that lead to its common name, indole.  

       

Figure 1 - Chemical structures of indole and indigo and the physical appearance of 

indole 

  

Indole 

powder 
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Commercially, indole is extracted from coal tar but is also synthesized industrially from 

ethylene glycol (1-4) and aniline (1-3) (Scheme 1).2,3 Indole is a white solid (Figure 1), 

with a distinctive and pungent smell, proven by its role accounting for some of the smell 

in feces. However, in small concentrations indole smells pleasant, and finds commonness 

in perfumes and fragrant flowers, such as orange blossoms.4 Indole is also found in other 

aromatic flowers, such as jasmine, but even appears in the wood of some trees, like the 

American black locust.  

 

Scheme 1 - Synthesis of indole from aniline and ethylene glycol 

Indole is found in both plants and animals. Indole is a decomposition product of the 

amino acid tryptophan (1-10), a molecule discussed in more detail below. This means 

indole is found wherever degradation of chemicals occurs in the body: the liver, the 

pancreas, and the intestines. Eventually becoming a waste product, indole is excreted 

with feces. 1 

Indole is a component of tryptophan (1-10), one of the twenty amino acids vital to protein 

formation in the body. Humans do not synthesize tryptophan, rather it must come from 

protein in our diet. However, many plants and microorganisms synthesize their own 

tryptophan from shikimic acid or anthranilate (1-5) (Scheme 2).5 This synthesis occurs 

by alkylating indole with serine (1-9) as demonstrated in Scheme 2. The synthetic 

pathway is aided by enzymes such as tryptophan synthase to facilitate such complex 

reactions.   

The fact that we require tryptophan to survive is an initial indication of how significant 

indole is to living things. Indole is a necessity to the biochemical pathways of many 

living organisms; it aids in vital organ production within plants6, is an intercellular 
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signaling molecule for spore formation in fungii7, and is a precursor to neurotransmitters 

such as melatonin and serotonin in the human body.8  

 

Scheme 2 - Indole involvement in the biosynthesis of tryptophan in some plants and 

microorganisms 

With their biological activity, indole-containing molecules have found desirable uses as 

anticancer, antibacterial and antiviral agents.9 This means many pharmaceuticals contain 

the indole heterocycle and are currently used as drugs that target disease found all over 

the body, covering a wide range of illnesses (Figure 2). From cancer to Alzheimer’s 

disease, Figure 2 showcases a number of indole-containing pharmaceuticals and their 

prescribed ailment.10,11 Perhaps the most famous of this class, thanks to its not-so-subtle 

commercials, is Tadalafil better known as Cialis (Figure 3), a drug used for the treatment 

of erectile dysfunction. Tadalafil is known as Adcirca, when it is being used to treat 

pulmonary hypertension.12  
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Figure 2 – Indole-containing drugs and their effects on the body 

 

 

Figure 3 – Indole-containing drugs. Dragmacidin D is derived from sea sponge 

Spongosorites.  Zolmitripan and Sumatripan are used to treat migraines.13 Tadalafil 

is a PDE5 inhibitor.  
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Another important indole-containing drug is the natural product (-)-reserpine (Figure 4).  

(-)-Resperine is used as an antihypertensive and an antipsychotic. (-)-Reserpine was first 

isolated in 1952 from snake root, Rauvolfia serpentina.14 (-)-Reserpine has long been a 

target for synthetic chemists because of its pharmaceutical use. Its first synthesis, 

completed by Woodward et al., dates to just a few years after its published isolation.15 

With 10 complete total syntheses to date, (-)-reserpine exemplifies the importance of 

natural product synthesis to the chemical community.16 Scientific improvement of bond 

connections is important for future access to target molecules, and to define better, 

stream-lined routes to these targets. We must continue to research improvements 

connecting chemical components to ensure useful compounds are easily attainable. 

Whether it be for a pharmaceutical, a material, maybe even a fuel source, until we can 

make anything imaginable without struggle, the work of organic chemists is not done.  

 

Figure 4 - (-)-reserpine, a natural product and drug that has long entertained 

organic chemists 

A recent article published in Chemistry World compiled the wish-list of what medicinal 

chemists are seeking: 

    “1.    Fluorination – Exchanging specific hydrogen for fluorine. 

2. Heteroatom alkylation – A reaction that selectively attaches an alkyl group onto 

one heteroatom in molecules that have several.  

3. Carbon coupling – Stitching together aliphatic carbon atoms: ideally with chiral 

control. 

4. Making and modifying heterocycles – Reactions to install functional groups 

anywhere on aromatic and aliphatic heterocycles. 

5. Atom swapping – A reaction that can exchange individual atoms selectively.” 17 
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While some of these transformations would absolutely warrant a Nobel prize, I draw your 

attention to wish-list item 4 – Making and modifying heterocycles.  Returning to the 

molecule (-)-reserpine (Figure 4), the indole component is highlighted in red, and we can 

see that there is functionality stemming from the 2-position, the 3-position and the 6-

position of the indole. This example falls heavily into the category of functionalizing 

heterocycles. 

Chemists have worked hard to design efficient reactions to install bonds off all positions 

of the indole heterocycle. Ultimately, we must continue to find the best ways to generate 

valuable molecules like the natural products and drugs mentioned in this section. Being 

able to manipulate indole with desired components off any section of the heterocycle is 

something chemists are striving for. A multitude of drugs, dyes and materials have come 

into fruition because of indole, and it is for this reason chemists continue to be fascinated 

by improving the chemistry surrounding indole functionalization. To understand how we 

may alter indole, an understanding of its reactive nature is required. 

1.1.2   General Reactivity of Indole 

Indole contains 10 π electrons over 9 atoms, making it an electron-rich molecule capable 

of many chemical transformations (Figure 5).  

 

Figure 5 - (left) IUPAC counting of the atom positions around indole, and (right) the 

10 π electrons of indole over 9 atoms 

Indole is most nucleophilic at the 3-position (Scheme 3, A). Significant research in the 

1960’s studied how indole reacted by monitoring its protonation and calculating the 
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relative ratios of products formed. Those ratios now correlate well to electron density 

maps of indole that help us to explain how indole reacts.18 The initial studies on the 

protonation of indole found that the principle conjugate acid of indole is the 3-postion 

protonated product (Scheme 3, A).19 Further deuterium exchange experiments 

highlighted that proton exchange occurs most prominently at the 1 and 3 positions of 

indole, but cases absolutely exist where protonation at the 2 position is also possible. 

Protonation of the 2-position is competitive with that of the 3-positon; if the 3-position of 

indole is substituted, the 2-position will become the most nucleophilic site (Scheme 3, 

B). These studies highlight how indole act as a nucleophile most often at position 3, and 

this is what we observe experimentally when indoles are in the presence of an appropriate 

electrophile. 

 

Scheme 3 - (A) Resonance structure of indole describing the observed 

nucleophilicity at position 3 (B) Nucleophilicity at position 2 of indole when position 

3 contains substitution other than H 

For example, when an indole is used as the nucleophile in the common Vilsmeier-Haack 

reaction (Scheme 4), the resulting product is an aldehyde at position 3 (1-14).20   
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Scheme 4 - Vilsmeier-Haack reaction of indole, showcasing nucleophilic position 3 

Of course, in chemistry most rules are not law.  For example (Scheme 5), using gold 

catalysis to synthesize indoles from azides (1-15) results in a metal-bound intermediate 

(1-18) achieving umpolung reactivity of indole. The indole substrates in this example act 

as electrophiles at the 3-position, versus the nucleophilicity typically seen.21  

 

Scheme 5 - Umpolung reactivity of indole where the 3-position acts as an 

electrophile 

Substituents around indole also affect the molecule’s reactivity. Computational chemistry 

has been used to generate electron density maps of a multitude of substituted indole 

molecules. An inclusive study of the electron density of methyl-, fluoro-, nitro-, and 

amino- substituted indoles confirmed how the inductive, and mesomeric effects of these 

groups change the nucleophilic nature of indole.18 This computational study determined 

electron donating groups (-CH3 and -NH2) on the 2 or 5 positions of indole greatly 

improve the nucleophilicity of position three by 29 - 88 kJmol-1 . However, when the two 

or five position of indole is substituted with -F or -NO2, the proton affinity of position 3 

drops between -6.3 and -86.1 kJmol-1. The reasoning for this is further confirmed and 

explained by the resonance structures of indole resulting from electron donating or 
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withdrawing nature of these groups (Scheme 6). Looking at the electron density around 

the aromatic indole, when it bears an EWG (1-19) a resonant positive charge is resultant 

on position 3 (1-22). The result is a less nucleophilic carbon compared to its 

unsubstituted or electron donating counterparts (1-24). 

 

Scheme 6 - Varied nucleophilic properties of indole due to electron withdrawing or 

donating substituents at position 5 

 

Ultimately, indole is a versatile heterocycle capable of myriad chemical transformations. 

Due to its reactive nature and its prevalence in the natural world, functionalization of the 

indole moiety to produce high-value chemicals is well studied.  

1.2 Functionalization of Indoles  

Adding functional groups to indoles has been immensely studied over the last ~100 years. 

So much so, that this section would be hundreds of pages long if it hoped to be inclusive 

of all the impressive chemistry in the field. For example, reviews regarding indoles exist 

specifically pertaining to: palladium-catalyzed functionalization 22, organocatalytic 

strategies23, catalytic C-C bond functionalization of indoles,24 and methods for 3,4-fused 

tricyclic indoles 25, which just scrape the surface. In this section I hope to showcase the 

recent literature and general trends pertaining to functionalizing the 1 and 3 position of 

indoles, with specific emphasis on cyclization that make scaffolds like the natural 

products of focus in this thesis.  
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1.2.1 Functionalizing Indole Position 1 

Broadly speaking, functionalization of the indole nitrogen is straightforward. It is reliable 

and simple. One might expect this because it is much easier to make heteroatom-carbon 

bonds than it is to furnish carbon-carbon bonds. To impart function on the indole 

nitrogen, deprotonation is required (1-25) and, in the presence of an electrophile, it will 

react to create a new N-E bond (1-26, Scheme 7).  

 

Scheme 7- General functionalization of the indole 1 position 

Cross-coupling reactions to form N-C bonds (e.g., Buchwald-Hartwig amination) and 

these are also used to functionalize the indole nitrogen (Scheme 8, D).26 However, for the 

scope of this thesis, simple deprotonation of indole in the presence of an electrophile is 

the only method used to afford N-substituted indole products. The chemistry in Scheme 8 

showcases some common electrophiles and the resultant N-substituted indole products. 

Scheme 8, A, outlines a simple SN2-type reaction to add an alkyl chain on indole (1-

27).27 Protecting groups are often added to indole nitrogen to overcome chemoselectivity 

issues. Scheme 8, B, showcases anhydride electrophile Boc2O (1-28), which protects the 

indole N-H with a boc group in high yield (1-29).28 Scheme 8, C exemplifies acid 

chlorides (1-30) as electrophiles generating acyl indole products such as 1-31.29  
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Scheme 8 - Various examples of installing substitution off indole nitrogen 

 

1.2.2 Functionalization of Indole Position 3 

In earlier discussion I concluded that the 3-position of the indole is the easiest to 

functionalize. Indoles are carbon nucleophiles at this position, and easily make indole-3-

substituted products. Outlined in Scheme 9 is a series of reactions that impart function on 

the indole 3-position. First exemplified (Scheme 9, A)  is a straight-forward Michael 

addition; using BF3•OEt2 as a catalyst with methyl acrylate (1-34) generates elaborated 

indole 1-35.30 More interestingly though, and important to the indoles of interest in this 

document, are the recent advances synthesizing tryptamine chains off the indole-3-

position. Discussed at length in earlier sections, the tryptamine chain is both important, 

and common in the natural world.  Recently Righi et al. (Scheme 9, B) showed that from 

acetal species 1-37, revealing its respective aldehyde under acidic conditions caused 

indole 1-36 to attack, generating a benzylic alcohol that is reduced by triethyl silane.31 

This pathway yields indoles like 1-38 which now bear a tryptamine chain. This reaction 
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tolerated a wide variety of substitution patterns around the starting indole, but only 

explored examples bearing electron-donating groups. The greatest limitation was found 

to be the choice of protecting group on the amine component of acetal 1-37. Unprotected 

amines failed to proceed, and protecting groups Cbz and Ts, caused yields to drop sharply 

to the 50-60% range. However, the reagents to perform this functionalization are safe, 

inexpensive, and offer access to the valuable tryptamine functionality discussed in 

Section 1.1.1.  

 

 

Scheme 9 - Functionalizing the 3 position of indole  

Further elaboration synthesizing tryptamine chains was elucidated by Batolucci et al.  

(Scheme 9, C). They applied a “borrowing hydrogen” strategy to provide the reducing 

conditions necessary to synthesize tryptamine chains from amino alcohols (1-39).32 

Iridium catalyzed, the dehydrogenation of poorly reactive alcohol 1-39 is followed by the 

in-situ consumption of the generated hydrogen. This yields the correct oxidation state off 

the benzylic position of indole 1-40 furnishing the tryptamine chain (Scheme 9, C).  

Another interesting way to functionalize position 3 of indoles is to employ single-electron 

transfer (SET) agents (discussed at length vide infra). A brief introductory example to 

this chemistry is outlined in Scheme 10, where indoles (1-41) were functionalized with 

styrenes (1-40).  
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Scheme 10 - Radical chemistry to generate functionalized indoles at the 3-position 

Copper(I) is used as a single-electron oxidant to generate CF3 radicals from NaSO2CF3. 

The radicals react with styrenes (1-43) generating final elaborated indoles 1-42 (Scheme 

10). The radical (1-44) is oxidized to a cationic intermediate 1-45 which is sufficiently 

electrophilic for indole 1-46 to attack and access highly substituted indole 1-47. This 

chemistry is limited to electron-rich styrenes to obtain high yields of the substitution 

products. Indoles which bear substitution at their 2-position also reacted poorly under 

these conditions due to perceived steric interaction preventing the facile addition of 

indole to cationic styrene 1-45.  

1.2.3 Synthesizing Complex Indole-Containing Molecules 

While functionalizing specific carbons on the indole heterocycle is valuable, molecular 

targets of interest often have complicated ring systems incorporating indole. These rings 

usually join to multiple positions of indole, completing the annulation. For example, the 

natural products targeted in Chapter 4 (disclosed in Section 1.5) contain a 6-membered 

ring that connects to indole at its 1 and 2 positions (Figure 6).  
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Figure 6 - Indole bearing cyclic 1,2 substitution like the molecules of interest in 

Chapter 4, plus a couple alternate natural product examples. 

Generating annulated indole products can be done in a variety of ways: manipulating 

photochemistry, cycloadditions, radicals, or cross-coupling/metal insertion reactions.  

In 2015, the Barriault group constructed a straightforward method using UVA light to 

build 1,2-annulated indoles with simple and inexpensive alkyl halide chains (Scheme 

11).33 Gold containing photocatalyst ([Au2(dppm)2]Cl2) generates a radical by homolysis 

the C-Br bond, which rapidly adds to the 2-position of the tethered indole. Loss of a 

hydrogen returns the aromatic indole product 1-49. The photochemistry tolerated 

substitution on the 3- and 5- positions of indoles without issue, resulting in high yields of 

annulated indoles.   

 

Scheme 11 - Employing photochemistry to construct 1,2 annulated indole products. 

In 2019, a unique enantioselective synthesis of 1,2-annulated indoles using NHC-

catalysis was disclosed by the Hui group (Scheme 12).34 Malonyl-substituted indoles (1-

50) reacted with acrylaldehydes (1-51) facilitated by the NHC catalyst 1-52. Due to the 

steric bulk of the NHC 1-52, when connected to the acrylaldehyde component, the 

malonyl nucleophile can only perform a Michael addition from one face of the molecule. 

The single-sided attack results in the observed enantioselectivity at the quaternary carbon 

in molecule 1-53. The enantiomeric excess (ee) ratios were high, ranging from 88-98% 

on all 20 substrates generated. The yields of the annulated indole products were also high, 
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sitting above 87% for 18 of the 20 products generated. The yields drop when the R group 

in acrylaldehyde 1-51 is aliphatic, like a methyl or cyclohexyl group. In these cases, 

yields were less than 60%.  

 

Scheme 12 - Enantioselective synthesis of 1,2- cyclized indoles taking advantage of a 

[3+4] annulation 

 

En-route to alkaloid (-)-alstoscholarisine A, a molecule that potentially prevents neuronal 

decline associated with Alzheimer’s disease, the Yang group optimized 

 an enantioselective iridium catalyzed Friedel-Crafts alkylation to generate a 1,2-

annulated indole 1-57 (Scheme 13).35 Using Carreira’s iridium catalyst36 (ligand 1-58 + 

the iridium catalyst), acyl indole 1-56 was cyclized to enantiopure indole 1-57 — which 

in 8 concise steps, was successfully brought to natural product (-)-alstoscholarisine A.    
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Scheme 13 - Enantioselective synthesis of 1,2 annulated indole 1-57 en-route to 

natural product (-)-alstoscholarisine A. 

Another recent and intriguing annulation of indole involved copper-catalyzed activation 

of intramolecular cyclopropenes (1-59), prompting the cyclization with indoles isolating 

elaborated products like 1-60 (Scheme 14). Coordination of the copper catalyst with the 

double-bond of the cyclopropene creates opened metal complex 1-62. The tethered indole 

will attack the resultant electrophilic position yielding intermediate 1-63. Annulation of 

the copper alkene to the resultant tertiary cation of the indole, followed by elimination of 

the copper catalyst yields the final product (1-65). This straightforward and mild 

procedure generated high yields of annulated indoles that the authors are hopeful will aid 

in the synthesis of the natural products showcased in Scheme 14.  
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Scheme 14 - Copper(I) catalyzed tandem cyclization of indoles with cyclopropenes 

and the target natural products the authors hope to access. 

Indoles are also easily functionalized via nucleophilic opening of cyclopropanes. 

Although, to appreciate this chemistry an introduction to the unique reactivity of 

cyclopropanes is required.  
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1.3 Donor-Acceptor Cyclopropanes and their Reactivity 
with Indoles 

1.3.1 Brief Introduction to Cyclopropane Reactivity 

Cyclopropanes are unique 3-membered carbocycles that, because of their ring strain, are 

exceptionally reactive chemical participants. The internuclear distance of cyclopropane is 

60° compared to a normal 109.5° for Csp3-Csp3 bonds , but the inter-orbital distance is 

widely accepted as being between 104-106° (Figure 7).37 Since covalent bonds are the 

result of orbital overlap, the greater the overlap between orbitals, the stronger the 

resultant covalent bond. In the case of cyclopropanes, this overlap is slight at best, and 

therefore the bonds are weak. Weak bonds being synonymous with greater reactivity, 

explain why cyclopropanes are so reactive.  

 

Figure 7 - Cyclopropane weak orbital overlap model 

The initial description of cyclopropane bonding was the molecular orbital model 

proposed by Walsh, but his theory was refined by Coulson.37, 38 Coulson explains that by 

distorting sp3 hybridization of C-C bonds to technically sp5 (1/6 s density and 5/6 p 

density) the C-C bonds contain greater p character to achieve the tight bond angles and 

the appearance of bent bonds (Figure 7).39 This idea of hybridization containing greater p 

character is supported by observations of cyclopropanes undergoing addition reactions 

over substitution, and because of the conjugative resonance effects observed.40 For 

example, vinyl cyclopropane (Figure 8) has 1.1-1.3 kcal/mol of empirical resonance 

energy as established by UV-Vis experiments. This proves the ability of cyclopropane to 
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conjugate with adjacent unsaturation, cementing the idea of greater p character in the 

bonds.41  

 

Figure 8 - Vinyl cyclopropane 

Since more electron density is situated outside the internuclear axis, instead of directly 

between the carbon nuclei, the nucleophilicity of cyclopropane is similar to olefins, 

which have reactive π electrons perpendicular to the C-C bonds. For the same reasons, 

the reactivity of cyclopropanes is like olefins. Cyclopropanes, and olefins, with both 

acting as electrophiles and nucleophiles.42 

What makes cyclopropanes exciting is how we can tune the reactive nature of the strained 

molecule by adding substituents around the three-membered ring (Scheme 15). Adding 

electron withdrawing groups to a cyclopropane (1-65) we get an “accepting” 

cyclopropane, which can be opened with a nucleophile to give homo-Michael products 

(1-66, Scheme 15, A). Substituting the cyclopropane with an electron donating group (1-

67) will increase its nucleophilic properties and the carbocycle can attack an electrophile 

(Scheme 15, B). When the cyclopropane is substituted with vicinal donating and 

accepting groups shown in example 1-69. These are known as donor-acceptor 

cyclopropanes (DA CPs). Activation of the accepting moiety via heat43, Lewis acid44, 

hydrogen bonding45 or high pressure47 permits nucleophilic attack to open the 

cyclopropane yielding new substituted alkyl chains (1-70). If the nucleophile also has an 

appended electrophilic group, annulation reactions can occur to generate various cyclic 

products (1-71, Scheme 15, C).46  

The potential reactivity and applications for chemistry involving donor-acceptor (DA) 

type cyclopropanes (CPs) are a major focus within the Kerr group. We as a group have 

pioneered the involvement of indole nucleophiles with DA CPs and taken this chemistry 

to access valuable natural products. Within the works of this dissertation is a novel 
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activation of DA CPs using hydrogen bonds, which means an understanding of how 

indoles have reacted with DA CPs in the past is of use. 

 

Scheme 15 - Reactivity of cyclopropanes bearing electron withdrawing and/or 

donating groups 

1.3.2 Seminal Work: Indoles Reacting with Donor-Acceptor 
Cyclopropanes 

In 1997, Harrington and Kerr exploited indoles as nucleophiles for opening both 

acceptor, and donor-acceptor cyclopropanes.47 Optimized results involved the use of high 

pressure (13 kbar) in the presence of Yb(OTf)3  to have N-methylindole (1-72) open 

diester cyclopropane (1-73) giving a 70% yield of 1-74 (Scheme 16). The reaction was 

explored with diester cyclopropanes also bearing donor groups such as methyl and 

phenyl, and explored five different indole nucleophiles achieving high yields of the ring-

opened products.  
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Scheme 16 - Seminal work opening cyclopropanes with indoles 

Determined to find more productive and interesting products from indole nucleophiles, 

England et al. explored annulation reactions involving indoles opening DA CPs. 48 3-

susbtituted indoles were capable of opening DA CPs, generating 2,3-annulated indoline 

products (1-77) under Lewis acidic conditions (Scheme 17). Interestingly, if the reaction 

was left longer, an unusual rearrangement occurred resulting in 2,3-disubstituted indole 

products (1-78). This chemistry confirmed high pressure was not required, and activation 

of the DA CP with Lewis acid was sufficient to generate annulated products.  

 

Scheme 17 - Annulation reaction of indoles and cyclopropanes (1-77) plus additional 

rearrangement to access alternative 2,3-disubstituted products (1-78) 

After ring-opening with indole (Scheme 18), 1-79 undergoes favourable alkyl shift 

moving the cyclopropyl chain to the 2-position of the indole (1-80), generating a tertiary 

carbocation. Elimination driven by re-aromatization offered a route to 2,3-substituted 

indoles (1-81) via reaction with DA CPs.  
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Scheme 18 - Alkyl shift generating 2,3-disubstituted indole products 

This work was effectively applied by synthesizing a subunit of the kopsane alkaloids, 1-

84 (Scheme 19).49 However, accessing molecules 1-84 and 1-85 required high-pressure 

to furnish the caged complexity.  

 

Scheme 19 - Methodology poised for generating the molecular scaffold of kopsane 

alkaloids using indoles and donor-acceptor cyclopropanes 

A great improvement on this work was reported 11 years later in 2013. Tang et al. 

designed an effective methodology for the enantioselective annulation of indoles and DA 

CPs (Scheme 20). Catalyzed by copper, and in the presence of their optimized ligand (1-

89), they were able to generate the cyclopentane annulated indoline products (1-88) like 

those synthesized by England, but this time with enantiomeric control.50 Tang et al. 

generated products with greater than 86% ee and the chemistry was successfully applied 

by synthesizing the core of natural product borreverine (Scheme 20).  
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Scheme 20 - Enantioselective addition of indoles to donor-acceptor cyclopropanes 

In the cases antecedent, the DA CP ring-opening reactions were activated by the presence 

of Lewis acid, and sometimes even required the aid of a high-pressure environment. In 

2011, the Kerr group improved this model by using an internal hydrogen-bond to activate 

DA CPs — abolishing the requirement for Lewis acid activation. It was the start of 

research involving alternative reaction conditions for opening DA CPs. 

1.3.3 Activation of Donor-Acceptor Cyclopropanes without Lewis 
Acids 

DA CPs successfully undergo ring-opening reactions with indoles in the absence of acid 

catalyst when they contain a both a carbohydroxy, and carboalkoxy group, geminally 

substituted (1-90, Scheme 21).51 Via proposed 6-membered ring intermediate (1-92) to 

induce co-planarity of the carbonyls, the cyclopropane is sufficiently reactive for 

nucleophilic opening with indoles without the aid of a Lewis acid. An extensive 

improvement to this work and a more in-depth discussion of the activation mechanism is 

the focus of Chapter 2.  
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Scheme 21 - Internal Brønsted acid activation of cyclopropanes 

Additional Lewis acid-free reactivity of cyclopropanes was reported by the Moran group 

in 2018 using Brønsted acid as the activator.52 This work was released just as I had 

submitted the manuscript on my novel findings outlined in Chapter 2. The works are 

similar, but complement each other well. Moran reported that using 1,1,1,3,3,3-

hexaflurorisopropanol (HFIP) solvent in the presence of 10 mol% TfOH, DA CPs can be 

opened in high yield by electron-rich aromatic nucleophiles 1-94 (Scheme 22). This work 

showcased an impressive improvement on previous chemistry as it did not require an 

internal hydrogen bond, it avoids the use of high-pressure conditions, and it does not 

require a metal catalyst.  

 

Scheme 22 - Bronsted acid catalyzed ring-opening of cyclopropanes 

The chemistry worked broadly, capable of generating 40 different aromatic-substituted 

products in high yields. This work proposed that HFIP, a strong hydrogen-bond donor, is 

necessary to stabilize intermediate 1-98 and increase the C-C bond polarization of the 

cyclopropane (1-96 and 1-97) so it is sufficiently susceptible to attack via the aromatic 

nucleophile (Scheme 23).  
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Scheme 23 - Proposed mechanism for the Brønsted activation of DA CPs 

 A component of work in Chapter 2 further discusses how HFIP itself is a suitable 

hydrogen bond donor, capable of activating cyclopropanes without the need for TfOH. In 

addition to functionalizing indoles via reaction with DA CPs, focus in this thesis is also 

given to single electron transfer (SET) agents, and their ability to passage new 

functionality via radical chemistry.  

1.4 Single Electron Transfer Agents and Reactivity with 
Indoles 

Radical reactions in synthesis, once considered too uncontrollable to be useful, are 

becoming increasingly popular due to their capabilities to form C-C bonds53, perform 

tandem and cascade reactions in a single flask54, and make complex disconnections 

possible for target molecules. Retrosynthetically analyzing bonds in a one e- fashion, over 

a two e- mindset, has been changing the way we build molecules.55 Using single-electron 

chemistry often lessens the need to make extra adjustments compensating for chemo- and 

regioselectivity to generate compatible synthons. This provides one e- chemistry a unique 

advantage. Baran et al. exemplify this claim in a comparison of the synthetic routes to 

useful glycoside derivative 1-100 (Scheme 24).56,57  
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Scheme 24 - comparing 2 e- and 1 e- disconnects to better synthesize product 1-00 

The single electron pathway accessed desired glycoside 1-100 in just one step, without 

the need to produce the unstable lithiate (1-107) using unsafe lithiations conditions. For 

these reasons, radicals are becoming valuable tools in the synthesis of organic molecules. 

The research outlined in Chapter 3 employs radical chemistry to functionalize indoles.  

Single electron transfer (SET) agents have long been used to reduce carbon centers — 

generating radicals that are capable of many bond-forming reactions. Often alkali metals 

and tin hydrides dominate this field, especially regarding reductions (Scheme 25). To 

name a few famous examples (Scheme 25): Birch reduction (1-109)58 (Li0, Na0), acyloin 

condensation(1-110)59 (Na0), and the Barton-McCombie deoxygentation (1-111)60 

(Bu3SnH), but a great number of milder and effective SET agents have been used 

successfully in chemical synthesis over the last couple years, especially those pertaining 

to oxidative radical processes.  
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Scheme 25 - Reductive radical reactions 

Cerium (IV), iron (III), manganese (III), copper (II), and vanadium (V) are high-valent 

metals with easily handled salts capable of exploiting their flexible oxidation states to 

generate carbon-centered radicals like 1-114 (Scheme 26, oxidative process).61 

Oxidative radical processes generate products that are often the same oxidation state of 

the starting material. Compare the reductive and oxidative process in Scheme 26: the 

reductive process gains hydrogen replacing the starting alkene with sigma bonds.  

Chapter 3 expands on chemistry using Mn(III) as a SET agent, discussing its ability to 

oxidatively generate radicals to form C-C bonds with indole containing compounds. 

Mn(III) is the most established of these SET agents and the one that I will explore in 

great detail.  
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Scheme 26 - Comparison of reductive and oxidative radical processes 

1.4.1 Introduction to Mn(OAc)3: a SET Agent 

Manganese(III) is an oxidative radical former; the radical is generated via formal loss of a 

hydrogen. Mn(III) is also known as a SET agent because of its capabilities to oxidatively 

produce radicals at carbon centers. Mn(III) is most commonly used as Mn(OAc)3•2H2O, 

which is safe, easy to handle, simple to prepare, and comes from the extremely 

inexpensive Mn(OAc)2 ($86/kg, MilliporeSigma). Refluxing Mn(OAc)2 in AcOH with 

potassium permanganate (KMnO4) produces Mn(OAc)3, which is then crystallized from 

H2O yielding Mn(OAc)3•2H2O, the active reagent (Scheme 27). To produce the 

anhydrous Mn(OAc)3, acetic anhydride is added during the synthesis.62  

 

Scheme 27 - Synthesis of Mn(OAc)3 

Bush et al., who first reported the synthesis of anhydrous Mn(OAc)3, also determined that 

the way in which the Mn(OAc)3 is prepared, has an effect on its capabilities as a reagent. 

They discovered that if water remained in the crystallographic structure of the Mn(OAc)3, 

even in regards to the hydrate complexes, yields of products made from Mn(OAc)3 

radical production were lower. They hypothesized that water in the crystal structure 

altered the geometry of the molecule in such a way that the Mn(III) was not effective in 

coordinating to carbonyl groups.62 To produce quality Mn(OAc)3 the operating chemist 

must be sure that the temperature of the acetic acid is between 105-110 °C (no higher) 
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before the portion-wise addition of permanganate. I never had any issues synthesizing 

Mn(OAc)3•2H2O with this information. The procedure for the synthesis Mn(OAc)3•2H2O 

used in this thesis is outlined in Section 3.7. From this point on, Mn(OAc)3, as written, 

implies the dihydrate material being used.   

Mn(OAc)3 generates carbon-centered radicals on carbonyl compounds such as β-

diketones, acetoacetamides and β-ketoesters. Generally speaking, Mn(OAc)3 works to 

create radicals α to carbonyls, which can then combine with another suitable partner 

(Scheme 28). Mn(OAc)3 works with 1,3-dicarbonyls, or other appropriate electron 

withdrawing groups to form lactones (1-122) or cyclic molecules via intramolecular 

annulation. Often, greater than stoichiometric amounts of Mn(OAc)3 are used to facilitate 

a second oxidation of the radical intermediates (1-121). In Scheme 28, α radical 1-124 

reacts intramolecularly with the alkene generating cyclohexane 1-125. The radical in this 

case undergoes hydrogen abstraction yielding 1-126. Mn(III) chemistry also works most 

reliably when the radical acceptor, often an alkene or alkyne, is tethered within the 

molecule to access annulated products in an intramolecular fashion (Scheme 28, 1-123).   

Publications involving Mn(OAc)3 largely increased in the 1980’s, and the reagent has 

been applied in some interesting ways that will be discussed in the following subsections.  
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Scheme 28 - General reaction pathways for Mn(OAc)3 radical chemistry 

1.4.2 First Uses of Mn(OAc)3 Chemistry 

First reports using Mn(OAc)3 as an oxidative radical former were outlined by Bush and 

Heiba in 1968. Both reports expressed the synthesis of lactones like 1-128 from olefins in 

the presence of Mn(OAc)3 and acetic acid (Scheme 29, 1968).63,64  The acetic acid 

solvent is complexed by manganese, then deprotonation followed by electron transfer 

generates radical acetic acid species (1-131) which combined with the olefins. Both 

researchers found moderate yields around 70% for the synthesis of lactones from a 

variety of olefins.  

In 1974 Heiba pushed Mn(III) radicals further by expanding the scope to β-ketoesters (1-

129) (Scheme 29, 1974).65 Dihydrofurans (1-130) were synthesized in modest yields 
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from the carbon-centered radical generated at the alpha position of ethylacetoacetate 1-

129.  

 

Scheme 29 - First reports of Mn(OAc)3 as a radical initiator to synthesize lactones 

from olefins 

From the success employing 1,3-dicarbonyl species as radical partners, the field 

expanded to use Mn(III) for practical syntheses of complex and desirable molecules. The 

chemists that took over from Heiba and Bush are now the experts in the field: Barry 

Snider and E. J. Corey.  

First though, elucidation of the mechanism for reactions involving Mn(OAc)3 were 

explored during this time and proposed by Snider and Fristad. An understanding of how 

this oxidative mechanism generates radicals will aid in the comprehension of my 

research. 

1.4.3 Mn(OAc)3 Mechanism of Action 

Kinetic and mechanistic studies on how Mn(OAc)3 generates radicals have been studied 

and a well-accepted model generated. The outlined mechanism below (Scheme 30) 

shows how the α-radicals of carbonyl compounds (1-132 and 1-136) are generated. It is 

agreed that the rate determining step (RDS) in the oxidation reaction is the loss of a 

proton from the complexed substrate either 1-132 or 1-136 (Scheme 30). Both Fristad 

and Snider proposed how the oxo-centered triangle of Mn(III) (1-133 and 1-137) and 

their bridging acetates, initiate radical formation (Scheme 30).66,67 
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Scheme 30 - Mechanistic considerations for Mn(OAc)3 

The deprotonation of 1-132 to form enolate coordinated product 1-133 occurs as the RDS 

and then undergoes rapid electron transfer to give radical 1-134. This radical undergoes 

chemistry with suitable reactive partners like alkenes or alkynes. In the Snider example 

(Scheme 30), the enolization step is slow to produce 1-137, but the electron transfer 

resulting in the loss of Mn(II) and generating radical 1-138 is fast. This claim is aided by 

the fact the concentration of alkene (or other radical acceptor) has no effect on the rate of 

this reaction. Sufficiently acidic/enolizable substrates are required for Mn(III) to 

overcome the slow and rate-determining deprotonation before generating a radical. This 

is why the chemistry involving Mn(III) radicals often relies on 1,3-substituted electron 

withdrawing substrates such as malonates, or β-ketoesters.  

1.4.4 Effects of Other Oxidants in Mn(OAc)3 Reactions 

Exemplified in Scheme 28, Mn(III) is often an oxidant twice in the same reaction (1-120 

to 1-121), and will oxidize the final radical to a cation that can be quenched by different 
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mechanisms to create products. Alternate oxidants are sometimes added as they can 

control the final product acquired.68 When manganese is the chosen oxidant its abilities 

are limited; only tertiary and benzylic radicals can be oxidized to their respective cation 

by manganese. Primary and secondary radicals will not oxidize in the presence of 

Mn(III), and will instead undergo H-abstraction (product 1-144 in Scheme 31). Using 

Cu(OAc)2  in addition to Mn(OAc)3 addresses this problem; as an external oxidant it 

became popular because it could generate different final products. Cu(OAc)2 oxidizes 2° 

radicals 350 times faster than Mn(OAc)3. It will also take primary and secondary radicals 

to alkenes by direct oxidative elimination instead of H-abstraction (product 1-143 in 

Scheme 31).69  

 

Scheme 31 - Termination processes using either external oxidant Cu(OAc)2 or 

solvent in the absence of an external oxidant. 

To facilitate the enolization and quenching of these reactions, polar protic solvents are the 

required reaction medium. DMSO and CH3CN do work, albeit in lower yields. Typically, 

and as shown in most of these examples, AcOH or MeOH are the solvents of choice.  

With an understanding of the mechanism and quenching routes, efficient exploitation of 

Mn(OAc)3 began to offer access to complex products. 
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1.4.5 Applications of Mn(OAc)3 in Natural Product Synthesis 

Corey first showcased how Mn(OAc)3 radicals could be applied reporting a cascade 

reaction capable of generating complex polycyclic structures (Scheme 32).70 Β-ketoacid  

1-145 subjected to 1.3 equivalents of Mn(OAc)3 in AcOH resulted in a 63% yield of 

molecule 1-146 in an impressive a single step. This work exemplifies how radicals often 

make for extremely economic and atom efficient reactions. The structures had impressive 

diastereocontrol, generating the cis-fused pentacyclic structures simply due to the nature 

of radical chemistry. The pentacycles map nicely onto the ginkgolide group of natural 

products.  

   

 

Scheme 32 - Corey's application to impressive pentacyclic structures using Mn(III) 

A year later, in 1985, Snider formally synthesized natural product (±)-podocarpic acid 

using Mn(OAc)3 as the focal point of the synthesis (Scheme 33).71 Cascade radical 

cyclization of elaborated olefin 1-147 via Mn(OAc)3 furnished the core scaffolding of 

(±)-podocarpic acid (1-148). A Clemmensen reduction synthesized product 1-149, O-

methylpodocarpate, that was taken to (±)-podocarpic acid in 1956.72 

 

Scheme 33 - Snider's formal synthesis of (±)-podocarpic acid through intermediate 

1-149 generated using Mn(OAc)3 
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Later in 2002, Mn(OAc)3 in the presence of co-oxidant Cu(OAc)2 furnished the main 

scaffolding of natural product vannusal A (1-152) as reported by Nicolaou et al (Scheme 

34).73 The spirocyclic molecule 1-151, being geometrically strained, was welcoming to a 

radical methodology, which is often a great choice to make tough, tight bonds. From β-

ketoester 1-150, radical cyclization worked in a 76% yield to furnish 1-151 (Scheme 34). 

In 2010, the Nicolaou group realized the complete total synthesis of vannusal A and 

corrected its originally proposed structure.74   

 

Scheme 34 - Nicolaou's route to vannusal A incorporating a Mn(III) mediated 

radical cyclization of spirocycle 1-151 

Where the Kerr group expertise shines is using Mn(OAc)3 as a means to perform 

cyclization reactions with indoles. In 2008, the total synthesis of mersicarpine was 

achieved using an important Mn(OAc)3 cyclization reported by Magolan and Kerr 

(Scheme 35).75 Malonyl-tethered indole 1-153, was subjected to the oxidative radical 

forming conditions with Mn(OAc)3 generating tricyclic product 1-154. 1-154 was taken 

to the target molecule, mersicarpine (1-155, Scheme 35). 

 

Scheme 35 - Kerr group synthesis of mersicaprine functionalizing indole 1-153 via 

Mn(III) radical cyclization 
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This segues nicely into how Mn(OAc)3  can be used to further functionalize indoles into 

desirable synthetic targets.  

1.4.6 Mn(OAc)3 and Indole Functionalization 

When it comes to indoles, Mn(OAc)3 was first used as an oxidative reagent to take 

indolines to their aromatic indole counterpart.76 Original reports (Scheme 36, 1988) 

observed that only electron withdrawing components off of the indoline nitrogen (1-156) 

were tolerated. As work with Mn(III) progressed, Curiel Tejeda et al. demonstrated an 

improvement on the oxidation of indolines (Scheme 36, 2016). Indolines bearing electron 

rich substitution (1-158), like a methylene or phenyl group, were also capable of 

oxidation to indoles using Mn(OAc)3. The materials explored also underwent a radical 

cyclization with the malonyl tether in a single-step yielding annulated indole 1-159.  

 

Scheme 36 - Mn(OAc)3 as a tool to synthesize indoles 

Another interesting application of Mn(OAc)3 is observed in its ability to regioselectively 

thiocyanate indoles (Scheme 37). At room temperature, in the presence of Mn(OAc)3, a 

variety of indoles were thiocyanated in high yields to provide a different functional 

handle on indoles. Indole (1-1) with ammonium thiocyanate (1-160) and Mn(OAc)3 

produced functionalized indole 1-161 (Scheme 37) in an 83% yield.77 Mechanistically, 

radical thiocyanate 1-163 is produced via ligand exchange with ammoniumthiocyanate 

and Mn(OAc)3. Radical 1-163 then reacts with the chosen indole, where a second 
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equivalent of Mn(III) oxidizes the radical to cation 1-165. End indole 1-166 is generated 

by loss of a proton.     

 

Scheme 37 - Functionalizing indoles with thiocyanate 

 

Continuing our exploration of indoles and manganese (III), methylmalonylation of both 

pyrroles and indoles was reported in 1993 starting the wave of publications relating to the 

addition of diketone species into indoles. Baciocchi et al. found that methyl 

diethylmalonate (1-168) was radically added to indoles when subjected to Mn(OAc)3. 3-

substitution was the major product (1-169) and a minor fraction of mixed substitution 

around the phenyl ring of indole (1-170) was also isolated (Scheme 38).78  

 

Scheme 38 - Addition of malonyl groups to indoles via Mn(III) chemistry 
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Expansions on this work would include cyclization reactions where instead a malonyl 

group was in the starting indole causing intramolecular reactions (Scheme 39). Magolan 

et al. synthesized indoles containing malonyl tethers (1-171) and used a Mn(OAc)3 

radical cyclization to generate 1,2-disubstituted indoles bearing a cyclohexane ring (1-

172) (Scheme 39).79  

 

Scheme 39 - Tethered indoles functionalized to 1,2-cyclized product 1-172 by 

Mn(OAc)3 

Cyclic substituted indoles, like that of product 1-172, map well onto a vast selection of 

natural products. It matches particularly well to products isolated from plant species 

Tabernaemontana corymbosa, which will become the next topic of this introductory 

material.  

1.5 Indole-Containing Natural Products of Interest 

The Tabernaemontana genus of Malaysian flowering plants have produced many 

interesting isolated and characterized natural products. In Chapter 4 of this thesis will 

discuss new progress trying to synthesize two of these isolated indole-alkaloids using 

Mn(OAc)3.  

The Kam group from the University of Malaya has worked over many years to extract 

huge numbers of alkaloids from Tabernaemontana corymobosa. Many of these alkaloids 

collected have been useful targets of interest to organic chemists80, but it was first Van 

Beek, who had worked with plant extractions from Tabernaemontana chippii to isolate 

45 different alkaloids.81 At the time, 34 of them were fully characterized, and 8 of them 

were newly discovered molecules. A screening of these new molecules revealed that they 

have antifungal and antimicrobial uses. A couple of the alkaloids elucidated by Van 

Beek, pleiocarpamine and chippiine, are showcased in Figure 9, with the skeleton of 
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interest outlined in red. Unique to this plant, we notice these molecules have a 1,2-

substituted cyclic indole scaffold, which the Kerr group has become expert in generating 

using Mn(OAc)3.  

 

Figure 9 - Select examples of alkaloids isolated from Tabernaemontana chippii. 

In 2000, the Kam group isolated the first novel pentacyclic indole natural product that 

also contained a 7-membered lactam moiety. This lactam functionality had not been seen 

in the alkaloids of Tabernaemontana before. The product isolated, and named as 

tronocarpine (Figure 10), was thought to be related to the tacaman-type alkaloids (for 

example chippiine (Figure 9) is a member of this family), but no evidence of its presence 

in Tabernaemontana corymbosa was discovered. Since this alkaloid has yet to see its 

total synthesis completed, and due to its interesting pentacyclic structure, tronocarpine is 

an enticing piece of work to the organic chemist. Again, chemistry outlined in this thesis 

instilled a confidence that Kerr group methodologies using Mn(OAc)3 would be an 

efficient way to fashion this natural product. In addition to its unique structure, 

tronocarpine has not yet been tested for its bioactivity, but because of the bioactive nature 

of related alkaloids, it is of interest to determine the potential pharmaceutical effects that 

tronocarpine may have.   

Later in 2001, the Kam group isolated 4 new alkaloids named Dippinine A-D, from the 

plant Tabernaemontana corymbosa.82 These new indole alkaloids also contained the 

tricyclic scaffolding that I was confident we could generate in an efficient way. Dippinine 

B (Figure 10) was of special significance as a molecule because I could perhaps 

synthesize it based on the methodology generated in Chapter 3 of this thesis. I have a 

great way of generating acyl indoles that cyclize with Mn(OAc)3 and put functional 

handles in correct regions to access this interesting natural product. Dippinine B is also 
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similar to tronocarpine differing only in the attachment of their tryptamine chains. 

Tronocarpine and dippinine B became the target molecules of interest and work towards 

their syntheses is reported in Chapter 4.  

  

 

 

Figure 10 - Indole alkaloids tronocarpine and dippinine B isolated from 

Tabernaemontana corymbose 

1.5.1 Previous Synthetic Attempts at Tronocarpine 

To date, only three attempts at tronocarpine have been published. Original work towards 

the molecule was performed in the Kerr group by past students Jakob Magolan, and 

Katarina Sapeta.  

In 2006, Magolan outlined a synthesis of the tetracyclic core of tronocarpine, furnishing 

rings A, B, C, and D.79 From elaborated indole-3-acetonitrile 1-173 (Scheme 40), the 

Mn(OAc)3 oxidative cyclization furnished the D ring of tronocarpine (1-174) complete 

with the ester handles that could generate lactam ring C. Raney Ni reduction of nitrile 1-

174 resulted in the unprompted lactamization of the resultant amine onto the 

diastereotopically available ester to yield product 1-175 in an 87% yield. Unfortunately, 

attempts to enolize the α-position to the ketone in 1-175 was not possible, and appropriate 

functionality to complete tronocarpine could not be installed.  

In 2009 Katarina Sapeta successfully furnished the A, B, D, and E rings of tronocarpine, 

but did not achieve the required functionality to furnish the total synthesis (Scheme 41).83 

Using donor-acceptor cyclopropane 1-176, opening with nucleophile 2-(chloromethyl)-3-

trimethylsilyl-1-propene (1-177) yields product 1-178, which is then cyclized by an SN2 
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reaction. Indole-substituted cyclohexyl 1-179 was synthesized in a 92% yield over 2 

steps. Then deprotection of the tosyl group with Mg metal, followed by base-mediate 

condensation with the available ester formulated tetracyclic product 1-180 in a 47% yield 

over 2 steps.  While Sapeta was able to close ring E, that Magolan’s route could not, the 

ester of 1-180 is on the incorrect side of the molecule and any further functionalization 

was not reported. 

 

 

Scheme 40 - Progress towards the first total synthesis of tronocarpine in 2006 
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Scheme 41 - Progress towards the first total synthesis of tronocarpine in 2009 

Finally, the most recent report of an attempted synthesis of tronocarpine came from the 

Martinez group in 2014. They successfully synthesized the pentacyclic framework of 

tronocarpine, but lacked correct oxidation states for both the methylene bound to the 

indole nitrogen and the α,β-unsaturated ketone component of ring E (Scheme 42).84 The 

synthesis began from malonyl substituted indole 1-181, which was subjected to a Michael 

addition with acrylic aldehyde 1-182, condensation with the indole nitrogen occurred in 

one-pot to yield tricyclic moiety 1-183 in a 90% yield. Unfortunately, resultant alcohol 1-

183 was not stable, and quickly eliminated to form the alkene product 1-184, which the 

researchers were forced to work with. To impart the later required syn functionality to 

close ring E, lactamization first had to be performed by deprotection of the tryptamine 

chain to yield 1-185 in a quantitative yield. Then using palladium-catalyzed 

hydrogenation, they could ensure the syn addition of hydrogen to give the 

diastereochemistry outlined in product 1-186. From this molecule, a titanium-catalyzed 

Dieckmann condensation of 1-186 gave pentacycle 1-187 in a 91 % yield. The report 

ends here as the authors mention oxidation attempts to install the alcohol of tronocarpine 

were unsuccessful.  
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Scheme 42 - Martinez attempt at the total synthesis of tronocarpine in 2014 

I was hopeful that some of the learned procedures in these attempted syntheses would aid 

in my design to complete the first synthesis of both tronocarpine and dippinine B. This 

chemistry is explored extensively in Chapter 4.  

With this, I complete the material required to understand the chemistry outlined in 

Chapters 2 through 5. They comprise the research component of this thesis, which 

ultimately aimed to improve chemistry involving the heterocycle indole.  
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Chapter 2: Hydrogen Bond Activation of Donor-Acceptor 
Cyclopropanes with 1,1,1,3,3,3-Hexafluoroisopropanol 

Chapter 2 Preface 

 

The work outlined in this chapter is adapted from:  Irwin, L.C.; Renwick, C.R.; Kerr, 

M.A. J. Org. Chem. 2018, 83(11), 6235-6242.  

The Kerr group research program focuses heavily on developing novel synthetic 

transformations starting with donor-acceptor (DA) cyclopropanes. Chapter 2 summarizes 

my novel discovery activating DA cyclopropanes using hydrogen bonding (Scheme 43). 

 

Scheme 43 - Reaction explored in Chapter 2. Activation of DA cyclopropanes via 

hydrogen bonding 
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2.1    Introduction 

Donor-acceptor cyclopropanes (DA CPs) have long fascinated chemists and are a well-

established field. Of late, there has been a resurgence of activity as new and innovative 

uses for these compounds have been reported.85 Donor-acceptor cyclopropanes are often 

used as homo-Michael acceptors which makes them useful for functionalizing a wide 

variety of nucleophiles and the creation of C-C bonds.86 As expressed in the introduction, 

they also behave as dipolarophiles, which has made them useful for the synthesis of 

heterocycles87 and carbocycles.88  

The Kerr group first reported that indoles nucleophilically open cyclopropanes in the 

presence of both Yb(OTf)3 and high pressure back in 1997 (Scheme 44, ref. 88).89 

Improvements came in 2011 as we discovered that switching to hemimalonate CP 2-3 

only high-pressure was required to open the cyclopropane via proposed hydrogen-

bonding interaction (Scheme 44, ref. 89).90 

However, as the world shifts to employ more sustainable chemical processing, the notion 

of removing metals for catalysis is not new.91 This would help preserve the world’s 

supply of precious metals and remove the toxic and polluting effects caused by metallic 

waste. Performing reactions of DA CPs without the need for environmentally and 

economically costly metals, or at unsafe pressure, would be a welcomed methodology. 

These ideals sparked this pursuit of hydrogen bonding as a mode of activation for donor-

acceptor cyclopropanes. 

Chapter 2 reports the results of my research in which I showcase how donor-acceptor 

cyclopropanes react smoothly with indoles, free from metal-catalysis and high-pressure 

conditions. The reaction uses 1,1,1,3,3,3-hexafluoroisopropanol (HFIP) as the solvent or 

co-solvent to enforce hydrogen bonding interactions with the carbonyls of the acceptor 

portion of DA CPs.  
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Scheme 44 - The reaction discussion in Chapter 2 and related research from our 

group. 

 

Emmett et al. first report using high-pressure and hemimalonate DA CPs (Scheme 44, 

ref. 90) and proposed that an internal hydrogen bond was adequate to stereo-

electronically align the two carbonyl groups to receive the impending electron density as 

the ring opening events (Figure 11). They believed this to be the case because the 

internal hydrogen bond meant there would be a counter-acting electron withdrawing and 

electron donating effecting from both the loss, and gain, of a hydrogen bond. The forced 

co-planarity of the cyclopropane would lower the overall energy barrier of the initial 

nucleophilic attack. 
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Figure 11 - Forced co-planarity of hemimalonate CPs activating them for successful 

nucleophilic opening. 

These results in mind, I proposed that if the hydrogen bond was external, from a source 

like HFIP, it would provide a more electron-withdrawing situation for nucleophilic 

opening and perhaps work with more than just hemimalonate CPs. 

2.2 Optimization of Reaction Conditions 

This work commenced using hemimalonate cyclopropanes because they had already 

proved their hydrogen-bond receptiveness, and I hoped this would be useful for 

optimization (Table 1). I first treated cyclopropane 2-9a with 2 equivalents of N-

methylindole 2-8a in pure HFIP at 60 °C and produced desired adduct 2-10a in a 46% 

yield (Table 1, entry 1).  
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Table 1 - Optimization of the Reaction Conditions for the Reaction of N-

Methylindole 2-8a with Cyclopropane Hemimalonate 2-9a 

 

As a control, the reaction was performed using only acetonitrile as a solvent which 

resulted in no product (Table 1, entry 2). Believing that the reaction required a hydrogen 

bonding solvent, we tried acetic acid, phenol, and trifluoroethanol (TFE) (Table 1, 

entries 3, 4 and 5). I chose to examine phenol because its pKa is similar to HFIP, and we 

were quite surprised to learn TFE produced no product as it should have similar hydrogen 

bonding capabilities compared to HFIP. Intrigued by this result, we tried only 

isopropanol (Table 1, entry 8) which gave a small 17% yield of desired adduct 2-10a. 

Ultimately optimized conditions were realized with a 50:50 mixture of HFIP:i-PrOH, at a 

mild 65 °C and using an aqueous purification process giving a respectable 76 % yield of 

2-10a (Table 1, entry 12).  

I feel it is important to note that optimization was initially performed using 1,2-

dimethylindole as the nucleophile. Due to its strength as a nucleophile, it proved to be an 
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exceptional example to optimize with. This resulted in other indole nucleophiles failing 

to yield products under the same mild conditions that worked for 1,2-dimethylindole. 

This is outlined in the reaction scope below (Scheme 45), where 1,2-dimethylindole 

produces some of the highest yields of the CP opening reaction.  The results of this 

optimization are included below (Table 2).  The optimized conditions of this reaction 

were more mild with 40:60 mixture of HFIP:i-PrOH at 55 °C (Table 2, entry 5). The 

milder reaction conditions ceased to perform for a broad scope of nucleophiles, and 

results from the 1-methylindole optimization were put in place.  

Table 2 - Optimization of the Nucleophilic Opening of Cyclopropane 2-9a with 1,2-

Dimethylindole 2-8b 

 

 

2.3 Substrate Scope and Expanded Use of Alternate 
Donor-Acceptor Cyclopropanes 

Optimal reaction conditions in hand, I turned attention to studying the scope of substrate 

performance. I started by exploring hemimalonate cyclopropanes (2-9a and 2-9b) as per 

the optimization discussed above. Scheme 45 outlines the products prepared under this 
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protocol. A few trends were observed upon completion of this scope. Firstly, N-

methylindole added to cyclopropane 2-9a in a modest 76% yield (2-10a), while indole 

itself, was not a productive nucleophile for generating adduct 2-10d. This returned only a 

31% yield. Additionally, indole adduct 2-10d was difficult to purify and only crude 

results were obtained. These results prompted us to also try N-boc indole as a substrate, 

but as per published findings, the indole did not react. Rather the Boc group was removed 

(2-10i).92  

 

Scheme 45 - Substrate scope for the reaction of indoles with cyclopropane 

hemimalonates. 

Substitution at the 2-positon of the indole was well-tolerated as proven by examples 2-

10b and 2-10c. In fact, 1,2-dimethylindole was the best nucleophile studied resulting in 

an 83% yield of adduct 2-10b.  Substitution on the benzenoid portion of the indole 

nucleophiles worked well for electron rich examples; 2-10f yielded 64% of desired 

product, and the same was true for 2-10e, a more electron neutral example. However, 

electron withdrawing substituents at the 5-position of the indole were not tolerated and 
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failed to yield the 5-nitroindole example 2-10j. We tested an electron withdrawing group 

on the cyclopropane though, which resulted in a 60% yield of 2-10h.  

Having success with hemimalonate cyclopropanes, I looked to compare results using the 

parent diester cyclopropane 2-11a-d (Scheme 46). Under the same conditions used for 

the hemimalonate products, little to no product was observed and so I had to explore 

some new reaction conditions.  

 

Scheme 46 - Substrate scope for the reaction of indoles with diester cyclopropanes. 

Upon changing the reaction conditions to use pure HFIP and heating at 80 °C, N-

methylindole was able to open CP 2-11a to give a 35% yield of adduct 2-12b. 2-position 

substitution on the indole greatly improved yields as we expected due to their enhanced 

nucleophilicity. 2-methylindole and 2-phenylindole adducts (2-12a and 2-12c 

respectively) gave improved yields of 91% and 62%. It is suspected that the additional 

bulk of the phenyl substituent hindered higher yields. Substitution on the cyclopropane 

benzenoid was acceptable for para nitro (2-12d, 19%), bromo (2-12e, 54%) and chloro 
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(2-12f, 66%) groups. However, the electron withdrawing nature of these groups saw a 

drop in yields from the bare phenyl example as expected.   

From the success generated by the diester cyclopropanes, I felt that bis-trifluoroethyl 

ester cyclopropanes (2-14a/b) would only improve on this methodology. Our group, as 

well as others, have proved that these cyclopropanes have enhanced reactivity due to the 

electron withdrawing nature of the added fluorines.93 We were delighted to discover 

excellent yields of the indole opened adduct of these cyclopropanes. Scheme 47 outlines 

the library of products generated.  

N-methylindole reacted with CP 2-13a resulting in an 85% yield of product 2-14a. Again, 

indole itself resulted in a poor 25% yield of adduct 2-14i. Electron withdrawing groups 

on position 5 of the indole, 2-14e, again resulted in a lower yield compared to electron 

donating (2-14f, 89%) and electron neutral counter examples (2-14g, 79%).  Substitution 

Scheme 47 - Substrate scope for the reaction of indoles with cyclopropane fluoroesters. 
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at the 2-position was well tolerated, as 2-phenyl-1-methylindole generated a high 91% 

yield of 2-14d. The excellent yields observed for the fluoroethylester-bearing 

cyclopropanes are certainly a result of their enhanced withdrawing nature; however, I 

also suspected that an additional hydrogen-bonding effect may have been occurring. 

2.4 Possible Hydrogen Bonding Motifs  

HFIP has been well reported to act as a hydrogen bond donor.94 In the case of the 

fluoroethyl esters, we suspect that another interaction involving a hydrogen bond between 

HFIP and the fluorines of the cyclopropane could be happening as well. Such interaction 

has been reported by the Paquin group, and would explain the great improvement of 

yields for these products.95 Outlined below are our proposed interactions of how HFIP 

acts as a hydrogen bond donor (Figure 12). While it is still unclear which is occurring, 

future studies should aim to elucidate how this reaction works.  

 

Figure 12 - Possible hydrogen bonding motifs for donor-acceptor cyclopropanes in 

the presence of HFIP 

In the case of the diester CPs (Figure 12, I), hydrogen bonding to the carbonyl oxygen(s) 

should be capable of lowering of the activation energy of the nucleophilic attack by 

indole. With the hemimalonates CPs the situation becomes a bit more complex (Figure 

12, II). It is possible that an internal hydrogen bond, as mentioned earlier, could occur 

and this would stereo-align the orbitals of the cyclopropane for the incoming electron 

density, but, with HFIP there could also be an additional energy lowering hydrogen bond 

to the carbonyl oxygen(s). Finally, examining the fluoroethyl ester CPs (Figure 12, III) 

there is the possibility of a hydrogen bond to the fluorine present. This would make the 

ethylfluoro groups even more withdrawing in nature facilitating the nucleophilic opening.  
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2.5 Other Nucleophiles and Future Directions 

While this project reports a simple and catalyst-free method for activating cyclopropanes, 

there exists great potential for future chemistry. Firstly, exploring the mechanism of 

activation for this reaction is vital to understanding how hydrogen bonding allows these 

ring opening reactions to proceed.  Simple 13C NMR experiments could be used to 

observe the effects of HFIP on cyclopropanes. Taking up hemimalonate and fluoroethyl 

diester CPs (2-9a and 2-13a) in CDCl3 and running carbon NMRs at varying 

concentrations of HFIP, we may observe the carbonyl carbons shifting downfield as 

withdrawing effects are improved. We could compare these results to spectra obtained 

with the addition of acidic solvents, like AcOH and phenol, which did not provide ring 

opened adducts in the above research. We could also explore varying concentrations of 

TFE to determine why it also failed to yield our desired adducts. Perhaps HFIP will 

demonstrate a stronger interaction to the carbonyl carbons of the DA CPs.  

In addition to NMR experiments, computational chemistry would prove valuable for 

exploring the transition states of the hydrogen-bond interactions with cyclopropanes. If 

we can understand how the hydrogen bond works, we could better tune substrates in the 

future to open greater varieties of cyclopropanes in a catalyst free fashion, or generate 

improved conditions using less HFIP.  

On this note, this discovery makes a new tool for metal-free synthesis of valuable 

hetereo- and carbocycles en-route to natural products.  It would be interesting to explore 

if annulation reactions where DA CPs act as dipolarophiles also proceed under these 

catalyst-free conditions. While I took some time to explore nitrone nucleophiles (2-16) 

opening DA CPs in the presence of HFIP, the results were not as expected (Scheme 48). 

A few oxazine products (2-18) were generated but in small yields and were not pursued 

further. A better understanding of the reaction activation may aid in the pursuit of useful 

reaction conditions for other nucleophiles.  
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Scheme 48 - Annulation reaction of nitrones opening cyclopropanes to yield oxazine 

products 

Exploring imine, oxime and enamine nucleophiles would provide us interesting and 

catalyst free conditions for the valuable products they produce.  

HFIP being such a strong hydrogen bond donor could also play a positive role in some of 

the single-electron oxidant chemistry discussed Chapter three. More will be discussed on 

this in Chapter three, but perhaps using HFIP it is possible that radical reactions will 

proceed at milder conditions resulting in less decomposition and/or by-products. 

Hopefully, HFIP would improve yields of intermediate compounds en-route to natural 

products like tronocarpine and dippinine B. 

2.6 Experimental 

2.6.1 General Experimental Details 

Reaction flasks were oven-dried at 110 °C and cooled in a desiccator prior to use.  

All cyclopropane opening reactions were conducted in sealed tubes that had been flushed 

with argon before the addition of reagents unless otherwise indicated. The tubes were 

sealed with a Teflon stopper and capped with an aluminum crimping cap. All chemicals 

were of reagent quality and used as obtained from commercial sources. HFIP was 

purchased from Oakwood Chemical and dried with 3Å molecular sieves. 3Å molecular 

sieves were activated in a 300 °C oven for at least 24 h before use. Isopropanol was 

purchased as distilled in glass from Caledon Scientific and stored over 3Å molecular 

sieves.  High resolution mass spectra (HRMS) were obtained on a Thermo Scientific DFS 

mass spectrometer using electron impact ionization.  Dichloromethane (DCM), 

acetonitrile (MeCN) and tetrahydrofuran (THF) were dried and deoxygenated by passing 

the nitrogen purged solvents through activated alumina columns.  All other reagents and 

solvents were used as purchased from Aldrich, Alfa Aesar (VWR), or Caledon.  Reaction 
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progress was followed by thin layer chromatography (TLC) (Merck, TLC Silica gel 60 

F254) visualizing with UV light. The plates were developed using acidic p-anisaldehyde. 

Column chromatography was performed using silica gel purchased from Silicycle 

Chemical Division Inc. (230-400 mesh). All columns were performed using Still’s 

procedure for flash chromatography.96 IR spectra were acquired using an Attenuated 

Total Reflection (ATR) PerkinElmer Spectrum Two FT-IR. Melting points were 

determined using a Gallenkamp melting point apparatus and are uncorrected.  NMR data 

were acquired on either a Bruker AvIII 400 or Inova 600 instrument. Samples were 

obtained in CDCl3 (referenced to 7.25 ppm for 1H and 77.0 ppm for 13C). Coupling 

constants (J) are in Hz. The multiplicities of the signals are described using the following 

abbreviations: s = singlet, d = doublet, t = triplet, q = quartet, dd = doublet of doublets, dt 

= doublet of triplets, dq = doublet of quartets, m = multiplet, br = broad. 

2.6.2  General Experimental Procedure for the Synthesis of Indole 
Starting Materials 

Commercially available indole starting materials were used as purchased. When not 

available the substrates were obtained by N-methylation or alkylation of the parent indole 

following published procedures and then confirmed by comparison to reported 

characterization data for these compounds. Methylated/alkylated indoles (2-8a-i) were 

synthesized following literature procedures 97,98,99,100 using the following conditions:  

Desired indole (1 equiv.) was dissolved in dry THF or DMF in an argon-flushed flask to 

give a 0.3 M solution. NaH (60% dispersed in mineral oil, 1.5 eq) was added portion wise 

at 0 °C and then the reaction septum was returned. The flask was evacuated and placed 

under argon once more.  The reaction was warmed to room temperature and stirred for 

1.5 h. At which point, the reaction was cooled to 0 °C and MeI (1.3 equiv.) or BnBr (1.1 

eq) was added dropwise via syringe.  The reactions were allowed to stir at room 

temperature until TLC analysis confirmed consumption of starting materials, or until 24 h 

had passed. Water was added to quench the reaction, and then extracted 3x with Et2O. 

The organic layers were combined and washed 1x with brine, and then dried using 

MgSO4. Upon filtering and concentrating, the crude mixture was purified via flash 

column chromatography (EtOAc:Hex) and pure product was collected. 
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2.6.3 Synthesis of Cyclopropane Starting Materials  

All diester and hemimalonate cyclopropanes were synthesized via literature methods and 

confirmed by comparison to the reported characterization data:  

Hemimalonate CPs: Ph (2-9a) and p-NO2 (2-9b) CP 101 

Diester CPs: Ph (2-11a), p-NO2 (2-11b), p-Br (2-11c), p-Cl (2-11d) 102 103 

Fluorodiester CP: Ph (2-13a) and p-Br (2-13b) 104 

2.6.4 General Experimental Procedure: Nucleophilic Opening of 
Hemimalonate Cyclopropanes (GP1) 

 

Scheme 49 - General reaction scheme for the products characterized below 

Cyclopropane (1equiv.), indole substrate (2 equiv.), and 50:50 i-PrOH:HFIP (for a 

concentration of 0.2 M) were added to an argon-flushed sealed tube. The tube was sealed, 

submerged into an oil bath at 65−70 °C, and left to react for 12−24 h. Upon confirmation 

of the starting material consumption via TLC, the reactions were poured into a round-

bottom flask, rinsed with DCM, and then concentrated in vacuo. The crude mixture was 

subjected to flash column chromatography using an appropriate eluent system of either 

AcOH:MeOH:DCM or AcOH:EtOAc:Hex. In some cases (indicated below), instead of a 

column, the crude material was taken up in 2 M NaOH and was extracted with Et2O or 

DCM 3x to remove excess indole. The collected aqueous fraction was then acidified with 

concentrated HCl (very slowly, with cooling if needed) to a pH of 1. The resulting acidic 

aqueous layer was then extracted with EtOAc 3×, and the organic fractions were 

combined, washed with brine, dried with MgSO4, filtered, and concentrated in vacuo to 

yield a purified product. 
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4-(1,2-dimethyl-1H-indol-3-yl)-2-(methoxycarbonyl)-4-

phenylbutanoic acid (2-10b) 

Following GP1, CP 2-9a (0.05 g, 0.23 mmol) and 1,2-dimethylindole 

(0.066 g, 0.45 mmol) in 1.2 mL of HFIP:i-PrOH were reacted for     

20 h. The reaction was concentrated in vacuo, then taken up in 1 M 

NaOH, and placed into a separatory funnel. Extractions using DCM 3× and monitoring 

by TLC showed that all the indole had been removed from the aqueous phase. The basic 

aqueous layer was then carefully acidified with concentrated HCl to pH = 1 and was 

extracted with DCM 3×. The organic layers were washed with brine1×and then dried 

with MgSO4. Upon being filtered and concentrated in vacuo, the pure product 2-10b was 

isolated as a white solid (0.069 g, 83% yield). Rf= 0.26 (30% EtOAc:1% AcOH:69% 

Hex). Characterization data for this compound matched literature reports.101  1H NMR 

mixture of diastereomers (400 MHz, CDCl3) δ: 7.46 (t, J= 7.7Hz, 1H), 7.34 (d, J= 7.6 

Hz, 2H), 7.23−7.21 (m, 3H), 7.16−7.07 (m,2H), 7.01−6.95 (m, 1H), 4.36−4.26 (m, 1H), 

3.65, 3.62, and 3.56 (s, 6H total), 3.36−3.29 (m, 1H), 2.97−2.86 (m, 2H), 2.33 and 2.32 

(s, 3H total). 

2-(methoxycarbonyl)-4-(1-methyl-2-phenyl-1H-indol-3-yl)-4-

phenylbutanoic acid (2-10c) 

Following GP1, hemimalonate CP 2-9a (0.05 g, 0.23 mmol), 2-

phenyl-1-methylindole (0.10 g, 0.48 mmol) in 1.2 mL of HFIP:iPrOH 

were reacted for 16 h. The reaction was concentrated in vacuo and purified directly via 

flash column chromatography. The pure product was isolated as a white solid (0.072 g, 

70%). MP = 165-169 °C Rf = 0.37 (40% EtOAc: 1% AcOH: 59% Hexanes)   

1H NMR (599 MHz, CDCl3) mixture of diastereomers δ = 7.63 (t, J = 8.2 Hz, 1H), 

7.45 – 7.26 (m, 8H), 7.20 – 7.05 (m, 5H), 4.13 (two t appears as ddd, J = 16.4, 11.0, 5.4 

Hz, 1H), 3.56 and 3.55 (s, 3H), 3.46 (s, 3H), 3.29 – 3.21 (m, 1H), 2.92 – 2.71 (m, 2H) 13C 

NMR (151 MHz, CDCl3) mixture of diastereomers δ 169.7, 144.8, 140.0, 131.2, 129.4, 

128.7, 128.0, 126.4, 122.1, 121.0, 119.9, 110.0, 52.7, 50.5, 40.6, 34.4, 31.2. IRATR (cm-1) 
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2954, 1743, 1694, 1468, 1433, 1290, 1146, 744, 699 HRMS (EI) m/z [M+] 427.17746 

(calcd for C27H25NO4, 427.17836)    

2-(methoxycarbonyl)-4-(1-methyl-1H-indol-3-yl)-4-

phenylbutanoic acid (2-10a) 

Following GP1, hemimalonate CP 2-9a (0.10 g, 0.46 mmol) and 1-

methylindole (0.126 g, 0.92 mmol) in 2.4 mL of HFIP:iPrOH were 

reacted for 20 h. The reaction was concentrated in vacuo, taken up in 1 M NaOH. 

Extractions using DCM 3× and monitoring by TLC showed that all the indole had been 

removed from the aqueous phase. The basic aqueous layer was then carefully acidified 

with concentrated HCl to pH = 1 and was extracted with DCM 3×. The organic layers 

were washed with brine1× and then dried with MgSO4. The pure product was isolated as 

an off-white solid (0.12 g, 76% yield).  Rf = 0.47 (1% AcOH:1% MeOH:8% DCM). 

Characterization data for this compound matched literature reports.101  

1H NMR mixture of diastereomers (400 MHz, CDCl3) δ: 9.91 (br, s, 1H), 7.45 (m, 

1H), 7.36−7.26 (m, 4H), 7.22−7.15 (m, 3H), 7.02 (m, 1H), 6.90and 6.88 (s, 1H total), 

4.26 (m, 1H), 3.74 and 3.68 (s, 6H total), 3.44(m,1H), 2.85m, 1H), 2.71−2.58 (m, 1H). 

4-(1H-indol-3-yl)-2-(methoxycarbonyl)-4-phenylbutanoic acid (2-

10d) 

Following GP1, hemimalonate CP 2-9a (0.05 g, 0.23 mmol) and 

indole (0.054 g, 0.46 mmol) in 1.2 mL of HFIP:iPrOH were reacted 

for 20 h. The crude mixture was concentrated in vacuo and purified 

by flash column chromatography. Rf= 0.32 (1% AcOH:1% MeOH:98% DCM). The 

product was isolated as a yellow oil (0.024 g, 31%). Even after multiple purification 

attempts, the characterization data were unclean but had results matching the reported 

literature.101 
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4-(5-bromo-1-methyl-1H-indol-3-yl)-2-(methoxycarbonyl)-4-

phenylbutanoic acid (2-10e) 

Following GP1, hemimalonate CP 2-9a (0.075 g, 0.34 mmol) and 

5-bromo-1-methylindole (0.14 g, 0.68 mmol) in 1.7 mL of 

HFIP:iPrOH were heated for 30 h. The crude mixture was 

subjected to the extraction method of the purification as described in GP1. The resultant 

solid from the extractions was further purified by recrystallization in pentane/DCM to 

yield a pure product as a pale-yellow solid (0.10 g, 72%). Rf = 0.5 (1% AcOH:1% 

MeOH:98% DCM). Characterization data for this compound matched literature results.101  

1H NMR mixture of diastereomers (400 MHz, CDCl3) δ: 7.54 (m, 1H), 7.31−7.27 (m, 

4H), 7.25−7.18 (m, 2H), 7.13 and 7.11 (s, 1H total), 6.92 and 6.89 (s, 1H total), 

4.21−4.12 (m, 1H), 3.76 and3.73 and 3.72 and 3.69 (s, 6H total), 3.44−3.37 (m, 1H), 

2.85−2.71 (m, 1H), 2.68−2.54 (m, 1H). 

4-(5-methoxy-1-methyl-1H-indol-3-yl)-2-(methoxycarbonyl)-

4-phenylbutanoic acid (2-10f) 

Following GP1, hemimalonate CP 2-9a (0.05g, 0.23 mmol) and 

5-methoxy-1-methylindole (0.074 g, 0.46 mmol) in 1.2 mL of 

HFIP:iPrOH were reacted for 16 h. The reaction was 

concentrated in vacuo and purified directly via flash column chromatography. The pure 

product was isolated as a white foam (0.056 g, 64%). Rf= 0.27 (40% EtOAc:1% 

AcOH:59% Hex).  

1H NMR mixture of diastereomers (400 MHz, CDCl3) δ: 7.34−7.26 (m, 4H),7.19 (t, J 

= 7.0 Hz, 1H), 7.14 (d, J = 8.8 Hz, 1H), 6.88 (m, 1H), 6.86−6.79 (m, 2H), 4.19 (m, 1H), 

3.76 and 3.67 (s, 3H total), 3.74 and 3.73 (3H total), 3.70 (s, 3H), 3.43 (m, 1H), 2.83 (m, 

1H), 2.67−2.55 (m, 1H). 13C NMR mixture of diastereomers (101 MHz, CDCl3) δ: 

174.7,169.9, 153.8, 143.4, 132.8, 128.7, 128.5, 128.1, 126.9, 126.7, 116.6, 112.0, 110.1, 

101.6, 101.5, 56.0, 52.8, 50.0, 40.8, 35.1 33.0. IRATR (cm-1): 2949, 1732, 1490, 1451, 

1212, 1035, 792, 700, 587. HRMS (EI) (m/z): [M+] calcd for C22H23NO5, 381.1576; 

found, 381.1574. 
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4-(1-benzyl-1H-indol-3-yl)-2-(methoxycarbonyl)-4-phenylbutanoic 

acid (2-10g) 

Following GP1, hemimalonate CP 2-9a (0.05 g, 0.23 mmol), 1-

benzylindole (0.095 g, 0.46 mmol) in 1.2 mL of HFIP:iPrOH was 

reacted for 16 h. The reaction was concentrated in vacuo and purified 

directly via flash column chromatography. The pure product was isolated as a white solid 

(0.062 g, 63%) Rf = 0.31 30% EtOAc: 1% AcOH: 69% Hex.  Characterization data for 

this compound matched literature reports.101 

1H NMR (400 MHz, CDCl3) mixture of diastereomers δ = 7.45 (dd, J = 11.2, 7.9 Hz, 

1H), 7.36 – 7.25 (m, 8H), 7.23 – 7.15 (m, 3H), 7.15 – 7.06 (m, 3H), 7.04 – 6.96 (m, 2H), 

5.28 (d, J = 2.2 Hz, 1H), 4.28 (two t appearing as q, J = 6.8 Hz, 1H), 3.73 and 3.66 (s, 3H 

total), 3.44 – 3.39 (m, 1H), 2.91 – 2.78 (m, 1H), 2.70 – 2.57 (m, 1H). 

2-(methoxycarbonyl)-4-(1-methyl-1H-indol-3-yl)-4-(4-

nitrophenyl)butanoic acid (2-10h) 

Following GP1, hemimalonate CP 2-9b (0.05 g, 0.19 mmol), 1-

methylindole (0.05 g, 0.38 mmol) in 0.65 mL of HFIP:iPrOH was 

reacted for 24 h. The reaction was concentrated in vacuo and 

purified directly via flash column chromatography. The pure product was isolated as a 

yellow foam (0.044 g, 64%). Note: This compound is light sensitive and decomposed 

upon 13C NMR data acquisition as evidenced by a color change. Rf = 0.28 (40% EtOAc: 

1% AcOH:1% MeOH: 58% Hex).   

1H NMR (599 MHz, CDCl3) mixture of diastereomers δ 8.07 (d, J = 8.7 Hz, 1H), 8.02 

(d, J = 8.7 Hz, 2H), 7.37 (dd, J = 8.7, 4.4 Hz, 3H), 7.30 (d, J = 8.8 Hz, 1H), 7.10 (t, J = 

7.6 Hz, 1H), 6.95 – 6.88 (m, 1H), 6.86 (d, J = 11.3 Hz, 1H), 4.27 (t, J = 7.7 Hz, 1H), 3.67 

(apparent d, J = 3.2 Hz, 1.5H), 3.25 (s, 1.3H), 3.63 and 3.61 (s, 3H), 3.32 (t, J = 8.7 Hz, 

1H), 2.81 – 2.64 (m, 1H), 2.55 (td, J = 14.9, 8.7 Hz, 1H) 13C NMR (101 MHz, CDCl3) 

mixture of diastereomers δ 177.6, 169.4, 151.6, 146.8, 141.8, 137.5, 130.1, 128.9, 128.5, 

126.9, 126.4, 124.0, 123.6, 122.3, 119.5, 119.2, 115.0, 109.6, 52.9, 40.5, 34.6, 33.0, 21.5. 



68 

 

IRATR (cm-1) 2953, 1733, 1706, 1598, 1514, 1343, 1289, 1152, 855, 737 HRMS (EI) m/z 

[M+] 396.1325 (calcd for C21H20N2O6 396.1321). 

2.6.5 General Experimental Procedure: Nucleophilic Opening of Bis-
dimethylester Cyclopropanes (GP2) 

 

 

 

 

Cyclopropane (1 equiv.), indole substrate (3 equiv.), and HFIP (for a concentration of 0.3 

M) were added to an argon-flushed sealed tube. The tube was sealed, submerged into an 

oil bath at 80 °C, and left to react for 12−24 h. Upon confirmation of starting material 

consumption via TLC, the reaction was poured into a round-bottom flask, rinsed with 

DCM, and then concentrated in vacuo. The crude material was directly subjected to flash 

column chromatography using an appropriate eluent system of EtOAc:Hex to isolate a 

purified material. 

 

Dimethyl 2-(2-(1,2-dimethyl-1H-indol-3-yl)-2-

phenylethyl)malonate (2-12a) 

Following GP2, CP 2-11a (0.05 g, 0.21 mmol) and 1,2-dimethylindole 

(0.093 g, 0.64 mmol) in HFIP (0.7 mL) were subjected to heat for 29 h. 

The crude material was purified via flash column chromatography 20% 

EtOAc:80% Hex to collect a white solid (0.073 g, 91%).  

MP = 81-83 °C Rf = 0.24 (20%EtOAc:80%Hex) 

1H NMR (599 MHz, Chloroform-d) δ = 7.46 (d, J = 8.0 Hz, 1H), 7.35 – 7.33 (m, 3H), 

7.25 – 7.20 (m, 4H), 7.16 – 7.10 (m, 3H), 7.00 – 6.96 (m, 1H), 4.28 (t, J = 8.3 Hz, 1H), 

3.72 (s, 3H), 3.65 (s, 3H), 3.53 (s, 3H), 3.30 (dd, J = 8.0, 6.8 Hz, 1H), 2.89 (dd, J = 8.9, 

Scheme 50 - General reaction conditions to isolate bis-dimethylester 

cyclopropane opened products 
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6.5 Hz, 2H), 2.32 (s, 3H). 13C NMR (101 MHz, CDCl3) δ = 170.1, 170.0, 144.3, 137.1, 

134.3, 128.4, 127.7, 126.7, 126.1, 120.6, 119.6, 119.0, 111.2, 108.8, 52.6, 52.5, 50.6, 

39.7, 33.5, 29.7, 10.7. IRATR (cm-1) 2950, 1748, 1724, 1472, 1431, 1249, 1229, 

1147,1033, 999. HRMS (EI) m/z [M+] 379.1786 (calcd for C23H24NO4, 379.1784). 

 

Dimethyl 2-(2-(1-Methyl-2-phenyl-1H-indol-3-yl)-2-phenylethyl)- 

malonate (2-12b)  

Following GP2, CP 2-11a (0.037 g, 0.16 mmol) and 2- 

phenyl-1-methylindole (0.036 g, 0.17 mmol, 1.1 equiv.) in HFIP (0.5 

mL) were subjected to heat for 24 h. The crude material was purified 

via flash column chromatography in 20%EtOAc:80%Hex to collect a white solid (0.044 

g, 62%). 

 MP 119−120 °C. Rf = 0.32 (20% EtOAc:80% Hex). 

1H NMR (400 MHz, CDCl3) δ: 7.67 (d, J =8.0 Hz, 1H), 7.49−7.43 (m, 3H), 7.37 (t, J = 

7.9 Hz, 3H), 7.33−7.29 (m, 2H), 7.26 (m, 3H), 7.21−7.15 (m, 1H), 7.12 (ddd, J = 8.0, 7.1, 

1.0 Hz, 1H), 4.08 (dd, J = 10.7, 5.8 Hz, 1H), 3.56 (s, 3H), 3.48 (s, 3H), 3.45 (s, 3H), 3.24 

(dd, J = 9.2, 5.5 Hz, 1H), 2.91−2.72 (m, 2H). 13C NMR (101 MHz, CDCl3) δ: 169.9, 

169.8, 144.7, 139.6, 137.7, 131.7, 131.0, 128.4, 127.8, 126.4, 126.1, 121.8, 120.8, 119.6, 

112.8, 109.7, 52.4, 50.6, 40.5, 34.2, 31.0. IRATR (cm‑1): 3026, 2953, 1731, 1467, 1435, 

1215, 1153, 701. HRMS (EI) (m/z): [M+] calcd for C28H27NO4, 441.1940; found, 

441.1948. 

 

Dimethyl 2-(2-(1-Methyl-1H-indol-3-yl)-2-phenylethyl)malonate 

(2-12c) 

  

Following GP2, CP 2-11a (0.050 g, 0.21 mmol) and 1-methylindole 

(0.083 g, 0.63 mmol) in HFIP (0.7 mL) were subjected to heat for 48 

h. The crude material was purified via flash column chromatography in 20% EtOAc:80% 

Hex to collect a clear oil (0.026 g, 35%). Rf = 0.24 (20%EtOAc:80%Hex). 

Characterization data matched literature reports.100 
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1H NMR (599 MHz, CDCl3) δ: 7.45 (dt, J = 7.8, 0.9 Hz, 1H), 7.34−7.25 (m, 5H), 7.19 

(m, 2H), 7.02 (ddd, J = 7.9, 7.0, 1.0 Hz, 1H), 6.88 (s, 1H), 4.22 (t, J = 7.9 Hz, 1H), 3.74 

(s, 3H), 3.73 (s, 3H), 3.67 (s, 3H), 3.41 (dd, J = 8.0, 6.6 Hz, 1H), 2.83 (ddd, J = 13.6, 8.0, 

7.0 Hz, 1H), 2.62 (ddd, J = 13.6, 8.8, 6.7 Hz, 1H). 13C NMR (101 MHz, CDCl3) δ: 

170.0, 143.6, 137.4, 128.7, 128.1, 127.3, 126.6, 126.2, 121.8, 119.6, 119.0, 117.3, 109.3, 

52.7, 52.6, 50.2, 40.7, 35.1, 32.8. IRATR (cm−1): 2952, 1754, 1488, 1282, 1159, 974. 

 

 

Dimethyl 2-(2-(1,2-Dimethyl-1H-indol-3-yl)-2-(4-nitrophenyl)- 

ethyl)malonate (2-12d) 

 

Following GP2, CP 2-11b (0.022 g, 0.08 mmol) and 1,2-

dimethylindole (0.034 g, 0.24 mmol) in HFIP (0.3 mL) were 

subjected to heat for 25 h. The crude material was purified via flash column 

chromatography in 30%EtOAc:70%Hex to collect a yellow oil (0.07 g, 19%). Rf = 0.2 

(30%EtOAc:70%Hex).  

 

1H NMR (400 MHz, CDCl3) δ: 8.09 (d, J = 8.8 Hz, 2H), 7.48 (d, J = 8.4 Hz, 2H), 7.34 

(d, J = 8.0 Hz, 1H), 7.28 (t, J = 4.4 Hz, 1H), 7.14 (t, J = 8.1 Hz, 1H), 7.02−6.97 (m, 1H), 

4.37 (t, J = 8.1 Hz, 1H), 3.73 (s, 3H), 3.67 (s, 3H), 3.54 (s, 3H), 3.27 (dd, J = 8.1, 6.7 Hz, 

1H), 2.88 (dd, J = 9.0, 6.7 Hz, 1H), 2.32 (s, 3H). 13C NMR (101 MHz, CDCl3) δ: 169.9, 

169.6, 152.1, 146.4, 137.2, 134.7, 128.5, 126.2, 123.7, 121.1, 119.5, 119.0, 109.6, 109.1, 

52.7, 52.6, 50.2, 39.6, 33.0, 29.8, 10.7. IRATR (cm−1): 2952, 1732, 1596, 1516, 1471, 

1434, 1344, 1251, 1230, 853. HRMS (EI) (m/z): [M+] calcd for C23H24N2O6, 424.1634; 

found, 424.1631. 

 

Dimethyl 2-(2-(4-Bromophenyl)-2-(1,2-dimethyl-1H-indol-3-yl)-

ethyl)malonate (2-12e)   

Following GP2, CP 2-11c (0.050 g, 0.16 mmol) and 1,2-

dimethylindole (0.070 g, 0.48 mmol) in HFIP (0.55 mL) were 



71 

 

subjected to heat for 24 h. The crude material was purified via flash column 

chromatography in 20%EtOAc:80%Hex to collect a viscous yellow oil (0.039 g, 54%). 

Rf = 0.26 (20% EtOAc:80% Hex). 

1H NMR (400 MHz, CDCl3) δ: 7.43 (d, J = 7.9 Hz, 2H), 7.40−7.35 (m, 2H), 7.31−7.26 

(m, 2H), 7.23 (s, 1H), 7.20−7.12 (m, 1H), 7.02 (m, 1H), 4.26 (t, J = 8.1 Hz, 1H), 3.76 (s, 

3H), 3.69 (s, 3H), 3.57 (s, 3H), 3.30 (t, J = 7.9 Hz, 1H), 2.88 (m, 2H), 2.34 (s, 3H). 13C 

NMR (101 MHz, CDCl3) δ: 170.0, 169.8, 143.4, 137.1, 134.4, 131.4, 129.5, 126.4, 

120.8, 119.9, 119.3, 119.2, 110.5, 108.9, 52.6, 52.5, 50.4, 39.1, 33.3, 29.8, 10.6. IRATR 

(cm‑1): 2947, 1730, 1433, 1368, 1222, 1150, 735, 691. HRMS (EI) (m/z): [M+] calcd for 

C23H24BrNO4, 457.0889; found, 457.0889 

 

Dimethyl 2-(2-(4-Chlorophenyl)-2-(1,2-dimethyl-1H-indol-3-yl)-

ethyl)malonate (2-12f) 

Following GP2, CP 2-11d (0.050 g, 0.19 mmol) and 1,2-

dimethylindole (0.081 g, 0.59 mmol) in HFIP (0.6 mL) were 

subjected to heat for 48 h. The crude material was purified via flash 

column chromatography in 20% EtOAc:80% Hex to collect a clear oil (0.051 g, 66%). Rf 

= 0.23 (20% EtOAc:80% Hex).  

1H NMR (400 MHz, CDCl3) δ: 7.44 (d, J = 7.9 Hz, 1H), 7.34−7.27 (m, 3H), 7.26−7.22 

(m, 2H), 7.20−7.14 (m, 1H), 7.04 (t, J = 8.0 Hz, 1H), 4.29 (t, J = 8.1 Hz, 1H), 3.77 

(s,3H), 3.70 (s, 3H), 3.58 (s, 3H), 3.31 (dd, J = 7.9, 6.9 Hz, 1H), 2.89 (m, 2H), 2.35 (s, 

3H). 13C NMR (101 MHz, CDCl3) δ: 170.0, 169.8, 142.8, 137.1, 134.4, 131.8, 129.1, 

128.4, 126.4, 120.8, 119.3, 119.2, 110.6, 108.9, 52.6, 52.5, 50.4, 39.1, 33.3, 29.7, 10.6. 

IRATR (cm−1): 2951, 1731, 1490, 1471, 1434, 1250, 1151, 1013. HRMS (EI) (m/z): 

[M+] calcd for C23H24ClNO4, 413.1394; found, 413.1393. 
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2.6.6 General Experimental Procedure: Nucleophilic Opening of Bis-
trifluoroethylester Cyclopropanes (GP3) 

 

 

Scheme 51 - General reaction scheme for the nucleophilic opening of bis-

trifluoroethylester cyclopropanes 

Cyclopropane (1 equiv), indole substrate (3 equiv), and HFIP (for a concentration 

of 0.3 M) were added to an argon-flushed sealed tube. The tube was sealed off, 

submerged into an oil bath at 80 °C, and left to react for 8−24 h. Upon confirmation of 

starting material consumption via TLC, the reaction was poured into a round-bottom 

flask, rinsed with DCM, and then concentrated down in vacuo. The crude material was 

directly subjected to flash column chromatography using an appropriate eluent system of 

EtOAc:Hex to isolate a purified material. 

 

 Bis(2,2,2-trifluoroethyl) 2-(2-(1-Methyl-1H-indol-3-yl)-2-

phenylethyl)malonate (2-14a)  

 

Following GP3, CP 2-13a (0.050 g, 0.13 mmol) and 1-

methylindole (0.053 g, 0.41 mmol) in HFIP (0.5 mL) were 

subjected to heat for 24 h. The crude material was purified via flash column 

chromatography in 12% EtOAc:88% Hex to collect a clear oil (0.057 g, 85%). Rf = 0.38 

(12% EtOAc:88% Hex). 

 1H NMR (400 MHz, CDCl3) δ: 7.47 (d, J = 8.0 Hz, 1H), 7.35−7.27 (m, 5H), 7.24−7.18 

(m, 2H), 7.09−7.01 (m, 1H), 6.88 (s, 1H), 4.57−4.38 (m, 4H), 4.26 (t, J = 8.0 Hz, 1H), 

3.75 (s, 3H), 3.60 (t, J = 7.2 Hz, 1H), 2.96−2.85 (m, 1H), 2.76−2.65 (m, 1H). 19F NMR 

(376 MHz, CDCl3) δ: −73.74 (t, J = 7.3 Hz, 3F) −73.75 (t, J = 7.6 Hz, 3F). 13C NMR 
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(101 MHz, CDCl3) δ: 167.3, 143.0, 137.5, 128.8, 128.0, 127.1, 126.9, 126.4, 122.7 (q, 

1JC−F= 277 Hz), 122.7 (q, 1JC−F= 277 Hz), 122.0, 119.6, 119.2, 116.5, 109.4, 61.16 (q, 

2JC−F = 37 Hz), 49.7, 40.7, 34.8, 32.9. IRATR (cm−1): 3028, 1754, 1410, 1281, 1216, 1164, 

1136, 977, 703. HRMS (EI) (m/z): [M+] calcd for C24H21F6NO4, 501.1375; found, 

501.1372. 

 

 Bis(2,2,2-trifluoroethyl) 2-(2-(1-Benzyl-1H-indol-3-yl)-2-

phenylethyl)malonate (2-14b)  

 

Following GP3, CP 2-13a (0.05 g, 0.13 mmol) and 1-

benzylindole (0.084 g, 0.41 mmol) in HFIP (0.5 mL) were 

subjected to heat for 8 h. The crude material was purified via flash column 

chromatography in 10% EtOAc:90% Hex to collect a clear oil (0.070 g, 90%). Rf = 0.23 

(10% EtOAc:90% Hex).  

1H NMR (400 MHz, CDCl3) δ: 7.47 (d, J = 7.9 Hz, 1H), 7.35−7.25 (m, 7H), 7.22 (dt, J 

= 8.6, 2.8 Hz, 2H), 7.18−7.09 (m, 3H), 7.04 (ddd, J = 8.0, 7.0, 1.0 Hz, 1H), 6.99 (s, 1H), 

5.29 (s, 2H), 4.57−4.38 (m, 4H), 4.28 (t, J = 8.0 Hz, 1H), 3.62−3.55 (m, 1H), 2.91 (dt, J = 

14.1, 7.5 Hz, 1H), 2.71 (ddd, J = 13.9, 8.8, 6.8 Hz, 1H). 19F NMR (376 MHz, CDCl3) δ: 

−73.72 (t, J = 8.1 Hz, 3F), −73.75 (t, J = 8.4 Hz, 3F). 13C NMR (101 MHz, CDCl3) δ: 

167.3, 167.2, 142.8, 137.5, 137.0, 128.8, 128.7, 127.9, 127.7, 127.3, 126.8, 126.7, 125.6, 

122.6 (q, 1JC−F = 278 Hz), 122.5 (q, 1JC−F = 277 Hz), 122.2, 119.6, 119.4, 117.2, 109.9, 

61.04 (q, 2JC−F = 37 Hz), 50.1, 49.5, 40.7, 34.7. IRATR (cm−1): 3030, 1753, 1453, 1280, 

1216, 1165, 977, 908. HRMS (EI) (m/z): [M+] calcd for C30H25F6NO4, 577.1688; found, 

577.1688. 

 

 Bis(2,2,2-trifluoroethyl) 2-(2-(1,2-Dimethyl-1H-indol-3-yl)-

2-phenylethyl)malonate (2-14c).  

Following GP3, CP 2-13a (0.05 g, 0.13 mmol) and 1,2-

dimethylindole (0.059 g, 0.41 mmol) in HFIP (0.5 mL) were 

subjected to heat for 18 h. The crude material was purified via 
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flash column chromatography in 12.5%EtOAc:87.5%Hex to collect a clear oil (0.050 g, 

72%). Rf = 0.47 (20% EtOAc:80% Hex).  

1H NMR (400 MHz, CDCl3) δ: 7.50 (d, J = 8.0 Hz, 1H), 7.36−7.32 (m, 2H), 7.30−7.22 

(m, 3H), 7.20−7.11 (m, 2H), 7.02 (ddd, J = 8.0, 7.1, 1.0 Hz, 1H), 4.50 (m, 2H (two 

overlapping dq unresolved)), 4.35−4.12 (m, 1H), 3.66 (s, 3H), 3.51 (dd, J = 9.3, 5.2 Hz, 

1H), 3.07−2.87 (m, 2H), 2.32 (s, 3H). 19F NMR (376 MHz, CDCl3) δ: −73.71 (t, J = 8.3, 

3F), −73.87 (t, J = 8.3 Hz, 3F). 13C NMR (101 MHz, CDCl3) δ: 167.3, 143.9, 137.1, 

134.7, 128.5, 127.6, 126.5, 126.3, 122.7 (q, 1JC−F= 277 Hz), 122.6 (q, 1JC−F= 278 Hz), 

120.8, 119.4, 119.3, 110.3, 109.0, 61.1 (q, 2JC−F = 36 Hz), 60.9 (q, 2JC−F = 37 Hz), 50.0, 

39.9, 33.4, 29.8, 10.5. IRATR (cm−1): 2941, 1753, 1409, 1280, 1162, 976, 700, 561. 

HRMS (EI) (m/z): [M+] calcd for C25H23F6NO4, 515.1531; found, 515.1525. 

 

Bis(2,2,2-trifluoroethyl) 2-(2-(1-Methyl-2-phenyl-1H-indol-

3-yl)-2-phenylethyl)malonate (2-14d)   

Following GP3, CP 2-13a (0.050 g, 0.13 mmol) and 2-phenyl-1-

methylindole (0.084 g, 0.41 mmol) in HFIP (0.5 mL) were 

subjected to heat for 4 h. The crude material was purified via 

flash column chromatography in 10% EtOAc:90% Hex to collect a clear oil (0.071 g, 

91%). Rf = 0.32 (15% EtOAc:85% Hex).  

1H NMR (599 MHz, CDCl3) δ: 7.62 (d, J = 8.0 Hz, 1H), 7.42 (m, 3H), 7.36 (d, J = 8.2 

Hz, 1H), 7.32 (d, J = 7.5 Hz, 2H), 7.27−7.22 (m, 5H), 7.17 (t, J = 7.3 Hz, 1H), 7.10 (t, J = 

7.5 Hz, 1H), 4.30 (dq, J = 12.6, 8.4 Hz, 1H), 4.19 (dq, J = 12.5, 8.3 Hz, 1H), 4.15−4.08 

(m, 2H), 4.00 (dq, J = 12.6, 8.3 Hz, 1H), 3.56 (s, 3H), 3.39 (dd, J = 8.9, 5.4 Hz, 

1H), 2.94 (ddd, J = 13.9, 11.5, 5.4 Hz, 1H), 2.80 (ddd, J = 14.1, 8.9, 5.4 Hz, 1H). 19F 

NMR (376 MHz, CDCl3) δ: −73.74 (t, J = 8.3 Hz, 3F), −73.88 (t, J = 8.9 Hz, 3F). 13C 

NMR (151 MHz, CDCl3) δ: 167.0, 166.8, 144.1, 139.7, 137.6, 131.4, 130.8, 128.5, 

128.4, 128.4, 127.6, 126.2, 126.1, 122.51 (q, 1JC−F = 277 Hz), 122.4 (q, 1JC−F = 277 

Hz) 121.8, 120.5, 119.7, 111.8, 109.7, 60.9 (q, 2JC−F = 36 Hz), 60.7 (q, 2JC−F = 38 Hz), 

49.9, 40.4, 33.9, 30.9. IRATR (cm−1): 3091, 2940, 1774, 1756, 1279, 1240, 1165, 1138, 

970, 742, 699, 648. HRMS (EI) (m/z): [M+] calcd for C30H25F6NO4, 577.1688; found, 

577. 1693. 
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 Bis(2,2,2-trifluoroethyl) 2-(2-(1-Methyl-5-nitro-1H-

indol-3-yl)-2-phenylethyl)malonate (2-14e)  

 

Following GP3, CP 2-13a (0.050 g, 0.13 

mmol) and 5-nitro-1-methylindole (0.071 g, 0.41 mmol) in 

HFIP (0.5 mL) were subjected to heat for 20 h. The crude material was purified 

via flash column chromatography in 40% EtOAc:60% Hex to collect a yellow solid 

(0.035 g, 47%). MP 78−81 °C. Rf = 0.28 (40% EtOAc:60% Hex).  

 

1H NMR (400 MHz, CDCl3) δ: 8.36 (d, J = 2.1 Hz, 1H), 8.09 (dd, J = 9.1, 2.2 Hz, 1H), 

7.37−7.26 (m, 6H), 7.06 (s, 1H), 4.65−4.40 (m, 4H), 4.26 (dd, J = 9.0, 6.9 Hz, 1H), 3.81 

(s, 3H), 3.54 (dd, J = 7.9, 6.6 Hz, 1H), 2.84 (m, 1H), 2.70 (ddd, J = 14.0, 9.2, 6.6 Hz, 

1H). 19F NMR (376 MHz, CDCl3) δ: −73.69 to −73.87 (m, 6F). 13C NMR (101 MHz, 

CDCl3) δ: = 167.1, 141.9, 141.5, 140.1, 129.2, 129.1, 127.9, 127.5, 126.4, 122.7 (q, 1JC−F 

= 277.5 Hz), 122.6 (q, 1JC−F= 277.3 Hz) 120.0, 117.9, 116.8, 109.4, 61.30 (q, 2JC−F = 37.2 

Hz), 49.4, 40.4, 34.7, 33.4. IRATR (cm‑1): 2940, 1758, 1488, 1322, 1283, 1160, 1064, 

973. HRMS (EI) (m/z): [M+] calcd for C24H20F6N2O6, 546.1226; found, 546.1226. 

 

Bis(2,2,2-trifluoroethyl) 2-(2-(5-Methoxy-1-methyl-1H-

indol-3-yl)-2-phenylethyl)malonate (2-14f) 

 

Following GP3, CP 2-13a (0.050 g, 0.13 mmol) and 5-

methoxy-1-methylindole (0.065 g, 0.41 mmol) in HFIP (0.5 

mL) were subjected to heat for 18 h. The crude material was purified via flash column 

chromatography in 12.5% EtOAc:87.5% Hex to collect a clear oil (0.0632 g, 89%). Rf = 

0.34 (20% EtOAc:80% Hex). 

 

1H NMR (400 MHz, CDCl3) δ: 7.33−7.29 (m, 4H), 7.22 (ddd, J = 8.6, 4.8, 3.3 Hz, 1H), 

7.16 (d, J = 9.1 Hz, 1H), 6.90−6.82 (m, 3H), 4.58−4.40 (m, 4H), 4.19 (t, J = 8.0 Hz, 1H), 

3.77 (s, 3H), 3.72 (s, 3H), 3.59 (t, J = 7.2 Hz, 1H), 2.88 (dt, J = 14.1, 7.5 Hz, 1H), 2.68 
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(ddd, J = 14.0, 8.7, 6.8 Hz, 1H). 19F NMR (376 MHz, CDCl3) δ: −73.73 (t, J = 8.7 Hz, 

3F), −73.76 (t, J = 8.6 Hz, 3F). 13C NMR (101 MHz, CDCl3) δ: 167.4, 167.3, 153.9, 

143.0, 132.9, 128.8, 128.0, 127.4, 126.9, 122.7 (q, 1JC−F = 277 Hz), 116.0, 112.1, 110.2, 

101.5, 61.15 (q, 2JC−F = 37 Hz), 55.9, 49.6, 40.7, 34.7, 33.0. IRATR (cm‑1): 2945, 

1753, 1623, 1491, 1280, 1162, 1136, 1058, 701. HRMS (EI) (m/z): [M+] calcd for 

C25H23F6NO5, 531.1481; found, 531.1483. 

 

Bis(2,2,2-trifluoroethyl) 2-(2-(5-Bromo-1-methyl-1H-

indol-3-yl)-2-phenylethyl)malonate (2-14g) 

 

Following GP3, CP 2-13a (0.05 g, 0.13 mmol) and 5-bromo-

1-methylindole (0.085 g, 0.41 mmol) in HFIP (0.5 mL) were 

subjected to heat for 16 h. The crude material was purified via flash column 

chromatography in 15% EtOAc:85% Hex to collect a pale-yellow oil (0.062 g, 79%). Rf 

= 0.40 (15% EtOAc:85% Hex). 1H NMR (400 MHz, CDCl3) δ: 7.45 (d, J = 8.0 Hz, 1H), 

7.33−7.26 (m, 4H), 7.23−7.17 (m, 2H), 7.03 (ddd, J = 8.0, 7.0, 1.0 Hz, 1H), 6.87 (s, 1H), 

4.56−4.37 (m, 4H), 4.24 (t, J = 8.0 Hz, 1H), 3.75 (s, 3H), 3.58 (t, J = 7.2 Hz, 1H), 2.88 

(dt, J = 14.1, 7.5 Hz, 1H), 2.69 (ddd, J = 14.0, 8.6, 7.0 Hz, 1H). 19F NMR (376 MHz, 

CDCl3 δ: −73.73 (t, J = 7.6 Hz, 3F), −73.76 (t, J = 8.2 Hz, 3F). 13C NMR (101 MHz, 

CDCl3 δ: 167.3, 143.0, 137.5, 128.8, 128.0, 127.1, 126.9, 126.4, 122.7 (q, 1JC−F = 277 

Hz), 122.6 (q, 1JC−F= 277 Hz), 122.0, 119.6, 119.2, 116.5, 109.4, 61.17 (q, 2JC−F = 37 Hz), 

49.7, 40.7, 34.8, 32.9. IRATR (cm−1): 2935, 1753, 1411, 1279, 1162, 976, 

703, 664. HRMS (EI) (m/z): [M+] calcd for C24H20BrF6NO4, 579.0478; found, 

579.0478. 

 

Bis(2,2,2-trifluoroethyl) 2-(2-(4-Bromophenyl)-2-(1-methyl-

1Hindol-3-yl)ethyl)malonate (2-14h)   

 

Following GP3, CP 2-13b (0.050 g, 0.11 mmol) and 1-

methylindole (0.044 g, 0.33 mmol) in HFIP (0.4 mL) were 

subjected to heat for 24 h. The crude material was purified via 
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flash column chromatography in 5% EtOAc:85% Hex to collect a clear oil (0.061 g, 

95%). Rf = 0.35 (15% EtOAc:85% Hex).  

 

1H NMR (400 MHz, CDCl3) δ: 7.45−7.37 (m, 3H), 7.29 (d, J = 8.2 Hz, 1H), 7.24−7.15 

(m, 3H), 7.08−7.01 (m, 1H), 6.88 (s, 1H), 4.61−4.36 (m, 4H), 4.21 (t, J = 8.0 Hz, 1H), 

3.76 (s, 3H), 3.57 (t, J = 7.2 Hz, 1H), 2.86 (dt, J = 14.0, 7.6 Hz, 1H), 2.66 (ddd, J = 14.0, 

8.1, 7.2 Hz, 1H). 19F NMR (376 MHz, CDCl3) δ: −73.73 (t, J = 8.2 Hz, 3F), −73.74 (t, J 

= 7.5 Hz, 3F). 13C NMR (101 MHz, CDCl3) δ: = 167.3, 167.2, 142.2, 137.5, 131.9, 129.7, 

126.9, 126.4, 122.7 (q, 1JC−F = 277 Hz), 122.2, 120.7, 119.4, 115.7, 109.5, 61.20 (q, 2JC−F 

= 37 Hz), 49.5, 40.1, 34.6, 32.9. IRATR (cm−1): 3422, 2945, 1754, 1411, 1279, 1162, 976, 

701, 664. HRMS (m/z): [M+] calcd for C24H20BrF6NO4, 579.0480; found, 579.0454. 

 

Bis(2,2,2-trifluoroethyl) 2-(2-(1H-Indol-3-yl)-2-phenylethyl)- 

malonate (2-14i) 

 

Following GP3, CP 2-13a (0.050 g, 0.13 mmol) and 

indole (0.047 g, 0.41 mmol) in HFIP (0.5 mL) were subjected to 

heat for 24 h. The crude material was purified via flash column chromatography in 

20%EtOAc:80%Hex to collect a clear oil (0.017 g, 25%). Rf = 0.23 (20% EtOAc:80% 

Hex).  

1H NMR (400 MHz, CDCl3) δ: 8.02 (s, br, 1H), 7.45 (d, J = 8.4 Hz, 1H), 7.37−7.27 (m, 

5H), 7.24−7.13 (m, 2H), 7.08−7.00 (m, 2H), 4.59−4.38 (m, 4H), 4.26 (t, J = 8.0 Hz, 1H), 

3.58 (t, J = 7.2 Hz, 1H), 2.90 (dt, J = 14.0, 7.5 Hz, 1H), 2.70 (ddd, J = 14.0, 8.7, 6.9 Hz, 

1H). 19F NMR (376 MHz, CDCl3) δ: −73.75 (q, J = 8.9 Hz). 13C NMR (101 MHz, 

CDCl3) δ: 167.4, 167.3, 142.8, 136.7, 128.8, 128.0, 127.0, 126.7, 122.7 (q, 1JC−F = 277 

Hz), 122.5, 121.5, 119.8, 119.5, 118.2, 111.3, 61.17 (q, 2JC−F = 37 Hz), 49.7, 40.7, 34.7. 

IRATR (cm−1): 3422, 1752, 1457, 1413, 1281, 1165, 977. HRMS (EI) (m/z): [M+] calcd 

for C23H19F6NO4, 487.1218; found, 487.1219 
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Chapter 3 : One-Pot Michael Addition/Radical Cyclization 
Reaction of N-Acryloyl Indoles 

Chapter 3 Preface 

The material in this chapter is adapted from: Irwin, L.C.; Kerr, M.A. Synlett 2017, 28, 

2859-2864. 

This chapter describes using Mn(OAc)3 as a single electron oxidant to generate complex 

multi-ring systems incorporating indoles (Scheme 52). The scaffolds acquired map well 

on to a variety of natural products. In a one-pot protocol, a Michael addition of 1,3 

dicarbonyl nucleophiles results in a molonyl-tether, which is oxidized by Mn(OAc)3 and 

cyclizes onto various substituted indoles.  This method is being applied to the total 

syntheses of tronocarpine and dippinine B (Chapter 4).  A library scope to reflect on the 

utility of this protocol is also discussed.  

 

Scheme 52 - Reaction explored in Chapter 2. A one-pot Michael addition then 

Mn(III) mediated cyclization of indoles.  

3.1 Introduction 

Indoles are biological powerhouses. Indoles have proven useful as a variety of anticancer, 

antibacterial and antiviral drugs.105 Few indole alkaloids exist that bear a 6-membered 

ring, substituted in a 1,2 fashion, off the indole core. This type of bioactive indole has 

been found in the flowering Malaysian plant Tabernaemontana corymbosa.106 These 

compounds, such as tronocarpine, chippiine, and ervataine, have intriguing bioactive 

properties and novel pentacyclic structures that present a challenge to organic chemists 

attempting the first total syntheses of these molecules (Figure 13). 106,107  
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Figure 13 - Indole-containing natural products isolated from Tabernaemontana 

corymbosa. 

Due to the importance of indoles in both medicinal and natural products chemistry, being 

able to functionalize this heterocyclic motif is important.108 When it comes to further 

elaboration of indole scaffolds, we became interested in single electron transfer (SET) 

agents used to forge carbon-carbon bonds via electrophilic radicals.  Mn(OAc)3 is a SET 

agent capable of generating carbon-centered radicals from enolizable carbonyl 

compounds.109,110,111 Radicals generated by Mn(OAc)3 can insert into indoles at the 2, 3, 

or 4 position further elaborating these heterocycles.  

The mechanism for the oxidative radical generation and insertion into indoles, while 

discussed in the introductory chapter of this thesis, is outlined in detail below regarding 

how I sought to manipulate this chemistry to elaborate indoles (Scheme 53).   

 

Scheme 53 - Mechanism for radical generation and ring closure of malonate species 

onto indole. 
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From 3-1, Mn(OAc)3 oxidizes the enolizeable carbon to an electrophilic radical (3-2). 

The radical attacks the two position of the indole to produce the favoured 6-membered 

ring (3-3). Another equivalent of Mn(OAc)3 oxidizes the remaining radical (3-3) to a 

tertiary cation (3-4) which, via elimination of a proton, yields the indole driven by re-

aromatization. The result is the 1,2 substituted indole and cyclized product 3-5.  

Previous work from the Kerr group demonstrated that from indoline (3-7) starting 

materials we could generate indoles bearing pendant β-dicarbonyl products (3-9) that 

would undergo radical cyclization onto indoles (Scheme 54).112 This work was restricted 

to acryloyl chloride 3-8 to acylate indolines, which then needed to be oxidized to acylated 

indoles before being subject to Michael addition (MA) with dimethyl malonate. Often to 

access the indolines for acylation, its indole was reduced leading to a redundant 

reduction/oxidation procedure (Scheme 54).  The synthetic world is doing its best now to 

minimize oxidation/reduction manipulations especially when it comes to ideal total 

synthesis (see Baran’s ideality in synthesis).113     

 

Scheme 54 - Previous Kerr group work using single-electron oxidant Mn(OAc)3 to 

perform C-H insertion at 2 position of indoles 

With improvements needed, and a desire to complete the total syntheses of tronocarpine 

and dippiinne B, an efficient route at accessing these six-membered rings fused to the 

1,2-face of an indole core was something to be sought.  

3.2  Proposed Research 

It was my hope that I may first obviate the isolation of intermediate substrates and 

generate the tricyclic scaffolds like 3-10 in a one-pot procedure. I also sought to expand 

the substrate scope and have greater substitution on the indoles and acryloyl components 
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of the starting materials. From acylated indoles 3-13, we theorized that the Michael-

addition with a malonic entity 3-14 could be performed, and then in the same pot, add 

SET agent Mn(OAc)3 to complete the radical cyclization to generate products 3-15 

(Scheme 55).  

 

Scheme 55 - Proposed one-pot protocol to generate functionalized indoles 3-15 

The proposed work would cut down three synthetic steps and yield more substituted 

products than our earlier work. It also removed the redundant reduction/oxidation step 

previously employed and it starts from cheaper materials. 

3.3 Optimization of the One-Pot Michael Addition and 
Mn(OAc)3 Cyclization of Indoles 

To determine if this protocol was viable, optimization attempts began by acylating 3-

methylindole with methacryloyl chloride and using the resultant N-acryloylindole (3-16a) 

as our test subject. Dimethylmalonate was our chosen nucleophile because of its 

preexisting use with Mn(OAc)3 to generate radicals. Acylation to generate acryloyl 

indoles like 3-16a was performed directly from the indoles using a modified and 

improved experimental procedure: the details of which are outlined in the experimental 

portion of this chapter (Subsection 3.7). Table 3 explores the conditions used to optimize 

the formation of product 3-17a.  
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Table 3 - Optimization of the One-Pot Michael Addition, Radical Cyclization of N-

acryloyl indoles 

 

Entry Nuc. (equiv.) Base Solvent 1 Solvent 2 Mn(III)a (equiv.) Temp 

(°C) 

Yield of 

3-17a 

(%) 

1 3 - MeOH - 6 65 trace 

2 3 - AcOH - 6 110 5 

3 1.5 NEt3 DCM - 3 35 0 

4 2 K2CO3 MeOH - 3 65 0b 

5 2 DBU MeOH - 3 65 0b 

6 2 DBU MeCN MeOH 3 65 43c 

7 2  NaH THF AcOH 6 110 50c 

8 2 NaH THF MeOH 6 65 36c 

9 2 NaH THF AcOH 5 110 23c 

10 1.2 NaH THF AcOH 4 110 42d 

11 1.2 NaH THF AcOH 6 110 47d 

12 1.5 NaH THF AcOH 6 110 57d 

13 1.5 NaH THF AcOH 7 110 65d 

14 1.5 NaH THF AcOH 10 110 58d 

a Mn(OAc)3 
b Deacylation occurred yielding 3-methylindole 
c Aqueous workup after the completion of both reactions 
d Nonaqueous workup after the completion of both reactions 
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The first attempt (Table 3, entry 1) involved trying the Michael addition of dimethyl 

malonate into the acryloyl indole using a single solvent, MeOH. MeOH, being a polar 

protic solvent, is an optimal choice for the radical component of the reaction and we felt 

as though it may be polar enough to facilitate the Michael addition of the 

dimethylmalonate. The Michael addition was slow and did not proceed to completion. 

Adding 6 equivalents of Mn(OAc)3 yielded a messy reaction and only a trace amount of 

desired product 3-17a was isolated. However, this was a promising first attempt. Upon 

acquiring a small amount of our desired product, we felt as though it was possible to 

increase the yields to a respectable value.  

AcOH having a lower pH than MeOH and being a suitable polar protic solvent for the 

radical generation, we hoped it may have better success in mediating the Michael 

addition portion of the reaction (Table 3, entry 2). Only a small improvement was noted, 

isolating 5% of product 3-17a. At this point, we turned our attention to using bases to 

mediate the Michael addition in an attempt for the best yield possible. NEt3 in DCM 

failed to yield any desired product (Table 3, entry 3). This result was expected as there is 

no precedent for DCM being a suitable solvent for Mn(OAc)3 radical generation. 

Switching back to MeOH as a solvent and using either DBU or K2CO3 as bases, (Table 

3, entry 4 and 5) resulted in deacylation of the starting material. Deacylation was 

suspected to be the result of the production of small nucleophiles -OMe and/or -OH 

(Scheme 56). 



87 

 

 

Scheme 56 - Mechanism of deacylation resulting in the isolation of starting indoles. 

Knowing that competitive side diacylation was possible, using water-free solvents for the 

Michael addition became imperative for success. This led to using acetonitrile in the 

presence of DBU for the Michael addition (Table 3, entry 6) and then adding MeOH to 

facilitate the radical cyclization. This change to a two-solvent system resulted in 43% of 

product 3-17a. Excited, we switched to THF and NaH as the environment for the Michael 

addition, and using AcOH for the radical cyclization based on the positive result it gave 

in entry 2. These changes further increased the yield of 3-17a to 50% (Table 3, entry 7). 

At this point, observations indicated that aqueous workup was troublesome and often the 

manganese would make emulsions that could not be broken up or dealt with.  Without 

doubt, these emulsions were hindering my ability to isolate the maximum amount of 

product and so I switched to a non-aqueous workup involving only filtration and flash 

column chromatography to isolate pure 3-17a. As per Table 3, entry 12, lowering the 

nucleophile equivalents and switching to the non-aqueous work-up resulted in a higher 

57% yield of 3-17a. Finally, upping the equivalents of Mn(III) from 6 to 7 provided a 

modest 65% yield of isolatable product 3-17a. This would become the optimized 

conditions as increasing the amount of Mn(III) to 10 equivalents provided lower yields.  

3.4 Library of Generated Products 

A substrate scope of the one-pot protocol was investigated on a variety of N-acryloyl 

indoles using the optimized conditions (Table 4). We started by testing different 1,3-
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dicarbonyl reagents. Acetylacetone (Table 4, entry 2) and methylacetoacetate (Table 4, 

entry 3) both yielded desired products 3-17b and 3-17c in a 59% and 54% yield 

respectively. However, when first testing these reagents under the optimized procedure, 

competitive aldol condensation of the 1,3-dicarbonyl reagents halted the progress of any 

successful Michael addition.114 Using weaker K2CO3 as a base solved this competition 

resulting in desired annulation products 3-17b and 3-17c. The procedure is outlined in the 

experimental details of this chapter.  

When comparing substituents on the acryloyl component of substrate 3-16 (R1 and R2) an 

α-methyl substituent (3-16a) versus a hydrogen (3-16c) produced slightly better yields. 

This is thought to be a result of a lesser tendency to polymerize, which was a problem 

faced when working with the acryloyl indole 3-16c.  With a bulky phenyl substituent at 

the β-position (R2, 3-16d) yield of the N-acryloylindole dropped significantly. Steric 

hinderance of the phenyl group resulted in a tougher Michael addition lowering the 

overall yield of 3-17f.  

Examining the electronics of the indole, substitution was varied at the 5-position, R4 of 

substrate 3-16. Electron-neutral or -donating groups produced higher yields (3-17i and 3-

17g) than their electron withdrawing counterpart, the nitro group 3-17h, where the yield 

was much lower at 36%.  We hypothesized that because the reaction proceeds through an 

electrophilic radical (Scheme 53, 3-3 and 3-4), less electron density would destabilize its 
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Table 4 - Substrate Scope One-Pot MA, radical cyclization
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ability to form and produce a lower yield of desired adduct 3-17h.  

 Variation at R3 of 3-16 gave intuitive results: with a methyl group present (3-17a, 65%), 

yields were improved due to stabilization of both the radical and cation formed at the 3-

position of the indole (Table 4, entry 1 and entry 4). Without the methyl group present 

(3-16b) the cyclized product 3-17d was returned in a lower 45% yield. 

Finally, we generated an elaborated N-acryloyl indole 3-16h (details discussed in Chapter 

4) that, when subjected to the protocol designed in this research, gave scaffolding 3-17j, 

which maps nicely on to natural product tronocarpine and dippinnine B. While the yield 

was lower due to the complexity of the substrate, this reaction was further optimized 

during studies towards the total synthesis of tronocarpine (Chapter 4).  

Mn(OAc)3 has been shown in previous research to oxidize indolines to their respective 

indoles.115 In one-pot we hoped to perform the Michael addition, oxidize the starting 

acryloyl indoline to its indole, and generate the 1,3-dicarbonyl radical to cyclize onto the 

newly formed indole. Using N-acryloyl indoline 3-18 and 9 equivalents of Mn(OAc)3, 

desired oxidized adduct 3-17e was generated (Scheme 57). Ultimately performing three 

synthetic steps in a one-pot procedure.  

 

Scheme 57 - Three steps; oxidation of indoline to indole, Michael addition of 

dimethyl malonate and radical cyclization to generate 1,2 annulated indole 3-17e. 

3.5 Conclusion and Future Directions  

 The research outlined in Chapter 3 demonstrates the discovery of the one-pot 

procedure to prepare highly substituted 1,2-annulated indole products that allow further 

functionalization towards a variety of natural products. Starting from acylated indoles, 

generated in a single step (Section 3.7.3), a Michael addition of a 1,3-dicarbonyl moiety 

followed by radical cyclization to the 2-position of indoles provided a variety of 
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annulated products (Table 4). This chemistry is being used towards the total syntheses of 

tronocarpine and dippinnine B which is further discussed in Chapter 4. 

 I think that Mn(OAc)3 has been well exploited as a SET agent for the radical 

cyclization of indoles, and it does possess a downfall in its inconsistency dependent on 

where you source your supply (purchase vs. make). I have, however, a perfected 

procedure to make quality Mn(OAc)3 repeatably.  This procedure is outlined in 

Subsection 3.7.2. Mn(OAc)3 can also be a tricky reagent during reaction work-up if all of 

it does not reduce and you are left with a thick brown emulsion that traps additional 

product. This will result in lowered yields. However, I observed that when the colour of a 

reaction changes from dark brown to bright white-orange, the manganese has reduced 

and becomes much easier to work up and no emulsion will exist. Yields are significantly 

better when this is the case. In a live video presentation facilitated by the American 

Chemical Society, Phil Baran presented unpublished work that originally involved the 

use of Mn(OAc)3. However, they too came across similar emulsion problems. 

Electrochemical generation of radicals was the solution for the transformation they were 

pursuing. Electrochemistry is becoming a clean, easy, and fast way to generate radicals 

for organic synthesis and I think that functionalizing indoles with radicals avoiding the 

use of metals is a better pathway to research.116 While the upfront cost of electrochemical 

cells, electrodes, and glassware is daunting, electrochemistry ultimately becomes cheaper 

than most traditional synthetic reactions, and often sees easier, cleaner purification.117  

It is also likely that exploring one of the many other single electron oxidants would 

perhaps provide higher yields of products towards the synthesis of target molecules. 

Ceric ammonium nitrate (CAN, (NH4)2Ce(IV)(NO3)6) is relatively inexpensive (although, 

more expensive than manganese), but is soluble in a much wider variety of organic 

solvents. Easily handled, it performs identical chemistry to that of Mn(OAc)3.
118 

Experimentation to generate the intermediates en-route to tronocarpine and dippinnine B 

using CAN might be another effective tool for increasing the yields of 1,2-annulated 

indole products. 
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3.6 Experimental 

3.6.1 General Experimental Details 

All reactions were conducted under an argon atmosphere unless otherwise indicated. 

Flasks were oven-dried and cooled in a desiccator prior to use. All chemicals were of 

reagent quality and used as obtained from commercial sources with the exception of the 

Mn(OAc)3•2H2O, which was prepared by literature procedure with heavy modification, 

the exact procedure used is outlined below.119 High resolution mass spectra (HRMS) 

were obtained on a Thermo Scientific DFS mass spectrometer using electron impact 

ionization. Dichloromethane (DCM), acetonitrile (MeCN), toluene, benzene, and 

tetrahydrofuran (THF) were dried and deoxygenated by passing the nitrogen purged 

solvents through activated alumina columns. All other reagents and solvents were used as 

purchased from Aldrich, Alfa Aesar (VWR), or Caledon. Reaction progress was followed 

by thin layer chromatography (TLC) (Merck, TLC Silica gel 60 F254) visualizing with 

UV light, and the plates were developed using acidic p-anisaldehyde or vanillin. Column 

chromatography was performed using silica gel purchased from Silicycle Chemical 

Division Inc. (230-400 mesh). All columns were performed using Still’s procedure for 

flash chromatography.120  IR spectra were acquired using a PerkinElmer Spectrum Two 

FT-IR. Melting points were determined using a Gallenkamp melting point apparatus and 

are uncorrected. NMR experiments were performed on either a BrukerAvIII 400, Varian 

Inova 400 or Inova 600 instrument and samples were obtained in CDCl3 (referenced to 

7.25 ppm for 1H and 77.0 ppm for 13C). Coupling constants (J) are in Hz. The 

multiplicities of the signals are described using the following abbreviations: s = singlet, d 

= doublet, t = triplet, q = quartet, dd = doublet of doublets, dt = doublet of triplets, m = 

multiplet, br = broad. 

3.6.2  Procedure for Synthesis Mn(OAc)3•2H2O 

In a 2 L round bottom, add suitable stir bar and 100 g of Mn(OAc)2•4H2O. To the flask 

add 700 mL of AcOH and lower into an oil bath in which the temperature reads 

somewhere between 105-110 °C. Do not allow the temperature outside of this range, 

especially to the hotter end of the spectrum. Equip reflux condenser and stir the reaction 
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vigorously. Weigh out 16.08 g of KMnO4 in a weigh boat and monitor the reaction to see 

that the Mn(OAc)2•4H2O is mostly dissolved. There will be shiny flakes when it is mixed 

in well. This usually takes 5-10 mins. Approximate about ten even amounts of the 

KMnO4 for its addition. Add one of the 10 portions of KMnO4 every 2 minutes to the 

heated mixture, with stirring, until it’s all gone (10 times, 20 minutes). Let the reaction 

stir for 25 minutes after the complete addition of KMnO4, again being sure the oil bath 

does not exceed 110 °C. Remove the reaction from the oil bath, turning the hot plate off 

and allowing the mixture to cool to room temperature with stirring and without the aid of 

an ice bath, or other external cooling method. This will take 1-2 hours. In a large 2L or 

3L Erlenmeyer, add 176 mL of water as accurately as possible. A 200 mL graduated 

cylinder works well enough. Add the room temperature reaction mixture of Mn(OAc)3 to 

the Erlenmeyer charged with water, and leave in a fume hood to crystallize for 2 days. 

You can seal the Erlenmeyer with parafilm if you’d like, ensuring plenty of air holes are 

added. After this time has passed, filter the mixture using a large ceramic Buchner funnel 

equipped with filter paper. Wash the collected solid with ether 5-7 times until the dark 

particulates have been washed through, and as the solid dries, it takes on an orange-

brown colour versus dark brown (Figure 14). In a fume-hood, scrape the solid off the 

filter paper onto Teflon sheet, or saran wrap, and spread out the powder to a thin layer for 

quick drying. Allow the Mn(OAc)3•2H2O to air dry. Do NOT subject the material to long 

periods of suction vacuum (even while washing with ether) or place on a high-vacuum 

pump. Once dry, and the material a nice bright orange, store in a glass screw top bottle.  

Yield: 109 g, quantitative yield.  

 

Figure 14 - Comparison of the “good” and “bad” colour of Mn(OAc)3 reagent. 
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3.6.3  Experimental Procedure A: Synthesis of Acryloyl Indoles 

 

 

 

 

 

A modified procedure from the literature.121 To a round-bottom charged with DCM (0.1 

M) was added indole (1 equiv.), powdered NaOH (5 equiv.) and tetrabutylammonium 

hydrogensulfate (Bu4NHSO4) (0.1 equiv.). The mixture was stirred for 30 minutes, at 

which point desired acid chloride (2.5 equiv.) was added to the reaction dropwise. The 

reaction was monitored by TLC until complete consumption of starting materials was 

observed. To the flask was added water and the mixture moved to a separatory funnel. 

The aqueous layer was extracted 3x with DCM, and the organic layers combined and 

washed with brine. The collected organic fraction was dried with MgSO4, filtered and 

concentrated in vacuo. The crude product was purified by flash column chromatography 

(Ethyl acetate: Hexanes). 

2-methyl-1-(3-methyl-1H-indol-1-yl)prop-2-en-1-one (3-16a) 

Following Experimental Procedure A, compound 3-16a was obtained 

from commercially available 3-methylindole (skatole) (3.0 g, 22.9 mmol), 

Bu4NHSO4 (0.78 g, 2.29 mmol), NaOH (4.58 g, 114 mmol), methacryloyl chloride (5.98 

g, 57.2 mmol, 5.6 mL) in 229 mL DCM. After stirring at rt for 2 h, the reaction was 

complete. 3-16a was acquired as a yellow oil (2.81 g, 62 %). Rf = 0.38 (10% EtOAc in 

hexanes)  

Scheme 58 - General procedure for the synthesis of 

acryloyl indoles 
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1H NMR (400 MHz, CDCl3) δ 8.41 (d, J = 7.7 Hz, 1H), 7.51 (d, J = 6.9 Hz, 1H), 7.41 –

7.27 (m, 2H), 7.24 (s, 1H), 5.68 – 5.59 (m, 1H), 5.47 – 5.40 (m, 1H), 2.27 (s, 3H), 2.19 – 

2.11 (m, 3H). Spectral data matched literature report of this compound.121 

1-(indolin-1-yl)-2-methylprop-2-en-1-one (3-20) 

 3-20 was synthesized following literature procedure.122 All spectral data 

matched. Crude product was used and pushed directly to product 3-16b. 

 

1-(1H-indol-1-yl)-2-methylprop-2-en-1-one (3-16b) 

Indoline 3-20 (1.59 g, 8.49 mmol) was dissolved in toluene (34 mL) and 

DDQ (2.32 g, 10.2 mmol) was added. The reaction was heated overnight at reflux for 16 

h, at which point TLC confirmed consumption of starting material. The solvent was 

removed from the crude mixture in vacuo and then re-dissolved in DCM with 6g of silica 

added. The DCM was removed under pressure to give the crude material adsorbed to 

silica. Dry loaded flash column chromatography (5% EtOAc in hexanes) yielded pure 

acylated indole product 3-16b as an orange oil (0.93 g, 59% over 2-steps). Rf = 0.28 (5% 

EtOAc in hexanes)  

1H NMR (400 MHz, CDCl3)  δ = 8.42 (d, J = 8.2 Hz, 1H), 7.57 (d, J = 7.6 Hz, 1H), 7.47 

(d, J = 3.8 Hz, 1H), 7.36 (td, J = 8.3, 7.9, 1.3 Hz, 1H), 7.29 (td, J = 7.6, 1.1 Hz, 1H), 6.60 

(d, J = 3.8 Hz, 1H), 5.68 (d, J = 1.0 Hz, 1H), 5.46 (s, 1H), 2.16 (s, 3H) 13C NMR (101 

MHz, CDCl3) δ = 169.8, 140.0, 135.7, 131.1, 127.1, 125.0, 124.0, 122.0, 120.9, 116.6, 

108.6, 20.1 IRATR (cm-1) 2922, 1683, 1534 1449, 1378, 1343, 1200, 1154, 1075, 888 

HRMS m/z [M+] 185.0839 (calcd for C12H11NO,185.0841) 

1-(1H-indol-1-yl)prop-2-en-1-one 3-16c 

Acylated indole was synthesized following literature procedure.122 The title 

product was acquired as an orange solid (0.79 g, 53 % yield over 2-steps). Spectral data 

matched reported literature. MP = 44 - 47˚C 
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1H NMR (400 MHz, Chloroform-d) δ = 8.51 (d, J = 8.3 Hz, 1H), 7.58 (d, J = 7.7 Hz, 

1H), 7.51 (d, J = 3.7 Hz, 1H), 7.37 (t, J = 7.7 Hz, 1H), 7.30 (t, J = 7.2 Hz, 1H), 6.97 (dd, 

J = 16.7, 10.4 Hz, 1H), 6.73 – 6.60 (m, 2H), 6.04 (d, J = 10.4 Hz, 1H) 

(E)-1-(1H-indol-1-yl)-3-phenylprop-2-en-1-one 3-16d 

Indoline (1.50 g, 12.6 mmol) was dissolved in THF (25 mL) 

followed by the addition of K2CO3 (3.48g, 25.2 mmol) to the 

round bottom. The mixture was cooled to 0 ˚C and cinnamoyl chloride (2.31 g, 13.9 

mmol dissolved in 4 mL THF) was added via syringe to the mixture dropwise. The 

reaction was warmed to rt and stirred for 6 h. The mixture was quenched with H2O and 

the aqueous layer extracted 3 times with EtOAc. The combined organic layers were 

washed with brine once, dried with MgSO4 and concentrated under pressure. The crude 

mixture (3.09 g, 12.4 mmol, yellow solid) obtained was immediately pushed forward and 

dissolved in toluene (50 mL) followed by the addition of DDQ (3.38 g, 14.9 mmol) and 

refluxed for 12 h. The toluene was removed from the crude mixture in vacuo and then the 

crude re-dissolved in DCM with 6 g of silica added. The DCM was removed under 

pressure to give the crude material adsorbed to silica. Dry loaded flash column 

chromatography (10% EtOAc in hexanes) was performed to collect acylated indole 3-16d 

as a yellow-solid (1.30 g, 42% over 2-steps). Rf = 0.42 (50% EtOAc in hexanes) MP = 

110 – 112 ˚C 

1H NMR (400 MHz, Chloroform-d) δ = 8.54 (d, J = 8.8 Hz, 1H), 8.00 (d, J = 15.4 Hz, 

1H), 7.64 (m 3H), 7.59 (d, J = 7.7 Hz, 1H), 7.46 – 7.42 (m, 3H), 7.38 (t, J = 7.7 Hz, 1H), 

7.34 – 7.19 (m, 2H), 6.70 (d, J = 4.2 Hz, 1H) 13C NMR (101 MHz, Chloroform-d) δ = 

164.4, 146.7, 136.0, 134.6, 130.9, 129.2, 128.5, 125.2, 124.7, 123.9, 121.0, 117.4, 117.0, 

109.3. IR (cm-1) 3157, 3054, 1665, 1609, 1536, 1447, 1346, 1297, 1225, 1143, 709. 

HRMS m/z [M+] 247.0995 (calcd for C17H13NO, 247.0997). 
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1-(5-bromo-1H-indol-1-yl)-2-methylprop-2-en-1-one (3-16e) 

Following Experimental Procedure A compound 3-16e was obtained 

from commercially available 5-bromoindole (2.0 g, 10.2 mmol), 

Bu4NHSO4 (0.35 g, 1.02 mmol), NaOH (2.04 g, 52 mmol), 

methacryloyl chloride (2.67 g, 25.5 mmol, 2.5 mL) in 100 mL DCM. The reaction was 

stirred for 20 h. 3-16e was obtained as a white solid (1.94 g, 72%). Rf= 0.38 (10% EtOAc 

in hexanes). MP = 32 - 34˚C NOTE: 5-bromoindole and its acylated derivative will 

decompose in light over time.  

1H NMR (400 MHz, Chloroform-d) δ = 8.28 (d, J = 8.8 Hz, 1H), 7.70 (d, J = 1.8 Hz, 

1H), 7.48 (d, J = 3.6 Hz, 1H), 7.44 (dd, J = 8.8, 1.9 Hz, 1H), 6.53 (d, J = 3.7 Hz, 1H), 

5.70 (s, 1H), 5.47 (s, 1H), 2.15 (s, 3H). 13C NMR (101 MHz, CDCl3) δ = 169.6, 134.4, 

132.8, 128.3, 127.8, 123.6, 122.6, 118.0, 117.3, 107.7, 20.1. IR (cm-1) 3019, 2400, 1691, 

1445, 1366, 1340, 1216, 813, 778, 669. HRMS m/z [M+] 262.9941 (262.9946 calcd for 

C12H10BrNO) 

 

2-methyl-1-(5-nitro-1H-indol-1-yl)prop-2-en-1-one (3-16f) 

Following Experimental Procedure A compound 3-16f was 

synthesized from 5-nitroindole (1 g, 6.17 mmol), Bu4NHSO4 (0.21 g, 

0.62 mmol), NaOH (1.23 g, 30.9 mmol) and methacryloyl chloride (1.61 g, 15.4 mmol, 

1.5 mL) in 62 mL of DCM. The reaction was stirred for 2.5 h at which point TLC 

confirmed consumption of starting material. 3-16f was obtained as a white powder (0.76 

g, 53%). Rf = 0.21 (15% EtOAc in hexanes). MP = 125 – 126˚C  NOTE: 5-nitroindole 

will decompose over time in light. 

1H NMR (400 MHz, CDCl3) δ = 8.54 – 8.41 (m, 1H), 8.23 (dd, J = 9.2, 2.2 Hz, 1H), 

7.64 (d, J = 3.8 Hz, 1H), 6.77 – 6.69 (m, 1H), 5.80 (s, 1H), 5.55 (s, 1H), 2.18 (s, 3H) 13C 

NMR (101 MHz, CDCl3) δ = 169.5, 144.5, 139.3, 138.8, 130.9, 130.0, 123.8, 120.2, 

117.2, 116.7, 108.8, 19.9 IRATR (cm-1) 1695, 1517, 1536, 1442, 1333, 1193, 884, 828, 

777, 745 HRMS m/z [M+] 230.0691 (calcd for C12H10N2O3, 230.0691) 
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1-(5-methoxy-1H-indol-1-yl)-2-methylprop-2-en-1-one (3-16g) 

Following Experimental Procedure A compound 3-16g was 

synthesized from 5-methoxyindole (2.0 g, 13.6 mmol), Bu4NHSO4 (0.46 g, 1.36 mmol), 

NaOH (2.72 g, 68.0 mmol) and methacryloyl chloride (3.55 g, 34.0 mmol, 3.3 mL) in 

140 mL DCM. Reaction was stirred overnight for 18 h. 3-16g was obtained as a yellow 

oil (2.39 g, 82%). Rf = 0.33 (15% EtOAc in hexanes).  

1H NMR (400 MHz, Chloroform-d) δ = 8.32 (d, J = 9.0 Hz, 1H), 7.44 (d, J = 3.7 Hz, 

1H), 7.03 (s, 1H), 6.96 (dd, J = 9.0, 2.4 Hz, 1H), 6.53 (d, J = 3.7 Hz, 1H), 5.65 (s, 1H), 

5.44 (s, 1H), 3.85 (s, 3H), 2.15 (s, 3H) 13C NMR (101 MHz, CDCl3) δ = 169.5, 156.8, 

139.9, 132.1, 130.4, 127.8, 121.8, 117.4, 113.4, 108.5, 103.7, 55.8, 20.2 IR (cm-1) 1682, 

1534, 1472, 1371, 1278, 1201, 1158, 1033, 909, 722. HRMS m/z [M+] 215.0954 (calcd 

for C13H13NO2, 215.0946)  

tert-butyl (2-(1-(2-methylenehex-5-enoyl)-1H-indol-3-

yl)ethyl)carbamate 3-16h 

Acrylic acid (2-methylenehex-5-enoic acid) (6.20 g, 49.1 mmol, 1 

equiv.) was added to a 25 mL round-bottom and put under and inert 

atmosphere of argon. Oxalyl chloride (4.45 mL, 51.0 mmol, 1.05 equiv.) was added 

slowly to the flask followed by a single drop of DMF. This reaction mixture was stirred 

two hours. To a 500 mL round-bottom was added boc-protected tryptamine (6.39 g, 24.5 

mmol, 1 equiv.) in 250 mL of DCM. Bu4NHSO4 (0.83 g, 2.45 mmol, 0.1 equiv.) was 

added to the tryptamine followed by powdered NaOH (4.91 g, 122.7 mmol, 5 equiv.). 

The reaction was put under and inert atmosphere of argon and allowed to stir for a 

minimum of 15 min. At this point the acid chloride generated in the 25 mL round bottom 

was cannula transferred over in its entirety (~7.10 g, 49.1 mmol, 2 equiv). The mixture 

was allowed to stir under argon for 1 h, at which point TLC confirmed complete 

consumption of starting material. The reaction was quenched with water, and extraction 

with DCM 3x  was performed. The combined organic extracts were washed with water 

once, followed by brine and then dried with MgSO4. The solvent was removed in vacuo 

to yield the crude material. Purification of the crude compound by flash column 
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chromatography was performed using 30% EtOAc:Hexanes to yield the product as a 

slightly yellow oil (8.81 g, 83%). Rf = 0.46 (30% EtOAc:Hexanes)  

1H NMR (400 MHz, CDCl3) ∂ = 8.43 (d, J = 8.2 Hz, 1H), 7.54 (d, J = 7.8 Hz, 1H), 7.37 

(t, J = 7.7 Hz, 1H), 7.33 – 7.27 (m, 2H), 5.81 (ddt, J = 16.9, 10.2, 6.6 Hz, 1H), 1H), 5.65 

(s, 1H), 5.45 (s, 1H), 5.08 – 4.96 (m, 2H), 4.63 (br, s, 1H), 3.44 (q, J = 6.6 Hz, 2H), 2.88 

(t, J = 6.9 Hz, 2H), 2.62 (t, J = 7.4 Hz, 2H), 2.34 – 2.26 (m, 2H), 1.43 (s, 9H) 13C NMR 

(101 MHz, CDCl3) ∂ = 169.3, 156.0, 143.9, 137.2, 136.2, 131.1, 125.3, 123.9, 121.2, 

119.0, 116.9, 116.0, 40.17, 32.0, 33.2, 28.5, 25.7 IR (cm-1) 3356, 2976, 2928, 1684, 

1630, 1510, 1451, 1356, 1248, 1170 HRMS m/z [M+] 368.2094 (calcd for C22H28N2O3, 

368.2099) 

3.6.4  Experimental Procedure B: One-Pot Michael Addition, 
Oxidative Radical Cyclization 

 

 

Scheme 59 - General reaction for the synthesis of 1,2-disubstituted indole annulation 

products 

To an argon flushed round-bottom was added half of the total THF (0.15 M) required 

followed by NaH (60% dispersed in mineral oil, 1.5 equiv.).  The 1,3-dicarbonyl species 

(1.5 equiv.) was added dropwise via syringe with stirring. The resultant mixture was 

stirred for 15 mins at which point the desired acryloyl indole (1 equiv.) dissolved in the 

other half- volume of THF and added via syringe. The Michael addition was monitored 

by TLC. Once TLC confirmed complete consumption of starting indole, Mn(OAc)3 (7 

equiv.) was added to the round bottom flask followed by AcOH (0.12 M). The flask was 

equipped with a reflux condenser and put back under an argon atmosphere. The reaction 
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was brought to 110 ˚C and refluxed until the mixture changed colour from dark brown to 

containing obvious white solid with yellow/orange solution colour. At this point TLC 

analysis always indicated complete consumption of starting materials. The crude reaction 

mixture was cooled to rt (without ice, just resting) and then diluted with a large excess of 

EtOAc. The solution was filtered through a thick pad of celite and then flushed with even 

more EtOAc. The solvent was removed under reduced pressure with added toluene to aid 

in the removal of acetic acid. Obtained dried crude product was purified with flash 

column chromatography (EtOAc:Hexanes). The desired fractions of the column were 

collected to a separatory funnel and washed twice with 1 M NaOH solution to remove co-

eluted dimethyl malonate (only in the cases where the malonate had the same Rf as 

product, when they were different the column was sufficient to purify) and then followed 

with a brine wash. The organic layer was collected, dried with MgSO4 and concentrated 

in vacuo to yield product.  

 

dimethyl 7,10-dimethyl-6-oxo-7,8-dihydropyrido[1,2-a]indole-

9,9(6H)-dicarboxylate (3-17a) 

Following Experimental Procedure B 3-17a was synthesized from 

acyl-indole 3-16a (0.30 g, 1.51 mmol), NaH (0.091 g, 2.27 mmol), dimethyl malonate 

(0.30 g, 2.27 mmol, 0.26 mL) in 10 mL of THF then Mn(OAc)3 (2.80 g, 10.6 mmol) in 

acetic acid (13 mL). 3-17a was isolated as a yellow solid (0.33 g, 65%) Rf = 0.40 (20% 

EtOAc in hexanes) MP = 126 – 129 ˚C  

1H NMR (400 MHz, CDCl3) ∂ = 8.50 (d, J = 8.2 Hz, 1H), 7.50 (d, J = 7.7 Hz, 1H), 7.35 

(t, J = 7.7 Hz, 1H), 7.30 (t, J = 7.5 Hz, 1H), 3.83 (s, 3H), 3.79 (s, 3H), 2.90 (ddq, J = 

12.6, 6.5, 6.3 Hz, 1H), 2.84 (dd, J = 13.0, 4.4 Hz, 1H), 2.39 (t, J = 13.0 Hz, 1H), 2.16 (s, 

3H), 1.42 (d, J = 6.8 Hz, 3H) 13C NMR (101 MHz, CDCl3) ∂ = 170.9, 170.4, 169.0, 

134.5, 131.1, 128.2, 125.7, 124.0, 118.6, 117.9, 116.8, 55.7, 53.6, 37.5, 35.4, 15.7, 9.2 

IRATR (cm-1) 3027, 2954, 1785, 1702, 1456, 1386, 1385, 1308, 1245, 751 HRMS m/z 

[M+] 329.1268 (calcd for C18H19NO5, 329.1263)  
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1,1'-(7,10-dimethyl-6-oxo-6,7,8,9-tetrahydropyrido[1,2-a]indole-9,9-

diyl)diethanone (3-17b) 

To an oven-dried round bottom was added acylated indole 3-16a (0.20 g, 

1.00 mmol), acetylacetone (0.50 g, 5.00 mmol, 0.51 mL), K2CO3 (0.14 g, 1 mmol), 6 mL 

of THF and one drop of water. The flask was equipped with reflux condenser and the 

mixture heated at 55 ˚C for 24 h at which point starting materials had been consumed. To 

the reaction was then added Mn(OAc)3 (1.87 g, 7.0 mmol) and acetic acid (8 mL) and 

refluxed at 110 ˚C for 3 h. The mixture was then worked up as described in 

Experimental Procedure B from this point onwards. Product 3-17b was obtained as an 

orange solid (0.17 g, 59%). Rf = 0.33 (20 % EtOAc in hexanes) MP = 158 – 161˚C  

1H NMR (400 MHz, CDCl3) ∂ = 8.52 (d, J = 8.1 Hz, 1H), 7.52 (d, J = 7.1 Hz, 1H), 7.40 

(t, J = 7.0 Hz, 1H), 7.34 (t, J = 7.4 Hz, 1H), 2.85 – 2.69 (m, 2H), 2.26 (s, 3H), 2.24 (s, 

3H), 2.22 (s, 3H), 1.42 (d, J = 6.6 Hz, 3H) 13C NMR (101 MHz, CDCl3) ∂ = 205.5, 

204.0, 171.2, 134.9, 130.9, 129.0, 126.2, 124.3, 118.7, 116.9, 67.1, 35.4, 28.8, 26.2, 16.0, 

10.1 IRATR (cm-1) 2936, 1708, 1607, 1455, 1364, 1305, 1190, 1153, 1128, 1080, 754. 

HRMS m/z [M+] 297.1365 (calcd for C18H19NO3, 297.1365) 

 

methyl 9-acetyl-7,10-dimethyl-6-oxo-6,7,8,9-tetrahydropyrido[1,2-

a]indole- 9-carboxylate (3-17c) 

To an oven-dried round bottom was added acylated indole 3-16a (0.25 

g, 1.25 mmol), methyl acetoacetate (0.73 g, 6.25 mmol, 0.67 mL), K2CO3 (0.09 g, 0.63 

mmol), 8 mL of THF and one drop of water. The flask was equipped with reflux 

condenser and the mixture heated at 55 ˚C for 24 h at which point starting materials had 

been consumed. To the reaction was then added Mn(OAc)3 (2.35 g, 8.75 mmol) and 

AcOH (10 mL) and reacted at 110 ˚C for 6 h. The mixture was then worked up as 

described in Experimental Procedure B from this point onwards. Product 3-17c was 



102 

 

obtained as a yellow solid (0.21 g, 54%). Rf = 0.34 (20% EtOAc in hexanes) MP = 107 – 

111 ˚C  

1H NMR (400 MHz, CDCl3) diastereomers ∂ = 8.50 (d, J = 8.0 Hz, 1H), 7.51 (d, J = 7.7 

Hz, 1H), 7.41 – 7.27 (m, 2H), 3.84 (diastereomer a) and 3.78 (diastereomer b) (s, 3H), 

2.97 – 2.66 (m, 2H), 2.45 – 2.31 (m, 1H), 2.27 (diastereomer a) and 2.23 (diastereomer b) 

(s, 3H), 2.20 (diastereomer a) and 2.17 (diastereomer b) (s, 3H), 1.44 (diastereomer b) (d, 

J = 6.8 Hz, 3H) and 1.38 (diastereomer a) (d, J = 6.7 Hz, 3H) 13C NMR (101 MHz, 

CDCl3) (both diastereomer a and b) ∂ = 202.8, 202.2, 171.0, 170.9, 169.4, 134.6, 130.9, 

130.8, 129.1, 127.8, 124.0, 118.6, 118.4, 118.1, 116.8, 116.7, 116.5, 62.9, 59.9, 53.2, 

53.2, 36.5, 35.7, 35.5, 35.0, 28.1, 25.4, 16.0, 15.5, 9.5, 9.3 IRATR (cm-1) 2952, 1716, 

1456, 1365, 1307, 1239, 1153, 1130, 1084, 754. HRMS m/z [M+] 313.1312 (calcd for 

C18H19NO4, 313.1314) 

 

dimethyl 7-methyl-6-oxo-7,8-dihydropyrido[1,2-a]indole-9,9(6H)-

dicarboxylate (3-17d) 

Following Experimental Procedure B, 3-17d was synthesized from 

acryloyl indole 3-16b (0.25 g, 1.35 mmol), dimethyl malonate (0.27 g, 2.02 mmol, 0.23 

mL), NaH (0.081 g, 2.02 mmol) in 9 mL of THF. Following completion of the Michael 

addition was then added Mn(OAc)3 (2.53 g, 9.40 mmol) and acetic acid (11 mL). 3-17d 

was isolated as a pale orange solid (0.18 g, 45%). Rf = 0.27 (20 % EtOAc in hexanes). 

MP = 109 – 113˚C  

1H NMR (400 MHz, CDCl3) ∂ = 8.48 (d, J = 8.2 Hz, 1H), 7.52 (d, J = 8.4 Hz, 1H), 7.39 

– 7.31 (m, 1H), 7.28 (m, 1H), 6.68 (s, 1H), 3.89 (s, 3H), 3.77 (s, 3H), 2.80 (ddd, J = 13.3, 

6.7, 4.5 Hz, 1H), 2.72 (dd, J = 13.6, 4.5 Hz, 1H), 2.51 (t, J = 13.5 Hz, 1H), 1.43 (d, J = 

6.8 Hz, 3H).  13C NMR (101 MHz, CDCl3) ∂ = 171.0, 169.6, 168.8, 135.4, 133.0, 129.3, 

125.5, 124.3, 120.8, 116.8, 109.2, 55.7, 53.7, 42.0, 36.4, 35.3, 15.9. IRATR (cm-1) 2956, 

2923, 2852, 1746, 1708, 1437, 1300, 1144, 1063, 836. HRMS m/z [M+] 315.1112 (calcd 

for C17H17NO5, 315.1107). 
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dimethyl 6-oxo-7,8-dihydropyrido[1,2-a]indole-9,9(6H)-

dicarboxylate (3-17e) 

Following Experimental Procedure B, 3-17e was synthesized from 

acryloyl indole 3-16c (0.30 g, 1.75 mmol), dimethyl malonate (0.27 g, 2.60 mmol, 0.30 

mL), NaH (0.10 g, 2.60 mmol) in 12 mL of THF. Following the completion of the 

Michae addition, Mn(OAc)3 (3.27 g, 12.2 mmol) was then added with 14 mL of acetic 

acid. 15e was isolated as an orange oil (0.20 g, 38%) Rf = 0.17 (20% EtOAc in hexanes). 

Or alternative procedure from indoline 3-18: Acylated indoline 3-18 was synthesized 

following literature procedure.122 To a round bottom under argon was added THF (6 mL) 

followed by NaH (0.10 g, 2.60 mmol) followed by dimethyl malonate (0.34 g, 2.6 mmol, 

0.3 mL) dropwise via syringe and the mixture was allowed to stir for 15 min. Acylated 

indoline 3-18 (0.3 g, 1.70 mmol) dissolved in 5 mL THF was added to the reaction via 

syringe and the reaction was monitored by TLC for completion of the Michael addition. 

Upon completion, to the flask was added 17 mL acetic acid and Mn(OAc)3 (4.02 g, 15.0 

mmol) and the round bottom equipped with a reflux condenser. The mixture was heated 

to reflux for 22 h at which point TLC confirmed the reaction was complete. The mixture 

was cooled to room temperature and filtered through a pad of celite and rinsed thoroughly 

with ethyl acetate. The crude mixture was concentrated in vacuo and then subjected to 

flash column chromatography to isolate 3-17e as an orange oil (0.083 g, 16%) the 

collected fraction from the column were washed once with 1M NaOH to remove traces of 

dimethyl malonate. Rf = 0.17 (20% EtOAc in hexanes) 

 1H NMR (400 MHz, CDCl3) ∂ = 8.47 (d, J = 8.2 Hz, 1H), 7.52 (d, J = 7.7 Hz, 1H), 7.35 

(t, J = 8.4 Hz, 1H), 7.30 – 7.26 (m, 1H), 6.69 (s, 1H), 3.84 (s, 6H), 2.85 – 2.78 (m, 2H), 

2.68 (t, J = 6.6 Hz, 2H) 13C NMR (101 MHz, CDCl3) ∂ = 168.0, 166.6, 134.3, 131.8, 

128.0, 124.6, 123.4, 119.8, 115.8, 108.4, 54.4, 52.7, 29.9, 27.5 IR (cm-1) HRMS m/z 

[M+] 301.0959 (calcd for C16H15NO5, 301.0950)  
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dimethyl 6-oxo-8-phenyl-7,8-dihydropyrido[1,2-a]indole-9,9(6H)-

dicarboxylate (3-17f)  

Following Experimental Procedure B 3-17f was synthesized from 

acryloylindole 3-16d (0.30 g, 1.21 mmol), dimethyl malonate (0.24 g, 

1.80 mmol, 0.21 mL), NaH (0.072 g, 1.80 mmol) in 8 mL of THF. Followed up with 

Mn(OAc)3 (2.28 g, 8.50 mmol) and acetic acid (10 mL). 3-17f was isolated as a white 

solid (0.12 g, 27%) Rf = 0.25 (20% EtOAc in hexanes). MP = 54 – 57 ˚C  

1H NMR (400 MHz, CDCl3) ∂ = 8.55 (d, J = 8.2 Hz, 1H), 7.60 (d, J = 8.3 Hz, 1H), 7.44 

– 7.37 (m, 1H), 7.33 (td, J = 7.5, 1.1 Hz, 1H), 7.22 – 7.12 (m, 3H), 7.01 (s, 1H), 6.96 (dd, 

J = 7.5, 2.0 Hz, 2H), 4.26 (dd, J = 6.0, 4.3 Hz, 1H), 3.76 (s, 3H), 3.72 – 3.65 (m, 1H), 

3.55 (s, 3H), 3.08 (dd, J = 17.7, 4.3 Hz, 1H) 13C NMR (101 MHz, CDCl3) ∂ = 168.6, 

167.5, 167.4, 138.8, 135.0, 131.3, 129.6, 128.9, 128.0, 125.7, 124.5, 121.0, 117.0, 112.9, 

77.5, 58.7, 53.8, 53.0, 44.7, 42.0, 38.2 IRATR (cm-1) 3034, 2953, 1736, 1696, 1452, 1371, 

1323, 1234, 1202, 1167 HRMS m/z [M+] 377.126904 (calcd for C22H19NO5, 377.12632) 

 

dimethyl 2-bromo-7-methyl-6-oxo-7,8-dihydropyrido[1,2-

a]indole-9,9(6H)-dicarboxylate (3-17g)  

Following Experimental Procedure B 3-17g was synthesized 

from acryloyl-indole 3-16e (0.30 g, 1.14 mmol), dimethyl malonate (0.22 g, 1.70 mmol, 

0.19 mL), NaH (0.068 g, 1.70 mmol) in 8 mL THF, then followed with Mn(OAc)3 (2.14 

g, 8.00 mmol) in acetic acid (10 mL). 3-17g was isolated as a yellow solid (0.28 g, 63%) 

Rf = 0.29 (20% EtOAc in hexanes) MP = 118 – 122˚C  

1H NMR (400 MHz, CDCl3) ∂ = 8.35 (d, J = 8.8 Hz, 1H), 7.65 (s, 1H), 7.44 (d, J = 10.7 

Hz, 1H), 6.62 (s, 1H), 3.90 (s, 3H), 3.79 (s, 3H), 2.80 (ddd, J = 13.2, 6.7, 4.6 Hz, 1H), 

2.73 (dd, J = 13.6, 4.5 Hz, 1H), 2.51 (t, J = 13.5 Hz, 1H), 1.43 (d, J = 6.8 Hz, 3H) 13C 

NMR (101 MHz, CDCl3) ∂ = 170.7, 169.1, 168.3, 134.1, 133.9, 130.9, 128.2, 123.3, 

118.0, 117.4, 108.2, 55.5, 53.6, 36.1, 35.1, 15.6 IRATR (cm-1) 1738, 1445, 1383, 1352, 
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1305, 1268, 1242, 1183, 1148, 1075 HRMS m/z [M+] 393.0205 (calcd for C17H16BrNO5, 

393.0212) 

 

dimethyl 2-methoxy-7-methyl-6-oxo-7,8-dihydropyrido[1,2-

a]indole- 9,9(6H)-dicarboxylate (3-17i)  

Following Experimental Procedure B 3-17i was synthesized 

from acryloyl-indole 3-16g (0.30 g, 1.39 mmol), dimethyl malonate (0.28 g, 2.09 mmol, 

0.24 mL), NaH (0.084 g, 2.09 mmol) in THF (9 mL) followed then by Mn(OAc)3 (2.61 g, 

9.70 mmol) and acetic acid (11 mL). 3-17i was isolated as a pale-yellow solid (0.29 g, 

61%). Rf = 0.24 (25% EtOAc in hexanes) MP = 117 – 120˚C  

1H NMR (400 MHz, CDCl3) ∂ = 8.36 (d, J = 8.9 Hz, 1H), 7.02 – 6.87 (m, 2H), 6.61 (s, 

1H), 3.89 (s, 3H), 3.83 (s, 3H), 3.77 (s, 3H), 2.83 – 2.65 (m, 2H), 2.50 (t, J = 13.4 Hz, 

1H), 1.42 (d, J = 6.7 Hz, 3H) 13C NMR (101 MHz, CDCl3) ∂ = 170.6, 169.6, 168.7, 

156.9, 133.5, 130.3, 130.1, 117.5, 113.8, 109.1, 103.6, 55.8, 53.7, 36.4, 35.1, 15.9 IRATR 

(cm-1) 2955, 2837, 1732, 1615, 1435, 1383, 1105, 1073, 1030, 912.9 HRMS m/z [M+] 

345.1221 (calcd for C18H19NO6, 345.1212) 

 

dimethyl 7-methyl-2-nitro-6-oxo-7,8-dihydropyrido[1,2-

a]indole- 9,9(6H)-dicarboxylate (3-17h) 

Following Experimental Procedure B 3-17h was synthesized 

from acryloyl-indole 3-16f (0.30 g, 1.30 mmol), dimethyl malonate (0.26 g, 1.95 mmol, 

0.22 mL), NaH (0.078 g, 1.95 mmol) in 9 mL of THF, followed by Mn(OAc)3 (2.44 g, 

9.10 mmol) and acetic acid (11 mL). 3-17h was isolated as a white solid (0.17 g, 36%). 

Rf = 0.34 (30% EtOAc in hexanes). MP = 135 – 140 ˚C  

1H NMR (400 MHz, CDCl3) ∂ = 8.58 (d, J = 9.5 Hz, 1H), 8.43 (d, J = 2.3 Hz, 1H), 8.22 

(dd, J = 9.1, 2.3 Hz, 1H), 6.83 (s, 1H), 3.92 (s, 3H), 3.80 (s, 3H), 2.86 (dqd, J = 13.5, 6.9, 

4.6 Hz, 1H), 2.76 (dd, J = 13.8, 4.5 Hz, 1H), 2.53 (t, J = 13.6 Hz, 1H), 1.45 (d, J = 6.8 
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Hz, 3H) 13C NMR (101 MHz, CDCl3) ∂ = 171.1, 168.9, 168.2, 144.7, 138.3, 136.3, 

129.3, 120.7, 117.0, 109.5, 55.6, 54.0, 36.0, 35.4, 15.7 IRATR (cm-1) 3128, 2959, 1739, 

1717, 1562, 1516, 1443, 1333, 1232, 1174 HRMS m/z [M+] 360.0954 (calcd for 

C17H16N2O7, 360.0958) 

 

dimethyl 7-(but-3-en-1-yl)-10-(3-((tertbutoxycarbonyl) 

amino)propyl)-6-oxo-7,8-dihydropyrido[1,2-a]indole-

9,9(6H)-dicarboxylate (3-17j)  

Following Experimental Procedure B, 3-17j was synthesized 

from acryloyl indole 3-16h (0.26 g, 0.69 mmol), dimethyl malonate (0.18 g, 1.39 mmol, 

0.16 mL), NaH (0.06 g, 1.39 mmol) in 5 mL of THF. Upon the completion of the 

Michael addition, to the reaction mixture was added Mn(OAc)3 (1.11 g, 4.14 mmol) and 

10 mL of MeOH (instead of acetic acid). The mixture was heated under argon at 65 ˚C 

for a minimum of 20 h before proceeding with work-up as per Experimental Procedure 

B. 3-17j was isolated as a white solid (0.11 g, 30%) Rf = 0.27 (25% EtOAc in hexanes). 

MP = 106 – 110˚C  

1H NMR (400 MHz, CDCl3) ∂ = 8.50 (d, J = 8.0 Hz, 1H), 7.66 (d, J = 7.6 Hz, 1H), 7.36 

(t, J = 7.1 Hz, 1H), 7.30 (t, J = 7.5 Hz, 1H), 5.83 (ddt, J = 17.2, 10.2, 6.3 Hz, 1H), 5.13 – 

5.00 (m, 2H), 4.81 (br, s, 1H), 3.85 (s, 3H), 3.80 (s, 3H), 3.42 (dt, J = 12.4, 6.0 Hz, 2H), 

2.93 – 2.83 (m, 2H), 2.77 – 2.59 (m, 2H), 2.38 (t, J = 13.1 Hz, 1H), 2.33 – 2.17 (m, 3H), 

1.67 (q, J = 8.3 Hz, 1H), 1.43 (s, 9H) 13C NMR (101 MHz, CDCl3) ∂ = 170.5, 170.4, 

168.9, 156.0, 137.5, 134.8, 128.7, 125.9, 124.3, 119.5, 119.0, 116.9, 115.9, 55.9, 53.9, 

53.7, 39.3, 35.0, 30.8, 28.9, 28.6 IR (cm-1) 3272, 2956, 1736, 1697, 1456, 1377, 1242, 

1167, 1075, 76 HRMS m/z [M+] 498.2361 (calcd for C27H34N2O7, 498.2366) 
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Chapter 4 : Progress Towards the Total Synthesis of 
Tronocarpine and Dippinine B 

The work outlined in this chapter is unpublished.  

4.1 Introduction and Overview 

Tronocarpine and dippinine B (Scheme 60) are natural products isolated from the 

Malaysian tree, Tabernaemontana corymbosa. Many of the alkaloids found in this plant 

exhibit anti-malarial and antibiotic activity. Tronocarpine contains a novel pentacylic 

framework and a 7-membered lactam not usually seen amongst previously isolated 

vobasiny-iboga indoles.  

Outlined in this chapter is the progress, trials, and tribulations towards accessing the first 

total syntheses of tronocarpine and dippinine B. At the focal point of this total synthesis 

lies the methodology discussed in Chapter 3; Mn(III) radical cyclizations involving 

indoles. It is this chemistry that is used to make the main scaffold of tronocarpine.   

 

Scheme 60 – Natural product targets in Chapter 4, tronocarpine and dippinine B. 

4.2 First Retrosynthetic Analysis of Tronocarpine and 
Dippinine B 

Analyzing the bond connections of tronocarpine we strategized that its first total 

synthesis could be completed as outlined in Scheme 61. Working through Scheme 61: 

reductive lactamization of cyanoindole intermediate 4-1 will form the 7-membered C ring 

of tronocarpine. The reduction of the cyano group followed by lactamization on the 

available ester has precedent in past Kerr group work using Raney nickel and H2.
123 

Reduction of the ketone adjacent to the indole nitrogen (4-1) will fashion the desired 
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alcohol seen in tronocarpine. A Dieckmann condensation between the methyl ketone and 

diastereotopically available ester of 4-2 would fashion the E ring of tronocarpine. 

Oxidative manipulation will be required to install the α, β-unsaturation of compound 4-1.   

 

Scheme 61 - Retrosynthetic Analysis 1: First proposed route to tronocarpine 

Manganese (III) mediated radical cyclization will construct the D ring of 4-2. This would 

come from elaborated acryloyl indole 4-3 using the one-pot Michael addition, radical 

cyclization outlined in Chapter 3. To fashion elaborated indole 4-3, acylation of 

commercially available indole-3-acetonitrile (4-5) with acrylic acid 4-4, would map the 

carbons required for tronocarpine.  

Examining dippinine B, the retrosynthetic analysis (Scheme 62) is identical to 

tronocarpine, but instead of reductive lactamization to construct the ring C, a Michael 

addition of nitrile reduced substrate 4-1 is required.  
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Scheme 62 - Retrosynthetic Analysis 2: Proposed route to dippinine B 

Tronocarpine and dippinine B differ only in the connection of their tryptamine chain 

amine; access to both natural products would likely occur from the same intermediates. 

For this reason, often just one natural product is discussed, but we were always mindful 

that either natural product may be synthesized depending on the reactivity of the 

tryptamine chain. At any point, we could have generated either tronocarpine or dippinine 

B when trying to close the final rings; tronocarpine requiring a lacatamization with one of 

the esters, and dippinine B requiring a Michael addition with the α,β-unsaturated methyl 

ketone.  

Common to both retrosynthetic analyses is acrylic acid 4-4, and this target was the first 

focus of our synthetic efforts.  

4.3 First Generation Synthetic Route Towards Tronocarpine 

4.3.1 Accessing Acrylic Acid 4-4 

Initial work had me hopeful starting from commercially available δ-hexanolactone 4-6. 

We proposed that opening lactone 4-6 with sodium methoxide NaOMe, to generate ester 

4-7, would put a functional alcohol handle in the correct spot for the required ketone in 

acrylic acid 4-4 (Scheme 63). The protected alcohol (4-8) could later be oxidized to the 
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methyl ketone and Eschenmoser’s methenylation would provide the acrylic olefin of 4-

10. 124,125
   

 

Scheme 63 - First work towards synthesizing acrylic acid 4-4 

Unfortunately, opening lactone 4-6 proved troublesome, and re-lactonization of 4-7 back 

to starting material was prevalent during attempts to purify the material.  

We turned our attention to 4-acetylbutyric acid (4-11) as a better starting material for 

synthesizing acid 4-4 (Scheme 64). Though the ketone of 4-11 was ideal for the end goal, 

its existence would prove to be a chemoselective nightmare for furnishing the olefinic 

component of 4-4. A redundant reduction and protection was first performed. Reduction 

of ketone 4-11 was trivial with NaBH4, but low yielding (4-12, 47%). Esterification to set 

up the precursor for Eschenmoser chemistry (4-13) worked, but was also low yielding, 

returning some δ-hexanolactone 4-6. This route was quickly abandoned even though 

alternatives, such as alcohol protection, could have afforded more of the desired material.    

 

Scheme 64 - Failed route to acrylic acid 4-4 from 4-acetylbutyric acid 

Rather than chemoselectively reducing the ketone of 4-11, reduction of both the acid and 

ketone resulted in diol 4-14 (Scheme 65). The diol was successfully oxidized via Swern 

protocol or using PCC (4-15 and 4-16). PCC proved higher yielding, isolating 33% of 
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aldehyde 4-16. Aldehyde in hand, first attempts of Eschenmoser’s methenylation were 

performed. Success was achieved in a low yielding 16% of acrylate 4-17. Pinnick 

oxidation of this material to isolate acrylic acid 4-18 worked, but crudely, and in an 

unviable <5% yield. Ultimately, the pathway in Scheme 65 was plagued with low yields 

and a step-count that could only make a fit-bit user happy. This was not the ideal start to 

any synthesis.  

Hitting multiple dead-ends and finding it troublesome to prevent lactonization of the 

material being isolated, our attention had to switch to alternative routes. We hypothesized 

that acylation of material on to the indole first would yield a more robust substrate to 

work with. 

 

Scheme 65 - Unviable route to acrylic acid 4-4. 

4.3.2 Acylation of Indole First: Attempt to Access Acrylic Acid 
Chain 

From the work in Chapter 3, the capability to acylate indoles consistently and with 

varying functionality, suggested an alternative route accessing intermediate 4-23 with the 

acryloyl component tethered to the indole nitrogen. I could take the available 4-

acetylbutyric acid 4-11, and acylate phthalimide protected tryptamine 4-19 or indole-3-

acetonitrile 4-5. I could later install the required alkene component (Scheme 66).  
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Scheme 66 - Synthetic route attempting to access acryloyl tryptamine intermediate 

4-23. 

Acid 4-11 smoothly converted to its acid chloride with SOCl2, and acylation to 

phthalimido-tryptamine 4-19 was successful in 43% yield over two steps. Phthalimido-

tryptamine (4-19) was used because it was available in the lab, and indole-3-acetonitrile 

was expensive for pursuing optimized conditions. Protecting the ketone of intermediate 

4-20 with ethanethiol resulted in thioacetal 4-21 in a 71% yield. This would inhibit any 

alternate Eschenmoser products in the next step. Unfortunately, attempts at the 

methenylation did not provide any desired product, and progression to desired acryloyl 

indole 4-23 was halted. 

At this point, concerns regarding the use of a phthalimide protecting group were brought 

forward. Previous Kerr group member Bryan Landschoot had troubles getting Mn(III) 

radical chemistry to work on substrates that made use of the protecting group. To avoid 

future complications, the phthalimide protected tryptamine was abandoned and this route 

was reconsidered.  Switching to indole-3-acetonitrile as per the original retrosynthesis, 

resulted in yet another dead-end (Scheme 67).  
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Per Scheme 67, acylation of 4-5 resulted in a higher yield of acryloyl indole 4-25 

(>94%), and ketone protection with the more easily removed acetal of ethylene glycol 

was performed. 4-26 was isolated in a 56% yield. Eschenmoser olefination attempts were 

again fruitless under different bases and product 4-27 failed to be isolated. 

 

Scheme 67 - Indole-3-acetonitrile as a starting indole in the attempt to isolate 

acryloyl indole 4-23 

The Eschenmoser methenylation route to install the necessary α,β-unsaturated component 

of a Michael acceptor was proving to be the wrong strategy to synthesize natural products 

tronocarpine and dipinine B. A completely different route needed to be established.  

4.3.3 Successful Generation of Acrylic Acid 4-28 and Optimization 
of the Synthetic Route 

Attempts at synthesizing product 4-4 failed repeatedly and with methenylation proving 

troublesome, an alternate route was sought. Masking the ketone in earlier synthetic 

attempts was redundant, and we had worries it was going to become a difficult task to 

either: 1) unmask the ketone in whatever its protected form was or 2) prevent it from 

interfering with important reactions to come. In a group meeting with visiting speaker 

Alison Frontier, had the wisdom to suggest masking the ketone as a terminal olefin, 

removing all worries of chemoselective issues to come. The terminal olefin could be 

oxidized by a Wacker oxidation and allow control over when the ketone came into play. 

This proved to be an exceptional idea and the new synthetic target of 4-28 was realized 

(Figure 15). 



116 

 

 

Figure 15 - New acrylic acid target 4-28 

This new target would serve its purpose of being a suitable acylating reagent with indole-

3-acetonitrile; it contained both the appropriate Michael accepting functionality, and the 

olefin capable of interconversion via Wacker oxidation to the ketone for Dieckmann 

cyclization.  

Work published by Stetter et al. used hemimalonate esters (4-29) in the presence of 

formaldehyde, pyridine, and catalytic piperidine to perform decarboxylative Mannich-

type reactions that generated acrylic esters (4-30) (Scheme 68).126  

 

Scheme 68- Stetter's work generating acrylic esters. 

With knowledge of Stetter’s work, I needed to develop a hemimalonate compound with 

the appropriate terminal alkene-bearing chain (4-34). Scheme 69 outlines the chemical 

pathway to successfully generate acrylic acid 4-28.  Starting from dimethylmalonate (4-

31), alkylation with 4-bromo-1-butene (4-32) generated alpha-substituted product 4-33 in 

a high 93% yield and at sufficient purity to avoid the use of column chromatography. The 

first route used a monosaponification of product 4-33 to access hemimalonate 4-34 in an 

89% yield without requiring column purification. From the hemimalonate 4-34, Stetter’s 

decarboxylative Mannich-type reaction was employed and I were thrilled to isolate a 78% 

yield of acrylic ester 4-36. Saponifcation of ester 4-36 generated an 88% yield of 4-28 for 

the first successful synthesis of an acrylic acid we sought. This first-generation synthesis 

isolated product 4-28 in 4 steps and a 57% overall yield.   
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Scheme 69 - The first successful synthesis of 4-28 and it's improved 3-step synthesis 

However, I figured that one step could be cut from this forward synthesis to avoid 

working with the extremely volatile and acrid smelling 4-34. Instead of monosaponifying 

product 4-33, I performed a double saponification resulting in malonic acid 4-35. This 

acid also successfully underwent the decarboxylative Mannich procedure and yielded 

desirable acrylate 4-28 in 3 steps and a 67% overall yield. Acid 4-28 was now easily 

synthesizable in large quantities (~10 g from 25 g of 4-bromo-1-butene, 4-32) and 

progress towards piecing together tronocarpine could be explored further.  

4.4 Second Generation Synthesis Towards Tronocarpine 

4.4.1 Indole-3-acetonitrile  

Acid 4-28 in hand, the second attempt at piecing together the framework of tronocarpine 

and dippinine B commenced and issues with this route quickly became apparent (Scheme 

70). 
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Scheme 70 - Progress towards tronocarpine using indole-3-acetonitrile and acrylate 

4-28. 

From acid 4-28 (Scheme 70), acylation of indole-3-acetonitrile (4-5) was troublesome, 

and resulted in a lot of destroyed material before realizing that after two hours, significant 

decomposition takes over despite indole 4-5 not being consumed. Two hours was 

determined to be the optimal amount of time to isolate just a 48% yield of acryloyl indole 

4-37. Many attempts were made to increase this yield because of the quantitative results 

achieved when acylating indole 4-5 with 4-acetylbutyric acid (4-11). However, this 

earlier reaction (Scheme 67) was complete in just 15 minutes. Although never cleanly 

isolated, it is suspected that a grammine-type fragmentation of indole 4-5 was occurring 

under these basic conditions. The maximum amount of product 4-37 isolated was 48%. 

This was a significant hint that using a nitrile-substituted indole would not be ideal for 

the progression of this synthesis, but there was enough material to continue forward. 

From product 4-37, the Michael addition with dimethyl malonate yielded tethered 

product 4-38 in an 80% yield (Scheme 70). The Mn(OAc)3 radical cyclization to the 2-
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position of indole 4-39 proceeded in a respectable 65% yield and then first attempt at a 

Wacker oxidation resulted in a 71% yield of ketone 4-40. Unfortunately, all attempts at a 

Dieckmann cyclization from this ketone product were unsuccessful. Bases such as NaH 

and NaOMe failed to generate any indication of product 4-41. Decomposition was 

prevalent under these basic conditions. I tried a TiCl4 catalyzed reaction to access product 

4-41 and at temperatures ranging between 0 °C and -78 °C, decomposition again 

prevailed. With the issues of isolating product 4-41 in clean, and appreciable amounts, I 

hypothesized that using a boc-protected tryptamine (4-42) would give us more reliable 

results.  

4.4.2 Boc-Tryptamine Indole Source 

Chemistry was repeated using tryptamine 4-42 in place of indole-3-acetonitrile (Scheme 

71). Initial acylation of tryptamine indole 4-42 with acrylate 4-28 proceeded in a higher 

86% yield than when indole-3-acetonitrile was used, yielding 4-43 (Scheme 71). Michael 

addition with dimethylmalonate provided an 83% yield of 4-44 and the Mn(OAc3) radical 

cyclization gave us desired 1,2-cyclized indole 4-45.  

 

Scheme 71 - Tryptamine as the indole source to synthesize lactam 4-46 
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At this point, lactamization of 4-45 was realized with the procedure outlined by Torres-

Ochoa using p-toluenesulfonic acid followed by K2CO3 and methanol. The results were 

high yielding, generating 98% of lactam 4-46 in a single diastereomer (Scheme 71). 

Because we had performed the lactamization first, there was the possibility that the amine 

tether could attack either accessible ester without constraint (Scheme 72). It was here I 

hoped luck was on our side and this lactamization yielded the correct diastereomer (4-

46a) as the molecule exists in nature (Scheme 72).  

 

Scheme 72 - Possible diastereomeric results of the lactam formation 4-46. 

Due to geometric constraints, the wrong diastereomer (4-46b) of the lactamized product 

would not be suitable to complete the final Dieckmann cyclization to form ring E. To 

determine which diastereomer was isolated, we first used a 1D NOESY NMR irradiating 

the methyl ester protons. If the proton on the other quaternary center felt any through-

space NOESY interaction to the methylester, it was likely that these protons were on the 

same face of the molecule (corresponding to product 4-46b).  Unfortunately, these 

protons were also possibly outside the detection distance of a NOESY interaction. When 

the NMR results were devoid of a NOESY correlation, it did not conclusively indicate 

that the wrong diastereomer was isolated. X-ray crystallography had to be used to 

determine which diastereomer of 4-46 was being generated. While crystal growing 

experiments were attempted, progress for generating ring D of tronocarpine was explored 

anyways.  

4.4.3 Exploring an Aldol Reaction to Generate Ring E 

3.45 g of lactam 4-46 was easily synthesized. Due to the previous shortcomings 

experienced when trying to complete ring E with a Deickmann cyclization, an 
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intramolecular Aldol reaction was considered to form the ring. Aldehyde 4-48 (Scheme 

73) would be far more reactive than ester (4-40), and the closed E ring would exist in the 

correct oxidation state seen in tronocarpine without further manipulation.   

Reduction attempts of 4-46 (Scheme 73) using DIBAL-H to stop directly at the aldehyde 

were unsuccessful. When DIBAL-H was used at -78 ˚C no reaction occurred and starting 

material was recovered.  Only upon warming the solution did we observe reduction of the 

indole acyl ketone and ester. The 1H NMR evidence supported a mixture of diastereomers 

that was difficult to conclusively analyze as the desired product.  The evidence of the 

indole 7-position proton shifting upfield by approximately 1 ppm indicated the reduction 

of indole acyl ketone 4-46 had potentially occurred. The methyl ester peak was also 

absent. However, it was only crude and messy mixtures of product 4-47 were isolated. 

The reduced product 4-47 was pushed into a DMP oxidation in attempt to get material 

that we could accurately elucidate, but again isolated a crude and unpurifiable mixture 

that had evidence of an aldehyde. This chemistry was extraordinarily finicky, 

unreproducible, and never gave clean results.     

 

Scheme 73 - Attempt at accessing the full pentacyclic structure of tronocarpine 
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Lacking confidence in the products generated in Scheme 73, finding a clean and high 

yielding method to confidently generate diol 4-47, preferably as one diastereomer, was 

sought.  

Confident that an Aldol reaction would close ring E of tronocarpine, generating diol 4-47 

so it could be further oxidized to product 4-48 was aggressively explored (Scheme 74).  

 

Scheme 74 - Ideal route incorporating an Aldol reaction to generate the pentacyclic 

framework of tronocarpine 

In an attempt to isolate diol 4-47 cleanly, lactam 4-46 was subject to a variety of reducing 

agents under differing reaction conditions. This work is summarized in Table 5,  and can 

be precisely summarized as: the methyl ester of product 4-46 is difficult to reduce, and it 

did not happen. It is likely that this methyl ester was sterically inaccessible.  

Sterically hindered reducing agents like DIBAL-H and LiEt3BH (Table 5, entry 1 and 

entry 10) exhibited difficulty transferring hydride to the carbonyl carbon and starting 

material was recovered in these cases.  

Table 5 - Attempts to reduce lactam 4-46 and form desired diol 4-47a 

 

Entry Reducing 

Agent 

(equiv.) 

Temperature 

(˚C) 

Solvent Result or 

Product Yield 

 

1 DIBAL-H (3) -78 ˚C DCM 4-46 recovered 

2 NaBH4 (40) reflux MeOH Product 4-47b 
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3 DIBAL-H (5) -78 ˚C DCM 4-46 recovered 

4* DIBAL-H (10) -78 ˚C DCM 4-46 recovered 

5 LiBH4 rt - 50 ˚C 1:1 

MeOH:THF 

4-46 recovered 

 

6 CaCl2 (5), 

NaBH4 (10) 

rt 1:1 

MeOH:THF 

4-47b*** + 

Decomposition 

7** DIBAL-H (5) -78 ˚C - rt DCM 4-47a suspected 

as diastereomers 

(37%) and 

Product 4-47b 

8 DIBAL-H (5) rt DCM 4-47a suspected 

as diastereomers 

(40%) and 

4-47b 

9 NaBH4 (10), 

CeCl3 (1.5) 

rt EtOH 4-47b (2 days) 

10 LiEt3BH (3) 0 ˚C DCM 4-47b 

11 LiEt3BH (3) rt THF 4-47a 

diastereomers 

(24%) + Product 

B 

12 LiEt3BH (10) 0 ˚C THF Product 4-47a 

diastereomers 

(20%) + Product 

B 

13 LiCl (5), 

NaBH4 (5) 

rt THF SM and 4-47b 

14 LAH rt THF Product 4-47a 

(26%) 

Significantly one 

diastereomer, 

clean 
* Indicates that a different solution of DIBAL was trialed in case of decomposed/aged reagent used in 

previous attempts 
** Indicates brand new bottle of DIBAL-H 
*** Product B is undesirable and was not isolated to determine an accurate yield 

A wide variety of reducing agents (LAH, LiBH4, LiEt3BH, DIBAL-H, NaBH4) can 

reduce the indole acylated ketone, which, while good news for the final structures of 

tronocarpine and dippinine B, was not helpful here as the methyl ester was not reduced 

further.  This pathway reducing the methyl ester in lactam 4-46 was not a viable pathway 

and no further focus was given to this route.  
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Additional ways to generate a more reactive ester or install a primary alcohol at that 

position were explored.  Krapcho conditions were examined to see if the ester could be 

removed. It seemed plausible that the anion produced in situ could attack 

paraformaldehyde to generate a primary alcohol without the use of reductive conditions, 

thereby removing the possibility of also reducing the indole acyl ketone (Scheme 75).  

Unfortunately, this chemistry was also unsuccessful and under forcing microwave 

conditions, starting materials were recovered along with evidence of the hydrogen-

containing Krapcho product  (Scheme 75). 

 

Scheme 75- Krapcho attempt to install alcohol chain via attack of 

paraformaldehyde 

4.4.4 Crystal Structure and Attempts to Epimerize the 
Diastereotopic Center 

Results of the X-ray crystal structure returned with unfortunate news.  The amine had 

closed selectively onto the wrong ester leaving the remaining existing in the opposite 

plane of the alkene chain (4-46b) (Figure 16).  These results meant that closure of ring E 

via the planned Dieckmann cyclization would be impossible unless the chain alpha to the 

indole acyl ketone was epimerized.  
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Figure 16 - Crystal structure of lactam product 4-46 indicating undesirable 

diastereochemistry 

To test if epimerization was possible, lactam 4-46b was deprotonated with LDA and 

quenched with D2O. NMR results of this experiment concluded that exclusive 

deprotonation of the amide N-H had occurred (Figure 17).  Knowing the amide proton 

was so easily removed allowed for re-examination of our pathway to ensure that we kept 

that proton protected while making any transformations under basic conditions. A route 

in which I explore protections of this amine are discussed in vide.  
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Due to the unfavourable chemical complications caused by the tryptamine chain, I opted 

to explore a brief model study using indole as our acylating substrate. With a lack of 

acidic protons, I hoped that this model would provide positive evidence that the E ring of 

tronocarpine could be formed by Dieckmann type condensation. The results of this model 

study are outlined in Scheme 76 and Table 6. Acylation with indole proceeded smoothed 

to product 4-50 and radical cyclization afforded tricylic product 4-51 in a 45% yield over 

2 steps. The Wacker oxidation isolated ketone 4-53 in a 66% yield.  

Figure 17 - 1H NMR of deprotonated lactam showing loss of amide proton when 

quenched with D2O 
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Scheme 76- Model study using indole to isolate tricylic product 4-52 for cyclization 

testing 

Product 4-52 in hand, attempts to cyclize the enol of the ketone to one of the esters (4-53) 

moved forward. The results of these ring-closing attempts are outlined in Table 6. 

Table 6 - Experimental conditions explored to generate product 4-53 

 

Entry Reagent Solvent Temperature 

(˚C) 

Result 

1 NaH THF 25 decomposition 

2 NaH, MgI2 THF 25 decomposition 

3 TiCl4, NEt3 DCM -10 decomposition 

The model study provided little proof that we could successfully close ring E of 

tronocarpine via ketone to ester Dieckmann cyclization. At this point, and to work around 
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the difficulties of E-ring formation via Diekmann, I thought varying the Michael addition 

nucleophile could impart alternative reactivity that would allow us to close this difficult 

ring. In addition to changing the nucleophile, an exploration simply protecting the amide 

was also constructed to determine if these changes would result in forward progress. 

4.4.5 Short Exploration of Protecting the Amide 

Determining that the amide N-H was preventing attempts at epimerizing the alpha 

diastereotopic center and preventing the formation of a reactive enolate, the obvious 

solution was to protect the amide (Scheme 77). From closed lactam product 4-46 

protection of the amide proceeded smoothly with Boc2O in an 87% yield (4-54). Quick 

attempts to reduce the methylester in product 4-54 were explored with CeBH4 and LiBH4 

but failed to yield any of diol product 4-55. Wacker oxidation of 4-54 generated ketone 4-

56 in a 62% yield and again decomposition resulted from attempts to close ring E (4-58) 

under basic conditions.  

 

Scheme 77 - Protection of amide N-H to try and close ring E or reduce methylester 

Exhaustive attempts to close ring E from the precursor to the lactam 4-59 are outlined in 

Table 7 using the fully protected tryptamine chain. Product 4-59 was subjected to a 

variety of basic and acidic conditions to determine if ring E would close to keto/enol 

product 4-60/4-61 (Table 7). 
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Table 7 - Attempts to cyclize ring E from doubly protected amine 4-59 

 

Entry Reagents Solvent Conditions Result 4-60/4-

61 

1 NaH THF 0 °C Unelucidated 

mixture 

2 NaH THF -78 °C 4-59 recovered 

3 NaH Benzene 80 °C Decomp. 

4 K2CO3 MeOH 70 °C 0% 

5 TiCl4, NEt3 DCM 0 °C Boc removal 

6 NaOMe Et2O rt 0% 

7 MgCl2 DCM rt 0%, 4-59 

recovered 

8 MgCl2, DBU DCM rt 0%, 4-59 

recovered 

9 Na0 MeOH 65 °C Decomp. 

10 NaH, MgCl2 Benzene 80 °C Decomp. 

11 MgCl2 DCM µw 80 °C 4-59 recovered 
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Under strongly basic conditions with NaH, decomposition of the starting material 4-59 

was prevalent at temperatures above 0 °C (Table 7, entry 1, 2, 3 &10). While at 0 °C 

with NaH, a complex inseparable and unelucidated mixture was generated, which was 

ultimately unhelpful for progression towards the total synthesis of tronocarpine. Attempts 

at using titanium catalyzed ring closure simply resulted in the deprotection of one of the 

Boc groups on amine 4-59 (Table 7, entry 5). All other attempts (using MgCl2, MgCl2 

and base, or NaOMe) to close ring E resulted in either decomposition or the recovery of 

starting material (Table 7, entry 6,7,8 & 9). Stuck at trying to synthesize ring E of 

tronocarpine the synthetic route had to be modified again. 

4.5  Third Generation Pathway Towards Tronocarpine: 
Exploration of Alternate Michael Addition Nucleophiles 

Due to the promise of similar literature reactions, forward progress was attempted 

following the same idea that an aldol would correctly close ring E.127  The aldehydes 

electrophilicity would be greater than the methyl ester previously explored and for this 

reason we expected the reaction to proceed under milder conditions.128 Exemplified in 

Scheme 78, intermediate 4-62 would provide the necessary aldehyde functionality and 

could come from an alternate Michael addition nucleophile, while still being susceptible 

to radical generation by Mn(OAc)3.  

 

Scheme 78 - Intermediate 4-62 that would be able to access acceptable aldol 

condensation candidate 4-63 

The first hypothesis tested used desired aldehyde (4-66) and its acetal (4-65) as potential 

nucleophiles. Product 4-65 was commercially available, and its deprotection was 

straightforward in TFA and water (Scheme 79) but the final product (4-66) could not be 
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purified without destroying the material and had to be used crude from the deprotection 

reaction.  

 

Scheme 79 - Two potential aldehyde bearing nucleophiles 4-65 and 4-66 

Any attempts to use either 4-65 or 4-67 as nucleophiles in the Michael addition with acyl 

indole generated either deacylated material (1-1) or failed (Scheme 80). Due to the 

increased difficulty of deprotonating the single carbonyl species, and the fact that E1cB 

elimination could expel ethoxide, which readily deacylated the starting indole, no desired 

product was obtained from these attempts.  

 

Scheme 80 - Attemots at using acetal protected aldehydes for Michael addition 

reactions 

Since the free aldehyde species 4-66 was unstable, we turned our attention to attaching 

these nucleophiles to the amine of tryptamine, in hopes of accessing a stable aldehyde 

(Scheme 81).  From acetal 4-65, saponification to acid 4-69 set up an EDC coupling that 

worked nicely with tryptamine (4-70) producing a 75% yield of 4-71. From the acetal 

substituted tryptamine we were able to acylate with the usual acyl chloride 4-72 and 

generate product 4-73. From here we envisioned (Scheme 82) that revealing the aldehyde 

4-74 and performing an intramolecular Michael addition would generate macrocyclic 

product 4-75.  
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Scheme 81 - Route to product 4-73 to access a stable aldehyde. 

 

 

Scheme 82 - Proposed access to macrocycle 4-75. 
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Unfortunately, attempts to isolate the aldehyde or the macrocycle failed to yield desired 

products and again we were plagued with issues of deacylating the acryloyl alkene chain 

(Table 8). 

Table 8 - Experimental attempts to isolate aldehyde 4-74 

 

Entry Conditions Result 4-74 (%) notes 

1 TFA, “wet” DCM 0 Decomp. 

2 oxalic acid, H2O, 

THF 

0 Deacylation 

3 Amberlyst-15, 

acetone, H2O 

0 Decomp. 

4 1. Amberlyst-15, 

acetone, H2O, 

40 °C 

2. K2CO3, THF, 

50 °C 

0 NMR of aliquot had 

an aldehyde peak; 

in case it was 

sensitive, I tried the 

Michael addition in 

the same pot 

without aldehyde 

isolation. 
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5 5% HCl, d-

MeCN, 40 °C 

0 Aldehyde present in 

crude NMR, was 

not successfully 

isolated 

6 Pyrrolidine, 

MeOH 

0 Deacylation 

It is likely that because water is required to free the aldehyde for the Michael addition, 

this was enough to cause deacylation of starting material 4-73, and the decomposition of 

materials. Although it was helpful that in Table 8 (Entries 4 and 5) the NMR data had 

an aldehyde peak, I was never able to harness the aldehyde successfully. Table 8, Entry 

6 outlines the use of pyrrolidine to try to make an enamine in-situ that was more 

nucleophilic to undergo Michael addition but only deacylation occurred. 

Although it is not a differing Michael addition nucleophile, and because the route had 

been established to product 4-71, I thought I could try forming the product cyclized on 

the 2-position of the indole (4-76) and then work to establishing the carbon-carbon bond 

to the acryloyl component (Scheme 83). A few radical-based attempts were explored to 

generate cyclized product 4-76 (Scheme 83). Both Mn(OAc)3  and ceric ammonium 

nitrate (CAN) failed to yield any cyclized product. If product 4-76 was accessible, we 

hoped that the 1,3-dicarbonyl containing ring could be deprotonated to under-go Michael 

addition after the indole was acylated. These attempts were unsuccessful at generating the 

reactivity required for an aldol type ring-closure, and so the research pathways were 

altered to explore thioesters as means to access aldehyde functionality.  
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Scheme 83 - Single-electron oxidants used in attempt to make product 4-76. 

 

4.6 Fourth Generation Route: Using Thioester Reduction to 
Access Aldehyde Reactivity 

A couple prevalent reactions exist to convert thioesters selectively to aldehydes. The 

Fukuyama reduction chemoselectively reduces thioesters to aldehydes in the presence of 

a palladium catalyst and triethylsilane (Scheme 84).129 

 

Scheme 84 - Reduction of a thioester to an aldehyde 

This reaction has great chemoselectivity and works well in the presence of amides, esters, 

ketones, and is an alternative method of mildly reducing acids, which are easily 

converted to thiol esters. Using this reaction, I hoped that selective reductions of a 

thioester would easily install a desired aldehyde from a product 4-77 outlined in Figure 

18. 
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Figure 18 - Proposed intermediate to try and access a desired aldehyde via 

Fukuyama reduction 

The chemistry to access product 4-77 proceeded with ease using the previously 

established route to these tricyclic indole scaffolds (Scheme 85). Starting from the

 

Scheme 85 - Synthetic pathway to access thioester containing scaffolds 4-81 and 4-83 

acylated N-Boc protected tryptamine 4-43 (Scheme 85), Michael addition with a 

thioester malonate 4-78 worked in a 67% yield to access 4-79. The Mn(OAc)3 radical 

cyclization proceeded in a high 93% yield to generated 1,2-disbstituted indole 4-80. A 

report indicated that terminal alkenes may interfere with the palladium catalyst, product 

4-80 was therefore taken to the ketone via a Wacker oxidation (4-81, 73% yield) and then 



137 

 

to the doubly protected amine via Boc protection (4-82) and Wacker oxidation generated 

4-83 (40% over two steps).130  

From material 4-83 I explored Dieckmann-type condensations between the methyl ketone 

and the thioester to test if the more reactive thioester performed favourably compared to 

previous attempts to closed ring E. Unfortunately, basic conditions of NaH or NaOMe 

failed to cyclize the generated enolate onto the thioester to access 4-84 (Scheme 86). 

Under methoxide conditions, the diester material used in previous routes was observed 

(4-59).  

 

Scheme 86 - Attempts at generating ring E of tronocarpine from the thioester 

scaffold 

From material 4-81, the Fukuyama reduction was explored to isolate aldehyde 4-85.131 

The results of these attempts are outlined in Table 9. Using Pd(OAc)2 as the palladium 

source, and 5 equivalents of triethyl silane (Et3SiH) in acetone, the result was no reaction 

(Table 9, Entry 1). Despite intense bubbling, assumed to be from gaseous sulfur 

byproducts, only starting material was observed in the crude NMR. Changing the solvent 

from acetone to DCM gave no improvement (Table 9, Entry 2), but because DCM was 

easier to keep dry, it was used for remaining attempts. Adding the silane slowly over 1.5 
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h to release hydrogen in a more controlled manner also failed to generate aldehyde 4-85 

(Table 9, Entry 3) and adding 2,6-lutidine, a reagent that had been known to accelerate 

the reaction, also failed to yield positive results (Table 9, Entry 5&6).  

Table 9 - Fukuyama reduction attempts to isolate aldehyde 4-85 

 

Entry Reagents Solvent Conditions Result 4-85 

(% yield) 

1 Pd(OAc)2 (0.3 

equiv). Et3SiH 

(5 equiv.) 

Acetone rt 0 

2 Pd(OAc)2 (0.3 

equiv.), Et3SiH 

(5 equiv.) 

DCM rt 0 

3 Pd(OAc)2 (0.3 

equiv.), Et3SiH 

(5 equiv.) 

DCM rt, silane added 

slowly over 1.5 

h 

0 

4 Pd(OAc)2 (0.3 

equiv.), 

(Et3SiH 2.3 

equiv.), 2,6-

lutidine 

DCM rt 0 
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5 Pd(OAc)2 (0.3 

equiv.), Et3SiH 

(4 equiv.), 2,6-

lutidine 

DCM rt 0 

6 Pd(OAc)2 (0.3 

equiv.), Et3SiH 

(5 equiv.), 2,6-

lutidine 

DCM rt, silane added 

over 1 h 

0 

Unsure of why this reaction was failing, my best hypothesis was interference from the 

nitrogen-containing tryptamine -chain. Another substrate was synthesized from indole to 

avoid having nitrogen present, opting to add the tryptamine chain later. To access 

tryptamine lacking thioester intermediate 4-86, I again applied the optimized route 

(Scheme 87); acylating indole with acrylic acid 4-28 and using methylthiomalonate 4-78 

as the Michael nucleophile. Acylation of indole proceeded in a high 93% yield, and the 

Michael addition followed by radical cyclization occurred in a 44% yield over two-steps. 

Finally, Wacker oxidation elucidated methyl ketone 4-86 in a 25% yield as this reaction 

failed to consume all starting material. 

 

Scheme 87 - Synthetic route to product 4-86. 
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Fukuyama reduction attempts were applied to product 4-86 and the results are outlined in 

Table 10. Switching the palladium source to Pd/C resulted in a violently gaseous reaction 

which we had hoped meant we were expelling ethanethiol but only starting material was 

ever isolated (Table 10, Entry 1 & 2). Varying solvent concentration of the reactions 

also gave disappointing results. Addition of silane slowly also did not change the reactive 

outcome of this reaction (Table 10, Entry 2&3).  

Table 10 – Fukuyama reaction conditions attempted on model product 4-86 

 

Entry Reagents Solvent Conditions Results 4-87 

(% yield) 

1 Pd(Oac)2 (0.3 

equiv.), Et3SiH 

(5 equiv.) 

DCM (0.5 M) Silane added 

slowly over 1 h 

0 

2 Pd/C (0.5 

equiv.), Et3SiH 

(3 equiv.) 

Acetone (0.5 

M) 

Silane added 

slowly over 1 h 

0 

3 Pd/C (0.5 

equiv.), Et3SiH 

(3 equiv.) 

Acetone (0.5 

M) 

Silane added at 

one time 

0 

4 Pd/C (0.5 

equiv.), Et3SiH 

(3 equiv.) 

DCM (1 M) Silane added 

slowly over 1 h 

0 
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Disappointed by the results of these experiments, a quick test reaction confirmed that 

these undesired results were not an effect of bad reagents, or experimental technique 

(Scheme 88). We were able to generate simple aldehyde 4-91 using the Fukuyama 

protocol. This simple test confirmed that for the purposes of closing tronocarpines ring E, 

a Fukuyama reduction was not the answer. Truly at a roadblock, a complete overhaul of 

my original retrosynthetic analysis of tronocarpine and dippinnine B was required.  

 

 Scheme 88 - Confirmation of the Fukuyama reaction conditions  

 

4.7 Fifth Generation Synthesis Towards Tronocarpine and 
Dippinnine B 

 

4.7.1 Retrosynthetic Analysis Using New Acrylic Acid Moiety 4-93 

Having such trouble in earlier synthetic attempts at these molecules, we thought forming 

ring E before attaching it to the required tryptamine moiety would solve the issues of 

forming this ring late-stage. This concept would require the synthesis of a cyclic acid (4-

93) that could be used as the acylating agent (Scheme 89). The formation of the lactam 

ring in tronocarpine would still involve an amine condensation of product 4-1 into the 

methyl ester. This route relies heavily on a SET agent being capable of generating the 

alpha radical on a vinylogous 1,3 dicarbonyl system as showcased in product 4-92. There 

exists no precedent to such vinylogous system generating radicals with Mn(OAc)3,  but I 

was hopeful this system could close the ring to the 1,2-indole product 4-1. Product 4-92 

would be generated from an acylation reaction between tryptamine moiety 4-42 and the 

new carboxylic acid target 4-93. The success of this route relied heavily on the ability to 

generate product 4-93. 
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Scheme 89 – Retrosynthetic Analysis 3: pathway using a cyclic acid as an acylation 

agent 

To generate acid 4-93 a synthesis had to be designed (Scheme 89). The first 

retrosynthesis proposed was again following the idea that an aldol between an aldehyde 

and methyl ketone enolate would generate the alpha/beta unsaturation observed in 

product 4-93. This route would involve reactions with potential for chemoselective 

issues, but the retrosynthetic analysis is outlined below (Scheme 90). The aldol reaction 

of ketone/aldehyde product 4-94 would successfully furnish acid 4-93. To generate such 

a complex hydrocarbon chain (4-95), we would use a Michael addition between acid 4-97 

and acrylate 4-96 bearing protected alcohol. Both products (4-96 and 4-97) have 

literature established routes.132, 133  



143 

 

 

Scheme 90 - Retrosynthetic Analysis 4: using an aldol to generate cyclic acid 4-93 

Commencing synthetic progress to acid 4-93, the alcohol acrylate 4-100 was generated 

first using a Baylis-Hillman reaction of methyl acrylate (4-98) and paraformaldehyde in 

the presence of DABCO (Scheme 91).  

 

Scheme 91 - Initial attempts to synthesize acid 4-93 
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While it is a low yielding reaction (15%), the materials are inexpensive, and the reaction 

is easily scaled. There existed no previous precedence at protecting the alcohol on 

product 4-100 and it quickly became apparent why; in the presence of base, and either 

TMS-Cl or TBS-Cl, the material quickly polymerized. This polymerization problem was 

never overcome, and this route was quickly abandoned. 

4.7.2 Second Retrosynthetic Analysis to Access Tronocarpine 
through Similar Cyclic Acid Moiety 4-102 

Reviewing past attempts accessing tronocarpine from previous Kerr group members, 

Katarina Sapeta had developed a route which successfully generating ring E, but she was 

unable to impart the correct functionalization for the rest of tronocarpine.134 Her 

methodology elucidated that DA CPs can be opened with 2-(chloromethyl)-3-

trimethylsilyl-1-propene (4-106) and following base-mediated ring closure would 

generate 1,3,5 substituted cyclohexane products (Scheme 92). I envisioned that this 

cyclohexane (4-105) could be modified to the cyclohexene (4-102) bearing the α,β 

unsaturated ketone required for tronocarpine (Scheme 92).  

Starting from vinyl cyclopropane 4-107 (Scheme 92), opening with 4-106 would 

generate vinyl cyclohexane 4-105. Manipulations using hydroboration, protection and 

Wacker oxidation would ideally install the primary alcohol and ketone exemplified in 

product 4-104.135 Selenoxide elimination would generate internal alkene 4-103 for the α,β 

unsaturated ketone 4-102. A Krapcho decarboxylation would remove one of the esters 

and then product 4-102 could be acylated after the primary alcohol is oxidized via Jones 

oxidation to a carboxylic acid. Product 4-92 outlined earlier (Scheme 89) could be 

subjected to radical closure to the indole through the vinylogous reactivity of the 1,3-

dicarbonyl moiety. If this chemistry proved troublesome, other reactions could be 

explored, like α-halogenation for other coupling transformations. 4-1 would furnish 

tronocarpine by the lactamization and reduction as discussed in the previous 

retroanalyses.    
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Scheme 92 - Retrosynthetic Analysis 5: Route to tronocarpine incorporating 

cyclohexene 4-102 

4.7.3 Chemistry Employed to Realize Retrosynthetic Analysis 5 

Vinyl cyclopropane 4-107 is easily synthesized and was subjected to silane 4-106. 4-106 

and TiCl4 in DCM at -78 °C opened vinyl cyclopropane 4-107 in yields up to 88% of 4-

108, but the reaction became troublesome when trying to scale-up (Table 11). Silane 

piece 4-106 is also incredibly expensive at $112/g and is strangely no cheaper to 

synthesize ourselves. As Sapeta et al. were working on a much smaller scale this was no 

issue, but this became the first limiting factor of this synthetic route. During scale-up, any 

reaction using more than 100 mg of cyclopropane saw a sharp decline in yields from 

around 75% down to 30-55% (Table 11, Entry 1, 2, 3, 4, 5). Column chromatography 

seemed to drastically cut yields, and because the crude NMRs were not full of impurities, 

I began pushing crude material forward into the cyclization, which could then be purified 

with ease. Interestingly, the yields increased by 10% when less than 100 mg of 
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cyclopropane 4-107 was used. To generate enough working material, I purchased 5 g of 

silane 4-106 and ran the reaction on multiple 100 mg scales.  

Table 11 - Effects of Scale-Up in synthesizing chain 4-108 

 

Entry Scale of CP 4-107 Yield 4-108 (%) 

1 100 mg 76 % 

2 500 mg 55 %a 

3 500 mg 48 %a 

4 500 mg 55 %a 

5 1 g 36 %a 

6 1 g Did not complete 

7 500 mg 33 %b 

8 100 mg 78 % 

9 50 mg 88 % 

a Crude yield b Purified yield 

Product 4-108 in hand, cyclization with NaH in DMF worked well giving a 96% yield of 

1,3,5-substituted cyclohexane product 4-105. Wacker oxidation selectively oxidized the 

vinyl group to generate methyl ketone 4-109 in 81% yield.  
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Scheme 93 - Ring closure and Wacker oxidation to access cyclohexane 4-109 

With product 4-109 accessible, it became time to optimize the synthesis of hydroboration 

product 4-110. Aware that chemoselectivity with the ketone was a potential issue, I 

expected that I may also get reduced secondary alcohol products (4-111) but hoped that 

functionality could be restored. Literature precedent also existed for the hydroboration of 

alkenes in the presence of ketones that left the ketones unaffected.135,136, 137 The results of 

optimizing the hydroboration product are outlined in Table 12. 

Table 12 - Optimization of hydroboration reaction 

 

Entry Borane 

Reagent 

Solvent Condition Result 

1 BH3•THF THF 0 °C 4-111a 

2 BH3•THF THF 25 °C 4-111a 

3 BH3•THF THF -78 °C 4-111a 



148 

 

4  

(2.5 

equiv.), H2O2, 

15% NaOH 

THF 0 °C-25 °C Starting 

material 

recovered. 

5  

 

(2.5 equiv.) 

H2O2, 15% 

NaOH 

(removed 

stabilizer from 

2-methyl-2-

butene) 

THF 0 °C-25 °C Structure of 

isolated 

material 

inconclusive. 

6  

(2.5 

equiv.), H2O2, 

15% NaOH 

(removed 

stabilizer from 

2-methyl-2-

butene) 

THF 0 °C-45 °C - 8 spots by 

TLC.  

- 4 mg of 

product 4-110 

(7 % yield)  

7  9-BBN (1 

equiv.), NaBO3 

THF 25 °C Decomp. 
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8  9-BBN (1.2 

equiv.), H2O2, 

3M NaOH 

THF 0 °C 16%, 4-110 

9  9-BBN (1.5 

equiv.), H2O2, 

3M NaOH 

THF 0 °C – 25 °C 37%, 4-111 

10  

(1 equiv.), 

NaBO3, H2O 

THF 25 °C 20% (brsm) 4-

110 

11  

(1.2 equiv.), 

NaBO3, H2O 

THF 25 °C 7% 4-110 

12  

(1 equiv.), 

NaBO3, H2O 

THF 0 °C 4-109 

recovered 

13  

(1.2 equiv.), 

NaBO3, H2O 

THF 0 °C 15% 4-110 

Best results. 

Repeatable. 
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14  

(1.5 equiv.), 

NaBO3, H2O 

THF 25 °C 8% 4-110  

a Not purified or isolated 

 

 

Only low yields of product 4-110 were isolated throughout the experiments detailed in 

Table 12, and the best borane reagent was determined to be cyclohexylborane (Table 12, 

Entry 13). When worked-up in the presence of NaBO3 and H2O it at least reliably 

produced yields of product 4-110. 

As a note, protecting the ketone with an acetal (4-112) and subjecting the material to the 

cyclohexylborane hydroboration had no positive effect on the results (Scheme 94). No 

desired product (4-113) was formed. 

 

Scheme 94 - Protected acetal 4-112 also failed to produce desired hydroboration 

product 4-113 

 From the very small amount of product 4-110 generated, forward synthetic progress was 

pursued first protecting the newly generated alcohol (Scheme 95). Protection with TBS-

Cl worked well (4-114), but attempts at selenoxide elimination were not fruitful. PhSeCl 

and PhSeBr were explored in attempts to generate phenylselenide product 4-115 that 

could be eliminated in the presence of peroxide. No desired product (4-116a/b) was 

isolated.  
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Scheme 95 - Synthetic progress in attempts to generated cyclohexene 4-116a 

In the reality that sometimes is natural product synthesis, cost and budget became a factor 

in our planned route. Due to the lack of material acquired and the expense of silane 4-

106, accessing gram-scale products was not feasible. Unfortunately, again, we had to turn 

our attention to a new, and more supportable route, to the natural products desired.  

4.8 Sixth Generation Synthesis Towards Tronocarpine and 
Dippinine B 

4.8.1 Retrosynthetic Analysis 6 Incorporating Enyne Metathesis 

Enyne metathesis between an alkene and an alkyne is an extraordinarily powerful tool for 

generating conjugated alkene products.138 This reaction has been used to synthesize vinyl 

cyclohexene rings like that showcased in product 4-117.139 With the reliable nature of the 

Wacker oxidation in all synthetic attempts up to this point, we felt confident that the 

alkene generated from such enyne metathesis (4-117), could be interconverted to desired 

α,β-unsaturated ketone (4-1) in ring E in tronocarpine (Scheme 96).  

Retrosynthetically analyzing such a route (Scheme 96) meant we would require novel 

alkene and alkyne functional groups in our intermediates to appropriately yield desired 

cyclohexene 4-117. Outlined in Scheme 96, lactamization between tryptamine chain and 

methyl ester would again close the final ring of tronocarpine from product 4-1. 4-1 would 
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be generated from vinylogous 1,3-dicarbonyl cyclization via radical activation, and this 

cyclohexene functionality would be imparted by the enyne metathesis of substrate 4-118. 

To generate substrate 4-118 acylation with a slightly different alkyne-bearing acrylic acid 

(4-119) would need to be performed. This acrylic acid would again come from the 

previously used decarboxylative Mannich after simple alkylation of dimethylmalone (4-

31) with propargyl bromide (4-121).  

 

Scheme 96 - Retrosynthetic Analysis 6:  using enyne metathesis to generate ring E of 

tronocarpine  

Confident that the scale up of this route would be much easier, and with cheaper starting 

materials, exploration of this new proposal commenced.  
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4.8.2 Forward Progress Exploring the Enyne Metathesis 
Retrosynthetic Route 6 

Initial progress exploring Retroanalysis 6 proceeded exceedingly well. On a first run 

through we were able to finally access acylated indole containing cyclohexene ring 4-117 

(Scheme 97). Step 1 was difficult to purify, acylating dimethylmalonate 4-31 with 

propargyl bromide (4-121), a by-product of the dialkylated species was prominent. The 

yield was low enough to justify purchasing commercially available 4-122. Saponification 

(4-123) followed by decarboxylative Mannich again proved successful yielding acrylic 

acid 4-119 in a 47% yield over two steps. 

Acrylic acid 4-119 was successfully coupled to protected tryptamine in an 84% yield, 

giving acryloyl indole 4-124. A Michael addition was possible using acrylate 4-125 in the 

presence of LDA.140,141 However, this reaction was finicky, and it was necessary to 

quench the material at the first signs of a second new spot by TLC. This was a 

decomposition product that upon its formation, a 0% yield of product 4-118 would result. 

Because yields of 4-118 were low on this reaction because it had to be quenched while 

starting material remained. So, while low yielding, the terminal alkene was accessible 

and set up the functionality for the desired enyne metathesis. Enyne metathesis attempts 

were explored and using both Grubbs 1 and Grubbs 2 catalysts142 we could generate a 

mixture of diastereomers (4-117). The exploration of the enyne metathesis is outlined in  

 

Table 13.  
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Scheme 97 - Synthetic pathway to enyne metathesis product 4-117 
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Table 13 - Exploration of Enyne Metathesis 

 

Entry Catalyst  Solvent Atmosphere a Temperature Result 4-117 

1 Grubbs 1 (10 

mol%) 

DCM Ethylene (1 

atm) 

rt 41% 

separable 

diastereomers 

2  Grubbs II (10 

mol%) 

toluene Argon 90 °C 7% 

3  Grubbs II (10 

mol%) 

DCM Ethylene (1 

atm) 

35 °C 47% 

separable 

diastereomers 

4  Grubbs II 

(10 mol%) 

DCM Ethylene (1 

atm) 

35 °C 38% 

separable 

diastereomers 

5  Grubbs II (10 

mol%) 

DCM Ethylene (1 

atm) 

35 °C 42% 

separable 

diastereomers 

- Tripled the 

scale size 

6  Grubbs I (10 

mol%) 

DCM Ethylene (1 

atm) 

35 °C Mixture of 4-

117 and 4-

125; DNC 
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a Ethylene is flushed directly into reaction solution for 5 mins before being placed under a 

balloon atmosphere of ethylene. 

In order to generate the appropriate vinylogous reactivity for the ring closure reaction 

with Mn(III), a Wacker oxidation was required to generate ketone product 4-127 

(Scheme 98). However, in all attempts of this reaction, nothing happened. Subjected to 

long lengths of time and heating the mixture, starting material (4-117) always remained.  

A literature investigation confirmed that these conjugated substrates can sometimes be 

unreactive to palladium chemistry because coordination to the conjugated alkene system 

(4-126) will trap the palladium preventing it from any further reactivity (Scheme 98).143 

 

Scheme 98 - Failed reactivity of the Wacker oxidation on product 4-117 

This is where the project ended. I hope a future graduate student can be convinced to give 

this another attempt. Perhaps my tribulations will aid in their design of a successful 

pathway to these molecules. I outline in the following section possible re-works that 

could be attempted. To the future student that may be reading this: feel free to contact 

me.  

4.9 Conclusions and Future Outlook 

Although exploration of 6 possible routes towards natural products tronocarpine and 

dippinine B were fruitless, a large amount of knowledge was acquired regarding ways in 

which the pentacyclic scaffolding of these molecules should not be formed. Ring E being 

as troublesome as it was to synthesize, should absolutely be constructed as a separate 

component that is later connected to the indole half of the molecule (Figure 19).  
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Using SET agents to cyclize the cyclohexene ring of these molecule, while successful, 

has never worked on a vinylogous substrate. I think exploration of this chemistry would 

in and of itself be publishable if a methodology could be developed. I suspect using a 

SET agent on vinylogous 1,3-dicarbonyl electrophiles (4-129) in the presence of indoles 

(4-129) may generate products like 4-140 (Scheme 99).  

 

Scheme 99 - Chemistry worth exploring generating radical on vinylogous dicarbonyl 

molecules 

I am also still confident that product 4-93 is a great substrate towards overcoming the 

hurdles outlined in this chapter.   

 

Figure 19 - Ring E component to access molecules tronocarpine and dippinine B 

If substrate 4-93 can be attached to tryptamine (4-131), the route outlined in Scheme 100 

would theoretically be capable of overcoming the chemoselectivity and non-reactivity 

issues that were discovered. If chemistry can be developed to cyclize to the indole and 

generate a product along the lines of 4-132 or 4-134, oxymercuration should be capable 

of imparting the oxidation required to the α,β unsaturated ketone in 4-135. With a ketone 

installed (4-135), deprotection of the amine should perform the Michael addition likely in 

the same pot as the deprotection furnishing the ring in product 4-136 on the way to 

dippinine B. Protecting the methyl ketone will be crucial for successful reduction of the 
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indole bound ketone with NaBH4 (4-137). Deprotection to elucidate methyl ketone back 

would complete the synthesis of dippinine B.  

 

 

Scheme 100 - Potential route to complete natural products tronocarpine and 

dippinine B 

At substrate 4-132, deprotection the amine first will close the lactam ring generating 4-

133. Reduction of the ketone in product 4-133 with NaBH4 will be easier done without 

the methyl ketone furnished yielding 4-134. Finally, oxidation of 4-134 via Wacker, if the 
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palladium is not rendered inert by this more constrained molecule or by oxymercuration, 

would furnish tronocarpine.  

Should it become viable to further progress the route outlined in Retrosynthetic Analysis 

5, Section 4.7.3 (Scheme 92), I have a few suggestions of how to both improve and 

progress the chemistry of this synthetic pathway. Access to compound 4-114 is possible 

as discussed earlier, if improvements to the hydroboration step of this product can access 

more material, there exists the possibility that one of many oxidation reactions could 

install the desired α/β unsaturated functionality in desired compound 4-138 (Scheme 

101). All of the reactions in Scheme 101 would be worth exploring to access the valuable 

product 4-138. Saegusa outlines how from silyl enol ethers (4-139) Pd(II) chemistry will 

access products like 4-140.144 Nicolaou and Stahl have outlined using IBX or palladium 

chemistry with oxygen as easily accessible pathways to get directly to the α/β unsaturated 

ketones (4-142, 4-144).145  Brown showcases B-I-9-BBN paired with Pd to oxidize 

ketone substrates (4-146) and Legault showcases iodine reagents that add OTs groups 

that could be eliminated to give desired functionality (4-150b).146 Finally, Newhouse 

explored zinc reagents helping to facilitate palladium oxidation chemistry again that 

could give the desired product 4-138.147 As a note, any work involving IBX in this way 

requires very dry conditions (DMSO distilled before every reaction) and the IBX is 

recommended to be made by the operating chemist.  

In compiling the work towards synthesizing tronocarpine and dippinine B, it became 

apparent that generating a macrocyclic intermediate from the thioester containing 

components was never attempted (Scheme 102). This may be a solution to getting around 

the road-blocks found in this project. From an intermediate like 4-151 (Scheme 102), the 

difference in reactivity between methyl ester and thioester may allow selective closure of 

the tryptamine amine to generate amide macrocycle 4-152. If R of 4-151 is a carboxylic 

acid, an EDC coupling may fashion the same macrocycle. This macrocycle may have 

completely different reactivity to close ring E of tronocarpine and dippinine B. The 

intermediate 4-152 should have no problems with radical closure to the indole component 

via SET agent.  
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Scheme 101 - Oxidations worth trying to elucidate the alpha/beta functionality of 

compound 4-138 
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Scheme 102 - Generating macrocycle to access novel intermediate that may aid the 

synthesis of tronocarpine 

I hope further progress resulting in the successful synthesis of these molecules is 

harnessed in the future.  

4.10  Experimental 

4.10.1 General Experimental Details 

All reactions were conducted under an air atmosphere unless otherwise indicated. Flasks 

were oven dried and cooled in a desiccator prior to use.  All chemicals were of reagent 

quality and used as obtained from commercial sources except for the Mn(OAc)3●2H2O, 

which was prepared by modified literature procedure (the exact procedure noted in 

Chapter 3).  NMR experiments were performed on either a Bruker AvIII 400, Varian 

Inova 400 and Inova 600 instruments and samples were obtained in CDCl3 (referenced to 

7.25 ppm for 1H and 77.0 ppm for 13C). Coupling constants (J) are in Hz. The 

multiplicities of the signals are described using the following abbreviations: s = singlet, d 

= doublet, t = triplet, q = quartet, dd = doublet of doublets, dt = doublet of triplets, m = 

multiplet, br = broad.  High resolution mass spectra (HRMS) were obtained on Thermo 

Scientific DFS mass spectrometer using electron impact ionization.  Microwave reactions 

were performed in a 400 W Biotage Initiator 2.0 microwave reactor.  Dichloromethane 

(DCM), acetonitrile (MeCN), toluene, benzene and THF were dried and deoxygenated by 

passing the nitrogen purged solvents through activated alumina columns.  THF was 

additionally distilled from CaH2 and stored over 4Å molecular sieves. All other reagents 

and solvents were used as purchased from Sigma-Aldrich, Alfa Aesar, Caledon or 

Oakwood Chemicals.  Reaction progress was followed by thin layer chromatography 
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(TLC) (Merck, TLC Silica gel 60 F254) visualizing with UV light, and the plates were 

developed using acidic p-anisaldehyde or potassium permanganate.  Column 

chromatography was performed using silica gel purchased from Silicycle Chemical 

Division Inc. (230-400 mesh). All columns were performed using Still’s procedure for 

flash chromatography.96  IR spectra were acquired using a PerkinElmer Spectrum Two 

FT-IR or Bruker Alpha II Di-ATR.  

4.10.2 Experimental Procedures for Selected Products 

 

 dimethyl 2-(but-3-en-1-yl)malonate (4-33) 

4-bromobutene (25 g, 185 mmol, 1 equiv.) and dimethylmalonate (122 g, 

926 mmol, 5 equiv.)  were added to a 2L round bottom that had been flushed with argon. 

356 mL of THF followed by 356 mL of DMF were added. Potassium carbonate (128 g, 

926 mmol, 5 equiv.) was then added to the flask but with such a large amount the mixture 

was tough to stir. The flask was then equipped with a reflux condenser and argon balloon 

and heated at 90 °C for 20 hours.  The flask was occasionally, carefully, swirled by hand 

to help mix the contents of the reaction. When indicated complete by TLC the reaction 

was diluted with hexanes and then vacuum filtered through a pad of Celite. The collected 

volume was concentrated in vacuo and then re-dissolved in Et2O.  The Et2O layer was 

washed with bicarb and then the bicarb layer was extracted twice more with Et2O. The 

combined organic fractions were washed 6 times with 1M NaOH or until all the malonate 

was gone by TLC analysis (stains purple in acidic p-anisaldehyde). The organic layer was 

then washed twice with water and once with brine. The organic layer was dried with 

MgSO4, filtered and concentrated in vacuo yielding pure material (32 g, 93% yield, pale 

yellow liquid).  Rf = 0.36 (15% EtOAc: 85% Hexanes). 1H NMR (600 MHz, CDCl3) 

∂ = 5.74 (ddt, J = 16.9, 10.2, 6.6 Hz, 1H), 5.05 – 4.95 (m, 2H), 3.72 (s, 6H), 3.38 (t, J = 

7.4 Hz, 1H), 2.08 (q, J = 6.6 Hz, 2H), 1.99 (q, J = 7.4 Hz, 2H) data matches literature 

report.148 
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 2-(but-3-en-1-yl)malonic acid (4-35) 

(4-33) (25 g, 136 mmol, 1 equiv.) was added to a 5 L round bottom flask. 

THF (680 mL) and MeOH (680 mL) were added and the mixture was 

stirred open to air. While stirring 2M NaOH (544 mL, 1088 mmol, 8 equiv.) was added 

slowly over approx. 10 mins to the stirring reaction.  A small amount of heat was 

generated. The reaction was stirred under an atmosphere of air for 20 hours. When TLC 

confirmed complete consumption of starting materials the reaction was concentrated in 

vacuo and extracted 1x with Et2O to remove any left-over starting material if there was 

any (even if the TLC didn’t show any). The water layer was then acidified to pH =1 using 

concentrated HCl and extracted three times with Et2O. The combined organic fractions 

were washed with brine, dried with MgSO44, filtered and then concentrated in vacuo to 

yield crude product (21 g, <94%, white, granular, “wet looking”, low melting solid). The 

crude product was used without further purification in the next step.  Rf = 0 (50% 

EtOAc: 50% Hexanes). 1H NMR (400 MHz, CDCl3) ∂ = 11.42 (s, br, 1H), 5.76 (ddt, J = 

16.9, 10.2, 6.6 Hz, 1H), 5.11 – 5.00 (m, 2H), 3.48 (t, J = 7.3 Hz, 1H), 2.22 – 2.12 (m, 

2H), 2.09 – 2.00 (m, 2H) 13C NMR (101 MHz, CDCl3) ∂ =  175.6, 136.7, 117.0, 51.2, 

31.5, 28.1. 

2-methylenehex-5-enoic acid (4-28) 

Diacid (4-35) (16.61 g, 105 mmol, 1 equiv.) was placed into a 500 mL round-

bottom containing pyridine (35 mL) followed by paraformaldehyde (3.47 g, 

115 mmol, 1.1 equiv.) and piperidine (1.04 mL, 10.5 mmol, 0.1 equiv.).  The round-

bottom flask was equipped with reflux condenser and placed into an oil bath at 130 ˚C. A 

rubber septa containing an empty balloon was secured on top of the condenser only to 

observe the evolution of gasses. Note that an excessively large flask was used as the 

quick evolution of gasses create a foamy mixture that must be contained.  The reaction 

was left to reflux for 2 hours at which point TLC analysis confirmed completion of the 

reaction.  The mixture was cooled to rt, acidified with 5% HCl solution until pH 2-3 and 

extracted with Et2O three times. The organic extracts were combined and washed with 

5% HCl 5 times until the pyridine was gone as determined by TLC, followed by a brine 
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wash.  The organic extract was dried with MgSO4 and concentrated in vacuo to yield the 

product as a yellow liquid (9.49 g, 72% yield)  Rf = 0.75 (50% EtOAc:Hexanes)   1H 

NMR (400 MHz, CDCl3) ∂ = 11.75 (s, br, 1H), 6.32 (s, 1H), 5.80 (ddt, J = 16.8, 10.2, 

6.6 Hz, 1H), 5.66 (s, 1H), 5.09 – 4.92 (m, 2H), 2.40 (dt, J = 7.5, 1.2 Hz, 1H), 2.30 – 2.21 

(m, 2H)    13C NMR (101 MHz, CDCl3) ∂ = 173, 139.4, 137.6, 127.8, 115.4, 32.6, 31.0  

IR (cm-1) 2922, 2603, 1693, 1627, 1422, 1295, 1221, 1161, 997, 948 HRMS m/z [M+] 

125.06002 (calcd for C7H10O2, 125.06808). 

 

tert-butyl (2-(1-(2-methylenehex-5-enoyl)-1H-indol-3-

yl)ethyl)carbamate (4-43) 

Acrylic acid (4-28) (6.20 g, 49.1 mmol, 1 equiv) was added to a 25 mL 

round-bottom and put under and inert atmosphere of argon.  Oxalyl 

chloride (4.45 mL, 51.0 mmol, 1.05 equiv.) was added slowly to the flask followed by a 

single catalytic drop of DMF.  This reaction mixture was stirred two hours.  To a 500 mL 

round-bottom was added boc-protected tryptamine 4-42 (6.39 g, 24.5 mmol, 1 equiv) in 

250 mL of DCM.  Bu4NHSO4 (0.83 g, 2.45 mmol, 0.1 equiv) was added to the 

tryptamine followed by powdered NaOH (4.91 g, 122.7 mmol, 5 equiv.).  The reaction 

was put under and inert atmosphere of argon and allowed to stir for a minimum of 15 

min.  At this point the acid chloride generated in the 25 mL round bottom was cannula 

transferred over in its entirety (~7.10 g, 49.1 mmol, 2 equiv).  The mixture was stirred 

under Ar at rt for 1 hr at which point TLC confirmed complete consumption of starting 

material.  The reaction was quenched with water and extracted with DCM 3 times. The 

combined organic extracts were washed with water once, followed by brine and then 

dried with MgSO4.  The solvent was removed in vacuo to yield the crude material.  

Purification of the crude compound by flash column chromatography was performed 

using 30% EtOAc: 70% Hexanes to yield the product as a slightly yellow oil (8.81 g, 

83%).  Rf = 0.46 (30% EtOAc: 70% Hexanes)   1H NMR (400 MHz, CDCl3) ∂ = 8.43 

(d, J = 8.2 Hz, 1H), 7.54 (d, J = 7.8 Hz, 1H), 7.37 (t, J = 7.7 Hz, 1H), 7.33 – 7.27 (m, 

2H), 5.81 (ddt, J = 16.9, 10.2, 6.6 Hz, 1H), 1H), 5.65 (s, 1H), 5.45 (s, 1H), 5.08 – 4.96 



165 

 

(m, 2H), 4.63 (br, s, 1H), 3.44 (q, J = 6.6 Hz, 2H), 2H), 2.88 (t, J = 6.9 Hz, 2H), 2.62 (t, J 

= 7.4 Hz, 2H), 2.34 – 2.26 (m, 2H), 1.43 (s, 9H)  13C NMR (101 MHz, CDCl3) ∂ = 

169.3, 156.0, 143.9, 137.2, 136.2, 131.1, 125.3, 123.9, 121.2, 119.0, 116.9, 116.0, 40.17, 

32.0, 33.2, 28.5, 25.7   IR (cm-1) 3356, 2976, 2928, 1684, 1630, 1510, 1451, 1356, 1248, 

1170  HRMS m/z [M+] 368.2094  (calcd for C22H28N2O3, 368.2099). 

dimethyl 2-(2-(3-(2-((tert-butoxycarbonyl)amino)ethyl)-1H-indole-

1-carbonyl)hex-5-en-1-yl)malonate (4-44) 

 

NaH (1.56 g, 39.0 mmol, 2 equiv.) was added to an argon flushed 

round bottom followed by THF (98 mL, 0.2 M). The flask was placed under a balloon of 

argon and then cooled to 0 °C. Dimethyl malonate (4.46 mL, 39 mmol, 2 equiv.) was 

added dropwise at careful of violent bubbling. The mixture was stirred for 15 minutes. 

Indole 4-43 (7.20 g ,19.5 mmol, 1 equiv.) was added via syringe and the reaction was 

removed from the ice/water bath. Stirring at room temperature, when TLC indicated 

complete consumption of starting material, the reaction was carefully quenched with 

water. The mixture was transferred to a separatory funnel and extracted with EtOAc 3 

times. The combined organic fractions were washed with brine and then dried with 

MgSO4. The crude solution was filtered and concentrated in vacuo and the isolated 

residue was subjected to column chromatography (25% EtOAc:75% Hexanes). The 

purified material 4-44 was isolated as a pale-yellow oil (8.10 g, 83% yield). Rf = 0.23 

(25% EtOAc: 75% Hexanes). 1H NMR (400 MHz, Chloroform-d) δ 8.50 (d, J = 8.2 Hz, 

1H), 7.54 (d, J = 7.7 Hz, 1H), 7.40 – 7.27 (m, 3H), 5.83 – 5.66 (m, 1H), 5.01 (d, J = 1.3 

Hz, 1H), 5.00 – 4.93 (m, 1H), 4.73 (s, br, 1H), 3.71 (s, 3H), 3.65 (s, 3H), 3.47 (m, 3H),  

2.91 (t, J = 6.9 Hz, 2H), 2.48 (ddd, J = 14.5, 8.9, 6.2 Hz, 1H), 2.27 – 2.05 (m, 3H), 1.97 

(dq, J = 14.6, 7.3 Hz, 1H), 1.77 – 1.63 (m, 1H), 1.43 (s, 9H). 13C NMR (101 MHz, 

CDCl3) δ 173.2, 169.4, 169.4, 155.9, 137.2, 136.2, 130.6, 125.5, 123.8, 121.8, 120.1, 

118.9, 117.2, 116.1, 60.4, 52.7, 49.2, 41.3, 31.9, 31.0, 28.4, 25.8, 21.1, 14.2. IR (cm-1) 

3396, 2952, 1733, 1693, 1511, 1452, 1247, 1160 HRMS m/z [M+] 500.2529 (cald for 

C27H36N2O7 500.2523) 
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dimethyl 7-(but-3-en-1-yl)-10-(2-((tert-butoxycarbonyl)amino)ethyl)-

6-oxo-7,8-dihydropyrido[1,2-a]indole-9,9(6H)-dicarboxylate (4-45) 

Indole (4-44) (5.75 g, 11.5 mmol, 1 equiv.) was dissolved in 164 mL of 

MeOH. To the solution of indole was added Mn(OAc)3•2H20 (9.25 g, 34.5 mmol, 3 

equiv.) and the mixture was fitted with a reflux condenser and purged with an atmosphere 

of Argon. The reaction was left to reflux for 16 h before TLC indicated complete 

consumption of starting materials. The crude mixture was concentrated to remove MeOH 

and diluted with water.  The water layer was extracted 3x with EtOAc and the combined 

organic fractions were washed with brine 2x. The collected organic layer was dried with 

MgSO4 and concentrated in vacuo. Pure material was isolated by flash column 

chromatography using an eluent of 30% EtOAc: 70% Hexanes and collected as a white 

solid (5.48 g, <94%).  Rf = 0.41 (30% EtOAc: 70% Hexanes)   1H NMR (400 MHz, 

CDCl3) ∂ = 8.50 (d, J = 8.0 Hz, 1H), 7.66 (d, J = 7.6 Hz, 1H), 7.36 (t, J = 7.1 Hz, 1H), 

7.30 (t, J = 7.5 Hz, 1H), 5.83 (ddt, J = 17.2, 10.2, 6.3 Hz, 1H), 5.13 – 5.00 (m, 2H), 4.81 

(br, s, 1H), 3.85 (s, 3H), 3.80 (s, 3H), 3.42 (dt, J = 12.4, 6.0 Hz, 2H), 2.93 – 2.83 (m, 2H), 

2.77 – 2.59 (m, 2H), 2.38 (t, J = 13.1 Hz, 1H), 2.33 – 2.17 (m, 3H), 1.67 (q, J = 8.3 Hz, 

1H), 1.43 (s, 9H)  13C NMR (101 MHz, CDCl3) ∂ = 170.5, 170.4, 168.9, 156.0, 137.5, 

134.8, 128.7, 125.9, 124.3, 119.5, 119.0, 116.9, 115.9, 55.9, 53.9, 53.7, 39.3, 35.0, 30.8, 

28.9, 28.6  IR (cm-1) 3272, 2956, 1736, 1697, 1456, 1377, 1242, 1167, 1075, 76  HRMS 

m/z [M+] 498.2361 (calcd for C27H34N2O7, 498.2366). 

 

methyl 6-(but-3-en-1-yl)-4,7-dioxo-1,2,3,4,4a,5,6,7-

octahydroazepino[3,4,5-hi]benzo[b]indolizine-4a-carboxylate (4-46) 

Indole (4-45) (4.81 g, 9.65 mmol, 1 equiv.) was dissolved in benzene (96 

mL) and p-toluenesulfonic acid (3.67 g, 19.3 mmol, 2 equiv) was added.  The flask was 

equipped with a Dean-Stark trap and reflux condenser and put on heat at 80 ˚C for 1.5 h.  

At this point TLC indicated completion of the boc deprotection and the benzene was 
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removed in vacuo. The crude mixture was dissolved in 193 mL of MeOH and Na2CO3 

(9.21 g, 87.0 mmol, 9 equiv) was added and put under an atmosphere of argon.  The 

reaction was allowed to stir at rt for 3 h.  MeOH was removed in vacuo and the crude 

residue was dissolved in water.  DCM was used to extract from the water layer 3x 

followed by a brine wash of the collected organic fractions.  The organic layer was 

washed once more using brine and dried with MgSO4. The DCM was removed in vacuo 

to reveal the pure product as a white solid (3.45 g, 98%).  Rf = 0.13 (50% 

EtOAc:Hexanes)   1H NMR (400 MHz, CDCl3) ∂ = 8.51 (d, J = 8.2 Hz, 1H), 7.46 – 7.33 

(m, 2H), 7.29 (t, J = 7.6 Hz, 1H), 6.57 (s, 1H), 5.80 (dddd, J = 17.6, 10.2, 7.7, 5.6 Hz, 

1H), 5.10 – 4.98 (m, 2H), 3.79 (s, 3H), 3.58 (t, J = 8.8 Hz, 1H), 3.58 (t, J = 8.8 Hz, 1H), 

3.50 – 3.41 (m, 1H), 2.94 (dd, J = 9.1, 3.6 Hz, 2H), 2.66 (dq, J = 12.1, 4.2 Hz, 2H), 2.48 

(t, J = 14.7 Hz, 1H), 2.40 – 2.29 (m, 1H), 2.26 – 2.16 (m, 1H), 1.77 – 1.66 (m, 1H)   13C 

NMR (101 MHz, CDCl3) ∂ =  171.3, 170.8, 169.9, 137.7, 134.8, 129.7, 126.6, 126.1, 

124.1, 118.2, 118.2, 116.9, 115.8, 77.5, 77.4, 77.2, 76.8, 54.1, 53.8, 38.7, 37.9, 34.0, 30.8, 

28.2, 26.1 IR (cm-1) 3213, 1732, 1695, 1672, 1614, 1457, 1366, 1291, 1228, 1193 

HRMS m/z [M+] 366.1578  (calcd for C21H22N2O4, 366.1560). 

 

 4-59 precursor 

DMAP (0.039 g, 0.32 mmol, 0.17 equiv.) and Boc2O (2.07 g, 9.5 

mmol, 5 equiv.) were dissolved in 10 mL THF. The flask was 

purged with argon and indole (4-45) (0.95 g, 1.90 mmol, 1 equiv.). 

The reaction was stirred under argon for 24 hours and then concentrated in vacuo and 

purified by column chromatography (20% EtOAc: 80% Hexanes Rf= 0.39). Product (#) 

was isolated as a white solid (1.05 g, 92%).  1H NMR (400 MHz, CDCl3) ∂ = 8.49 (d, J 

= 7.6 Hz, 1H), 7.89 (d, J = 7.3 Hz, 1H), 7.37 – 7.30 (m, 2H), 5.91 – 5.76 (m, 1H), 5.10 

(d, J = 17.8 Hz, 1H), 5.02 (d, J = 10.8 Hz, 1H), 3.90 (s, 3H), 3.88 – 3.81 (m, 2H), 3.80 (s, 

3H), 2.98 – 2.86 (m, 2H), 2.84 – 2.72 (m, 2H), 2.34 (t, J = 12.8 Hz, 1H), 2.31 – 2.17 (m, 

3H), 1.73 – 1.64 (m, 1H), 1.51 (s, 18H) 13C NMR (101 MHz, CDCl3) δ = 170.6, 168.8, 

153.1, 137.7, 134.8, 130.5, 128.8, 125.7, 124.3, 119.9, 119.0, 116.8, 115.8, 82.5, 55.6, 
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54.0, 53.7, 44.6, 39.3, 35.3, 30.8, 29.0, 28.2, 24.7. IR (cm-1) 2983, 1733, 1694, 1456, 

1367, 1347, 1275, 1134, 1119, 854, 761.  HRMS m/z [M+] 598.2913 (calcd for 

C32H42N2O9, 598.2890). 

4-59 

PdCl2 (0.082 g, 0.46 mmol, 0.3 equiv.) and CuCl2 (0.21 g, 1.55 

mmol, 1 equiv.) were added to a round bottom flask and half the 

volume (15 mL) of a 7:1 mixture of DMSO:water (29 mL total) was 

added to the flask. The flask was evacuated and refilled with a balloon of oxygen 5 times. 

Starting indole (4-59 precursor) (1.05 g, 1.75 mmol, 1.13 equiv.) was dissolved in the 

other half of the DMSO:water solvent and then added dropwise to the palladium reaction. 

The reaction was again evacuated and refilled with oxygen. The reaction was stirred at 40 

°C under 1 atm of oxygen for 12 hours at which point TLC confirmed consumption of the 

starting indole. The reaction was quenched with 5% HCl and extracted three times with 

EtOAc. The organic fraction was washed with water 5 times, then brine, dried with 

MgSO4 and filtered. The filtrate was concentrated in vacuo to yield the crude material 

which was purified by column chromatography (40% EtOAc: 70% Hexanes Rf= 0.39) to 

isolate pure the material (0.87 g, 81% yield, white solid). 

1H NMR (400 MHz, CDCl3) ∂ = 8.47 (dd, J = 6.2, 2.6 Hz, 1H), 7.93 – 7.84 (m, 1H), 

7.38 – 7.28 (m, 2H), 3.89 (s, 3H), 3.87 – 3.82 (m, 2H), 3.80 (s, 3H), 2.93 (ddd, J = 13.6, 

10.2, 6.0 Hz, 1H), 2.85 – 2.64 (m, 5H), 2.42 – 2.23 (m, 1H), 2.18 (s, 3H), 2.01 – 1.86 (m, 

1H), 1.51 (s, 18H) 13C NMR (101 MHz, CDCl3) δ 207.9, 170.4, 170.2, 168.8, 153.1, 

134.7, 130.5, 128.7, 125.8, 124.4, 119.9, 119.2, 116.8, 82.5, 77.5, 77.4, 77.2, 76.8, 60.5, 

55.6, 54.1, 53.8, 53.7, 44.6, 42.3, 40.9, 39.4, 35.7, 30.1, 28.2, 24.7, 24.0, 21.2, 14.3. IR 

(cm-1) 2980, 1747, 1732, 1693, 1457, 1367, 1350, 1164, 1134, 1119, 856. HRMS m/z 

[M+] 614.2836 (calcd for C32H42N2O10, 614.2840). 

 

3,3-diethoxypropanoic acid (4-69) 

Synthesized following literature procedure.149 
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N-(2-(1H-indol-3-yl)ethyl)-3,3-diethoxypropanamide (4-71) 

Tryptamine (0.20 g, 1.25 mmol) and 3,3-diethoxypropanoic acid (4-69) 

(0.20 g, 1.25 mmol) were added to a round bottom with 12.5 mL DCM 

(0.1 M). EDC (0.19 g, 1.25 mmol) was added portion wise, and the flask 

was placed under a balloon of argon. Upon TLC indication of 

consumption of starting material, the reaction was quenched with water and extracted 3x 

with DCM. The combined organic fractions were washed with brine, dried with MgSO4, 

filtered and concentrated in vacuo.  The crude oil was purified via column 

chromatography (90% EtOAc:10% Hexanes Rf = 0.5) to yield 75% of product 4-71 as an 

orange oil (0.28 g).  

 

3,3-diethoxy-N-(2-(1-(2-methylenehex-5-enoyl)-1H-indol-3-

yl)ethyl)propenamide (4-73) 

Acrylic acid (4-28) (0.0922 g, 0.66 mmol, 1 equiv.) was added to a round 

bottom flask under argon and equipped with stir bar. Oxalyl chloride 

(0.0937, 0.66 mmol, 1.01 equiv.) was added dropwise watching for the 

violent formation of gas. One drop of DMF was added to the mixture using a 

bleed needle for gaseous release. The mixture was stirred for 2 hours at room 

temperature to form desired acid chloride. 

In a separate round bottom indole (4-71) (0.10 g, 0.33 mmol, 1 equiv. (0.5 equiv. to acid 

chloride)), tetrabutylammonium hydrogensulfate (0.01 g, 0.033 mmol, 0.1 equiv.) and 

powdered NaOH (0.066 g, 1.65 mmol, 5 equiv.) were added to 3.3 mL of DCM. The 

flask was purged with argon and stirred for 30 minutes before transferring (via cannula) 

the contents of the acid chloride reaction. After 1.5 hours TLC determined consumption 

of starting material and the reaction was quenched with water, extracted three times with 

DCM, dried with MgSO4, filtered and concentrated in vacuo. The crude material was 

purified by column chromatography (60% EtOAc: 40% Hexanes) to isolate 0.057 g of 
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pure product (42%, yellow solid). Rf= 0.52 (60% EtOAc: 40% Hexanes). 1H NMR (600 

MHz, CDCl3) ∂ = 8.42 (d, J = 8.2 Hz, 1H), 7.56 (d, J = 7.8 Hz, 1H), 7.37 (t, J = 8.2 Hz, 

1H), 7.33 – 7.28 (m, 2H), 6.36 – 6.31 (m, br, 1H amide NH), 5.82 (ddt, J = 16.8, 10.1, 6.6 

Hz, 1H), 5.65 (s, 1H), 5.45 (s, 1H), 5.07 – 4.97 (m, 2H), 4.71 (t, J = 5.3 Hz, 1H), 3.63 – 

3.55 (m, 4H),  3.43 (dq, J = 9.4, 7.0 Hz, 2H), 2.90 (t, J = 7.1 Hz, 2H), 2.61 (t, J = 7.5 Hz, 

2H), 2.51 (d, J = 5.3 Hz, 2H), 2.30 (q, J = 6.9 Hz, 2H), 1.11 (t, J = 7.0 Hz, 6H) IR (cm-1) 

3295, 2974, 1677, 1634, 1553, 1454, 1371, 1211, 1062, 755. HRMS m/z [M+] 412.2353 

(calcd for C24H32N2O4, 412.2362). 

 

tert-butyl (3,3-diethoxypropanoyl)(2-(1-(2-methylenehex-5-enoyl)-

1H-indol-3-yl)ethyl)carbamate  

DMAP (0.013 g, 0.10 mmol) and Boc2O (0.66 g, 3.05 mmol) were 

added to THF (3 mL, 0.2 M) and the flask placed under an argon 

atmosphere. 4-73 (0.25 g, 0.61 mmol) was added followed by NEt3 

(0.08 mL, 0.61 mmol). The reaction was stirred at rt for 18 h at which 

point TLC indicated consumption of starting materials. The reaction 

was concentrated in vacuo and purified by column chromatography (10% EtOAc: 90% 

Hexanes Rf= 0.21). Pure product was isolated as a clear pale-yellow oil (0.26 g, 85% 

yield). 

1H NMR (599 MHz, Chloroform-d) δ 8.42 (dt, J = 8.1, 1.0 Hz, 1H), 7.64 (dt, J = 7.5, 

1.1 Hz, 1H), 7.36 (ddd, J = 8.3, 7.1, 1.3 Hz, 1H), 7.31 (td, J = 7.5, 1.2 Hz, 1H), 7.27 (s, 

1H), 5.82 (ddt, J = 16.8, 10.2, 6.5 Hz, 1H), 5.65 – 5.62 (m, 1H), 5.44 (s, 1H), 5.08 – 4.97 

(m, 3H), 3.97 – 3.91 (m, 2H), 3.70 (dq, J = 9.3, 7.0 Hz, 2H), 3.58 (dq, J = 9.4, 7.0 Hz, 

2H), 3.22 (d, J = 5.7 Hz, 2H), 2.92 – 2.87 (m, 2H), 2.62 – 2.58 (m, 2H), 2.30 (tdt, J = 7.9, 

6.5, 1.4 Hz, 2H), 1.34 (s, 9H), 1.20 (t, J = 7.1 Hz, 6H). 13C NMR (101 MHz, CDCl3) δ 

172.5, 169.4, 153.0, 143.9, 137.2, 136.1, 131.3, 125.3, 124.7, 124.0, 121.1, 119.1, 119.0, 

116.9, 115.9, 100.3, 83.4, 62.3, 44.4, 43.7, 33.3, 32.0, 27.9, 24.3, 15.5. IR (cm-1) 2975, 

1729, 1684, 1452, 1369, 1350, 1146, 1120, 749. HRMS m/z [M+] 512.2901 (calcd for 

C29H40N2O6, 512.2886). 
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1-(1H-indol-1-yl)-2-methylenehex-5-en-1-one (4-50) 

Acrylic acid (4-28) (2.00 g, 15.8 mmol, 1 equiv.) is added to an 

argon flushed round bottom. Oxalyl chloride (2.03 g, 16.0 mmol, 1.01 equiv.) was added 

via syringe dropwise then one drop of DMF was added. The mixture was stirred for 2 

hours before being added to the other reaction below.  

In a separate round bottom flask was added indole (1-1) (0.93 g, 7.9 mmol, 1 equiv.), 

tetrabutylammonium hydrogensulfate (0.27 g, 0.79 mmol, 0.1 equiv.), powdered NaOH 

(1.58 g, 39.5 mmol, 5 equiv.) and DCM (79 mL). The mixture was stirred under argon for 

30 minutes before adding the acid chloride reaction to the flask via cannula. Then the 

reaction was monitored by TLC for consumption of the indole (1.5 hours). The reaction 

was quenched with water and extracted with DCM three times, dried with MgSO4, and 

filtered. The crude oil was purified by column chromatography (5% EtOAc: 95% 

Hexanes) to isolate the pure product (1.65 g, 93%, pale yellow oil). Rf= 0.32 (5% EtOAc: 

95% Hexanes). 1H NMR (400 MHz, CDCl3) ∂ = 8.44 (d, J = 8.3 Hz, 1H), 7.58 (d, J = 

7.4 Hz, 1H), 7.47 (d, J = 3.8 Hz, 1H), 7.40 – 7.33 (m, 2H), 7.29 (td, J = 7.5, 1.1 Hz, 1H), 

6.59 (d, J = 4.4 Hz, 1H), 5.90 – 5.76 (m, 1H), 5.67 (t, J = 1.2 Hz, 1H), 5.48 (s, 1H), 5.09 

– 4.93 (m, 2H), 2.64 (t, J = 7.5 Hz, 2H), 2.37 – 2.26 (m, 2H)  13C NMR (101 MHz, 

CDCl3) δ = 169.5, 143.8, 137.1, 135.7, 131.0, 128.7, 127.2, 124.9, 123.9, 121.3, 120.8, 

116.6, 115.9, 115.6, 108.4, 33.1, 31.9. IR(cm-1) 2979, 1686, 1535, 1449, 1343, 1204, 

1017, 749.  HRMS m/z [M+] 225.1155 (calcd for C15H15NO, 225.1154). 

 

methyl 3-(ethylthio)-3-oxopropanoate (4-78) 

Synthesized following literature procedure.150 
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methyl 2-((ethylthio)carbonyl)-4-(1H-indole-1-carbonyl)oct-7-enoate  

(4-86 precursor) 

Indole (1-1) (0.79 g, 3.51 mmol), thioester 4-78 (1.19g, 7.37 mmol) and 

K2CO3 were all added to a round bottom flask with 23 mL THF (0.15 

M). One drop of water was added, and the flask equipped with reflux condenser under a 

balloon of argon. The reaction was heated at reflux for 4 h when TLC indicated 

consumption of starting material. The reaction was cooled to rt and diluted with EtOAc, 

washed with water 3x followed by a brine was and then the organic fraction collected. 

The organic fraction was dried with MgSO4, filtered and concentrated in vacuo. The 

crude was purified by column chromatography (10% EtOAc: 90% Hexanes Rf= 0.3) but 

was inseparable from the presence of ethylthiomethyl malonate. The product was a 

mixture of diastereomers and used crude isolated as a colourless oil (1.45 g, >100% crude 

(1.35 g theoretical)).  

 

methyl 4-(3-(2-((tert-butoxycarbonyl)amino)ethyl)-1H-indole-1-

carbonyl)-2-((ethylthio)carbonyl)oct-7-enoate (4-79) 

Indole 4-43 (1.00 g, 2.70 mmol, 1 equiv.), methyl 3-(ethylthio)-3-

oxopropanoate (1.10 g, 6.78 mmol, 2.5 equiv.), and K2CO3 (0.37 g, 

2.70 mmol, 1 equiv.) were added to THF (18 mL) followed by one 

drop of water. The reaction was refluxed under argon for 12 hours. The mixture was 

diluted with EtOAc and washed with water three times and brine once. The collected 

organic fraction was dried with MgSO4¸filtered and concentrated in vacuo to yield crude 

product. Crude product was purified by column chromatography (25% EtOAc: 75% 

Hexanes) and (4-79) was isolated (0.97 g, 67%, yellow oil). Rf= 0.33 (25% EtOAc: 75% 

Hexanes). 

1H NMR (600 MHz, CDCl3) mixture of diastereomers ∂ = 8.51 (d, J = 6.5 Hz, 1H), 

7.54 (d, J = 7.6 Hz, 1H), 7.36 (t, J = 7.7 Hz, 1H), 7.33 – 7.27 (m, 2H), 5.84 – 5.65 (m, 

1H), 5.06 – 4.90 (m, 2H), 4.73 (s, 1H), 3.78 – 3.58 (m, 4H), 3.55 – 3.40 (m, 2H), 3.30 – 
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3.12 (m, 1H), 2.89 (m, 4H), 2.55 – 2.38 (m, 1H), 2.32 – 2.20 (m, 1H), 2.12 (ddq, J = 

21.6, 14.6, 7.7 Hz, 3H), 1.95 (dq, J = 15.0, 8.1, 7.3 Hz, 1H), 1.71 (dq, J = 13.9, 6.8 Hz, 

2H), 1.43 (s, 9H), 1.30 – 1.10 (m, 3H) 13C NMR (101 MHz, CDCl3) mixture of 

diastereomers δ 194.9, 194.7, 173.3, 173.3, 169.0, 156.0, 137.3, 136.3, 130.8, 125.7, 

124.0, 122.0, 120.3, 119.0, 117.3, 116.2, 57.3, 53.0, 41.2, 40.2, 32.1, 31.5, 31.0, 28.5, 

24.1, 14.5. IR(cm-1) 3356, 2936, 2830, 1743, 1686, 1452, 1164, 1025, 752.  HRMS m/z 

[M+] 530.2436 (calcd for C28H38N2O6S ,530.2451) 

methyl 7-(but-3-en-1-yl)-10-(3-((tert-

butoxycarbonyl)amino)propyl)-9-((ethylthio)carbonyl)-6-oxo-

6,7,8,9-tetrahydropyrido[1,2-a]indole-9-carboxylate (4-80) 

Indole 4-79 (0.97 g, 1.82 mmol, 1 equiv.), Mn(OAc)3 (1.46 g, 5.47 

mmol, 3 equiv.) and MeOH (26 mL) were added to a round bottom flask equipped with 

stir bar and reflux condenser. The reaction was placed under a balloon atmosphere of 

argon and lowered into a 65 °C oil bath. When TLC indicated the complete consumption 

of starting material after 3 h, the reaction was cooled to room temperature and the MeOH 

removed in vacuo. The crude residue was diluted with water and EtOAc and added to a 

separatory funnel. The aqueous layer was extracted three time with EtOAc, and the 

combined organic fractions were washed with brine and then dried with MgSO4. The 

solid was filtered off and the solvent removed in vacuo to yield the crude residue of 

product 4-80 as a white solid (0.89 g, 93 % yield). The product was used as isolated in 

the next step without further purification. Rf = 0.61 (30% EtOAc: 70% Hexanes).  

1H NMR (599 MHz, Chloroform-d) mixture of diastereomers δ 8.53 (dd, J = 11.2, 8.1 

Hz, 1H), 7.71 (d, J = 7.7 Hz, 1H), 7.38 (dt, J = 11.2, 7.8 Hz, 1H), 7.32 (dt, J = 10.7, 7.5 

Hz, 1H), 5.82 (dddt, J = 23.7, 16.8, 9.9, 6.2 Hz, 1H), 5.14 – 5.05 (m, 1H), 5.01 (ddd, J = 

12.3, 9.9, 1.8 Hz, 1H), 4.82 and 4.72 ( each a br, s, 1H total), 3.86 and 3.82 (each a s, 3H 

total), 3.51 (m, 1H), 3.44 – 3.26 (m, 1H), 3.02 – 2.79 (m, 5H), 2.78 – 2.56 (m, 2H), 2.50 

(t, J = 13.2 Hz, 0.5H) and 2.39 (t, J = 13.1 Hz, 0.5H) for 1H total, 2.35 – 2.12 (m, 3H), 

1.67 (m, 1H), 1.45 and 1.43 (both s, 3H total), 1.32 – 1.16 (m, 3H). IR (cm-1) 3411, 2931, 
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1741, 1705, 1511, 1455, 1365, 1240, 1167, 1072, 753. HRMS m/z [M+] 528.2291  (calcd 

for C28H36N2O6S ,528.2294). 

 

methyl 10-(2-((tert-butoxycarbonyl)amino)ethyl)-9-

((ethylthio)carbonyl)-6-oxo-7-(3-oxobutyl)-6,7,8,9-

tetrahydropyrido[1,2-a]indole-9-carboxylate (4-81) 

PdCl2 (0.031 g, 0.18 mmol, 0.3 equiv.) and CuCl2 (0.079 g, 0.59 

mmol, 1 equiv.) were added to a round bottom flask and half the 

volume (5.5 mL) of a 7:1 mixture of DMSO:water (11mL total) was added to the flask. 

The flask was evacuated and refilled with a balloon of oxygen 5 times. Starting indole (4-

80) (0.35 g, 0.67 mmol, 1.13 equiv.) was dissolved in the other half of the DMSO:water 

solvent and then added dropwise to the palladium reaction. The reaction was stirred at 40 

°C for 12 hours at which point TLC confirmed consumption of the starting indole. The 

reaction was quenched with 5% HCl and extracted three times with EtOAc. The organic 

fraction was washed with water 5 times, then brine, dried with MgSO4 and filtered. The 

filtrate was concentrated in vacuo  to yield the crude material which was purified by 

column chromatography (40% EtOAc: 60% Hexanes Rf = 0.21) to give pure product 

(0.22 g, 60% yield, white foam solid). 1H NMR (600 MHz, CDCl3) mixture of 

diastereomers ∂ = 8.51 (t, J = 8.0 Hz, 1H), 7.76 – 7.66 (m, 1H), 7.44 – 7.29 (m, 2H), 

4.79 and 4.70 (br, s, 1H total), 3.85 and 3.84 (s, 3H total), 3.51 (dq, J = 13.6, 7.2 Hz, 1H), 

3.44 – 3.25 (m, 1H), 3.01 – 2.58 (m, 8H), 2.57 – 2.36 (m, 1H), 2.34 – 2.21 (m, 1H), 2.19 

and 2.17 (s, 3H total), 1.93 (dq, J = 13.5, 6.0 Hz, 1H), 1.45 and 1.44 (s, br, 9H total), 1.27 

(t, J = 7.5 Hz) and 1.20 (t, J = 7.6 Hz) for 3H total. 13C NMR (101 MHz, CDCl3) 

mixture of diastereomers δ 208.0, 198.5, 197.1, 170.5, 169.2, 156.3, 135.5, 126.8, 

126.5, 124.8, 120.3, 117.2, 63.4, 61.5, 54.2, 41.3, 41.1, 39.2, 37.4, 36.7, 30.5, 28.9, 25.3, 

24.9, 24.4, 24.3, 14.7, 14.4. IR (cm-1) 3386, 2973, 1740, 1704, 1513, 1455, 1365, 1240, 

1165, 1136, 1136, 955, 754. HRMS m/z [M+] 544.2244 (calcd for C28H36N2O7S, 

544.2243). 
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(4-83) 

PdCl2 (0.028 g, 0.16 mmol, 0.3 equiv.) and CuCl2 (0.070 g, 0.52 

mmol, 1 equiv.) were added to a round bottom flask and half the 

volume (5 mL) of a 7:1 mixture of DMSO:water (10 mL total) was 

added to the flask. The flask was evacuated and refilled with a 

balloon of oxygen 5 times. Starting indole (4-82) (0.37 g, 0.58 mmol, 1.13 equiv.) was 

dissolved in the other half of the DMSO:water solvent and then added dropwise to the 

palladium reaction. The reaction was again evacuated and refilled with oxygen. The 

reaction was stirred at 40 °C under 1 atm of oxygen for 12 hours at which point TLC 

confirmed consumption of the starting indole. The reaction was quenched with 5% HCl 

and extracted three times with EtOAc. The organic fraction was washed with water 5 

times, then brine, dried with MgSO4 and filtered. The filtrate was concentrated in vacuo 

to yield the crude material which was purified by column chromatography (30% EtOAc: 

70% Hexanes Rf= 0.31) to isolate pure the material (0.25 g, 67% yield, yellow solid). 1H 

NMR (600 MHz, CDCl3) mixture of diastereomers ∂ = 8.50 (td, J = 7.2, 6.7, 2.0 Hz, 

1H), 8.01 – 7.90 (m, 1H), 7.43 – 7.30 (m, 2H), 4.02 – 3.94 (m, 1H), 3.93 and 3.86 (each a 

s, 3H total), 3.84 – 3.71 (m, 1H), 3.02 – 2.76 (m, 6H), 2.76 – 2.56 (m, 2H), 2.53 – 2.22 

(m, 2H), 2.19 and 2.17 (each a s, 3H total), 1.92 (td, J = 16.2, 15.5, 6.7 Hz, 1H), 1.51 and 

150 (each a s, 18H), 1.24 (t, J = 7.4 Hz) and 1.19 (t, J = 7.4 Hz) (for 3H total) 13C NMR 

(101 MHz, CDCl3) δ 207.9, 197.9, 196.7, 170.3, 170.0, 168.8, 153.1, 135.1, 130.5, 

130.3, 128.9, 128.2, 126.3, 126.0, 124.5, 124.4, 120.8, 120.6, 120.3, 120.3, 116.9, 116.8, 

82.6, 82.5, 62.8, 61.2, 54.2, 53.9, 44.6, 41.0, 40.8, 39.7, 38.9, 37.2, 36.6, 30.2, 28.2, 26.0, 

24.9, 24.9, 24.6, 24.1, 24.0, 14.2, 14.0. IR(cm-1) 2981, 1733, 1694, 1455, 1367, 1347, 

1172, 1135, 1118, 855, 759  HRMS m/z [M+] 644.2765 (calcd for C33H44N2O9S, 

644.2768). 

 

3-tert-butyl 4a-methyl 6-(but-3-en-1-yl)-4,7-dioxo-1,2,4a,5,6,7-

hexahydroazepino[3,4,5-hi]benzo[b]indolizine-3,4a(4H)-

dicarboxylate (4-54) 
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Indole 4-46 (0.17 g, 0.46 mmol, 1 equiv.) was dissolved in acetonitrile (2.3 mL). DMAP 

(0.028 g, 0.23 mmol, 0.5 equiv.) and triethylamine (0.056 g, 0.55 mmol. 1.2 equiv.) were 

added and the mixture was cooled to 0 °C. Boc2O (0.11 g, 0.51 mmol, 1.1 equiv.) was 

added dropwise and the reaction was warmed to room temperature and stirred for 3 

hours. The mixture was concentrated in vacuo and columned (30% EtOAc: 70% Hexanes 

Rf = 0.45) to yield pure material (0.19 g, 87%, white solid). 1H NMR (600 MHz, 

CDCl3) mixture of diastereomers ∂ = 8.55 (d, J = 8.2 Hz, 1H), 7.48 – 7.39 (m, 2H), 

7.36 – 7.31 (m, 1H), 5.89 – 5.75 (m, 1H), 5.13 – 5.00 (m, 2H), 4.57 (dt, J = 15.7, 3.5 Hz, 

1H), 3.84 (s, 3H), 3.57 (ddd, J = 15.4, 12.2, 2.7 Hz, 1H), 3.14 – 2.93 (m, 2H), 2.79 – 2.63 

(m, 2H), 2.56 (t, J = 14.1 Hz, 1H), 2.45 – 2.18 (m, 3H), 1.81 – 1.66 (m, 1H), 1.58 (s, 8H) 

13C NMR (151 MHz, cdcl3) δ mixture of diastereomers 170.8, 170.4, 166.8, 152.5, 

137.6, 137.4, 134.9, 129.2, 126.0, 124.0, 118.3, 118.2, 118.1, 116.8, 115.6, 115.4, 84.1, 

56.5, 53.7, 52.6, 41.7, 37.6, 34.6, 30.6, 27.9, 24.6, 23.5. IR(cm-1) 2987, 1710, 1458, 

1371, 1284, 1198, 1132, 753. HRMS m/z [M+] 466.2102 (calcd for C26H30N2O6, 

466.2104). 

 

methyl 7-(but-3-en-1-yl)-9-((ethylthio)carbonyl)-6-oxo-6,7,8,9-

tetrahydropyrido[1,2-a]indole-9-carboxylate (4-86 precursor) 

Isolated with (4-78) (ethylthiomethyl malonate) impurity because 

the molecules were the same rf under a variety of column eluents and could not be 

separated. Attempts to distill off (4-78) led to complete decomposition of the desired 

product as well.  This data is crude with the malonate peaks indicated as not part of the 

product. 

4-86 precursor (1.36 g, 3.51 mmol) and Mn(OAc)3 (2.82 g, 10.5 mmol) were dissolved 

in 50 mL of MeOH (0.07 M) and refluxed under an argon atmosphere at 65 °C. After 3 h 

TLC indicated complete consumption of starting material and the reaction was cooled 

and the MeOH was concentrated off in vacuo. The mixture was diluted with water and 

EtOAc and transferred to a separatory funnel. The water layer was extracted 3x with 

EtOAc, the combined organic fraction washed with brine and then dried with MgSO4, 
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filtered and concentrated in vacuo. The crude mixture was attempted to be purified by 

column chromatography (15% EtOAc: 85% Hexanes Rf= 0.40) but was unsuccessful in 

removing ethylthiomethyl malonate impurity. Isolated as a pale-yellow oil (1.29g, 96% 

crude) 

1H NMR (400 MHz, CDCl3) ∂ = 8.52-8.47 (m, 1H), 7.56 (t, J = 7.2 Hz, 1H), 7.42 – 7.26 

(m, 2H), 6.83 and 6.77 (s, 1H total), 5.88-5.75 (m, 1H), 5.18 – 4.91 (m, 2H), 3.89 and 

3.78 (s, 3H total), 3.74 and 3.57 MALONATE, 3.02 – 2.77 (m, 4H), 2.55 – 2.39 (m, 1H), 

2.36 – 2.14 (m, 2H), 1.75-1.66 (m, 1H), 1.32 – 1.24 (m, 2H) (malonate overlapped) and 

1.19 (t, J = 7.4 Hz, 1H) three total protons for the triplet SCH2CH3) 13C NMR (101 

MHz, CDCl3) δ 198.2, 197.1, 170.6, 169.1, 168.6, 137.5, 137.4, 135.8, 135.5, 132.2, 

129.2, 129.0, 126.0, 125.7, 124.5, 124.4, 121.0, 116.9, 116.8, 116.0, 115.9, 111.2, 111.2, 

61.9, 61.3, 53.7, 52.8, 49.5, 39.7, 38.6, 34.1, 33.8, 30.9, 30.7, 29.1, 28.8, 24.9, 24.6, 24.1, 

14.5, 14.2, 14.1. IR (cm-1) 2952, 2931, 1750, 1705, 1669, 1451, 1235, 1180, 914, 757. 

 

methyl 9-((ethylthio)carbonyl)-6-oxo-7-(3-oxobutyl)-6,7,8,9-

tetrahydropyrido[1,2-a]indole-9-carboxylate (4-86) 

PdCl2 (0.07 g, 0.39 mmol, 0.3 equiv.) and CuCl2 (0.17 g, 1.3 mmol, 

1 equiv.) were added to a round bottom flask and half the volume 

(12 mL) of a 7:1 mixture of DMSO:water (10 mL total) was added to the flask. The flask 

was evacuated and refilled with a balloon of oxygen 5 times. Starting indole (4-86 

precursor) (0.59 g, 1.50 mmol, 1.13 equiv.) was dissolved in the other half of the 

DMSO:water solvent and then added dropwise to the palladium reaction. The reaction 

was again evacuated and refilled with oxygen. The reaction was stirred at 40 °C under 1 

atm of oxygen for 24 hours at which point TLC confirmed consumption of the starting 

indole. The reaction was quenched with 5% HCl and extracted three times with EtOAc. 

The organic fraction was washed with water 5 times, then brine, dried with MgSO4 and 

filtered. The filtrate was concentrated in vacuo to yield the crude material which was 

purified by column chromatography (30% EtOAc: 70% Hexanes) to isolate 4-86 as a 

yellow oil (0.15 g, 25% yield). Rf = 0.29 (30% EtOAc: 70% Hexanes). 
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1H NMR (400 MHz, CDCl3) mixture of diastereomers ∂ = 8.48 (m, 1H), 7.56 (t, J = 

7.0 Hz, 1H), 7.43 – 7.26 (m, 2H), 6.84 and 6.78 (s, 1H total), 3.89 and 3.80 (s, 3H total), 

3.01 – 2.82 (m, 3H), 2.79 – 2.64 (m, 3H), 2.56 – 2.38 (m, 1H), 2.37 – 2.23 (m, 1H), 2.19 

and 2.17 (s, 3H total), 2.01 – 1.88 (m, 1H), 1.27 (t, J = 7.4 Hz, 1.5H) and 1.20 (t, J = 7.4 

Hz, 1.5H) for 3H total. 13C NMR (101 MHz, CDCl3) mixture of diastereomers δ 207.8, 

198.1, 197.1, 170.2, 169.0, 168.5, 135.7, 135.5, 132.1, 129.3, 129.0, 126.1, 125.8, 124.6, 

124.5, 121.1, 121.0, 116.9, 116.8, 111.5, 111.5, 61.9, 61.3, 53.8, 53.8, 41.0, 40.7, 39.8, 

38.7, 34.5, 34.5, 30.2, 30.1, 25.0, 24.6, 24.3, 24.2, 14.2, 14.1. IR(cm-1) 2952, 1735, 1715, 

1671, 1589, 1565, 1451, 1349, 1241, 942, 757.  HRMS m/z [M+] 401.1303 (calcd for 

C21H23N2O5S, 401.1297). 

 

Dimethyl propargylmalonate (4-122) 

This product was purchased from Aurum Pharmatech ($145.00/25 g) as 

the cheapest option but is available from MilliporeSigma ($166.00/10g).  

 

2-(prop-2-yn-1-yl)malonic acid (4-123) 

Dimethyl propargylmalonate (4-122) (2.81 g, 16.5 mmol) was placed into 

a round-bottom flask in 1:1 mixture of THF:MeOH (166 mL, 0.1 M),  2M NaOH (66 mL, 

132 mmol) was added with rapid stirring and the mixture was left to stir O.N. at room 

temperature. When complete the reaction was concentrated in vacuo to remove the THF 

and MeOH and then was further diluted with water. The crude was extracted once with 

Et2O to remove any remaining starting material and then the water later was acidified 

carefully with concentrated HCl to pH=1. The acidic water layer was then extracted 3x 

with Et2O and the combined organic fractions were washed with brine, dried with MgSO4 

and concentrated in vacuo to yield pure product as a white solid (1.41 g, 66% yield). 

1H NMR data was in accordance with previously reported results.151 
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2-methylenepent-4-ynoic acid (4-119)  

To an argon flushed round bottom was added 4-123 (1.41 g, 9.9 mmol), 

paraformaldehyde (0.36 g, 11.9 mmol), piperidine (0.1 mL, 0.99 mmol) and 

5 mL of pyridine (2 M). The flask was equipped with reflux condenser and an empty 

balloon with a 16 guage needle to monitor production of CO2 gas. The reaction was 

placed in to a 130 °C oil bath and refluxed for 20-40 minutes depending on when gas 

production ceases and TLC showed consumption of starting materials. The dark burnt 

orange reaction was cooled to room temperature (no ice bath, just removed from the oil 

bath) and then acidified with 5% HCl. The aqueous mixture was added to a separatory 

funnel where the water layer was extracted 3x with Et2O. Using TLC to monitor for 

pyridine the organic fraction was washed with 5% HCl until pyridine was no longer 

detectable by TLC. Then the remaining organic fraction was washed with brine, dried 

with MgSO4, filtered and concentrated in vacuo. This product (yellow-orange solid) was 

pushed crude into the next step. 

1H NMR (400 MHz, Chloroform-d) δ 11.31 (br s, 1H), 6.50 (s, 1H), 6.19 (s, 1H), 3.25 

(s, 2H), 2.23 (t, J = 2.6 Hz, 1H). 13C NMR (101 MHz, CDCl3) δ 171.87, 134.86, 129.42, 

80.23, 72.67, 21.61. IR (cm-1) 3277, 2878, 2607, 1919, 1695, 1632, 1430, 1278, 1152, 

932, 666. HRMS m/z [M+] 110.0365 (calcd for C6H6O2 110.0368) 

 

tert-butyl (2-(1-(2-methylenepent-4-ynoyl)-1H-indol-3-

yl)ethyl)carbamate (4-124)  

Acid 4-119 (0.77 g, 7.0 mmol) was added to an argon flushed round 

bottom. The flask was placed under a balloon of argon and oxalyl chloride (COCl)2 (0.94 

g, 7.4 mmol) was added dropwise carefully. One drop of DMF was added to catalyze the 

reaction, and the mixture was stirred for 2 hours. 30 minutes prior to the 2-hour mark of 

the acid chloride formation another round bottom was set up with the remaining required 

reagents: Boc-protected tryptamine (4-42) (0.91 g, 3.5 mmol), tetrabutylammonium 

hydrogensulfate (Bu4NHSO4) and powdered NaOH (0.70 g, 17.5 mmol) were all added 
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to a round bottom containing 35 mL DCM (0.1 M). The mixture was stirred vigorously 

for 30 minutes before transferring the contents of the acid chloride forming reaction to 

the tryptamine containing reaction. The mixture was stirred for room temperature for 1 h 

at which time TLC indicated complete consumption of starting materials. The reaction 

was quenched with water and the extracted 3x with DCM. The organic fractions were 

dried with MgSO4, filtered, concentrated and purified by column chromatography (20% 

EtOAc: 80% Hexanes Rf= 0.4) to yield the product as a white solid (1.04 g, 84% yield).   

1H NMR (400 MHz, Chloroform-d) δ 8.41 (d, J = 8.2 Hz, 1H), 7.56 (dt, J = 7.5, 1.1 Hz, 

1H), 7.38 (ddd, J = 8.3, 7.2, 1.4 Hz, 1H), 7.35 – 7.29 (m, 2H), 6.11 (t, J = 1.8 Hz, 1H), 

5.67 (t, J = 1.5 Hz, 1H), 4.62 (br s, 1H), 3.51 – 3.40 (m, 4H), 2.90 (t, J = 7.0 Hz, 2H), 

2.27 (t, J = 2.7 Hz, 1H), 1.44 (s, 9H). 13C NMR (101 MHz, CDCl3) δ 168.19, 156.30, 

138.93, 136.51, 131.51, 125.78, 124.70, 124.46, 123.18, 119.41, 117.18, 79.44, 73.32, 

60.86, 40.50, 28.86, 26.09, 26.07, 23.63. IR (cm-1) 3312, 2973, 1740, 1703, 1513, 1455, 

1365, 1240, 1165, 955, 754. HRMS m/z [M+] 352.1787 (calcd for C21H24N2O3, 

352.1787). 

 

methyl 4-(3-(2-((tert-butoxycarbonyl)amino)ethyl)-1H-indole-1-

carbonyl)-2-vinylhept-6-ynoate (4-118) 

Indole 4-124 (0.16 g, 0.46 mmol) was dissolved in 1.6 mL THF 

(0.28 M) and left to sit under a balloon of argon. A mixture of LDA was generated by 

combining freshly distilled diisopropylamine in THF (1.5 mL, 0.3M) and cooling it to -78 

°C. nBuLi (2.5 M in hexanes, 0.28 mL, 0.69 mmol) was added slowly dropwise and the 

mixture stirred for 5 minutes. (E)-methyl but-2-enoate (0.73 g, 0.73 mmol) was added 

slowly dropwise to the LDA solution at -78 °C and the reaction was stirred at this 

temperature for 20 minutes. The indole solution was then added at -78 °C and the 

reaction was closely monitored at this temperature every 20 minutes until the starting 

material was mostly consumed but a third undesired spot began forming. The reaction 

was quenched at -78 °C by adding wet THF followed by 5% HCl and then removed from 

the dry-ice bath to warm to room temperature. The mixture was extracted 3x with EtOAc, 
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the organic fractions washed with brine and dried with MgSO4. The crude material was 

filtered, concentrated in vacuo and then purified by column chromatography (25% 

EtOAc:75% Hexanes, Rf= 0.43) to isolate the desired product as a yellow oil and a 

mixture of diastereomers. (0.072 g, 34%).  

Mixture of Diastereomers: 

1H NMR (400 MHz, Chloroform-d) δ 8.52 (t, J = 7.7 Hz, 1H), 7.55 (d, J = 7.7 Hz, 1H), 

7.45 – 7.28 (m, 3H), 5.90 – 5.69 (m, 1H), 5.24 – 4.94 (m, 2H), 4.70 (d, J = 13.7 Hz, 1H), 

3.68 and 3.62 (s each, 3H total), 3.55 – 3.32 (m, 4H), 3.21 – 3.08 (m, 1H), 2.92 (t, J = 6.4 

Hz, 2H), 2.75 – 2.65 (m, 1H), 2.59 – 2.40 (m, 2H), 1.43 (s, 9H). 13C NMR (101 MHz, 

CDCl3) δ 173.6, 172.3, 172.2, 156.0, 136.4, 135.0, 125.7, 124.1, 119.0, 118.4, 117.4, 

80.8, 71.4, 60.6, 52.3, 47.7, 41.7, 34.3, 33.9, 28.6, 25.8, 22.8, 22.5, 14.4. IR (cm-1) 2965, 

1730, 1693, 1453, 1393, 1346, 1276, 1241, 1134, 750. HRMS m/z [M+] 452.2306 (calcd 

for C26H32N2O5, 452.2311). 

 

4-125 

Indole 4-118 (0.92 g, 2.04 mmol) was dissolved in 7.3 mL THF 

(0.28 M) and left to sit under a balloon of argon. A mixture of 

LDA was generated by combining freshly distilled 

diisopropylamine (0.31 g, 3.06 mmol) in THF (6.8 mL, 0.3M) and cooling it to -78 °C. 

nBuLi (2.5 M in hexanes, 1.2 mL, 3.06 mmol) was added slowly dropwise and the 

mixture stirred for 5 minutes. (E)-methyl but-2-enoate (0.33 g, 3.26 mmol) was added 

slowly dropwise to the LDA solution at -78 °C and the reaction was stirred at this 

temperature for 20 minutes. The indole solution was then added at -78 °C and the 

reaction was closely monitored at this temperature every 20 minutes until the starting 

material was mostly consumed but a third undesired spot began forming. The reaction 

was quenched at -78 °C by adding wet THF followed by 5% HCl and then removed from 

the dry-ice bath to warm to room temperature. The mixture was extracted 3x with EtOAc, 

the organic fractions washed with brine and dried with MgSO4. The crude material was 

filtered, concentrated in vacuo and then purified by column chromatography (15% 
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EtOAc:85% Hexanes, Rf= 0.26) to isolate the desired product as a yellow oil and a 

mixture of diastereomers. (0.28 g, 26%).  

Mixture of diastereomers: 1H NMR (400 MHz, Chloroform-d) δ 8.51 (t, J = 7.5 Hz, 

1H), 7.64 (d, J = 7.3 Hz, 1H), 7.42 – 7.27 (m, 3H), 5.90 – 5.69 (m, 1H), 5.22 – 4.97 (m, 

2H), 3.93 – 3.86 (m, 2H), 3.68 and 3.63 (s each for 3H total), 3.38 (m, 1H), 3.20 – 3.10 

(m, 1H), 3.05 – 2.93 (m, 2H), 2.74 – 2.62 (m, 1H), 2.58 – 2.40 (m, 2H), 2.21 (t, J = 7.2 

Hz, 1H), 2.07 – 1.95 (m, 2H), 1.47 (s, 18H). 13C NMR (101 MHz, CDCl3) δ 173.6, 

173.5, 172.3, 172.1, 152.7, 152.7, 136.3, 136.3, 135.1, 135.0, 131.0, 131.0, 125.6, 125.6, 

124.1, 124.0, 122.3, 122.0, 120.2, 120.2, 119.2, 119.2, 119.1, 118.4, 117.3, 82.6, 82.6, 

80.6, 80.5, 71.4, 71.4, 52.3, 52.2, 47.7, 47.6, 46.2, 46.2, 41.7, 41.6, 34.1, 33.8, 28.2, 24.9, 

22.4, 22.3. IR (cm-1) 2965, 1730, 1693, 1453, 1393, 1346, 1276, 1240, 1134, 856, 750, 

641. HRMS m/z [M+] 552.2836 (calcd for C31H40N2O7, 552.2836). 

 

4-125b  

DMAP (0.04 g, 0.34 mmol) and Boc2O in THF (10 mL, 0.2 M) were 

placed under a balloon of argon with stirring.  4-124 (0.7 g, 1.99 mmol) 

was added followed by NEt3 (0.3 mL, 2.18 mmol) and the reaction was left to stir at room 

temperature overnight. When TLC indicated consumption of starting material the 

reaction mixture was concentrated in vacuo and placed directly onto column (10% 

EtOAc: 90 Hexanes, Rf = 0.3) to isolate the product as a white solid (0.85 g, 94%).  

1H NMR (400 MHz, Chloroform-d) δ 8.39 (d, J = 8.2 Hz, 1H), 7.67 – 7.60 (m, 1H), 

7.41 – 7.31 (m, 2H), 7.30 (s, 1H), 6.11 (t, J = 1.8 Hz, 1H), 5.68 (t, J = 1.7 Hz, 2H), 3.92 – 

3.81 (m, 2H), 3.47 – 3.40 (m, 2H), 3.01 – 2.93 (m, 2H), 2.27 (t, J = 2.6 Hz, 1H), 1.45 (s, 

18H). 13C NMR (101 MHz, CDCl3) δ 167.9, 152.7, 138.5, 136.1, 131.4, 125.3, 124.5, 

124.1, 123.0, 119.4, 119.2, 116.8, 82.5, 79.1, 73.00, 46.1, 28.2, 24.7, 23.3. IR(cm-1) 

3270, 2979, 1741, 1724, 1704, 1682, 1449, 1365, 1135, 1120, 746. HRMS m/z [M+] 

452.2315 (calcd for C26H32N2O5, 452.2311). 
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4-117 

To indole 4-125 (0.05g, 0.09mmol) in DCM (2 mL, 0.04 M) was 

added Grubbs I catalyst (0.01 g, 0.009 mmol) and a balloon of 

ethylene gas with long needle was placed into the solution followed 

by a bleed needle to flush the gas through the reaction mixture for 5 minutes. The needle 

was then lifted out of the reaction solution and the bleed needle removed to stir the 

mixture under an atmosphere of ethylene equipped with reflux condenser. The mixture 

was heated at 35 °C for four hours and aliquots monitored by 1H NMR was used to track 

the reaction progress because no Rf change was detectable by TLC. When NMR had 

indicated the starting material was consumed the reaction mixture was concentrated and 

then directly purified by column chromatography. The two diastereomers were separated 

to yield 2 clear oils (total mass 0.02g, 41% yield).  

1H NMR (400 MHz, Chloroform-d) δ 8.49 (d, J = 8.1 Hz, 1H), 7.64 (d, J = 7.8 Hz, 1H), 

7.40 – 7.35 (m, 2H), 7.34 – 7.28 (m, 3H), 6.43 (dd, J = 17.5, 10.8 Hz, 1H), 5.92 (s, 1H), 

5.19 (d, J = 17.4 Hz, 1H), 5.07 (d, J = 10.8 Hz, 1H), 3.92 – 3.85 (m, 2H), 3.73 (s, 3H), 

3.52 – 3.41 (m, 1H), 3.37 – 3.26 (m, 1H), 3.04 – 2.96 (m, 2H), 2.57 (d, J = 8.2 Hz, 2H), 

2.45 – 2.36 (m, 1H), 2.16 – 2.07 (m, 1H), 1.46 (s, 18H). 13C NMR (101 MHz, CDCl3) δ 

173.5, 173.3, 152.8, 138.4, 136.3, 130.8, 125.7, 125.4, 124.0, 121.8, 120.4, 119.2, 117.2, 

113.1, 82.6, 52.3, 46.3, 42.5, 39.4, 28.6, 28.2, 27.1, 24.8. IR(cm-1) 1694, 1453, 1349, 

1135, 749. HRMS m/z [M+] 552.2830 (calcd for C31H40N2O7, 552.2836). 

 

(4-108) and (4-105) synthesized following literature 

procedure from previous Kerr group methodology.134 

 

dimethyl 3-acetyl-5-methylenecyclohexane-1,1-dicarboxylate (4-109) 

To half the desired volume of solvent DMF:H2O (7:1) (32 mL total) in a 

round bottom was added PdCl2 (0.089 g, 0.5 mmol) and CuCl2 (0.22 g, 1.66 
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mmol). The flask was evacuated and refilled with a balloon of O2 5 times and the 

components left to stir for 10 minutes. Cyclohexane 4-105 (0.44 g, 1.88 mmol) was 

dissolved in the other half-volume of solvent system remaining and then added to the 

reaction flask via syringe. The mixture was then gently heated in a 40 °C oil bath with 

rapid stirring for 24 h. Upon confirmation of consumption of cyclohexane by TLC the 

reaction was quenched with 5% HCl and the reaction extracted 4x with EtOAc. The 

combined organic fractions were washed with water 5x, brine 1 x and then dried with 

MgSO4 , filtered and concentrated. The crude mixture was purified by column 

chromatography (20% EtOAc:80% Hexanes Rf = 0.31) to isolate the desired material as a 

clear, colourless oil (0.38 g, 81% yield).  

1H NMR (400 MHz, Chloroform-d) δ 4.82 (dt, J = 5.6, 1.6 Hz, 2H), 3.73 (s, 6H), 2.91 

(dt, J = 13.6, 1.8 Hz, 1H), 2.80 (tt, J = 12.6, 3.8 Hz, 1H), 2.57 (ddt, J = 13.6, 3.7, 2.0 Hz, 

1H), 2.50 – 2.41 (m, 2H), 2.19 (s, 3H), 2.07 – 1.96 (m, 1H), 1.72 (dd, J = 13.5, 12.5 Hz, 

1H). IR (cm-1) 2954, 1731, 1709, 1433, 1256, 1236, 1206, 1094, 868. HRMS m/z [M+] 

254.1149 (calcd for C13H18O5, 254.1154). 

 

dimethyl 3-acetyl-5-(hydroxymethyl)cyclohexane-1,1-dicarboxylate 

(4-110)  

BH3•THF (1M in THF, 0.71 mL, 0.71 mmol) was added to a round 

bottom flask under argon and equipped with stir bar. The flask was cooled to 0 °C and 

cyclohexene (0.17 mL, 1.63 mmol) was added dropwise. This mixture was stirred at 0 °C 

for 1 h to generate a white slurry at which point cyclohexane 4-109 (0.15 g, 0.59 mmol) 

was added via syringe. The reaction was stirred again at 0 °C, monitoring by TLC after 

1.5 h the starting material was gone and sodium perborate (0.32 g, 2.06 mmol) and water 

(0.71 mL) was added to the mixture. The reaction was warmed to rt while stirring. After 

2 h the reaction mixture was transferred to a separatory funnel and extracted with EtOAc 

3x. The combined organic fractions were dried with MgSO4, filtered, concentrated and 

purified by column chromatography (50% EtOAc: 50% Hexanes Rf= 0.18) to isolate the 

product as a colourless oil (0.024 g, 15%). 
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1H NMR (400 MHz, Chloroform-d) δ 3.74 (s, 3H), 3.70 (s, 3H), 3.57 – 3.44 (m, 2H), 

2.63 (tt, J = 12.6, 3.4 Hz, 1H), 2.51 (ddt, J = 13.5, 3.4, 2.0 Hz, 1H), 2.40 – 2.33 (m, 1H), 

2.17 (s, 3H), 2.01 (ddt, J = 9.6, 3.3, 1.6 Hz, 1H), 1.87 (br s, 1H), 1.72 – 1.55 (m, 2H), 

1.40 (t, J = 13.1 Hz, 1H), 0.97 (q, J = 12.6 Hz, 1H).  13C NMR (101 MHz, CDCl3) δ 

210.39, 172.17, 171.36, 67.49, 54.72, 53.02, 52.91, 46.94, 36.42, 33.50, 32.51, 30.43, 

28.36. IR (cm-1) 3336, 2970, 2931, 1466, 1378, 1107, 1128, 950. HRMS m/z [M+] 

272.1259 (calcd for C13H20O6, 272.1259).  

 

dimethyl 3-(2-methyl-1,3-dioxolan-2-yl)-5-methylenecyclohexane-1,1-

dicarboxylate (4-112) 

Cyclohexane 4-109 (0.075 g, 0.29 mmol), ethylene glycol (0.07 mL, 1.18 

mmol), TsOH•H2O (0.006 g, 0.029 mmol) and trimethyl orthoformate (0.15 g, 1.45 

mmol) were added to benzene (1 mL, 0.3 M). The flask was placed under argon and 

stirred at room temperature for 48 h at which point 1H NMR indicated complete 

consumption of starting material. The reaction mixture was quenched with bicarb, 

extracted with EtOAc 3x and the organic fractions wash with brine 1x. The organic 

fraction was collected was dried with MgSO4, filtered, concentrated and purified by 

column chromatography (20% EtOAc:90% Hexanes Rf = 0.34) to collect the product as a 

colourless oil (0.075 g, 86% yield). 

1H NMR (599 MHz, Chloroform-d) δ 4.77 (d, J = 9.5 Hz, 2H), 4.00 – 3.85 (m, 4H), 

3.71 (s, 3H), 3.70 (s, 3H), 2.90 (d, J = 14.3 Hz, 1H), 2.53 (d, J = 12.9 Hz, 1H), 2.40 (t, J 

= 11.8 Hz, 2H), 1.99 – 1.90 (m, 1H), 1.85 (t, J = 13.0 Hz, 1H), 1.57 (t, J = 12.8 Hz, 1H), 

1.29 (s, 3H). 13C NMR (101 MHz, CDCl3) δ 172.39, 170.93, 143.43, 111.60, 110.85, 

64.98, 61.37, 56.51, 52.92, 52.55, 43.67, 39.56, 34.87, 32.05, 21.51.  HRMS m/z [M+] 

298.1419 (calcd for C15H22O6, 298.1416).  
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dimethyl 3-acetyl-5-(((tert-

butyldimethylsilyl)oxy)methyl)cyclohexane-1,1-dicarboxylate 

(4-114) 

To an argon flushed round bottom was added cyclohexane 4-110 

(0.035 g, 0.13 mmol), TBS-Cl (0.023 g, 0.15 mmol), DCM (1.3 mL, 0.1 M), NEt3 (0.04 

mL, 0.26 mmol) and DMAP (0.023 g, 0.19 mmol). The flask was placed under an 

atmosphere of argon and stirred for 24 h at room temperature. The reaction was quenched 

with H2O, extracted with DCM 3x and the combined organic fractions washed with brine, 

dried with MgSO4, filtered and concentrated. The crude residue was purified by column 

chromatography (20% EtOAc: 80% Hexanes Rf = 0.4) to isolate the desired product as a 

colourless oil (0.036 g, 71 % yield).  

1H NMR (400 MHz, Chloroform-d) δ 3.74 (s, 3H), 3.71 (s, 3H), 3.49 (dd, J = 10.0, 5.6 

Hz, 1H), 3.43 (dd, J = 10.0, 6.2 Hz, 1H), 2.65 (tt, J = 12.6, 3.4 Hz, 1H), 2.50 (ddt, J = 

13.5, 3.4, 2.0 Hz, 2H), 2.39 – 2.31 (m, 2H), 2.17 (s, 3H), 2.02 – 1.93 (m, 1H), 1.64 – 1.54 

(m, 2H), 1.39 (t, J = 13.0 Hz, 1H), 0.88 (s, 9H), 0.03 (s, 6H). 13C NMR (101 MHz, 

CDCl3) δ 210.39, 172.31, 171.47, 67.72, 54.84, 52.95, 52.77, 47.08, 36.73, 33.66, 32.60, 

30.71, 28.36, 26.03, 18.45, -5.24. HRMS m/z [M+H] 387.2203 (calcd for C19H35O6Si, 

387.2208).  
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Chapter 5 : Annulation of Oxime-Ether Tethered Donor-
Acceptor Cyclopropanes 

5.0 Preface 

This work is adapted from the following manuscript: Irwin, L. C.; Allen, M. A.; Vriesen, 

M. R.; Kerr, M. A. Chem. Eur. J. 2019, Accepted and in early view. 

10.1002/chem.201904521 

5.1 Introduction  

Donor-acceptor cyclopropanes (DA CPs) have been well-established as important 

building blocks for the synthesis of heterocyclic compounds.152  Heterocycles, and 

specifically those containing nitrogen, have widespread occurrence in highly sought 

natural products and bio-active molecules.153 Our interest lies in the importance of 

pyrrolidine-containing molecules and the precursors to access such scaffolding, like 

hydropyrrolo-oxazines.154 Figure 20 showcases bio-active natural products alsaphorazine 

A and B (5-1a, 5-1b)155, preussin C (5-4)156 and 5-methyl 2-(N-methyl-pyrrolidinane) (5-

2)157 that have yet to see their total syntheses realized. Also exhibited is Abbott’s 

influenza neuraminidase inhibitor; A-315675 (5-3), yet another important pyrrolidine-

containing molecule.158 

 

Figure 20 – Pyrrolidine-containing compounds of interest. 
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The task of synthesizing pyrrolidines in a diastereoselective manner is a central challenge 

in the synthesis of target molecules of academic and industrial importance. In efforts to 

address this challenge, we and others have shown that donor-acceptor cyclopropanes are 

convenient starting materials for synthesizing the hexahydropyrrolo-oxazines (5-6) and 

pyrrolidine molecules (5-7) in question.159 Donor-acceptor cyclopropanes with 

appropriate intra- or intermolecular nucleophiles can synthesize these molecules with 

ease, and previous work from our group showcases these claims nicely (Scheme 103).160 

From O-hydroxylamine-tethered cyclopropanes (5-5), the addition of an aldehyde 

followed by Yb(OTf)3 generates the hexahydropyrrolo-isoxazoles (5-6) but confined to the 

5-membered bicyclic examples. The order of addition of the Lewis acid and aldehyde 

defined the diastereomeric outcome of the annulation products (5-6cis/trans, Scheme 103). 

However, these CPs (5-5) were not exceptionally stable and cyclize on themselves if left 

to sit. Accessing the O-hydroxylamine cyclopropanes (5-5) took 9 steps and did not explore 

any variation of the chain length off the donor acceptor cyclopropane.  
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Scheme 103 - Current and related research from our group. [a] NaCN, DMSO, 140 

°C [b] Pd/C (10 mol%), H2(g) (1 atm), AcCl, MeOH 

The work herein aimed to address issues with the initial research and discover a method 

by which more elaborate products could be synthesized. I describe a high yielding, 

temperature controlled, diastereoselective route to hydropyrrolo-oxazines 5-11. The 

hydropyrrolo-oxazines can be taken to their respective diastereospecific pyrrolidines in a 

single step via hyrogenative N-O bond cleavage (Scheme 103). From a short and high 

yielding 2-step synthesis of oxime-ether tethered cyclopropanes (5-10) the intramolecular 

nucleophilic opening of the tethered cyclopropane proceeds with the aid of Lewis acid, 

Yb(OTf)3. In one-pot, the bicyclic hydropyrrolo-oxazines (5-11cis/trans) are formed from 

the annulation of the resulting intermediate in high yield and diastereoselectively controlled 

by the temperature of the reaction.  
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5.2 Optimization of the Synthesis of Oxime-Ether Tethered 
DA Cyclopropanes 

Requiring an accessible method for the synthesis of oxime-ether DA cyclopropanes (5-

10), I envisioned that via a simple SN2 substitution with an oxime nucleophile (5-9) I 

could access the desired material from bromocyclopropane 5-8. Attempts to construct a 

reliable synthesis of 5-10a commenced using CP and phenyl oxime 5-9a. In the presence 

of base and varying the reaction conditions I was able to optimize a route to desired 

cyclopropanes 5-10 (Table 14).161  The synthesis of cyclopropane 5-12a, and the 

synthesis of all oxime variants are outlined in  the experimental details, Section 5.6 . 

Table 14 - Optimization of oxime-ether tethered donor-acceptor cyclopropanes 

 

Entry Equiv. 5-

12a 

Equiv. 5-9a Base Solvent/T (°C) Time 

(h) 

Result 5-10a 

1 1 1.2 K2CO3 (1.2 

equiv.) 

DMF / 60 °C 18 Incomplete 

reaction 

2 1 1.2 Na2CO3 (3.0 

equiv.) 

DMF/ 60-

80 °C 

42 Incomplete 

reaction 

3 1 1.5 NaH (2.1 equiv.) DMF/ 80 °C 19 38% 

4 1 1.5 Ag2CO3 (3.0 

equiv.) 

Acetone/ 

55 °C 

21 Incomplete 

reaction 

5 1 1.5 Cs2CO3 (2.0 

equiv.) 

Acetone/ 

55 °C  

18 Incomplete 

reaction 

6 1 1.5 Cs2CO3 (3.0 

equiv.) 

Acetone/ 

55 °C 

26 Complete, not 

isolated 

7 1 1.0 Cs2CO3 (3.0 

equiv.) 

Acetone/ 

55 °C 

18 76% 

First attempts at generating product 5-10a from Table 14, entry 1, used K2CO3 as the 

base in DMF heated to 60 °C. The reaction was incomplete but crude proton NMR 

evidence suggested the desired product was being made. Changing the base to Na2CO3 

resulted in an incomplete reaction after 42 h (Table 14, entry 2). Changing to a stronger 

base NaH (Table 14, entry 3), resulted in the isolation of a low 38% yield of product 5-

10a. I explored a few other base options because the DMF solvent became troublesome 
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to remove to isolate pure product.  Ultimately, switching the solvent to acetone and using 

3 equivalents of Cs2CO3 and one equivalent of each of the oxime and the 

bromocyclopropane afforded appreciable amounts of desired product 5-10a (76 %) 

(Table 14, entry 7).  

It is important to note that in accordance with literature reports, the E oximes were 

synthesized selectively when making aromatic substituted oximes.162 Synthesizing 

aliphatic oximes resulted in inseparable mixtures of E:Z oximes that could be separated 

after synthesizing the oxime-ether CP. 

 

5.3 Oxime-Ether Donor-Acceptor Cyclopropanes 
Synthesized 

Using the optimized conditions outlined in Table 14, a library of 15 oxime-ether products 

(5-10a-o) were generated with ease (Table 15).  

Aromatic phenyl containing E oxime-ethers (5-10a-g) were synthesized in good to 

excellent yields (76%-90%). Synthesis of the thiophene-containing oxime ether 5-10h 

worked, but in a lower 48% yield. When it came to synthesize the Z oxime-ether CPs, (5-

10d and 5-10o) the yields were significantly lower, 32% and 18% respectively. It was 

intriguing that the other isomer of the oxime would affect this displacement reaction so 

heavily but working amounts of product were still easily generated. 1,2-benzo substituted 

CP 5-10m and 5-10o were synthesized using an alternate bromo-cyclopropane, the 

synthesis of which is outlined in Section 5.6.  

This reaction proceeds with retained configuration of the oxime. 163 If the E oxime (5-9) 

is the chosen nucleophile, then the resultant oxime-ether CP (5-10) will also be the E 

oxime-ether product. To generate the few Z examples of oxime-ether CPs, the Z oximes 

were synthesized by inverting the configuration of the E oximes using cold HCl (see 

Section 5.6). To confirm this retained configuration, we opted to use X-ray 

crystallography because 1H NMR provided inconclusive results and reports in the 

literature were conflicting and lacked details on compounds of this type that have never 
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been synthesized before. I could not be certain that trends in NMR data would be the 

same. ORTEP drawings of E oxime 5-9c and E oxime-ether 5-10c are found in Figure 

21.  

                 

 

 

 

 

 

 

 

 

 

Figure 21 - ORTEP drawings of structures 5-9c and 5-10c. Ellipsoids are at the 50% 

probability level and hydrogen atoms were drawn with arbitrary radii for clarity. 
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Table 15 - Library of generated oxime-ether tethered cyclopropanes 5-10a-o 

 

[a] Yield of combined E and Z isomers. Isolated yield of E isomer 46% [b] Determined from crude 1H NMR  
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5.4 Annulation of Oxime-Ether Tethered Cyclopropanes 

5.4.1 Initial Findings of the Annulation Reaction 

With access to the desired oxime-ether starting materials cemented, experimentation with 

the annulation reaction was initiated and a few interesting scenarios arose. Oxime-ether 

5-10c reacted with 5 mol% of Yb(OTf)3 in refluxing toluene to access our desired 

bicyclic hydropyrrolo-oxazine 5-11c in a quantitative yield (Scheme 104, 1). We were 

thrilled to discover a single isomer of annulation product 5-11c had been synthesized. 

Repeating this reaction with the Z-oxime (5-10d) (Scheme 104, 2) resulted in isolating the 

exact same isomer observed in the previous reaction with the E oxime-ether 5-10c. 

Isolating the same isomer was perturbing giving our understanding of the mechanism for 

this annulation. The result implied that the geometry of the oxime does not control which 

isomer of the annulation product is formed. I hypothesized that perhaps one of the isomers 

could form both cis and trans annulation products. 

 

Scheme 104 - Initial findings during the annulation reaction of oxime-ethers 5-10c 

and 5-10d. 

At this time, it could not be confirmed whether the cis or trans isomer of 5-11c had 

formed using 1H or 13C NMR spectroscopy. NOESY experiments failed to provide any 

correlation between the benzylic and the bridge head protons. We later confirmed by 

single X-ray crystallography that we had isolated the cis isomer of annulation product 5-

11c at 120 °C in both experiments shown in Scheme 104 (see Figure 23 for crystal 
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structures). The details of this, and the determination of the isomers, will be outlined 

further below.  

5.4.2 Computational Insight on Isomer Formation 

To provide some insight on which isomer we might be isolating, we turned to 

computational calculations of the molecular energies comparing the cis and trans isomers 

of 5-11a (Table 16). DFT calculations were performed on molecule 5-11a to keep the 

calculation times reasonable. Using three popular computational theories at the highest 

calculation level, results were similar, but conclusive to the same result; the cis isomer was 

favoured by an average 21.42 kJ/mol. Dealing with two isomers that differ by the energy 

of a hydrogen-bond, it definitely became apparent that both isomers were close in relative 

stability, but that perhaps one isomer could be isolated over the other, starting with only 

the E or Z oxime-ether.  

Table 16 - DFT calculations of the molecular energies of cis and trans annulation 

products 5-11a-cis and 5-11a-trans. 

 

Intrigued by this interesting result, I employed a model kit to construct the annulation 

reaction to help narrow our hypothesis further. The model kit informed us that likely the 

E oxime-ether cyclopropane (5-10a) would more easily form the trans isomer of the 

annulation product (5-11a-trans) and that the Z oxime-ether would access the cis product 
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5-11a-cis (Figure 22). According to the computational results, the Z isomer 5-10d was 

forming the most stable isomer and would never access the relatively less stable trans 

isomer 5-11a-trans. This suggested that from the E oxime-ether 5-10c I should be able to 

isolate both the trans and cis isomers. Although, I had isolated only the cis at this point I 

hypothesized that part of the mechanism was either reversible or the oxime-ether (5-10c) 

would isomerize to the Z oxime-ether (5-10d) before opening the cyclopropane.   

 

 

 

 

 

5.4.3 Experimental Probing of Isomer Generation 

From the computational results and the model-kit insight, we hypothesized that this 

reaction did not require such forcing conditions and that lowering the reaction 

temperature would provide different results. This was to curb either the annulation 

product reversibly opening and re-closing to a single isomer, or, to prevent the oxime-

ether from isomerizing before opening the cyclopropane. Both scenarios would explain 

the interesting findings. To our delight, as we altered the temperature of the annulation 

reaction of oxime-ether 5-10c, evidence of the other isomer 5-11c-trans became apparent 

(Scheme 105). 

Figure 22 - Model of E oxime-ether 5-10a forming the trans annulation product 5-

11a-trans. 
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Scheme 105 - [A] Effects of temperature on the annulation reaction of oxime-ether 

tethered cyclopropanes. [B] Interconversion of the trans annulation product 5-11c-

trans to cis annulation product 5-11c-cis. 

From the results outlined in (Scheme 104, 1), at 120 °C only the cis annulation product 

5-11c-cis was isolated. Lowering the reaction temperature from 120 °C to 90 °C (Scheme 

105, Entry 2) resulted in a mixture of the cis:trans isomers (5-11c) in a 1:2 ratio by 1H 

NMR. Lowering the temperature further to 60 °C resulted in isolating only the trans 

isomer 5-11c-trans (Scheme 105, Entry 3). An exciting result, the lowering of the 

temperature confirmed that, from the E-oxime-ether CPs, we gain access to both the cis 

and trans isomer of the hydropyrrolo-oxazines (5-11c). To solidify our findings, taking 

the trans isomer isolated at 60 °C and subjecting it to 5 mol% Yb(OTf)3 at 120 °C 

(Scheme 105, B) resulted in quantitative conversion to the cis isomer, confirming that the 

cis isomer is our thermodynamic product. This finding also proved that the annulation is 

reversible, and access to the cis isomers is possible from the trans isomers, but that the cis 

isomer cannot revert to the trans because it is the thermodynamic sink.164  Crystal 

structures of E-oxime cyclopropane 5-10c and the cis isolated product (5-11c-cis) were 

collected to confirm our identification of the isomers isolated (Figure 23).  
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Figure 23 - ORTEP drawings of E oxime-ether 5-10c and its cis annulation product 

5-11c-cis. Ellipsoids are at the 50% probability level and hydrogen atoms were 

drawn with arbitrary radii for clarity. 

The proposed mechanism for the formation of both the cis/trans annulation isomers 

is outlined in (Scheme 106). 

 

Scheme 106 - Proposed mechanism for the cyclopropane ring-opening and 

cyclization reaction of oxime-ether tethered cyclopropanes. 

Coordination of ytterbium to the methyl ester carbonyls makes cyclopropane I 

susceptible to attack via the oxime nitrogen. Opening the cyclopropane results in 

zwitterionic species II, and from the oxime E isomer, the protons of interest (Scheme 

106, red hydrogens) are trans to each other (II). Closure via attack of the anionic carbon 

alpha to the esters results in desired product III as the trans isomer. Once closed, the 

5-10c 
5-11c-cis 
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lone-pair of the nitrogen atom can break the formed ring resulting in intermediate IV 

again. At this point, closure from the opposite face occurs resulting in the thermodynamic 

cis isomer V. 

The crystal structures generated, and the experimental results allowed us to confirm that 

we can control the diastereoselectivity of this annulation reaction by changing the 

reaction temperature.  

5.4.4 Substrate Scope for the Cis/Trans Isomers of the tandem 
Cyclopropane Opening and Annulation 

Having clarified the formation of each cis and trans isomer of 5-10c, we could expand the 

annulation reaction to all the synthesized oxime-ether CPs (5-10a-o) elaborating a library 

scope of the cis and trans hydropyrrolo-oxazines (5-11a-m-cis/trans) from reactions 

performed at varied temperatures (Table 17). 

Initial trends observed that electron withdrawing substituents on the oxime aromatic ring 

resulted in high yields of the cis isomer at 120 °C (5-11b-cis, 5-11c-cis, 5-11d-cis). 

Accessing the trans isomer at 60 °C also worked well in high yields for the electron 

withdrawing examples (5-11b-trans, 5-11c-trans, 5-11d-trans).  

However, when examining more electron-neutral examples, like phenyl 5-11a, a mixture 

of the isomers was observed at 60 °C but were easily separated by column 

chromatography. This trend continued with electron-donating examples 5-11f and 5-11g, 

which saw the cis isomer isolated at both 120 °C and 60 °C. To combat the ease in which 

these examples annulated to the thermodynamic cis isomer, we lowered the reaction 

temperature further to 25 °C. The change resulted in electron-rich examples forming the 

trans isomer but in lower yields than their withdrawing counterparts. In the case of 5-11f-

trans, the reaction had unreacted starting material after 48 h. It can be rationalized by the 

proposed mechanism in Scheme 106 that the electron-rich examples provide a more 

favourable and stabilized intermediate of III (Scheme 106) and that closure to the cis 

product could occur with greater ease. 
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Table 17 - Substrate scope for the annulation reaction of oxime-ether cyclopropanes 
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Thiophene oxime-ether annulation product 5-11h cyclized to the cis isomer at all 

temperatures explored, in a maximum yield of 78%. The aliphatic isopropyl oxime-ether 

product 5-10k failed to yield annulation product 5-11l. Dimethyl oxime annulation product 

5-11j was acquired in a 78% yield and spirocycle 5-11k was acquired in a lower 52% yield. 

The lower yield of product 5-11k is suspected to be the result of a side Beckmann 

rearrangement.  

Exploring the alternative chain-length examples, the 7-membered product 5-11i required 

higher temperatures at 160 °C to successfully annulate in an 86% yield. Unfortunately, the 

10-membered ring annulation product 5-11m was not successfully isolated. 

The phenyl side chain oxime-ether CP 5-10m annulated smoothly at 120 °C to yield 

product 5-11e-trans in a 99% yield. This product had an unexpected chemical shift of the 

benzylic proton in the 1H NMR spectrum at 5.74 ppm. This seemed high because the trend 

for all examples exhibited the cis isomer benzylic proton at a lower chemical shift than the 

trans isomer benzylic proton. When the reaction was performed at the lower 60 °C and the 

same isomer resulted, it became apparent that the phenyl side chain put alternative strain 

on this reaction giving us a different isomer than expected, 5-11e-trans. To confirm these 

suspicions, x-ray crystallography of the oxime-ether CP 5-10m confirmed we had made  

the E-isomer as expected. And a crystal of 5-11e confirmed the trans isomer was being 

isolated in this case, even at 120 °C (Figure 24). 

Figure 24 - ORTEP drawings of 5-10m and 5-11e-trans. Ellipsoids are at the 50% 

probability level and hydrogen atoms were drawn with arbitrary radii for clarity. 

5-10m 5-11e-trans 
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Synthesis of the cis isomer 5-11e-cis was possible using the Z-oxime-ether CP (5-10o) 

which indeed had a benzylic proton chemical shift lower than that of the trans product 5-

11e-trans at (5.04 ppm). The findings further solidify the observed chemical shift trend; 

that the cis products have a benzylic proton shift at a lower ppm than the trans products.  

5.4.5 Elaboration to Pyrrolidine 

Following the procedure outline by Jackson et al. we were also able to isolate the 

pyrrolidine (5-12) of hydropyrrolo-oxazine 5-11a-trans that retained its diastereomeric 

relationship. The N-O bond was successfully cleaved under hydrogenative conditions to 

give a quantitative yield of pyrrolidine HCL salt 5-12 (Scheme 107). We hope to use 

chemistry like this in the future to access natural products.  

 

Scheme 107 - Pyrrolidine synthesis from trans annulation product 5-11a-trans 

5.5  Conclusions and Future Directions 

In summary, we have developed a protocol for 2-step access to oxime-ether tethered 

cyclopropanes 5-10a-o which support the synthesis of varied chain lengths. The 

intramolecular cyclopropane opening, and annulation reaction of the E oxime-ether CPs 

are diastereocontrolled by varying the temperature to provide access to both cis and trans 

hydropyrrolo-oxazines (5-11a-m-cis/trans). We confirmed the isomeric configurations 

via single crystal x-ray crystallography and the results were further supported by the 

findings of DFT calculations. The hydropyrrolo-oxazines (5-11) can be taken to their 

respective pyrrolidines by reductive N-O bond cleavage to access high-value heterocycles 

with tune-able substitution and predictable stereochemistry.  
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Exploring enantiopure examples of oxime-ether cyclopropanes may prove valuable to 

access single enantiomers of products via the temperature-controlled procedure. This is 

likely worth exploring in the future.  

5.6 Experimental 

5.6.1 General Experimental Details 

All glassware was dried in a 120 °C oven for at least two hours before cooling in a 

desiccator or under high vacuum (0.4 torr) before use. Toluene was passed over activated 

alumina columns and was stored over 4Å molecular sieves and under argon for a 

minimum of 24 h and a maximum of 2 weeks prior to use in the oxime ether annulation 

reactions. Acetone was purchased as distilled in glass from Caledon and used as received. 

All other commercial reagents and solvents were used as obtained without further 

purification. Reactions were performed under a balloon of argon, but with minimal air 

sensitive technique. Reagents and solvents were weighed and placed into reaction flasks 

before the balloon of argon was added. The progress of reactions was followed by thin 

layer chromatography (TLC) (silica gel 60 F254) and the developed plates were stained 

using acidic p-anisaldehyde (oxime syntheses) or basic potassium permanganate (all 

other reactions). Some reactions required the use of 1H NMR to monitor consumption of 

starting material, these experiments are indicated below. Flash chromatography was 

performed using silica gel (230- 400 mesh). All chromatography was performed using 

Still’s procedure for flash chromatography.96  Attenuated Total Reflectance (ATR) 

infrared spectra were obtained using Bruker Alpha II Di-ATR. NMR experiments were 

performed on either a Bruker AvIII 400 or Inova 600 instrument and samples were 

obtained in CDCl3 (referenced to 7.25 ppm for 1H and 77.0 ppm for 13C) or d6-DMSO 

(referenced to 2.50 for 1H and 39.5 for 13C) as indicated. Coupling constants (J) are in Hz. 

The multiplicities of the signals are described using the following abbreviations: s = 

singlet, d = doublet, t = triplet, q = quartet, dd = doublet of doublets, dt = doublet of 

triplets, dq = doublet of quartets, m = multiplet, br = broad.  CDCl3 was kept over K2CO3. 

High resolution mass spectra (HRMS) were obtained on a Thermo Scientific DFS mass 

spectrometer using electron impact ionization or chemical ionization (isobutane) when 

electron impact proved too harsh to acquire the exact mass of a sample.  
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5.6.2 Cyclopropane Syntheses 

 

5-8a 

5-bromo-1-pentene (0.98 g, 6.6 mmol, 1.3 equiv.) was added to a dry 

round bottom flask. CH2Cl2 (17 mL) was added and the flask was 

purged with argon. Rh2(esp)2 (0.011 g, 0.015 mmol, 0.003 equiv.) was added. 

Diazomalonate165 (0.8 g, 5.1 mmol, 1 equiv.) was dissolved in 2 mL CH2Cl2 and added 

very slowly by syringe over 35 minutes. The reaction was stirred until TLC confirmed 

consumption of starting material (1.5 hours). When complete, the reaction was 

concentrated and purified by column chromatography (20 % EtOAc/Hexanes, Rf = 0.43) 

to yield 1.22 g (87%) of a pale green oil (rhodium impurity). 

1H NMR (400 MHz, Chloroform-d) δ 3.74 (s, 3H), 3.69 (s, 3H), 3.38 (m, 2H), 1.96 

(ddt, J = 14.1, 7.5, 6.8 Hz, 2H), 1.86 (p, J = 7.8 Hz, 1H), 1.55 (dq, J = 14.4, 7.2 Hz, 1H), 

1.45 – 1.33 (m, 3H) 13C NMR (101 MHz, CDCl3) δ 170.7, 168.5, 52.7(4), 52.6(7), 33.9, 

33.0, 31.9, 27.5, 27.2, 21.1. HRMS m/z 278.0149 (calc’d for C10H15BrO4, 278.0154) IR 

2952, 2228, 1726, 1608, 1523, 1254, 1178, 1078, 1048, 732. 

Precursor A 

TBS-protected hexenol (1.71 g, 7.96 mmol) and Rh2(esp)2 

(0.006 g, 0.008 mmol) were mixed in CH2Cl2 (50 mL, 0.15 M) 

for 10 minutes at room temperature under an argon atmosphere.  Diazomalonate165 (1.635 

g, 10.3 mmol) in CH2Cl2 (3 mL) was subsequently added dropwise over ten minutes.  

The solution was stirred at room temperature for 3 hours before the solvent was removed 

in vacuo.  The crude oil was purified by flash column chromatography (10% 

EtOAc/hexanes) to yield 2.52 g (92%) of the desired cyclopropane as a pale-yellow oil.   

Rf 0.37 (10% EtOAc/hexanes). 

1H NMR (600 MHz, CDCl3): δ = 3.75 (s, 3H), 3.72 (s, 3H), 3.59 (dd, J = 6.5 Hz, 6.5 

Hz, 2H), 1.90 (dddd, J = 8.8 Hz, 8.2 Hz, 8.2 Hz, 5.9 Hz, 1H), 1.55- 1.43 (m, 5H), 1.41 

(dd, J = 8.9 Hz, 4.6 Hz, 1H), 1.37 (dd, J = 7.8 Hz, 4.6 Hz, 1H), 1.21-1.13 (m, 1H), 0.89 



208 

 

(s, 9H), 0.03 (s, 6H). ). 13C NMR (101 MHz, CDCl3) δ 171.1, 168.9, 63.1, 52.7, 52.6, 

34.0, 32.6, 28.8, 28.7, 26.1, 25.3, 21.5, 18.5, -5.2. HRMS m/z [M+H] 345.2104 (calc’d 

for C17H33O5Si+, 345.2097). IR (ATR) vmax = 2954, 2930, 2857, 1727, 1462, 1436, 1389, 

1329, 1283, 1256, 1210, 1129, 1098, 1006, 939, 835, 776, 707, 662.  

Precursor A-OH 

To a solution of cyclopropane Precursor A (2.25 g, 6.54 mmol) in 

MeOH (65 mL, 0.1 M) was added PPTS (0.24 g, 0.98 mmol).  After 24 hours, the solvent 

was removed in vacuo.  50 mL of a saturated solution of NaHCO3 and 50 mL of CH2Cl2 

were added to the crude material and the layers were separated.  The aqueous phase was 

extracted twice with CH2Cl2, and the organic layers were combined and washed once 

with brine.  The solution was dried over MgSO4 and the solvent was removed in vacuo to 

yield crude cyclopropyl alcohol (1.49 g, 99%).  This material was used in the subsequent 

transformation without purification.  Rf =0.45 (60% EtOAc/hexanes) 

1H NMR (400 MHz, CDCl3): δ = 3.74 (s, 3H), 3.70 (s, 3H), 3.61 (ddd appearing as q, J 

= 5.6 Hz, 2H), 1.95 – 1.83 (m, 1H), 1.63 – 1.33 (m, 8H), 1.27 – 1.15 (m, 1H). 13C NMR 

(101 MHz, CDCl3): δ = 171.0, 168.9, 62.8, 52.7, 52.6, 34.0, 32.4, 28.7, 28.6, 25.1, 21.5 

HRMS m/z 231.1235 (calc’d for C11H19O5
+, 231.1227). IR (ATR) vmax = 3408, 3009, 

2937, 2863, 1719, 1437, 1392, 1331, 1285, 1213, 1130, 1050, 990, 905, 753, 667. 

5-8b-butyl chain 

Cyclopropane Precursor A-OH  (1.51 g, 6.55 mmol) and PPh3 

(2.75 g, 10.5 mmol) were dissolved in CH2Cl2 (26 mL, 0.25 M) and 

the flask was wrapped in aluminum foil to shield it from light.  Imidazole (0.893 g, 13.11 

mmol) and iodine (2.66 g, 10.5 mmol) were subsequently added.  The reaction was 

stirred at room temperature for 18 hours, after which it was quenched with NaSO3 (aq).  

The layers were separated and the aqueous phase was extracted two additional times with 

CH2Cl2.  The organic layers were combined, washed once with brine, dried over MgSO4 

and the solvent was removed in vacuo.  The crude yellow solid was purified by flash 

column chromatography (15% EtOAc/hexanes) to yield cyclopropane iodide 5-8b-

butylchain (1.82 g, 82%).  Rf = 0.39 (15% EtOAc/hexanes). 



209 

 

1H NMR (400 MHz, CDCl3): δ = 3.75 (s, 3H), 3.71 (s, 3H), 3.15 (dd appearing as t, J = 

7.0 Hz, 2H), 1.94-1.75 (m, 3H), 1.55-1.45 (m, 3H), 1.43-1.32 (m, 2H), 1.27-1.16 (m, 1H). 

13C NMR (101 MHz, CDCl3): δ = 170.9, 168.8, 52.8, 52.7, 34.0, 33.2, 29.9, 28.4, 27.8, 

21.4, 6.6; HRMS m/z 341.0250 (calc’d for C11H18O4I
+, 341.0244). IR (ATR) vmax = 

3004, 2950, 2859, 1723, 1435, 1392, 1328, 1279, 1253, 1212, 1131, 990, 905, 884, 756.  

Precursor B 

TBS-protected undecenol (2.52 g, 8.85 mmol) and 

Rh2(esp)2 (0.007 g, 0.009 mmol) were mixed in 

CH2Cl2 (43 mL, 0.15 M) for 10 minutes at room 

temperature under an argon atmosphere.  Diazomalonate165 (1.82 g, 11.5 mmol) in 

CH2Cl2 (3 mL) was subsequently added dropwise over ten minutes.  The solution was 

stirred at room temperature for 15 minutes before the solvent was removed in vacuo.  The 

crude oil was purified by flash column chromatography (5% EtOAc/hexanes) to yield 

2.72 g (74%) of the desired cyclopropane as a pale-yellow oil.   Rf 0.38 (5% 

EtOAc/hexanes). 

1H NMR (400 MHz, CDCl3): δ = 3.75 (s, 3H), 3.71 (s, 3H), 3.59 (dd appearing as t, J = 

6.7 Hz, 2H), 1.95 – 1.83 (m, 1H), 1.54 – 1.43 (m, 3H), 1.43 – 1.34 (m, 4H), 1.26 (m, 

10H), 1.20 – 1.10 (m, 1H), 0.89 (s, 9H), 0.04 (s, 6H). 13C NMR (101 MHz, CDCl3) δ 

171.1, 168.9, 63.5, 52.7, 52.6, 34.0, 33.0, 29.7, 29.6, 29.4, 29.0, 28.8, 26.1, 25.9, 21.6, 

18.5, -5.1. HRMS m/z [M+H] 415.2890 (calc’d for C22H43O5Si+, 415.2874). IR (ATR) 

vmax = 2927, 2855, 1727, 1462, 1436, 1389, 1330, 1283, 1254, 1211, 1130, 1098, 1006, 

836, 775, 758, 665.  

Precursor B-OH 

To a solution of cyclopropane Precursor B (2.50 g, 6.03 

mmol) in MeOH (60 mL, 0.1 M) was added PPTS (0.23 

g, 0.90 mmol).  After 22 hours of stirring at room temperature, the solvent was removed 

in vacuo.  50 mL of a saturated solution of NaHCO3 and 50 mL of CH2Cl2 were added to 

the crude material and the layers were separated.  The aqueous phase was extracted twice 
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with CH2Cl2, and the organic layers were combined and washed once with brine.  The 

solution was dried over MgSO4 and the solvent was removed in vacuo to yield crude 

cyclopropyl alcohol (1.88 g, >100% crude).  This material was used in the subsequent 

transformation without purification.  Rf 0.38 (40% EtOAc/hexanes). 

1H NMR (400 MHz, CDCl3): δ = 3.74 (s, 3H), 3.71 (s, 3H), 3.63 (q, J = 6.5 Hz, 2H), 

1.93 – 1.84 (m, 1H), 1.60-1.52 (m, 2H), 1.50-1.35 (m, 6 H), 1.35-1.23 (m, 10H), 1.19-

1.10 (m, 1H).  13C NMR (101 MHz, CDCl3) δ 171.1, 168.9, 63.2, 52.7, 52.6, 34.0, 32.9, 

29.6, 29.5, 29.5, 29.3, 29.0, 28.9, 28.8, 25.8, 21.6. HRMS m/z [M+H] 301.2029 (calc’d 

for C19H29O5
+, 301.2010). IR (ATR) vmax = 3390, 3020, 2927, 2865, 1721, 1437, 1332, 

1285, 1214, 1132, 1052, 906, 755, 667. 

8b-nonyl chain 

Crude cyclopropane Precursor B-OH (1.88 g, 6.26 

mmol) and PPh3 (2.88 g, 11.0 mmol) were dissolved in 

CH2Cl2 (27 mL, 0.25 M) and the flask was wrapped in aluminum foil to shield it from 

light.  Imidazole (0.935 g, 13.7 mmol) and iodine (2.78 g, 11.0 mmol) were subsequently 

added.  The reaction was stirred at room temperature for 21 hours, after which it was 

quenched with saturated NaSO3.  The layers were separated and the aqueous phase was 

extracted two additional times with CH2Cl2.  The organic layers were combined, washed 

once with brine, dried over MgSO4 and the solvent was removed in vacuo.  The crude 

yellow solid was purified by flash column chromatography (15% EtOAc/hexanes) to 

yield desired cyclopropane iodide (1.82 g, 71%, 2 steps).  Rf 0.56 (20% EtOAc/hexanes). 

1H NMR (400 MHz, CDCl3): δ = 3.74 (s, 3H), 3.71 (s, 3H), 3.17 (dd appearing as t, J = 

7.0 Hz, 2H), 1.94 – 1.84 (m, 1H), 1.80 (p, J = 7.1 Hz, 2H), 1.50 – 1.32 (m, 6H), 1.32 – 

1.21 (m, 9H), 1.20 – 1.07 (m, 1H). 13C NMR (101 MHz, CDCl3) δ 171.1, 168.9, 52.7, 

52.6, 34.0, 33.7, 30.6, 29.5, 29.4, 29.3, 28.9, 28.8, 28.6, 21.6, 7.5. HRMS m/z [M+H] 

411.1040 (calc’d for C16H28O4I
+, 411.1027). IR (ATR) vmax = 3024, 2925, 2864, 1725, 

1436, 1330, 1283, 1211, 1131, 905, 756, 667.  
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5-8c 

Synthesized following literature procedure.166 

 

5.6.3 Oxime Syntheses 

 5-9a:  Following a procedure by Yoon167, a mixture of benzaldehyde (5.00 

g, 47.2 mmol), hydroxylamine hydrochloride (3.31 g, 47.6 mmol), K2CO3 

(7.17 g, 51.9 mmol) and MeOH (235 mL, 0.2 M) were stirred at rt until the 

reaction was complete by TLC. The solution was concentrated in vacuo, and then ether 

was added. The resulting suspension was filtered and the filtrate was then concentration 

in vacuo again and dried under vacuum. Yield: 48% as the E isomer (2.73 g) as a 

colourless solid. The spectroscopic data is identical to that reported and was used crude 

for the following alkylation. 

5-9b:  Following a procedure by Verkman168, hydroxylamine 

hydrochloride (2.72 g, 39.13 mmol) was dissolved in 44 mL THF, 22 mL 

H2O, and 111 mL EtOH. Sodium acetate (3.21 g, 39.13 mmol), and then 

4-chlorobenzaldehyde (5.00 g, 35.57 mmol) were added to this solution. After the 

reaction had not been completed at 40 h, another 0.5 equiv. of hydroxylamine 

hydrochloride were added. Once the reaction was complete by TLC, the THF and EtOH 

were concentrated in vacuo. The aqueous solution was then extracted with ether (3x), and 

the combined organic fractions were washed with brine (1x). The solution was dried over 

MgSO4 and concentrated in vacuo. The resulting white solid’s spectroscopic data is 

identical to that reported and was used crude for the following alkylation. Yield: 20% as 

the E oxime (1.10 g). 

5-9c E-isomer 

 Following a procedure by Wang169, 4-nitrobenzaldehyde (3.02 g, 20.0 

mmol) and hydroxylamine hydrochloride (1.67 g, 24.03 mmol) were 

dissolved in 20 mL THF. Pyridine (1.90 g, 24.02 mL) in 2.5 mL THF was added 
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dropwise and was stirred at rt until the reaction was complete by TLC. The solution was 

concentrated in vacuo, and then water was added. It was extracted with EtOAc (2x) and 

the combined organic layers were washed with brine, and then concentrated in vacuo 

again. The resulting yellow solid’s spectroscopic data is identical to that reported and was 

used crude for the following alkylation. Yield: 84% as the E isomer (2.77 g). 

5-9d Z-isomer 

3 mL of HCl was cooled in an ice/water bath for 5 minutes with stirring 

before E-isomer 5-9c (0.55 g, 3.3 mmol) was added portion wise carefully. Once added, 

the suspended mixture was left to stir rapidly for 25 minutes in the ice/water bath. The 

mixture was then carefully vacuum filtered and washed dropwise with a minimum 

amount of saturated aqueous NaHCO3. The collected solid was then added slowly, 

portion wise, into ~10 mL of cooled saturated aqueous NaHCO3 solution to avoid over 

bubbling. Once the bubbling had ceased, the solid was vacuum filtered and washed with 

cold saturation bicarb solution and then dried under vacuum. Z-isomer 5-9d was isolated 

as an off white solid (0.49 g, 89%). Spectral data matched that reported.170 

5-9e:  Following a procedure by Ismail171, hydroxylamine hydrochloride 

(4.17 g, 60 mmol) was dissolved in 40 mL of H2O and was subsequently 

neutralized with 2 M NaOH. A solution of 4-cyanobenzaldehyde (6.56 g, 

50 mmol.) in 90 mL EtOH was added slowly to the mixture. The reaction was stirred at rt 

for 100 minutes until completion as monitored by TLC. The solution was concentrated in 

vacuo, and then water was added. The solution was extracted with DCM (3x), and the 

combined organic fractions were washed with brine (1x). The solution was dried over 

MgSO4 and concentrated in vacuo. The resulting white solid’s spectroscopic data is 

identical to that reported and was used crude for the following alkylation. Yield: 44% as 

the E isomer (3.23 g).  

5-9f:  Following a procedure by Yoon167, 4-methoxybenzaldehyde (5.0 

mL, 41.5 mmol), hydroxylamine hydrochloride (2.92 g, 42 mmol), and 

K2CO3 (6.29 g, 45.4 mmol) were added to 200 mL of MeOH. Once the 

reaction was complete as monitored by TLC, the reaction mixture was concentrated in 
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vacuo, cold ether was added, and the solution was filtered.  The resulting white solid’s 

spectroscopic data is identical to that reported and was used crude for the following 

alkylation. Yield: 22% as the E isomer (1.38 g). 

 

5-9g:  Following a procedure by Zhang172, 4-

(dimethylamino)benzaldehyde (3.00 g, 20.1 mmol), hydroxylamine 

hydrochloride (1.68 g, 24.1), and 2 M NaOH (20 mL, 40.2 mmol) were 

added to EtOH (20 mL). After 4 h, the ethanol was removed in vacuo, and the resulting 

reaction mixture was extracted with EtOAc (4x).  The organic layers were combined and 

washed with brine (1x), then dried over MgSO4, and concentrated in vacuo. The resulting 

yellow solid’s spectroscopic data is identical to that reported and was used crude for the 

following alkylation. Yield: 80% as the E isomer (2.65 g). 

 

5-9h:  Following a procedure by Aicher173, K2CO3 (3.11 g, 22.5 mmol) was 

dissolved in 225 mL water, then hydroxylamine hydrochloride (3.13 g, 45 

mmol) was added and stirred for 5 minutes. Isobutyraldehyde (3.24 g, 45 

mmol) was added to the solution and the mixture was stirred at room temperature for 18 

hours. The solution was extracted with ether (3x), and the organic layers were combined 

and washed with brine (1x). The solution was dried over MgSO4 and concentrated in 

vacuo.  The resulting clear liquid’s spectroscopic data is identical to that reported and 

was used crude for the following alkylation. Yield: 87% as an 8:1 mixture of E/Z isomers 

(3.41 g). 

5-9i:  Following a procedure by Chan174, acetone (3.6 mL, 50 mmol), 

hydroxylamine hydrochloride (5.2 g, 75 mmol), and Na2CO3 (8 g, 75 mmol) were 

added to 10 mL of water. The reaction was stirred for 16 h, and then was 

extracted with ether (5x). The combined aqueous fractions were dried over MgSO4, and 

concentrated in vacuo. The resulting white solids spectroscopic data is identical to that 

reported and was used crude for the following alkylation. Yield: 72% (2.63 g).  
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5-9j:  Following a procedure by Pierce175, thiophene-2-carbaldehyde (1.87 mL, 20 mmol) 

was dissolved in 40 mL EtOH. Hydroxylamine hydrochloride (1.67 g, 24 mmol) 

and subsequently pyridine (3.9 mL, 48 mmol) were added. The reaction mixture 

was stirred for 24 h at room temperature until complete by TLC. The reaction 

was quenched with 5% HCl. The solution was extracted with EtOAc (2x) and the 

combined organic fracters were washed with 5% HCl (1x) and brine (1x). The solution 

was then dried over MgSO4 and concentrated in vacuo. To the resulting oil was added 

hexanes which lead to the crystallization of the oxime. The white solid was collected and 

washed with hexanes, then dried in vacuo.  The E isomer was isolated as white crystals, 

which had identical spectroscopic data to that reported.176 Yield: 49% (1.26 g) E isomer.   

5-9k:  Following procedure as reported by Schneider177, sodium acetate (3.68 g, 

44.9 mmol) was dissolved in 12 mL of methanol. Hydroxylamine hydrochloride 

(3.12 g, 44.9 mmol) was added to the flask and the mixture stirred at room temperature 

for 45 minutes. Cyclohexanone (4.00 g, 40.8 mmol) was added dropwise and the white 

suspension was stirred for 23 h. 12 mL of water was added to the suspension and stirred 

for 1 additional hour before being filtered. The collected material was washed with water 

and then dried under vacuum. The pure oxime was acquired as a white solid (1.93 g, 42% 

yield). Characterization data matched reported results.178 

5.6.4 Synthesis of Oxime-Ether Donor-Acceptor Cyclopropanes 

 

Scheme 108 - General procedure for the synthesis of oxime-ether tethered 

cyclopropanes 5-10a-o 

A mixture of oxime (1.0 equiv), cyclopropane alkyl halide (bromo or iodo as indicated) 

(1.0 equiv), and cesium carbonate (3.0 equiv) in glass-distilled acetone (0.1 M) was 

heated in a 55 °C oil bath for the indicated time. Formation of oxime ether was primarily 
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monitored by thin layer chromatography but was supplemented with 1H NMR 

spectroscopy when required.  Once cyclopropane alkyl halide and oxime were consumed, 

the solution was filtered over celite and rinsed with Et2O three times and then 

concentrated in vacuo.  The crude residues were purified via flash column 

chromatography. 

5-10a 

The title compound was synthesized via General Procedure 

A (18.5 h). The amounts of reagents employed were: oxime 

5-9a (0.11 g, 0.87 mmol), cyclopropane 5-8a (0.28 g, 0.87 

mmol), and cesium carbonate (0.85 g, 2.6 mmol) in 9.0 mL of acetone.  The resulting oil 

was purified via column chromatography (18% EtOAc/hexanes). Yield: 76% (0.213 g) 

>19:1 mixture of E:Z isomers as a pale yellow oil. Rf 0.33 (18% EtOAc/hexanes). 

1H NMR (400 MHz, CDCl3): δ = 8.05 (s, 1H), 7.59-7.55 (m, 2H), 7.38-7.34 (m, 3H), 

4.16 (dd, J = 6.4 Hz, 6.4 Hz, 2H), 3.73 (s, 3H), 3.71 (s, 3H), 1.95 (ddt, J = 15.7 Hz, 7.9 

Hz, 6.8 Hz, 1H), 1.91-1.78 (m, 2H), 1.63-1.53 (m 1H), 1.41 (m, 2H), 1.38-1.27 (m, 1H). 

13C NMR (101 MHz, cdcl3) δ 171.0, 168.8, 148.6, 132.5, 129.9, 128.8, 127.1, 77.5, 77.4, 

77.2, 76.8, 73.6, 52.7, 52.7, 34.1, 28.5, 28.5, 25.4, 21.5. HRMS m/z 319.1430 (calc’d for 

C17H21NO5
+, 319.1420). IR (ATR) Vmax = 3033, 2954, 2870, 1723, 1436, 1329, 1211, 

1129, 694. 

5-10b 

The title compound was synthesized via General 

Procedure A (2 h). The amounts of reagents employed 

were: oxime 5-9b (0.111 g, 0.71 mmol), 

bromocyclopropane 5-8a (0.20 g, 0.71 mmol), and cesium carbonate (0.70 g, 2.15 mmol) 

in 7.1 mL of acetone. The resulting oil was purified via column chromatography (20% 

EtOAc/hexanes). Yield: 86% (0.22 g) >19:1 mixture of E:Z isomers as a clear oil. Rf = 

0.36 (20% EtOAc/hexanes). 
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1H NMR (400 MHz, CDCl3): δ = 8.00 (s, 1H), 7.49 (d, J = 8.5 Hz, 2H), 7.33 (d, J = 8.5 

Hz, 2H), 4.16 (dd as apparent t, J = 6.4 Hz, 2H), 3.73 (s, 3H), 3.71 (s, 3H), 1.99 – 1.88 

(m, 1H), 1.87 – 1.76 (m, 2H), 1.62 – 1.51 (m, 1H), 1.45 – 1.37 (m, 2H), 1.37 – 1.26 (m, 

1H)  13C NMR (101 MHz, CDCl3) δ 170.9, 168.8, 147.4, 135.7, 131.0, 129.1, 128.3, 

73.7, 52.7, 52.6 34.1, 28.5, 28.4, 25.4, 21.4. HRMS m/z 353.1043 (calc’d for C17H20 

ClN2O5
+, 353.1030).  IR (ATR) vmax = 3016, 2954, 2875, 1723, 1436, 1331, 1211, 1129, 

825, 754. 

 

5-10c 

E-isomer 

The title compound was synthesized via General 

Procedure A (1.5 h). The amounts of reagents employed 

were: oxime 5-9c (0.15 g ,0.89 mmol), cyclopropane 5-8a (0.25 g, 0.89 mmol), and 

cesium carbonate (0.87 g, 2.67 mmol) in 9.0 mL of acetone. The resulting oil was 

purified via column chromatography (23% EtOAc/hexanes). Yield: 90% (0.29 g) >19:1 

mixture of E:Z isomers as a white solid and as confirmed by x-ray crystallography. Mp = 

60 – 62 °C.  Rf = 0.31 (20% EtOAc/hexanes). 

1H NMR (400 MHz, CDCl3) δ  8.22 (d, J = 8.9 Hz, 2H), 8.09 (s, 1H), 7.73 (d, J = 8.8 

Hz, 2H), 4.22 (t, J = 6.4 Hz, 2H), 3.74 (s, 3H), 3.71 (s, 3H), 2.00 – 1.89 (m, 1H), 1.90 – 

1.79 (m, 2H), 1.64 – 1.50 (m, 1H), 1.45-1.37 (m, 2H), 1.37 – 1.27 (m, 1H) 13C NMR 

(151 MHz, CDCl3) δ 170.7, 168.5, 148.2, 146.1, 138.4, 127.4, 123.9, 74.1, 52.5, 52.4, 

33.9, 28.2, 28.1, 25.1, 21.2. HRMS m/z [M+H] 365.1352 (calc’d for C17H21N2O7
+, 

365.1349). IR (ATR) vmax = 2963, 2892, 1723, 1518, 1335, 1296, 1209, 1132, 840, 831. 
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5-10d Z-isomer 

The title compound was synthesized via General Procedure A 

(1.5 h). The amounts of reagents employed were: oxime 5-9d 

(0.12 g ,0.72 mmol), cyclopropane 5-8a (0.20 g, 0.72 mmol), and cesium carbonate (0.70 

g, 2.15 mmol) in 7.2 mL of acetone. The resulting oil was purified via column 

chromatography (20% EtOAc/hexanes). Yield: 32% (0.07 g) >19:1 mixture of Z:E 

isomers as a white solid.  Rf = 0.19 (20% EtOAc/hexanes).   

1H NMR (400 MHz, CDCl3) δ 8.26 (dt, J = 9.0, 2.1 Hz, 2H), 8.05 – 7.96 (m, 2H), 7.38 

(s, 1H), 4.27 (t, J = 6.4 Hz, 2H), 3.72 (s, 3H), 3.71 (s, 3H), 1.99 – 1.81 (m, 3H), 1.64 – 

1.52 (m, 1H), 1.46 – 1.29 (m, 3H). 13C NMR (101 MHz, CDCl3) δ 170.8, 168.7, 148.0, 

143.5, 135.9, 131.5, 123.8, 75.1, 52.8, 34.1, 28.5, 28.2, 25.4, 21.4. HRMS m/z [M+H] 

365.1360 (calc’d for C17H21N2O7, 365.1349) IR (ATR) vmax = 2957, 1723, 1518, 1334, 

1297, 1207, 1131, 1064, 1038, 990.    

 

5-10e 

The title compound was synthesized via General 

Procedure A (5 h). The amounts of reagents employed 

were: oxime 5-9e (0.10 g, 0.72 mmol), 

bromocyclopropane 5-8a (0.20 g, 0.72 mmol), and cesium 

carbonate (0.70 g, 2.15 mmol) in 7.2 mL of acetone. Resulting crude was purified by 

flash column chromatography Rf 0.40 (20% EtOAc/hexanes); Yield: 90% (0.22 g) >19:1 

mixture of E:Z isomers as a white solid. Mp = 74 – 75 °C.  

1H NMR (400 MHz, CDCl3): δ 8.04 (s, 1H), 7.70 – 7.59 (AA’BB’ spin system m, 4H), 

4.20 (t, J = 6.4 Hz, 2H), 3.73 (s, 3H), 3.71 (s, 3H), 1.99 – 1.89 (m, 1H), 1.84 (dddd, J = 

9.8, 8.1, 6.5, 3.6 Hz, 2H), 1.62 – 1.51 (m, 1H), 1.41 (ddd, J = 12.4, 8.4, 4.6 Hz, 2H), 1.36 

– 1.27 (m, 1H) 13C NMR (101 MHz, CDCl3) δ 170.9, 168.7, 146.7, 136.9, 132.6, 127.5, 

118.7, 113.1, 74.2, 52.7, 34.1, 28.5, 28.3, 25.3, 21.4. HRMS m/z [M+H] 345.1453 

(calc’d for C18H21N2O5
+, 345.1445). IR (ATR) vmax = 2958, 2884, 2227, 1720, 1444, 

1326, 1295, 1213, 1133, 833. 
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5-10f 

The title compound was synthesized via General 

Procedure A (2.5 h). The amounts of reagents employed 

were: oxime 5-9f (0.11 g, 0.72 mmol), 

bromocyclopropane 5-8a (0.20 g, 0.72 mmol), and cesium carbonate (0.70 g, 2.15 mmol) 

in 7.2 mL of acetone. The resulting oil was purified via column chromatography (20% 

EtOAc/hexanes). Yield: 83% (0.21 mg) >19:1 mixture of E:Z isomers as a clear oil. Rf 

0.26 (20% EtOAc/hexanes). 

1H NMR (400 MHz, CDCl3): δ 8.00 (s, 1H), 7.50 (d, J = 8.8 Hz, 2H), 6.88 (d, J = 8.8 

Hz, 2H), 4.13 (t, J = 6.4 Hz, 2H), 3.82 (s, 3H), 3.73 (s, 3H), 3.71 (s, 3H), 1.99-191 (m, 

1H), 1.89 – 1.76 (m, 2H), 1.62 – 1.50 (m, 1H), 1.45 – 1.37 (m, 2H), 1.37 – 1.26 (m, 1H) 

13C NMR (101 MHz, CDCl3) δ 170.7, 168.5, 160.7, 147.9, 128.2, 124.8, 114.0, 73.0, 

55.1, 52.4, 52.3, 33.8, 28.2, 28.2, 25.1, 21.1. HRMS m/z 349.1519 (calc’d for 

C18H23NO6
+, 349.1525).  IR (ATR) vmax = 3024, 2954, 2839, 2875, 1723, 1606, 1513, 

1437, 1332, 1300, 1250, 1212, 1171, 1158, 1130, 1031, 832. 

 

5-10g 

The title compound was synthesized via General 

Procedure A (21 h). The amounts of reagents employed 

were: oxime 5-9g (0.12 g, 0.72 mmol), 

bromocyclopropane 5-8a (0.20 g, 0.72 mmol), and cesium carbonate (0.70 mg, 2.15 

mmol) in 7.2 mL of acetone. The resulting oil was purified via column chromatography 

(20% EtOAc/hexanes). Yield: 84% (0.22 g) >19:1 mixture of E:Z isomers as a yellow oil. 

Rf 0.28 (20% EtOAc/hexanes). 

1H NMR (400 MHz, CDCl3) δ 7.96 (s, 1H), 7.42 (d, J = 8.9 Hz, 2H), 6.65 (d, J = 8.9 Hz, 

2H), 4.11 (t, J = 6.4 Hz, 2H), 3.73 (s, 3H), 3.70 (s, 3H), 2.98 (s, 6H), 1.99 – 1.90 (m, 1H), 

1.82 (tdt, J = 12.5, 8.2, 3.9 Hz, 2H), 1.62 – 1.51 (m, 1H), 1.41 (dq, J = 8.7, 4.6 Hz, 2H), 

1.37 – 1.28 (m, 1H) 13C NMR (101 MHz, CDCl3) δ 171.0, 168.8, 151.5, 149.1, 128.4, 

120.2, 112.0, 73.1, 52.7, 40.4, 34.1, 28.5, 25.5, 21.5. HRMS m/z 362.1846 (calc’d for 
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C19H26N2O5
+, 362.1842). IR (ATR) vmax = 2950, 2861, 2809, 1723, 1609, 1525, 1436, 

1337, 1278, 1212, 1130, 818.  

 

5-10k 

The title compound was synthesized via General Procedure A 

(22 h). The amounts of reagents employed were: oxime 5-9h 

(0.062 g, 0.72 mmol), cyclopropane 5-8a (0.20 g, 0.72 mmol), 

and cesium carbonate (0.70 g, 2.19 mmol) in 7.2 mL of acetone. The resulting oil was 

purified via column chromatography (15% EtOAc/hexanes) to yield a fraction containing 

pure E isomer and a mixed fraction containing a 1.4:1 mixture of E/Z isomers. Total 

yield: 70% (0.14 g) as a clear oil. E fraction (46%, 0.094 g), mix fraction (24%, 0.049 g). 

Rf = 0.32 (15% EtOAc/hexanes) 

1H NMR (400 MHz, CDCl3) δ E isomer = 7.24 (d, J = 6.4 Hz, 1H), 3.98 (dd, J = 6.5 

Hz, 6.5 Hz, 2H), 3.74 (s, 3H), 3.70 (s, 3H), 2.46 (dq, J = 13.6, 6.8 Hz, 1H), 1.94 – 1.88 

(m, 1H), 1.80-1.70 (m, 2H), 1.58-1.49 (m, 1H), 1.44-1.36 (m, 2H), 1.31-1.21 (m, 1H), 

1.07 (d, J = 6.8 Hz, 6H). 13C NMR (101 MHz, CDCl3) δ 171.0, 168.8, 155.8, 72.7, 52.7, 

52.6, 34.1, 29.5, 28.5, 25.5, 21.5, 20.3. HRMS m/z 285.1587 (calc’d for C14H23NO5
+, 

285.1576).  IR (ATR) vmax = 2954, 2871, 1725, 1436, 1329, 1210, 1129. 

 

5-10i 

The title compound was synthesized via General Procedure A. 

The amounts of reagents employed were: oxime 5-9i (0.065 g, 

0.89 mmol), bromocyclopropane 5-8a (0.25 g, 0.89 mmol), and cesium carbonate (0.87 g, 

2.69 mmol) in 8.9 mL of acetone. The resulting oil was purified via column 

chromatography (20% EtOAc/hexanes) to yield a clear colourless oil.  Yield: 0.15 g 

(64%).  Rf = 0.30 (20% EtOAc/hexanes). 

1H NMR (400 MHz, CDCl3) δ 4.00 (t, J = 6.4 Hz, 2H), 3.74 (s, 3H), 3.70 (s, 3H), 1.98 – 

1.88 (m, 1H), 1.84 (s, 3H), 1.82 (s, 3H), 1.79-1.66 (m, 2H), 1.53 (dq, J = 14.5, 6.5 Hz, 

1H), 1.39 (ddd, J = 11.7, 8.4, 4.5 Hz, 2H), 1.25 (dq, J = 14.7, 8.2 Hz, 1H). 13C NMR 
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(101 MHz, CDCl3) δ 171.0, 168.8, 154.7, 72.6, 52.7, 52.6, 34.1, 28.5, 25.5, 22.0, 21.5, 

15.7. HRMS m/z 271.1421 (calc’d for C13H21NO5
+, 271.1420).  IR (ATR) vmax 3020, 

2952, 2874, 1724, 1436, 1369, 1329, 1210, 1129. 

 

5-10j 

The title compound was synthesized via General Procedure A. 

The amounts of reagents employed were: oxime 5-9k (0.081 

g, 0.72 mmol), bromocyclopropane 5-8a (0.20 g, 0.72 mmol), 

and cesium carbonate (0.70 g, 2.15 mmol) in 7.2 mL acetone. The resulting oil was 

purified via column chromatography (20% EtOAc/hexanes) to yield a clear colourless oil.  

Yield: 0.12 g (52%).  Rf 0.31 (20% EtOAc/hexanes). 

 

1H NMR (599 MHz, CDCl3) δ 3.99 (t, J = 6.5 Hz, 2H), 3.74 (s, 3H), 3.70 (s, 3H), 2.42 

(t, J = 5.2 Hz, 2H), 2.22 – 2.13 (m, 2H), 1.97 – 1.87 (m, 1H), 1.83 – 1.69 (m, 2H), 1.69 – 

1.61 (m, 2H), 1.62 – 1.48 (m, 5H), 1.39 (dddd, J = 18.8, 7.0, 4.6, 2.2 Hz, 2H), 1.30 – 1.18 

(m, 1H). 13C NMR (101 MHz, CDCl3) δ 171.0, 168.8, 160.3, 72.4, 52.7, 52.6, 34.1, 

32.4, 28.6, 28.5, 27.2, 26.0, 25.9, 25.6, 21.5. HRMS m/z 311.1739 (calc’d for 

C16H25NO5
+, 311.1733) IR (ATR) vmax 2931, 2860, 1724, 1435, 1327, 1280, 1208, 1127, 

1056, 991, 882. 

 

5-10h 

 

The title compound was synthesized via General Procedure 

A (18 h). The amounts of reagents employed were: E-oxime 

5-9j (0.11 g, 0.89 mmol), bromocyclopropane 5-8a (0.89 g, 0.89 mmol), and cesium 

carbonate (0.87 g, 2.69 mmol) in 9.0 mL of acetone.  The resulting oil was purified via 

column chromatography (20% EtOAc/hexanes) to yield the desired product (0.14 g, 

48%) as the single E-isomer as a clear oil. Rf 0.27 (20% EtOAc/Hexanes).  

1H NMR (400 MHz, CDCl3): δ = 7.62 (s, 1H), 7.51 (d, J = 5.1 Hz, 1H), 7.32 (dd, J = 

3.7, 1.0 Hz, 1H), 7.06 (dd, J = 5.1, 3.8 Hz, 1H), 4.31 – 4.25 (m, 2H), 3.70 (s, 6H), 2.01 – 
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1.84 (m, 3H), 1.70 – 1.57 (m, 1H), 1.45-1.36 (m, 3H)    13C NMR (101 MHz, CDCl3) δ 

171.0, 168.7, 140.3, 131.6, 131.5 131.3, 126.3, 74.3, 52.7, 52.6, 34.1, 28.6, 28.4, 25.6, 

21.4. 714 HRMS m/z 325.0994 (calc’d for C15H19NO5S
+, 325.0984). IR (ATR) vmax 

2951, 1721, 1604, 1435, 1329, 1208, 1127, 1047. 

5-10m E-isomer 

The title compound was synthesized via General Procedure A 

with the exception of using 1.2 equiv. of cyclopropane 5-8c in 

place of bromocyclopropane 5-8a (30 min). The amounts of 

reagents employed were: oxime 5-9c (0.27 g, 1.66 mmol), cyclopropane 5-8c (0.60 g, 

1.83 mmol), and cesium carbonate (1.79 g, 5.49 mmol) in 18 mL of acetone. A single E 

isomer (as confirmed by x-ray crystallography) was observed by 1H NMR spectroscopy. 

The resulting oil was purified via column chromatography (20% EtOAc/hexanes). Yield: 

66% (0.49 g) as a white solid. Mp = 82 – 85 °C. Rf = 0.23 (20% EtOAc/hexanes). 

1H NMR (599 MHz, CDCl3) δ 8.21 (d, J = 8.7 Hz, 2H), 8.17 (s, 1H), 7.75-7.73 (m, 2H), 

7.41 – 7.36 (m, 1H), 7.29 – 7.26 (m, 2H), 7.14 – 7.10 (m, 1H), AB system with large 

vab/Jab=11 reported as two doublets 5.49 (d, J = 12.3 Hz, 1H) and 5.27 (d, J = 12.3 Hz, 

1H), 3.77 (s, 3H), 3.43 (t, J = 8.7 Hz, 1H), 3.30 (s, 3H), 2.33 (dd, J = 8.2, 5.2 Hz, 1H), 

1.77 (dd, J = 9.2, 5.1 Hz, 1H) 13C NMR (101 MHz, CDCl3) δ 170.2, 167.1, 148.5, 146.9, 

138.6, 137.5, 133.4, 129.7, 128.3, 127.8, 124.1, 75.1, 53.0, 52.3, 36.8, 30.5, 18.8. HRMS 

m/z 412.1274 (calc’d for C21H20N2O7
+, 412.1271).  IR (ATR) vmax = 2954, 1888, 1742, 

1707, 1506, 1338, 1121, 1092, 839, 759, 693. 

 

 

5-10o Z-isomer 

 

The title compound was synthesized following General Procedure A with 

the exception of using 1.2 equiv. of cyclopropane 5-8c in place of 

bromocyclopropane 5-8a (30 min). The amounts of reagents employed 

were: z-oxime 5-9d (0.10 g, 0.62 mmol), cyclopropane 5-8c (0.24 g, 0.74 
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mmol), and cesium carbonate (0.60 g, 1.84 mmol) in 6.2 mL of acetone. A single Z 

isomer was observed by 1H NMR spectroscopy. The resulting oil was pushed crude into 

the next step. Yield (crude): 18% (0.045 g) as a white foam.  Rf 0.24 (20% 

EtOAc/hexanes). 

1H NMR (400 MHz, CDCl3) δ 8.27 – 8.13 (m, 2H), 8.03 (dt, J = 9.1, 2.2 Hz, 2H), 7.40 

(s, 1H), 7.37 – 7.30 (m, 1H), 7.27 – 7.19 (m, 2H), 7.12 – 7.04 (m, 1H), 5.51 (d, J = 12.7 

Hz, 1H), 5.27 (d, J = 12.7 Hz, 1H), 3.75 (s, 3H), 3.36 (dd as apparent t, J = 8.7 Hz, 1H), 

3.28 (s, 3H), 2.27 (dd, J = 8.2, 5.1 Hz, 1H), 1.70 (dd, J = 9.1, 5.2 Hz, 1H). 13C NMR 

(101 MHz, CDCl3) δ 170.1, 167.1, 148.0, 144.1, 137.5, 135.8, 133.3, 131.7, 129.4, 

128.3, 127.9, 123.8, 75.5, 53.0, 52.3, 36.7, 30.1, 18.8. HRMS m/z [M+H] 413.1352 

(calc’d for C21H21N2O7
+, 413.1352) IR (ATR) Vmax = 2948, 2888, 1741, 1707, 1507, 

1338, 1121, 1046, 936, 793. 

 

5-10i  

The title compound was synthesized via General 

Procedure A (40 h). The amounts of reagents employed were: oxime 5-9c (0.24 g, 1.47 

mmol), cyclopropane 5-8b-butylchain (0.50 g, 1.47 mmol), and cesium carbonate (1.92 

g, 5.88 mmol) in 15 mL of acetone. The resulting oil was purified via column 

chromatography (25% EtOAc/hexanes). Yield: 76% (0.42 g) >19:1 mixture of E:Z 

isomers as a pale yellow oil which slowly crystallizes in the freezer. Mp = 59 – 61 °C.  Rf 

0.50 (25% EtOAc/hexanes), 

1H NMR (400 MHz, CDCl3): δ = 8.21 (d, J = 8.7 Hz, 2H), 8.11 (s, 1H), 7.73 (d, J = 8.7 

Hz, 2H), 4.20 (dd, J = 6.4 Hz, 6.4Hz, 2H), 3.75 (s, 3H), 3.72 (s, 3H), 1.92 (dddd, J = 8.9 

Hz, 8.0 Hz, 8.0 Hz, 5.6 Hz, 1H), 1.80-1.70 (m, 2H), 1.58-1.48 (m, 3H), 1.45-1.37 (m, 

2H), 1.29-1.17 (m, 1H). 13C NMR (101 MHz, CDCl3) δ 171.0, 168.8, 148.4, 146.2, 

138.7, 127.6, 124.1, 74.9, 52.8, 52.6, 34.0, 28.8, 28.6, 28.6, 25.3, 21.5. HRMS m/z 

[M+H] 379.1503 (calc’d for C18H23N2O7
+, 379.1500). IR (ATR) vmax = 3007, 2953, 

2883, 1717, 1588, 1509, 1479, 1438, 1387, 1329, 1278, 1261, 1207, 1131, 1107, 1077, 

977, 945, 835. 
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5-10n 

The title compound was synthesized via 

General Procedure A (15 h). The amounts of 

reagents employed were: oxime 5-9c (0.20 g, 

1.22 mmol), cyclopropane 5-8b-nonylchain (0.50 g, 1.22 mmol), and cesium carbonate 

(0.780 g, 2.39 mmol) in 12 mL of acetone. The resulting oil was purified via column 

chromatography (20% EtOAc/hexanes). Yield: 77% (423 mg) >19:1 mixture of E:Z 

isomers as a pale yellow oil which slowly crystallizes in the freezer.  Mp = 50 – 52 °C.  

Rf 0.33 (20% EtOAc/hexanes). 

 1H NMR (400 MHz, CDCl3): δ = 8.24-8.21 (m, 2H), 8.10 (s, 1H), 7.76-7.72 (m, 2H), 

4.20 (dd, J = 6.7 Hz, 6.7 Hz, 2H), 3.74 (s, 3H), 3.71 (s, 3H), 1.89 (dddd, J = 8.8 Hz, 8.0 

Hz, 8.0 Hz, 6.1 Hz, 1H), 1.75-1.69 (m, 2H), 1.50 – 1.32 (m, 8H), 1.33 – 1.22 (m, 8H), 

1.19-1.12 (m, 1H). 13C NMR (101 MHz, cdcl3) δ 171.0, 168.7, 148.2, 145.9, 138.7, 

127.4, 124.0, 75.2, 52.6, 52.4, 33.9, 29.4, 29.4, 29.3, 29.2, 29.1, 28.8, 28.7, 25.8, 21.4. 

(One carbon likely overlapped near 29 ppm). HRMS m/z [M+H] 449.2291 (calc’d for 

C23H33N2O7
+, 449.2282). IR (ATR) vmax = 3020, 2952, 2930, 2857, 1727, 1436, 1369, 

1330, 1279, 1251, 1210, 1129, 1101, 1006, 835, 776, 758, 665. 

5.6.5 Annulation of Oxime-Ether Tethered Cyclopropanes 

 

Scheme 109 - General reaction for the synthesis of hexahydropyrollo-oxazines 5-11 

A mixture of oxime ether tethered cyclopropane (1.0 equiv) and Yb(OTf)3 (5 mol%) in 

toluene (0.1M) were heated to the indicated temperature and for the indicated time. 

Formation of pyrrolo-oxazine was primarily monitored by thin layer chromatography but 

was supplemented with 1H NMR spectroscopy when required. When TLC or 1H NMR 
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indicated complete consumption of the cyclopropane the solution was concentrated in 

vacuo prior to purification via flash column chromatography. 

 

 

5-11a 120 °C Cis Isomer: The title compound was synthesized via 

General Procedure 5.2. (19 h). The amounts of reagents employed were: 

oxime ether 5-10a (0.10 g, 0.32 mmol), Yb(OTf)3 (10 mg, 5 mol%) in 

3.2 mL of acetone. The resulting oil was purified via column 

chromatography (15% EtOAc/hexanes). A 19:1 mixture of cis to trans isomers or greater 

was observed by 1H NMR spectroscopy. Yield: 89% (0.089 g) as a clear oil. Rf = 0.50 

(20% EtOAc/hexanes). 

1H NMR (400 MHz, CDCl3) δ  7.48-7.45 (m, 2H), 7.31-7.26 (m, 2H), 4.76 (s, 1H), 3.96-

3.92 (m, 2H), 3.78 (s, 3H), 3.00 (s, 3H), 2.75-2.66 (m, 1H), 2.56 (dd, J = 12.5 Hz, 12.5 

Hz, 1H), 2.30 (dd, J = 13.0 Hz, 6.1 Hz, 1H), 2.01-1.95 (m, 1H), 1.75-1.61 (m, 3H). 13C 

NMR (101 MHz, CDCl3): δ 171.9, 169.4, 137.7, 128.2, 128.0, 127.8, 72.3, 70.3, 62.3, 

61.0, 53.1, 52.2, 35.7, 29.1, 24.9. HRMS m/z 319.1424 (calc’d for C17H21NO5
+, 

319.1420). IR (ATR) vmax 3033, 2951, 2857, 1731, 1435, 1263, 1207, 1126, 700. 

 

 

5-11a 60 °C Trans Isomer: The title compound was synthesized via 

General Procedure B (19 h). The amounts of reagents employed were: 

oxime ether 5-10a (0.060 g, 0.32 mmol), Yb(OTf)3 (6.0 mg, 5 mol%) in 

3.2 mL of toluene. A mixture of 1.7:1 trans to cis isomers were observed 

in the crude reaction mixture by 1H NMR spectroscopy. The resulting oil was purified via 

column chromatography (20% EtOAc/hexanes). Yield: 95% combined isomers (0.057 g) 

trans yield 60% (0.036 g) as a clear oil. Rf (trans) 0.34 (20% EtOAc/hexanes). 
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1H NMR (599 MHz, CDCl3) δ 7.28 – 7.21 (m, 4H), 7.20 – 7.14 (m, 1H), 5.46 (s, 1H), 

3.95-3.87 (m, 2H), 3.84 (dd, J = 10.9, 3.6 Hz, 1H), 3.80 (s, 3H), 3.02 (s, 3H), 2.65 (dd, J 

= 12.8, 6.2 Hz, 1H), 2.54 (dd, J = 12.8, 10.3 Hz, 1H), 2.10-2.04 (m, 1H), 1.80-1.73 (m, 

2H), 1.49-1.44 (m, 1H). 13C NMR (151 MHz, CDCl3) δ 172.3, 170.8, 138.0, 128.2, 

128.0, 127.6, 75.2, 68.2, 66.7, 63.4, 53.4, 52.3, 36.2, 23.4, 20.7. HRMS m/z 319.1409 

(calc’d for C17H21NO5
+, 319.1420).  IR (ATR) vmax 2950, 2854, 1728, 1496, 1251, 1204, 

1135, 1115, 1082, 1028  

 

5-11b 120 °C Cis Isomer: The title compound was synthesized via 

General Procedure B (20 h). The amounts of reagents employed were: 

oxime ether 5-10b (0.070 g, 0.20 mmol), Yb(OTf)3 (6.1 mg, 5 mol%) in 

2 mL of toluene. A 19:1 mixture or greater of cis to trans isomers was 

observed in the crude reaction mixture by 1H NMR spectroscopy. The resulting oil was 

purified via column chromatography (20% EtOAc/hexanes). Yield: 90% (0.063 g) as a 

clear oil. Rf 0.50 (20% EtOAc/hexanes). 

1H NMR (400 MHz, CDCl3): δ 7.44 – 7.37 (AA’BB’, 2H), 7.28 – 7.22 (AA’BB’, 2H), 

4.70 (s, 1H), 3.91 (t, J = 5.6 Hz, 1H), 3.77 (s, 3H), 3.07 (s, 3H), 2.67 (ddt, J = 11.9, 6.1, 

2.7 Hz, 1H), 2.57 – 2.46 (m, 1H), 2.31 (dd, J = 13.1, 6.2 Hz, 1H), 2.01 – 1.93 (m, 1H), 

1.72 – 1.60 (m, 3H) 13C NMR (101 MHz, cdcl3) δ 171.5, 169.0, 135.9, 133.3, 129.4, 

127.8, 71.3, 70.1, 62.0, 60.5, 52.9, 52.1, 35.3, 28.7, 24.5. HRMS m/z 353.1037 (calc’d 

for C17H20ClNO5
+, 353.1030).  IR (ATR) vmax 3011, 2853, 2951, 1732, 1435, 1263, 

1207, 1172, 1126, 1046, 842. 

 

5-11b 60 °C Trans Isomer: The title compound was synthesized via 

General Procedure B (20 h). The amounts of reagents employed were: 

oxime ether 5-10b (0.070 g, 0.20 mmol), Yb(OTf)3 (6.1 mg, 5 mol%) in 

2 mL of toluene. A 19:1 mixture or greater of trans to cis isomers was 

observed in the crude reaction mixture by 1H NMR spectroscopy. The resulting oil was 
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purified via column chromatography (20% EtOAc/hexanes). Yield: 69% (0.048 g) as a 

clear oil. Rf 0.56 (20% EtOAc/hexanes). 

1H NMR (400 MHz, CDCl3): δ = 7.21 (apparent s, 4H), 5.42 (s, 1H), 3.96 – 3.88 (m, 

1H), 3.84 (dt, J = 11.9, 3.8 Hz, 1H), 3.80 (s, 3H), 3.79 – 3.74 (m, 1H), 3.09 (s, 3H), 2.64 

(dd, J = 12.9, 6.1 Hz, 1H), 2.50 (dd, J = 12.9, 9.8 Hz, 1H), 2.07-1.99 (m, 1H), 1.75 (dtq, J 

= 17.3, 9.0, 4.4 Hz, 2H), 1.53 – 1.44 (m, 1H) 13C NMR (101 MHz, CDCl3) δ 172.0, 

170.3, 136.3, 133.2, 129.2, 128.1, 73.7, 67.5, 66.0, 62.7, 53.3, 52.2, 36.0, 23.1, 20.6. 

HRMS m/z 353.1033 (calc’d for C17H20ClNO5
+, 353.1030). IR (ATR) vmax 2952, 2852, 

1730, 1519, 1346, 1261, 1205, 1045, 838.   

 

5-11c 120 °C Cis Isomer: The title compound was synthesized via 

General Procedure B (18 h at 120 °C). The amounts of reagents 

employed were: oxime ether 5-10c (0.030 g, 0. 082 mmol), Yb(OTf)3 

(2.5 mg, 5 mol%) in 1 mL of toluene. A 19:1 mixture or greater of cis to 

trans isomers was observed in the crude reaction mixture by 1H NMR spectroscopy.  The 

resulting oil was purified via column chromatography (20% EtOAc/hexanes). Yield: 99% 

(0.03 mg) as a white solid. Rf 0.34 (20% EtOAc/hexanes). 

 1H NMR (400 MHz, CDCl3): δ 8.15 (d, J = 8.8 Hz, 2H), 7.66 (d, J = 8.7 Hz, 2H), 4.80 

(s, 1H), 3.96 – 3.90 (m, 2H), 3.80 (s, 3H), 3.05 (s, 3H), 2.78 – 2.67 (m, 1H), 2.54 (dd as 

apparent t, J = 13.2 Hz, 1H), 2.37 (dd, J = 13.2, 6.3 Hz, 1H), 2.02-1.99 (m, 1H), 1.75 – 

1.62 (m, 3H) 13C NMR (101 MHz, CDCl3) δ 171.5, 168.9, 147.6, 145.5, 129.3, 123.1, 

71.6, 70.5, 62.4, 60.9, 53.4, 52.5, 35.7, 29.0, 24.7. HRMS m/z 364.1273 (calc’d for 

C17H20N2O7
+, 364.1271). IR (ATR) vmax = 3029, 2954, 2853, 1732, 1520, 1435, 1348, 

1263, 1208, 1173, 1126, 1046, 697. 

 

5-11c 60 °C Trans Isomer: The title compound was synthesized via General Procedure 

B (18 h at 60 °C). The amounts of reagents employed were: oxime ether 5-10c (0.030 g, 

0. 082 mmol), Yb(OTf)3 (2.5 mg, 5 mol%). A 19:1 mixture or greater of trans to cis 
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isomers was observed in the crude reaction mixture by 1H NMR 

spectroscopy.  The resulting oil was purified via column chromatography 

(20% EtOAc/hexanes). Yield: 93% (0.028 mg) as a white solid. Rf 0.22 

(20% EtOAc/hexanes). 

1H NMR (400 MHz, CDCl3): δ 8.09 (d, J = 8.7 Hz, 2H), 7.46 (d, J = 8.9 

Hz, 2H), 5.50 (s, 1H), 3.93-3.84 (m, 2H), 3.81 (s, 3H), 3.76 (dt, J = 12.5, 3.0 Hz, 1H), 

3.07 (s, 3H), 2.62 (dd, J = 12.9, 6.1 Hz, 1H), 2.52 (dd, J = 12.9, 9.7 Hz, 1H), 2.10 – 1.94 

(m, 1H), 1.82 – 1.66 (m, 2H), 1.56 – 1.43 (m, 1H) 13C NMR (101 MHz, CDCl3) δ 171.8, 

170.1, 147.2, 145.6, 128.6, 123.1, 73.4, 67.4, 66.1, 62.7, 53.5, 52.3, 36.4, 23.1, 20.6. 

HRMS m/z 364.1263 (calc’d for C17H20N2O7
+, 364.1271)  IR (ATR) vmax = 2952, 2855, 

1723, 1603, 1518, 1254, 1110, 1064, 1046, 983.  

 

5-11d 120 °C Cis Isomer: The title compound was synthesized via 

General Procedure B (26 h). The amounts of reagents employed were: 

oxime ether 5-10e (0.060 g, 0.17 mmol), Yb(OTf)3 (0.005 g, 5 mol%) in 

2 mL of toluene. A 1:1 mixture of cis to trans isomers was observed in 

the crude reaction mixture by 1H NMR spectroscopy.  The resulting oil 

was purified via column chromatography (20% EtOAc/hexanes). Yield: 93% (0.056 g) of 

combined isomers (cis isomer 0.027 g) (trans isomer 0.029 g) as pale-yellow oils. Rf (cis) 

= 0.28 (20% EtOAc/hexanes); Rf (trans) = 0.17 (20% EtOAc/hexanes). 

1H NMR (599 MHz, CDCl3) δ 7.63 – 7.51 (AA’BB’, 4H), 4.75 (s, 1H), 3.94 – 3.88 (m, 

2H), 3.78 (s, 3H), 3.04 (s, 3H), 2.74 – 2.65 (m, 1H), 2.52 (dd as apparent t, J= 12.3 Hz, 

1H), 2.34 (dd, J = 13.2, 6.3 Hz, 1H), 2.01 – 1.95 (m, 1H), 1.71 – 1.61 (m, 3H) 13C NMR 

(101 MHz, CDCl3) δ 171.5, 168.9, 143.5, 131.8, 129.2, 119.1, 111.5, 71.7, 70.4, 62.4, 

60.9, 53.3, 52.4, 35.6, 29.0, 24.7. HRMS m/z 344.1375 (calc’d for C18H20N2O5
+, 

344.1372).  IR (ATR) vmax 3060, 2958, 2923, 2861, 2227, 1745, 1723, 1611, 1442, 1319, 

1256, 1220, 1135, 1054. 
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5-11d 60 °C Trans Isomer: The title compound was synthesized via 

General Procedure B (48 h). The amounts of reagents employed were: 

oxime ether 5-10e (0.070 g, 0.2 mmol), Yb(OTf)3 (6.0 mg, 5 mol%) in 2 

mL of toluene. The resulting oil was purified via column 

chromatography (20% EtOAc/hexanes). Yield: 85% (0.060 g) as a white 

foam of a single isomer. Rf (trans) = 0.17 (20% EtOAc/hexanes) 

1H NMR (599 MHz, CDCl3) δ 7.55 (d, J = 8.3 Hz, 2H), 7.42 (d, J = 8.2 Hz, 2H), 5.47 

(s, 1H), 3.94 – 3.90 (m, 1H), 3.87 – 3.82 (m, 1H), 3.81 (s, 3H), 3.07 (s, 3H), 2.63 (dd, J = 

12.9, 6.0 Hz, 1H), 2.52 (dd, J = 12.8, 9.7 Hz, 1H), 2.06-2.01 (m, 1H), 1.80-1.73, (m, 2H), 

1.53-1.49 (m, 1H). 13C NMR (151 MHz, CDCl3) δ 171.8, 170.1, 143.5, 131.8, 128.5, 

118.9, 111.2, 73.6, 67.4, 66.1, 62.8, 53.4, 52.3, 36.3, 23.1, 20.6. HRMS m/z 344.1369 

(calc’d for C18H20N2O5
+, 344.1372). IR (ATR) vmax 2952, 2228, 1728, 1609, 1505, 1434, 

1255, 1175, 840, 729.  

 

5-11f 120 °C Cis Isomer: The title compound was synthesized via 

General Procedure B (27 h). The amounts of reagents employed were: 

oxime ether 5-10f (0.070 g, 0.20 mmol), Yb(OTf)3 (6.0 mg, 5 mol%) in 

2 mL of toluene. The resulting oil was purified via column 

chromatography (20% EtOAc/hexanes). Yield: 95% (0.066 g) >19:1 

cis:trans isomer as a clear oil. Rf 0.33 (20% EtOAc/hexanes). 

1H NMR (400 MHz, CDCl3) δ 7.41 – 7.34 (m, 2H), 6.85 – 6.79 (m, 2H), 4.69 (s, 1H), 

3.92 (t, J = 5.6 Hz, 2H), 3.77 (s, 3H), 3.76 (s, 3H), 3.06 (s, 3H), 2.70-2.63 (m, 1H), 2.53 

(dd as apparent t, J =12.9 Hz,  1H), 2.28 (dd, J = 13.0, 6.1 Hz, 1H), 2.01 – 1.93 (m, 1H), 

1.71 – 1.59 (m, 3H) 13C NMR (151 MHz, CDCl3) δ 172.2, 169.8, 159.5, 129.9, 129.6, 

113.7, 72.1, 70.6, 62.5, 61.1, 55.6, 53.3, 52.6, 35.8, 29.3, 25.1. HRMS m/z 349.1538 

(calc’d for C18H23NO6
+, 349.1525).  IR (ATR) vmax 2951, 2848, 2226, 1729, 1609, 1511, 

1435, 1280, 1247,1171,1126, 1045. 

 



229 

 

5-11f 25 °C Trans Isomer: The title compound was synthesized via 

General Procedure B (40 h). The amounts of reagents employed were: 

oxime ether 5-10f (0.045 g, 0.13 mmol), Yb(OTf)3 (4.0 mg, 5 mol%) in 

1.3 mL of toluene. The resulting oil was purified via column 

chromatography (20% EtOAc/hexanes). Yield: 95% (0.041 g) 

combined trans isomer 5-11f-trans (0.025 g) and unreacted starting material (0.015 g). 

Yield of trans isomer 85% (brsm) (0.025 g) >19:1 trans:cis isomer as a clear oil. Rf = 

0.23 (20% EtOAc/hexanes). 

 

1H NMR (599 MHz, CDCl3) δ 7.18 (d, J = 8.6 Hz, 2H), 6.78 (d, J = 8.8 Hz, 2H), 5.42 (s, 

1H), 3.92 (dt, J = 7.9, 4.3 Hz, 1H), 3.89 – 3.80 (m, 2H), 3.79 (s, 3H), 3.74 (s, 3H), 3.08 

(s, 3H), 2.67 (dd, J = 12.9, 6.3 Hz, 1H), 2.49 (dd, J = 12.9, 10.0 Hz, 1H), 2.08 – 1.99 (m, 

1H), 1.79 – 1.71 (m, 2H), 1.50 – 1.44 (m, 1H). 13C NMR (151 MHz, CDCl3) δ 172.2, 

170.6, 158.9, 129.8, 129.0, 113.4, 74.2, 67.7, 66.1, 62.7, 55.3, 53.2, 52.2, 35.8, 23.3, 20.6. 

HRMS m/z 349.1524 (calc’d for C18H23NO6
+, 349.1525). IR (ATR) vmax 2951, 2852, 

1728, 1613, 1512, 1434, 1246, 1174, 1029, 729.  

 

5-11g 120 °C Cis Isomer: The title compound was synthesized via 

General Procedure B (25 h). The amounts of reagents employed were: 

oxime ether 5-10g (0.070 g, 0.19 mmol), Yb(OTf)3 (0.0060 g, 5 mol%) 

in 2 mL of toluene. The resulting oil was purified via column 

chromatography (20% EtOAc/hexanes). Yield: 95% (0.069 mg) >19:1 

cis:trans isomer as a pale-yellow solid.  Mp = 157 – 160 °C.  Rf = 0.22 (20% 

EtOAc/hexanes). 

 1H NMR (400 MHz, CDCl3): δ = 7.30 (AA’BB’, 2H), 6.67 (AA’BB’, 2H), 4.65 (s, 1H), 

3.94 – 3.89 (m, 2H), 3.76 (s, 3H), 3.08 (s, 3H), 2.88 (s, 6H), 2.70 – 2.61 (m, 1H), 2.53 (dd 

overlapped as an apparent t, J = 12.4 Hz, 1H), 2.27 (dd, J = 12.9, 6.1 Hz, 1H), 1.99 – 1.91 

(m, 1H), 1.69-1.59 (m, 3H). 13C NMR (101 MHz, cdcl3) δ 172.1, 169.8, 150.5, 128.9, 
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125.4, 112.5, 72.1, 70.3, 62.3, 60.9, 53.0, 52.4, 40.9, 35.5, 29.2, 24.9. HRMS m/z 

362.1838 (calc’d for C19H26N2O5
+, 362.1842). IR (ATR) vmax 3465, 2948, 1752, 1615, 

1329, 1228, 1124, 1045, 834. 

 

5-11g 25 °C Trans Isomer: The title compound was synthesized via 

General Procedure B (49 h). The amounts of reagents employed were: 

oxime ether 5-10g (0.026 g, 0.07 mmol), Yb(OTf)3 (0.0020 g, 5 mol%) 

in 1 mL of toluene. A 2:1 mixture of trans to cis isomers was observed 

by 1H NMR spectroscopy. The resulting oil was purified via column chromatography 

(25% EtOAc/hexanes). Yield: 98% combined trans:cis isomers (0.025 mg), trans isomer 

62% (0.016 g, white solid) Rf (trans) = 0.14 (20% EtOAc/hexanes). and cis isomer 35% 

(0.009 g, white solid) Rf (cis) = 0.22 (20% EtOAc/hexanes).    

1H NMR (599 MHz, CDCl3) δ 7.10 (AA’BB’, 2H), 6.62 (AA’BB’, 2H), 5.38 (s, 1H), 

3.92 (dt, J = 11.7, 4.1 Hz, 1H), 3.89 – 3.80 (m, 2H), 3.79 (s, 3H), 3.11 (s, 3H), 2.87 (s, 

6H), 2.70 (dd, J = 12.9, 6.4 Hz, 1H), 2.48 (dd, J = 12.9, 10.0 Hz, 1H), 2.07 – 1.99 (m, 

1H), 1.78 – 1.70 (m, 2H), 1.50 – 1.42 (m, 1H). 13C NMR (151 MHz, CDCl3) δ 172.3, 

170.7, 150.1, 128.7, 125.4, 112.4, 74.5, 67.7, 66.1, 62.6, 53.1, 52.3, 40.8, 35.6, 23.5, 20.7. 

HRMS m/z 362.1832 (calc’d for C19H26N2O5
+, 362.1842). IR (ATR) vmax 2949, 1728, 

1614, 1522, 1433, 1349, 1204, 1168, 864, 823. 

 

5-11j  The title compound was synthesized via General Procedure B (21 

h). The amounts of reagents employed were: oxime ether 5-10i (0.070 

g, 0.26 mmol), Yb(OTf)3 (0.008 g, 5 mol%) in 2.6 mL of toluene. The 

resulting oil was purified via column chromatography (20% EtOAc/hexanes). Yield: 78% 

(0.054 g) as a clear, colorless oil. Rf 0.47 (20% EtOAc/hexanes). 

1H NMR (599 MHz,CDCl3) δ 3.91 – 3.89 (m, 2H),  3.72 (s, 3H), 3.68 (s, 3H), 2.87 (tdd, 

J = 9.3, 9.3, 2.6 Hz, 1H), 2.61 (dd, J = 13.8, 9.2 Hz, 1H), 1.96 (dd, J = 13.8, 8.4 Hz, 1H), 

1.93 – 1.87 (m, 1H), 1.62 – 1.51 (m, 3H), 1.39 (s, 3H), 1.04 (s, 3H) 13C NMR (151 MHz, 
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CDCl3) δ 171.0, 170.6, 70.2, 62.7, 57.8, 52.5, 33.7, 29.9, 25.3, 23.1, 16.6. HRMS m/z 

271.1410 (calc’d for C13H21NO5
+, 271.1420). IR (ATR) vmax 2949, 1737, 1434, 1380, 

1260, 1194, 1137, 1038, 918, 887.  

 

5-11k  The title compound was synthesized via General Procedure B (18 

h). The amounts of reagents employed were: oxime ether 5-10j (0.050 g, 

0.16 mmol), Yb(OTf)3 (0.005 g, 5 mol%) in 2 mL of toluene. The 

resulting oil was purified via column chromatography (20% EtOAc/hexanes). Yield: 47% 

(0.025 g) as a clear, colorless oil. Rf 0.47 (20% EtOAc/hexanes). 

1H NMR (599 MHz, Chloroform-d) δ 3.89 – 3.82 (m, 1H), 3.69 (s, 3H), 3.65 (s, 3H), 

3.51 (br s, 1H), 2.72 (br, 1H), 2.63 (dd, J = 13.7, 8.5 Hz, 2H), 1.97 (tdt, J = 11.3, 8.7, 4.1 

Hz, 1H), 1.77 – 1.60 (m, 7H), 1.60 – 1.53 (m, 2H), 1.35 (m, 2H), 1.30 – 1.19 (m, 2H). 

13C NMR (151 MHz, CDCl3) δ 171.1, 170.5, 69.0, 58.2, 52.6, 52.3, 34.8, 30.2, 26.1, 

23.4, 22.4. HRMS m/z 311.1723 (calc’d for C16H25NO5
+, 311.1733). IR (ATR) vmax 

2936, 2853, 1732, 1433, 1223, 1166, 1124, 1014, 965, 796.  

 

5-11h 120 °C, 60 °C or 25 °C Cis Isomer: The title compound was 

synthesized via General Procedure B (2 days). The amounts of reagents 

employed were: oxime ether 5-10h (0.043 g, 0.13 mmol), Yb(OTf)3 

(0.004 g, 5 mol%) in 1.5 mL of toluene. The resulting oil was purified via column 

chromatography (25% EtOAc/hexanes) to yield a greater than 19:1 of cis to trans isomers 

by 1H NMR. (0.031 mg, 78%, colourless oil) Rf = 0.43 (20% EtOAc/hexanes). 

1H NMR (400 MHz, CDCl3): δ  7.19 (dd, J = 5.1, 1.2 Hz, 1H), 7.10 – 7.06 (m, 1H), 6.94 

(dd, J = 5.1, 3.5 Hz, 1H), 4.99 (s, 1H), 3.98-3.95 (m, 2H), 3.79 (s, 3H), 3.22 (s, 3H), 2.71-

2.63 (m, 1H), 2.55 (t, J = 12.3 Hz, 1H), 2.33 (dd, J = 13.0, 6.1 Hz, 1H), 1.97 – 1.94 (m, 

1H), 1.72 – 1.59 (m, 3H). 13C NMR (101 MHz, CDCl3) δ 171.3, 169.0, 141.1, 126.3, 

126.1, 124.8, 70.1, 68.4, 62.2, 60.8, 52.9, 52.4, 35.0, 28.7, 24.4. HRMS m/z 325.0977 
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(calc’d for C15H19NO5S
+, 325.0984). IR (ATR) vmax 2948, 1726, 1507, 1431, 1283, 

1264, 1207, 1004, 936, 695. 

 

5-11e 120 °C Trans Isomer: The title compound was synthesized via 

General Procedure B (28 h). The amounts of reagents employed were: 

oxime ether 5-10m (0.17 g, 0.27 mmol), Yb(OTf)3 (0.013 g, 5 mol%) 

in 2.7 mL of toluene. The resulting white solid was purified via column 

chromatography (20% EtOAc/hexanes). Yield: 94% (0.16 g) of a white 

solid as the trans isomer confirmed by x-ray crystallography. Mp = 159 – 160 °C.  Rf = 

0.25 (20% EtOAc/hexanes). 

1H NMR (400 MHz, CDCl3): δ = 8.16-8.12 (AA’BB’, 2H), 7.55-7.51 (AA’BB’, 2H), 

7.29-7.23 (m, 2H), 7.10-7.06 (m, 1H), 5.74 (s, 1H), 5.14 (d, J = 14.8 Hz, 1H), 4.87 (dd, J 

= 11.7, 5.8 Hz, 1H), 4.75 (d, J = 14.8 Hz, 1H), 3.80 (s, 3H), 3.15 (s, 3H), 2.99 (dd, J = 

12.8 Hz, 5.8 Hz, 1H), 2.68 (dd, J = 12.8 Hz, 11.7 Hz, 1H). 13C NMR (151 MHz, CDCl3) 

δ 171.4, 170.4, 147.4, 145.9, 133.5, 133.1, 128.7, 127.5, 127.5, 127.2, 124.7, 123.4, 76.8, 

70.2, 67.8, 66.9, 53.7, 52.6, 42.3. HRMS m/z 412.1271 (calc’d for C21H20N2O7
+, 

412.1271). IR (ATR) vmax = 2958, 2928, 1852, 1725, 1510, 1430, 1343, 1262, 1436, 

1046, 698. 

 

5-11e Cis Isomer made from Z-oxime: The title compound was 

synthesized via General Procedure B (1.5 h). The amounts of reagents 

employed were: oxime ether 5-10o (0.044 g, 0.11 mmol), Yb(OTf)3 

(0.003 g, 5 mol%). The resulting white solid was purified via column 

chromatography (20% EtOAc/hexanes). Yield: 87% (0.0.35 g) of a 

white solid as the cis isomer. Rf = 0.25 (20% EtOAc/hexanes). 

1H NMR (400 MHz, CDCl3) δ 8.18 (d, J = 8.6 Hz, 2H), 7.74 (d, J = 8.9 Hz, 2H), 7.31 – 

7.19 (m, 2H), 7.16 – 7.10 (m, 1H), 7.10 – 7.03 (m, 1H), 5.25 (d, J = 14.2 Hz, 1H),  5.04 

(s, 1H), 4.89 (d, J = 14.3 Hz, 1H), 4.09 (t, J = 9.3 Hz, 1H), 3.87 (s, 3H), 3.09 (s, 3H), 2.87 



233 

 

(d, J = 8.5 Hz, 2H). 13C NMR (101 MHz, CDCl3) δ 171.4, 168.5, 147.7, 144.8, 135.4, 

133.6, 129.4, 127.3, 126.8, 124.7, 124.1, 123.2, 71.9, 62.1, 53.6, 52.6. HRMS m/z 

412.1270 (calc’d for C21H20N2O7
+, 412.1271) IR (ATR) vmax = 2953, 1731, 1603, 1493, 

1345, 1270, 1041, 1026, 747, 697. 

 

5-11i 160 °C Isomer (unconfirmed designation): Yb(OTf)3 

(0.016 mg, 0.026 mmol) was added to a solution of oxime ether 

5-10l (0.050 g, 0.132 mmol) in toluene (1.3 mL, 0.1 M).  The vial 

was sealed with a crimped aluminum cap bearing a teflon seal and 

heated to 160 °C for 8 hours.  The toluene was removed in vacuo 

and the crude oil was purified by flash column chromatography (20% EtOAc/hexanes) to 

yield 5-11i as a single isomer (0.043 g, 86%) as a pale-yellow solid.  Mp = 112 – 114 °C. 

Rf = 0.40 (20% EtOAc/hexanes). 

1H NMR (400 MHz, CDCl3): δ  8.18-8.14 (AA’BB‘, 2H), 7.74-7.70 (AA’BB‘, 2H), 

4.89 (s, 1H), 3.81 – 3.77 (m, 1H), 3.76 (s, 3H), 3.47 (td, J = 10.9, 6.4 Hz, 1H), 3.09 (s, 

3H), 2.98 (tdd, J = 11.0, 7.6, 4.0 Hz, 1H), 2.56 (dd, J = 13.7, 11.3 Hz, 1H), 2.38 (dd, J = 

13.7 Hz, 7.8 Hz, 1H), 2.07-1.96 (m, 2H), 1.87-1.81 (m, 2H), 1.71-1.60 (m, 1H), 1.54-1.44 

(m, 1H). 13C NMR (101 MHz, CDCl3) δ 171.8, 169.5, 146.8, 129.7, 123.4, 73.9, 71.7, 

66.6, 62.2, 53.6, 52.8, 36.9, 35.5, 30.0, 23.2. HRMS m/z 378.1434 (calcd for 

C18H22N2O7
+ 378.1427). IR (ATR) vmax 3112, 3081, 2947, 2869, 17.53, 1730, 1601, 

1518, 1432, 1342, 1276, 1212, 1203, 1135, 1081, 1032, 1020, 973, 873, 839, 750, 698, 

570;  

5.6.6 Pyrrolidine Synthesis  

5-12 

Compound 5-11a-trans (0.030 g, 0.094 mmol) and Pd/C (10% on 

carbon, 0.0035 g) were dissolved in MeOH (1.2 mL). AcCl (0.016 

mL, 0.20 mmol) was added. The flask was equipped with a balloon 

of H2(g) and evacuated and refilled in 5 cycles. The flask was left to remain under a balloon 
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of hydrogen and was stirred at rt for 20 h. When TLC confirmed consumption of starting 

material the mixture was filtered through Celite and concentrated to yield salt 5-12 (0.029 

g, 87% yield) as a light green foam. 

1H NMR (599 MHz, DMSO-d6) δ 10.72 (s br 1H), 9.74 (s br, 1H), 7.42 (apparent s, 5H), 

5.43 (s br, 1H), 4.59 (s, br, 1H), 4.16 (p br, J = 7.5 Hz, 1H), 3.72 (s, 3H), 3.44 (s br, 2H), 

3.27 (s, 3H), 2.89 (dd, J = 13.5, 6.5 Hz, 1H),  2.24 (dd, J = 13.3, 10.0 Hz, 1H), 1.95-1.89 

(m br, 1H), 1.80-1.74 (m br, 1H), 1.62 – 1.50 (m br, 2H). 13C NMR (101 MHz, DMSO-

d6) δ 168.6, 168.2, 132.1, 129.2, 128.3, 128.2, 64.3, 63.8, 60.0, 59.4, 53.3, 52.7, 38.1, 

29.0, 28.4. HRMS m/z 321.1554 (calcd for C17H23NO5
+

 321.1576). IR (ATR) vmax 3382, 

2872, 1730, 1579, 1500, 1434, 1264, 1210, 1002, 699.  

5.6.7 Computational Calculation Data 

DFT Calculations were calculated at B3LYP, M062x179 and PBEh1PBE180 level of theory with 6-311G+(2d,p) basis 

set on Guassian 09.181
 

 

 

 

 

 

 

 

 

 

 

 

Computational Theory Cis Isomer E (kJ/mol) Trans Isomer E (kJ/mol) Ecis-trans  (kJ/mol) 

M062X/6-311+G(2d,p) -2864880.50868623 2864859.05073564 -21.456 

B3LYP/6-311+G(2d,p) -2865998.64891367 -2865977.22496331 -21.424 

PBEh1PBE/6-311+G(2d,p) -2863027.96102236 -2863006.58882062 -21.371 

 

5.6.8 Single Crystal X-Ray Diffraction Data 

All crystals were grown by Lauren Irwin and submitted to Dr. Paul Boyle for data 

collection, processing and refinement. 

 

Table 18- Computational calculation data 
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Experimental for C7H6N2O3 (b19170) E-oxime  

 

X-ray quality crystals were prepared by vapour diffusion of pentane into a saturated 

solution of oxime 5-9c dissolved in CDCl3.  

 

Data Collection and Processing. The sample (b19170) was submitted by Lauren Irwin of 

the Kerr research group at the University of Western Ontario. The sample was mounted 

on a Mitegen polyimide micromount with a small amount of Paratone N oil. All X-ray 

measurements were made on a Bruker Kappa Axis Apex2 diffractometer at a temperature 

of 110 K. The unit cell dimensions were determined from a symmetry constrained fit of 

8137 reflections with 6.72° < 2θ < 95.9°. The data collection strategy was a number of   

and  scans which collected data up to 98.26° (2 θ ). The frame integration was 

performed using SAINT.182  The resulting raw data was scaled, and absorption corrected 

using a multi-scan averaging of symmetry equivalent data using SADABS.183 

 

Structure Solution and Refinement. The structure was solved by using a dual space 

methodology using the SHELXT program.184 All non-hydrogen atoms were obtained 

from the initial solution. All hydrogen atom positions were obtained from a difference 

Fourier map and were allowed to refine isotropically.    The structural model was fit to 

the data using full matrix least-squares based on F2. The calculated structure factors 

included corrections for anomalous dispersion from the usual tabulation. The structure 

was refined using the SHELXL program from the SHELXTL suite of crystallographic 

software.185 Graphic plots were produced using the XP program suite.186  Additional 

information and other relevant literature references can be found in the reference section 
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of this website (http://xray.chem.uwo.ca). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 19 - Summary of Crystal Data for b19170 

Formula C7H6N2O3 

Formula Weight (g/mol) 166.14 

Crystal Dimensions (mm ) 0.244 × 0.200 × 0.194 

Crystal Color and Habit yellow square 

Crystal System monoclinic 

Space Group P 21/c 

Temperature, K 110 

a, Å 6.244(3) 

b, Å  4.822(2) 

c, Å  24.355(13) 

Figure 25 - ORTEP drawing of b19170 showing naming and numbering 

scheme.  Ellipsoids are at the 50% probability level and hydrogen atoms 

were omitted for clarity. 

http://xray.chem.uwo.ca/
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,° 90 

,° 94.782(17) 

,° 90 

V, Å3 730.7(6) 

Number of reflections to determine final unit cell 8137 

Min and Max 2 for cell determination, ° 6.72, 95.9 

Z 4 

F(000) 344 

 (g/cm) 1.510 

, Å, (MoK) 0.71073 

, (cm-1) 0.121 

Diffractometer Type Bruker Kappa Axis Apex2 

Scan Type(s) phi and omega scans 

Max 2 for data collection, ° 98.26 

Measured fraction of data 0.973 

Number of reflections measured 34297 

Unique reflections measured 7219 

Rmerge 0.0354 

Number of reflections included in refinement 7219 

Cut off Threshold Expression I > 2sigma(I) 

Structure refined using full matrix least-squares using F2 

Weighting Scheme w=1/[sigma2(Fo2)+(0.0653P)2+0.05

86P] where P=(Fo2+2Fc2)/3 

Number of parameters in least-squares 133 

R1 0.0407 

wR2 0.1139 

R1 (all data) 0.0601 

wR2 (all data) 0.1256 

GOF 1.051 

Maximum shift/error 0.001 

Min & Max peak heights on final F Map (e-/Å) -0.221, 0.768 

Where: 
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R1 = ( |Fo| - |Fc| ) /  Fo 

wR2 = [ ( w( Fo
2 - Fc

2 )2 ) / (w Fo
4 ) ]½ 

GOF = [ ( w( Fo
2 - Fc

2 )2 ) / (No. of reflns. - No. of params. ) ]½ 

 

 

Experimental for C7H6N2O3 (b19175) 

 

X-ray quality crystals were prepared by vapour diffusion of pentane into a saturated 

solution of oxime 5-9d dissolved in EtOAc.  

Data Collection and Processing. The sample (b19175) was submitted by Lauren Irwin of 

the Kerr research group at the University of Western Ontario. The sample was mounted 

on a Mitegen polyimide micromount with a small amount of Paratone N oil. All X-ray 

measurements were made on a Bruker Kappa Axis Apex2 diffractometer at a temperature 

of 110 K. The unit cell dimensions were determined from a symmetry constrained fit of 

5015 reflections with 7.2° < 2θ < 56.28°. The data collection strategy was a number of ω 

and φ scans which collected data up to 61.106° (2θ). The frame integration was 

performed using SAINT.  The resulting raw data was scaled, and absorption corrected 

using a multi-scan averaging of symmetry equivalent data using SADABS. 

 

Structure Solution and Refinement. The structure was solved by using a dual space 

methodology using the SHELXT program. All non-hydrogen atoms were obtained from 

the initial solution. The hydrogen atom positions were obtained from a difference Fourier 

map and were allowed to refine isotropically.  The structural model was fit to the data 

using full matrix least-squares based on F2. The calculated structure factors included 
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corrections for anomalous dispersion from the usual tabulation. The structure was refined 

using the SHELXL program from the SHELX suite of crystallographic software. Graphic 

plots were produced using the NRCVAX program suite.  Additional information and 

other relevant literature references can be found in the reference section of this website 

(http://xray.chem.uwo.ca). 

 

 

 

Table 20 - Summary of Crystal Data for b19175 

Formula C7H6N2O3 

Figure 26 - ORTEP drawing of b19175 showing naming and numbering scheme.  

Ellipsoids are at the 50% probability level and hydrogen atoms were drawn with 

arbitrary radii for clarity. 
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Formula Weight (g/mol) 166.14 

Crystal Dimensions (mm ) 0.268 × 0.197 × 0.042 

Crystal Color and Habit colourless plate 

Crystal System orthorhombic 

Space Group P 21 21 21 

Temperature, K 110 

a, Å 4.8632(10) 

b, Å  6.6115(17) 

c, Å  21.884(6) 

,° 90 

,° 90 

,° 90 

V, Å3 703.6(3) 

Number of reflections to determine final unit cell 5015 

Min and Max 2 for cell determination, ° 7.2, 56.28 

Z 4 

F(000) 344 

 (g/cm) 1.568 

, Å, (MoK) 0.71073 

, (cm-1) 0.126 

Diffractometer Type Bruker Kappa Axis Apex2 

Scan Type(s) phi and omega scans 

Max 2 for data collection, ° 61.106 

Measured fraction of data 0.999 

Number of reflections measured 24066 

Unique reflections measured 2150 

Rmerge 0.0529 

Number of reflections included in refinement 2150 

Cut off Threshold Expression I > 2sigma(I) 

Structure refined using full matrix least-squares using F2 

Weighting Scheme w=1/[sigma2(Fo2)+(0.0469P)2+0.03

27P] where P=(Fo2+2Fc2)/3 
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Number of parameters in least-squares 133 

R1 0.0348 

wR2 0.0796 

R1 (all data) 0.0472 

wR2 (all data) 0.0839 

GOF 1.048 

Maximum shift/error 0.000 

Min & Max peak heights on final F Map (e-/Å) -0.254, 0.201 

Where: 

R1 = ( |Fo| - |Fc| ) /  Fo 

wR2 = [ ( w( Fo
2 - Fc

2 )2 ) / (w Fo
4 ) ]½ 

GOF = [ ( w( Fo
2 - Fc

2 )2 ) / (No. of reflns. - No. of params. ) ]½ 

 

 

 

 

 

Experimental for C17H20N2O7 (b19163) 

 

X-ray quality crystal was grown by vapour diffusion of pentane into a saturated solution 

of compound 5-10c in benzene.  

Data Collection and Processing. The sample (b19163) was submitted by Lauren Irwin of 

the Kerr research group at the University of Western Ontario. The sample was mounted 

on a Mitegen polyimide micromount with a small amount of Paratone N oil. All X-ray 

measurements were made on a Bruker Kappa Axis Apex2 diffractometer at a temperature 

of 110 K.  It was apparent from the initial indexing that the sample crystals were non-

merohedrally twinned (vide infra).  The twin ratio was approximately 85:15 for the major 
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and minor twin components respectively.  The unit cell dimensions were determined from 

a symmetry constrained fit of 8787 reflections with 4.76° < 2θ < 50.5°. The data 

collection strategy was a number of ω and φ scans which collected data up to 50.744° 

(2θ). The frame integration was performed using SAINT.  The resulting raw data was 

scaled and absorption corrected using a multi-scan averaging of symmetry equivalent 

data using SADABS. 

Structure Solution and Refinement. The structure was solved by using a dual space 

methodology using the SHELXT program. All non-hydrogen atoms were obtained from 

the initial solution. The hydrogen atoms were introduced at idealized positions and were 

allowed to ride on the parent atom.  The refinement converged with the R1 value 

unsatisfactorily high.  Incorporating the data from the twin domain did neither alleviated 

the high R1 factor nor did it ameliorate the other symptoms of twinning (i.e. Fo
2 >> Fc

2 

for the worst fitting reflections and a high K value for the weakest data).  After 

considerable investigation (see. Analysis of Twinning below), it was determined that the 

best fitting model disregard the data from the twin altogether and refine the structure 

against on the data from the predominant domain.  The structural model was fit to the 

data using full matrix least-squares based on F2. The calculated structure factors included 

corrections for anomalous dispersion from the usual tabulation. The structure was refined 

using the SHELXL program from the SHELX suite of crystallographic software. Graphic 

plots were produced using the Mercury program.  Additional information and other 

relevant literature references can be found in the reference section of this website 

(http://xray.chem.uwo.ca). 

 

Analysis of Twinning.  Two individual domains were successfully indexed.  There were 

other reflections which suggested additional domains but could not be sensibly indexed.  

The twin law for the two-domain twinning model is given below: 

Twin Law, Sample 1 of 1 

   Transforms h1.1(1)->h1.2(2) 

http://xray.chem.uwo.ca/
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     0.62291 -1.61323 -0.00071 

    -0.37934 -0.62293 -0.00026 

    -0.05119  0.06100 -0.99998 

As noted above, despite including the data from the second domain caused the R1 factor 

to worsen rather than improve. In addition, there were still indications of twinning.  

Therefore, a combination of two different types of twinning were considered, a so called 

“twin of twins”.  The “twin of twins” model entailed lowering the symmetry of the 

structure from C 2/c to P 1 and assuming twinning by pseudo-merohedry in addition to 

the non-merohedral twinning.  The appropriate twin law for the pseudo-merohedral was 

derived by the COSET program as a 180º rotation about the [210] which is expressed by 

the following twin law: 

 1.00  0.00  0.00 

-1.00 -1.00  0.00 

 0.00  0.00 -1.00 

 

While the R1 factor improved and the symptoms of twinning were ameliorated, this 

model lead to physically impossible anisotropic displacement parameters (ADPs).  In 

addition, running the triclinic structure through the PLATON missing symmetry routines 

indicated that the structure was indeed C centred monoclinic.  For these reasons, the 

triclinic structural model was discounted. 
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Table 21 - Summary of Crystal Data for b19163 

Formula C17H20N2O7 

Formula Weight (g/mol) 364.35 

Crystal Dimensions (mm ) 0.398 × 0.384 × 0.195 

Crystal Color and Habit colourless prism 

Crystal System monoclinic 

Space Group C 2/c 

Temperature, K 110 

a, Å 14.533(2) 

b, Å  7.0474(11) 

c, Å  34.203(7) 

,° 90 

,° 90.766(7) 

,° 90 

Figure 27 - ORTEP drawing of b19163 showing naming and numbering 

scheme.  Ellipsoids are at the 50% probability level and hydrogen atoms were 

drawn with arbitrary radii for clarity. 
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V, Å3 3502.8(11) 

Number of reflections to determine final unit cell 8787 

Min and Max 2  for cell determination, ° 4.76, 50.5 

Z 8 

F(000) 1536 

 (g/cm) 1.382 

, Å, (MoK ) 0.71073 

, (cm-1) 0.108 

Diffractometer Type Bruker Kappa Axis Apex2 

Scan Type(s) phi and omega scans 

Max 2  for data collection, ° 50.744 

Measured fraction of data 0.944 

Number of reflections measured 3052 

Unique reflections measured 3052 

Rmerge 0.0800 

Number of reflections included in refinement 3052 

Cut off Threshold Expression I > 2sigma(I) 

Structure refined using full matrix least-squares using F2 

Weighting Scheme w=1/[sigma2(Fo2)+(0.0430P)2+44.7

018P] where P=(Fo2+2Fc2)/3 

Number of parameters in least-squares 237 

R1 0.1020 

wR2 0.2263 

R1 (all data) 0.1159 

wR2 (all data) 0.2322 

GOF 1.179 

Maximum shift/error 0.000 

Min & Max peak heights on final F Map (e-/Å) -0.367, 0.896 

Where: 

R1 =  ( |Fo| - |Fc| ) /  Fo 

wR2 = [ ( w( Fo
2 - Fc

2 )2 ) / (w Fo
4 ) ]½ 
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GOF = [ ( w( Fo
2 - Fc

2 )2 ) / (No. of reflns. - No. of params. ) ]½ 

 

 

Experimental for C17H20N2O7 (b19193) 

 

X-ray quality crystal was grown by vapour diffusion of pentane into a 

saturated solution of compound 5-11c-cis in benzene.  

Data Collection and Processing. The sample (b19193) was submitted 

by Lauren Irwin of the Kerr research group at the University of Western Ontario. The 

sample was mounted on a Mitegen polyimide micromount with a small amount of 

Paratone N oil. All X-ray measurements were made on a Bruker Kappa Axis Apex2 

diffractometer at a temperature of 110 K.  It was apparent from the initial indexing that 

the crystal was non-merohedrally twinned.  The diffraction pattern was indexed to two 

different unit cells and the an approximate twin law was derived.  The unit cell 

dimensions were determined from a symmetry constrained fit of 9820 reflections with 

4.66° < 2θ < 65.04°. The data collection strategy was a number of ω and φ scans which 

collected data up to 65.248° (2θ). The frame integration was performed using SAINT.  

The resulting raw data was scaled and absorption corrected using a multi-scan averaging 

of symmetry equivalent data using TWINABS. 

 

Structure Solution and Refinement. The structure was solved by using a dual space 

methodology using the SHELXT program. All non-hydrogen atoms were obtained from 

the initial solution.  The asymmetric unit contains two symmetry independent molecules 

which were designated by the suffixes A and B in naming and numbering scheme. The 

hydrogen atoms were introduced at idealized positions and were allowed to refine 

isotropically. 

Analysis of Twinning.  The data were integrated as two component twin where the two 
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individuals were related by an approximate 180º rotation about the [100].  An analysis of 

the twinning is given below: 

===============================================================

=============== 

Solution number :   1 

--------------------- 

New Cell: a=10.6658 b=10.8239 c=17.2378 alpha=99.296 beta=92.069 gamma=115.950 

 

Figure of Merit (0=ideal)         :   0.03 

Rotation angle  (degrees)         :-179.996 

Rotation vector (laboratory)      :   0.9047 -0.3437  0.2518 

Rotation vector (reciprocal cell) :  -2.00    1.00    0.00 

Rotation vector (direct cell)     :  -1.00    0.06   -0.02 

 

Superposition matrix              : H' = +0.939 * H -0.122 * K +0.030 * L 

                                    K' = -0.969 * H -0.939 * K -0.015 * L 

                                    L' = -0.002 * H            -1.000 * L 

===============================================================

=============== 

During the structure refinement the twin fraction of the minor component refined to a 

value of 0.2179(4). 
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The structural model was fit to the data using full matrix least-squares based on F2. The 

calculated structure factors included corrections for anomalous dispersion from the usual 

tabulation. The structure was refined using the SHELXL program from the SHELX suite 

of crystallographic software. Graphic plots were produced using the NRCVAX program 

suite.  Additional information and other relevant literature references can be found in the 

reference section of this website (http://xray.chem.uwo.ca). 

 

 

Figure 28 - ORTEP drawing of b19193 showing naming and numbering scheme.  

Ellipsoids are at the 50% probability level and hydrogen atoms were drawn with 

arbitrary radii for clarity. 
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Table 22 - Summary of Crystal Data for b19193 

Formula C17H20N2O7 

Formula Weight (g/mol) 364.35 

Crystal Dimensions (mm ) 0.468 × 0.251 × 0.134 

Crystal Color and Habit colourless prism 

Crystal System triclinic 

Space Group P -1 

Temperature, K 110 

a, Å 10.6658(14) 

b, Å  10.8239(18) 

c, Å  17.238(3) 

,° 99.296(4) 

,° 92.069(6) 

,° 115.950(7) 

V, Å3 1753.0(5) 

Number of reflections to determine final unit cell 9820 

Min and Max 2 for cell determination, ° 4.66, 65.04 

Z 4 

F(000) 768 

 (g/cm) 1.380 

, Å, (MoK) 0.71073 

, (cm-1) 0.108 

Diffractometer Type Bruker Kappa Axis Apex2 

Scan Type(s) phi and omega scans 

Max 2 for data collection, ° 65.248 

Measured fraction of data 0.999 

Number of reflections measured 41111 

Unique reflections measured 41111 

Rmerge ? 

Number of reflections included in refinement 41111 

Cut off Threshold Expression I > 2sigma(I) 

Structure refined using full matrix least-squares using F2 
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Weighting Scheme w=1/[sigma2(Fo2)+(0.0615P)2+0.15

47P] where P=(Fo2+2Fc2)/3 

Number of parameters in least-squares 630 

R1 0.0439 

wR2 0.1115 

R1 (all data) 0.0620 

wR2 (all data) 0.1223 

GOF 1.037 

Maximum shift/error 0.001 

Min & Max peak heights on final F Map (e-/Å) -0.286, 0.425 

Where: 

R1 = ( |Fo| - |Fc| ) /  Fo 

wR2 = [ ( w( Fo
2 - Fc

2 )2 ) / (w Fo
4 ) ]½ 

GOF = [ ( w( Fo
2 - Fc

2 )2 ) / (No. of reflns. - No. of params. ) ]½ 

 

 Experimental for C21H20N2O7 (b19192) 

 

X-ray quality crystal was grown by slow vapour diffusion of pentane into a saturated 

solution of compound 5-10m in benzene. 

Data Collection and Processing. The sample (b19192) was submitted by Lauren Irwin of 

the Kerr research group at the University of Western Ontario. The sample was mounted 

on a Mitegen polyimide micromount with a small amount of Paratone N oil. All X-ray 

measurements were made on a Bruker Kappa Axis Apex2 diffractometer at a temperature 

of 110 K. The unit cell dimensions were determined from a symmetry constrained fit of 
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6805 reflections with 4.9° < 2θ < 50.28°. The data collection strategy was a number of ω 

and φ scans which collected data up to 50.462° (2θ). The frame integration was 

performed using SAINT.  The resulting raw data was scaled, and absorption corrected 

using a multi-scan averaging of symmetry equivalent data using SADABS. 

 

Structure Solution and Refinement. The structure was solved by using a dual space 

methodology using the SHELXT program. All non-hydrogen atoms were obtained from 

the initial solution. The hydrogen atoms were introduced at idealized positions and were 

allowed to refine isotropically.  The structural model was fit to the data using full matrix 

least-squares based on F2. The calculated structure factors included corrections for 

anomalous dispersion from the usual tabulation. The structure was refined using the 

SHELXL program from the SHELX suite of crystallographic software. Graphic plots 

were produced using the NRCVAX program suite.  Additional information and other 

relevant literature references can be found in the reference section of this website 

(http://xray.chem.uwo.ca). 
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Figure 29 - ORTEP drawing of b19192 showing naming and numbering scheme.  

Ellipsoids are at the 50% probability level and hydrogen atoms were drawn with 

arbitrary radii for clarity. 

 

Table 23 - Summary of Crystal Data for b19192 

Formula C21H20N2O7 

Formula Weight (g/mol) 412.39 

Crystal Dimensions (mm ) 0.127 × 0.096 × 0.052 

Crystal Color and Habit colourless rectangular 

Crystal System monoclinic 

Space Group P 21/c 

Temperature, K 110 

a, Å 17.717(12) 

b, Å  8.628(6) 

c, Å  13.831(8) 

,° 90 
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,° 110.043(11) 

,° 90 

V, Å3 1986(2) 

Number of reflections to determine final unit cell 6805 

Min and Max 2 for cell determination, ° 4.9, 50.28 

Z 4 

F(000) 864 

 (g/cm) 1.379 

, Å, (MoK) 0.71073 

, (cm-1) 0.105 

Diffractometer Type Bruker Kappa Axis Apex2 

Scan Type(s) phi and omega scans 

Max 2 for data collection, ° 50.462 

Measured fraction of data 0.999 

Number of reflections measured 32877 

Unique reflections measured 3596 

Rmerge 0.0808 

Number of reflections included in refinement 3596 

Cut off Threshold Expression I > 2sigma(I) 

Structure refined using full matrix least-squares using F2 

Weighting Scheme w=1/[sigma2(Fo2)+(0.0339P)2+0.77

22P] where P=(Fo2+2Fc2)/3 

Number of parameters in least-squares 351 

R1 0.0392 

wR2 0.0778 

R1 (all data) 0.0752 

wR2 (all data) 0.0919 

GOF 1.011 

Maximum shift/error 0.000 

Min & Max peak heights on final F Map (e-/Å) -0.220, 0.210 

Where: 

R1 = ( |Fo| - |Fc| ) /  Fo 

wR2 = [ ( w( Fo
2 - Fc

2 )2 ) / (w Fo
4 ) ]½ 



254 

 

GOF = [ ( w( Fo
2 - Fc

2 )2 ) / (No. of reflns. - No. of params. ) ]½ 

 

 

Experimental for C21H20N2O7 (b19156) 

X-ray quality crystal grown by slow vapour diffusion of pentane 

into a saturated solution of 5-11e-trans in benzene.  

Data Collection and Processing. The sample (b19156) was 

submitted by Lauren Irwin of the Kerr research group at the 

University of Western Ontario. The sample was mounted on a Mitegen polyimide 

micromount with a small amount of Paratone N oil. All X-ray measurements were made 

on a Bruker Kappa Axis Apex2 diffractometer at a temperature of 110 K. The unit cell 

dimensions were determined from a symmetry constrained fit of 9959 reflections with 

4.48° < 2  < 59.98°. The data collection strategy was a number of  and  scans which 

collected data up to 62.396° (2 ). The frame integration was performed using SAINT.  

The resulting raw data was scaled and absorption corrected using a multi-scan averaging 

of symmetry equivalent data using SADABS. 

 

Structure Solution and Refinement. The structure was solved by using a dual space 

methodology using the SHELXT program. All non-hydrogen atoms were obtained from 

the initial solution. The hydrogen atoms were introduced at idealized positions and were 

allowed to refine isotropically.  The structural model was fit to the data using full matrix 

least-squares based on F2. The calculated structure factors included corrections for 

anomalous dispersion from the usual tabulation. The structure was refined using the 

SHELXL program from the SHELX suite of crystallographic software. Graphic plots 

were produced using the NRCVAX program suite.  Additional information and other 

relevant literature references can be found in the reference section of this website 

(http://xray.chem.uwo.ca). 
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Figure 30 - ORTEP drawing of b19156 showing naming and numbering scheme.  

Ellipsoids are at the 50% probability level and hydrogen atoms were drawn with 

arbitrary radii for clarity. 

 

Table 24 - Summary of Crystal Data for b19156 

Formula C21H20N2O7 

Formula Weight (g/mol) 412.39 

Crystal Dimensions (mm ) 0.289 × 0.271 × 0.079 

Crystal Color and Habit colourless prism 

Crystal System monoclinic 

Space Group P 21/c 

Temperature, K 110 

a, Å 11.544(4) 

b, Å  18.172(7) 

c, Å  9.560(3) 

,° 90 
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,° 105.803(12) 

,° 90 

V, Å3 1929.6(11) 

Number of reflections to determine final unit cell 9959 

Min and Max 2 for cell determination, ° 4.48, 59.98 

Z 4 

F(000) 864 

 (g/cm) 1.420 

, Å, (MoK) 0.71073 

, (cm-1) 0.108 

Diffractometer Type Bruker Kappa Axis Apex2 

Scan Type(s) phi and omega scans 

Max 2 for data collection, ° 62.396 

Measured fraction of data 0.999 

Number of reflections measured 71853 

Unique reflections measured 6182 

Rmerge 0.0657 

Number of reflections included in refinement 6182 

Cut off Threshold Expression I > 2sigma(I) 

Structure refined using full matrix least-squares using F2 

Weighting Scheme w=1/[sigma2(Fo2)+(0.0445P)2+0.55

72P] where P=(Fo2+2Fc2)/3 

Number of parameters in least-squares 351 

R1 0.0422 

wR2 0.0909 

R1 (all data) 0.0774 

wR2 (all data) 0.1056 

GOF 1.014 

Maximum shift/error 0.000 

Min & Max peak heights on final F Map (e-/Å) -0.280, 0.330 

Where: 

R1 = ( |Fo| - |Fc| ) /  Fo 

wR2 = [ ( w( Fo
2 - Fc

2 )2 ) / (w Fo
4 ) ]½ 
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GOF = [ ( w( Fo
2 - Fc

2 )2 ) / (No. of reflns. - No. of params. ) ]½ 
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Chapter 6  

6.0 Summary,Conclusions and Future Directions of 
Projects Discussed 

6.1  Future Directions 

Future directions for the projects in this dissertation are discussed in detail at the end of 

their respective chapters. This was to ensure that the future directions followed the story 

the reader had just completed, and because many of these projects, while they share a 

common link of indoles and cyclopropanes, they could be taken to new projects on their 

own. It seemed in the best interest of comprehension to put future experimental planning 

before the experimental details of each chapter.  

6.2 Chapter Summaries and Conclusions 

The research disclosed in the antecedent sections aimed to expand chemical 

transformations of indole heterocycles. The research generated novel reactivity and 

further functionalized indoles to access value-added products while aiding the pursuit of 

the first total syntheses of tronocarpine and dippinine B. While the complete total 

syntheses were not realized, valuable chemistry was discovered, and road blocks were 

identified that future chemists can hopefully overcome.    

Chapter 2 disclosed the first use of hydrogen-bonding interactions as a metal-free 

alternative for the opening of donor-acceptor cyclopropanes. Opened using indole 

nucleophiles in a medium of HFIP, a variety of 3-position functionalized indole products 

were generated both from diester and hemi-malonate cyclopropanes (Scheme 110). 
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Scheme 110 - Graphical summary of the work in Chapter 2. Novel hydrogen-bond 

interaction activating DA-CPs. 

This work is the first to demonstrate how donor-acceptor cyclopropanes can be opened 

with indole nucleophiles without the use of Lewis acids or under high-pressure reaction 

conditions. It expands on how indoles can be functionalized to value-added products 

because all substituent patterns tested worked, and both malonate and hemi-malonate 

cyclopropanes access the products under these neutral conditions. This work will pioneer 

access to other annulation and elaborated products without the need for dangerous high-

pressure equipment and expensive Lewis acid catalysts.    

Chapter 3 reports a one-pot procedure for the generation of tricyclic indole containing 

molecules. The 1,2-substituted indole product map well to the scaffold and functional 

handles required to access natural products tronocarpine and dippinine B. Using a single 

electron oxidant, Mn(OAc)3 generates radicals of malonyl tethers resultant of a Michael 

addition with acryloyl indoles. 10 different products were generated in modest yields 

including a product which has all required carbons for the natural products sought 

(Scheme 111).  

 

Scheme 111 - Graphical summary of the work in Chapter 3. One-pot Michael 

addition and cyclization of indoles. 
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This procedure outlined is exceptional for creating highly substituted indole scaffolds 

which map onto many different natural products. These natural products are desirable for 

future pharmaceuticals and drug discovery purposes, and this methodology will easily 

generate unique products en route to developing syntheses to natural product targets. This 

work also gave me the opportunity to perfect a method of reproducibly acquiring 

Mn(OAc)3, a reagent that is known to have quality issues when purchased, even if from 

the same source. My procedure developed should be helpful to future chemists wanting to 

use Mn(OAc)3 as a SET agent in their own chemistry, and give them the highest yields 

possible.  

Chapter 4 is tough to summarize concisely. The work reported outlines a variety of 

strategies towards the first syntheses of indole alkaloids tronocarpine and dippinine B. 

Major intermediates containing all the necessary atoms for the natural products were 

generated but were not successfully taken to the final products. The chemistry indicated 

the difficulty of employing either, a Dieckmann cyclization, or aldol ring-closing reaction 

to form ring E of both natural products (Scheme 112).  Conclusions are drawn that a 

substrate resembling 6-1, where the difficult ring E is synthesized as a separate 

component, could later join the tryptamine portion of the natural products. The work 

discovered many different road-blocks that provide valuable knowledge for how to 

overcome these unforeseen obstacles. The routes developed provide insight for how to 

change the chemistry in the future and avoid the ring-closing difficulties discovered. A 

new a successful route to synthesize dippinine B and tronocarpine can be built in future 

based on the difficulties discussed in Chapter 4.  
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Scheme 112 - Graphical represention of the work outlined in Chapter 4. Progress 

and major intermediates towards the synthesis of tronocarpine and dippinine B. 

Chapter 5 summarizes the synthesis of novel oxime-ether containing DA CPs that 

rearrange in the presence of Yb(OTf)3 to access selectively, the cis or trans bicyclic 

hydropyrollooxazine products (6-2cis/trans). The diastereomer of the product obtained is 

controlled by the reaction temperature, with higher temperatures yielding the cis 

annulation product. The oxazines can be taken to their respective diastereo-retained 

pyrrolidines.  

 

Scheme 113 - Graphical representation of the work completed in Chapter 5. 
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This work impressively accessed novel oxime-ether donor-acceptor cyclopropanes in 

only two steps. They were determined to generate tetrahydropyrrolo-oxazines in high 

yield and with diastereomeric control, making this an interesting and effective reaction. 

The operating chemist can use simple temperature changes in the reaction to access the 

correct diastereomers of the annulated products. These products can then be pushed 

forward to synthesize desirable pyrrolidine natural products or drug candidates. This 

work will be valuable in the future to try and synthesize natural products like preussin C. 

The research conducted and reported in this thesis outlines successful improvements and 

progress modifying indole heterocycles to access valuable products and doing so in novel 

ways.  
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Appendices – Spectral Data for Selected Compounds in 

Chapters 2-5 

Chapter 2 1H, 19F and 13C NMR Spectra 

 

 



267 

 

 

 

 



268 

 

 

 



269 

 

 

 



270 

 

 

 



271 

 

 

 



272 

 

 

 



273 

 

 

 



274 

 

 

 



275 

 

 

 



276 

 

 

 



277 

 

 

 



278 

 

 

 



279 

 

 

 



280 

 

 

 



281 

 

 

 



282 

 

 

 



283 

 



284 

 

 

 



285 

 



286 

 



287 

 



288 

 



289 

 



290 

 



291 

 

 

 

 

Chapter 3 1H and 13C NMR Spectra 
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