
Western University Western University

Scholarship@Western Scholarship@Western

Electrical and Computer Engineering
Publications

Electrical and Computer Engineering
Department

10-18-2019

ML4IoT: A Framework to Orchestrate Machine Learning ML4IoT: A Framework to Orchestrate Machine Learning

Workflows on Internet of Things Data Workflows on Internet of Things Data

Jose Miguel Alves
Western University, jalves7@uwo.ca

Leonardo Honorio
Federal University of Juiz de Fora, Brazil, leonardo.honorio@ufjf.edu.br

Miriam A M Capretz
Western University, mcapretz@uwo.ca

Follow this and additional works at: https://ir.lib.uwo.ca/electricalpub

 Part of the Databases and Information Systems Commons, and the Software Engineering Commons

Citation of this paper: Citation of this paper:
Alves, Jose Miguel; Honorio, Leonardo; and Capretz, Miriam A M, "ML4IoT: A Framework to Orchestrate
Machine Learning Workflows on Internet of Things Data" (2019). Electrical and Computer Engineering
Publications. 172.
https://ir.lib.uwo.ca/electricalpub/172

https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/electricalpub
https://ir.lib.uwo.ca/electricalpub
https://ir.lib.uwo.ca/electrical
https://ir.lib.uwo.ca/electrical
https://ir.lib.uwo.ca/electricalpub?utm_source=ir.lib.uwo.ca%2Felectricalpub%2F172&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=ir.lib.uwo.ca%2Felectricalpub%2F172&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=ir.lib.uwo.ca%2Felectricalpub%2F172&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/electricalpub/172?utm_source=ir.lib.uwo.ca%2Felectricalpub%2F172&utm_medium=PDF&utm_campaign=PDFCoverPages

Received September 19, 2019, accepted October 7, 2019, date of publication October 18, 2019, date of current version October 31, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2948160

ML4IoT: A Framework to Orchestrate Machine
Learning Workflows on Internet of Things Data
JOSÉ M. ALVES1, LEONARDO M. HONÓRIO 2,
AND MIRIAM A. M. CAPRETZ 1, (Senior Member, IEEE)
1Department of Electrical and Computer Engineering, Western University, London, ON N6A 5B9, Canada
2Department of Electrical Energy, Federal University of Juiz de Fora, Juiz de Fora-MG 36036-900, Brazil

Corresponding author: Miriam A. M. Capretz (mcapretz@uwo.ca)

This work was supported by the NSERC STPGP, Western University, under Grant STPGP 506840-17.

ABSTRACT Internet of Things (IoT) applications generate vast amounts of real-time data. Temporal analysis
of these data series to discover behavioural patterns may lead to qualified knowledge affecting a broad
range of industries. Hence, the use of machine learning (ML) algorithms over IoT data has the potential
to improve safety, economy, and performance in critical processes. However, creating ML workflows at
scale is a challenging task that depends upon both production and specialized skills. Such tasks require
investigation, understanding, selection, and implementation of specific ML workflows, which often lead
to bottlenecks, production issues, and code management complexity and even then may not have a final
desirable outcome. This paper proposes the Machine Learning Framework for IoT data (ML4IoT), which is
designed to orchestrate MLworkflows, particularly on large volumes of data series. TheML4IoT framework
enables the implementation of several types of ML models, each one with a different workflow. These
models can be easily configured and used through a simple pipeline. ML4IoT has been designed to use
container-based components to enable training and deployment of variousMLmodels in parallel. The results
obtained suggest that the proposed framework can manage real-world IoT heterogeneous data by providing
elasticity, robustness, and performance.

INDEX TERMS Big data, container-based virtualization, IoT,machine learning, machine learningworkflow,
microservices.

I. INTRODUCTION
Gartner [1], predicts that the Internet of Things (IoT) will
reach 26 billion internet-connected devices by 2020, impact-
ing a wide range of industries. The IoT is about connecting
any device to the Internet, enabling the digitization of devices,
vehicles, and other elements of the real world. Machine learn-
ing (ML) has been increasingly used with IoT data to create
new applications, such as smart cities [2], smart homes [3],
and smart grids [4]. An IoT application may provide vast
amounts of real-time data through its application and busi-
ness layers. Analysis of these temporal data series, through
machine learning, can provide numerous benefits in several
processes and services [5], [6].

More specifically, ML algorithms are used to convert data
into valuable information [7]. In real-world IoT applications,
ML development is divided into two phases: training and

The associate editor coordinating the review of this manuscript and

approving it for publication was Byung-Seo Kim .

inference. The training phase typically begins with ingestion,
storage, and preprocessing of IoT data. After this, MLmodels
are trained using the preprocessed IoT data. The inference
phase is also referred to in the literature as prediction serving,
model score, or model prediction [7] and uses the trained ML
models to infer information using new online IoT data.

The high volume, velocity, and variety of IoT data [8]
require the use of several Big Data-enabling tools to ingest,
store and preprocess the data even before selecting a given
ML workflow. Furthermore, integrating those tools with ML
software to create end-to-end workflows is a time-consuming
task that requires specialized skills, and complex coding. For
example, the development of typical ML applications using
IoT data usually involves three steps. First, data engineers
code data workflows that produce training data using Big
Data tools. Second, data scientists downsample data and use
ML frameworks in notebook environments (e.g., Jupyter [9],
Zeppelin [10]) to develop and experiment with new models.
Finally, software engineers work to deploy trained models

VOLUME 7, 2019 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ 152953

https://orcid.org/0000-0003-2735-4792
https://orcid.org/0000-0002-1380-971X
https://orcid.org/0000-0001-9824-1950

J. M. Alves et al.: ML4IoT: Framework to Orchestrate ML Workflows on IoT Data

in production systems. The hand-off between these steps
leads to bottlenecks and production issues, which are signs
of many of the machine learning anti-patterns described by
Sculley et al. [11]. Moreover, applying machine learning to
real IoT data includes challenges such as keeping models
updated and running multiple ML workflows in parallel.

Most big players in machine learning have faced these
challenges and started solving them internally with their own
platforms. For example, Uber has built its ML orchestration
platform called Michelangelo [12], Airbnb has Bighead [13],
Netflix has developed the Meson platform [14], Google has
introduced TensorFlow Extended (TFX) [15], and Facebook
has implemented its data pipeline platform for generating and
predicting models [16]. These are all in-house proprietary
platforms to make sure that their time and money are not
wasted in developing repetitive ML workflows and manage-
ment tools. However, besides needing skilled users, these
frameworks still present production issues related to treat-
ing and managing data and dealing with different method-
ologies and frameworks. Therefore, a unified framework
that is capable of executing diverse ML workflows, han-
dling and managing data, running configurations in parallel
and not demanding advanced programming skills would be
beneficial.

Considering the drawbacks mentioned above, the main
contribution of this research is to overcome the challenges
of integrating Big Data tools and machine learning software
to provide a unified platform where ML applications can be
developed using IoT data. Hence, a flexible, robust, and scal-
able Machine Learning Framework for IoT data (ML4IoT)
has been designed and developed in this study to orches-
trate machine learning workflows. The flexibility is obtained
by organizing backend services, which uses containerized
microservices to execute different tasks defined especially
for each implemented workflow. In addition, to address the
challenges of running multiple ML workflows in parallel,
ML4IoT has been designed to use container-based compo-
nents that provide a convenient mechanism to enable the
training and deployment of numerous ML models in parallel.
Furthermore, the use of containers provides process isolation
between different ML workflows and ensures that a single
workflow failure does not affect the execution of other work-
flows running in parallel, which make the process robust.
Finally, to address common production issues faced during
development of ML applications, such as hard-to-maintain
glue code, hidden dependencies, feedback loops, and pipeline
jungles, ML4IoT uses a microservices architecture to bring
flexibility, reusability, and scalability to the framework.
ML4IoT was evaluated in three experiments using two

types of real-world IoT data from the energy and traffic
domains with four different objectives (forecasting for 15,
30, 45 and 60 minutes ahead), and two ML algorithms Ran-
dom Forest (RF) [17], [18] and Long Short-Term Memory
(LSTM) [19]. The first experiment investigated the feasibility
of the framework by assessing its ability to orchestrate ML
workflows on different IoT datasets. ML4IoT elasticity was

evaluated in the second experiment by studying its ability to
scale to support the execution of multiple ML workflows in
parallel. Finally, the third experiment investigated the per-
formance of the framework by analyzing the latency of the
execution of ML workflows deployed to render predictions
using online IoT data.

The rest of this paper is organized as follows. Section II
provides an overview of the major approaches related to
the proposed framework. Section III presents the proposed
framework and the design of its components. Section IV
shows the implementation details. Section V presents an
evaluation of the framework. Finally, Section VI presents the
final paper conclusions and future work.

II. RELATED WORK
This section presents research related to this paper divided
into two categories: Machine Learning Platforms, and Big
Data and Machine Learning tools applied to IoT.

A. MACHINE LEARNING PLATFORMS
This section presents a review ofML platforms that have been
proposed to address challenges in developing and deploying
ML models.

Wang et al. [20] introduced Rafiki, which is a system to
provide the training and inference services for ML models.
In their work, users are exempted from constructing ML
models, tuning hyper-parameters, and optimizing prediction
accuracy and speed. Instead, they upload their datasets, con-
figure the service to conduct training and then deploy the
model for inference.

Lee et al. [21] presented PRETZEL, a prediction serving
system designed to serve predictions over trained pipelines
originally developed in ML.Net [22]. Their work explored
multi-pipeline optimization techniques to reduce resource
utilization and improve performance.

Spell et al. [23] presented Flux, which is a system designed
to deploy ML models in distributed batch mode and make
them available as microservices for real-time use cases. The
Flux system provides REST APIs for programmatic access
to ML models and their executions. Their work supports
multiple ML libraries and includes monitoring and archiving
of ML models.

Studies [20], [21], [23] have been focused on providing
generic ML platforms, which are in turn focused on achiev-
ing better efficiency during training and deployment of ML
models. Unlike this work, these studies do not address the
challenges posed by IoT data, such as high volume, high vari-
ety, and high velocity, which impacts the use of these studies
in real-world scenarios. In addition, these existing machine
learning platforms do not deal with IoT data preprocessing,
which is a common step required during development of ML
applications. Because of this, additional components need to
be integrated with the previously cited platforms to create
end-to-end machine learning applications on IoT data. This
research extends previously cited approaches by providing a

152954 VOLUME 7, 2019

J. M. Alves et al.: ML4IoT: Framework to Orchestrate ML Workflows on IoT Data

framework designed to orchestrate and automate the execu-
tion of ML workflows on IoT data.

B. BIG DATA AND MACHINE LEARNING TOOLS APPLIED
TO IoT
This section presents a review of research that addressed the
use of big data enabling tools and ML frameworks with IoT
data.

Cecchinel et al. [24] presented an approach using machine
learning to provide an optimal configuration that extended
the battery lifetime of IoT sensors. In their work, middleware
generates an energy-efficient sensor configuration based on
live data observations, which dynamically optimizes sensors
sampling frequency and network usage.

Yang et al. [25] proposed a semi-supervised method in
association with a generative adversarial network [26] to
support medical decision-making in an IoT-based health ser-
vice system. Their approach was designed to solve prob-
lems involving both the lack of labelled sets and imbalanced
classes, which are common inmedical datasets collected from
IoT-based platforms.

Kotenko et al. [27] introduced a framework combining
Big Data processing and machine learning for security mon-
itoring of the mobile Internet of Things. Their work defined
several machine learning mechanisms intended to solve clas-
sification tasks using IoT data.

Lakshmanaprabu et al. [28] outlined a hierarchical frame-
work for feature extraction in Social Internet of Things (SIoT)
data using a MapReduce framework [29] along with a super-
vised classifier model. In addition, a Gabor filter [30] was
used to reduce noise and unwanted entries in the SIoT data.

The studies cited above aimed to use ML techniques to
solve specific problems in IoT environments, for example,
IoT sensor efficiency [24], healthcare [25], security [27], and
the Social Internet of Things [28]. Unlike these studies, this
research proposes a general-purpose framework that supports
machine learning on various IoT datasets using different ML
algorithms.

Preuveneers et al. [31] proposed the SAMURAI frame-
work, which is a batch and online data processing framework
based on the Lambda architecture [32]. Their work integrates
components for complex event processing, machine learn-
ing, and knowledge representation. Horizontal scalability is
achievedwith BigData enabling technologies such asApache
Spark and Apache Storm.

Ta-Shma et al. [33] presented an architecture for extracting
valuable historical insights and actionable knowledge from
IoT data streams. Their architecture supports both real-time
and historical data analytics using a hybrid data process-
ing model. The main components used in their architec-
ture instance (Node-Red, Apache Kafka, Apache Spark, and
OpenStack Swift) were implemented using the microservices
approach.

Almeida et al. [34] presented an architectural model to
support scalability, flexibility, autonomy, and heterogeneity
demands from IoT environments. Their work provides event

collection, situation detection through on-the-fly event pro-
cessing, and customizable dynamic reaction features. The
architecture proposed was based on a middleware for ubiq-
uitous computing called EXEHDA [35], which follows a
multi-level strategy and consists of three hierarchically inter-
connected modular components.

In contrast to previous studies [31], [33], [34], this work
focusses on providing methods to enable efficient develop-
ment of ML applications with IoT data. Unlike the studies
mentioned previously, this research examines the orchestra-
tion and automation of end-to-end ML workflows to support
parallel training and deployment of multiple ML models
with IoT data. Existing platforms are dedicated to a specific
ML algorithm, either to provide solutions to a particular
problem, or to provide a big data solution to one of the
previously-mentioned domains. This work, however, intro-
duces a novel framework that is agnostic of deployed ML
algorithms and can handle high volume of IoT data.

III. ML4IoT FRAMEWORK
The proposed ML4IoT framework, shown in Figure 1, uses
containerized microservices to automate the execution of
tasks specified in the ML workflows. Each container is
designed through a REST API-based component and man-
aged by the orchestrator and scheduler. ML4IoT is gener-
ally implementation-agnostic, and therefore can be easily
expanded to support new components such as data pre-
processing tasks, algorithm types, and ML frameworks.
To accomplish this, the microservices architecture and
container-based virtualization were combined to deal with
challenges such as the multitude of ML frameworks available
and the parallel execution of ML workflows.

More specifically, the framework’s Core sets and man-
ages containers responsible for training and deploying ML
models. Each model is coded into a different docker image
and becomes available for use. The workflow designer is
responsible for building workflow batch jobs. The selection
of each workflow job requires the definition of dataset con-
nections, preprocessing data treatments, and the setting up
of a given available ML model. The Orchestrator reads the
workflow batch jobs and uses the Container Management
System (CMS) to generate, for each workflow, a docker
container microservice. Moreover, each microservice runs its
tasks through the Distributed Data Processing Engine.

The IoT data used by the containers are ingested and stored
in theML4IoTData Management (DM) component. The DM
is composed of three sub-components: a Messaging System,
a Distributed File System, and a NoSQL database. Finally,
the DM also supports the storage of trained models and
predicted data, as well as providing temporary storage for
preprocessed data.

This architecture enables the decoupling of software com-
ponents into small and specialized services, bringing flexibil-
ity, reusability, and extensibility to the framework.

The following sub-sections detail the components and
sub-components of theML4IoT framework.

VOLUME 7, 2019 152955

J. M. Alves et al.: ML4IoT: Framework to Orchestrate ML Workflows on IoT Data

FIGURE 1. Machine learning framework for IoT data - ML4IoT.

A. ML4IoT CORE
Although the Core has two different functionalities (training
and deploying ML models), the same pipeline is applied
to both. The Core is divided into five major components,
as described next.

1) WORKFLOW DESIGNER
The Workflow Designer microservice is responsible for
selecting and configuring the two types ofMLworkflows that
are described below.

The batch machine learning workflow involves selecting
and configuring historical datasets, preprocessing tasks, and
ML algorithms. These tasks are executed in the three steps
shown in Figure 1 and are discussed below. Note that these
are the only three steps in which a user must interact with
ML4IoT to obtain a final trained ML workflow. An intuitive
GUI ensures that no major programming knowledge is nec-
essary.
• Batch Data Selection defines the parameters used to cre-
ate historical datasets during the execution of batch ML
workflows. For instance, when this type of workflow is
executed, historical datasets are created using IoT data
and are stored in the Distributed File System (DFS).
Examples of these parameters include the date range,
the location in the DFS, and the attributes of the dataset.

• Data Preprocessing Definition specifies the preprocess-
ing tasks to be applied to the datasets defined in the pre-
vious step. These tasks are defined for each dataset along
with their parameters. For example, data aggregation is
a common preprocessing task used for IoT data and can
be specified in this step.

• Model Definition defines the ML algorithms along with
their parameters to be used to train ML models. For
example, the type of algorithm (e.g., LSTM, Linear
Regression), specific algorithm configurations, and how
the datasets are split between training and testing are
some of the parameters defined in this step.

The online machine learning workflow is used to deploy
trained MLmodels to infer new information using online IoT
data. It involves selecting and configuring the online datasets,
trained ML models, and deployment parameters required to
execute this type of workflow. These tasks are performed in
the three steps discussed below.
• Online Data Selection defines the parameters used to
create datasets composed of online data during execu-
tion of online ML workflows. These online datasets
are created using the IoT data that are ingested in the
Messaging System.

• Trained Model Selection is the step where a trained ML
model, built by the batch ML workflow, is selected for
use to infer new information. The chosen model uses
the previously created online datasets as input to issue
predictions during execution of online ML workflows.

• Trained Model Deployment defines the parameters
related to the deployment of a trained ML model. For
example, execution of online ML workflows uses a
micro-batch approach in which the steps defined in this
type of workflow are executed repeatedly at a specific
pre-defined interval, such as every 30 seconds, every
minute, every 30 minutes, and so on. This interval
is one of the parameters configured in this step. The
micro-batch approach was chosen because IoT sensors
have different duty cycles and intermittent connectiv-
ity, meaning that data are often delayed or misaligned.
Executing the online ML workflows at small intervals
helps to deal with these issues and is also useful for data
preprocessing tasks where a sample data point needs to
be correlated with previous values, such as the sliding
window technique.

2) WORKFLOW ORCHESTRATOR
This component is a microservice that provides the opera-
tional capabilities needed to train and deploy the ML work-
flows. It automates execution, ensures consistent ML prac-
tices across the development lifecycle, and optimizes the
computational power required to execute these workflows.
By taking advantage of the conceptual data model used to
store the ML workflows, the Workflow Orchestrator models
the workflows as a sequence of steps, where each step can
be executed by a containerized microservice. Figures 2 and 3
show the steps performed during the orchestration of batch
and online ML workflows, respectively. It is important to
note that each combination set during the designer step gen-
erates an individual container that will run independently.
Figure 2 exemplifies that the number of ML models built is
a combination of the number of datasets times the number of
ML algorithms.

152956 VOLUME 7, 2019

J. M. Alves et al.: ML4IoT: Framework to Orchestrate ML Workflows on IoT Data

FIGURE 2. Orchestration steps of batch ML workflows.

The execution of batchMLworkflows involves three steps:
batch dataset creation, data preprocessing, and model build-
ing as explained next.

• Batch dataset creation is the first step performed in
the execution of batch ML workflows. In Figure 1,
theWorkflowOrchestrator sends a request to the CMS to
create a new containerized microservice. The new con-
tainerized microservice interacts with the Distributed
Data Processing Engine to create a new dataset, using
historical IoT data that are stored in the Distributed File
System. When the Distributed Data Processing Engine
finishes execution, the containerized microservice sends
a request to the Workflow Orchestrator to execute the
next step defined in the batch ML workflow.

• Data Preprocessing is the step where preprocessing
tasks are applied to each dataset defined in the work-
flow. Similarly to the previous step, Figure 1 shows
that theWorkflow Orchestrator orchestrates the creation
of a new containerized microservice, which uses the
Distributed Data Processing Engine to apply data pre-
processing tasks to a previously created dataset. Exam-
ples of preprocessing tasks include removal of null val-
ues, removal of repeated values, sliding window, data
aggregation, and normalization.

• Model Building is the step where tasks are executed to
train and test ML models according to the parameters
defined in batch ML workflows. Figure 1 illustrates that
the Distributed Data Processing Engine is used to train
and test an ML model using a preprocessed dataset. The
trained ML model generated at the end of its execution
is stored in the Distributed File System and can be used
in online ML workflows.

The management of online ML workflows also involves
executing three computation steps: online dataset creation,
data preprocessing, and model inference. Online dataset cre-
ation follows the same principle as the batch workflow and
the preprocessing tasks are the same ones that were used to
train the model being deployed. Moreover, Figure 3 shows
that, for each trained model, the orchestration flow is exe-
cuted repeatedly to render new predictions.

More specifically, the Workflow Orchestrator man-
ages the execution of these ML workflows by sending
requests to the API of the Container Management System,
which creates containerized microservices to run the tasks
defined in each step. In addition, execution of the steps
shown in Figures 2 and 3 involves interactions among the

FIGURE 3. Orchestration steps of online ML workflows.

FIGURE 4. Sequence diagram: execution of batch ML workflows.

dynamically created containerized microservices and the
other components of the framework. The sequence diagram
depicted in Figure 4 shows an example of the interactions
that occur during orchestration of a batch ML workflow.
The diagram has three main parts, which are highlighted by
different shades of grey in the activation bars and indicate the
execution of tasks related to the steps depicted in Figure 2.
The orchestration of online ML workflows uses a similar
approach; however, the Messaging System is used to provide
the online IoT data, and the predictions generated during exe-
cution of these workflows are stored in the NoSQL database.
Moreover, the execution of online ML workflows is repeated
at defined intervals.

3) WORKFLOW SCHEDULER
This component can re-execute batch ML workflows auto-
matically at intervals defined in these workflows. In some
cases, the trained ML models become outdated because they
were trained with past data that do not represent the actual
data distribution. Because data distribution can drift over
time, building an ML model is not a one-time exercise, but
rather a continuous process. The Workflow Scheduler can
execute batch ML workflows at scheduled intervals to retrain
ML models to keep them updated.

VOLUME 7, 2019 152957

J. M. Alves et al.: ML4IoT: Framework to Orchestrate ML Workflows on IoT Data

FIGURE 5. Conceptual data model for the ML4IoT.

TheWorkflow Scheduler is a microservice, which provides
scheduling services in the framework by exposing a REST
API where the re-execution of batch ML workflows can be
configured. By allowing to schedule the re-execution of batch
ML workflows, this component enables retraining of ML
models during non-critical business hours and also facilitates
the distribution of the processing workload along different
periods of the day. To trigger the re-execution of batch ML
workflows, theWorkflow Scheduler sends a REST request to
theWorkflow Orchestrator, which orchestrates the necessary
steps.

4) CONTAINER-BASED COMPONENTS: WORKFLOW
IMAGES, CONTAINER MANAGEMENT SYSTEM, AND
WORKFLOW CONTAINERS
Workflow Images,Container Management System, andWork-
flow Containers are container-based software used to support
the execution of the ML workflows. The details of these
sub-components are described below.
Workflow Images are Docker images in which reusable

software code is implemented to execute the tasks defined in
the ML workflows.
Container Management System (CMS) is the software

responsible for deploying containers according to requests
sent by theWorkflow Orchestrator.
Workflow Containers are Docker containers created

dynamically by the CMS based on requests from the Work-
flow Orchestrator. In ML4IoT, containers can be destroyed
when they finish their execution, which optimizes the use of
computational resources.

5) DISTRIBUTED DATA PROCESSING ENGINE
The Distributed Data Processing Engine is a distributed sys-
tem designed to process large volumes of data. In theML4IoT

framework, the Distributed Data Processing Engine compo-
nent executes data preprocessing tasks that require high com-
putational power and need to be performed in a distributed
way. ML4IoT was designed to use Apache Spark [36] as the
Distributed Data Processing Engine.

B. ML4IoT DATA MANAGEMENT
ML4IoT Data Management provides components to ingest
and store IoT data. These IoT data are used during the
execution of batch and online ML workflows to train and
deploy ML models. This component is made up of three
sub-components: aMessaging System, aDistributed File Sys-
tem, and a NoSQL database. These sub-components are Big
Data tools that can deal with the high-volume, high-speed,
and high-variety characteristics of IoT data. The Messaging
System is designed to ingest massive amounts of IoT data,
the Distributed File System is used to store the data per-
manently, and the NoSQL database supports the temporary
storage of preprocessed data during the orchestration of ML
workflows. ML4IoT was designed to use Apache Kafka [37]
as the Messaging System, Apache Hadoop as the Dis-
tributed File System [38], and MongoDB [39] as the NoSQL
database.

In the document-oriented NoSQL database, the notion of a
schema is dynamic: each ML workflow can contain different
fields. This flexibility is particularly helpful for modeling the
various workflows that can be created inML4IoT. Moreover,
having a representation of theMLworkflows stored in unified
and hierarchical documents adds an audit trail to these work-
flows and facilitates versioning and debugging. For instance,
by using JSON documents to represent ML workflows, users
can record executions and keep track of model parame-
ters, code, and datasets for each ML workflow. Figure 5
shows an entity-relationship (ER) diagram that illustrates the

152958 VOLUME 7, 2019

J. M. Alves et al.: ML4IoT: Framework to Orchestrate ML Workflows on IoT Data

TABLE 1. Container images and services implemented in each image.

conceptual data model used to store the ML workflows in the
NoSQL database.

A description of the entity types depicted in Figure 5 is
given below:

• BatchWorkflow contains a list of the Dataset entities,
a list of BatchModels entities, and scheduling parame-
ters for batch ML workflows.

• RawData describes the metadata of the IoT data stored
in the distributed file system.

• Dataset describes the metadata of a dataset created in a
batch ML workflow.

• PreprocessingTask describes a preprocessing task asso-
ciated with a Dataset.

• Batch Model describes a ML algorithm and its param-
eters in a batch ML workflow.

• TrainedModel describes a trained ML model generated
after the execution of a batch ML workflow.

• OnlineData describes the metadata of online IoT data
ingested in theMessaging System.

• OnlineModel contains a TrainedModel entity, an
OnlineData entity, and deployment parameters for each
trained model.

• OnlineWorkflow contains a list of OnlineModel enti-
ties.

In relational databases, a table contains data about just one
entity, whereas in the document-oriented NoSQL database,
a document can contain one or more of the entities depicted
in Figure 5. An example of a batch ML workflow stored in a
JSON document is shown in Figure 6.

IV. IMPLEMENTATION DETAILS
A prototype system based on the proposed framework was
built for use as a proof of concept. The implementation details
of the prototype system are shown in Figure 7 and described
next.

FIGURE 6. Batch ML workflow represented in a JSON file.

ML4IoT Core. The three microservices, Workflow
Designer, Workflow Orchestrator, and Workflow Scheduler,
are implemented in Java and Spring Boot. The Container
Management System (CMS) and the Distributed Data Pro-
cessing Engine used in this evaluation were Docker Swarm
and Apache Spark Framework, respectively. The Distributed
Data Processing Engine uses Spark. Table 1 shows the con-
tainer images that were implemented to support the orches-
tration of ML workflows.
ML4IoT Data Management. ML4IoT was designed to

use Apache Kafka [37] as the Messaging System.The Dis-
tributed File System uses Apache Hadoop [38], and finally,
MongoDB [39] is used for the NoSQL database.

Three servers were used to deploy the prototype system
and are described in Table 2.

The servers were connected to an HP MSA 2040 SAN
12 TB storage system, which was divided into four logical
partitions of 2.5 TB each. The storage system was configured
to allow parallel access to all configured partitions. The big

VOLUME 7, 2019 152959

J. M. Alves et al.: ML4IoT: Framework to Orchestrate ML Workflows on IoT Data

FIGURE 7. Implementation details of the ML4IoT.

TABLE 2. Hardware environment.

TABLE 3. Clusters configuration.

data tools used to implement the prototype system were
configured in clusters running on Linux containers. Table 3
describes the initial cluster’s configuration of each distributed
application.

The data are ingested into Apache Kafka at an approxi-
mate average rate of 520 records/sec. Data are retained for
one month, which gives about 275 GB of stored data. The
HDFS has the capacity to store more than five billions sensor
readings in a compressed format (ORC), reducing the data
size to 44 GB.

Finally, each entry of the dataset used to train the ML
models is a 5-minute average of each variable read.

V. EVALUATION
This section presents an evaluation of ML4IoT focused on
three main aspects: machine learning orchestration, elasticity,
and performance. It is important to note that this work does

TABLE 4. Features and description of the energy data.

not aim to develop or improve any individual ML algorithm,
instead it provides a framework that can easily evaluate
several models/workflows for a given dataset. In this way,
the goal is the overall performance comparison for a given
available metric. This section first details the IoT data used
in the experiments. Then, it describes the tests conducted to
evaluate the framework.

A. INTERNET OF THINGS DATA
In the experiments presented in this section, two distinct
sets of real-world IoT data were used; energy consumption,
and traffic flow. Energy consumption prediction is crucial
for improved decision-making to reduce energy consump-
tion and CO2 emission. Predicting traffic flow can also
help reduce air pollution and provide more efficient traffic
conditions.

The details of each experiment are given below.

1) ENERGY DATA
The energy IoT data were collected in collaboration with
T-innovation Partners, a company that offers the use of inno-
vative products for monitoring and control of electrical sys-
tems. The data were provided by nine sensors that collect
energy features from a building located atWestern University,
London, Canada. The IoT data were pulled from a REST
API, which sampled the data at two-second intervals. For
each sensor, 60 distinct features were collected. These fea-
tures were composed of ten distinct energy domain measures
shown in Table 4 multiplied by six mathematical operators.
These mathematical operators were standard deviation

(sd), average (avg), last value (last), minimum value (min),
maximum value (max), and sum. The energy data gen-
erated an average of 40,563,069 sensor readings per day.
The data were collected for four months, generating a total
of 4,867,568,280 data samples.

2) TRAFFIC DATA
The IoT traffic data were provided by the Madrid Council,
which has deployed roughly 3000 traffic sensors in fixed
locations around the city of Madrid on the M30 ring road.
Madrid Council published the data using a REST API [40],
where the data were refreshed every 5 minutes. The features
available in the traffic data are described in Table 5.

152960 VOLUME 7, 2019

J. M. Alves et al.: ML4IoT: Framework to Orchestrate ML Workflows on IoT Data

TABLE 5. Features and description of the traffic data.

The traffic data consisted of an average of 1,006,319 sensor
readings per day. The data were collected for four months,
creating 120,758,326 data samples.

B. MACHINE LEARNING ORCHESTRATION EVALUATION
To demonstrate how ML4IoT can automate ML workflow
orchestration in IoT data, batch ML workflows were created
to train and predict short-term energy consumption and traffic
flow ML models. The ML workflows were defined by using
the designer component; no programing skills were required.
Moreover, the tasks defined in each workflow were executed
automatically while being orchestrated by backend services.
Details of the batch and online ML workflows created in this
experiment are described next.

1) Batch ML workflows
Four batch ML workflows were built to train the ML models
with prediction horizons of 15, 30, 45 and 60 minutes ahead.
The number of historical entries used to train each batch
is proportional to its prediction horizon, and provides the
immediate next data entry prediction as output. The full time
ahead prediction was obtained by using a sliding window
approach. For instance, consider the following ML model
used to predict 15 minutes ahead1

X̂t+1 = f (Xt ,Xt−1,Xt−2) (1)

where t ∈ N is a dataset entry, Xt ∈ Rn is a vector of
all n features of t , X̂t+1 ∈ Rn is the prediction output and
f : R3n

7→ Rn is a trained ML model that uses the last three
entries to predict the next one. The sliding window approach
uses an output prediction as input to the next step. Therefore,
to predict the 15 minutes ahead two more predictions are
required as shown next

X̂t+2 = f (X̂t+1,Xt ,Xt−1) (2)

X̂t+3 = f (X̂t+2, X̂t+1,Xt) (3)

Finally each batch was defined to execute both datasets
(energy and traffic) at the same time.

Batch Data Selection. The energy dataset uses 10 features
where the target is total power. The traffic dataset uses 5 fea-
tures and its target is velocity. In this case the target indicates
which variable the training process must minimize during
ML model creation. Both datasets contained two months

1it gives a total of 3 entries considering a 5 minute entry timeframe

TABLE 6. Datasets description.

Algorithm 1 Training of Machine Learning Models
Input: Historical Dataset (D),Model (M), Training Param-

eters (TP)
Output: List of trained models(TM)

1: Dtrain,Dtest ← splitDataset(D)
2: if output fromModel(M) is multiple then
3: trainedModel ←modelBuilding(Dtrain, Dtest ,model,
TP)

4: append trainedModel to TM

5: else if output fromModel(M) is single then
6: for each attribute in Dtrain do
7: trainedModel ← modelBuilding(Dtrain, Dtest ,
model, TP)

8: append model to TM

of historical data. Table 6 shows details of the energy and
traffic datasets used in this experiment. The datasets were
split between a training set (95%) and a test set (5%).

Data Preprocessing Definition. The tasks of removing
null values, removing repeated values, sliding-window rear-
rangement, and normalization were defined in the workflows
and applied to both historical datasets. The data aggregation
task was performed only on the energy data because the
collected data were aggregated into two-second intervals. For
this reason, the energy data were aggregated into five-minute
intervals.

Model Definition. Each batch ML workflow was set to
run two ML algorithms, Random Forest and Long Short-
Term Memory. In this way, four models (2 datasets x 2 ML
algorithms) were trained in each workflow. The details of the
parameters used in each algorithm are described below.
Random Forest (RF): was trained using 20 trees with a

maximum depth of five. The number of features to consider
for splits at each tree node was one-third of the total number
of features. The MLlib framework provided the algorithm.
Long Short-Term Memory (LSTM): was trained using an

LSTM network with five layers and five neurons in each
layer. A dropout rate of 0.25 was applied to the dense layers.
The Tensorflow and Keras libraries provided the algorithm.

The steps performed to train the ML models are described
in Algorithm 1, which contains an if statement to check the

VOLUME 7, 2019 152961

J. M. Alves et al.: ML4IoT: Framework to Orchestrate ML Workflows on IoT Data

Algorithm 2 Inference of Machine Learning Models
Input: Online data (OD), List of trained models(TM), Time

Steps to Predict (T)
Output: Predicted Data(PD)

1: for T interactions do
2: if trainedModelOutputType is Multiple then
3: nextPredictedSteplist ←modelPrediction
4: (onlineData, trainedModel)
5: append nextPredictedSteplist to onlineData
6: append nextPredictedStep to predictedOutputlist

7: else if trainedModelOutputType is single then
8: for each attribute in onlineData do
9: nextPredictedStep ←modelPrediction(
onlineData, trainedModel)

10: append nextPredictedStep to
nextPredictedSteplist

11: append nextPredictedSteplist to onlineData
12: append nextPredictedSteplist to

predictedOutputlist

output type of the model. Some ML frameworks provide
models that produce one single output, such as the RF imple-
mented by MLlib. In this case, because of the type of strategy
used to predict the steps, onemodel should be trained for each
attribute in order to predict all the attributes to feed the model
recursively during the inference phase. After the batch ML
workflows were executed, the trained ML models were used
to infer online IoT.

2) Online ML workflows
Four online ML workflows were created to apply the pre-
viously built models, using the batch ML workflows, with
online IoT data. Results were generated for each model after
executing 500 predictions.

Online Data Selection. The online data used in the online
ML workflows were chosen from the same sensors that
provided the data to train the models with the batch ML
workflows.

Each online ML workflow was configured to deploy four
models, which were the same models trained on each batch
ML workflow. The same preprocessing tasks used in each
trained ML model were automatically applied to the online
data. Algorithm 2 shows the steps performed during the
inference of new data using the trained models. Inference is
performed using a recursive strategy. In this strategy, one or
moremodels are trained to perform a one-step-ahead forecast.
When the first prediction is rendered, the results are input into
the models to predict the subsequent time step. This action is
repeated until the desired number of steps has been predicted.
The main concern of this strategy is whether it can produce
a sequence of successful predictions to prevent errors from
propagating.

3) RESULTS AND DISCUSSION
The prediction performance of the ML models was evaluated
using the root mean squared error (RMSE), mean absolute
error (MAE), and the mean square error (MSE) metrics
defined in Eqs. 4, 5 and 6, where yk and ŷk are the actual
and predicted values respectively. The MAE is an average
of the absolute prediction errors, the MSE is the average
of the squares of the prediction errors, and the RMSE is
the square root of the MSE. These are three of the most
common metrics used to measure accuracy for continuous
variables, and they are negatively oriented scores, meaning
that lower values are better. These metrics are also scale-
dependent, which provides a straightforward way to quantify
the prediction error:

RMSE =

√∑n
k=1(yk − ŷk)2

n
(4)

MAE =

∑n
k=1 |yk − ŷk |

n
(5)

MSE =

∑n
k=1(yk − ŷk)

2

n
(6)

Table 7 shows the results for the prediction accuracy of the
MLmodels deployed on the onlineMLworkflows. An impor-
tant observation is that the results are normalized between
0-1 corresponding to 0-150km/h and 0-20Kw/h for the traf-
fic control and energy datasets. Finally, it is also important
to note that this paper does not focus on finding the best
ML model for each one of these scenarios; the goal is to
demonstrate the functionality and usability of the proposed
framework.

Using traffic data, the results showed that the RF model
achieved the best performance in predicting the next 30 min-
utes, whereas the LSTM model gave the best performance
for the next 60 minutes. Looking at the energy data, it is
clear that both the RF and LSTM models demonstrated the
best results for the next 60 minutes. Models trained with the
LSTM algorithm achieved lower RMSE, MAE, and MSE
than models trained with the RF algorithm on traffic data.
Overall, the models trained with the RF algorithm achieved
lower RMSE, MAE, and MSE than models trained with
the LSTM algorithm on traffic data. The plots depicted
in Figs. 8, 9, 10, and 11 show that the RF models achieved
more success in capturing the evolving energy use and traffic
flow conditions when they fluctuated widely, because of the
intricate patterns present in these two types of data.

Notably, with the energy data, the LSTM models were
not successful in following the real measured data. The
results obtained with the LSTM models could be enhanced
using preprocessing techniques that were not applied in this
evaluation. For example, both types of IoT data presented
strong fluctuations, which can impact the performance of
ML models. The application of preprocessing tasks such as
removal of noise and outliers can help to smooth the data and
improve their quality. Nevertheless, implementing this type
of technique can be challenging in online IoT data because of
several factors such as the number of online samples available

152962 VOLUME 7, 2019

J. M. Alves et al.: ML4IoT: Framework to Orchestrate ML Workflows on IoT Data

TABLE 7. Prediction accuracy of ML models rendering predictions using online IoT data.

FIGURE 8. Traffic data - results of RF models.

and time and processing constraints. Tuning and retraining
the ML models can also help increase overall prediction
quality. In ML4IoT, the Workflow Scheduler can be used to
schedule ML model retraining at fixed intervals, which can
augment the accuracy of predictions rendered by the proposed
framework. WhenWorkflow Scheduler re-executes batch ML
workflows, the trained ML models that are deployed in
the online ML workflows are automatically updated to the
revised model.

The results achieved in this evaluation demonstrated that
ML4IoT managed to provide orchestration services to auto-
mate the execution of ML workflows to train and infer IoT
data. By providing reusable and standardized MLworkflows,
ML4IoT supported the development of end-to-end ML appli-
cations in two IoT use cases. The automated execution of ML
workflows involved the orchestration of several tasks exe-
cuted on top of Big Data tools (Kafka, Hadoop, MongoDB,
Spark) using different ML frameworks (MLlib, Tensorflow,
and Keras). The results obtained for online prediction of
energy and traffic data showed that the framework is a fea-
sible solution for orchestrating ML workflows on IoT data.

C. ELASTICITY EVALUATION
The goal of this evaluation was to validate whether the
framework could dynamically allocate resources to match the
demands of orchestrating multiple ML workflows in parallel.
The experiment evaluated execution time, container alloca-
tion, and memory and CPU utilization during the execution
of batchMLworkflows in four scenarios with different work-
loads. In each workload, increasing numbers of batch ML
workflows were executed in parallel. The batch ML work-
flows and workloads used in this experiment are described
below.

FIGURE 9. Traffic data - results of LSTM models.

FIGURE 10. Energy data - results of RF models.

FIGURE 11. Energy data - results of LSTM models.

• Batch workflows. Each workflow was composed of the
two datasets described in Table 6. Five preprocessing
tasks were also applied to the energy dataset and four to
the traffic dataset. Moreover, each batch ML workflow
was configured to build an RF and an LSTM model for
each dataset.

VOLUME 7, 2019 152963

J. M. Alves et al.: ML4IoT: Framework to Orchestrate ML Workflows on IoT Data

FIGURE 12. Workload 1 - 4 batch ML workflows training 16 models in parallel.

FIGURE 13. Workload 2 - 8 batch ML workflows training 32 models in parallel.

FIGURE 14. Workload 3 - 16 batch ML workflows training 64 models in parallel.

• Workloads. Table 8 describes the four workloads used
in this experiment. In each workload, the numbers of
workflows increased from 4 to 32. In each workflow,
two datasets were created, nine preprocessing tasks
were executed (five on the energy dataset and four on
the traffic dataset), and two models were trained for
each dataset. For this reason, from workloads 1 to 4,
the number of datasets varied from 8 to 64, and the
number of preprocessing tasks varied from 36 to 576.
Moreover, the number of ML models being trained in
parallel varied from 16 to 128 from workload 1 to
workload 4.

1) RESULTS AND DISCUSSION
Figures 12, 13, 14, and 15 show the results of each workload
execution. The maximum numbers of containers running in
parallel in the workloads 1, 2, 3, and 4 were 12, 22, 38,
and 96, respectively. The results concerning CPU and mem-
ory utilization show that these resources were provisioned
according to the numbers of containers running in parallel.

TABLE 8. Description of workloads used in the elasticity evaluation.

The peaks of CPU andmemory utilization happenedwhen the
workloads reached the maximum number of containers run-
ning concurrently. The graphs also show that at the end
of each workload, when the containers were destroyed,
the CPU and memory utilization returned to their original
levels, releasing server resources. Although workloads 2,
3, and 4 presented size ratios of 1:2, 1:4, and 1:8 with
workload 1, the execution time ratios were 1:1.21, 1:1.76,
and 1:3.38 respectively. The execution time results increased
slower than linearly, showing that allocating containers to
execute ML workflows dynamically is a valid strategy to

152964 VOLUME 7, 2019

J. M. Alves et al.: ML4IoT: Framework to Orchestrate ML Workflows on IoT Data

FIGURE 15. Workload 4 - 32 batch ML workflows training 128 models in parallel.

TABLE 9. Description of workloads used in the performance evaluation.

provide an elastic solution that can support execution of
multiple ML workflows in parallel.

D. PERFORMANCE EVALUATION
Because the framework was designed to deal with the exe-
cution of multiple ML workflows in parallel, one experiment
was carried out to validate the performance of the ML4IoT
framework in this scenario. In the experiment, the perfor-
mance was evaluated by measuring the latency of rendering
online predictions as the workload was increased. Five work-
loads were assessed in this experiment, with the number of
online ML workflows running in parallel varying from 4 to
64. The online ML workflows and workloads used in this
experiment are described below.
• Online machine workflows. Each workflow was con-
figured to deploy one previously trained ML model to
render predictions using online IoT data. Two types of
model were presented in the workflows, RF, and LSTM.
Each online ML workflow executed a prediction cycle
every 10 minutes, which involved the creation of one
online dataset, the application of preprocessing tasks
(five for energy and four for the traffic dataset), and the
prediction of new values using one trained ML model.

• Workloads. Table 9 describes the five workloads used
in this experiment. The workloads contained an equal
number of workflows running LSTM and RF models
and rendering predictions on energy and traffic IoT data.
For example, in workload 1, the four workflows are
defined with different configurations formed by com-
bining the two types of models (LSTM and RF) applied
to the two types of IoT data (energy and traffic). The
same combination was then applied to the other work-
loads. From workload 1 to 5, the number of online ML
workflows running in parallel increased from 4 to 64.

At each prediction cycle of an online ML workflow, one
online dataset was created, and four or five preprocess-
ing tasks were executed, depending on the dataset (five
for energy and four for traffic). One trained ML model
also rendered predictions for each online dataset. For this
reason, from workload 1 to 5, the number of datasets
increased from 4 to 64, and the amount of preprocessing
tasks varied from 18 to 288. Moreover, the number of
MLmodels rendering online predictions in parallel went
from 4 to 64 from workload 1 to workload 5.

1) RESULTS AND DISCUSSION
The boxplot presented in Figure 16 illustrates the latency
time of the online ML workflows. The latency of online ML
workflows measures the time spent over the execution of
a complete prediction cycle, including the selection of the
online data, application of preprocessing tasks, and prediction
of new values.

The median latency time of the online ML workflows
started at 97.56 seconds when 8 online ML workflows
were running in parallel and increased to a maximum
of 185.30 seconds when 64 online ML workflows were
being executed at the same time. According to the results,
the median latency time increased by 89.93% from 4 to
64 workflows, although the number of workflows in parallel
increased by 400%. Figure 16 also shows that when the
number of online ML workflows running in parallel was 64,
the long tail issue started to appear in the latency distribu-
tions. The long tail issue is the term used to identify latency
measures that refer to the higher percentiles in comparison to
the average latency time. For example, in Figures 16 and 17,
the scatter points represent the latency measures in the 99th

percentile.
Figure 17 depicts a boxplot of the latency time for model

inference only, which is a step performed during execution of
online ML workflows, in which trained ML models render
predictions taking as input previously processed datasets.
One observed trend was that the higher the number of online
ML workflows running in parallel, the longer the model
inference step takes, and the higher is the number of results
with values that are well beyond the average, as shown by
the long tail issue in the graph. However, the results demon-
strated that increasing the number of online ML workflows

VOLUME 7, 2019 152965

J. M. Alves et al.: ML4IoT: Framework to Orchestrate ML Workflows on IoT Data

FIGURE 16. Latency of online ML workflows.

FIGURE 17. Latency of the model inference step.

has little effect on model inference latency. For example,
when 64 online ML workflows were running in parallel, only
1.01% of the model inference latency measures were in this
worst-case scenario (99th percentile).

Overall, results demonstrated that ML4IoT performance
was not affected by an increase in the number of online
ML workflows rendering predictions simultaneously. This
experiment also showed that the framework can manage the
execution of multiple online ML workflows in parallel and
that it can be used to deploy trained ML models to render
predictions using online IoT data.

VI. CONCLUSION AND FUTURE WORK
This study has proposed the Machine Learning Framework
for IoT data (ML4IoT) to address the challenges involved
in integrating Big Data enabling tools and ML frameworks
to provide a unified platform for executing end-to-end ML
workflows on IoT data. Its main goal was to provide orches-
tration services for training and inference of ML models on
IoT data, which enables automated execution of ML work-
flows on top of various big data tools and ML frameworks.

To demonstrate the applicability of the ML4IoT frame-
work, a prototype system was built to perform 3 experiments
using two real-world IoT datasets. Experimental results have
shown thatML4IoT can simplify the definition and automate
the execution of ML workflows running on top of hetero-
geneous Big Data tools and ML frameworks. The results
also demonstrated thatML4IoT can manage the orchestration
of ML workflows by providing scalability and elasticity to
enable execution of multiple ML workflows in parallel.

The use of the framework can potentially improve the
accuracy of ML algorithms for the following reasons: a) it
can be used for the execution of several models in parallel,
which in turn makes it possible to train different models
and then choose the ones that can provide better results;
b) parallel training also provides efficient optimization of
hyper parameters, hence significantly improving results;

c) the framework was built to handle IoT data, and therefore
the more data are used for training, the better the chances for
the models to present improved results; and d) the framework
enables re-training of models with more current data, which
can improve results, especially when the data distribution has
changed over time.

This work has successfully used two ML frameworks,
however, the number of potential algorithms and available
tools is extensive. Therefore, it is challenging to ensure that
the ML4IoT can deal with common abstraction layers for all
of them. Therefore, one possible future research direction is
to perform a deeper analysis and evaluation of the limitations
of the proposed framework. A future study can focus on
extending the proposed framework to automate selection and
tuning ofMLmodels, which is a method known as Automatic
ML (AutoML) [41]. Another interesting research extension
would be to explore the use of this framework as part of cloud
computing services. The deployment of ML applications
needs to deal with conflicting priorities such as speed, uptime,
and costs. In this way,ML4IoT could be implemented in cloud
services as an ML-as-a-Service platform, which could bring
benefits such as preventing downtime, optimizing data center
costs, and reducing response latency.

REFERENCES
[1] M. Hung. Leading the IoT. Accessed: Jan. 17, 2019. [Online]. Available:

http://www.gartner.com/imagesrv/books/iot/iotEbook_digital.pdf
[2] H. Arasteh, V. Hosseinnezhad, V. Loia, A. Tommasetti, O. Troisi,

M. Shafie-Khah, and P. Siano, ‘‘Iot-based smart cities: A survey,’’ in Proc.
IEEE 16th Int. Conf. Environ. Elect. Eng. (EEEIC), Jun. 2016, pp. 1–6.

[3] B. L. R. Stojkoska and K. V. Trivodaliev, ‘‘A review of Internet of Things
for smart home: Challenges and solutions,’’ J. Cleaner Prod., vol. 140,
no. 3, pp. 1454–1464, Jan. 2017.

[4] L. Li, K. Ota, and M. Dong, ‘‘When weather matters: IoT-based electrical
load forecasting for smart grid,’’ IEEE Commun. Mag., vol. 55, no. 10,
pp. 46–51, Oct. 2017.

[5] F. Chen, P. Deng, J. Wan, D. Zhang, A. V. Vasilakos, and X. Rong, ‘‘Data
mining for the Internet of Things: Literature review and challenges,’’ Int.
J. Distrib. Sensor Netw., vol. 11, no. 8, Aug. 2015, Art. no. 431047.

[6] Y. Sun, H. Song, A. J. Jara, and R. Bie, ‘‘Internet of Things and big data
analytics for smart and connected communities,’’ IEEE Access, vol. 4,
pp. 766–773, 2016.

[7] D. Crankshaw and J. Gonzalez, ‘‘Prediction-serving systems,’’ Queue,
vol. 16, no. 1, p. 70, Jan. 2018.

[8] D. E. O’Daniel, ‘‘‘Big data’, the ‘Internet of Things’ and the ‘Internet
of signs’,’’ Intell. Syst. Accounting, Finance Manage., vol. 20, no. 1,
pp. 53–65, Jan./Mar. 2013.

[9] T. Kluyver, B. Ragan-Kelley, F. Pérez, B. E. Granger, M. Bussonnier,
J. Frederic, K. Kelley, J. B Hamrick, J. Grout, and S. Corlay, ‘‘Jupyter
notebooks-a publishing format for reproducible computational work-
flows,’’ in Proc. ELPUB, May 2016, pp. 87–90.

[10] Y. Cheng, F. C. Liu, S. Jing, W. Xu, and D. H. Chau, ‘‘Building big data
processing and visualization pipeline through apache zeppelin,’’ in Proc.
Pract. Exper. Adv. Res. Comput., Jul. 2018, Art. no. 57.

[11] D. Sculley, G. Holt, D. Golovin, E. Davydov, T. Phillips, D. Ebner,
V. Chaudhary, M. Young, J.-F. Crespo, and D. Dennison, ‘‘Hidden tech-
nical debt in machine learning systems,’’ in Proc. Adv. Neural Inf. Process.
Syst., 2015, pp. 2503–2511.

[12] Uber Michelangelo. Accessed: Jan. 17, 2019. [Online]. Available:
https://eng.uber.com/michelangelo

[13] Airbnb Bighead. Accessed: Jan. 17, 2019. [Online]. Available:
https://databricks.com/session/bighead-airbnbs-end-to-end-machine-
learning-platform

[14] Netflix Meson. Accessed: Jan. 17, 2019. [Online]. Available:
https://medium.com/netflix-techblog/meson-workflow-orchestration-for-
netflix-recommendations-fc932625c1d9

152966 VOLUME 7, 2019

J. M. Alves et al.: ML4IoT: Framework to Orchestrate ML Workflows on IoT Data

[15] D. Baylor et al., ‘‘TFX: A tensorflow-based production-scale machine
learning platform,’’ in Proc. 23rd ACM SIGKDD Int. Conf. Knowl. Dis-
covery Data Mining, Aug. 2017, pp. 1387–1395.

[16] K. Hazelwood, S. Bird, D. Brooks, S. Chintala, U. Diril, D. Dzhulgakov,
M. Fawzy, B. Jia, Y. Jia, A. Kalro, J. Law, K. Lee, J. Lu, P. Noordhuis,
M. Smelyanskiy, L. Xiong, and X. Wang, ‘‘Applied machine learning
at facebook: A datacenter infrastructure perspective,’’ in Proc. IEEE Int.
Symp. High Perform. Comput. Archit. (HPCA), Feb. 2018, pp. 620–629.

[17] W. Lin, Z. Wu, L. Lin, A. Wen, and J. Li, ‘‘An ensemble random
forest algorithm for insurance big data analysis,’’ IEEE Access, vol. 5,
pp. 16568–16575, 2017.

[18] D. Zhang, L. Qian, B. Mao, C. Huang, B. Huang, and Y. Si, ‘‘A data-driven
design for fault detection of wind turbines using random forests and
XGboost,’’ IEEE Access, vol. 6, pp. 21020–21031, 2018.

[19] F. Karim, S. Majumdar, H. Darabi, and S. Chen, ‘‘LSTM fully convo-
lutional networks for time series classification,’’ IEEE Access, vol. 6,
pp. 1662–1669, 2017.

[20] W. Wang, J. Gao, M. Zhang, S. Wang, G. Chen, T. K. Ng, B. C. Ooi,
J. Shao, and M. Reyad, ‘‘Rafiki: Machine learning as an analytics service
system,’’ Proc. VLDB Endowment, vol. 12, no. 2, pp. 128–140, Oct. 2018.

[21] Y. Lee, A. Scolari, B.-G. Chun, M. D. Santambrogio, M. Weimer, and
M. Interlandi, ‘‘PRETZEL: Opening the black box of machine learning
prediction serving systems,’’ in Proc. 13th USENIX Symp. Operating Syst.
Des. Implement. (OSDI), 2018, pp. 611–626.

[22] ML.NET. Accessed: Jan. 17, 2019. [Online]. Available: https://dotnet.
microsoft.com/apps/machinelearning-ai/ml-dotnet

[23] D. C. Spell, X.-H. T. Zeng, J. Y. Chung, B. Nooraei, R. T. Shomer,
L.-Y. Wang, J. C. Gibson, and D. Kirsche, ‘‘Flux: Groupon’s automated,
scalable, extensible machine learning platform,’’ in Proc. IEEE Int. Conf.
Big Data (Big Data), Dec. 2017, pp. 1554–1559.

[24] C. Cecchinel, F. Fouquet, S. Mosser, and P. Collet, ‘‘Leveraging live
machine learning and deep sleep to support a self-adaptive efficient config-
uration of battery powered sensors,’’ Future Gener. Comput. Syst., vol. 92,
pp. 225–240, Mar. 2019.

[25] Y. Yang, F. Nan, P. Yang, Q. Meng, Y. Xie, D. Zhang, and K. Muhammad,
‘‘Gan-based semi-supervised learning approach for clinical decision sup-
port in health-IoT platform,’’ IEEE Access, vol. 7, pp. 8048–8057, 2019.

[26] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, ‘‘Generative adversarial nets,’’ in
Proc. Adv. Neural Inf. Process. Syst., 2014, pp. 2672–2680.

[27] I. Kotenko, I. Saenko, and A. Branitskiy, ‘‘Framework for mobile Internet
of Things security monitoring based on big data processing and machine
learning,’’ IEEE Access, vol. 6, pp. 72714–72723, 2018.

[28] S. K. Lakshmanaprabu, K. Shankar, A. Khanna, D. Gupta,
J. J. P. C. Rodrigues, P. R. Pinheiro, and V. H. C. De Albuquerque,
‘‘Effective features to classify big data using social Internet of Things,’’
IEEE Access, vol. 6, pp. 24196–24204, 2018.

[29] J. Dean and S. Ghemawat, ‘‘Mapreduce: Simplified data processing on
large clusters,’’ Commun. ACM, vol. 51, no. 1, pp. 107–113, Jan. 2008.

[30] J. P. Jones and L. A. Palmer, ‘‘An evaluation of the two-dimensional Gabor
filter model of simple receptive fields in cat striate cortex,’’ J. Neurophys-
iol., vol. 58, no. 6, pp. 1233–1258, Dec. 1987.

[31] D. Preuveneers, Y. Berbers, and W. Joosen, ‘‘Samurai: A batch and
streaming context architecture for large-scale intelligent applications and
environments,’’ J. Ambient Intell. Smart Environ., vol. 8, no. 1, pp. 63–78,
2016.

[32] N.Marz and J.Warren,BigData: Principles and Best Practices of Scalable
Realtime Data Systems. New York, NY, USA: Manning, 2015.

[33] P. Ta-Shma, A. Akbar, G. Gerson-Golan, G. Hadash, F. Carrez, and
A. Moessner, ‘‘An ingestion and analytics architecture for IoT applied to
smart city use cases,’’ IEEE Internet Things J., vol. 5, no. 2, pp. 765–774,
Apr. 2018.

[34] R. B. Almeida, V. R. Junes, R. da Silva Machado, D. Y. L. da Rosa,
L. M. Donato, A. C. Yamin, and A. M. Pernas, ‘‘A distributed event-driven
architectural model based on situational awareness applied on Internet of
Things,’’ Inf. Softw. Technol., vol. 111, pp. 144–158, Jul. 20190.

[35] A. Yamin, I. Augustin, L. C. D. Silva, R. A. Real, and C. F. Geyer, ‘‘EXE-
HDA: Adaptive middleware for building a pervasive grid environment,’’ in
Proc. Conf. Self-Org. Autonomic Inform., 2005, pp. 203–219.

[36] Apache Spark, Accessed: Jan. 17, 2019. [Online]. Available: https://spark.
apache.org

[37] J. Kreps, N. Narkhede, and J. Rao, ‘‘Kafka: A distributedmessaging system
for log processing,’’ Proc. NetDB, Jun. 2011, pp. 1–7.

[38] Apache Hadoop. Accessed: Jan. 17, 2019. [Online]. Available:
https://hadoop.apache.org/

[39] Y.-S. Kang, I.-H. Park, J. Rhee, andY.-H. Lee, ‘‘Mongodb-based repository
design for IoT-generated rfid/sensor big data,’’ IEEE Sensors J., vol. 16,
no. 2, pp. 485–497, Jan. 2016.

[40] Madrid Council Traffic Data. Accessed: Jan. 17, 2019. [Online]. Available:
http://informo.munimadrid.es/informo/tmadrid/pm.xml

[41] C. Wong, N. Houlsby, Y. Lu, and A. Gesmundo, ‘‘Transfer learning
with neural AutoML,’’ in Proc. Adv. Neural Inf. Process. Syst., 2018,
pp. 8366–8375.

JOSÉ M. ALVES received the B.Sc. degree in
information systems from USP, Brazil, in 2010.
He is currently pursuing the M.E.Sc. degree in
software engineering with Western University,
Canada. From 2010 to 2017, he was involved in
numerous software development and data analyt-
ics projects for telecommunications companies
in Brazil. His current research interests include
big data, machine learning, the IoT, and cloud
computing.

LEONARDO M. HONÓRIO received the B.Sc.
degree from the Federal University of Juiz de
Fora (UFJF), in 1993, and the M.Sc. and Ph.D.
degrees from EFEI, Brazil, in 1999 and 2002,
respectively, all in electrical engineering. He was
a Visiting Researcher with Porto and Irvine Cali-
fornia University, in 2006 and 2012, respectively.
He is currently an Associate Professor with UFJF.
His current research interests include evolutionary
algorithms, probabilistic methods, optimal power

flow, robotics, autonomous vehicles, fuzzy logic, pattern recognition, and
optimization.

MIRIAM A. M. CAPRETZ received the B.Sc.
and M.E.Sc. degrees from UNICAMP, Brazil, and
the Ph.D. degree from the University of Durham,
U.K. She was with the University of Aizu, Japan.
She is currently a Professor with the Department
of Electrical and Computer Engineering, Western
University, Canada. She has been involving in the
software engineering area for more than 35 years.
She has been involved with the organization of
workshops and symposia and has been serving on

program committees in international conferences. Her current research inter-
ests include cloud computing, big data, machine learning, service–oriented
architecture, privacy, and security.

VOLUME 7, 2019 152967

	ML4IoT: A Framework to Orchestrate Machine Learning Workflows on Internet of Things Data
	Citation of this paper:

	ML4IoT: A Framework to Orchestrate Machine Learning Workflows on Internet of Things Data

