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Abstract 

Quantum dots (QDs) have attracted an increasing attention in the last decade over many 

conventional organic dyes. This is due to their unique optical properties including broad 

absorption spectra, high photostability, and size-tunable photoluminescence (PL). However, 

some toxicity concerns associated with traditional quantum dots have hindered their wide 

applicability. Interestingly, silicon quantum dots (SQDs) have been shown to be more 

advantageous than most of QDs thanks to their excellent biocompatibility and 

biodegradability, low cytotoxicity, and versatile surface functionalization capability. Thus, 

SQDs are promising candidates for various biological and biomedical applications such as 

bioimaging, biosensing, and photodynamic therapy. Unfortunately, only a few studies in 

literature investigated factors that impact the optical properties of SQDs. In this thesis, we 

studied the impact of functionalization of ultra-small SQDs (< 2 nm diameter) with different 

aromatic fluorophores and/or spacers as a means to control their optical properties. We first 

functionalized the SQDs with phenanthrene, pyrene, and perylene fluorophores through a 

conjugated spacer which led to an efficient energy transfer from the fluorophores to the SQDs 

core. As a result, the photoluminescence of the SQDs was red- or blue-shifted and its emission 

quantum efficiency (QE) was moderately enhanced depending on the fluorophore type. 

Furthermore, we investigated the impact of different spacers, e.g. N-propylurea and 

propylamine spacers, on controlling the optical properties of SQDs in which perylene dye was 

utilized as the capping agent. The nature of spacer played a vital role influencing the interaction 

of the aromatic dye with the electronic wave function of SQDs. Energy transfer was proven to 

be the predominant process when propylurea spacer was utilized, while propylamine spacer 

was found to facilitate electron transfer process. Finally, SQDs were functionalized with 

different fluorescein and rhodamine derivatives using different spacers that vary in length, 

chemical nature, and attachment position with the dye. This led to an efficient energy and/or 

electron transfer in all dyad systems leading to an enhanced QE and photostability for at least 

one year. To demonstrate the potential application of the functionalized SQDs for bioimaging 

applications, they were examined for fluorescent imaging of HeLa, HEK293, and U2OS cells. 
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Summary for Lay Audience 

Cancer is a complex group of individual diseases which differ in causes and effects. The 

Canadian Cancer Society sadly estimates that nearly 1 in 2 Canadians is expected to get cancer 

in their lifetime. All types of cancers start in our cells. Unfortunately, there is a lack of tools 

that can enable the early detection of very limited quantities of cancer inside the body and thus 

they are left without treatment for long time. As a result, cancer cells would spread into nearby 

tissues or organs. In this thesis, we have made a new suite of silicon nanocrystals (so called 

silicon quantum dots) and investigated their potential applications as biomarkers for the 

bioimaging of cancerous cells. We have also studied their photostability and cytotoxicity. 

Interestingly, the silicon quantum dots (SQDs) reported in this thesis showed promising results 

when used for in vitro fluorescent imaging of cervical cancerous HeLa cells and human bone 

cancerous U2OS cells. These SQDs were of low toxicity and exhibited a high photostability 

for at least one year. We are now aiming to further develop the properties of these SQDs using 

synthetic methods to allow for their use as photodynamic therapy agents for the apoptosis of 

cancer cells. 
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Chapter 1  

1 Background and Theory 

1.1 Background 

Nowadays, one of the big challenges the world faces is the rising demand for energy. The 

U.S. Energy Information Administration (EIA) predicts that that world energy 

consumption will grow by 28% between 2015 and 2040.[1] Currently most of the world’s 

energy supply comes from fossil fuels, such as coal, gas and oil which leads to several 

environmental problems generated by burning these fuels. Alternatively, renewables are 

expected to be the fastest-growing energy source, with consumption increasing by an 

average 2.3% per year between 2015 and 2040. Some examples of renewable energy 

sources are solar energy, wind energy, hydropower, geothermal energy, and biomass 

energy. These sources are considered the most sustainable and promising energy solutions 

to overcome many of the environmental problems caused by using fossil fuels. Solar 

energy is of particular interest as one hour of the whole sun illumination is equivalent to 

the yearly energy consumption of our world today.[2] The sunlight is dispersed; hence the 

light needs to be captured, stored and converted to other forms of energy such as electrical 

or chemical to be useful. The latter process is similar to green plants in which they absorb 

the sunlight and the absorbed energy is converted into chemical energy via a complex 

series of electron and energy transfer processes. In the light of this concept, several 

biomedical and optoelectronic applications can be implemented and improved. To do so, 

we need to synthesize and optimize the optical properties of new materials that can utilize 

the sunlight efficiently and develop a full understanding of the photoinduced energy and 

electron transfer processes that occur. 

Quantum dots (QDs), are semiconductor nanocrystals with average diameters in the range 

of 2-10 nanometers (10-50 atoms), have attracted an increasing attention in the last two 

decades because of their unique optoelectronic properties which made them ideal 

candidates for a wide range of potential applications including photovoltaics, light-emitting 

diodes (LEDs), bioimaging, photodynamic therapy, and biosensing. Quantum dots produce 
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monochromatic light, so they can be more efficient than light sources which must be color 

filtered.[3]  

1.2  Fluorophores 

Fluorophores are fluorescent materials that have the ability to absorb the light energy of a 

specific wavelength and re-emit it at a longer wavelength. The absorbed light wavelength, 

energy/electron transfer efficiency, and the time a fluorophore spends in the excited state 

before returning to the ground state by emitting a photon (fluorescence lifetime) depend on 

the fluorophore structure and interaction with surrounding molecules.  

The most frequently used fluorophores today are organic dyes, which are widely used in 

several biological and biochemical applications.[4] Although there are several reviews in 

literature comparing the properties of quantum dots and organic dyes, a comparison 

between the two is not widely understood. In comparison to conventional organic dyes, 

fluorescent quantum dots are endowed with several attractive properties as shown in Table 

1-1.[5,6,7] 

Table 1-1 comparison between Organic dyes and SQDs 0-1. Comparison between 

Organic dyes and SQDs 

Property Organic dyes QDs 

Absorption profile Narrow, discrete bands, FWHM ranges 

from 35 nm to 80–100 nm 

Broad, unsymmetrical profile, 

and increase steadily towards 

UV region 

Emission profile Asymmetric, FWHM 35 nm to 70–100 

nm 

Gaussian profile, FWHM, 30–

90 nm 

Stokes shift Usually less than 50 nm Usually less than 100 nm 

Quantum yield 0.5–1 (visible), 0.05–0.2 (NIR) 0.1–0.8 (visible), 0.2–0.7 (NIR) 

Fluorescent 

lifetimes 

1–5 ns 5–100 ns, up to ms for some 

red QDs. 

Photochemical 

stability 

Sufficient in the visible region, but can be 

insufficient for NIR dyes 

High, sufficient in both visible 

and NIR regions 

Multiple colors Possible by varying molecular structure Adjustable by varying size 

 

 

 

https://en.wikipedia.org/wiki/Monochromatic
https://en.wikipedia.org/wiki/Fluorescence
https://en.wikipedia.org/wiki/Chemical_compound
https://en.wikipedia.org/wiki/Wavelength
https://en.wikipedia.org/wiki/Quantum_efficiency
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Quantum Dots 

Quantum dots (QDs) have been shown to exhibit several unique optical properties which 

include strong absorption, size-tunable photoluminescent (PL) emission, high quantum 

yield (QY) and high stability against photobleaching.4 This is assigned to the quantum 

confinement effect [5] which occurs due to changes in the atomic structure from the ultra-

small length scale of the energy band structure.[7] As a result of the change in the size, 

electrons respond by adjusting their energy (Figure 1-1).  This phenomenon is known as 

the quantum-size effect.  

 

 

 

Figure 1-1. The quantum confinement effect is responsible for the increase of energy 

difference between energy states and band gap. 

 

The quantization effects become most important when the particle size of a semiconductor 

is smaller than the semiconductor Bohr exciton radius which makes materials properties 

size dependent.[8] The Bohr radius of a particle (𝑎B) is defined as: 

𝑎B = Є
m

𝑚∗
 𝑎0 Equation 1 

where Є  is the dielectric constant of the material, m* is the mass of the particle, m is the 

rest mass of the electron, and 𝑎0 is the Bohr radius of the hydrogen atom. 
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Generally, as the size of the QDs decrease, the difference in energy between the highest 

valence band and the lowest conduction band increases. More energy would then be needed 

to excite the dot, and concurrently, more energy is released when the crystal returns to its 

ground state, resulting in a color shift from red to blue in the emitted light. As a result of 

this phenomenon, quantum dots can emit any color of light from the same material simply 

by changing the dot size (Figure 1-2). Additionally, because of the high level of control 

possible over the size of the nanocrystals produced, quantum dots can be tuned during 

manufacturing to emit any color of light.[9] 

 

Figure 1-2. Splitting of energy levels in quantum dots due to the quantum confinement 

effect. Figure 0-2.  

Silicon Quantum Dots (SQDs) 

Nanocrystalline silicon quantum dots (SQDs) have recently attracted considerable interest 

as silicon is abundant, nontoxic and biodegradable.[10,11,12,13] The optical and electronic 

properties of SQDs are dramatically dependent on the diameter of the dots. The SQDs 

exhibit diameters less than the Bohr radius of exciton (~5 nm). Silicon Quantum Dots 

(SQDs) are more advantageous than most QDs due to their biocompatibility and 



5 

 

biodegradability which make them excellent candidates for several biomedical 

applications.   

Effect of capping agents 

Surface properties of SQDs are of particular importance in defining the photophysical 

properties of the SQDs because of the lack of a lattice-matched semiconductor barrier 

layer. The different potential barriers affect the photoluminescence (PL) properties, 

including the emission wavelength, quantum yield (QY), and fluorescence lifetime (τf). 

[14]  

In terms of the emission profile, the absence of a semiconductor shell reduces the degree 

of exciton confinement in the core and broadens the emission peak. In practice, SQDs 

prepared via colloidal solution methods are predominantly blue-green in color, whilst red 

dots with broad emission can only be prepared via high temperature or etching related 

methods. In addition, there have been attempts to red-shift the emission profile of blue 

emitting SQDs by doping with substituent atoms.[15,16] Because of the small size of 

SQDs, any dopant atoms incorporated are present at concentrations that would be 

considered ‘heavy doping’, resulting in sub-populations of doped and undoped 

SQDs.[17,18]  

In terms of quantum yield, the existence of defects and imperfections at the surface of 

SQDs can affect QY by providing alternative decay pathways. In most cases, additional 

decay pathways associated with surface capping ligands may become the dominant factor 

of causing a reduction in the QY,[19] and thus lead to the appearance of subsidiary 

blue/green emission peaks via surface-associated recombination.[14] Interestingly, certain 

electron donating groups including nitrogen containing species at the surface strongly 

enhance the QY of SQDs.[20] It was suggested that surface functionalization of SQDs with 

organic ligands has led to distortion of the electronic structure.[21] Oxidation of larger 

SQDs has been shown to affect the crystallinity and core diameter of the Si nanocrystals, 

reducing the QY and blue-shifting the wavelength of emission peak.[22] However, the 

functionalization of the SQDs surface with an organic monolayer can prevent the long-

term oxidation, providing more photostability.[23] 
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In terms of lifetime, short fluorescence lifetimes (order of a nanosecond) in SQDs is often 

associated with core-related recombination.[24] Much longer lifetimes (order of 

milliseconds) in SQDs has been observed, which was suggested to be due to the existence 

of ultrafast trapping of excited carriers in surface states, preventing core 

recombination.[25] 

1.3 Synthesis of SQDs 

Many methods have been developed for preparing colloidal silicon quantum dots (SQDs). 

These methods can be classified into ‘top-down’ approaches in which silicon is broken 

down to smaller nanoscale pieces, or ‘bottom-up' approach that rely on self-assembly 

processes using molecular silicon precursor species. 

 

Etching of bulk silicon 

This method is one of the most popular methods to prepare SQDs. It was first demonstrated 

by Sailor et al. with a mixture of HF and H2O2 in order to etch porous silicon 

electrochemically with the aid of ultrasound, and then create a luminescent colloidal 

suspension of silicon nanocrystals.[26] This method has been widely used because of its 

simplicity.[27,28] Recently, it was shown to produce silicon nanomaterials with controlled 

emission wavelengths by etching silicon powder with the assistance of ultrasound and a 

combination of HNO3–HF.  

Kang et al. developed the etching method where the color was tunable from blue to red as 

determined by the size of the particles (Figure 1-3). In this approach, a graphite rod was 

used as the anode and silicon wafer as the cathode. Polyoxometalates was a key in this 

method because of their ability to be an electron donor and acceptor simultaneously. 

Controlling the size of the nanoparticles was done by altering the current density upon 

HF/H2O2 etching, which produced size- and shape-controlled hydrogen terminated silicon 

nanoparticles with size ranging from 1–4 nm and emission peak between 450–700 nm. 
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Figure 1-3. Electrochemical etching process of preparing colloidal Si NCs (modified 

from ref. 29)  

The etching method was further modified for environmental considerations in which a 

mixture of H2O2 and ethanol replaced the HNO3–HF. This method produced oxide coated 

silicon nanocrystals of 1–3 nm with a wide spectrum of colors were obtained. 

Breaking down silicon rich oxides 

This method is based on the breakdown of silicon rich oxides containing silicon 

nanocrystals (Figure 1-4). The strategy was first reported by Liu et al. where colloidal 

silicon nanocrystals were obtained by etching away the oxide layer from thermally 

annealed, amorphous, commercial SiOx powder.[20,29] The size of the nanocrystals 

ranged from 2 to 16 nm depending on etching conditions as confirmed by TEM. 
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Figure1-4. Preparation of colloidal silicon nanocrystals by breaking down silicon rich 

oxides containing nanoparticles within them (modified from ref. 30)  

Hessel et al. utilized thermal decomposition of hydrogen silsesquioxane to produce bulk 

amount of silicon rich oxides as thin films under high temperature.[30,31,32,33] This was 

followed by controlled HF etching to give colloidal, hydride terminated silicon quantum 

dots with emission wavelength tunable in the entire visible spectrum. 

Advantages and drawbacks 

Advantages: 1) good compatibility with studies of flat or porous silicon structures in terms 

of procedures used and techniques required. 2) good control of emission wavelength that 

cannot be easily achieved by other methods. 

Drawbacks: 1) high concentration of HF (48% applied in some cases). 2) relative harsh 

conditions required for the heat treatment of silicon rich oxides is also critical for successful 

generation of nanoparticles within them before the etching step. Both issues impeded the 

progress towards large scale production or wide applicability, because of the high safety 

risk involved and specific techniques required for the processes. 
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The bottom-up approach 

Solution based precursor reduction. 

This method uses reducing agents in the presence of silane precursors in solution. It was 

first demonstrated by Heath et al. in 1992, in which polydispersed silicon nanoparticles 

were produced by mixing SiCl4 and octyltrichlorosilane under high temperature and 

pressure.[34] 

Because of the simplicity to produce silicon nanomaterials using this approach, numerous 

factors of this method have been established. For example, sodium naphthalenide was used 

as the reducing agent and SiCl4 in glyme solution.[35] Additionally, sodium was a reducing 

agent and tetraethyl orthosilicate (TEOS) using several types of reactors (Figure 1-5).[36] 

The size of the silicon nanocrystals by both methods was in the range of several nanometers 

with visible blue luminescence. However, the poor control of the particle size was a main 

issue in this method, with particle diameter ranging over tens of nanometers. Surfactant 

molecules addition to the reaction mixture, to create inverse micelle environments assisted, 

assisted to control the size by reducing particle size distribution. This approach was first 

developed by Wilcoxon et al.,[37] and more recently advanced by Tilley et al.[23,38] 

In a typical experiment, tetraoctylammonium bromide (TOAB), a phase transfer agent and 

surfactant, stabilized the halogenated silane precursors in toluene, allowing relatively 

homogeneous precipitation of silicon nanocrystals within the inverse micelle upon addition 

of lithium aluminum hydride. This method produced hydrogen terminated silicon 

nanocrystals with narrow size distribution. This method generally produces only blue 

emission nanocrystals.  
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Figure 1-5. Preparation of colloidal silicon nanocrystals via solution-based precursor 

reduction. 

Zintl salt-based approaches.  

In this approach, silicon Zintl salts (i.e. ASix, A = Na, K, Mg etc.) are utilized to produce 

silicon nanocrystals. The silicon-Zintl salt is reacted with silicon halides, or bromine gas. 

Kauzlarich et al. prepared silicon nanocrystals via reactions between potassium silicide 

(KSi) and SiCl4 in boiling glyme or diglyme solution (Figure 1-6).[39] Another method 

was developed by sodium silicide (NaSi) and ammonium bromide (NH4Br). Both 

preparation methods gave blue luminescent silicon nanocrystals with average size of ~ 4–

5 nm.[40] 

 

 

Figure 1-6. Zintl salts based synthetic methods of preparing Si QDs. 
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Advantages and drawbacks.  

Advantages: 1) The bottom-up methods are more readily performed in solution. 2) Most 

of the used reagents and equipment needed for the preparation of the silicon nanoparticles 

are common and compatible with conventional bench top chemistry. 3) Surface chemistry 

of the particles was made more easily accessible which is important for the both preparation 

and characterization.  

Drawbacks: 1) This method produces nanoparticles which emits only blue green colours. 

2) The relatively low quantum yield of the nanomaterials prepared using bottom up 

approach usually is still considered a challenge with quantum yield rarely exceeding 15%. 

Precursor decomposition and re-assembly 

This class involves the decomposition precursor species containing silicon heteroatoms and 

re-assembly processes to form Si QDs. This method usually involves both the top-down 

and bottom-up steps. 

Preparation in supercritical fluids 

Korgel et al. developed a method to decompose precursor species and re-assemble residues 

to nanoparticles. Silicon nanocrystals preparation has been successful following this 

approach.[41,42] The alkoxy-coated crystalline silicon were typically prepared by 

allowing the degradation of diphenylsilane in a mixture containing octanol and hexane 

under high pressure and high temperature. This approach produced silicon nanocrystals 

with a good yield of 0.5-1.5%, and quantum yield of up to 5%. He et al. reported a method 

of silicon nanocrystals preparation in which the thermolysis process could be achieved by 

microwave heating, with silicon nanowires and glutaric acid as the precursor species. The 

silicon quantum dots prepared following this method had an average size of ~3.1 nm, good 

water dispersity, high pH and temperature stability, and excellent biocompatibility.[43]  

Laser pyrolysis 

This method was first demonstrated by Cannon et al., utilizing a set-up that included the 

focus of a high-power laser beam on a stream of silane gas. The Laser irradiation induced 
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very high temperature of up to 1000 °C close to the point where the beam intersected with 

the gas, allowing formation of silicon nanocrystals in this area.[44] 

Li et al. recently developed this method by first preparing silicon nanoclusters of up to 50 

nm, achieved via CO2 laser induced pyrolysis of SiH4 gas in an aerosol reactor. This 

treatment was then followed by controlled etching using a mixture of hydrofluoric acid 

(HF) (48%) and nitric acid (HNO3). This method produced silicon quantum dots with 

colour tunable in the entire visible spectrum, with a rate of ~20 – 200 mg per hour and 

quantum yield in the range between 2 – 15%.[45] 

Advantages and drawbacks 

Advantages: 1) The wide range of colours of particles obtained. This is particularly 

preferred for bio-applications because of the existence of tissue window in the range 

between ~650 nm to ~1000 nm. 2) High quantum yield.  

Drawbacks: 1) The need for specialized apparatus. The high temperature, pressure, and 

toxic chemicals (e.g. HF) require a strict control of every step. 
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1.4  Objectives 

The main goal of my PhD thesis is to develop and optimize the properties of SQDs to 1) 

control their optical properties while maintaining small-sized particles, 2) enhance their 

optical properties (e.g. improving their quantum yield) which facilitates the utilization of 

SQDS in a wide range of biomedical and optoelectronic applications, and 3) investigate 

the impact of the ligands on the optical properties of SQDs. Additionally, since SQDs tend 

to agglomerate and aggregate, there is an urgent need to improve their photostability. This 

can be achieved by incorporating covalently-linked aromatic capping agents to the surface 

of the SQDs and through the utilization of different spacers connecting the capping agents 

to the SQDs surface. The nature of the photophysical interactions between SQDs and their 

surface ligands fluorophores will be investigated within this thesis. 

Different approaches are proposed to achieve the aforementioned goals. First, the 

functionalization of SQDs surface with different aromatic dyes through conjugated and 

non-conjugated spacers which is expected to have a great influence on the intramolecular 

interactions between SQDs and dyes. Secondly, the utilization of different spacers that vary 

in chemical nature and length to connect SQDs and aromatic dyes as well as attaching 

SQDs to different positions of the aromatic dyes is expected to impact the photoinduced 

energy and/or electron transfer process taking place through the dyad system. Thirdly, 

using different solvent for the synthesis of SQDs such as (glycerol, water, ethanol) in order 

to avoid potential aggregation.  

The utilization of aromatic capping agents has been previously shown to enable the SQDs 

to be more dispersible in variety of solvents, including water. Since only a few studies in 

literature investigated the relationship between the optical properties and surface chemistry 

of SQDs,73-77 this thesis will provide a better understanding of their photophysical behavior 

and different methods to control their optical properties. 

Lastly, the suitability of SQDs for biomedical application will require biocompatible and 

non-toxic materials. Thus, the cytotoxicity of these materials will be assessed using 

different assays including TNF-α cytotoxicity assay and ATP-dependent viability assay.  
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1.5  Theory 

This section presents the theory, the physical basis and techniques that are used to 

characterize the optical properties of SQDs assemblies including absorption, energy and 

electron transfer, excitation energy migration and emission without a chemical reaction 

which is known as photophysical behavior of the matter. 

1.5.1. Electronic absorption and emission spectroscopy 

When a molecule (M) absorbs a photon of light, the resulting molecule will then possess 

an excess amount of energy. The molecule then becomes excited and it is referred to as M* 

(Equation 1.1). This molecule can simply emit the excess energy as the form of light to 

return back to its ground state (Equation 1.2). 

M + hυ → M* [1.1]         

M*→ M + hυ   [1.2] 

The excited molecule (M*) can transfer its excess energy to another acceptor molecule, A. 

This process is known as quenching (Equation 1.3). 

  M*+ A → M + A* [1.3] 

1.5.2. Excitation energy migration 

If there are two molecules in close proximity, one with an absorption band at a wavelength 

shifted to a longer wavelength than the other molecule, light energy absorbed by the one 

absorbing at the shorter wavelength (i.e. higher energy) is often transferred to the one that 

absorbs at the longer wavelength (lower energy). One molecule would act as a donor, D, 

of excitation energy, and the other as an acceptor, A, of this energy. This transfer probably 

takes place by a resonance mechanism which is described in terms of quantum mechanics.  

Excitation energy is in the form of an electron placed in the LUMO and a hole in the 

HOMO in the S1 excited state of the molecule. This energy is transferred then from one 

fluorophore to another. This process is called excitation energy migration (Figure 1-7).  
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Figure 1-7. The exciton and energy transfer process (Modified from Reference 

46).[46] 

 

Energy transfer between different chromophore molecules is known as heterogeneous 

transfer, unlike the homogeneous transfer that occurs between identical molecules. The 

energy transfer can be repeated many times, giving rise to energy migration. Direct 

evidence of energy transfer between different chromophores is provided by sensitized 

fluorescence. Light quanta absorbed by molecules of one chromophore are transferred to 

molecules of another chromophore. When the first chromophore is excited, only 

fluorescence of the second is observed. This phenomenon of sensitized fluorescence is well 

known from studies on gases and solutions. The two possible mechanisms (Dexter and 

Förster) for this process are described below. 

1.5.3. Electron transfer 

The photoinduced electron transfer process (PET) is considered one of the most favorable 

way to convert light energy or to store it for further applications. This process takes place 

between a donor and an acceptor of electron after excitation resulting in the formation of a 

charge-separated state which relaxes to the ground state via an electron-hole 

recombination. The process (PET) involves an electron transfer within an electron donor-

acceptor pair as shown in Figure 1-8. 
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Figure 1-8. Photoinduced electron transfer process. 

1.5.4. Light absorption 

Light is an electromagnetic radiation that can be viewed as waves or particles. In the wave 

model, the electromagnetic radiation is considered as a wave emitted from a source and is 

characterized by (Equation 1.7): 

λ = c ν⁄  [1.7] 

where λ is the wavelength, c is the velocity of light (2.998108 m/s) and ν is the frequency. 

In the particles model, light is composed of particles which are called photons (particles 

that have no mass but only energy). Each photon has an energy of Plank's quantum, h c/ λ, 

where h is Plank's constant (h = 6.62 10-34 Js), c is the light velocity and λ is the 

wavelength of the radiation.  

The photon absorption by a molecule (M) leads to photophysical or / and photochemical 

processes as it was stated by the Grotthus-Draper law. 

Indeed, the optical transmittance, T, is a measure for how much light enters a sample and 

that is then absorbed (Equation 1.8). 

T = I Io⁄  [1.8] 

where I is the transmitted light intensity and Io is the incident light intensity.  

Absorbance, A, is the logarithm of the ratio of the intensity of the transmitted light to the 

intensity of the incident light (Equation 1.9). 

A= log (I Io⁄ ) [1.9] 
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and hence 

A= log ( 1 T⁄  ) = −log T [1.10] 

Beer's law states that, the absorbance of a chromophore increases in proportion to the 

concentration of the latter (Equation 1.11). 

A α c      

  A = k c 

[1.11] 

[1.12] 

where k is a constant. 

Lambert's law stated that the absorbance is directly proportional to the path length 

(Equation 1.13). 

A α l 

   A= kʹ l 

[1.13] 

[1.14] 

where l is the path length and kʹ is a constant. 

The Beer-Lambert law combines the two laws giving 

A = ε l c                                              [1.15] 

where ε is the molar absorption coefficient. 

The absorption of a photon by a molecule at a certain wavelength leads to an excited 

molecule where the absorbed energy can be translated into rotational, vibrational and 

electronic modes. The quantized internal energy, Eint, of the molecule in both its ground 

and excited stated can be approximated by (Equation 1.16). 

Eint = Eel + Evib+ Erot                                            [1.16] 

where Eel , Evib, Erot are the electronic, vibrational and rotational energies respectively. 
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According to the Born-Oppenheimer approximation, as the electronic transitions are very 

fast and occur in about 10-15s compared to the characteristic time scale for molecular 

vibrations that occur in 10-12 s, the influence of the vibrational and the rotational motions 

are almost negligible. 

The Frank-Condon principle indicates that the electronic transition occurs mostly without 

change in the position of the nuclei in the molecular entity and its environment and hence, 

it is possible to describe the molecular energy by a potential energy diagram (Figure 1-9). 

 

Figure 1-9.09The relative order of electronic, vibrational and rotational energy levels 

(modified from Reference 47).[47] 

The Frank-Condon principle shows that the vibrational and electronic transitions will be 

observed in the spectrum. According to this concept for a diatomic molecule, let's consider 

the example in Figure 1-10 below. According to the Boltzman distribution, at room 

temperature, most of the molecules are in the lowest vibrational level (ν) of the ground 

state (i.e., ν = 0). The absorption spectrum in Figure 1-10 exhibits a combination of both 

the pure electronic transitions (i.e., from ν = 0 to ν\ = 0) and several vibronic peaks for 

which intensities depend on the relative position and shape of the potential curves of the 

ground and excited states. 
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In the example provided in Figure 1-10, the 0-2 peak has the highest intensity as going 

from ν = 0 in the ground state to ν = 2 in the excited sate is the most probable for vertical 

transitions as it falls on the highest point in the vibrational probability curve in the excited 

state.  

 

Figure 1-10. (a) Potential energy diagram for a diatomic molecule, illustrating the 

Frank-Condon excitation and, r is the nuclear coordinate. (b) Intensity distribution 

among vibronic bands as determined by the Frank-Condon principle. (Modified from 

Reference 48).[48] 

The emission and excitation spectra are two types of distinct types of spectra, but they 

usually overlap. The excitation spectrum is normally known as the spectrum of light 

emitted by the material as a function of the excitation wavelength while the absorption 

spectrum is known as the spectrum of light absorbed by the material as a function of the 

wavelength. Usually, these two spectra, absorption and excitation, should overlap 

perfectly.  

1.5.5. Photoluminescence 

Generally, when a molecule absorbs a photon, it is described as an excited molecule (i.e. a 

molecule lying in an upper electronic excited state) and after a certain time, the excited 

state molecule can relax by two different pathways. The first type is fluorescence which 

shows photoluminescence as a result of singlet–singlet electronic relaxation. The typical 

http://en.wikipedia.org/wiki/Fluorescence
http://en.wikipedia.org/wiki/Singlet_state
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lifetime of fluorescence is the nanoseconds  (ns) time scale. The second type is 

phosphorescence which shows photoluminescence as a result of triplet–singlet electronic 

relaxation. The typical lifetime of phosphorescence ranges from milliseconds to hours. 

1.5.6. Jablonski diagram  

It is an energy diagram that shows the different electronic states and transitions in 

molecules (Figure 1-11). S0 represents the electronic ground state and S1, S2 represent the 

first and second singlet excited states, respectively. T1 and T2 represent the first and second 

triplet excited states, respectively. In the singlet states, all electrons spin are paired and the 

multiplicity of this state is 1 while in the triplet state, the electrons are no longer antiparallel 

and the electronic spin multiplicity is 3 as the total spin states can take values of -1, 0 and 

1. The triplet state is more stable than the singlet state because of the Coulomb repulsion 

energy between the two electrons and the increase in degree of freedom of the magnetic 

spins. 

 

 

Figure 1-11. Jablonski diagram showing different states and transitions (Modified 

from Ref. 48). 

http://en.wikipedia.org/wiki/Exponential_decay
http://en.wikipedia.org/wiki/Fluorescence
http://en.wikipedia.org/wiki/Phosphorescence
http://en.wikipedia.org/wiki/Triplet_state
http://en.wikipedia.org/wiki/Phosphorescence
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In Figure 1-11, the arrows in the boxes represent the electron spins when they are paired in 

the singlet states and in the triplet states where electrons are no longer antiparallel. The 

subscript indicates the relative energetic position compared to other states of the same 

multiplicity. The symbols kF, kisc, kic, kP represent the fluorescence, intersystem crossing, 

internal conversion and phosphorescence rate constants, respectively. Different processes 

in Jablonski diagram are shown including the absorption, vibrational relaxation and 

internal conversion, fluorescence, intersystem crossing and phosphorescence. 

1.5.6.1. Absorption 

The first transitional process in the Jablonski diagram is the absorption of a photon of a 

particular energy by the molecule (the characterization of this process has already been 

provided in section 1.3). This process is shown in the diagram by a straight arrow pointing 

up. The absorbance is a very fast transition which occurs on the order of 10-15 second. 

1.5.6.2. Vibrational relaxation and internal conversion 

Once the electron is excited, the molecule becomes in its excited state (S1, S2, ..,T1, T2, 

..etc),  there are several pathways by which the energy may be dissipated. The first option 

is through vibrational relaxation, a nonradiative process which is represented in the 

Jablonski diagram as curved arrows between vibrational levels. The vibrational relaxation 

is where the accumulated energy is released as kinetic energy (i.e. heat) and the molecule 

relaxes to a lower vibrational level of the same electronic state. The kinetic energy may 

stay within the same molecule or it could be transfered to other molecules around the 

excited molecule (i.e. the solvent for example). This process is very fast occuring on the 

order of 10-11-10-14 second.  

The second nonrdiative process is the internal conversion which is observed when the 

excited molecule relaxes to a lower excited state of the same multiplicity (i.e. S2 → S1; S1 

→ S0). It is mechanistically identical to the vibrational relaxation except it occurs between 

two different electronic states. It is indicated in the Jablonski diagram as a curved line 

between two vibrational levels in two different electronic states. This process occurs in the 

time scale of 10-12 second.     
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1.5.6.3. Fluorescence   

This radiative process takes place between two electronic states (ground and excited states) 

of the same multiplicity (e.g., S1→S0 and S2→S0). The lifetime of the fluorescence is 

typically on the order of (10-8-10-9 second for S1→S0). It is indicated in Jablonski diagram 

as a straight line going down on the energy axis between two different electronic states. 

In general, the fluorescence band is a mirror image of the absorption band (S0→ S1) (Figure 

1-12). This is particularly true for rigid molecules (such as aromatics) as the Frank-Condon 

principle is applicable. The vibronic peaks are also expected to be present in both directions 

(S1→S0 and S0→S1) in the fluorescence band. There are some exceptions to this rule, when 

the molecule changes its geometry in the excited state. The difference in the wavelength 

between the (0,0) absorption and emission peaks is known as the Stokes shift.  

 

Figure 1-12. Potential energy curves and vibronic structures of fluorescence spectra 

(Modified from Reference 49).[49] 

1.5.6.4. Intersystem crossing (ISC) 

It is another non-radiative process which occurs when an excited molecule changes spin 

multiplicity from an excited singlet state to an excited triplet state or the inverse. This 

process occurs on a time scale of (10-6-10-8 second) for organic molecules and 10-11 second 

for organometallics. This rate enhancement is due to spin-orbit coupling that is induced by 
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the presence of heavy atoms such as metal containing systems. This is an interaction 

between the spin angular momentum and the orbital angular momentum of Sn and Tn states 

and thus, singlet and triplet states are no longer "pure" as singlet or triplet. 

1.5.6.5. Phosphorescence 

This radiative process includes a relaxation of the molecule from the triplet state to the 

ground state. It usually exhibits longer lifetimes than fluorescence on time scale of 10-3 

second for organic samples and (10-5-10-7 second) for metal containing samples. The 

difference between the fluorescence and phosphorescence is due to the fact that it involves 

a spin-forbidden electronic transitions. 

The phosphorescence bands are always more red-shifted than those for fluorescence due 

to the relative stability of the triplet state compared to the singlet state (Figure 1-13). 

 

Figure 1-13. Relative positions of absorption, fluorescence and phosphorescence 

(Modified from Reference 49). 
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1.5.7. Emission lifetime 

The emission lifetime is the average time that the molecules remain in its excited state 

before the photon is emitted. According to the viewpoint of the kinetics, the lifetime is the 

rate of depopulation of the excited state (singlet or triplet) states following an optical 

excitation from the ground state. 

Luminescence generally follows first order kinetics as in Equation 1.17. 

[S1] = [S1]o e−kFt [1.17] 

where [S1] is the concentration of the excited state molecules at time t, [S1]o  is the initial 

concentration and kF is the decay rate. 

The various radiative and nonradiative processes can decrease the excited state population, 

and so the overall decay rate is given as the sum of the radiative and nonradiative decay 

rates (Equation 1.18). 

ktotal = kradiative + knonradiative [1.18] 

           Again, when a molecule, A, is excited, it is promoted from the ground state to the 

excited state (Equation 1.19). 

A+ hυ→ A*                                                          [1.19] 

The excited molecule can relax to its ground state after losing its extra energy via radiative 

(Equation 1.20) and non-radiative processes (Equation 1.21). 

               A*  → A + hυ  (radiative process, kr) [1.20] 

A* → A  +heat    (nonradiative process, knr)    [1.21]   

where kr and knon are the rate constants for the radiative and the nonradiative processes. 

−
d [𝐴∗]

dt
= (kr + knr) [𝐴∗]  =  

1

τ
[𝐴∗]                 [1.22] 
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where [A*] is the concentration of the species A in its excited state at a given time t. 

ln 
 [𝐴∗]t

[𝐴∗]t=0
= − (kr + knr) t = − 

t

τ
 [1.23] 

Hence the mean emission lifetime (τ) of [A*] is given by 

τ =
1

(kr+knr)
                                                        [1.24] 

The emission lifetime can be measured using a time-resolved experiment at which very 

short pulses excitation is made and followed by measuring the time-dependent intensity. 

From a kinetic standpoint, the fluorescence and phosphorescence lifetimes τF and τP can be 

expressed respectively as the following (Equations 1.25, 1.26). 

τF =
1

kF + kIC + kISC
 

[1.25] 

τP =
1

kP + kIC
 

[1.26] 

Thus, the measured unimolecular radiative lifetime is the reciprocal of the sum of the 

unimolecular rate constants for all the deactivation processes. The general form of the 

equation is given by: 

τ =
1

∑ k𝑖𝑖
 

[1.27] 

where τ is the observed radiative lifetime and the rate constant ki represents the 

unimolecular or pseudo-unimolecular processes that deactivate A*. 

1.5.8. Emission quantum yield (Φ) 

Emission quantum yield represents the ratio of the number of photons emitted by the 

fluorophore to the number absorbed. It's useful as it provides information about the 

electronic excited state relaxation process (such as the rates of the radiative and non-

radiative process). 
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The measurements of quantum yields are performed by preparing three different solutions 

of the same concentration of the sample and the standard for each photophysical datum 

quantum yields. The sample and standard concentrations are adjusted to obtain an 

absorbance of 0.05 or less. This absorbance is adjusted to be the same as much as possible 

for the standard and the sample. Each absorbance value is measured five times for better 

accuracy in the measurements of the quantum yields (Equation 1.28). 

Φu = [
(AsFun2)

(AuFsno
2)

] Φs 
[1.28] 

where, the subscript u refers to "unknown", and it refers to a comparative standard, Φ is 

the emission quantum yield, A is the absorbance at a certain excitation wavelength, F is 

the integrated emission area across the band of a spectrum plotted in a linear scale of energy 

(i.e. cm-1), n and no are the refractive indices of the solvent containing the unknown and the 

standard, respectively. From a kinetic standpoint, the fluorescence and phosphorescence 

quantum yield ΦF and ΦP can be expressed respectively as the following (Equations 1.29, 

1.30). 

ΦF =
kF

kF + kiC + kISC
 

[1.29] 

ΦP =
kp

kP + kISC
 

[1.30] 

So, 

𝑘𝐹 =
ΦF

τF
  [1.31] 

𝑘𝑃 =
ΦP

τP
 

[1.32] 
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1.5.9. Energy transfer  

In the presence of an energy acceptor molecule of a lower energy, A, the excited donor, 

D*, can be deactivated by a process called energy transfer which can be represented as in 

(Equations 1.33,1.34). 

D + hυ →D* [1.33]        

    D*+A→ D+A*                                      [1.34]     

For the energy transfer to occur, the energy level of the excited state of the donor, D*, has 

to be higher than that of the acceptor, A*, and the time scale of the energy transfer process 

should be faster than the lifetime of the D*. 

There are two possible types of the energy transfer: 

1.5.9.1. Radiative energy transfer which occurs when the extra energy in D*is emitted in 

the form of luminescence and this radiation is absorbed by the acceptor, A, as in (Equations 

1.35,1.36). 

D + hυ →D* [1.35] 

A+ hυ → A*                                                               [1.36] 

This interaction operates even when the distance between the donor and the acceptor is 

large (100Å). However, this process is not efficient since only a very small fraction of the 

emitted light is absorbed by the acceptor because the emission occurs in all directions. 

1.5.9.2. Non-radiative energy transfer can be described according to Förster and Dexter 

mechanisms and both are very efficient, even occasionnally reaching close to 100% 

efficiency.  

1.5.9.2.1. Förster mechanism (FRET) 

Förster resonance energy transfer, FRET, involves the migration of energy by the resonant 

coupling of electrical dipoles from the donor molecule to the acceptor molecule. This 

process can occur over a long distance (30-100Å). As shown in Figure 1-14, the Förster 



28 

 

mechanism involves the migration (i.e. relaxation) of an electron from the excited donor 

that is placed in the LUMO to the HOMO and the released energy is transferred to the 

acceptor via Coulombic interactions and an electron in the HOMO of the acceptor is 

promoted to the LUMO. This mechanism operates mostly in the singlet states of both the 

donor and the acceptor.         

 

 

Figure1-14. Mechanism of the energy transfer according to Förster. 

The rate of the energy transfer (kET) can be determined as in Equation 1.37. 

kET =kDRF
6(1/R)6                                        [1.37] 

where kD is the emission rate constant of the donor in the absence of the acceptor, R is the 

center-to-center inter chromophore separation and RF is the Förster radius. The Förster 

radius is defined as the distance between the donor and the acceptor at which 50% of the 

excited state decays by energy transfer. RF is calculated by the overlap of the emission 

spectrum of the donor excited state (D*) and the absorption spectrum of the acceptor (A). 

RF
6 =

9000 ΦF (ln 10)ƙ2𝐽

128 π5n4NA
 

[1.38] 

where ΦF is the fluorescence quantum yield of the donor in the absence of the acceptor, ƙ 

2 is the dipole orientation factor, n is the refractive index of the medium, NA is Avogadro's 

number, and J is the spectral overlap integral which can be calculated as in Equation 1.39. 

𝐽 = ∫ 𝑓𝐷 (𝜆)𝜀𝐴 (𝜆)𝜆4 𝑑𝜆 
[1.39] 

http://en.wikipedia.org/wiki/Quantum_yield
http://en.wikipedia.org/wiki/Refractive_index
http://en.wikipedia.org/wiki/Avogadro%27s_number
http://en.wikipedia.org/wiki/Avogadro%27s_number
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where 𝑓𝐷 is the normalized donor emission spectrum, and 𝜀𝐴 is the acceptor molar 

extinction coefficient. 

Applications and limitations of FRET 

FRET provides an efficient way to measure the distance between a donor and an acceptor 

chromophore. The energy transfer efficiency is highly influenced by the ratio of R and RF 

because of the exponent 6. Thus, by measuring the FRET efficiency, one can easily get the 

precise distance between the donor and the acceptor. If choosing the donor and acceptor 

properly, this experiment can also be carried out in vivo. However, the FRET only gives 

the information about distances. If a dramatic conformational change happens, such as 

lengthening or kink, it is unable to know the exact movement of donor and the acceptor. 

Besides, attaching the chromophores to precise sites of a macromolecule is also important, 

both in quantity of chromophores and in position of a macromolecule, or the FRET might 

produce noise signals. 

1.5.9.2.2. Dexter mechanism 

This mechanism involves a double electron exchange between the donor and the acceptor 

(Figure 1-15). The Dexter mechanism involves the migration of one electron from the 

LUMO of the donor to the LUMO of the acceptor and at the same time, an electron from 

the HOMO of the acceptor moves to the HOMO of the donor. Both singlet-singlet and 

triplet-triplet transfers are possible, but the mechanism requires a close contact between 

the MO involved, either from the resonance structures (if any) of very close proximity in 

order to promote orbitals overlap favoring electron transfers.  

 

Figure 1-15. Mechanism of the energy transfer according to Dexter. 

http://en.wikipedia.org/wiki/Molar_extinction_coefficient
http://en.wikipedia.org/wiki/Molar_extinction_coefficient
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The rate of the energy transfer (kET) can be expressed as in Equation 1.26. 

kET =
2π

h
 𝑉0

2 𝐽 exp (−
2 RDA

L
) 

[1.40] 

where RDA is the distance between the donor and acceptor, J is the internal spectral overlap 

between the donor and acceptor, L is the effective Bohr radius of the orbitals between 

which the electron is transferred, h is plank's constant, Vo is the electronic coupling matrix 

element between the donor and the acceptor at the contact distance.  

The rate of the energy transfer can be determined experimentally using Equation 1.41. 

kET =
1

τF 
− 

1

τF
0 

[1.41] 

where τF is the emission lifetime of the donor in the absence of the acceptor and τF
0 is the 

emission lifetime of the donor in the presence of the acceptor. 

1.5.10. Transient absorption spectroscopy (Flash photolysis)  

The phosphorescence process resulting from the triplet states is usually difficult to be 

detected in solutions at room temperature because of the high efficiency of the non-

radiative pathway from long lived triplet states such as intermolecular collision with the 

solvent molecules.  

This was a challenge for the development of triplet-state theory till the year 1949 when two 

scientists, Porter and Norris, introduced the flash photolysis technique. [24] This method 

allows the observation of the triplet states in solution by direct measurement of their 

absorption spectra. The long-lived nature of the triplet-states allow the buildup of the 

concentration of species residing in the T1 state and the fact that T1→ Tn  is a spin allowed 

transition making these transitions as intense as the S0 →Sn. The basic principle of this 

concept is shown in Figure 1-16. 
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Figure 1-16. State diagram showing the pathway leading to T1-Tn absorption. 

The basic principles of this technique involve the excitation of the molecule by the 

application of an intense flash (pump) which creates a high concentration of the singlet 

excited molecules, first in the S1 state. Then two scenarios can occur depending on the 

width of the laser pulse (pump). If the laser pulse is very narrow (i.e. fs or ps) and that a 

second excitation (probe) is performed almost right away (delay time between the first and 

second pulse of fs or ps), then S0 → Sn absorption is possible. At this time scale, the 

concentration of species lying on the S1 state is still large since the time scale for the usually 

very fast inter-system crossing process is about 10-11 s. However for larger excitation pulse 

width (ns for example), then species lying on the S1 state have the time to relax to the T1 

state. At this point, the concentration of these species is the highest. Hence, with an 

appropriate delay time after the pump and probe excitation (Figure 1-16) observation of 

T1→ Tn absorption bands is possible.  
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Chapter 2  Tuning the Optical Properties of Silicon Quantum 
Dots via Surface Functionalization with Conjugated Aromatic 
Fluorophores 

This work was published in Scientific Reports, 8, 3050 (2018) 

2.1 Introduction 

Silicon Quantum Dots (SQDs) in the quantum-size range (2–10 nm) have recently attracted 

great interest due to their unique optoelectronic properties which include broad absorption 

spectra, high stability against photobleaching, and size-tunable photoluminescence (PL), 

ranging from visible to near-infrared, by changing their size[1]. These nanoparticles also 

have excellent biocompatibility [2], low cytotoxicity [3], and versatile surface modification 

capability, and are therefore promising candidates for various biological and biomedical 

applications, such as bioimaging [4] and photodynamic therapy [5]. 

A number of methods have been reported for the synthesis of SQDs, such as bulk silicon 

etching [6], laser pyrolysis [7], and preparation in supercritical fluids [8], which produce 

SQDs with wavelength-tunable emission by controlling their size. A simple solution-based 

reduction method [9,10,11,12,13] has been shown advantageous over previous syntheses 

methods due to its simplicity and ease with which the surface chemistry can be 

modified[14,15]. Interestingly, the use of aromatic fluorophores for the modification of the 

SQDs surface is an efficient pathway to both tune the optical properties and improve the 

colloidal stability of SQDs [16]. 

Despite some reports of aromatic fluorophores incorporated into SQDs that permit 

sensitization of the SQDs via energy transfer, there are still limited examples of 

luminescent SQDs covalently functionalized with conjugated emissive compounds 

obtained through a solution-based reduction method [17,18]. Bard et al. [19] used the 

electrochemical charge injection to induce the luminescence from SQDs passivated with a 

combination of hydrogen and alkoxide ligands; Rosso-Vasic et al. [20] reported up to 55% 

efficiency of energy transfer from SQDs to a Ru-based dye. Sommer et al. [21] reported 

very fast energy transfer in a system composed of SQDs functionalized with vinyl pyridine; 

Erogbogbo et al. [16] observed improvement in the emission efficiency of SQDs 

https://www.nature.com/articles/s41598-018-21181-8#ref-CR1
https://www.nature.com/articles/s41598-018-21181-8#ref-CR1
https://www.nature.com/articles/s41598-018-21181-8#ref-CR1
https://www.nature.com/articles/s41598-018-21181-8#ref-CR1
https://www.nature.com/articles/s41598-018-21181-8#ref-CR1
https://www.nature.com/articles/s41598-018-21181-8#ref-CR1
https://www.nature.com/articles/s41598-018-21181-8#ref-CR1
https://www.nature.com/articles/s41598-018-21181-8#ref-CR1
https://www.nature.com/articles/s41598-018-21181-8#ref-CR1
https://www.nature.com/articles/s41598-018-21181-8#ref-CR1
https://www.nature.com/articles/s41598-018-21181-8#ref-CR1
https://www.nature.com/articles/s41598-018-21181-8#ref-CR1
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functionalized by anthracene in the hydrophobic core of micelles as a result of energy 

transfer. Recently, Ceroni et al. investigated SQDs covalently linked with pyrene units 

through a nonconjugated bridge and observed efficient energy transfer from the donor 

pyrene moieties to the acceptor SQD core [22]. Using a conjugated bridge may offer even 

improved optical properties through photogenerated energy transfer. 

Here, we report the synthesis and surface functionalization of SQDs using a conjugated 

bridging approach with 9-vinyl phenanthrene, 1-vinyl pyrene, and 3-vinyl perylene to 

produce SQD-phenanthrene, SQD-pyrene, and SQD- perylene, respectively. 

Phenanthrene, pyrene, and perylene fluorophores were chosen for the surface passivation 

of SQDs due to their high stability and excellent optical properties including high 

fluorescence quantum yield [23]. Functionalization of the SQDS with these fluorophores 

is expected to improve the quantum yield of SQDs and tunability of PL emission, which 

can be applied in many fields such as bioimaging. The functionalized SQDs were 

characterized by UV−Vis absorption spectroscopy, Fourier-transform infrared (FTIR) 

spectroscopy, steady-state and times-resolved emission spectroscopy, high-resolution 

transmission electronic microscopy (HRTEM), and X-ray photoelectron spectroscopy 

(XPS). 

2.2  Results and discussions 

SQDs functionalized with aromatic fluorophores were prepared following a solution-based 

reduction route as shown in Figure 2-1 [24]. Silicon tetrachloride (SiCl4) was used as the 

silicon source and was reduced by a strong reducing agent (LAH). The resultant H-

terminated SQDs were passivated with organic molecules in the presence of a Pt catalyst. 

 

https://www.nature.com/articles/s41598-018-21181-8#ref-CR1
https://www.nature.com/articles/s41598-018-21181-8#ref-CR1
https://www.nature.com/articles/s41598-018-21181-8#ref-CR1
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Figure 2-1. Synthesis route of H-terminated SNPs (A) and surface passivation using 

different ligands (B). 

2.2.1 Size and structure 

Figure 2-2 shows the TEM, size distribution histograms, and HR-TEM of the synthesized 

SQD-heptene, SQD-phenanthrene, SQD-pyrene, and SQD-perylene assemblies. The TEM 

images demonstrate that the functionalized SQDs are quasi-spherical without obvious 

agglomeration and aggregation. The size distributions indicate that the average diameter 

for SQD-heptene, SQD-phenanthrene, SQD-pyrene, and SQD-perylene are 1.68 ± 0.71, 

2.14 ± 1.06, 1.94 ± 0.89, and 1.73 ± 0.62 nm, respectively, after the analysis of more than 

150 dots from different regions of the grids. The HR-TEM images display the high 

crystallinity of the SQDs, as evidenced by the distinct lattice fringes with 0.30 nm 

interplanar spacing, which is consistent with the (111) plane of diamond silicon [14,25]. It 

should be mentioned that the low contrast of the TEM and HR-TEM images is due to the 

extreme small dimensions of SQDs and also the low atomic weight of silicon compared to 

metallic or semiconductor quantum dots, which results in poor visualization [12,26]. 

https://www.nature.com/articles/s41598-018-21181-8#ref-CR1
https://www.nature.com/articles/s41598-018-21181-8#ref-CR1
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Figure 2-2. TEM (left), diameter distributions (middle) and HR-TEM images (right) 

of SQD-heptene (A), SQD-phenanthrene (B), SQD-pyrene (C), and SQD-perylene 

(D). 
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To confirm aromatic ligand binding to the surface of SQDs, both FTIR and XPS 

spectroscopy were performed. Figure 2-3 shows the FTIR spectra of SQD-phenanthrene, 

SQD-pyrene, and SQD-perylene. The broad peak at 3010–3680 cm−1 can be attributed to 

OH stretching [27], and the peak at 1000–1100 cm−1 indicates the presence of Si-O-Si 

stretching. This provides evidence for the oxidation of the surface of the SQDs [28]. The 

peaks at 3010–2850 and 1416–1480 cm−1 are attributed to aromatic fluorophores C-H 

stretching and bending, respectively [29]. The wide peak at 1630 cm−1 is assigned to the 

stretching vibrations of (-C = C), which was also observed in analogous systems [30,31]. 

Furthermore, the characteristic peaks of the (≡C-H) and (C≡C) stretching vibrations at 

3230–3330 and 2115–2040 cm−1, respectively observed for the free alkynyl fluorophores 

(Figure 2-8 ), as well as the stretching vibration peak of (Si–H) at 2100–2250 cm−1 [32], 

are absent in the spectra of the functionalized SQDs. This indicates complete reaction of 

the alkynyl fluorophores with the H-terminated SQDs. 

 

Figure 2-3. FTIR spectra of SQD-perylene (a), SQD-phenanthrene (b), and SQD-

pyrene (c). 

The dye-terminated SQDs were further investigated using high resolution XPS 

spectroscopy. Figure 2-4 shows high resolution XPS spectra of Si 2p for SQD-

phenanthrene (a), SQD-pyrene (b), and SQD-perylene (c). The Si 2p spectra in Figure 2-4 

were fitted with two peaks and one Shirley background. The deconvoluted peaks centered 

at 102.48, 102.37, and 102.19 eV are attributed to Si-C [33,34], which confirms that the 

https://www.nature.com/articles/s41598-018-21181-8#ref-CR1
https://www.nature.com/articles/s41598-018-21181-8#ref-CR1
https://www.nature.com/articles/s41598-018-21181-8#ref-CR1
https://www.nature.com/articles/s41598-018-21181-8#ref-CR1


42 

 

SQDs surface changed from H- to organic dye termination. The components at 103.50 and 

103.30 eV are assigned to Si-O, indicating that the surface of the SQDs has been partially 

oxidized under ambient conditions [34]. XPS spectrum of C 1 s for SQD-pyrene (Figure 2-

9) shows multiple peaks binding energy assigned to C-Si, C = C, CO3, O-C = O, C = O, 

along with a key feature located at 291.4 eV, which is attributed to the characteristic shake-

up peak, exhibited by the conjugated system or aromatic groups [35]. This further confirms 

the bonding of pyrene to SQDs through a conjugated linkage. These XPS results are in 

agreement with the FTIR results, confirming that the passivation of the SQDs has been 

successfully achieved and the aromatic fluorophores are covalently bonded to SQDs 

through a conjugated linkage. 
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Figure 2-4. XPS spectra of Si 2p for SQD-phenanthrene (a), SQD-pyrene (b), and 

SQD-perylene (c). 
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2.2.2 Photophysical properties 

The photophysical properties, including emission lifetime (τe), quantum efficiency, (ΦPL) 

and emission and excitation spectra of the SQD-phenanthrene, SQD-perylene, SQD-

pyrene, reference SQD-heptene, and chromophores phenanthrene, perylene and pyrene 

were investigated in DCM and are summarized in Table 2-1. 

Table 2-1. Photophysical properties collected in DCM at 298 K. 

 λex 

nm 
λem nm (RI)a 

ΦPL
b 

%a,c 
τe ns(pe)f 

perylene 360 465 (1), 489 (0.95), 530 (0.41) 89 4.4 

pyrene 360 384 (1), 404 (0.39), 431 (0.13) 61 2.2 (9), 17.9 (91) 

phenanthrene 315 
358 (0.74), 367 (0.94), 376 (1), 387 (0.69), 

392 (0.48) 
14 1.4 (67), 6.3 (33) 

SQD-heptene 360 446 8 1.8 (27), 6.07 (73) 

SQD-heptene 315 374 — — 

SQD-perylene 360 515 18c 2.5 (38), 6.6 (62) 

SQD-pyrene 360 396 (1), 415 (0.95), 482 (0.52) 11d 1.9 (46), 7.7 (54) 

SQD-phenanthrene 315 439 8e 1.8 (58), 6.9 (42) 

aRI = relative intensity of the emission peak. bQuinine sulfate employed as the external 

reference (ΦPL = 54.6% in 0.5 M H2SO4 at 298 K, λexc = 360 nm) [41]. cλex = 440 nm, 

dλex = 330 nm, eλex = 310 nm.f pe = pre-exponential weighting factor, in relative % intensity, 

of the emission decay kinetics (λex = 378 nm). 

SQD-perylene and SQD-pyrene exhibited broad, red- and blueshifted emission maxima at 

λmax = 515 and 396 nm, respectively with modestly higher photoluminescence quantum 

yields, ΦPL, (SQD-perylene: ΦPL = 18%, SQD-pyrene: ΦPL = 11%) compared to the 
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heptene-capped control counterpart SQDs (SQD-heptene: λmax = 446 nm, ΦPL = 8%), when 

excited at 360 nm. Similarly, the SQD-phenanthrene exhibited a red-shifted emission 

maximum at λmax = 439 nm compared to SQD-heptene (λmax = 374 nm) when excited at 

315 nm, but with a ΦPL of 8%, which is similar to that of SQD-heptene (Figure 2-5). 

 

Figure 2-5. Emission spectra of SQD-heptene (dotted green line, λex = 315 nm), SQD-

phenanthrene (solid pink line, λex = 315 nm), SQD-heptene (dotted black line, 

λex = 360 nm), SQD-pyrene (solid blue line, λex = 360 nm), and SQD-perylene (solid red 

line, λex = 360 nm. 

In water, both the SQD-pyrene and SQD-perylene exhibited emission peak maxima at 395 

and 521 nm, respectively (Figure 2-20). Evidence of pyrene excimer emission at 

concentrations higher than 10 and 176 μM was observed for SQD-pyrene and free pyrene 

at 487 nm, respectively (Figures 2-18 and 2-19) [36]. It is also worth noting that SQD-

phenanthrene, SQD-pyrene, and SQD-perylene exhibited red-shifted emissions comparing 

to their corresponding free aromatic fluorophores (Table 2-1 and Figures 2-12:2-14). 

Hence, depending on the surface functionalization of the SQD core, different emission 

maxima were observed, pointing to an ability of the chromophores to tune the emission 

properties of the nanoparticle. 

https://www.nature.com/articles/s41598-018-21181-8#ref-CR1
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Generally, any σ-π conjugation between Si atoms and π-conjugated fluorophores should 

increase the interaction of the aromatic fluorophores with the electronic wave functions of 

the SQDs [34], influencing the electronic structure of SQDs and inducing red-shifted 

emissions compared to fluorophore-free SQDs. This may account for the observed 

significant red-shifted emission of SQD-perylene and SQD-phenanthrene by 69 and 65 nm, 

respectively, compared to that of SQD-heptene. However, the emission of SQD-pyrene did 

not behave in an analogous manner. The deviation from the expected behavior may be 

attributed to the high ratio of Si-Ox species, (SiO2: Si-C ~ 1:1), on the silicon network, 

which seems crucial for influencing the optical properties. This is in good agreement with 

a previous report of blue shifting in the emission of SQDs that have a monolayer of organic 

molecules grafted to their surface via controlled thermal or photoinitiated surface oxidation 

[37]. From the XPS spectra, the ratio of SiO2 on the silicon surface in SQD-pyrene and 

SQD-perylene was found to be (25:1), respectively. Thus, the blue shift in the emission of 

SQD-pyrene compared to that of SQD-heptene when excited at wavelength of 360 nm may 

have resulted from a greater surface oxidation. 

The photoluminescence spectra for the SQD-perylene, SQD-pyrene, and SQD-

phenanthrene assemblies were collected by photoexciting either at 360 nm, where the SQD 

core predominantly absorbs, or at 450 nm, 340 nm and 315 nm, where the perylene, pyrene 

or phenanthrene moieties, respectively, are predominantly photoexcited. Identical 

photoluminescence spectra without any contribution from the free perylene, pyrene or 

phenanthrene were observed (Figures 2-15:2-17). Thus, SQD-perylene, SQD-pyrene, and 

SQD-phenanthrene assemblies exhibit efficient energy transfer from the fluorophore to the 

SQD core upon photoexcitation. As no triplet states are involved in the energy transfer 

process between the fluorophore and the nanoparticle core as evident from the recorded 

lifetimes given in Table 2-1, and the PL spectra of all donor fluorophores exhibit spectral 

overlap with SQDs absorption (Figures 2-12:2-14), Fӧrster energy transfer is the likely 

mechanism for energy transfer in these systems [38,39]. Photoluminescence excitation 

spectra measured by detecting the emissions of SQD-fluorophore are further consistent 

with energy transfer from the fluorophore to the SQD core, with the appearance of the 

corresponding perylene, pyrene and phenanthrene-based absorptions (Figures 2-12:2-14). 

Energy transfer from pyrene to SQDs in SQD-pyrene is also evidenced in the emission 

https://www.nature.com/articles/s41598-018-21181-8#ref-CR1
https://www.nature.com/articles/s41598-018-21181-8#ref-CR1
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lifetime decay monitored at 420 nm collected upon photoexcitation at 378 nm. Indeed, the 

bi-exponential emission lifetime of SQD-pyrene of 1.9 and 7.7 ns is similar to that of SQD-

heptene (τe = 1.8, 6.07 ns) and much shorter than that of the free pyrene fluorophore 

(τe = 2.2 and 17.9 ns). The shorter lifetime of SQD-pyrene compared to free pyrene is 

consistent with energy transfer from the bound pyrene to the SQD core. Energy transfer 

from pyrene moieties covalently linked to silicon nanocrystals was also previously 

observed [22]. Similarly, SQD-perylene and SQD-phenanthrene exhibited respectively bi-

exponential emission decays of τe = 2.5, 6.6 ns and τe = 1.8, 6.9 ns, which are 

correspondingly slightly shorter and longer compared to those of the free chromophores 

perylene (τe = 4.4 ns) and phenanthrene (τe = 1.4, 6.3 ns). 

It is worth noting that because of the small size of the functionalized SQDs, the PL deviates 

significantly from the quantum confinement prediction. This is attributed to the non-

radiative trapping of electrons in the higher excited states by surface states [24]. Thus, the 

nature of the fluorophore linked to the SQD surface, and the electronic communication 

between SQD core and fluorophores (through the σ-π conjugation) strongly influence the 

optical properties of the SQD core. This strategy is beneficial for producing SQDs with 

tunable emission wavelengths by modifying the surface with aromatic fluorophores and 

can be applied to overcome current synthetic limitations where only blue-emitting 

nanoparticles are predominantly obtained. 

2.2.3 Fluorescent cellular imaging study 

To demonstrate the suitability of SQD-perylene and SQD-pyrene assemblies for 

bioimaging application, they were used for in vitro fluorescent imaging of cancerous HeLa 

cells. The cells were incubated for 3 hours with SQD-perylene and SQD-pyrene, 

respectively. The nanoparticles were then excited at 405 nm using confocal microscopy to 

monitor the uptake of SQDs (Figure 2-6). The images were collected after 135 seconds of 

constant excitation to quench the cellular autofluorescence. Fluorescence imaging of HeLa 

cells without SQDs (panels A–C), with SQD-perylene (panels D–F), and SQD-pyrene 

(panels G–I) show bright fluorescence for cells incubated with SQD. The efficient uptake 

of nanoparticles by cells demonstrates the potential utility of SQDs for bioimaging studies. 

https://www.nature.com/articles/s41598-018-21181-8#ref-CR1
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Figure 2-6. Confocal images of HeLa cells for DIC images (panels A, D, and G), 

fluorescence images (panels B, E, and H), and merged images (panels C, F, and I). 

Scale bar = 10 μm. Panels (A–C) are for control sample without SQDs, (D–F) and (G–

I) are for cells incubated with SQD-perylene and SQD-pyrene, respectively. 

2.2.4 Cytotoxicity Studies 

The cytotoxicity of SQD-pyrene and SQD-perylene was assessed by TNF-α cytotoxicity 

assay to investigate whether the materials would be harmful when used for biomedical 

applications. Figure 2-7 shows the results of the TNF-α cytotoxicity assay for SQD-
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perylene and SQD-pyrene at different concentrations. Over the concentration range in 

Figure 2-7, the cellular viability decreased by up to 40% of the control for SQD-perylene 

and SQD-pyrene. Hence, the nanoparticles SQD-perylene and SQD-pyrene were found to 

have low cytotoxicity, indicating the possibility of using SQDs for biolabeling 

applications. 

 

Figure 2-7. Cytotoxicity effect of the nanoparticles SQD-pyrene (A) and SQD-

perylene (B) measured by TNF-α assay. 

2.2.5 Conclusion 

In summary, we have synthesized three families of SQDs covalently functionalized with 

phenanthrene, pyrene, and perylene chromophores. The PL of SQD core was red-shifted 

by 69 and 65 nm, and blue-shifted by 50 nm when perylene, phenanthrene, and pyrene were 

used as capping agents, respectively, compared to the counterpart model compound, SQD-

heptene. The quantum efficiency was improved from 8% in SQD-heptene to 18% and 11% 

in SQD-perylene and SQD-pyrene, respectively. Therefore, the functionalization of the 
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SQD core with aromatic fluorophores is an efficient strategy to tune the optical properties 

of SQDs and improve their quantum efficiency. The nanoparticles SQD-perylene and 

SQD-pyrene showed promising results when used for fluorescent cellular imaging with 

low cytotoxicity, which enables the SQDs to be used as fluorescence probes in bioimaging. 

We are now aiming to apply this strategy to prepare SQDs that emit in the near-IR region 

and use them as photodynamic therapy agents for the apoptosis of cancer cells. 

2.3 Methods 

Materials 

3-Ethynyl perylene, tetraoctylammonium bromide (98%, TOAB), silicon tetrachloride 

(99.998%, SiCl4), hexachloroplatinic acid hexahydrate (Pt), lithium aluminum hydride 

solution (LAH, 1 M in THF), 1-ethynyl pyrene (pyrene), 3-ethynyl perylene (perylene), 9-

ethynyl phenanthrene (97%, phenanthrene), and 1-heptyne (98%, heptyne) were used 

without additional purification. All solvents were dried by passing through MB SPS-800 

(MBraun) solvent purification system with water content below 15 ppm. 

Characterization 

UV-Vis absorption spectra were measured using a Shimadzu UV-1800 double beam 

spectrophotometer. Steady-state emission and excitation spectra and time-resolved spectra 

were recorded at 298 K using an Edinburgh Instruments F980. The XPS analyses were 

carried out with a Kratos Axis Nova spectrometer using a monochromatic Al K(alpha) 

source (15 mA, 14 kV). The TEM/HRTEM images were recorded using Libra 200 MC 

operated at 200 kV. The FTIR spectra were obtained from a Nicolet 6700 FTIR 

spectrometer equipped with a smart iTR diamond horizontal attenuated total reflectance 

(ATR). 

Photophysical measurements 

All samples were prepared in HPLC grade dichloromethane with varying concentrations 

in the order of μM. Absorption spectra were recorded at room temperature using a 

Shimadzu UV-1800 double beam spectrophotometer. Molar absorptivity determination 



51 

 

was verified by linear least-squares fit of values obtained from at least four independent 

solutions at varying concentrations with absorbance ranging from 4.00 × 10−6 to 2.00 × 10−5 

M. 

The sample solutions for the emission spectra were prepared in HPLC-grade DCM and 

degassed via bubbling nitrogen for five minutes using a quartz cuvette designed in-house. 

Steady-state emission and excitation spectra and time-resolved emission spectra were 

recorded at 298 K using an Edinburgh Instruments F980. All samples for steady-state 

measurements were excited at 440 nm, 360 nm, 330 nm and 310 nm while samples for 

time-resolved measurements were excited at 378 nm using a PDL 800-D pulsed diode 

laser. Emission quantum yields were determined using the optically dilute method40. A 

stock solution with absorbance of ca. 0.5 was prepared and then four dilutions were 

prepared with dilution factors between 2 and 20 to obtain solutions with absorbances of ca. 

0.095 0.065, 0.05 and 0.018, respectively. The Beer-Lambert law was found to be linear at 

the concentrations of these solutions. The emission spectra were then measured after the 

solutions were degassed via bubbling nitrogen for five minutes prior to spectrum 

acquisition. For each sample, linearity between absorption and emission intensity was 

verified through linear regression analysis and additional measurements were acquired 

until the Pearson regression factor (R2) for the linear fit of the data set surpassed 0.9. 

Individual relative quantum yield values were calculated for each solution and the values 

reported represent the slope value. The equation Φs = Φr(A r /A s )(I s /I r )(ns/nr)
41 was used 

to calculate the relative quantum yield of each of the sample, where Φr is the absolute 

quantum yield of the reference, n is the refractive index of the solvent, A is the absorbance 

at the excitation wavelength, and I is the integrated area under the corrected emission curve. 

The subscripts s and r refer to the sample and reference, respectively. A solution of quinine 

sulfate in 0.5 M H2SO4 (Φr = 54.6%) was used as external ref.42. 

Synthesis and purification of functionalized SQDs 

The synthesis of SQDs functionalized with conjugated aromatic linkages was carried out 

using Tilley’s method12,43. All experiments were performed under argon atmosphere using 

a glovebox. In a typical experiment, 1.5 g of TOAB and 150 µL of SiCl4 were dissolved in 

https://www.nature.com/articles/s41598-018-21181-8#ref-CR40
https://www.nature.com/articles/s41598-018-21181-8#ref-CR41
https://www.nature.com/articles/s41598-018-21181-8#ref-CR42
https://www.nature.com/articles/s41598-018-21181-8#ref-CR12
https://www.nature.com/articles/s41598-018-21181-8#ref-CR43
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100 mL of dry toluene by stirring for 45 minutes. An excess amount of lithium aluminum 

hydride (LAH) solution was then added, and the mixture was further stirred for 3 hours to 

produce H-terminated SQDs. Anhydrous methanol was then added to quench the excess of 

LAH until no further effervescence was observed. The passivation of H-terminated SQDs 

was carried out by reacting the SQDs with 4 mL of heptyne to produce SQD-heptene using 

100 µL of 0.1 M Pt catalyst in methanol. The latter procedure was repeated using 

phenanthrene (500 mg), pyrene (500 mg), and perylene (500 mg) as capping agents to 

produce SQD-phenanthrene, SQD-pyrene, and SQD-perylene, respectively (Figure 2-1). 

The resulting capped SQDs were purified by dialysis against water to removed inorganic 

salts, and then DCM to remove organic impurities (MWCO of 1 KDa, Spectra/Por® 6 

Standard RC Pre-wetted Dialysis Tubing, diameter 29 mm). 

Fluorescent Imaging 

The HeLa cells were cultured one day prior to imaging at a volume of 1 × 105 cells/well on 

a 6-well culture plate with the medium (Dulbecco’s modified Eagle’s medium (DMEM), 

10% fetal calf serum and 4 mM L-glutamine) at 37 °C and 5% CO2. On the day of imaging, 

cells were grown to 80% confluence and they were incubated with 50–100 µg/ml of 

functionalized SQDs dispersed in phosphate-buffered saline (PBS) for 3 hrs. Immediately 

before imaging, the medium was removed, and HeLa cells were washed 3 × using fresh 

PBS solution. The cells were then imaged using a confocal microscope (Zeiss LSM 510 

Duo Confocal). 

Cytotoxicity (TNF-α) 

TNF-α assay was performed to evaluate the cytotoxicity of SQD-pyrene and SQD-

perylene. Cells were cultured in 96-well microplates in a humidified atmosphere (37 °C 

and 5% CO2) to 70 − 80% confluence. The cells were seeded at a concentration of 5 × 104 

cells/well in 100 µl of culture medium (1 µg/ml of actinomycin C1 and various amounts of 

TNF-α) and different concentrations of SQDs. The cells were incubated for 24 hours at 

these conditions. Afterwards, 10 µl of Cell Proliferation Reagent WST-1 was added and 

incubated for another 4 hours, and they were finally shaken for 1 minute. The absorbance 
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of the sample was measured against the background control as blank using a microplate 

(ELISA) reader at wavelength of 450 nm. 

2.4  Supporting Information 

 

Figure 2-8.  FTIR   spectra   of 3-Ethynylperylene(a), 9-Ethynylphenanthrene (b), and 

1-Ethynylpyrene (c). 
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Figure 2-9. XPS spectra of C 1S for SQD-pyrene 
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Figure 2-10. UV-Vis absorption, excitation (em = 448 nm), and emission spectra of 

SQD-heptene collected in degassed DCM at 298 K (ex = 360 nm). 

 

Figure 2-11. UV-Vis absorption, excitation (em = 374 nm), and emission spectra of 

SQD-heptene collected in degassed DCM at 298 K (ex = 315 nm).  
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Figure 2-12. UV-Vis spectra of perylene (dotted orange line) and SQD-perylene (solid 

orange line); excitation spectra of perylene (dotted green line, em = 467 nm) and 

SQD-perylene (solid green line, em = 518 nm); and emission spectra of perylene 

(dotted red line) and SQD-perylene (solid red line) collected in degassed DCM at 298 

K (ex = 360 nm). 
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Figure 2-13. UV-Vis spectra of pyrene (dotted orange line) and SQD-pyrene (solid 

orange line); excitation spectra of pyrene (dotted green line, em = 384 nm) and SQD-

pyrene (solid green line, em = 397 nm); and emission spectra of pyrene (dotted red 

line) and SQD-pyrene (solid red line) collected in degassed DCM at 298 K (ex = 360 

nm). 
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Figure 2-14. UV-Vis spectra of phenanthrene (dotted orange line) and SQD-

phenanthrene (solid orange line); excitation spectra of Phenanthrene (dotted green 

line, em = 377 nm) and SQD-phenanthrene (solid green line, em = 447 nm); and 

emission spectra of phenanthrene (dotted red line) and SQD-phenanthrene (solid red 

line) collected in degassed DCM at 298 K (ex = 315 nm). 
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Figure 2-15. Emission spectra of SQD-perylene collected in degassed DCM at 298 K 

upon photoexcitation at 360 nm (light-blue line) and at 450 nm (red line). 

 

Figure 2-16. Emission spectra of SQD-pyrene collected in degassed DCM at 298 K 

upon photoexcitation at 360 nm (light-blue line) and at 348 nm (red line). 
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Figure 2-17. Emission spectra of SQD-phenanthrene collected in degassed DCM at 

298 K upon photoexcitation at 360 nm (light-blue line) and at 315 nm (red line). 
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Figure 2-18. Emission spectra of SQD-pyrene collected in degassed DCM at 298 K at 

a concentration of 100 μM (red line), 50 μM (purple line), 10 μM (orange line) and 1 

μM (blue line) (ex = 360 nm). 



62 

 

 

Figure 2-19. Emission spectra of pyrene collected in degassed DCM at 298 K at a 

concentration of 1.5 mM (blue line), 550 μM (orange line), 368 μM (green line) and 

176 μM (red line) (ex = 360 nm). 
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Figure 2-20. Emission spectra of perylene (ex = 360 nm, dotted red line) and SQD-

perylene (ex = 360 nm, solid red line); pyrene (ex = 360 nm, dotted blue line) and 

SQD-pyrene (ex = 360 nm, solid blue-line); phenanthrene (ex = 315 nm, dotted yellow 

line) and SQD-phenanthrene (ex = 315 nm, solid yellow line) collected in degassed DCM 

at 298 K. 
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Figure 2-21. Emission spectra of SQD-perylene (ex = 440 nm, blue) and SQD-

pyrene (ex = 350 nm, orange) in water. 
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Chapter 3  Energy/Electron Transfer Switch for Controlling 

Optical Properties of Silicon Quantum Dots 

This work was published in Scientific Reports, 8, 17068 (2018) 

3.1  Introduction 

Silicon Quantum Dots (SQDs) have recently attracted tremendous attention due to their 

unique optical properties, including wide absorption spectra, excellent stability against 

photobleaching compared to conventional dyes, and size-dependent tuneable 

photoluminescence (PL).[1] The SQDs have advantages over other quantum dots, 

including cadmium sulfide (CdS), due to their excellent biocompatibility and 

biodegradability, low toxicity, and the ease of their surface functionalization.[2] Thus, they 

are ideal candidates for a wide range of potential applications including bioimaging,[3] 

photodynamic therapy,[4] sensing,[5] photovoltaics,[6] and light-emitting diodes 

(LEDs).[7] 

In general, the size-tuneable PL of SQDs is assigned to the quantum confinement effect 

where the PL is blue-shifted when the size of SQDs is more than ~ 3 nm. However, a 

deviation from this behaviour was observed for SQDs of size less than ~ 2 nm when the 

PL originates from surface relevant states.[8] The surface functionalization would then 

play a crucial role towards controlling the optical properties of SQDs.[9] It has been shown 

in previous studies that surface functionalization of SQDs with aromatic ligands helps tune 

their optical properties including their quantum yield and PL.[10,11] This strategy 

potentially can be utilized as a means to control the optical properties of SQDs. Moreover, 

the functionalization of SQDs with organic ligands increases their stability towards 

oxidation and prevents them from agglomeration and aggregation.[12]   

Only a few reports in literature investigated the influence of aromatic fluorophores 

covalently linked to SQDs and the role of the spacer connecting the fluorophore on the 

optical properties of SQDs. Interestingly, the utilization of aromatic fluorophores as a 

capping agent was found to play a key role to control the optical properties of 

SQDs.[10,13,14,15,16] 
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Several methods have been reported in literature for preparing SQDs including laser 

pyrolysis,[17] the etching of bulk silicon,[18] nonthermal plasma,[19] and preparation in 

supercritical fluids.[20] In this work, a facile solution-based reduction method has been 

adopted with minor modifications to prepare SQDs.[21] Triethoxysilane derivatives and 

sodium citrate dihydrate were utilized as the silicon source and reducing agent, respectively 

while the synthesis was carried out in the glycerol green solvent at normal pressure and 

relatively high temperature (180 °C). Glycerol is a green solvent produced as a byproduct 

of biodiesel production, and with its high boiling point of 290 °C, and 3 available OH 

groups to help coordinate to the growing nanocrystals, is of interest for solvent engineering 

of SQDs. 

Here, we report the synthesis of SQDs functionalized with perylene-3,4,9,10-

tetracarboxylic acid diimide (PDI) through propylamine and N-propylurea spacers to 

produce Am-SQD-Per and Urea-SQD-Per, respectively. The PDI dye has been chosen for 

this study due to its excellent properties including high fluorescence quantum efficiency, 

high thermal and photochemical stability, and ease of processibility as well as 

scalability.[22] Additionally, the combination of the planar π-system of PDI and other 

electron withdrawing and donating groups within the system with SQDs could strongly 

affect the formed electronic interactions through a possible photoinduced energy and/or 

electron transfer processes. The latter processes are likely to change the optical properties 

of the assemblies. The products Am-SQD-Per and Urea-SQD-Per were characterized using 

high-resolution transmission electronic microscopy (HRTEM), Fourier-transform infrared 

(FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), UV-Vis absorption 

spectroscopy, and steady-state and times-resolved emission spectroscopy.  

3.2  Results and discussion 

The nanoparticles SQDs and their surface functionalization were synthesized as shown in 

Figure 3-1. Both APTES and UPTES were used as the silicon source and were reduced by 

a citrate reducing agent. This reaction was carried out in glycerol as a high boiling point 

green solvent under atmospheric pressure and at 180 oC using an oil bath. The resulting 

SQDs were then functionalized using PDA to produce Am-SQD-Per and Urea-SQD-Per.  
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Figure 3-1. Synthesis route of SQDs (A) and their surface functionalization using 

perylene-3,4,9,10-tetracarboxylic dianhydride (B). 

3.2.1 Size and structure 

Figure 3-2 shows the TEM, HR-TEM, and size distribution images of the assemblies Am-

SQD-Per and Urea-SQD-Per. The TEM images indicate that the functionalized SQDs are 

quasi-spherical particles with no obvious agglomeration or aggregation. The corresponding 

size distribution histograms obtained by analyzing of more than 300 dots from different 

regions of the grids showed that the diameter of these particles ranged from 0.9 to 3.3 nm. 

The average diameters of SQDs for the compounds Am-SQD-Per and Urea-SQD-Per are 

1.61± 0.89 and 1.62 ± 0.81 nm, respectively. The functionalized SQDs exhibited high 

crystallinity which is evidenced by the distinct lattice fringes with 0.30 nm interplanar 

spacing, as shown in the HR-TEM insets of figure 3-2. This is in agreement with the (111) 

plane of diamond structured silicon.[23] It should be noted that the low resolution of the 

TEM and HR-TEM images is assigned to the ultra-small dimensions of these SQDs and 

the small atomic weight of the silicon atom compared to the counterpart metallic or 

semiconductor quantum dots, which is known to provide low-quality visualization.[10,24]   
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Figure 3-2. TEM together with HR-TEM (left) and diameter distribution with 

photographs for solutions under UV (365 nm) irradiation (right) for Am-SQD-Per 

(A) and Urea-SQD-Per (B). 

To confirm the attachment of Am-SQD and Urea-SQD to the PDA dye to produce Am-

SQD-Per and Urea-SQD-Per, respectively, FTIR and XPS spectroscopy were performed. 

Figure 3-3 displays the FTIR spectra of Am-SQD-Per and Urea-SQD-Per. The broad peak 

at 2980 – 3660 cm-1 can be assigned to the stretching vibration of the O-H bond.[25] The 

intense peaks at 1019 and 970 cm-1 for Am-SQD-Per, and 1024 and 909 cm-1 for Urea-

SQD-Per, are attributed to Si-O-Si/Si-O-C and Si-OH stretching, respectively.[26] The 

peaks at 2970 – 2808 cm-1 correspond to the –CH stretching vibrations of the spacer and 

alkyl group.[27] Both peaks at 1685 and 1638 cm-1 for Am-SQD-Per, and 1692 and 1639 

cm-1 for Urea-SQD-Per, are assigned to imidic C=O stretching (N-C=O).[26] The peaks at 

1439 cm-1 in both compounds can be assigned to N-C stretching.[28] Furthermore, the 
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characteristic peaks of the anhydride carbonyl (O-C=O) in the free dye PDA at 1760 and 

1720 cm-1 are absent in the FTIR spectra of Am-SQD-Per and Urea-SQD-Per. This 

indicates the success of SQDs binding to the dye. 

 

Figure 3-3. FTIR spectra of Am-SQD-Per (A) and Urea-SQD-Per (B). 

To further confirm the binding of SQDs to the PDA dye, XPS spectroscopy was performed. 

Figure 3-4 displays the high resolution XPS spectra of O 1s, C 1s, N 1s, and Si 2p for Am-

SQD-Per and Urea-SQD-Per. The deconvoluted peaks of O 1s appeared at 533.6, 532.3, 

and 530.9 eV for Am-SQD-Per, and 533.4, 532.1, 530.9 eV for Urea-SQD-Per. These can 

be assigned to C-O, Si-O, and amidic or imidic carbonyl (-N-C=O), respectively.[29,30,31] 

The C 1s binding energy peaks were present at 288.4, 286.4, and 285 eV for Am-SQD-Per, 

and 288.7, 286.3, and 284.8 eV for Urea-SQD-Per. These are attributed to C=O of imide 

or amide bonds (-N-C=O), C-O or C-OH, and Si-C or C=C of PDI kernel, 

respectively.[32,33,34,35] The XPS spectra of N 1s centered at 399.6 for Am-SQD-Per 

and 399.9 eV for Urea-SQD-Per signify the presence of N-C or N-C=O.[30,36] The Si 2p 

peak at 102.7 for Am-SQD-Per and 102.4 eV for Urea-SQD-Per can be assigned to Si-O-
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C or Si-C.[33] The XPS data are consistent with the FTIR data, providing convincing 

evidence for successful functionalization of SQDs with PDI.   

 

Figure 3-4. XPS spectra of O 1s, C 1s, N 1s, and Si 2p for Am-SQD-Per and Urea-

SQD-Per. 
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3.2.2 Photophysical properties 

Steady-state photoluminescence emission, absorption and excitation spectra for Urea-

SQD, Urea-SQD-Per, Am-SQD and Am-SQD-Per in methanol (MeOH) at room 

temperature are given in Figure 3-5 (A&B).  

 

Figure 3-5. Emission spectra of (A) Urea-SQD (blue), Urea-SQD-Per (red)  and (B) 

Urea-SQD (blue), Am-SQD-Per (red and green) as well as ground-state absorption 

(grey) and photoluminescence excitation spectra (black and brown) of (C)  Urea-

SQD-Per and (D) Am-SQD-Per collected at room temperature in methanol 

(excitation wavelength at which emission spectra collected and emission wavelengths 

at which excitation spectra collected are given on the graph).  
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Study of the emission spectrum recorded for the starting Urea-SQD (see Figure 3-5 A) 

revealed one broad spectrum extended over the spectral range of 350-650 nm, in agreement 

with reported literature data for amine-terminated silicon quantum dots.[37],[38] On the 

other hand, emission spectrum obtained for Urea-SQD-Per under the same experimental 

conditions exhibited two main bands (see Figure 3-5 A). The first emission band showed a 

resemblance with the starting Urea-SQD with a broad nature over the spectral range 

between 350-450 nm. An observable blue shift detected in the quantum dot emission in 

Urea-SQD-Per as compared to the starting Urea-SQD. Considering the average diameter 

for our SQDs to be 1.6 nm, such shift observed in the emission is likely to be assigned to 

surface chemistry and independent on quantum confinement. [8] This is in agreement with 

an earlier report where the emission properties for large QDs (d ˃ ~ 3 nm) were found to 

be dominated by quantum confinement while those for smaller size quantum dots (d ˂ ~ 2 

nm) is associated with surface relevant states.[8] In this respect, the observed blue shift 

should be associated with surface polarity changes due to coupling of the organic dye to 

the quantum dot surface.[23,38,39,40,41,42,43] The second band detected in the emission 

of Urea-SQD-Per came as a relatively stronger band with spectral features extending over 

450-650 nm where three main vibronic features detected at 488, 510 and 550 nm. Based 

on the structured nature of this band and literature data [44] we assign it to the organic dye, 

i.e. PDI. From the steady-state emission in Figure 3-5 A, it is evident that the emission of 

SQDs is of higher energy compared to that of PDI. An energy level diagram predicted from 

the lowest energy position of the emission spectra recorded for each of the lumophores 

constructing the investigated assemblies is given in the supporting information.  This 

energy alignment together with the absorption overlap seen in the ground state absorption 

allows us to anticipate the possibility of energy transfer. Evidence for the anticipated 

energy transfer (ET) is found upon examining the PL excitation spectrum collected with 

emission monochromator fixed at 564 nm where emission is mainly due to the organic dye, 

(see Figure 3-5 C). The match found between the absorption and excitation spectra 

supporting the suggested ET process between the SQDs and the PDI.[45] Further evidences 

of the assigned ET are given in the time-resolved measurements as discussed below.  

Interestingly, different behaviour was found on studying the steady-state emission spectra 

of Am-SQD-Per in methanol at room temperature (see Figure 3-5 B). Analysis of the 
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recorded steady-state emission of Am-SQD-Per revealed that spectrum mainly have the 

signature of SQD emission which suffered from blue shift as compared to its analogue of 

Am-SQD.  Considering the average size of SQD, i.e. 1.6 nm, we confidently assign the 

observed shift to surface polarity changes associated with the PDI coupling in the same 

manner to that observed for Urea-SQD-Per.[43]  The clear difference to that of Urea-SQD-

Per came in the organic dye (PDI) emission vibronics that were absent or suffered from 

strong quenching in the recorded emission of Am-SQD-Per. Despite this absence or minor 

contribution of the organic dye in the emission profile, the excitation spectra collected at 

two different wavelengths revealed the spectral signatures of both the organic dye and the 

quantum dot; see Figure 3-5 B. Changing the excitation wavelength to 520 nm, 

corresponding to where the lowest energy (0-0) of the organic dye S0-S1 as obtained from 

absorption, allowed us to observe the PDI emission, see Figure 3-5 B. Being in the same 

respect, relatively strong quenching in the overall emission was indicated by the calculated 

PL quantum yield. (see Table 3-1). This overall photoluminescence quenching together 

with almost complete disappearance of the organic dye vibronic bands in the emission 

profile, as compared to its analogues of Urea-SQD-Per, strongly in favourite of 

photoinduced electron transfer (Pet). [46,47,48] [49,50,51] Additionally, the excitation 

spectra collected with emission monochromator fixed at two different wavelengths, one at 

SQDs emission (428 nm) and the other at PDI emission (575 nm) given in Figure 3-5 B. 

Examination of the obtained spectra revealed drastic changes in the relative contribution 

of the organic dye to the SQDs in the excitation spectrum at 575 nm as compared to their 

ratio in the absorption spectrum; thus supporting the suggested electron transfer 

mechanism.[51]  Further differences between the two investigated systems of Urea-SQD-

Per and Am-SQD-Per were found in the photoluminescence quantum yields calculated 

under the same experimental conditions; see Table 3-1.  
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Table 3-1. Emission quantum yields of SQDs assemblies in methanol at room 

temperature 

% Фa  Sample 

Am-SQD Am-SQD-Per Urea-SQD Urea-SQD-Per 

total 8.1 2.9 6.3 18.5 

SQDs - - - 1.7 

Organic dye - quenched - 16.8 

a Reference used is 6-Aminochrysene and ex = 345 nm 

In general, the obtained quantum yield values (which are rather low) are comparable with 

those recently reported from our group for closely related systems [10] and in good 

agreement with literature. [41] While functionalizing SQDs with PDI improved the 

quantum yield for Urea-SQD-Per as compared to starting Urea-SQD; a large quenching 

was observed for Am-SQD-Per. The total quantum yield enhancement observed in Urea-

SQD-Per can be attributed to the contribution of the organic dye (i.e. PDI, see Figure 3-5). 

On the other hand, the large decrease in quantum yield for Am-SQD-Per argues in favour 

of the energy loss associated with the suggested electron transfer between SQDs and PDI. 

Considering this possibility, the photoexcitation energy is anticipated to be lost in 

formation of the non-luminescent ion pair radical. Indeed, this can help explain the above 

observation of absence or strong quenching of organic emission in the emission profile 

displayed in Figure 3-5. Further evidence for the suggested (Pet) found in the time-resolved 

measurements discussed below. 

Time-resolved single photon counting (TCSPC) measurements 

To further decipher the different types of interaction between SQDs and PDI, the 

synthesized assemblies of Urea-SQD-Per, Am-SQD-Per, and their analogues Urea-SQD 

and Am-SQD were investigated using time-correlated single photon counting (TCSPC). 

TCSPC measurements were carried out in the nanosecond (ns) time scale at room 

temperature. Fluorescence lifetime measurements were collected at maximum emission 
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peaks (em) as extracted from the steady-state measurements (Table 3-2).  For both 

assemblies of Urea-SQD and Am-SQD, fluorescence decay traces can be fitted by double 

exponential functions (see Supporting Information SI 5 and SI 6). This may indicate the 

involvement of two competing fast and slow electron–hole recombination processes.[52] 

[53] On the other hand, kinetic traces for Urea-SQD-Per and Am-SQD-Per required 

equation with three lifetimes for the best fit. 

Table 3-2. Fluorescence lifetimes (ns) at room temperature from TCSPC using laser 

excitation at 375 nm. 

 Am-SQD Am-SQD-

Per 

Urea-SQD Urea-SQD-

Per 

 

em , nm  450 450 450 445 560 

Time, ns (pre) 2.3±0.1 (63) 

11.6±0.3 (37) 

0.8±0.1 (52) 

2.9±0.1 (28) 

10.6±0.2 (20) 

2.1±0.1 (48) 

9.4±0.1 (52) 

0.5±0.1 (47) 

2.6±0.1 (39) 

8.9±0.2 (14) 

4.4±0.1 

pre = pre-exponential weighting factor; IRF ≈ 250 ps (from LUDOX SM-30 colloidal 

silica solution) 

For Urea-SQD-Per, two different kinetic profiles were detected: the first associated with 

PDI emission and the second corresponding to emission of SQDs. Kinetic traces for Urea-

SQD-Per monitored at PDI emission were fit to a mono exponential equation where the 

extracted lifetime found to be ~ 4.4 ns. This finding is in good agreement with literature 

data for PDI-based compounds. [50] Kinetic traces corresponding to SQDs emission 

maxima revealed three components: one fast together with two of relatively longer 

lifetimes. The two relatively longer lifetimes are comparable with their analogous Urea-

SQD, while the shorter lifetime was found to be in the picosecond (ps) time scale. Time 

resolved emission spectra (TRES) were done to further investigate the interaction 

mechanism. TRES collected over the first 500 ps revealed fast decay at emission bands of 

SQDs almost within the same time domain where those of organic dye are increasing in 

intensity, see Figure 3-6 A (inset). Furthermore, as the time delays extended up to 15 ns, 
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an overall decay detected as displayed in Figure 3-6 A and the kinetic traces in Figure 3-6 

C where the kinetic traces monitored at the two wavelengths corresponding to quantum dot 

(430 nm) and PDI (525 nm). Kinetic traces are showing fast decay of the quantum dot 

emission peaks approximately within the same time domain for the rise of the PDI peaks. 

This rise/decay behavior is perfectly in line with the above suggested photoinduced energy 

transfer (PET): (Urea-SQD)*-Per → (Urea-SQD)-Per*. Indeed, fitting the kinetic traces 

showed that Urea-SQD-Per revealed a fast lifetime decay of ~0.5 ns while the lifetime 

corresponding to the rise of PDI emission found to be ~0.4 ns. Hence, we can estimate the 

rate of energy transfer to be ~2 x 109 s-1; in good agreement with rates estimated for closely 

related systems in literature.[54] 
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Figure 3-6. Time-resolved emission spectra of at different delay time of (A) Urea-

SQD-Per (inset showing early time delay signals) and (B) Am-SQD-Per (inset showing 

early time delay signals) as well as kinetic traces of the decay at two different 

wavelengths of (C) Urea-SQD-Per and (D)Am-SQD-Per. Spectra collected using ex 

= 375 nm in methanol at room temperature and delay times are indicated on the 

graph. (IRF ≈ 250 ps, red lines are fitted curves). 

Another scenario found when studying the behavior of Am-SQD-Per as can be seen in the 

given spectra displayed in Figure 3-6 (B, D). TRES studied at the two sides of the laser 

signal (rise and decay of the laser pulse) are given in Figure 3-6 B (inset). The emission 

profile exhibited the signature of the quantum dots regardless of the delay time at which 

spectrum was collected, which is in line with the strong quenching for the PDI peaks found 

in the steady-state emission. This observation is in favour of the involvement of a process 
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faster than the temporal resolution of our measurement, i.e. ≤ 250 ps, responsible for the 

absence or strong quenching of the PDI emission. These findings together with the above 

overall weak PL quantum yield values given in Table 3-1 are indicative of the suggested 

photoinduced electron transfer process (Pet). Considering the disappearance of the PDI 

signature within the temporal resolution of our measurements, this allows us to estimate 

the rate to be ≥ 4 x 109 s-1.  

Confirmation of the charged nature for the interaction involved in Am-SQD-Per was 

further supported by the kinetic traces collected in different solvents. The charged radical 

nature of the ion pairs formed due to Pet which makes it sensitive to solvent polarity change 

(Figure 3-7). On the other hand, PET where no charge separation involved solvent change 

is expected to exhibit a less pronounced impact. Indeed, kinetic traces collected for Urea-

SQD-Per revealed minor or no significant differences regardless the solvent used, see 

Figure 3-7.  Fluorescence lifetimes extracted from the kinetic traces in different solvents 

given in Table 3-3 clearly showed the solvent nature to have a significant impact on the 

fluorescence kinetic trace for the case of Am-SQD-Per whereas minimum changes detected 

for that of Urea-SQD-Per. Thus, it is supporting our suggested type of interaction within 

each of the two systems. 

 

Figure 3-7. Solvent effect on kinetic traces of (A) Urea-SQD-Per and (B) Am-SQD-

Per. Traces collected using ex = 375 nm and emission wavelengths at which traces 
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collected as well as the solvents used are given on graph. (IRF ≈ 250 ps, and red lines 

are fitted curves) 

Table 3-3. Solvent effect on fluorescence lifetimes of Am-SQD-Per at room 

temperature from TCSPC collected using laser excitation (ex) at 375 nm 



em , nm 

 Time, ns (pre)  

MeOH (PI = 5.1) DMSO (PI = 7.2) DMF (PI = 6.4) 

450 0.8±0.1 (52) 

2.9±0.1 (28) 

10.6±0.2 (20) 

0.6±0.1 (65) 

2.5±0.1 (26) 

8.5±0.3 (9) 

0.4±0.1 (73) 

1.6±0.1 (21) 

8.3±0.3 (6) 

560 0.9±0.1 (45) 

3.1±0.1 (37) 

10.2±0.3 (18) 

0.5±0.1 (57) 

2.2±0.1 (30) 

8.7±0.2 (13) 

0.4±0.1 (66) 

1.7±0.1 (27) 

7.9±0.2 (7) 

pre = pre-exponential weighting factor; IRF ≈ 250 ps (from LUDOX SM-30 colloidal 

silica solution), PI= polarity index 

Impact of the structure on the nature of the interaction.  

In an earlier contribution, our group reported an efficient energy transfer to be active 

between SQDs and perylene dye [10], see Figure 3-8. In this specific system, coupling 

between the quantum dot and the organic dye achieved using an unsaturated alkyl chain 

provided an efficient energy transfer between the two luminophores. Herein and in 

continuation of our interest in tuning the photophysical properties of SQDs based systems, 

we synthesized two dyad systems built on SQDs and PDI where two different spacers are 

involved, see Figure 3-1. For Am-SQD-Per, with the bridge being a saturated alkyl chain, 

the two luminophores are expected to have minimum conjugation leaving the electronic 

system of the two luminophores separated.[55] In this manner; with PDI known to be an 

electron acceptor, [56] interaction is found to proceed mainly via electron transfer (Pet) as 

discussed above. It is worthy to indicate here that the possibility of energy transfer 
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interaction cannot be excluded in light of the strong spectral overlap. On the other hand for 

Urea-SQD-Per, having the hydrogen atom on the amine group closer to the oxygen of the 

diimide of PDI made hydrogen bond (HB) formation plausible, see Figure 3-8. With the 

PDI redox properties being sensitive to core modification [56] and energy levels of 

quantum dots being subtle to modify upon changing the surface chemical structure. [57] 

Such HB formation possibly rendered electron transfer to be less energetically active. 

Considering the strong spectral overlap between the absorption of PDI and emission of 

SQD energy transfer is in turn more likely to be responsible for the observed quenching of 

the SQD emission. This is supported by the negligible impact of the solvent on the 

fluorescence lifetime decay curve as discussed in the TSCPC section. Hence, we can pre-

design the SQDs assemblies in a way to control the type of interaction permitted throughout 

and consequently their optical properties. 

 

Figure 3-8. Hydrogen bond (HB) formation through Urea-SQD-Per (left) and earlier 

investigated SQD-perylene (right). 

Effect of pH change on steady-state emission.  

We extended our study to include the impact of pH changes on synthesized assemblies to 

better understand the charge-transfer mechanism, as well as the potential for biological 

applications [58,59] where pH is an important variable. The study carried out in aqueous 

solutions of the quantum dots where the pH values were changed while keeping the SQDs 

concentration constant. The Am-SQD-Per showed negligible changes in emission intensity 

with changing the pH, see Supporting Information. On the other hand, results revealed a 

large change in the emission profile of Urea-SQD-Per as function of pH change, see Figure 
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3-9. In general, the pronounced change in intensity detected in the spectral features 

assigned to PDI, whereas those peaks corresponding to SQD were subject to minor or 

neglected changes. For the PDI part of the spectrum, first change from the neutral condition 

to relatively acidic condition resulted in an initial increase of the intensity, see Figure 3-9 

A. Such observed intensity increase with the pH decrease can be attributed to an emission 

recovery associated with removal charge transfer from the amine group to core of SQDs.  

[60] In solutions with relatively high pH values, lone pair on the nitrogen atom of the amine 

group is involved in relaxation processes resulting in a reduced emission. In relatively low 

pH values, the electron transfer between the amine moieties and the Si core is precluded, 

yielding higher emission intensity. [54] Further increase of the acid concentration showed 

a successive decrease in the emission intensity where sharp decrease in the PL intensity 

collected at 480 nm observed over pH range of 4 ‒ 2.6, see Figure 3-9 (B,C). The changes 

found in the PL part of spectra assigned to the organic dye (i.e. PDI). Such changes can be 

understood considering that severe changes were earlier reported in literature for PDI 

emission as function of pH due to stacking or aggregate formation. [61]  

 

Figure 3-9. Effect of pH change on the emission of Urea-SQD-Per in water showing 

initial intensity increase (A), intensity decrease (B) and emission intensity at 480 nm 

as function of pH change (C). 
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3.2.3 Fluorescent cellular imaging study 

To demonstrate the applicability of the Urea-SQD-Per assembly for bioimaging 

applications, they were utilized for in vitro fluorescent imaging of the human osteosarcoma 

U2OS and human embryonic kidney HEK293 cell lines. Figure 3-10 shows the U2OS and 

HEK293 cells that were incubated with Urea-SQD-Per, for which an excitation wavelength 

of 470 nm was used and the PL at 510 nm was monitored. The control images of both cell 

lines (Figures 3-10 A and 3-10 C) showed no fluorescence from the cells relative to the 

U2OS and HEK293 cells with the incorporated Urea-SQD-Per (Figures 3-10 B and 3-10 

D). Thus, the green fluorescence observed in these cells is assigned to the emission from 

the functionalized SQDs and not autofluorescence from the cells. Therefore, the Urea-

SQD-Per assembly are suitable for biological fluorescence imaging applications. 

 

Figure 3-10. Overlay of the transmission and fluorescence microscope images of the 

U2OS in the absences of SQDs (A) and with functionalized Urea-SQD-Per 

incorporated inside the cells (B), and HEK293 cells with no SQDs (C) and with 

functionalized Urea-SQD-Per (D). 
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3.2.4 Impact of Urea-SQD-Per on cellular viability 

Using a standard assay, cellular viability was assessed based on the production of ATP in 

metabolically active cells (see methods). U2OS cells were incubated with and without 

Urea-SQD-Per at a concentration representing double the concentration used for 

fluorescent imaging (see Figure 3-11), and in six replicates. The viability of cells incubated 

with Urea-SQD-Per was not significantly different from untreated cells, indicating no 

detectable cytotoxicity.  

 

Figure 3-11. ATP-dependent viability assay 

U2OS cells were assayed after treatment with 100 µg/mL urea-SQD-per (SQD) for one 

hour in high glucose DMEM, following the manufacturer’s instructions (see methods). Plot 

shows mean luminescence, which correlates with cellular ATP levels. Errors bars indicate 

one standard deviation of the mean. Near-undetectable signal from DMEM only, DMEM 

+ SQD, and DMEM + CellGlo reagent indicates the observed luminescence was solely due 

to detection of cellular ATP. 
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3.2.5 Conclusion 

Using simple and environmentally friendly chemistry, we were able to synthesize two dyad 

systems coupling the SQDs of an average size of ~1.6 nm with 3,4,9,10-tetracarboxylic 

acid diimide (PDI) chromophore through N-propylurea or propylamine spacers. The 

chemical nature of the spacer has proven to exert a significant impact on the photophysical 

properties of the obtained dyad as confirmed by steady state and time-resolved 

spectroscopy measurements. The results confirmed the possibility to control the nature of 

the interaction throughout the backbone of the dyad by the change of the spacer used for 

coupling PDI to the SQDs. While the use of N-propylurea allowed photoinduced energy 

transfer (PET), the utilization of propylamine permitted photoinduced energy and/or 

electron transfer within the dyad. Furthermore, PL activity of the synthesized systems was 

investigated as a function of pH where Am-SQD-Per found to show negligible changes 

whereas Urea-SQD-Per was sensitive to pH changes. Moreover, in vitro fluorescent 

imaging of the human osteosarcoma U2OS and human embryonic kidney cells HEK293 

cell lines showed promising results for bioimaging application. 

3.3  Methods and materials 

Chemicals 

(3-Aminopropyl) triethoxysilane (99%, APTES), 1-[3-(trimethoxysilyl)propyl]urea (97%, 

UPTES), sodium citrate dihydrate (≥99%, citrate), and perylene-3,4,9,10-tetracarboxylic 

dianhydride (97%, PDA) were used without additional purification. All solvents were dried 

by passing through MB SPS-800 (MBraun) solvent purification system with water content 

below 15 ppm. 

Methods 

The XPS analyses were carried out with a Kratos Axis Nova spectrometer using a 

monochromatic Al K(alpha) source (15 mA, 14 kV). The TEM/HRTEM images were 

recorded using Libra 200 MC operated at 200 kV. The FTIR spectra were measured using 

a Nicolet 6700 FTIR spectrometer equipped with a smart iTR diamond horizontal 

attenuated total reflectance (ATR). 
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The UV–Vis absorption spectra were recorded using a Shimadzu UV-1800 double beam 

spectrophotometer with a 1cm path length quartz cuvette. Steady-state emission and 

excitation spectra were recorded on a Photon Technology International (PTI) 

spectrofluorometer equipped with a xenon short-arc lamp. All measurements carried out 

using Felix X32 PTI software for data collection and analysis at 298 K under ambient 

oxygen in methanol (MeOH). 

Time-resolved emission spectra (TRES) and fluorescence lifetimes measurements were 

carried out using a PicoQuant Fluorescence lifetime system (Picoquant GmbH) equipped 

with a FluoTime 200 (Fluorescence Lifetime spectrometer), a TimeHarp 200 (Time-

correlated Single Photon Counting (TCSPC) system), and a PDL800-B pulsed diode laser 

driver unit. Samples were excited using a 375 nm using a picoseconds laser diode head 

(LDH-P-C375). Instrument Response Function (IRF) found to be ~250 picosecond (ps) 

obtained from analysis of scattered light kinetic trace using LUDOX SM-30 colloidal silica 

solution at 375 nm. Fluorescence lifetimes were obtained from deconvolution of the kinetic 

traces of their solutions using global fluorescence decay data analysis software (Fluo Fit) 

supported by Picoquant GmbH. The TRES was recorded using an automated wavelength 

scanner and multichannel scaler (MCS) data collection under instrument software control. 

In this mode, the monochromator was controlled by a stepper motor and automated 

collection of spectrally resolved lifetime histograms. Data was collected in standard 

Integration Mode and saved in different blocks of memory for each wavelength. The 

collected data was then analyzed using FluoPlot software to construct the different 

emission spectra as function of delay time after excitation with the laser source.  

Quatum yield measurements were carried out at 298 K in MeOH using 6-Aminochrysene 

(ΦF = 18 %) as references. [62] Three different solutions for both sample and reference 

were used for the measurements. Concentrations were adjusted so as to have an absorbance 

of ~0.05 at the excitation wavelength and absorption spectra recorded five times for 

accuracy and error minimization. 

Fluorescent imaging: Human U2OS osteosarcoma or HEK293 embryonic kidney cells 

were grown in 24-well plates in high glucose (4.5g/L) Dulbecco’s modified Eagle medium 
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containing 3% penicillin and streptomycin and 10% fetal bovine serum (Gibco by Life 

Technologies). At 60-70% confluency, media was replaced with phosphate buffered saline 

(1 x PBS pH 7.4; Corning CellGro) and functionalized Urea-SQD-Per dissolved in PBS to 

a final concentration of 50 ug/mL and incubated for 1-1.5 hr. After incubation, cells were 

washed twice with PBS to remove excess Urea-SQD-per. Images were captured using an 

EVOL FL auto fluorescent microscope in GFP mode (excitation/bandwidth = 470/22, 

emission/bandwidth = 510/42) and phase mode at 20X magnification.  

Cell viability assay: U2OS cells were seeded in equivalent densities in an opaque-walled 

96-well plate and grown overnight in high glucose DMEM (4.5 g/L glucose, 10%FBS, 3% 

penicillin and streptomycin). Cellular viability was determined using a CellTiter-Glo 2.0 

Luminescent Cell Viability Assay following the manufacturer’s instructions (Promega). 

We incubated 6-wells with and without urea-SQD-Per dissolved in PBS to a final 

concentration of 100 ug/mL for 1 hour. As controls, we measured luminescence of media 

only, media + SQD (100ug/mL), and media + CellTiter Glo 2.0, each in triplicate. 

Luminescence readings were collected using a Synergy H1 microplate reader (BioTek). 

Synthesis and purification of SQDs. 

The SQDs were synthesized using a modified solution-based reduction method.[21] All 

experiments were performed under argon atmosphere using a schlenk line. In a typical 

experiment, 0.3 g of citrate was added to 10 ml of warm glycerol with vigorously stirring 

for 15 minutes till all citrate has been completely dissolved in glycerol. 2 ml of the silicon 

source (APTES) was then added dropwise to the solution, and the mixture was heated to 

180 oC in an oil bath for 3 hours under vigorous stirring. The product (Am-SQD) was then 

purified using a combination of centrifugation and dialysis against methanol (MWCO of 1 

KDa, Spectra/Por® 6 Standard RC Pre-wetted Dialysis Tubing, diameter 29 mm). The 

previous procedures were repeated using UPTES as the silicon source to produce Urea-SQD.  

Functionalization of SQDs. 

An excess amount of PDA (2 g) was added to 2 ml of Am-SQD, and the mixture was then 

heated to 130 oC for 5 hours under argon atmosphere. The product Am-SQD-Per was 
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extracted from the resulting thick red solid by methanol, and insoluble solid reactants were 

removed by gravity filtration. The filtrate was then concentrated using a rotatory evaporator 

and purified using dialysis against methanol. Similarly, the compound Urea-SQD-Per was 

prepared.   

3.4  Supporting Information  

 

Figure 3-12. Absorption, excitation spectra and emission of Am-SQD (A) collected at 

room temperature in methanol (em and ex indicated on graph). 
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Figure 3-13. Absorption, excitation spectra and emission spectra of Am-SQD-Per 

(A) collected at room temperature in methanol (em and ex indicated on graph). 

 

Figure 3-14. Absorption, excitation spectra and emission spectra of Urea-SQD (A) 

collected at room temperature in methanol (em and ex indicated on graph). 
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Figure 3-15. Absorption, excitation spectra and emission spectra of Urea-SQD-Per 

(A) collected at room temperature in methanol (em and ex indicated on graph). 

 

Figure 3-16. Kinetic traces of Am-SQD and Am-SQD-Per collected at room 

temperature in methanol (em and ex indicated on graph; IRF ≈ 250 ps). 
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Figure 3-17. Kinetic traces of Urea-SQD and Urea-SQD-Per collected at room 

temperature in methanol (em and ex indicated on graph; IRF ≈ 250 ps). 

 

Figure 3-18. Kinetic traces of Urea-SQD-Per collected at room temperature in 

methanol (em and ex indicated on graph; IRF ≈ 250 ps). 
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Figure 3-19. Relative emission intensity as a function of pH change for Am-SQD-Per 

aqueous solution using ex = 330 nm.  

 

Figure 3-20. Relative energy level diagram as predicted from the emission wavelength 

collected at room temperature. 
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Figure 3-21. SAED pattern of Am-SQD-Per (A) and Urea-SQD-Per (B). 
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Chapter 4 Impact of the Chemical Nature and Position of 

Spacers on Controlling the Optical Properties of Silicon 

Quantum Dots 

This work was published in Physical Chemistry Chemical Physics 

4.1 Introduction 

Silicon Quantum Dots (SQDs) have garnered significant attention in the past decade due 

to their unique optical properties, including high stability against photobleaching and size-

dependent photoluminescence.[1] Furthermore, SQDs have shown several advantages over 

their counterpart QDs, e.g. CdS, due to their excellent biocompatibility and 

biodegradability,[2] low-toxicity,[3] being environmentally friendly,[4] and the ease of 

their surface modification.[5] Thus, SQDs are promising candidates for various 

applications such as biosensing,[6] bioimaging,[7]  photodynamic therapy,[8] 

photovoltaics, [9] and light-emitting diodes (LEDs).[10] 

In addition to the advantages of SQDs, several challenges limit the wide applicability of 

SQDs, particularly due to their inferior quantum efficiency (quantum yield <10%).[11] In 

general, the optical properties of SQDs are greatly influenced by their surface oxidation 

which often leads to a reduction in their fluorescence quantum yield.[12] Additionally, the 

quantum yield for SQDs of 2 nm diameter drops significantly as the electrons in the higher 

excited states can be non-radiatively trapped by surface states, leading to a deviation from 

the quantum confinement effect.[13] Furthermore, SQDS usually show unstable 

photoluminescence and poor colloidal stability in an aqueous environment.[14] To 

overcome these issues, surface functionalization of SQDs with organic ligands can protect 

the surface from oxidation and improve their colloidal stability.[15,16]  

Only a few studies in literature have reported the impact of ligands on the optical properties 

of SQDs.[7,17,18]  Interestingly, the utilization of aromatic dyes as capping agents has 

shown some promising results as a means of improving the QE of SQDs due to the 

influence on the electronic communication between the SQDs and aromatic dye capping 
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agent.[7,15] [19,20] Thus, the chemical nature of the ligand plays a crucial role towards 

controlling the optical properties of SQDs. 

This work reports the synthesis of SQDs using a facile solution-based reduction method. 

Different derivatives of triethoxy silane were used as the silicon source with sodium citrate 

dihydrate used as the reducing agent. The synthesis was carried out in the green solvent, 

glycerol, at ambient pressure and relatively high temperature (180 °C). This method has 

several advantages over other synthesis methods including: 1) its simplicity using a single 

step synthesis, 2) cost-effectiveness, 3) suitability for large-scale production, and 4) non-

toxic starting materials. The synthesized SQDs were then functionalized with fluorescein 

dyes through several spacers. Three families of SQDs were covalently attached to 

fluorescein isothiocyanate (FITC) through the isothiocyanate spacer, while a fourth SQD 

family was attached to a fluorescein dye through the esterification of COOH in the phenyl 

component of the dye. Fluorescein dye was selected as the capping agent due to its 

interesting photophysical properties including high fluorescence QE, high extinction 

coefficients, low cost, and biocompatibility.[21,22] The functionalized SQDs were 

characterized using UV−Vis absorption spectroscopy, Fourier-transform infrared (FTIR) 

spectroscopy, high-resolution transmission electronic microscopy (HRTEM), and X-ray 

photoelectron spectroscopy (XPS), steady-state and times-resolved emission spectroscopy, 

and Transient Absorption spectroscopy (TA). 

4.2 Experimental Section  

Chemicals 

3-Aminopropyl triethoxysilane (99%, APTES), 1-[3-(trimethoxysilyl)propyl] urea (97%, 

UPTES), [3-(2-aminoethylamino)propyl]trimethoxysilane (97%, DAPTMS), (3-

iodopropyl) trimethoxysilane (≥95%, IPTMS), sodium citrate dihydrate (≥99%, citrate), 

glycerol (≥99.5%), fluorescein Isothiocyanate, isomer I (FITC), Fluorescein (FL), cesium 

carbonate (99.99%), N,N-dimethylformamide (99.8%, DMF) were obtained from Sigma-

Aldrich Canada, and used as received. 
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Synthesis of SQDs 

The synthesis and purification of SQDs was carried out as previously reported.[19] All 

synthesis procedures were performed under nitrogen using a schlenk line. In brief, 0.15 gm 

of sodium citrate was added to 5 ml of glycerol in a 50 ml round bottom flask, then heated 

to 60 oC until all citrate was dissolved in glycerol. Then, 1 ml of the silicon precursor 

(APTES) was added dropwise over 10 minutes, and the mixture was heated to 180 oC for 

3 hours under vigorous stirring. The product (Am-SQD) was then purified using a 

combination of centrifugation and dialysis against ethanol (MWCO of 1 KDa, 

Spectra/Por®6 Standard RC Pre-wetted Dialysis Tubing, diameter 29 mm). The assemblies 

Urea-SQD and DiAm-SQD were synthesized in a similar manner using UPTES and 

DAPTMS as silicon sources.  

Functionalization of SQDs 

Functionalization of SQDs is shown in scheme 1. An excess amount of fluorescein 

isothiocyanate (FITC, 100 mg) was mixed with the purified Am-SQDs in 20 ml of 

anhydrous ethanol and the mixture was stirred for 24 hours in the dark. The functionalized 

SQDs were then purified to remove any excess FITC using dialysis against ethanol 

(MWCO of 1 KDa, Spectra/Por®6 Standard RC Pre-wetted Dialysis Tubing, diameter 29 

mm) to give Am-SQD-Fl. The product was stored in ethanol for further characterization. 

Similarly, the dyads Urea-SQD-Fl and DiAm-SQD-Fl were prepared.  

Synthesis of TMS-Fl and SQD-FL 

The compound TMS-Fl was prepared according to a previously reported procedure.[23] In 

brief, fluorescein (FL, 1 mmol), IPTMS (3 mmol), and Cs2CO3 (3 mmol) were mixed in 

30 ml of DMF, and the mixture was stirred at 60 oC for 24 hours. After cooling to room 

temperature, the insoluble Cs2CO3 was removed using gravity filtration. The unreacted 

IPTMS and DMF were then removed using a rotary evaporator to obtain a powder of TMS-

Fl. The as-prepared TMS-Fl was used in the following step as the silicon source. Similar 

to the procedures mentioned above for the synthesis of SQDs, the compound SQD-FL was 

prepared.  
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Scheme 1. Synthetic route of different assemblies of SQDs and their surface 

functionalization. 

Methods 

XPS analyses was performed with a Kratos Axis Nova spectrometer using a 

monochromatic Al K(alpha) source (15 mA, 14 kV). The TEM/HRTEM images were 

recorded using a Libra 200 MC operated at 400 kV. The FTIR spectra were collected using 

a Nicolet 6700 FTIR spectrometer equipped with a smart iTR diamond horizontal 

attenuated total reflectance (ATR). The UV–Vis absorption spectra were measured using 
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a Shimadzu UV-1800 double beam spectrophotometer with a 1 cm path length quartz 

cuvette. Steady-state emission and excitation spectra were recorded on a Photon 

Technology International (PTI) spectrofluorometer equipped with a Xenon short-arc lamp. 

All measurements were carried out using Felix X32 PTI software for data collection and 

analysis at 298 K under ambient oxygen in ethanol (EtOH). Time-resolved emission 

spectra (TRES) and fluorescence lifetimes measurements were carried out using a 

PicoQuant Fluorescence lifetime system (Picoquant GmbH) equipped with a FluoTime 200 

(Fluorescence Lifetime spectrometer), a TimeHarp 200 (Time-correlated Single Photon 

Counting (TCSPC) system), and a PDL800-B pulsed diode laser driver unit. Samples were 

excited at 375 nm using a picoseconds laser diode head (LDH-P-C375). Instrument 

Response Function (IRF) was found to be around 350 picoseconds (ps) obtained from 

analysis of the scattered light kinetic trace using LUDOX SM-30 colloidal silica solution 

at 375 nm. Fluorescence lifetimes were obtained from deconvolution of the kinetic traces 

of their solutions using global fluorescence decay data analysis software (Fluo Fit) 

supported by Picoquant GmbH. The TRES was recorded using an automated wavelength 

scanner and multichannel scaler (MCS) data collection under instrument software control. 

In this mode, the monochromator was controlled by a stepper motor and automated 

collection of spectrally resolved lifetime histograms. Data was collected in standard 

Integration Mode and saved in different blocks of memory for each wavelength. The 

collected data was then analyzed using FluoPlot software to construct the different 

emission spectra as function of delay time after excitation with the laser source. 

Fluorescence Quantum yield measurements were carried out at 298 K in EtOH; 

measurement of the quantum yield involved the comparison of very dilute solutions of the 

studied sample with a solution of approximately equal optical density using a standard 

reference compound of known quantum yield. The quantum yield of an unknown sample 

is related to that of a standard by the equation: Φu = [(AsFun
2)/(AuFsn0

2)]; where A is the 

absorbance at a given excitation wavelength, F is the integrated emission area across the 

band, and n and n0 are the refractive indexes of the solvent containing the unknown and 

standard, respectively.  Measurements were carried out using 6-aminochrysene (ΦF= 

25%)[24,25] and fluorescein (ΦF= 79%)[26] as references. Three different solutions for 

both sample and reference were used for measurements. Concentrations were adjusted to 



47 

 

have an absorbance of ~0.05 at the excitation wavelength, while the absorption spectra 

were recorded 5X for accuracy and error minimization.  

The detailed experimental setup for Femtosecond Broadband TA Spectroscopy was 

described elsewhere. [27] In brief, the setup consists of a white-light continuum probe pulse 

generated by a 2-mm-thick sapphire plate and spectrally pump tunable fs pulses (240–2600 

nm; a few J pulse energy) generated in an optical parametric amplifier (Newport Spectra-

Physics). The pump and probe pulses were overlapped in a 2-mm-thick cuvette cell 

containing the sample solution. The transmitted probe light from the solution was collected 

and focused onto a broadband UV-Vis detector to monitor the transient absorbance change 

(A). The sample solution was constantly stirred using a magnetic stirrer to ensure a fresh 

volume was available for each laser shot. To include the transient spectra from a few 

hundred fs to ns time delays after photoexcitation, a Helios detection system with time 

resolutions of 120 fs and detection limits of 5.5 ns was employed. 

Fluorescent Imaging: Human cell lines (U2OS osteosarcoma bone cancerous cells) were 

maintained in Dulbecco’s modified Eagle medium (DMED) containing 1% penicillin and 

streptomycin and 10% fetal bovine serum (WISENT). Cells were grown on coverslips up 

to approximately 80% confluence, then washed with 1 x PBS. Cells were fixed using 4% 

formaldehyde and stained as described elsewhere.[7] The cells were then treated with 

different families of SQDs dissolved in PBS to a final concentration of 50 ug/mL and 

incubated for 3 hrs. After incubation, the cells were washed twice with PBS to remove any 

excess SQDs. The cell nucleus was stained using DAPI (4′,6-Diamidine-2′-phenylindole 

dihydrochloride) while images were captured using an EVOS FL auto fluorescent 

microscope by GFP filter (excitation/bandwidth = 470/22, emission/bandwidth = 510/42) 

and phase mode at 20X magnification.   

4.3 Results and Discussion 

The synthesis of the SQDs and their surface functionalization was carried out as shown in 

scheme 1. APTES, UPTES, DAPTMS, and TMS-Fl were used as the silicon sources and 

were reduced using sodium citrate dihydrate. The synthesis of SQDs was carried out in 

glycerol as a high boiling functional solvent at atmospheric pressure and 180 °C with the 
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resulting SQDs purified by dialysis membrane and then functionalized with fluorescein 

dye to produce Am-SQD-Fl, Urea-SQD-Fl, DiAm-SQD-Fl, and SQD-FL. 

4.3.1 Size and structure 

Figure 4-1 presents the size distribution histograms, photographs of SQDs solutions under 

UV, TEM, and HR-TEM of the assemblies DiAm-SQD, Urea-SQDs, Am-SQDs, and 

SQD-FL. The TEM images indicate that the SQDs are semi-spherical without obvious 

agglomeration or aggregation. The size distribution histograms of the four SQDs 

assemblies showed that 97% of the particle’s diameters ranged from 1 – 3 nm after 

analyzing more than 250 dots from different regions of the grid. The average diameters for 

the assemblies DiAm-SQD, Urea-SQDs, Am-SQDs, and SQD-FL are 1.7 ± 0.7, 1.8 ± 0.7, 

1.8 ± 0.8, and 1.6 ± 0.6 nm, respectively. The HR-TEM images show a high crystallinity 

for the SQDs as indicated by the distinct lattice fringes with 0.30 nm interplanar spacing, 

which is consistent with the (111) plane of diamond silicon.[28] It should be mentioned 

that the rather low-quality visualization from TEM is well known due to the ultra-small 

dimensions of the SQDs as well as the small atomic weight of the silicon atom compared 

to the counterpart metallic or semiconductor quantum dots.[7,19,29,30] 
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Figure 4-1. Diameter distribution with photographs of solutions under UV (365 nm) 

irradiation (left) and TEM together with HR-TEM (right) for the assemblies DiAm-

SQDs(A), Urea-SQDs (B), Am-SQDs (C), and SQD-FL (D). 
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To confirm the binding of fluorescein dyes to the surface of the SQDs assemblies, both 

FTIR and XPS spectroscopy were carried out. Figure 4-2 shows the FTIR spectra for the 

Urea-SQD-Fl, DiAm-SQD-Fl, Am-SQD-Fl, and FITC dye as well as SQD-Fl and Fl dye. 

In figure 4-2(i), the broad peak at 3664 – 3004 cm-1 is attributed to the stretching vibration 

of hydroxyl groups (OH);[31] and the intense broad peak at 1000 – 1150 cm-1 is assigned 

to the stretching vibration of Si-O-Si.[32] The peak at 2985 – 2770 cm-1 is attributed to the 

C-H stretching vibration of methyl and methylene,[33] and the peak at 1735 cm-1 is 

assigned to the carbonyl group (C=O).[33] It is worth mentioning that the characteristic 

peak of the isothiocyanate group (N=C=S) at 2015 cm-1 in the FITC has completely 

disappeared in the spectra of Urea-SQD-Fl, DiAm-SQD-Fl, and Am-SQD-Fl.[33] This 

indicates successful binding of SQDs to the FITC dye. In figure 4-2(ii), the peaks at 3656 

– 2985   cm-1, 2981 – 2777 cm-1, and 1025 cm-1 are assigned to the stretching vibration of 

hydroxyl group, methyl groups, and Si-O-Si, respectively. It is noted that the carbonyl 

stretching vibration in the Fl dye was observed at 1734 cm-1, but that of SQD-FL was 

monitored at 1716 cm-1 which is attributed to interactions with the SQD surface.[34] 
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Figure 4-2. FTIR spectra of i) Am-SQD-Fl (A), DiAm-SQD-Fl (B), Urea-SQD-Fl (C) 

and FTIC(D); and ii) Fl (A) and SQD-FL (B). 

XPS spectroscopy was performed in order to further confirm the binding of SQDs to 

fluorescein dyes via the examined linkers. Figure 4-3 presents the high resolution XPS 

spectra of C 1s and N 1s for the assemblies DiAm-SQD-Fl (A), Urea-SQD-Fl (B), and Am-

SQD-Fl (C) as well as that of O 1s and C 1s for SQD-FL (D). The deconvoluted peaks of 

N 1s for Urea-SQD-Fl appeared at 400.1 and 401.8 eV; and that of Am-SQD-Fl appears at 

400 and 401.7 eV, which can be assigned to the thiourea nitrogen species (NHC=SNH) 

and protonated amine species, respectively.[35] Similarly, the N 1s binding energies for 

DiAm-SQD-Fl appear at 399.6 and 400.6 eV which are attributed to the amine and thiourea 

nitrogen atom (NHC=SNH), respectively.[35]  
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Figure 4-3. XPS Spectra of N 1s and C 1s for DiAm-SQD-Fl (A), Urea-SQD-Fl (B), 

Am-SQD-Fl (C); and O 1s and C 1s for SQD-FL (D). 

The C 1s binding energy peaks appearing at 288, 286.4, 285 eV for the assemblies DiAm-

SQD-Fl, Urea-SQD-Fl, and Am-SQD-Fl are assigned to the thiourea carbon species 

(NHC=SNH), C-N, and C-C or C-H bonding, respectively.[35] This provides confirmation 
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for the attachment of Am-SQDs, DiAm-SQD, and Urea-SQD to the FITC dye. The XPS 

spectrum of O 1s for the assemblies SQD-FL shows binding energy peaks at 533.6, 532.8, 

and 531.2 eV which are assigned to C-OH or C-O-C, Si-O, and C=O, respectively.[19] The 

C 1s peaks at 289.1, 288, 286.6, and 285 eV are attributed to O-C=O, C=O, C-OH or C-O, 

C-C or C-H, respectively.[19,35] The XPS results are consistent with the FTIR data, 

helping confirm the binding of SQDs to fluorescein dyes through the examined linkers. 

4.3.2 Photophysical properties 

In order to understand the nature of interaction between fluorescein dyes and SQDs 

assemblies, their photophysical properties including steady-state photoluminescence (PL) 

and excitation spectra, PL lifetime (τe), quantum efficiency (ΦPL), and femtosecond 

transient absorption (fs-TA) measurements were performed for the SQDs assemblies and 

their counterparts dyads Urea-SQD-Fl, DiAm-SQD-Fl, Am-SQD-Fl, and SQD-FL. 

Steady-state photoluminescence 

The two fluorophores in the current investigated dyad systems are SQDs and fluorescein 

dye (Fl). Both fluorophores are attached through different spacers that vary in chemical 

nature and length. Previous reports for SQDs of the same average size revealed that they 

are characterized with one broad emission spectrum covering the spectral range from 350 

– 600 nm with a central emission band located at ~440 nm. [7] The PL for the SQDs within 

this average size usually shows a deviation from the spectral range predicted from the 

quantum confinement effect. This is due to the edge of the conduction band and the 

separation of the discrete states increasing, thus electrons can fill higher excited state 

levels.[36] The other counterpart fluorophore in these dyads is Fluorescein, which is an 

organic dye with well-known fluorescence properties and a relatively high 

photoluminescence quantum yield.[37] Typically, fluorescein shows a broad fluorescence 

spectrum over a spectral range of 500 - 600 nm, which is sensitive to the surrounding 

chemical environment.[38]  

Steady-state photoluminescence (PL) spectra are given in Figure 4-4 (A), where the 

spectral profile reveals the presence of one main spectral band extended over the range of 

480 - 650 nm in common for all dyads investigated. This band agrees in shape and position 
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with the fluorescence spectra reported for fluorescein. [37] The spectral profile in general 

exhibits a broad featureless emission band with central maxima at 515 nm for Am-SQD-

Fl and 520 nm for both of Urea-SQD-Fl and DiAm-SQD-Fl. On the other hand, the PL for 

SQD-FL showed an extra shoulder at 545 nm in addition to the main maximum at 515 nm. 

The chemical linkage between SQDs and fluorescein takes place through the COO- group, 

rather than the isothiocyanate (-NCS) in the other three assemblies as shown in Scheme 1. 

The structure of fluorescein dye generally has two structural components, i.e. the benzene 

ring and the xanthene unit. Generally, substitution on the phenyl ring exerts a significant 

impact on the photophysics of the fluorescein. [38] [21] For some cases, substitution results 

in excited state deformation [38] while other cases lead to different isomer formation in 

solution. [21] Thus, the changes in PL spectra observed for SQD-FL can be attributed to 

excited-state deformation and/or isomer formation. Furthermore, the dyad DiAm-SQD-Fl 

shows an additional emission band detected over the range 400 - 480 nm with a central 

spectral maximum at 430 nm. This band was almost quenched for the rest of the 

investigated SQDs dyads. Further discussion in this regard is given in the time-resolved 

femtosecond transient absorption (fs-TA) section. 

Nanosecond time-resolved PL traces were collected using time-correlated single photon 

counting (TCSPC) and the decay curves are given in Figure 4-4 (B). The estimated 

fluorescence lifetimes as obtained from deconvolution of the TCSPC curves are listed in 

Table 4-1. Kinetic traces for the PL decay signals of all dyads exhibited bi-exponential 

profiles except for the Am-SQD-Fl where the traces were fitted with a single exponential 

function. The PL decay traces reveal the existence of one long-lived lifetime together with 

another relatively shorter lifetime. The relatively long-lived component agrees with the 

fluorescence lifetime reported for fluorescein.[21] The short-lived lifetime component (~ 

0.7 and ~ 0.6 ns for Urea-SQD-Fl and DiAm-SQD-Fl; respectively) is attributed to an 

additional process associated with intramolecular photoinduced electron transfer between 

the phenyl and xanthenes moieties of the fluorescein. [38] On the other hand, the mono-

exponential decay observed with the Am-SQD-Fl kinetic trace is indicative of interruption 

for the intramolecular photo-induced electron transfer process. It should be pointed out that 

this process is dependent on the substitution of the phenyl group.[39] 
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Figure 4-4. (A) Photoluminescence spectra of SQD-FL, Am-SQD-Fl, Urea-SQD-Fl, 

and DiAm-SQD-Fl in EtOH with ex designated for each spectrum; and (B) time-

resolved kinetic traces in EtOH using laser excitation at 376 nm with monitoring em 

given at each trace. (IRF ≈ 350 ps, and red lines are fitted curves).  

Photoluminescence quantum yield (PLQY) of the investigated assemblies were measured 

in EtOH using 6-aminochrysene (ΦF = 18 %) as reference [40]; with the obtained values 

given in Table 4-1. These PLQY values are significantly improved compared to those 

previously reported SQDs based assemblies.[7] The higher values obtained for the Am-

SQD-Fl are corroborated by the results obtained from the TCSPC curves, suggesting an 

interruption of the non-radiative intramolecular electron transfer. The measured quantum 

yields for the SQDs assemblies Urea-SQD, Am-SQD, and Di-Am-SQD were 16.5, 12.6, 

23.6 %, respectively. The counterpart dyads showed a significant improvement in their 

quantum yields except for the DiAm-SQD-Fl and SQD-FL. The dyads Urea-SQD-Fl, Am-

SQD-Fl, DiAm-SQD-Fl, and SQD-FL exhibited a quantum yield of 38.3, 64.7, 17.7, and 

12.4 %, respectively. The PLQY for the SQD-FL was found to be the lowest, attributed to 

the non-radiative relaxation contribution resulting from the excited state deformation.  

It is worth mentioning that the change in the overall quantum efficiencies in the dyad 

systems is impacted with the photoinduced energy and/or electron transfer. Hence, the QE 

of the dyad systems is different from that of the dye or SQDs individually.  
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The structure of Fl dye is composed of two parts namely the phenyl and xanthene sub-unit 

where an intramolecular photo-induced electron transfer (PET) operative between these 

two parts. Any Substitutes on the phenyl group changes redox potential of the phenyl group 

and consequently free energy change for the intramolecular PET which in turn is 

controlling the Fl photoluminescent quantum yield.[39] For the current investigated dyad 

assemblies, the overall quantum yields values reported have predominant contribution 

from the Fl especially for Am-SQD-Fl where almost quenching for the SQDs fluorescence 

was observed. Comparison between the three investigated dyads shows the overall 

quantum yield values to be in the order of: Am-SQD-Fl > Urea-SQD-Fl > DiAm-SQD-Fl. 

This order is in agreement with the increase of spacer length connecting SQDs and Fl which 

is expected to change the overall electron density on the phenyl group. In turn, this is 

expected to affect the free energy change for the intramolecular PET and consequently the 

overall quantum yield for the assembly. Thus, the dyad Am-SQD-Fl exhibited the highest 

quantum efficiency. 

More interestingly, PLQY measurements repeated for samples stored at room temperature 

for almost a year revealed a high stability with only slight changes in the measured values, 

confirming photo-stability of the samples.  

Table 4-1. PLQY and PL lifetime of the different samples measured in EtOH. The PL 

lifetime was extracted from time-correlated single photon counting (TCSPC) upon 

376-nm excitation. 

 %Quantum yield 

(%Ф)a 

Fluorescence lifetimeb (% Pre)c 

em , nm τ, ns (% Pre) 

Fl - d 4.3 ± 0.1 

FTIC - d 3.9 ± 0.1 

Urea-SQD 16.5  10.7 ± 0.2 (27%) 

2.2 ± 0.1 (73%) 

Am-SQD 12.6  10.0 ± 0.2 (35%) 

2.0 ± 0.1 (65%) 

DiAm-SQD 23.6  9.2 ± 0.1 (24%) 

2.4± 0.1 (76%) 
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Urea-SQD-Fl 38.3 520 0.7±0.2 (60) 

3.7±0.2 (40) 

Am-SQD-Fl 64.7 515 3.6±0.2 

DiAm-SQD-Fl 17.7 (total): 

7.2 (SQD) 

10.4 (Fl) 

440 

 

 

520 

0.6±0.2 (40) 

2.9±0.2 (40) 

10.1±0.2 (20) 

1.2±0.2 (47) 

4.1±0.2(53) 

SQD-FL 12.4 515 1.3±0.2 (68) 

3.8±0.2(32) 

a Reference used is 6-Aminochrysene and ex = 345 nm. 

b IRF ≈ 350 ps (from LUDOX SM-30 colloidal silica solution). 

c pre-exponential weighting factor for the lifetime component. 

 

Figure 4-5. fs-TA spectra at different delay times in response to 475 nm (for Fl, A) 

and 350 nm (for Am-SQD, B) optical excitation. 

In order to better understand the excited state in these assemblies upon photo-excitation, 

time-resolved laser spectroscopy was conducted using fs-TA measurements with 

broadband capabilities where excitation uses a 120 fs laser.[41,42]  Figure 4-5 shows the 

fs-TA spectra of Fl (A) and Am-SQD (B) in response to 475 and 350 nm optical excitation; 

respectively. The fs-TA spectra for Fl revealed two signals, one as a positive absorption 

change referred to as a photo-induced excited state absorption (PIA), corresponding to S1-

Sn absorption. The other is a negative absorption change corresponding to ground-state 
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bleaching (GSB) due to depletion of the ground state population. The TA signal for the 

Am-SQD revealed one broad PIA with the dipping at 445 nm attributed to stimulated 

emission (SE); see SI for steady state of starting SQDs.  

The collected fs-TA spectra and the kinetic traces for the investigated assemblies are given 

in Figure 4-6. In general, the fs-TA spectra exhibited similar spectral features in both PIA 

and GSB to the Fl signal, whereas the GSB for DiAm-SQD-Fl reflected the ground-state 

absorption and stimulated emission; see Figure 4-6 (A&B). Indeed, the very strong overlap 

between PIA, SE and GSB precludes precise confirmation about the nature of interaction 

on whether it is energy or electron transfer. By monitoring the changes in the kinetic traces, 

we can elucidate that the interaction is strongly dependent on the nature and the length of 

the spacer bridge and the position of attachment between the SQDs and Fl dye. Three 

different scenarios detected in the kinetic trace profiles are: while Urea-SQD-Fl exhibited 

the same profile as that for Fl; DiAm-SQD-Fl and SQD-FL showed a faster decay (see 

Table 4-2) whereas Am-SQD-Fl exhibited a slower decay monitored at 390 nm; see Figure 

4-7 (A). Similarly, GSB recovery kinetics at 455 nm revealed the same trend with Urea-

SQD-Fl having the same recovery kinetics as that of Fl while different kinetics detected 

are slower for Am-SQD-Fl and faster for SQD-FL. This strongly implies that energy 

transfer is the dominant mechanism for the Urea-SQD-Fl, while electron transfer is the 

more likely mechanism for Am-SQD-Fl and SQD-FL assemblies. This can be understood 

considering the change in GSB recovery in comparison to that of Fl, which can be assigned 

to a different charge recombination time for the formed charged radicals. This is in 

agreement with a previous report which indicated that the orientation of the phenyl group 

is almost perpendicular to the xanthene ring in the Fl molecule, leading to a significant 

trend for favoring the rate of electron transfer in both directions; i.e. charge separation and 

charge recombination.[43] 
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Figure 4-6. fs-TA spectra at different delay times in response to 350 nm optical 

excitation of Am-SQD-Fl (A), DiAm-SQD-Fl (B, inset showing rising signal over 15 

ps (C)), Urea-SQD-Fl (D), and SQD-FL (E); in EtOH. 

It is worth mentioning that it was not possible to obtain pure kinetic traces at GSB for 

DiAm-SQD-Fl due to the strong spectral overlap with SE. The different behavior detected 

for Urea-SQD-Fl may be due to hydrogen bond formation rendering the electron transfer 

less thermodynamically favorable; similar behavior was recently reported.[19] 

Interestingly, the recombination rates proceeded slower for Am-SQD-Fl than for SQD-FL. 

This allowed us to predict the stability of the formed radical ions regarding the position 

through which SQDs and Fl are connected. Furthermore, while kinetic traces of all three 

assemblies of Am-SQD-Fl, Urea-SQD-Fl and SQD-FL showed instant development within 

the temporal resolution of the laser (i.e. 120 fs) [44], kinetic traces for DiAm-SQD-Fl 

revealed a slower rising rate when the time constant extracted from the fitting was found 
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to be ~4 ps; see Figure 4-7 (B) inset. This is indicative of a slower electron transfer rate 

within this dyad assembly, attributed to elongation of the bridging spacer and the extra NH 

group as compared to Am-SQD-Fl.   

These results indicate that the structure and/or position of the spacer significantly affects 

both the forward/backward rates of interaction. In this manner, the faster rates for SQD-FL 

are indicative of the assembly adopting the most favorite orientation for facilitating 

electron transfer. On the other hand for Am-SQD-Fl, the adopted orientation favors 

electron transfer while rendering the recombination less favorite as indicated by longer 

lifetime decays. As the length of the spacer between SQD and Fl in DiAm-SQD-Fl is 

longer, the rate for forward electron transfer becomes slower as confirmed by slower rates 

in the fs-TA kinetic traces. Finally, with incorporation of the hydrogen bond along the 

backbone of the spacing bridge, the interaction mainly proceeds through energy transfer as 

observed in Urea-SQD-Fl. 

Table 4-2. Lifetimes obtained from fs-TA spectra in EtOH. 

 t (ps)  

GSB EA 

Urea-SQD-Fl 16.3±1.8 (18%) 

219.1±26.2 (32%) 

2632.2±361.7 (50%) 

136.32±14.1 (27%) 

2801.87±294 (73%) 

Am-SQD-Fl 11.95±1.7 (22%) 

197.3±49.7 (19%) 

2697.6±365.6 (59%)  

108.5±15.5 (23%) 

2840±206.2 (77%) 

DiAm-SQD-Fl a 4.1±0.3 (rise) 

229.8±33.4 (46%) 

2128±513 (54%) 

SQD-FL 2.2±0.2 (22%) 

49.2±4.4 (21%) 

817.2±40.2 (57%) 

66.7±3.6 (39%) 

1076.8±43.5 (61%) 

 

a It was not possible to get the kinetic traces at GSB for DiAm-SQD-Fl due to the SE 
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Figure 4-7. Kinetic traces collected from TA from ESA decay for all investigated 

assemblies (A), ESA rising time for DiAm-SQD-Fl (B), and GSB recovery (C). 

Exponential fitting traces are given with the red solid lines. 

4.3.3 Effect of pH on steady-state fluorescence 

Fluorescein derivatives are known to undergo changes in the nature of the photoactive 

species at different pH values [45]; thus it is important to investigate the effect of pH on 

the photoactivity of the current synthesized assemblies. Steady-state fluorescence was 

recorded at different pH values; as given in Figure 4-16.  In general, the relative 

fluorescence intensity remained relatively stable across the pH range of 8.5-3.5. As the pH 

value decreased below 3.5, a sudden drop was detected for all investigated systems. Further 

increasing of the pH above 8.5 resulted in a decrease in the relative fluorescence intensity 

for all investigated assemblies, except SQD-FL. This agrees with the trend reported earlier 
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for fluorescein isothiocyanate in which the changes are assigned to different neutral and 

charged forms of the dye.[46]   The decrease observed at pH values ≥ 8.5 is associated with 

the anionic forms of the dye being more predominant in solution. Deviation from this 

behavior was observed for SQD-FL where the relative intensity undergoes an increase for 

pH values beyond 8.5.  This behavior is attributed to the use of the (COO-) group as the 

spacer between Fl and SQDs.  

4.3.4 Fluorescent cellular imaging study 

To demonstrate the suitability of the functionalized water-soluble SQDs for bioimaging 

applications, the SQDs assemblies were examined for in vitro fluorescent imaging of 

human osteosarcoma U2OS cell lines. Figure 4-8 shows the U2OS cells that were 

incubated with DiAm-SQD-Fl, Urea-SQD-Fl, Am-SQD-Fl, and SQD-FL, for which an 

excitation wavelength of 470 nm was utilized and the emission was monitored at 510 nm. 

The U2OS cell’s nucleus was stained using DAPI dye. The control images, which involved 

no treatment for U2OS with SQDs, show no fluorescence and the overlay panel shows only 

a blue color for the DAPI-stained nucleus. Fluorescence imaging of U2OS cells with all 4 

dyads of SQDs show bright green fluorescence. The efficient uptake of SQDs by U2OS 

cells demonstrates the potential utility of these quantum dots for bioimaging studies. It is 

worth mentioning that the overlay images for DiAm-SQD-Fl and Urea-SQD-Fl show non-

distinguishable blue and green colors which can be assigned to the effectiveness of these 

dyads to stain both the cytoplasm and nucleus. On the other hand, the overlay images of 

Am-SQD-Fl and SQD-FL show clearly distinguishable blue and green colors which 

indicate their suitability to stain the cytoplasm only. 
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Figure 4-8. Brightfield (A - E), DAPI-stained (F-J), fluorescence (K-O), and overlay 

images (P-T) of U2OS cells for control sample (no SQDs added), DiAm-SQD-Fl, Urea-

SQD-Fl, Am-SQD-Fl, and SQD-FL. 

4.4 Conclusion 

In this work, four assemblies of SQDs were covalently functionalized with fluorescein dyes 

through isothiocyanate (-NCS) and carboxyl (COO-) spacers. The utilization of the (-NCS) 

spacer led to a significant enhancement of the dyads PL quantum yield and showed a high 

stability of their optical properties for up to one year. The photophysical results revealed 
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that the nature and length of the spacer as well as the position of connection in these 

systems played a key role towards tuning their optical properties by controlling both the 

type and rate of interaction between the SQDs and the Fl dye capping agent. In the dyads 

SQD-FL, Am-SQD-Fl, and DiAm-SQD-Fl, the interaction between SQDs and Fl was 

found to mainly take place through electron transfer but at different rates depending on the 

orientation of the phenyl group comparing to the xanthene part of the Fl dye. Surprisingly, 

the communication between SQDs and Fl dye in Urea-SQD-Fl proceeds through energy 

transfer due to the incorporation of the hydrogen bond along the backbone of the spacing 

bridge. The PL activity of all four dyads were investigated as a function of pH where they 

were found to show negligible changes over the range 8.5 - 3.5. The dyads DiAm-SQD-Fl, 

Urea-SQD-Fl, Am-SQD-Fl, and SQD-FL showed promising results when used for 

fluorescent cellular imaging of human osteosarcoma U2OS which enables their use as 

fluorescence probes in bioimaging.  

4.5 Supporting information 

 
Figure 4-9. Absorption and excitation spectra of Am-SQD collected at room 

temperature; (em and ex indicated on graph). 
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Figure 4-10. Absorption and excitation spectra of Urea-SQD collected at room 

temperature; (em and ex indicated on graph). 

 
Figure 4-11. Absorption and excitation spectra of Am-SQD-Flu collected at room 

temperature; (em and ex indicated on graph). 
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Figure 4-12. Absorption and excitation spectra of DiAm-SQD-Flu collected at room 

temperature; (em and ex indicated on graph). 

 
Figure 4-13. Absorption and excitation spectra of Urea-SQD-Flu collected at room 

temperature; (em and ex indicated on graph). 
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Figure 4-14. Absorption and excitation spectra of SQD-FL collected at room 

temperature; (em and ex indicated on graph). 

 
Figure 4-15. Absorption and excitation spectra of FTIC collected at room 

temperature; (em and ex indicated on graph). 
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Figure 4-16. Relative fluorescence intensity changes at different pH values. 
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Chapter 5  Controlling the Surface-defect-state 

Photoluminescence in Ultra-Small Silicon Quantum Dots Via 

Spacers 

5.1 Introduction 

Silicon Quantum Dots (SQDs) have recently attracted a considerable attention as excellent 

candidates for a variety of applications such as bioimaging,[1] photodynamic therapy,[2] 

biosensing,[3] photovoltaics,[4] and light-emitting diodes (LEDs).[5] This is due to their 

unique optical properties including broad absorption spectra, size-dependent tunable 

emission,[6] and high stability against photobleaching.[7] Furthermore, SQDs have 

excellent biocompatibility and biodegradability,[8] very low cytotoxicity,[9] and versatile 

surface functionalization capability.[10]  

Generally, the size-tunable emission of SQDs is attributed to the quantum confinement 

effect where the photoluminescence is red- or blue-shifted when the size of SQDs increases 

or decreases, respectively.[11] However, a deviation from this behavior was observed for 

ultra-small SQDs of a size smaller than ~2 nm in which the PL originates from surface 

relevant states.[12] Interestingly, the functionalization of such SQDs surface with capping 

agents was shown to play a vital role toward controlling their optical properties rather than 

the size of particles.[13] Moreover, the utilization of aromatic dyes capping agent has 

shown some potential to impact the optical properties of SQDs, enhances their 

photostability, and prevents them from agglomeration and aggregation.[14]  

Despite a few reports in literature of aromatic fluorophores covalently attached to the 

surface of SQDs as a means to control their optical properties,[15,16,17] there is still a lack 

of understanding of factors that impact the interaction of the aromatic fluorophores with 

the electronic wave functions of SQDs which in turn influence the electronic structure of 

SQDs. The length and chemical nature of the utilized spacer that connect SQDs with the 

aromatic dye as well as its attachment position with the fluorophore are among these factors 

that need more investigations. This may impact the resulting optical properties of SQDs 

including a red/blue shift in the PL, affect their emission quantum yield (QY) and lifetime 
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(τf) as a result of a photoinduced energy and/or electron transfer between the dye and 

SQDs.[17,18]   

In this work, we report the synthesis of SQDs using a facile one-pot synthetic method. 

Three derivatives of triethoxysilane were used as silicon sources and sodium citrate 

dihydrate was used as the reducing agent. The synthesis was performed in glycerol green 

solvent at normal pressure and relatively high temperature (180 °C). This synthetic method 

is advantageous over others due to its simplicity, large-scale suitability, non-toxic starting 

materials, and low cost. The resulting SQDs were then functionalized with two derivatives 

of rhodamine dye, rhodamine B Isothiocyanate (RITC) and rhodamine 6G (R6G). The 

SQDs assemblies were attached to the RITC through the isothiocyanate group (-NCS), 

while they were linked to R6G through the carboxylate group in the phenyl component of 

the dye. Rhodamine dyes have been chosen for this study due to their superior 

photochemical and photophysical properties including large absorption coefficients, high 

fluorescent quantum yields, and excellent photostability.[19,20] The resulting 

functionalized SQDs were characterized using UV−Vis absorption spectroscopy, Fourier-

transform infrared (FTIR) spectroscopy, high-resolution transmission electronic 

microscopy (HRTEM), and X-ray photoelectron spectroscopy (XPS), steady-state and 

times-resolved emission spectroscopy, and femtosecond Transient Absorption 

spectroscopy (fs-TA). 

5.2 Experimental Section  

Chemicals 

3-Aminopropyl triethoxysilane (99%, APTES), 1-[3-(trimethoxysilyl)propyl] urea (97%, 

UPTES), [3-(2-aminoethylamino)propyl]trimethoxysilane (97%, DAPTMS), sodium 

citrate dihydrate (≥99%, citrate), glycerol (≥99.5%), Rhodamine B Isothiocyanate (RITC), 

Rhodamine 6G (R6G), and absolute ethanol. All solvents were dried by passing through 

MB SPS-800 (MBraun) solvent purification system with water content below 15 ppm. 
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Synthesis of SQDs 

The synthesis of different assemblies of SQDs were carried out following a solution-based 

reduction route as shown in scheme 1.[21]  All synthesis procedures were performed under 

nitrogen atmosphere using a schlenk line. In a typical experiment, 0.6 gm of sodium citrate 

dihydrate was added to 20 ml of warm glycerol in a 50 ml round bottom flask, and the 

mixture was heated with vigorously stirring for 20 mins till all citrate has been completely 

dissolved. 4 ml of the silicon source (APTES) was added dropwise over 10 minutes, and 

the mixture was then heated to 180 oC for 3 hours. The color of the solution turns into 

yellow due to the formation of Am-SQD. The assemblies Am-SQD was then purified using 

a combination of centrifugation and dialysis against ethanol (MWCO of 1 KDa, 

Spectra/Por®6 Standard RC Pre-wetted Dialysis Tubing, diameter 29 mm). The assemblies 

Urea-SQD and DiAm-SQD were similarly synthesized using UPTES and DAPTMS. 

 

Functionalization of SQDs 

1) Synthesis of Am-SQD-RITC, Urea-SQD-RITC, and DiAm-SQD-RITC 

An excess amount of Rhodamine B Isothiocyanate (RITC, 100 mg) was mixed with the 

purified Am-SQD in 20 ml of anhydrous ethanol using 50 ml round bottom flask, and the 

mixture was vigorously stirred in dark for 24 hours. The resulting product was purified to 

remove any excess unreacted RITC using dialysis against ethanol (MWCO of 1 KDa, 

Spectra/Por®6 Standard RC Pre-wetted Dialysis Tubing, diameter 29 mm) to give Am-

SQD-RITC. The product was stored in ethanol for further characterization. Similarly, the 

dyads Urea-SQD-RITC and DiAm-SQD-RITC were prepared.  

2) synthesis of Am-SQD-R6G, Urea-SQD-R6G, and DiAm-SQD-R6G 

Rhodamine 6G was dissolved in 20 ml of anhydrous ethanol (R6G, 100 mg), and the 

assemblies Am-SQD were added. The mixture was refluxed for 8 hours under nitrogen 

atmosphere.[22] After cooling to room temperature, the product Am-SQD-R6G was 
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purified using dialysis against ethanol. The dyads Urea-SQD-R6G and DiAm-SQD-R6G 

were prepared in a similar manner. 

 

Scheme 1. Synthetic routes for A) Am-SQD-RITC and Am-SQD-R6G; B) Urea-SQD-

RITC and Urea-SQD-R6G; C) DiAm-SQD-RITC and DiAm-SQD-R6G.  
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Methods 

XPS spectra were collected using a Kratos Axis Nova spectrometer using a monochromatic 

Al K(alpha) source (15 mA, 14 kV). The TEM and HRTEM images were measured using 

a Libra 200 MC operated at 400 kV. The FTIR spectroscopy were performed using a 

Nicolet 6700 FTIR spectrometer equipped with a smart iTR diamond horizontal attenuated 

total reflectance (ATR). The UV–Vis absorption spectra were collected using a Shimadzu 

UV-1800 double beam spectrophotometer with a 1 cm path length quartz cuvette. Steady-

state emission and excitation spectra were measured on a Photon Technology International 

(PTI) spectrofluorometer equipped with a Xenon short-arc lamp. All measurements were 

carried out using Felix X32 PTI software for data collection and analysis at room 

temperature under ambient oxygen in ethanol (EtOH). Fluorescence lifetime measurements 

were performed using a PicoQuant Fluorescence lifetime system (Picoquant GmbH) 

equipped with a FluoTime 200 (Fluorescence Lifetime spectrometer), a TimeHarp 200 

(Time-correlated Single Photon Counting (TCSPC) system), and a PDL800-B pulsed diode 

laser driver unit. Samples were excited at 372 nm using a picoseconds laser diode head 

(LDH-P-C375). Fluorescence lifetimes were obtained from deconvolution of the kinetic 

traces of their solutions using global fluorescence decay data analysis software (Fluo Fit) 

supported by Picoquant GmbH.  

Fluorescence Quantum yield measurements were carried out at room temperature in EtOH; 

measurement of the quantum yield involved the comparison of very diluted solutions of 

the studied sample with a solution of approximately equal optical density using a standard 

reference compound of known quantum efficiency. The quantum yield of an unknown 

sample is related to that of a standard by the equation: Φu = [(AsFun
2)/(AuFsn0

2)]; where A 

is the absorbance at a given excitation wavelength, F is the integrated emission area across 

the band, and n and n0 are the refractive indexes of the solvent containing the unknown and 

standard, respectively.[23]  Measurements were carried out using 6-aminochrysene (ΦF= 

25%)[24] [24] and fluorescein (ΦF= 79%)[25] as references. Three different solutions for 

both sample and reference were used for measurements. Concentrations were adjusted to 

have an absorbance of ~0.05 at the excitation wavelength, while the absorption spectra 

were recorded 5X for accuracy and error minimization.  
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The detailed experimental setup for Femtosecond Broadband TA Spectroscopy was 

described elsewhere.[26] In brief, the setup consists of a white-light continuum probe pulse 

generated by a 2-mm-thick sapphire plate and spectrally pump tunable fs pulses (240–2600 

nm; a few J pulse energy) generated in an optical parametric amplifier (Newport Spectra-

Physics). The pump and probe pulses were overlapped in a 2-mm-thick cuvette cell 

containing the sample solution. The transmitted probe light from the solution was collected 

and focused onto a broadband UV-Vis detector to monitor the transient absorbance change 

(A). The sample solution was constantly stirred using a magnetic stirrer to ensure a fresh 

volume was available for each laser shot. To include the transient spectra from a few 

hundred fs to ns time delays after photoexcitation, a Helios detection system with time 

resolutions of 120 fs and detection limits of 5.5 ns was employed. 

5.3 Results and Discussion 

SQDs were synthesized following a solution-based reduction route as shown in scheme1. 

The starting materials APTES, UPTES, DAPTMS were utilized as silicon sources and were 

reduced by sodium citrate dihydrate at atmospheric pressure and 180 °C. The 

functionalization of SQDs was done using rhodamine isothiocyanate and rhodamine 6G to 

produce Am-SQD-RITC, DiAm-SQD-RITC, Urea-SQD-RITC, Am-SQD-R6G, DiAm-

SQD-R6G, Urea-SQD-R6G. 

5.3.1 Size and Structure 

Figure 5-1 shows the TEM, HR-TEM, and size distribution of DiAm-SQD, Urea-SQD, 

and Am-SQD. The size distributions indicate that the average diameter of DiAm-SQD, 

Urea-SQd, and Am-SQD is 1.7 ± 0.7, 1.8 ± 0.7, and 1.8 ± 0.8 nm, respectively, after the 

analysis of more than 250 dots from different regions of the grid. The high crystallinity of 

different assemblies of SQDs is shown in the HR-TEM images which is evidenced by the 

distinct lattice fringes with 0.30 nm interplanar spacing. This is in a good agreement with 

the (111) plane of diamond structured silicon.[27] It should be mentioned that the low 

resolution of both TEM and HR-TEM images is assigned to the extreme small diameters 

of SQDs in addition to the low atomic weight of silicon compared to metallic or 

semiconductor quantum dots.[14,28,29,30] 
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Figure 5-1. TEM (left), HR-TEM (middle), and diameter distribution with 

photograph of solution under UV irradiation (right) for DiAm-SQD (A), Urea-SQD 

(B), and Am-SQD (C). 

To confirm aromatic fluorophores binding to different SQDs assemblies, both FTIR and 

XPS spectroscopy were carried out. Figure 5-2 (A) shows the FTIR spectra for Urea-SQD-

R6G, DiAm-SQD-R6G, Am-SQD-R6G, and R6G. The broad band at 3567 – 3093 cm-1 is 

attributed to the stretching vibration of hydroxyl (OH) band,[31] and the intense peak at 

1024 cm-1 is assigned to the Si-O-Si stretching.[32] The peaks at 2992 – 2795 cm-1 

correspond to the –CH stretching vibrations of the alkyl groups and spacers.[33] It is worth 

mentioning that the characteristic band at 1711 cm-1 of the carbonyl C=O stretching mode 

of the carboxylate group of the R6G is absent in the three dyads.[34] Furthermore, a new 

peak appeared at the wavenumber of 1658 cm-1 which is attributed to the carbonyl (C=O) 
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vibrations of amide group [35] in the dyads Urea-SQD-R6G, DiAm-SQD-R6G, and Am-

SQD-R6G. This indicates the success binding of SQDs to R6G. Figure 5-2 (B) presents the 

FTIR spectra for Urea-SQD-RITC, DiAm-SQD-RITC, Am-SQD-RITC, and RITC. The 

bands at 3693 – 3159, 2994 – 2793, and 1031 cm-1 are attributed to stretching vibrations 

of OH, -CH, and Si-O-Si, respectively. The characteristic peak at 2015 cm-1 of the 

isothiocyanate (N=C=S) [36] of the RITC disappeared in the dyads Urea-SQD-RITC, 

DiAm-SQD-RITC, and Am-SQD-RITC. This confirms the attachment of SQDs to RITC 

dye.  

 

Figure 5-2. FTIR spectra of A) Urea-SQD-R6G (A), DiAm-SQD-R6G (B), Am-SQD-

R6G (C), and R6G (D); and B) Urea-SQD-RITC (A), DiAm-SQD-RITC (B), Am-

SQD-RITC (C), and RITC (D). 
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To further confirm the attachment of SQDs to RITC and R6G dyes, XPS spectroscopy was 

performed. Figure 5-3 displays the high resolution XPS of N 1s, C 1s, and O 1s for Am-

SQD-RITC, DiAm-SQD-RITC, Urea-SQD-RITC, Am-SQD-R6G, DiAm-SQD-R6G, 

Urea-SQD-R6G. The deconvoluted peaks of N 1s centered at 401.4 and 399.7 eV for Am-

SQD-RITC, 401.6 and 399.9 eV for DiAm-SQD-RITC, 401.3 and 399.7 eV for Urea-SQD-

RITC are attributed to protonated amine species and thiourea nitrogen species 

(NHC=SNH), respectively.[37] The C 1 s binding energy peaks for Am-SQD-RITC, 

DiAm-SQD-RITC, and Urea-SQD-RITC 288.8, 287.8, 286.6, 286.1, and 284.8 eV are 

assigned to COOH, NHC=SNH, C=N, C-N, and C-H/C-C, respectively.[37] The 

deconvoluted peak of N 1s for Am-SQD-R6G, DiAm-SQD-R6G, and Urea-SQD-R6G 

centered at 399.5, 399.7, and 399.8 eV, respectively, is assigned to amidic carbonyl (N-

C=O).[28,38] XPS spectrum of O 1s shows multiple components at 533.7, 532.3, and 531 

eV for Am-SQD-R6G; 533.5, 532.1, and 530.8 eV for DiAm-SQD-R6G; 533.9, 532.4, and 

530.8 eV for Urea-SQD-R6G. These peaks are assigned to C-OH/C-O-C, Si-O, and N-

C=O, respectively. [28,39,40] The XPS data are consistent with FTIR data, providing clear 

evidence for successful functionalization of SQDs with RITC and R6G. 
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Figure 5-3. XPS Spectra of N 1s and C 1s for Am-SQD-RITC (A), DiAm-SQD-RITC 

(B), Urea-SQD-RITC (C); and N 1s and O 1s for Am-SQD-R6G (D), DiAm-SQD-R6G 

(E), Urea-SQD-R6G (F). 
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5.3.2 Photophysical properties 

In order to understand the nature of interaction between rhodamine dyes and SQDs 

assemblies as well as the impact of spacer on the optical properties of SQDs, their 

photophysical properties including steady-state photoluminescence (PL) and excitation 

spectra, PL lifetime (τe), quantum efficiency (ΦPL), and femtosecond transient absorption 

(fs-TA) measurements were carried out for the SQDs assemblies and their counterparts 

dyads Am-SQD-RITC, DiAm-SQD-RITC, Urea-SQD-RITC, Am-SQD-R6G, DiAm-

SQD-R6G, Urea-SQD-R6G. 

Steady-state photoluminescence measurements: Steady-state fluorescence, 

photoluminescent (PL) excitation, and absorption spectra of the investigated SQD/R6G 

and SQD/RITC families are given in Figure 5-4. Fluorescence spectra were collected with 

excitation at absorption of the SQDs for both series of assemblies. The PL spectra for 

SQD/R6G family reveal a dual emission signature of both SQDs and R6G fluorophore over 

the spectral range of 400-500 [14,28] and 500-650 nm, respectively [41,42]. Additionally, 

the PL maxima of the SQDs in the dyads Am-SQD-R6G, Urea-SQD-R6G, and DiAm-

SQD-R6G were blue-shifted to 430, 435, 444 nm, respectively, compared to their 

counterpart SQDs. The fluorescence spectra reveal a maximum contribution of R6G 

fluorescence in the dyad Am-SQD-R6G while contribution becomes relatively weaker for 

Urea-SQD-R6G; whereas fluorescence spectra of Diam-SQD-R6G reveals minor 

contribution from R6G; see Figure 5-4 (A-C). This is assigned to different efficiencies of 

energy and/or electron transfer interaction between the SQDs and R6G dye in the dyad 

assemblies. On the other hand, SQD/RITC family is mainly revealing fluorescence of the 

organic dye with almost a complete quench of the SQDs fluorescence. This indicates a 

more efficient interaction, i.e. energy and/or electron transfer, involved in SQD/RITC as 

compared to SQD/R6G; see Figure 5-4 (D-F). Moreover, a variation in the relative 

contribution of the two fluorophores in the collected fluorescence spectra indicates that 

energy and/or electron transfer efficiency is dependent on the spacer nature between the 

SQDs and organic dye.  Furthermore, the PL quantum efficiency measurements (Ф) for 

SQD/R6G family increase in the order of Diam-SQD-R6G > Am-SQD-R6G > Urea-SQD-

R6G, while that for SQD/RITC family increase in the order of Urea-SQD-RITC > Diam-
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SQD-RITC > Am-SQD-RITC; see Table 5-1. Comparison between obtained quantum 

yield values for Urea-SQD-R6G with that for Urea-SQD-RITC indicate that the interaction 

in the preceding systems is of more energy waste nature i.e. more contribution of electron 

transfer in the interaction. The change in quantum yield values can be attributed to change 

in degree of intramolecular photoinduced electron transfer (PET) between the phenyl group 

and xanthenes ring of the organic dye. [43,44] This interruption of the PET can be a 

consequent of electron density change along with different spacer and/or different types of 

interactions with SQDs. Interestingly, the PL quantum efficiency measurements performed 

for the dyad samples stored at room temperature for at least one year revealed a high 

photostability for these samples.  

 

Figure 5-4. Fluorescence (red), PL excitation (blue) and absorption (grey) of: A) Am-

SQD-R6G, B) Diam-SQD-R6G, C) Urea-SQD-R6G, D) Am-SQD-RITC, E) Diam-

SQD-RITC, and F) Urea-SQD-RITC in EtOH. (ex and em used for PL spectra are 

given on curves). 



14 

 

Time Correlated Single Photon Counting (TCSPC): TCSPC measurements were 

carried out to estimate the fluorescence lifetime for the investigated SQDs assemblies and 

dyads (see Table 5-1); whereas fluorescence decay curves are given in supporting 

information. Fluorescence lifetimes monitored at the emission wavelength corresponding 

to SQDs (i.e. 440 nm) was found to be shorter for SQD/R6G family than their counterpart 

SQDs.  Fluorescence lifetime decay curves of SQDs assemblies were fitted to bi-

exponential kinetic whereas for SQD/R6G family, the decay curves found to best fit to 

three component exponent kinetic equation. The extra component detected in kinetic 

profile of the dyad assemblies can be attributed to photo-induced energy and/or electron 

transfer interaction. This allows estimating the rate of energy and/or electron transfer to be 

in the order of   Am-SQD-R6G > Urea-SQD-R6G > Diam-SQD-R6G. Moreover, 

fluorescence lifetime curves monitored at the emission of R6G were found to be almost the 

same for both of Am-SQD-R6G and Diam-SQD-R6G; whereas shorter fluorescence 

lifetime obtained in case of Urea-SQD-R6G. This can be understood considering different 

nature of interaction involved in Urea-SQD-R6G i.e. more charge separation involved. 

Indeed, this is in line with the low quantum yield value obtained for Urea-SQD-R6G which 

supports the suggested involvement of charge-separation energy wasting process; i.e. 

radical pair formation. This could be due to the possibility of hydrogen bond formation 

which is in favorite of electron transfer. [28] On the other hand for SQD/RITC assemblies 

the almost complete quench of emission bands corresponding to SQD precluded the 

estimation of SQD lifetime in dyad assemblies. Yet, fluorescence lifetimes from decay 

curves monitored at emission wavelength corresponding to RITC fluorescence are given 

in Table 5-1 whereas the TCSPC decay curves are given in supporting information. The 

estimated lifetimes for RITC in dyad assemblies showed almost the same values as those 

for RITC alone (within experimental error); see Table 5-1.  
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Table 5-1. PLQY and PL lifetime of the different samples measured in EtOH. The 

PL lifetime was extracted from time-correlated single photon counting (TCSPC) 

upon 376-nm excitation. 

 Ф em (nm) τf  (ns) 

Am-SQD 16.0 440 9.97 ± 0.2 (35%) 

2.03 ± 0.1 (65%) 

Diam-SQD 42.0 440 9.15 ± 0.1 (24%) 

2.39 ± 0.1 (76%) 

Urea-SQD 13.8 440 10.68 ± 0.2 (27%) 

2.22 ± 0.1 (73%) 

RITC 33.9 515 3.9  ± 0.1 

Am-SQD-R6G 26.8 425 

 

 

 

535 

0.59 ± 0.2 (74%) 

2.16 ± 0.1 (21%) 

6.50 ± 0.33 (5%) 

 

2.59 ± 0.10 (62%) 

6.02 ± 0.12 (38%) 

Diam-SQD-R6G 28.5 450 

 

 

 

540 

1.61 ± 0.1 (48%) 

5.35 ± 0.5 (44%) 

16.50 ± 0.8 (8%) 

 

2.22 ± 0.10 (59 %) 

6.56 ± 0.10 (41%) 

Urea-SQD-R6G 8.1 435 

 

 

 

540 

0.91 ± 0.2 (66%) 

3.43 ± 0.2 (26%) 

10.35 ± 0.8 (8%) 

 

3.48 ± 0.10 

Am-SQD-RITC 17.8 560 2.83 ± 0.10 

Diam-SQD-RITC 22.9 560 0.46 ± 0.10 (74%) 

3.31 ± 0.10 (26%) 

Urea-SQD-RITC 25.9 560 3.47 ± 0.10 

Femtosecond transient absorption (fs-TA) spectroscopy. In order to better understand 

the kinetics encountering the excited state in these systems upon photoexcitation, time-

resolved laser spectroscopy was conducted using femtosecond transient absorption (fs-TA) 

measurements with broadband capabilities. Details of the experimental set up can be found 

elsewhere. [45,46] The fs-TA spectra of Am-SQD-R6G and time dependent absorption 

change of assemblies monitored at both photo-induce excited state absorption (PIA) decay 
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and ground state bleach (GSB) recovery are given in Figure 5-5 and supporting 

information.   

 

Figure 5-5. fs-TA spectra at different delay times in response to 350 nm optical 

excitation of Am-SQD-R6G (A), kinetic traces for absorbance change (B) and (C) 

(monitoring wavelengths are given on graph; fit in red); in EtOH. 

Table 5-2. Lifetime of the different assemblies as obtained from fs-TA kinetic traces. 

 mon (nm) τf  (ps) 

Am-SQD-R6G 650 

 

 

0.54 ± 0.08 (44%) 

25.47 ± 4.06 (22%) 

305.20 ± 26.80 (34%) 

Diam-SQD-R6G 620 

 

 

4.48 ±0.98 (26%) 

50.30 ±12.20 (52%) 

565.20 ± 83 (22%) 

Urea-SQD-R6G 535 

 

 

˂ 0.12 (80%) 

4.38 ± 0.69 (10%) 

130.90 ± 19.10 (10%) 
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Kinetic traces collected at the PIA change for SQD/R6G assemblies compared to free R6G 

are shown in Figure 5-5(B). From the kinetic traces and the estimated lifetimes given in 

Table 5-2 it is clear that kinetic decay traces for excited-state absorption R6G in the dyad 

assemblies exhibited an extra faster lifetime component compared to free R6G. For both 

of Am-SQD-R6G and DiAm-SQD-R6G kinetic traces initially reflected this fast 

component at the early delay times whereas kinetic traces exhibited almost the same kinetic 

decay profile of free R6G over extended delay times. For Urea-SQD-R6G the magnitude 

of the faster component is clearly predominating the kinetic trace in distinguish difference 

to the other two dyads namely Am-SQD-R6G and DiAm-SQD-R6G. Considering the 

aforementioned mechanism of interaction to be both energy and electron transfer, we can 

confidently assign this to major contribution of electron transfer for Urea-SQD-R6G.  Due 

to the strong spectral overlap observed along investigated spectrum range, it was not 

possible to observe charge separated ion signature. Yet, from kinetics of GSB recovery, 

see Figure 5-5 (C), kinetic traces collected at 535 nm corresponding to R6G ground-state 

absorption is longer for SQD/R6G family than those for R6G alone. This is in favorite of 

involvement of charge separation/recombination affecting the ground-state recovery 

kinetics for R6G in the SQD/R6G family. It is worth to mention here that GSB kinetic trace 

for DiAm-SQD-R6G was not possible to obtain due to stimulated emission from SQDs 

over same spectral range. Thus, it allows us to confidently suggest the involvement of 

photo-induced electron transfer in the interaction in the investigated SQD/R6G family 

without excluding the contribution of energy transfer. It is expected to be both mechanism 

operative with the photo-induced electron transfer to be more predominant in Urea-SQD-

R6G. On the other hand for SQD/RITC family, the fs-TA spectrum was predominated by 

the GSB of RITC; see Figure 5-6. Thus, it was difficult to monitor the TA signal for excited 

state absorption either for SQD or RITC over the investigated spectral range. Yet, kinetic 

traces associated with GSB recovery clearly reveal faster kinetics for the assemblies as 

compared to the organic dye alone.  The faster kinetic associated with GSB recovery in 

SQD/RITC dyad assemblies can strongly argue in favorite of charge 

separation/recombination affecting the ground-state recovery rates for the dyad assemblies. 

Clearly GSB recovery rates observed for SQD/RITC assemblies are faster than the free 

organic dye (RITC); in difference with the behavior observed for SQD/R6G where GSB 
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recovery rates found to be slower than the organic dye (R6G); see Figure 5-5 C. Thus, it 

allows us to anticipate the structure differences between the counter parts organic dyes in 

these two dyad assemblies plays an important role in stabilizing the charge-separated 

radicals. 

 

Figure 5-6. fs-TA spectra at different delay times in response to 350 nm optical 

excitation of Am-SQD-RITC (A), kinetic traces for absorbance change (B) 

(monitoring wavelengths are given on graph; fit in red); in EtOH. 

5.3.3 Conclusion  

In summary, we have synthesized two families of SQDs, SQD/R6G and SQD/RITC, 

covalently functionalized with rhodamine 6G and rhodamine B isothiocyanate via the 

carbonyl and thiourea groups in the phenyl part of the dye using three different spacers. 

The photoluminescence of the SQD/R6G family showed a dramatic variation of the relative 

intensity of the dual emission peaks, while that of SQD/RITC family presented a single 

emission peak with a complete quench of the SQDs fluorescence. Interaction within the 

investigated dyads was found to be operative via photo-induced energy and/or electron 

transfer. Charge separation confirmed from fs-TA measurements where charge 

recombination found to be dependent on the spacer as well as position of connection with 

the organic dye. Slower rates for charge recombination, as confirmed from GSB recovery, 

was obtained for SQD/R6G whereas faster rates obtained for SQD/RITC. Moreover, rates 

for forward interaction in SQD/R6G found to be in the order of Urea-SQD-R6G ˃ Am-

SQD-R6G ˃ DiAm-SQD-R6G. 
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5.3.4 Supporting information 

 

 

Figure 5-7. Absorption and excitation spectra of Am-SQD collected at room 

temperature; (em and ex indicated on graph). 



20 

 

 

Figure 5-8. Absorption and excitation spectra of Urea-SQD collected at room 

temperature; (em and ex indicated on graph). 

 

Figure 5-9. TCSPC decay curves collected with ex = 372 nm and monitored at (A) 

em = 450 nm and (B) em given between brackets. 
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Figure 5-10. TCSPC decay curves collected with ex = 372 nm and monitored at em = 

560 nm. 

 

Figure 5-11. fs-TA spectra at different delay times in response to 350 nm optical 

excitation (A) and absorbance change kinetic traces (B) for Am-SQD.  
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Figure 5-12. fs-TA spectra at different delay times in response to 520 nm optical 

excitation (A) and absorbance change kinetic traces (B) for R6G. 

 

Figure 5-13. fs-TA spectra at different delay times in response to 520 nm optical 

excitation (A) and absorbance change kinetic traces (B) for RITC. 
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Figure 5-14.  fs-TA spectra at different delay times in response to 350 nm for Urea-

SQD-Rh6G. 

 

Figure 5-15. fs-TA spectra at different delay times in response to 350 nm for DiAm-

SQD-Rh6G. 
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Figure 5-16. fs-TA spectra at different delay times in response to 350 nm for Urea-

SQD-RhITC. 

 

Figure 5-17. fs-TA spectra at different delay times in response to 350 nm for DiAm-

SQD-RhITC. 
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Chapter 6 General discussion and conclusions 

The novelty of this work stems from being the first study to utilize and investigate surface 

states as a means to control the physical, optical and photophysical properties of ultra-small 

silicon quantum dots (SQDs). Ultra-small SQDs, are usually of size less than 2 nm, deviate 

from the quantum confinement effect. Thus, their surface functionalization would play a 

key role toward controlling their optical properties including a change in their 

photoluminescence, quantum efficiency, fluorescence lifetimes, and photostability. This is 

due to the interaction of the ligands with the electronic wave function of SQDs which in 

turn influence the electronic structure of SQDs.  

First, we have synthesized and investigated three families of SQDs (ranging from 1.7–

2.1 nm) covalently functionalized with phenanthrene, pyrene, and perylene fluorophores 

through a vinyl spacer. The photophysical measurements of these SQDs provided clear 

evidence for an efficient energy transfer from the aromatic dyes to the core of the SQDs in 

which Fӧrster energy transfer is the likely mechanism. The emission color was red-shifted 

by 69 and 65 nm when perylene and phenanthrene were used as capping agents, while 

pyrene fluorophore led to a blue-shift by 50 nm, compared to their counterpart model 

SQDs. The QE was moderately enhanced by up to 10%. Therefore, the functionalization 

of SQDs surface with aromatic ligands via a conjugated spacer is an efficient strategy to 

tune the optical properties and improve the QE of SQDs. Interestingly, SQDs 

functionalized with pyrene and perylene fluorophores were of low toxicity and showed 

promising results when used for the bioimaging of cervical cancerous HeLa cells. 

The next study of my thesis investigated the impact of spacer on directing the optical 

properties of SQDs. Two SQDs assemblies of 1.6 nm average diameter were synthesized 

and functionalized with perylene-3,4,9,10-tetracarboxylic acid diimide (PDI) fluorophore 

via non-conjugated spacers. The spacers utilized in this study were N-propylurea and 

propylamine. The photophysical characterization revealed an efficient energy and/or 

electron transfer between the SQDs and PDI dye based on the type of the utilized spacer. 

Energy transfer was confirmed to be the predominant process when propylurea spacer was 

used, while the propylamine spacer secured an electron transfer process. To illustrate 
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functionality, both SQDs families were proven to be nontoxic and efficient for fluorescent 

imaging of embryonic kidney HEK293 cells and human bone cancerous U2OS cells.  

Despite of the suitability of the utilized fluorophores and spacers mentioned above to 

control the optical properties of SQDs due to the photoinduced energy and/or electron 

transfer processes, it was not possible to enhance the QE of SQDs significantly. Thus, we 

have investigated other types of spacers that vary in chemical nature, length, and 

attachment position with the dye.  

In the third study, we synthesized and studied four different assemblies of SQDs, ranging 

from 1.6 – 1.8 nm, and functionalized them with fluorescein dyes through isothiocyanate 

(-NCS) and carboxylate (COO-) spacers in the para and ortho position of the benzene ring 

of the fluorescein dye, respectively. The photophysical measurements showed that the 

isothiocyanate spacer enabled a significant enhancement in the QE of the SQDs assemblies 

by up to 65%. Interestingly, both spacers allowed to extend the photostability of SQDs 

assemblies for at least one year. Additionally, energy and/or electron transfer processes 

were confirmed to be operative in these systems. The type and rate of interaction between 

the SQDs and the aromatic dye in these four systems were determined to be dependent on 

the type of ligand and connection position with the dye which impact the orientation of the 

phenyl group comparing to the xanthene part of the dye. The presented SQDs dyads here 

showed promising results for fluorescent cellular imaging of human osteosarcoma U2OS 

cells. 

Finally, we have synthesized and investigated two families of SQDs (1.8 average 

diameter), and functionalized their surface using rhodamine b isothiocyanate and 

rhodamine 6G to produce SQD/RITC and SQD/R6G families. The photophysical studies 

of the SQD/R6G family showed a dual emission peak in which SQDs emission maxima 

were blue-shifted compared to their SQDs counterparts, while they were completely 

quenched in SQD/RITC family. This is due to the contribution of energy and/or electron 

transfer in these systems. Moreover, the rate of the resulting interaction in these dyads of 

each family varied significantly depending on the type and length of the utilized spacers. 

Interestingly, these dyads showed photostability for over one year. 
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In conclusion, several factors can be utilized to control the optical properties of SQDs 

rather than changing their size to overcome challenges related to the deviation from the 

quantum confinement effect for ultra-small quantum dots. This includes: 1) type of 

aromatic dye capping agent; 2) chemical nature and length of spacer; and 3) attachment 

position with the aromatic dye.  

6.1 Future Work 

We are now aiming to develop a biocompatible, highly selective and sensitive activatable 

fluorescent imaging probes to enable the in vivo and in vitro detection of several species 

of bacteria and viruses. The probe must be able to produce a photophysical change upon 

the exposure to specific bacteria/viruses such as absorption/emission spectral shift or a 

change in the QE. The rapid clearance, biocompatibility, and biodegradability of the 

fluorescent imaging probes are desired to demonstrate its suitability for potential clinical 

applications. 

Based on our understanding now on how different factors impact the optical properties of 

SQDs, I am proposing two approaches to design an activatable fluorescent imaging probes 

which are activated in response to specific biomolecular recognition or environmental 

changes in real time. 

1) Inhibitor-SQDs approach. This approach depends on the attachment of SQDs to a 

specific bacterial or viral inhibitor. The inhibitors-loaded SQDs will selectively bind to the 

targeted bacteria or virus, and consequently will lead to the aggregation of SQDs on the 

microorganisms. Thus, they would affect the optical properties capability of these SQDs 

such as change in their absorption/ photoluminescence and QE. Quantum Dots aggregation 

usually leads to a shift in the absorption/emission wavelength (usually red shift) and a 

decrease in the absorption/emission intensity.[1] Here, the NIR-absorbing and emitting 

SQDs are ideal candidates for biomedical applications due to their excellent optical 

properties and biocompatibility.[2]  
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Figure 6-1. Inhibitor-SQDs approach. 

2) SQDs-Peptide-Fluorophore Approach. This approach is dependent on the utilization 

of sensitive and selective peptides that respond in a certain way upon the exposure to 

different types of bacteria and viruses. The peptide here acts as a bridge to connect SQDs 

to the organic dye fluorophore to produce the SQDs-Peptide-Fluorophore probe. The 

proposed probe is composed of a bacteria/virus-specific peptide linker connected into red-

absorbing/emitting SQDs and aromatic dye at each terminal side. The overall optical 

properties of this probe are expected to be induced by an energy and/or electron transfer 

process between the SQDs and the organic dye when connected through peptides. Thus, 

the optical properties of the dyad system will be different from that of the individual SQDs 

and aromatic fluorophores. Upon the exposure to the bacterial/viral-specific peptidases, the 

peptide linker will cleave leading to the release of the SQDs and aromatic dye. As a result, 

the probe will be activated and a change in the fluorescence ratiometric signals for both 

fluorophores (SQDs and aromatic dye) will be detected.   

 

Figure 6-2. SQDs-Peptide-Fluorophore Approach. 

 

 

 

 

 



34 

 

6.2 References 

1. Poderys, Vilius; Matulionyte, Marija; Selskis, Algirdas; and Rotomskis, Ricardas. 

"Interaction of water-soluble CdTe quantum dots with bovine serum albumin." 

Nanoscale Res Lett 6 (2011): 9. 

2. Chinnathambi, Shanmugavel, and Shirahata, Naoto. "Recent advances on 

fluorescent biomarkers of near-infrared quantum dots for in vitro and in vivo 

imaging." Science and technology of advanced materials 20 (2019): 337-355. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



2 

 

Curriculum Vitae 

 

Name:   Mohammed Abdelhameed 

 

Post-secondary  Assiut University 

Education and  Assiut, Egypt 

Degrees:   2005-2009; B.Sc. in Chemistry 

 

Sherbrooke University 

Sherbrooke, Quebec, Canada 

2011-2014; M.Sc. in Chemistry 

 

University of Western Ontario 

London, Ontario, Canada 

2015-2019; Ph.D. in Chemical & Biochemical Engineering 

 

Honours and  Awards: 

2019: Best Presenter in the Three Minute Thesis competition (3MT) in the department of 

Chemical Engineering. 

2018: Ontario Graduate Scholarship (OGS). 

May 2015 – April 2019: Western Graduate Research Scholarship. 

September 2011 – June 2014: Graduate Research Scholarship at University of 

Sherbrooke. 

 

Related Work Experience    

1. Teaching Assistant for: 

09/2018 - 12/2018: Organic Chemistry course (CBE 2206); 01/2018 – 04/2018: Energy 

and Society course (CBE 4485); 09/2017 - 12/2017: Heat Transfer course (CBE 3322); 

09/2016 – 04/2017: Chemical Engineering Project Course (CBE 4415). 

2. Research Assistant 

09/2010-08/2011: Assiut University, Egypt 

 

 

Publications: 

1- Abdelhameed, M., Aly, S., Maity, P., Manni, E., Mohammed, O. F., Charpentier, P. C., 

Controlling Surface-defect-state Photoluminescence in Ultra-Small Silicon Quantum Dots 

Via Spacers, To be submitted to ACS Nano. 

2- Abdelhameed, M., Aly, S., Maity, P., Kazi, F., Mohammed, O. F., Charpentier, P. C., 

Impact of the Chemical Nature and Position of Spacers on Controlling the Optical 

Properties of Silicon Quantum Dots, Accepted in PCCP. 



3 

 

3- Abdelhameed, M., Aly, S., Lant, J., Zhang, X. & Charpentier, P. (2018), 

Energy/Electron Transfer Switch for Controlling Optical Properties of Silicon Quantum 

Dots, Scientific Reports, 8 (17068). 

4- Abdelhameed, M., Martir, D, Chen, S., Xu, W., Oyeneye, O., Chakrabarti, S., Zysman-

Colman, E. & Charpentier, P. (2018), Tuning the Optical Properties of Silicon Quantum 

Dots via Surface Functionalization with Conjugated Aromatic Fluorophores, Scientific 

Reports, 8 (3050) Top 100 in Chemistry in 2018. 

5- Abdelhameed, M., Langlois, A., Fortin, D., Karsenti, P.-L., & Harvey, P. D. (2014) A 

drastic substituent effect on the emission properties of quinone diimine models and 

valuable insight into the excited states of emeraldine, Chemical Communications, 50 

(11214). 

6- Abdelhameed, M., Langlois, A., Karsenti, P.-L., Richeter, S., Ruppert, R., & Harvey, 

P. D. (2014), Ultrafast energy transfer in a Pd(ii)-bridged bisporphyrin dyad, Chemical 

Communications, 50 (14609). 

7- Abdelhameed, M., Karsenti, P.-L., Langlois, A., Lefebvre, J.-F., Richeter, S., Ruppert, 

R., & Harvey, P. D. (2014), Unexpected Drastic Decrease in the Excited-State Electronic 

Communication between Porphyrin Chromophores Covalently Linked by a Palladium(II) 

Bridge, Chemistry – A European Journal, 20 (12988). 

8- Mohammed Abdelhameed Charge and Energy Transfer in Porphyrin Dyads And 

Oligomers, (2014), Université de Sherbrooke. 

 

9- Xu, H.-J., Bonnot, A., Karsenti, P. L., Langlois, A., Abdelhameed, M., Barbe, J.-M., 

Gros, C. and Harvey, P. (2014), Antenna effects in truxene-bridged BODIPY 

triarylzinc(II)porphyrin dyads: evidence for a dual Dexter–Förster mechanism, Dalton 

Trans., 43 (8219). 

10- Soliman, A., Abdelhameed, M.,  Zysman-Coleman, E. and  Harvey, P. (2013), 

Monitoring the On/Off Switching of the Electronic Communication in Diethynyl 

platinum(II)-bridged Dyads Using Triplet Energy Transfer, Chemical Communications, 

49 (5544). 

 

Conference Papers 

 

1- ACS Fall 2019 National Meeting & Exposition in San Diego, CA, August 25 - 29, 2019. 

Impact of spacers on controlling the optical properties of silicon quantum dots: Fluorescein 

dyad. Mohammed Abdelhameed, Devin Machin, Paul Charpentier 

https://www.nature.com/articles/s41598-018-35201-0#auth-1
https://www.nature.com/articles/s41598-018-35201-0#auth-2
https://www.nature.com/articles/s41598-018-35201-0#auth-3
https://www.nature.com/articles/s41598-018-35201-0#auth-4
https://www.nature.com/articles/s41598-018-35201-0#auth-5
https://pubs.rsc.org/en/results?searchtext=Author%3APierre%20D.%20Harvey


4 

 

2- ACS Fall 2019 National Meeting & Exposition in San Diego, CA, August 25 - 29, 2019. 

Role of spacers towards directing the interactions in silicon quantum dots: Fluorescein 

dyads. Mohammed Abdelhameed, Shawkat Aly, Devin D Machin, Paul Charpentier   

3- 1st National conference: Converging on Nanomanufacturing, Canada, September 25-26, 

2017. Biomedical Applications of Silicon Quantum Dots. Mohammed Abdelhameed and 

Paul Charpentier. 

4- 100th Canadian Chemistry Conference, Toronto, Canada, May 28 - June 1, 2017. Silicon 

Quantum Dots: Towards Fluorescent Cellular Imaging Applications. Mohammed 

Abdelhameed and Paul Charpentier.  

5- 9th CSACS, Concordia University, Canada, September 12th, 2013. 

Di(imine(tetraarylzinc(II)porphyrin))di-α-(amine (tetraarylzinc(II) porphyrin ) ) quinone 

as a Model for Conjugated and Unconjugated Porphyrin Dye Polymers. Mohammed 

Abdelhameed and Pierre D. Harvey. 

6- 5e Colloque annuel du CQMF, Canada, November 2nd, 2012. Synthesis, 

Characterization and Photophysical Properties of Bridged Organometallic Dyads. Tripler 

Energy Transfers in a [Ir]+-[Pt]-(Zn(II)porphyrin) species. Mohammed Abdelhameed, 

Ahmed Soliman, Eli Zysman- Colman, Pierre D. Harvey. 


	Abstract
	Summary for Lay Audience
	Co-Authorship Statement
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	List of Abbreviations
	Chapter 1
	1 Background and Theory
	1.1 Background
	1.2  Fluorophores
	1.3 Synthesis of SQDs
	1.4  Objectives
	1.5  Theory
	1.6  Reference

	Chapter 2  Tuning the Optical Properties of Silicon Quantum Dots via Surface Functionalization with Conjugated Aromatic Fluorophores
	2.1 Introduction
	2.2  Results and discussions
	2.2.1 Size and structure
	2.2.2 Photophysical properties
	2.2.3 Fluorescent cellular imaging study
	2.2.4 Cytotoxicity Studies
	2.2.5 Conclusion

	2.3 Methods
	2.4  Supporting Information
	2.5  Reference

	Chapter 3  Energy/Electron Transfer Switch for Controlling Optical Properties of Silicon Quantum Dots
	3.1  Introduction
	3.2  Results and discussion
	3.2.1 Size and structure
	3.2.2 Photophysical properties
	3.2.3 Fluorescent cellular imaging study
	3.2.4 Impact of Urea-SQD-Per on cellular viability
	3.2.5 Conclusion

	3.3  Methods and materials
	3.4  Supporting Information
	3.5  References

	Chapter 4 Impact of the Chemical Nature and Position of Spacers on Controlling the Optical Properties of Silicon Quantum Dots
	4.1 Introduction
	4.2 Experimental Section
	4.3 Results and Discussion
	4.3.1 Size and structure
	4.3.2 Photophysical properties
	4.3.3 Effect of pH on steady-state fluorescence
	4.3.4 Fluorescent cellular imaging study

	4.4 Conclusion
	4.5 Supporting information
	4.6 References

	Chapter 5  Controlling the Surface-defect-state Photoluminescence in Ultra-Small Silicon Quantum Dots Via Spacers
	5.1 Introduction
	5.2 Experimental Section
	5.3 Results and Discussion
	5.3.1 Size and Structure
	5.3.2 Photophysical properties
	In order to understand the nature of interaction between rhodamine dyes and SQDs assemblies as well as the impact of spacer on the optical properties of SQDs, their photophysical properties including steady-state photoluminescence (PL) and excitation ...

	5.3.3 Conclusion
	5.3.4 Supporting information

	5.4 References

	Chapter 6 General discussion and conclusions
	6.1 Future Work
	6.2 References

	Curriculum Vitae

