
Accepted Manuscript

Gas-phase conversion of glycerol to allyl alcohol over vanadium-
supported zeolite beta

Ruben Almeida, M. Filipa Ribeiro, Auguste Fernandes, João P.
Lourenço

PII: S1566-7367(19)30129-3
DOI: https://doi.org/10.1016/j.catcom.2019.04.015
Reference: CATCOM 5683

To appear in: Catalysis Communications

Received date: 17 January 2019
Revised date: 10 April 2019
Accepted date: 20 April 2019

Please cite this article as: R. Almeida, M.F. Ribeiro, A. Fernandes, et al., Gas-phase
conversion of glycerol to allyl alcohol over vanadium-supported zeolite beta, Catalysis
Communications, https://doi.org/10.1016/j.catcom.2019.04.015

This is a PDF file of an unedited manuscript that has been accepted for publication. As
a service to our customers we are providing this early version of the manuscript. The
manuscript will undergo copyediting, typesetting, and review of the resulting proof before
it is published in its final form. Please note that during the production process errors may
be discovered which could affect the content, and all legal disclaimers that apply to the
journal pertain.

https://doi.org/10.1016/j.catcom.2019.04.015
https://doi.org/10.1016/j.catcom.2019.04.015


AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

Gas-phase conversion of glycerol to allyl alcohol over 

vanadium-supported zeolite beta 

 

Ruben Almeida
a
, M. Filipa Ribeiro

b
 Auguste Fernandes

b,* 
jlouren@ualg.pt, João P. 

Lourenço
a,b,* 

jlouren@ualg.pt
 

 

a
Faculdade de Ciências e Tecnologia, CIQA, Universidade do Algarve, Campus de Gambelas, 

8005-139 Faro, Portugal 

b
Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. 

Rovisco Pais, 1049-001 Lisboa, Portugal 

 

*
Corresponding authors. 

 

  

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

Abstract  

Vanadium oxide supported beta zeolite (Si/Al=25, 4% V) was used as catalyst for the one-pot 

gas-phase conversion of glycerol to allyl alcohol without any external reductant. The catalytic 

data strongly suggest a consecutive reactions path involving the dehydration to acrolein over 

the zeolite acid sites followed by a selective reduction through a hydrogen-transfer reaction. 

Acidity is expected to play a major role in what concerns the selectivity, as demonstrated by 

the catalytic results obtained by the impregnation of vanadium on a previously Cs-exchanged 

sample that achieved ca. 30% selectivity to allyl alcohol at ca. 20% glycerol conversion.  

 

 

Keywords: Allyl alcohol, Vanadium oxide, Glycerol conversion, Beta zeolite, Sustainable 

chemistry 
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1. Introduction 

Glycerol, a polyalcohol readily obtained from biomass, is a chemical product with wide 

applications in pharmaceutical, cosmetic and food industries. This compound is found in 

association with fatty acids forming triglycerides and it is consequently produced as a by-

product in the soap and biodiesel industries. In the last years, the continuous demand for more 

sustainable alternatives to fossil fuels, including biodiesel, has led to a surplus of glycerol 

production that tends to reduce its market price. The conversion of glycerol into value-added 

commodity chemicals and fuels is, thus, of paramount importance to improve the biodiesel 

economic viability [1–3]. 

The gas-phase catalytic dehydration to acrolein is one of the most studied ways for the 

valorisation of glycerol. Acrolein is mainly used for the production of acrylic acid, acrylic 

acid esters, superabsorber polymers and detergents [4,5]. A large variety of acid catalysts has 

been reported for this reaction, including zeolites, heteropolyacids, metal oxides and modified 

mesoporous silica materials [6–13], with their acid and textural properties playing a crucial 

role on the catalytic performance [11,14–16]. 

A less explored way for the valorization of glycerol is its direct conversion to allyl alcohol, an 

important chemical intermediate due to the presence of C=C and O-H functionalities. Allyl 

alcohol derivatives can be found in cosmetic, pharmaceutical and food industries and are also 

a building block in the manufacture of various chemical compounds such as coupling agents, 

plasticizers, crosslinking agents and coating additives [17]. The production of allyl alcohol 

currently involves the conversion of propylene, however, a few reports have shown that it can 

be obtained in a one-pot reaction from glycerol, using zirconia-iron [18], MoO3–WO3/TiO2 

[19] and methyltrioxorhenium (MTO) [20]. Recently, G. Sánchez et al. [17,21] used ZSM-5 

and alumina supported iron catalysts for this purpose, taking advantage of the support acidity 

to dehydrate the glycerol and the iron species to promote the formation of allyl alcohol 

through an hydrogen transfer reaction that may involve chemical intermediates from the 

dehydration. These works reveal important insights on the mechanism of this reaction but also 

demonstrate that improvement of the catalyst is still needed in order to increase the selectivity 

to allyl alcohol. 

Vanadium compounds supported on zeolites have proved to be successful catalysts for the 

conversion of glycerol to acrylic acid [22]. To the best of our knowledge, these bifunctional 

catalysts have never been tested in the direct conversion of glycerol to allyl alcohol, although 

NH4VO3 was shown to be active in liquid phase [23]. In this work, we intend to evaluate the 
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ability of vanadium oxide supported on beta zeolite and its modification with cesium (in order 

to control the acidity) as catalysts for the one-pass conversion of glycerol to allyl alcohol and 

to demonstrate that redox phases other than iron oxide, could be considered for this catalytic 

system.  

 

  

 

 

 

2. Experimental 

 

2.1. Catalyst preparation 

Beta zeolite in the protonic form (VALFOR CP811BL-25, Si/Al ratio of 25) was purchased 

from The PQ Corporation (USA). A sample of V-containing beta zeolite (BEA/V) was 

prepared by a procedure following closely that described by L.G. Possato et al. [22]. Briefly, 

1.0 g of zeolite was stirred with the required amount of an aqueous solution of NH4VO3 (0.04 

mol.L
-1

) at room temperature for 2 h. The water was removed in a rotary evaporator followed 

by a calcination at 500 ºC under dry air for 2 h. The sample prepared by this procedure was 

named BEA/V.  

In order to evaluate the effect of the modification with cesium ions, a sample (BEA/Cs/V) 

was obtained by first ion-exchanging the beta zeolite with a 0.1 M aqueous solution of CsCl 

for 2 h at 80 ºC. The powder recovered after filtration was dried at 80 ºC overnight, calcined 

under dry air for 1 h, at 350 ºC, and subsequently submitted to the vanadium deposition as 

described above.  

 

2.2 Catalyst characterization 

Powder X-ray diffraction patterns were recorded on a Panalytical X’Pert Pro diffractometer 

using Cu Kα radiation filtered by Ni and an X'Celerator detector. Phase identification was 

carried out using the Panalytical software and the ICDD PDF2 database. Pyridine (Py) 

adsorption was followed by FTIR spectroscopy using a home-made quartz cell allowing 

sample vacuum (10
-6

 Torr) and temperature pretreatment (450 ºC, 2h) and subsequent Py 

adsorption at 150 °C. Quantitative measurements were done as described elsewhere [24]. 

Thermogravimetric data (TG) were obtained with a Setsys Evo15 Setaram apparatus, under 

air at a heating rate of 10 °C.min
-1

. Nitrogen sorption experiments were carried out using an 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

Autosorb IQ series equipment from Quantachrome. Prior to measurements, the samples were 

outgassed first at 90 °C and then at 350 °C, during 1 and 4 h, respectively.  

UV-Visible spectra were recorded with a high temperature reaction cell from Harrick and a 

Praying Mantis diffuse reflectance accessory, both coupled to a Cary 5000 spectrophotometer 

from Varian.  

The amount of supported Cs and V was determined by bulk chemical analysis using AA and 

ICP-OES techniques. 

 

2.3. Catalytic tests 

Conversion of glycerol was carried out at 320 ºC under atmospheric pressure, in a fixed-bed 

flow type quartz reactor (i.d. 1.5 cm) using 150 mg of catalyst. Before each test, the catalyst 

was maintained for 1 h at 500 °C under a flux of dry air (30 mL·min
-1

). The reaction feed, an 

aqueous solution containing 10 wt.% of glycerol, was introduced into the reactor by a syringe 

pump KD Scientific at a flow of 2.5 mL.h
-1

 and diluted in a flow of dry nitrogen (30 mL·min
-

1
). The reaction products were collected in an ice trap followed by two additional water traps. 

The reaction products were analyzed on a Bruker SCION 460 gas chromatograph equipped 

with a 30 m Zebron ZE-FFAP capillary column and a FID detector. For quantitative 

measurements, 1-propanol (for low boiling point products) and 1,4-butanediol (for glycerol) 

were used as internal standards. Since 1-propanol is a possible reaction product, the samples 

were also checked for the presence of this compound.  

The conversion and selectivity were calculated as follows: 

 

       
           
       

     

 

       
     

           
     

 

where ngtotal  is the total number of moles of glycerol injected into the reactor during the time 

on stream t, ngt the number of moles of glycerol in the products recovered at time on stream t 

and ngi,t  the number of moles of glycerol converted to the product i during the time on stream 

t. In order to obtain a significant amount of products, each analysis corresponds to the 

products recovered for 2 h. 
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3. Results and discussion 

The XRD patterns of calcined samples (figure SD1) are those of typical beta zeolite. The 

deposition of vanadium does not significantly damage the structure of the parent beta zeolite, 

although a decrease in the crystallinity can be observed in the modified samples. The presence 

of crystalline V-containing phases could not be clearly identified although the presence of 

small and disperse vanadium oxides cannot be discarded when the patterns are compared with 

the ICDD cards #01-074-1595 (V2O5) and #01-070-2717 (VO2). 

The chemical, acidic and textural properties of the various samples are shown in table 1. The 

deposition of vanadium and subsequent calcination gives rise to a decrease of the surface area 

and micropore volume (samples BEA and BEA/V) probably due to some pore blockage, 

although a damage of the structure cannot be ruled out taking into consideration the reduction 

of crystallinity observed by XRD. The sample containing cesium and vanadium, although 

showing a further decrease, still retains a high BET surface area and micropore volume. 

The UV-Vis. spectra (figure 1) display bands at ca. 260 and 400 nm that overlap, at least, with 

one band at ca. 300-310 nm, all corresponding to oxygen to V charge-transfer bands. The 

absence of bands in the range 600-800 nm, characteristic of d-d transitions of V
4+ 

species, 

indicates that all the vanadium atoms are in oxidation state (+5) [25]. The band near 400 nm 

has been assigned to polymeric octahedral V
5+ 

[25]
 
 whereas the band at ca. 260 and 300-310 

nm were associated to monomeric and oligomeric tetrahedral V
5+ 

[26], respectively. Although 

no crystalline V2O5 could be indubitably observed, the presence of highly dispersed V2O5 

cannot be discarded. As shown by M. Wark et al. [27], highly dispersed V2O5 gives rise to a 

significantly different spectrum where a monotonic increase of absorption up to a maximum 

at ca. 220 nm is observed, instead of the typical bands of the crystalline phase. Moreover, 

preliminary results obtained with Raman spectroscopy indicate the presence of V2O5 in these 

samples.  

The catalytic performance of the various samples concerning the conversion of glycerol is 

depicted in figure 2. Under the conditions of the present study, a strong deactivation is 

observed in the first hours on stream for all the samples, as expected for acidic zeolites [28]. 

This deactivation is usually explained by the formation of coke, which depends on the number 

and strength of the acid sites [29]. From table 1 (and figure SD2), it is evident that the sample 

BEA/Cs/V has a much lower number of acid sites than the other samples and, consequently, it 

would be expected a significantly lower activity from the early stages of the reaction run. 

Nevertheless, it is observed that the initial conversion of glycerol is similar to those obtained 
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with the higher acidic samples. This result suggests that neither strong acid sites nor a high 

density of acid sites are needed to promote the conversion of glycerol in these conditions. The 

strong deactivation rate observed for all the samples, albeit having different acidity, may be 

explained by the different amount and type of coke that is formed. Table SD1 shows that the 

amount of coke correlates with the acidity of the samples and the DSC profiles (figure 4) 

show two exothermic peaks usually observed during the oxidation of coke on microporous 

catalysts: one appearing at low temperature, corresponding to the oxidation of less condensed 

coke (soft-coke), and the other at high temperature corrresponding to more condensed coke 

(hard-coke) [15]. Although less visible in the TG profiles of the samples BEA and BEA/V, 

BEA/Cs/V shows two well diferenciated weight losses in the range 300-600 ºC, 

corresponding to these two types of coke (see figure SD 3).     

Comparing the three samples, those containing V show both maxima at temperatures 

considerably lower than those observed for the BEA sample, certainly due to the ability of V-

species to act as catalysts in the process of the coke oxidation. BEA, the sample that has 

stronger acid sites, gives rise to a higher amount of coke (24.5 wt.%, table SD1) and to a more 

condensed coke (figure 4) which causes a strong deactivation. On the other hand, the less 

acidic sample (BEA/Cs/V) gives rise to the lowest amount (20.0 wt.%, table SD1) and less 

condensed coke but this coke could be also effective in the deactivation of the catalyst due to 

the low initial number of acid sites. BEA/V shows an intermediate behavior, both in terms of 

the amount and nature of coke, as expected from its intermediate acidity.  

For BEA catalyst under a 24 h catalytic test, the main reaction products were, as expected 

[28], acrolein, acetaldehyde and hydroxyacetone, with a minor amount of allyl alcohol and 

propionic aldehyde (figure 3). It should be noted that the selectivity of allyl alcohol never 

exceeds 2 % in these conditions.  

The modification with vanadium (sample BEA/V) causes some significant changes in the 

product distribution (figure 5 A). Acrolein is again the main product but with a higher 

selectivity, whereas the selectivity to hydroxyacetone has been substantially reduced. These 

variations are probably related with the decrease of the number of both Lewis and Brönsted 

acid sites [12] in the BEA/V sample. Additionally, it is also important to note the increase of 

the selectivity to allyl alcohol, that reaches up to ca. 7 %. This result clearly indicates the 

ability of the vanadium species to promote reactions leading to the formation of allyl alcohol. 

In order to investigate the influence of the support acidity on the formation of allyl alcohol, 

we prepared a new V-supported sample by previously exchanging the parent beta zeolite with 
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Cs ions (sample BEA/Cs/V). In this case, it was possible to obtain up to 30 % selectivity to 

allyl alcohol alongside with a decrease of the selectivity to acrolein (figure 5 B). A similar 

behaviour was already observed by G. Sánchez et al. [17] with iron supported ZSM-5 

catalysts modified with rubidium. Using 13 % Fe supported on ZSM-5 at 340 ºC and a GHSV 

of 1240 h
-1

, those authors reported an increase of allyl alcohol yield from ca. 6 % to ca. 12 % 

when the catalyst was modified with Rb. The decrease in the acidity, particularly the 

reduction of the strongest acid sites, was found to play an important role in the catalytic 

behavior of the tested samples. Although the ion-exchange with Cs ions causes an evident 

reduction of the number of acid sites that may account for the change in the selectivity, it also 

introduces some basicity to the catalyst [30] that could play a role in the catalytic process and, 

thus, a comprehensive study involving other cations is in progress in order to clarify this 

point. Although the direct comparison with other published studies is rather difficult due to 

the different conditions used, the results reported here compare fairly with those reported for 

this catalytic process using related catalysts. The highest yield of allyl alcohol obtained with 

the sample BEA/Cs/V, ca. 10.5 % after 4 h on stream (figure SD4), is slightly lower than that 

found by G. Sánchez et al. using ZSM-5/Fe/Rb [17] or -alumina/Fe/Rb [21] catalysts (11.9 

and 11.6 %, respectively), but it was obtained with a lower amount of metal phase and also at 

lower temperature. Higher temperature (400 ºC) and high hydrogen pressure was also needed 

in other reported study to obtain allyl alcohol selectivity of ca. 20 % [31]. Therefore, while 

there is room for improvement regarding the catalytic activity and deactivation (that may 

influence the selectivity), the results reported in the present manuscript for V/zeolite-based 

catalysts are very promising and worthy of further investigation.      

The mechanism for the formation of allyl alcohol from glycerol with metallic-based catalysts, 

in absence of molecular hydrogen, is not entirely clear and seems to depend on the catalyst. 

Y. Liu et al. [32], using an iron oxide catalyst, concluded that this process comprises the 

dehydration of glycerol to acrolein, followed by acrolein reduction to allyl alcohol, through an 

hydrogen transfer. Those authors carried out a comprehensive study with different alcohols as 

H-donors and observed that the best results were obtained with glycerol, although this 

reaction could also occur with other alcohols. In that study, the authors also concluded that 

intermediates with hydroxy groups formed during the reaction may participate together with 

glycerol as H-donors. On the other hand, J. Yi et al. [20] working with rhenium compounds 

identified a pathway not involving acrolein. In this case, allyl alcohol formation involves a 

rhenium diolate and a H-transfer from a second molecule of glycerol. A similar mechanism 
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was recently identified by A. R. Petersen et al. [23] who conducted a liquid phase 

comprehensive study using NH4VO3 as catalyst and deuterium-labelled glycerol, in order to 

elucidate the role of glycerol in the formation of allyl alcohol.  

In the present work, both BEA/V and Cs/BEA/V seem to contain the same vanadium species, 

but show a rather different behavior in what concerns the selectivity towards allyl alcohol. 

Although the mechanism identified by J. Yi et al. and  A. R. Petersen et al. [20,23] (which 

only requires the presence of the metal centre) cannot be discarded, the different behavior of 

the two samples (with similar vanadium content) suggests that a pathway involving just the 

vanadium species is not the main route for the conversion of glycerol to allyl alcohol in the 

present conditions. On the other hand, taking into consideration that the selectivity to acrolein 

tends to increase with the decrease of the acidity, it would be expected a higher selectivity 

towards this compound for the sample Cs/BEA/V when compared with the sample BEA/V, 

but we observe, instead, a reduction of the selectivity to acrolein and a significant increase of 

the selectivity to allyl alcohol. This result strongly suggests that the allyl alcohol is mainly 

formed at expenses of acrolein as reported by Y. Liu et al. [32] (see scheme SD1). In an 

analogous way, Pérez-Ramirez and coworkers [31] working in gas phase and using hydrogen 

as reductant, have shown that supporting silver on a hierarchical HZSM-5 zeolite allows the 

formation of allylic alcohol via the reduction of acrolein formed on the acid sites of the 

catalyst. In the present case, no molecular hydrogen is provided and the reduction of acrolein 

may be accomplished by hydrogen transfer reactions. Further studies are in progress in our 

research group in order to shed some light on the role of the acidity and on the different 

reactions involved in the mechanism. 

Zeolites are well known for their structural stability and ability to support regeneration 

procedures at medium to high temperatures. In order to assess the reusability of the catalysts 

used in this study, a regeneration of the spent BEA/Cs/V sample was carried out at 530 ºC for 

10 h, under a flow of dry air.  Results show that structural integrity is retained and the catalyst 

recovers its initial catalytic performance (Figures SD5 and SD6). 

 

4. Conclusion     

The present study clearly demonstrate that beta zeolite modified with vanadium oxide, 

already known to act as oxidation catalyst, is also able to promote the one-pass conversion of 

glycerol to allyl alcohol in absence of an additional reductant. A significant selectivity to allyl 

alcohol can be achieved by an appropriate tuning of the acidity through the ion-exchange of 
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the parent zeolite with Cs. The data reported here put in evidence the potential of this catalyst 

and make it worthy of detailed investigation. The significant deactivation of the catalyst is the 

main drawback and a further optimization in terms of zeolite structure, vanadium loading and 

operation conditions is needed in order to reduce deactivation and improve selectivity. 
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Figure Captions 

Figure 1. UV-Vis spectra of BEA/V (a), BEA/Cs/V (b) and commercial V2O5 (c). 

Figure 2. Conversion of glycerol over BEA (), BEA/V () and BEA/Cs/V (). 

Figure 3. Selectivity towards reaction products over BEA: acrolein (), hydroxyacetone (), 

acetaldehyde () and allyl alcohol (). 

Figure 4. Heat profiles for the oxidation of coke of modified and non-modified BEA catalysts: 

sample BEA/V (a), sample BEA/Cs/V (b) and sample BEA (c). 

Figure 5. Selectivity towards reaction products over BEA/V (A) and BEA/Cs/V (B): acrolein 

(), hydroxyacetone (), acetaldehyde () and allyl alcohol (). 
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Table 1. Chemical, acidic and textural properties of the prepared samples.  

    Acid sites
a
 (mol.g

-1
) Textural properties 

Sample V (wt.%) Cs (wt.%)  Lewis
b 

Brönsted  SBET  

(m
2
.g

-1
) 

Vmic
c
 (cm

3
.g

-1
) 

BEA -- --  322 264  638 0.173 

BEA/V 4.1 --  215 191  534 0.146 

BEA/Cs/V 3.4 7.4  58 63  496 0.128 

(a) measured at 150 ºC.  

(b) taking into consideration the bands at 1450 and 1455 cm
-1

 for the samples BEA/V and BEA/Cs/V. 

(c) measured using t-plot method. 
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Highlights 

 A one-pass conversion of glycerol to Allyl alcohol was achieved over a zeolite-based 

catalyst  

 Modification of beta zeolite with Cs and V increases the selectivity towards allyl 

alcohol 

 BEA/Cs/V recovers the catalytic activity and selectivity after a regeneration procedure 
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