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“Most people are mirrors, reflecting the moods and emotions of the times; few are 

windows, bringing light to bear on the dark corners where troubles fester. The whole 

purpose of education is to turn mirrors into windows.” 

― Sydney Harris

This quote, attributed to journalist Sydney Harris, inspired the title of this thesis. For this 

thesis, “Turning mirrors into windows” reflects the transition achieved through the 

participatory model development approach. Participants work collaboratively to ensure 

their combined knowledge and expertise is reflected in the structure and logic of the model 

developed (the mirror). The learning achieved both through the collaborative process, and 

by using the resulting dynamic simulation models provides beneficial insights and forecasts 

the impact of intervention options to inform decision making for complex and contested 

issues (the window). 
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Abstract 

Introduction: 

Achieving evidence-based public health policy is challenging. There is increasing 

recognition that more sophisticated, system-science, analytic methods, such as dynamic 

simulation modelling (DSM), are needed to better understand the dynamic, interacting 

and interrelated elements within complex public health systems. This thesis explored the 

implementation, feasibility and value of a novel participatory DSM approach as a tool for 

knowledge mobilisation and decision support in Australian health policy settings. An in-

depth case study of participatory modelling of Diabetes in Pregnancy (DIP) in the 

Australian Capital Territory (2016-2018) was conducted.  Two additional modelling case 

studies focusing on prevention of childhood overweight and obesity and alcohol-related 

harms in New South Wales provided supplementary data across different settings.  

Methods: 

A multidisciplinary stakeholder group, including researchers, clinicians, public health 

practitioners, policy makers, and simulation modelling experts, was convened to co-

produce a pioneering, multi-method DSM to inform DIP health service policy and planning.  

Using participatory action research methods, interviews with participants, recordings from 

model development workshops and meetings, participatory research field notes and other 

documents were analysed to determine the feasibiliy and value of the participatory model 

development process. The analysis explored the deliberations, challenges, opportunities 

and decisions involved. Interviews with end-user participants for the primary and 

additional case studies explored their perceptions of the utility and value of this approach 

in applied settings.  

Results: 

Participatory DSM builds on elements of best practice in knowledge mobilisation, including 

embedding deliberative methods to build shared understanding.  The methods enabled a 

collaborative, co-production approach to evidence-informed practice that moved beyond 

evidence synthesis to provide dynamic decision support. The participatory process was 

iterative, with key decisions re-visited and refined throughout the process. It facilitated a 
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significant, interdisciplinary knowledge base, built understanding of the modelling process, 

and established trust in the model to inform policy decisions. Key insights relating to the 

prevention and management of DIP were gained. The importance of implementing and 

maintaining population interventions promoting healthy weight for children and young 

adults was demonstrated. The unique benefits of simulation modelling most valued by 

health sector decision makers were its capacity to explore risk factor interactions, 

compare the outcomes of alternative intervention combinations, and consider the impacts 

of scaling-up. Participants also valued simulating new interventions prior to 

implementation, and mapping evidence gaps to prioritise future research.  

Discussion: 

Using a participatory approach to DSM for health policy is feasible and enhances the value 

of models as knowledge mobilisation and health policy decision support tools.  The 

detailed analysis in this thesis revealed the socio-technical opportunities and challenges of 

implementing these interdisciplinary methods at the intersection of systems science, 

knowledge mobilisation and public health policy, and the key elements required for 

successful implementation in applied health policy settings.  
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List of special terms and abbreviations 

ACT Health:  Australian Capital Territory Government, Health Directorate. 

ADIPS: Australian Diabetes In Pregnancy Society. 

Ageing chain:  A stock and flow structure used in system dynamics to represent the ageing 

of the population. 

Agent:  Agents in agent-based modelling represent an individual object. Agents can 

represent virtually any individual object, for example, they may represent people, vehicles, 

projects, products or countries [1]. 

Agent-based modelling (ABM):  A computer modelling method that simulates the actions 

and interactions of agents (i.e. individuals or collective entities such as organisations or 

groups) to assess their impacts on the system as a whole [2]. This method is useful for 

capturing heterogeneity in risk and in impacts of interventions and capturing social 

network influences.  

Agent journey: This term was used to refer to the changes and events that occur to an 

agent throughout the simulation. For example, an agent will transition between states. In 

the model developed for the primary case study an agent will experience increases and 

decreases in weight status, insulin sensitivity, glycemia and diabetes status. These changes 

are tracked within the model and can be analysed.  

Antenatal:  The period covering conception up to the time of birth.  

Birthweight: The first weight of the baby (stillborn or live born) obtained after birth 

(usually measured to the nearest 5 grams, and obtained within 1 hour of birth) [3]. 

Budding:  Budding is a technique used in hybrid modelling where agents of particular 

interest are “budded” or created from the system dynamics components and become 

individuals in the agent-based modelling components. 
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Calibration:  A process for tuning some parameters of the model so that the model’s 

behaviour matches a known (historical) pattern (https://help.anylogic.com/index.jsp). 

Diabetes mellitus (diabetes):  A chronic condition in which the body cannot properly use its 

main energy source, carbohydrates. This is due to a relative or absolute deficiency in 

insulin, a hormone that is produced by the pancreas and helps glucose enter the body’s 

cells from the bloodstream and then be processed by them. Diabetes is marked by an 

abnormal build-up of glucose in the blood, and it can have serious short- and long-term 

effects [3]. The three main types of diabetes are type 1 diabetes, type 2 diabetes and 

gestational diabetes. 

Diabetes in pregnancy (DIP): Diabetes in pregnancy (DIP) is a complication of pregnancy 

that is defined as carbohydrate intolerance resulting in hyperglycaemia (abnormally high 

blood sugar) [4]. Diabetes in pregnancy includes both gestational diabetes and pre-existing 

Type 1 or Type 2 diabetes.  

Discrete event modelling: A modelling method that analyses processes and optimisation of 

resource allocation for service delivery (e.g. patient flows through an emergency 

department) [1].  

Dynamic simulation modelling (DSM):  Dynamic simulation modelling is a systems science 

method that can be used to explore and understand problems that appear in the real-world 

using computer simulations [1, 5-7]. Common methods include system dynamics modelling, 

agent-based modelling, and discrete event simulation.  

Flows:  Flows are components used in system dynamics modelling.  Flows are the rates at 

which the stocks (or system states) change. Flows are typically measurements of quantities 

in a given time period such as clients per month, dollars per year or incidence of disease 

during a defined period [2].  

Gestational age:  Duration of pregnancy in completed weeks, calculated from the date of 

the first day of a woman’s last menstrual period and her baby’s date of birth, or calculated 

via ultrasound, or derived from clinical assessment during pregnancy or from examination 

of the baby after birth [3]. 
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Gestational diabetes mellitus (GDM):  A complication of pregnancy that is defined as 

carbohydrate intolerance resulting in hyperglycaemia (abnormally high blood sugar) [4]. 

GDM occurs when the disease is first detected and diagnosed during pregnancy (gestation).  

It might resolve after pregnancy but signals a high risk of diabetes occurring later on [3]. 

Incidence:  The number of new cases (of an illness or event, and so on) occurring during a 

given period. 

Initialisation:  The set of parameter values used at the start of the simulation. 

Insulin:  A hormone produced in the pancreas that helps glucose to enter body cells for 

energy metabolism. 

Model structure:  The manner in which the elements of a system are represented in the 

model; the building blocks of the model, including statecharts, stock and flow diagrams and 

process diagrams. 

NHMRC:  National Health and Medical Research Council 

NSW Health: New South Wales Government, Ministry of Health 

Parameter: Parameters are used for quantifying characteristics of the modelled objects and 

relationships between them. A parameter is normally a constant in a single simulation and 

is changed only when the model behaviour needs to be adjusted 

(https://help.anylogic.com/index.jsp). 

Parameterisation: The implementation of parameters to quantify the model structure. 

Sensitivity analysis: Sensitivity analysis is used to explore how sensitive the simulation 

results are to changes of the model parameters. The analysis runs the model multiple times 

varying one of the parameters and shows how the simulation output is impacted by the 

variation (https://help.anylogic.com/index.jsp).  

State:  Represents the “state” of the agent e.g. the agent is either in a pregnant state or not 

pregnant state. States are mutually exclusive and agents transition between states 

according to the statechart rules [1].  
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Statechart:  A visual construct that allows the modeller to define the behaviour of agents 

using rules [1]. 

Stocks:  Stocks are components used in system dynamics modelling.  They are 

accumulations and characterise the system state. Stocks are usually expressed in quantities 

such as people, inventory levels, money, or knowledge [2]. 

System dynamics:  System dynamics is a method for understanding how systems change. It 

models the relationships between elements in a system and how these relationships 

influence the behaviour of the system over time [1, 5, 8, 9]. Important elements of system 

dynamic models include feedback loops (the circular causality in the system), stocks and 

flows. 

TAPPC:  The Australian Prevention Partnership Centre. 

Transition:  Transitions determine agent movements between states in a statechart. 

Transitions have triggers, such as a message, a condition, or a timeout that determine the 

agent state will change [1]. 

Type 1 diabetes: A form of diabetes mostly arising among children or younger adults, 

marked by a complete lack of insulin and needing insulin replacement to survive [3]. 

Type 2 diabetes: The most common form of diabetes, occurring mostly in people aged 40 

and over, related to lifestyle risk factors, and marked by reduced or less effective insulin 

[3]. 

18



References 

1. Borshchev A: The Big Book of Simulation Modeling: Multimethod Modeling with 
AnyLogic 6. Chicago: AnyLogic North America; 2013. 

2. Grigoryev I: AnyLogic 7 in three days, 1st edn: AnyLogic; 2015. 

3. Australian Institute of Health and Welfare: Diabetes in pregnancy 2014–2015, 
Bulletin 146. In. Canberra: Australian Institute of Health and Welfare; 2019. 

4. Alberti K, Zimmet PZ, Consultation WHO: Definition, diagnosis and classification of 
diabetes mellitus and its complications. Part 1: diagnosis and classification of 
diabetes mellitus provisional report of a WHO consultation. Diabetic medicine : a 
journal of the British Diabetic Association 1998, 15(7):539-553. 

5. Sterman JD: Learning from evidence in a complex world. Am J Public Health 2006, 
96(3):505-514. 

6. Epstein JM: Why model? Journal of Artificial Societies and Social Simulation 2008, 
11(4):12. 

7. Gilbert N, Ahrweiler P, Barbrook-Johnson P, Narasimhan K, Wilkinson H: 
Computational Modelling of Public Policy: Reflections on Practice. Journal of 
Artificial Societies and Social Simulation 2018, 21(1). 

8. Burke JG, Lich KH, Neal JW, Meissner HI: Enhancing dissemination and 
implementation research using systems science methods. International Journal of 
Behavioral Medicine 2015, 22(3):283-291. 

9. Luke DA, Stamatakis KA: Systems science methods in public health: dynamics, 
networks, and agents. Annu Rev Public Health 2012, 33:357-376. 

19




