
Boytchev, P., “Wild Programming – One Unintended Experiment with Inquiry Based

Learning”, In Informatics in Schools – Contributing to 21st Century Education,

Proceedings of 5th International Conference on Informatics in Schools: Situation,

Evolution and Perspectives, ISSEP 2011, October 25-29, 2011, Bratislava, Slovakia,

Eds. Ivan Kalas, Roland Mittermeir, LNCS 7013, Springer-Verlag, Berlin Heidelberg

2011, pp. 1-8, ISSN 0302-9743, ISSN 978-3-642-24721, e-ISSN 1661-3349, e-ISSN

978-3-642-24722-4, DOI 10.1007/978-3-642-24722-4

The original publication is available at www.springerlink.com

www.springerlink.com

Wild Programming – One Unintended Experiment with

Inquiry Based Learning

Pavel Boytchev

KIT, Faculty of Mathematics and Informatics, Sofia University, blvd J. Bourchier 5, 1164

Sofia, Bulgaria

boytchev@fmi.uni-sofia.bg

Abstract. This paper describes one unplanned experiment of a 6th grade student

writing her first computer program for 3D graphics before learning any

programming language. Some intriguing aspects in her program are analyzed,

especially the emerging understanding of key concepts like enumeration,

naming conventions of variables and symmetry in 3D space. The paper also

identifies two main directions of mental processes. The first direction is actively

supported by the school. It is based on presenting and using knowledge in a

distilled error-free way. The other direction encompasses techniques needed to

identify wrong solutions and to find a way to overcome problems and reach a

correct solution. This direction in underrepresented in the educational system

and as a result, it is left uncultivated. Students are expected to develop such

skills by themselves.

Keywords: programming, cultivated education, emerging understanding

1 About Wild and Cultivated Strawberries

Many people like strawberries, especially the ones that are big, juicy and tasty. These

are the cultivated strawberries. The wild strawberries are completely different – they

are small, plain, but extremely fragrant. Wild strawberries are perfect for making

strawberry jam. Almost three hundreds years ago the French person Amédée-François

Frézier brought the wild Chilean strawberry Fragaria chiloensis in Europe. When

hybridized with the North American Fragaria virginiana, it gave birth to the modern

garden strawberry [1].

Nowadays, some people are surprised that wild strawberries can be eaten. They

don’t expect that that a wild fruit can be edible. So far they have only tasted cultivated

strawberries, properly wrapped and labeled.

It appears that the cultivation of strawberries has a common ground with the

cultivation of … people. For centuries learning and teaching are tightly bound to this

cultivation. The situation leads to the question whether we have reached the status of

believing that this cultivation is inherent to education.

When we give a toy to a child, we just show quickly how it is used. Then the child

continues to play with the toy and to explore its functions. This is a kind of “wild

learning”. The situation in the classroom is much more cultivated. Everything is being

mailto:boytchev@fmi.uni-sofia.bg

thoroughly premeditated and explained. To some extent this attenuates the natural

pursuit of wild experimenting. Within the cultivated education students see only the

correct way of solving a problem or undertaking a research. They are detached from

the wild exploration, where mistakes are the driving force of learning. People learn

from their mistakes – mistakes are as educational as non-mistakes [2]. Unfortunately,

we want to exclude all mistakes and even chances of mistakes from the learning

process.

Let us consider as an example the discipline Computer Science and focus on one of

its subdisciplines – Programming. The education in Programming, independent on

the programming language being studied, follows a canonical methodology, which

leads to a cultivated, but a sterile state. Is it possible for a student to learn something

in this way? Yes, it is, this is the “normal” way of learning things and a lot of people

learned to use a programming language in exactly this way. The question is whether

wild learning is also applicable in this context. What would happen if students are

given only a primary explanation and then they are left alone to experiment with the

programming? Would it be possible for complex and abstract concepts in

Programming and Computer Science to emerge? If we forget about the canonical

mythology and provide educational freedom, would this lead in a natural way to

blending elements from different disciplines?

2 The Experiment

The experiment happened in a casual day, while we were engaged with reviewing

more than a hundred multimedia projects written by students from 5th to 7th grades.

As expected the projects were highly varied. There were PowerPoint presentations,

frame-by-frame-hand-drawn video clips accompanied by personal poetry and even a

few animations programmed in OpenGL.

A 6
th

 grader saw the projects and became extremely interested. After seeing several

multimedia projects, she said curtly: Why do we not study how to do this at school?

Why do we learn only Paint, Excel and Word? The reply to these rhetoric questions

was that school is not the only place where we can learn new things. Then she asked

how she could make some cute animation … not something recorded by a camera,

but animation that is entirely computer-generated.

There was a big hesitation whether to tell her about Elica – the programming

environment used to build many other educational applications including applications

within the frame of three European projects – DALEST [3,4], InnoMathEd [5] and

Fibonacci [6]. The main problem was that the girl had never done any programming.

She had never written a single command in a programming language, so diving

directly into the world of programmed 3D animations could be a disaster. On the

other hand, it was a unique moment that she explicitly expressed her strong will to

learn something that goes far beyond the school curriculum.

Thus the casual lesson started with some quick introduction to 3D coordinates. The

girl was not aware of the Cartesian 3D coordinate system, but she had studied the 2D

coordinate system at school. When she was asked Do you recall 2D coordinates she

answered Yes, wrinkling her forehead. It was like just this single question made her

step back regretfully. However, we used the two edges of the desk as X and Y axes,

and an upright pen as Z axis in order to model a coordinate system. After a moment,

while placing hands on desk surface, the girl proudly said that X and Y were forming

a flat plane.

It was time to move to the next step – introducing coordinates. The girl was shown

the approximate positions of objects with coordinates (10,0,0) and (0,0,10);

and then she was able to point in the space the positions of (0,10,0), (10,10,0)

and (10,10,10). She was even asked to point (10,-10,-10) and after few

seconds of hesitation she placed her hand in the correct position in respect to the axes

(that was below the desk). It was surprising how fast she managed to get oriented in

the 3D space, so it was time to make the final step – writing a true computer program.

For this step we used Elica. Its acronym stands for Educational Logo Environment

for Creative Activities. Although it is based on Logo, a language largely and wrongly

assumed to be childish, Elica provides support for object-oriented, functional and

procedural programming – all at the same time. It was quite risky to ask a child that

had absolutely no programming experience to write a program. Thus, hoping to make

just a “presentation” we showed her a simple program that draws and rotates two

cubes. A snapshot of the screen, together with the program code is shown in Fig. 1.

The make statements define the cubes and their properties, and demo is

“responsible” for the rotation.

The most surprising element in this program was when the girl was asked to give

names to the cubes. She was curious why, but she accepted without problems that all

objects in the animation must have their own unique names. In this way she could

“touch” the objects and “tell” them what to do. Most likely the problem with naming

was that in Paint the picture is not composed of individual entities, but is treated as a

single piece of painted nameless strokes.

Fig. 1. The program for creating and rotating two cubes.

Anyway, the girl decided that the cubes must be called brum and brum2 (echoic

words corresponding to whirr or buzz). We did not influence this decision and we did

not discuss it with her.

The experiment up to this point was about 5-10 minutes long. The final explanation

that we provided was that Elica could use not only cubes, but spheres, cones, and

many other shapes. After this note the girl was left along.

3 The Result

Approximately 15 minutes later we went to her room to see what is going on and we

were shocked to see a panda on the computer screen, see a snapshot in Fig. 2. This

panda was the first program ever of this 6
th

 grader! It was so unbelievingly well done,

that we immediately studied it and asked several question:

We: How do you know how to use spheres?

Girl: You told me that I can use spheres, so I looked for “сфера” (i.e. sphere in

Bulgarian) in Google and found that in English it is “sphere”. So I just used this

word and everything worked so well.

We: Did you try other objects?

Girl: Yes, but they didn’t work out.

We: Yes, to construct them you need more numbers, because these objects are

more complex.

Fig. 2. A 3D panda – the girl’s first program. The long sequence of make statements

suggests the application of some complex programming concepts.

There were some surprising things in the program. The first objects that the girl

added to the cubes had funny meaningless names, like bibbib and doing (again

echoic words). Then she started to embed sense in the names, the panda ears were

named uhodqsno (right ear) and uholqvo (left ear), the nose was called nose (in

English!)

And then suddenly she jumped to a numerical notation, which generates shorter

names and is the doorstep to enumeration – oko1 (eye 1) and oko2 (eye 2).

Enumeration is a key programming concept, which is the core of arrays, cycles and

iterations. It is unexpected to observe such transition at so early stage.

Another interesting observation, realized several days later, was the use of

symmetry. If we were to make a panda, we would orient it along some of the axis, so

that the whole panda body is symmetrical in respect to a trivial vertical plane (like the

plane y=0). This would make it much easier to position symmetrical body parts like

eye, ears and legs. If one part has coordinates (x,y,z), then its symmetrical part

would be at (x,-y,z).

However, the girl’s panda was not oriented in a way to use such idea, yet it was

completely based on symmetry – the symmetry plane was the bisecting plane x=y.

This plane makes points(x,y,z) and (y,x,z) symmetrical.

Some of the symmetrical coordinates are shown in Fig. 3. The spheres for the ears

(the statements that create variables uhodqsno and uholqvo) are placed at

(10,3,30) and (3,10,30). The centers of the eyes (oko1 and oko2) are at (15,12,28)

and (12,15,28).

The 3D objects that the girl created were appended to the definitions of the two

cubes. When the panda bear turned the cubes were poking out of her lower back – see

Fig. 4. It looked like these leftovers were the first ever programming bug of the girl,

but this conclusion was premature and … wrong. The girl explained us that these

cubes are the chair of the panda and that everything is correct!!!

Fig. 3. Close-up of some symmetrical coordinates.

Later on the same day the girl made another program – a face of a child with lips,

eyes with irises, nose and hair. We showed her some simple form of animation like

inflating and deflating the face by changing one of its radii. It was quite interesting

how the girl “accepted” that a sphere had actually three radii – one along each of the

axis; and by making them non-equal we could deform the sphere – and the girl

quickly completed the sentence for us – into an egg.

4 Afterthoughts

The result of this experiment showed that programming is not hard at all if we do not

insist to tell all details and provide complete scientifically correct explanations. A

child can start programming without understanding everything about the program.

This method is much close to the exploration of an unknown toy, when the child is

left to experimentally find out what can be done.

Additionally, letting a student play with and in (!) a programming environment

does not impose any restrictions to imagination. While creating something entirely by

her, the 6
th

 grader freely integrated art activities with programming. If an adult was

about to write his/her first program for 3D graphics, he/she would most likely start

with something more conventional, more systematic … or even more cultivated (like

reading the documentation).

Fig. 4. There is no bug here, but the chair of the panda.

The experiment shows one of the advantages of the programmable educational

environments. In such environments students have at their disposal instruments for

describing not only what they do, but also the individual steps of their constructions.

Students’ programs, independent on their complexity or simplicity, are projection of

students’ thoughts. Even “the most innocent” elements like the selected naming

convention of variables, provide clues about the existence of specific skills and the

level of understanding of key concepts.

Cognitive psychology explores various types of thinking. Two of the most

distinguished types are the vertical thinking and the horizontal (lateral) thinking [7].

Some of the main features of both thinking types as identified by Paton [8] based on

[9] are listed in Table 1. The cultivated approach in education fits perfectly to the

vertical thinking, while the wild approach – to the horizontal one.

Table 1. Vertical and horizontal thinking mapped to cultivated and wild education

Feature Vertical thinking Horizontal (lateral) thinking

Characteristics selective, analytical generative, provocative

Focus on rightness richness

Individual steps must be always correct some could be wrong

Negative experience blocks off certain pathways does not exist

Thinking process finite probabilistic

Doing research by writing a computer program reveals much more information if

we focus not only on the final program as a static artifact, but also on the program’s

evolution from scratch till the end, passing through many incomplete and buggy

states. This evolution shows a new class of thinking and is indicative for the path of

gaining concrete skills and understanding key threshold concepts. The horizontal

thinking is the one which happens when students stumble upon a wrong solution and

try to traverse the solution to a correct solution. This thinking helps the students to

“feel” when a research is going in the wrong direction before it is too late. This is the

thinking that allows the students to attempt different solving strategies over a problem

instead of being blocked off by failures.

Educational environments that allow experimentation via programming develop

not only the vertical, but also the horizontal thinking. A programming description of a

solution is rarely written perfectly from the very beginning. Often it is required to

remove bugs or to improve some existing elements. Debugging and optimization are

some of the processes that develop horizontal thinking. Unfortunately, horizontal

thinking is not taught at school, but is expected to be learned. This shows one visible

discrepancy between what is taught and what is expected to be learned. The vertical

thinking is completely cultivated up to the level of lack of critical thinking – here is a

problem, here is an algorithm for solving it, follow the algorithm and you will get a

correct solution. At the same time the horizontal thinking is growing in the wild,

uncontrolled and undirected.

Would it be better to restore the balance between both thinking types? Could we

make the vertical thinking wilder (i.e. to make it more independent and more creative

by deframing students’ thinking and letting them experiment)? Or could we make the

horizontal thinking at least more cultivated (i.e. to help students to analyze wrong

situations and developing skills for searching new solutions)? These are questions that

need yet to be answered.

5 As an Epilogue

The experiment described in this paper was not planned, that is why it was not

possible to observe the process of the creation of the panda. Only one student was

involved, so it is too early to draw general conclusions. It is not known whether the

wild programming always leads to small aromatic fruits or the result was pure

fortuitous event. Maybe wild programming is not applicable to mass education?

Maybe it is more suitable for individual learning? The answers of these questions are

unknown, but the thing, which is known is that without the efforts of Amédée-

François Frézier, today, three hundreds years later, it would be impossible to enjoy

the garden strawberry. And something else is also known. Frézier not only brought

the strawberry to Europe, but he was the mathematician, whose works laid the

fundaments of the 3D geometry in military construction and engineering.

As for the usage of digital technologies in education, the Logo-philosophy (a main

topic in the international conference Constructionism 2010 [10]) is not to focus only

on the informational or the technological sides, but to fully explore the potential of

students to be constructors of their knowledge, to learn through inquiry and to share

their works.

References

1. Darrow, G.: The Strawberry: History, Breeding and Physiology, Chapter 4: The Strawberry

From Chile. Holt, Rinehart and Winston, New York (1966)

2. Boytchev, P.: Pedagogical Inversion, Presented at the 4th International Conference for

Theory and Practice in Education. Budapest (2011)

3. Boytchev, P., Chehlarova, T., Sendova, E.: Enhancing Spatial Imagination of Young

Students by Activities in 3D ELICA Applications. In: 36th Spring Conference of the Union

of Bulgarian Mathematicians, pp. 109--119. Varna (2007)

4. DALEST project, http://www.elica.net/site/museum/Dalest/dalest.html

5. InnoMathEd project, http://www.math.uni-augsburg.de/prof/dida/innomath

6. Fibonacci project, http://fibonacci.uni-bayreuth.de/

7. Robertson, S.: Types of thinking. Routledge, London (1999)

8. Paton, B.: Lateral Thinking. http://www.solutioneers.net/solutioneering/lateralthinking.html

9. Bono, E.: Lateral Thinking: A textbook of creativity. Penguin, Harmondsworth (1977)

10. Clayson, J., Kalas I., (eds.): Proc. of Constructionism 2010. Paris, France, 2010. Comenius

University, Bratislava (2010)

