

GAIT RECOGNITION AND FALL DETECTION WITH INERTIAL SENSORS

Rubén Delgado-Escaño Francisco Castro Manuel J. Marín-Jiménez Nicolás Guil

Outline

Inertial sensors

 An End-to-End Multi-Task and Fusion CNN for Inertial-Based Gait Recognition

 A Cross-dataset Deep Learning Classifier for People Fall Detection and Identification

Inertial sensors

- Cheap, wearable and pervasive
- We work with two types:
 - Accelerometers
 - Gyroscope
- Samples: sequences of 3-D vectors

An End-to-End **Multi-Task** and **Fusion** CNN for Inertial-Based Gait Recognition

Dataset

- Dataset: OU-ISIR Biometric Database (Osaka University):
 - Subset A:
 - 744 subjects: two sequences at 100 Hz in opposite direction
 - Genre: 389 males and 355 females
 - Age: from 2 to 78 years, discretized in ranges
 - Subset B:
 - 495 subjects
 - Three sensors (left, central, right)

Architecture

Four convolutional layers + RELU + batch norm. + max pool

Training

- CNN input: 100 samples subsequence (one second)
- Data augmentation

CNN	Conv01	Conv02	Conv03	Conv04	AvgPool	FC	
SingleTask SingleSensor	1 x 10 x 240	1 x 7 x 300	1 x 5 x 360	1 x 3 x 420	1 x 5	C	
	P: 1 x 2	P: 1 x 2	P: 1 x 2	P: 1 x 2	Dr: 0.5		
MultiTask SingleSensor	1 x 10 x 240	1 x 7 x 300	1 x 5 x 360	1 x 3 x 420	1 x 5	$C_{id} + C_{age} + C_{gender}$	
with task singlesensor	P: 1 x 2	P: 1 x 2	P: 1 x 2	P: 1 x 2	Dr: 0.5	$\bigcirc id + \bigcirc age + \bigcirc gender$	
	Acc: 1 x 10 x 240	1 x 7 x 300	1 x 5 x 360	1 x 3 x 420	1 x 5		
SingleTask MultiSensor	P: 1 x 2	P: 1 x 2	P: 1 x 2	P: 1 x 2	Dr: 0.5	C	
Single rask with the consor	Gyr: 1 x 10 x 240						
	P: 1 x 2						
	Acc: 1 x 10 x 240	1 x 7 x 300	1 x 5 x 360	1 x 3 x 420	1 x 5		
MultiTask MultiSensor	P: 1 x 2	P: 1 x 2	P: 1 x 2	P: 1 x 2	Dr: 0.5	$C_{id} + C_{age} + C_{gender}$	
	Gyr: 1 x 10 x 240					Cid + Cage + Cgender	
	P: 1 x 2						

Gait recognition accuracy and F1-score

	Acc				F1-score			
Architecture	Id	Age	Gender	Avg	Id	Age	Gender	Avg
SingleTask Accelerometer	89.7	91.0	94.8	91.8	87.6	91.3	94.5	91.2
SingleTask Gyroscope	89.1	89.1	94.4	90.9	87.5	89.7	94.4	90.5
MultiTask Accelerometer	90.9	93.3	95.9	93.4	89.1	93.3	95.9	92.8
MultiTask Gyroscope	90.1	90.1	94.8	91.7	88.3	90.5	94.9	91.2
SingleTask Fusion	94.2	95.0	95.6	94.9	93.5	95.0	95.6	94.7
MultiTask Fusion	94.8	96.1	97.7	96.2	93.8	96.3	97.7	95.9

Gait authentication accuracy

Architecture	EER	AUC
SingleTask Accelerometer	1.47	99.91
SingleTask Gyroscope	2.50	99.80
MultiTask Accelerometer	1.61	99.90
MultiTask Gyroscope	2.85	99.72
SingleTask Fusion	1.14	99.93
MultiTask Fusion	1.34	99.92

Gait **recognition** accuracy

CNN	Id	Age	Gender	Avg
AE-GDI-CNN [11]	61.0	-	-	-
Muaaz <i>et al</i> . [58]	63.5	-	-	-
Ngo <i>et al</i> . [21]	70.2	-	-	-
Wei <i>et al</i> . [12]	83.8	-	-	-
MultiTask Fusion (Ours)	94.8	96.1	97.7	96.2

Gait authentication accuracy

Approach	EER
Gafurov <i>et al</i> . [39]	15.8
Derawi <i>et al</i> . [42]	14.3
Rong <i>et al</i> . [40]	14.3
Ngo <i>et al</i> . [21]	13.5
Inp GDI + i-vector [9]	7.1
NC GDI + i-vector [9]	5.6
SingleTask Fusion (Ours)	1.1

A Cross-dataset Deep Learning Classifier for People Fall Detection and Identification

Motivation

- Progressive aging of population
 - Falls are a leading cause of accidents and loss of autonomy among the elderly
- Datasets with a lot of variety among each other

Dataset	Subjects	Sensors	Frequency	Position	Length	N-Fold	
DFNAPAS [28]	10	1 acc	$50 \mathrm{Hz}$	Pockets	301	10	
CiaFall [90]	20	2 acc	200Hz	Woist	2k-36k	10	
SisFall [29]	38	$1~{ m gyr}$	200HZ	Waist	2K-50K	10	
UniMiB-SHAR 30	30	1 acc	$50 \mathrm{Hz}$	Pockets	51	5	
		$6~{ m acc}$			210-945		
ASLH 31	17	$6~{ m gyr}$	$25 \mathrm{Hz}$	Thigh		10	
		6 mag					

Architecture

Experimental results

		Fall Detection				Identity Recognition
Dataset	Method	Accuracy	Sensitivity	Specificity	MAA	Accuracy
DFNAPAS	Medrano et al. [15]	97.70	95.40	92.40	-	-
	Ours	99.88	98.66	99.96	99.31	80.20
SisFall	Sucerquia et al. [16]	96.10	-	-	-	-
	Ours	99.16	99.24	99.10	99.17	74.58
UniMiB-SHAR	Micucci et al. [17]	97.03	-	-	94.87	-
Ulliviib-SHAK	Ours	97.17	89.69	99.56	94.63	82.00
ASLH	Ozdemir et al. [18]	99.61	-	-	-	-
	Ours	96.64	98.03	94.94	96.49	81.72

Thanks!